src/cpu/x86/vm/c1_LIRAssembler_x86.cpp

Mon, 14 May 2012 09:36:00 -0700

author
kvn
date
Mon, 14 May 2012 09:36:00 -0700
changeset 3760
8f972594effc
parent 3744
3576af4cb939
child 3787
6759698e3140
permissions
-rw-r--r--

6924259: Remove String.count/String.offset
Summary: Allow a version of String class that doesn't have count and offset fields.
Reviewed-by: never, coleenp

     1 /*
     2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "asm/assembler.hpp"
    27 #include "c1/c1_Compilation.hpp"
    28 #include "c1/c1_LIRAssembler.hpp"
    29 #include "c1/c1_MacroAssembler.hpp"
    30 #include "c1/c1_Runtime1.hpp"
    31 #include "c1/c1_ValueStack.hpp"
    32 #include "ci/ciArrayKlass.hpp"
    33 #include "ci/ciInstance.hpp"
    34 #include "gc_interface/collectedHeap.hpp"
    35 #include "memory/barrierSet.hpp"
    36 #include "memory/cardTableModRefBS.hpp"
    37 #include "nativeInst_x86.hpp"
    38 #include "oops/objArrayKlass.hpp"
    39 #include "runtime/sharedRuntime.hpp"
    42 // These masks are used to provide 128-bit aligned bitmasks to the XMM
    43 // instructions, to allow sign-masking or sign-bit flipping.  They allow
    44 // fast versions of NegF/NegD and AbsF/AbsD.
    46 // Note: 'double' and 'long long' have 32-bits alignment on x86.
    47 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
    48   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
    49   // of 128-bits operands for SSE instructions.
    50   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
    51   // Store the value to a 128-bits operand.
    52   operand[0] = lo;
    53   operand[1] = hi;
    54   return operand;
    55 }
    57 // Buffer for 128-bits masks used by SSE instructions.
    58 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
    60 // Static initialization during VM startup.
    61 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
    62 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
    63 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
    64 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
    68 NEEDS_CLEANUP // remove this definitions ?
    69 const Register IC_Klass    = rax;   // where the IC klass is cached
    70 const Register SYNC_header = rax;   // synchronization header
    71 const Register SHIFT_count = rcx;   // where count for shift operations must be
    73 #define __ _masm->
    76 static void select_different_registers(Register preserve,
    77                                        Register extra,
    78                                        Register &tmp1,
    79                                        Register &tmp2) {
    80   if (tmp1 == preserve) {
    81     assert_different_registers(tmp1, tmp2, extra);
    82     tmp1 = extra;
    83   } else if (tmp2 == preserve) {
    84     assert_different_registers(tmp1, tmp2, extra);
    85     tmp2 = extra;
    86   }
    87   assert_different_registers(preserve, tmp1, tmp2);
    88 }
    92 static void select_different_registers(Register preserve,
    93                                        Register extra,
    94                                        Register &tmp1,
    95                                        Register &tmp2,
    96                                        Register &tmp3) {
    97   if (tmp1 == preserve) {
    98     assert_different_registers(tmp1, tmp2, tmp3, extra);
    99     tmp1 = extra;
   100   } else if (tmp2 == preserve) {
   101     assert_different_registers(tmp1, tmp2, tmp3, extra);
   102     tmp2 = extra;
   103   } else if (tmp3 == preserve) {
   104     assert_different_registers(tmp1, tmp2, tmp3, extra);
   105     tmp3 = extra;
   106   }
   107   assert_different_registers(preserve, tmp1, tmp2, tmp3);
   108 }
   112 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
   113   if (opr->is_constant()) {
   114     LIR_Const* constant = opr->as_constant_ptr();
   115     switch (constant->type()) {
   116       case T_INT: {
   117         return true;
   118       }
   120       default:
   121         return false;
   122     }
   123   }
   124   return false;
   125 }
   128 LIR_Opr LIR_Assembler::receiverOpr() {
   129   return FrameMap::receiver_opr;
   130 }
   132 LIR_Opr LIR_Assembler::osrBufferPointer() {
   133   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
   134 }
   136 //--------------fpu register translations-----------------------
   139 address LIR_Assembler::float_constant(float f) {
   140   address const_addr = __ float_constant(f);
   141   if (const_addr == NULL) {
   142     bailout("const section overflow");
   143     return __ code()->consts()->start();
   144   } else {
   145     return const_addr;
   146   }
   147 }
   150 address LIR_Assembler::double_constant(double d) {
   151   address const_addr = __ double_constant(d);
   152   if (const_addr == NULL) {
   153     bailout("const section overflow");
   154     return __ code()->consts()->start();
   155   } else {
   156     return const_addr;
   157   }
   158 }
   161 void LIR_Assembler::set_24bit_FPU() {
   162   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
   163 }
   165 void LIR_Assembler::reset_FPU() {
   166   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
   167 }
   169 void LIR_Assembler::fpop() {
   170   __ fpop();
   171 }
   173 void LIR_Assembler::fxch(int i) {
   174   __ fxch(i);
   175 }
   177 void LIR_Assembler::fld(int i) {
   178   __ fld_s(i);
   179 }
   181 void LIR_Assembler::ffree(int i) {
   182   __ ffree(i);
   183 }
   185 void LIR_Assembler::breakpoint() {
   186   __ int3();
   187 }
   189 void LIR_Assembler::push(LIR_Opr opr) {
   190   if (opr->is_single_cpu()) {
   191     __ push_reg(opr->as_register());
   192   } else if (opr->is_double_cpu()) {
   193     NOT_LP64(__ push_reg(opr->as_register_hi()));
   194     __ push_reg(opr->as_register_lo());
   195   } else if (opr->is_stack()) {
   196     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
   197   } else if (opr->is_constant()) {
   198     LIR_Const* const_opr = opr->as_constant_ptr();
   199     if (const_opr->type() == T_OBJECT) {
   200       __ push_oop(const_opr->as_jobject());
   201     } else if (const_opr->type() == T_INT) {
   202       __ push_jint(const_opr->as_jint());
   203     } else {
   204       ShouldNotReachHere();
   205     }
   207   } else {
   208     ShouldNotReachHere();
   209   }
   210 }
   212 void LIR_Assembler::pop(LIR_Opr opr) {
   213   if (opr->is_single_cpu()) {
   214     __ pop_reg(opr->as_register());
   215   } else {
   216     ShouldNotReachHere();
   217   }
   218 }
   220 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
   221   return addr->base()->is_illegal() && addr->index()->is_illegal();
   222 }
   224 //-------------------------------------------
   226 Address LIR_Assembler::as_Address(LIR_Address* addr) {
   227   return as_Address(addr, rscratch1);
   228 }
   230 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
   231   if (addr->base()->is_illegal()) {
   232     assert(addr->index()->is_illegal(), "must be illegal too");
   233     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
   234     if (! __ reachable(laddr)) {
   235       __ movptr(tmp, laddr.addr());
   236       Address res(tmp, 0);
   237       return res;
   238     } else {
   239       return __ as_Address(laddr);
   240     }
   241   }
   243   Register base = addr->base()->as_pointer_register();
   245   if (addr->index()->is_illegal()) {
   246     return Address( base, addr->disp());
   247   } else if (addr->index()->is_cpu_register()) {
   248     Register index = addr->index()->as_pointer_register();
   249     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
   250   } else if (addr->index()->is_constant()) {
   251     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
   252     assert(Assembler::is_simm32(addr_offset), "must be");
   254     return Address(base, addr_offset);
   255   } else {
   256     Unimplemented();
   257     return Address();
   258   }
   259 }
   262 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
   263   Address base = as_Address(addr);
   264   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
   265 }
   268 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
   269   return as_Address(addr);
   270 }
   273 void LIR_Assembler::osr_entry() {
   274   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
   275   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
   276   ValueStack* entry_state = osr_entry->state();
   277   int number_of_locks = entry_state->locks_size();
   279   // we jump here if osr happens with the interpreter
   280   // state set up to continue at the beginning of the
   281   // loop that triggered osr - in particular, we have
   282   // the following registers setup:
   283   //
   284   // rcx: osr buffer
   285   //
   287   // build frame
   288   ciMethod* m = compilation()->method();
   289   __ build_frame(initial_frame_size_in_bytes());
   291   // OSR buffer is
   292   //
   293   // locals[nlocals-1..0]
   294   // monitors[0..number_of_locks]
   295   //
   296   // locals is a direct copy of the interpreter frame so in the osr buffer
   297   // so first slot in the local array is the last local from the interpreter
   298   // and last slot is local[0] (receiver) from the interpreter
   299   //
   300   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
   301   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
   302   // in the interpreter frame (the method lock if a sync method)
   304   // Initialize monitors in the compiled activation.
   305   //   rcx: pointer to osr buffer
   306   //
   307   // All other registers are dead at this point and the locals will be
   308   // copied into place by code emitted in the IR.
   310   Register OSR_buf = osrBufferPointer()->as_pointer_register();
   311   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
   312     int monitor_offset = BytesPerWord * method()->max_locals() +
   313       (2 * BytesPerWord) * (number_of_locks - 1);
   314     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
   315     // the OSR buffer using 2 word entries: first the lock and then
   316     // the oop.
   317     for (int i = 0; i < number_of_locks; i++) {
   318       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
   319 #ifdef ASSERT
   320       // verify the interpreter's monitor has a non-null object
   321       {
   322         Label L;
   323         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
   324         __ jcc(Assembler::notZero, L);
   325         __ stop("locked object is NULL");
   326         __ bind(L);
   327       }
   328 #endif
   329       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
   330       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
   331       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
   332       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
   333     }
   334   }
   335 }
   338 // inline cache check; done before the frame is built.
   339 int LIR_Assembler::check_icache() {
   340   Register receiver = FrameMap::receiver_opr->as_register();
   341   Register ic_klass = IC_Klass;
   342   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
   343   const bool do_post_padding = VerifyOops || UseCompressedOops;
   344   if (!do_post_padding) {
   345     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
   346     while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
   347       __ nop();
   348     }
   349   }
   350   int offset = __ offset();
   351   __ inline_cache_check(receiver, IC_Klass);
   352   assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
   353   if (do_post_padding) {
   354     // force alignment after the cache check.
   355     // It's been verified to be aligned if !VerifyOops
   356     __ align(CodeEntryAlignment);
   357   }
   358   return offset;
   359 }
   362 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
   363   jobject o = NULL;
   364   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
   365   __ movoop(reg, o);
   366   patching_epilog(patch, lir_patch_normal, reg, info);
   367 }
   370 // This specifies the rsp decrement needed to build the frame
   371 int LIR_Assembler::initial_frame_size_in_bytes() {
   372   // if rounding, must let FrameMap know!
   374   // The frame_map records size in slots (32bit word)
   376   // subtract two words to account for return address and link
   377   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
   378 }
   381 int LIR_Assembler::emit_exception_handler() {
   382   // if the last instruction is a call (typically to do a throw which
   383   // is coming at the end after block reordering) the return address
   384   // must still point into the code area in order to avoid assertion
   385   // failures when searching for the corresponding bci => add a nop
   386   // (was bug 5/14/1999 - gri)
   387   __ nop();
   389   // generate code for exception handler
   390   address handler_base = __ start_a_stub(exception_handler_size);
   391   if (handler_base == NULL) {
   392     // not enough space left for the handler
   393     bailout("exception handler overflow");
   394     return -1;
   395   }
   397   int offset = code_offset();
   399   // the exception oop and pc are in rax, and rdx
   400   // no other registers need to be preserved, so invalidate them
   401   __ invalidate_registers(false, true, true, false, true, true);
   403   // check that there is really an exception
   404   __ verify_not_null_oop(rax);
   406   // search an exception handler (rax: exception oop, rdx: throwing pc)
   407   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
   408   __ should_not_reach_here();
   409   guarantee(code_offset() - offset <= exception_handler_size, "overflow");
   410   __ end_a_stub();
   412   return offset;
   413 }
   416 // Emit the code to remove the frame from the stack in the exception
   417 // unwind path.
   418 int LIR_Assembler::emit_unwind_handler() {
   419 #ifndef PRODUCT
   420   if (CommentedAssembly) {
   421     _masm->block_comment("Unwind handler");
   422   }
   423 #endif
   425   int offset = code_offset();
   427   // Fetch the exception from TLS and clear out exception related thread state
   428   __ get_thread(rsi);
   429   __ movptr(rax, Address(rsi, JavaThread::exception_oop_offset()));
   430   __ movptr(Address(rsi, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
   431   __ movptr(Address(rsi, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
   433   __ bind(_unwind_handler_entry);
   434   __ verify_not_null_oop(rax);
   435   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   436     __ mov(rsi, rax);  // Preserve the exception
   437   }
   439   // Preform needed unlocking
   440   MonitorExitStub* stub = NULL;
   441   if (method()->is_synchronized()) {
   442     monitor_address(0, FrameMap::rax_opr);
   443     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
   444     __ unlock_object(rdi, rbx, rax, *stub->entry());
   445     __ bind(*stub->continuation());
   446   }
   448   if (compilation()->env()->dtrace_method_probes()) {
   449     __ get_thread(rax);
   450     __ movptr(Address(rsp, 0), rax);
   451     __ movoop(Address(rsp, sizeof(void*)), method()->constant_encoding());
   452     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
   453   }
   455   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
   456     __ mov(rax, rsi);  // Restore the exception
   457   }
   459   // remove the activation and dispatch to the unwind handler
   460   __ remove_frame(initial_frame_size_in_bytes());
   461   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
   463   // Emit the slow path assembly
   464   if (stub != NULL) {
   465     stub->emit_code(this);
   466   }
   468   return offset;
   469 }
   472 int LIR_Assembler::emit_deopt_handler() {
   473   // if the last instruction is a call (typically to do a throw which
   474   // is coming at the end after block reordering) the return address
   475   // must still point into the code area in order to avoid assertion
   476   // failures when searching for the corresponding bci => add a nop
   477   // (was bug 5/14/1999 - gri)
   478   __ nop();
   480   // generate code for exception handler
   481   address handler_base = __ start_a_stub(deopt_handler_size);
   482   if (handler_base == NULL) {
   483     // not enough space left for the handler
   484     bailout("deopt handler overflow");
   485     return -1;
   486   }
   488   int offset = code_offset();
   489   InternalAddress here(__ pc());
   491   __ pushptr(here.addr());
   492   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
   493   guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
   494   __ end_a_stub();
   496   return offset;
   497 }
   500 // This is the fast version of java.lang.String.compare; it has not
   501 // OSR-entry and therefore, we generate a slow version for OSR's
   502 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
   503   __ movptr (rbx, rcx); // receiver is in rcx
   504   __ movptr (rax, arg1->as_register());
   506   // Get addresses of first characters from both Strings
   507   __ load_heap_oop(rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
   508   if (java_lang_String::has_offset_field()) {
   509     __ movptr     (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
   510     __ movl       (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
   511     __ lea        (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   512   } else {
   513     __ movl       (rax, Address(rsi, arrayOopDesc::length_offset_in_bytes()));
   514     __ lea        (rsi, Address(rsi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   515   }
   517   // rbx, may be NULL
   518   add_debug_info_for_null_check_here(info);
   519   __ load_heap_oop(rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
   520   if (java_lang_String::has_offset_field()) {
   521     __ movptr     (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
   522     __ movl       (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
   523     __ lea        (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   524   } else {
   525     __ movl       (rbx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
   526     __ lea        (rdi, Address(rdi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
   527   }
   529   // compute minimum length (in rax) and difference of lengths (on top of stack)
   530   __ mov   (rcx, rbx);
   531   __ subptr(rbx, rax); // subtract lengths
   532   __ push  (rbx);      // result
   533   __ cmov  (Assembler::lessEqual, rax, rcx);
   535   // is minimum length 0?
   536   Label noLoop, haveResult;
   537   __ testptr (rax, rax);
   538   __ jcc (Assembler::zero, noLoop);
   540   // compare first characters
   541   __ load_unsigned_short(rcx, Address(rdi, 0));
   542   __ load_unsigned_short(rbx, Address(rsi, 0));
   543   __ subl(rcx, rbx);
   544   __ jcc(Assembler::notZero, haveResult);
   545   // starting loop
   546   __ decrement(rax); // we already tested index: skip one
   547   __ jcc(Assembler::zero, noLoop);
   549   // set rsi.edi to the end of the arrays (arrays have same length)
   550   // negate the index
   552   __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   553   __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
   554   __ negptr(rax);
   556   // compare the strings in a loop
   558   Label loop;
   559   __ align(wordSize);
   560   __ bind(loop);
   561   __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
   562   __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
   563   __ subl(rcx, rbx);
   564   __ jcc(Assembler::notZero, haveResult);
   565   __ increment(rax);
   566   __ jcc(Assembler::notZero, loop);
   568   // strings are equal up to min length
   570   __ bind(noLoop);
   571   __ pop(rax);
   572   return_op(LIR_OprFact::illegalOpr);
   574   __ bind(haveResult);
   575   // leave instruction is going to discard the TOS value
   576   __ mov (rax, rcx); // result of call is in rax,
   577 }
   580 void LIR_Assembler::return_op(LIR_Opr result) {
   581   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
   582   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
   583     assert(result->fpu() == 0, "result must already be on TOS");
   584   }
   586   // Pop the stack before the safepoint code
   587   __ remove_frame(initial_frame_size_in_bytes());
   589   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
   591   // Note: we do not need to round double result; float result has the right precision
   592   // the poll sets the condition code, but no data registers
   593   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   594                               relocInfo::poll_return_type);
   596   if (Assembler::is_polling_page_far()) {
   597     __ lea(rscratch1, polling_page);
   598     __ relocate(relocInfo::poll_return_type);
   599     __ testl(rax, Address(rscratch1, 0));
   600   } else {
   601     __ testl(rax, polling_page);
   602   }
   603   __ ret(0);
   604 }
   607 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
   608   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
   609                               relocInfo::poll_type);
   610   guarantee(info != NULL, "Shouldn't be NULL");
   611   int offset = __ offset();
   612   if (Assembler::is_polling_page_far()) {
   613     __ lea(rscratch1, polling_page);
   614     offset = __ offset();
   615     add_debug_info_for_branch(info);
   616     __ testl(rax, Address(rscratch1, 0));
   617   } else {
   618     add_debug_info_for_branch(info);
   619     __ testl(rax, polling_page);
   620   }
   621   return offset;
   622 }
   625 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
   626   if (from_reg != to_reg) __ mov(to_reg, from_reg);
   627 }
   629 void LIR_Assembler::swap_reg(Register a, Register b) {
   630   __ xchgptr(a, b);
   631 }
   634 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
   635   assert(src->is_constant(), "should not call otherwise");
   636   assert(dest->is_register(), "should not call otherwise");
   637   LIR_Const* c = src->as_constant_ptr();
   639   switch (c->type()) {
   640     case T_INT: {
   641       assert(patch_code == lir_patch_none, "no patching handled here");
   642       __ movl(dest->as_register(), c->as_jint());
   643       break;
   644     }
   646     case T_ADDRESS: {
   647       assert(patch_code == lir_patch_none, "no patching handled here");
   648       __ movptr(dest->as_register(), c->as_jint());
   649       break;
   650     }
   652     case T_LONG: {
   653       assert(patch_code == lir_patch_none, "no patching handled here");
   654 #ifdef _LP64
   655       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
   656 #else
   657       __ movptr(dest->as_register_lo(), c->as_jint_lo());
   658       __ movptr(dest->as_register_hi(), c->as_jint_hi());
   659 #endif // _LP64
   660       break;
   661     }
   663     case T_OBJECT: {
   664       if (patch_code != lir_patch_none) {
   665         jobject2reg_with_patching(dest->as_register(), info);
   666       } else {
   667         __ movoop(dest->as_register(), c->as_jobject());
   668       }
   669       break;
   670     }
   672     case T_FLOAT: {
   673       if (dest->is_single_xmm()) {
   674         if (c->is_zero_float()) {
   675           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
   676         } else {
   677           __ movflt(dest->as_xmm_float_reg(),
   678                    InternalAddress(float_constant(c->as_jfloat())));
   679         }
   680       } else {
   681         assert(dest->is_single_fpu(), "must be");
   682         assert(dest->fpu_regnr() == 0, "dest must be TOS");
   683         if (c->is_zero_float()) {
   684           __ fldz();
   685         } else if (c->is_one_float()) {
   686           __ fld1();
   687         } else {
   688           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
   689         }
   690       }
   691       break;
   692     }
   694     case T_DOUBLE: {
   695       if (dest->is_double_xmm()) {
   696         if (c->is_zero_double()) {
   697           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
   698         } else {
   699           __ movdbl(dest->as_xmm_double_reg(),
   700                     InternalAddress(double_constant(c->as_jdouble())));
   701         }
   702       } else {
   703         assert(dest->is_double_fpu(), "must be");
   704         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
   705         if (c->is_zero_double()) {
   706           __ fldz();
   707         } else if (c->is_one_double()) {
   708           __ fld1();
   709         } else {
   710           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
   711         }
   712       }
   713       break;
   714     }
   716     default:
   717       ShouldNotReachHere();
   718   }
   719 }
   721 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
   722   assert(src->is_constant(), "should not call otherwise");
   723   assert(dest->is_stack(), "should not call otherwise");
   724   LIR_Const* c = src->as_constant_ptr();
   726   switch (c->type()) {
   727     case T_INT:  // fall through
   728     case T_FLOAT:
   729       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
   730       break;
   732     case T_ADDRESS:
   733       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
   734       break;
   736     case T_OBJECT:
   737       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
   738       break;
   740     case T_LONG:  // fall through
   741     case T_DOUBLE:
   742 #ifdef _LP64
   743       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   744                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
   745 #else
   746       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   747                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
   748       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
   749                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
   750 #endif // _LP64
   751       break;
   753     default:
   754       ShouldNotReachHere();
   755   }
   756 }
   758 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
   759   assert(src->is_constant(), "should not call otherwise");
   760   assert(dest->is_address(), "should not call otherwise");
   761   LIR_Const* c = src->as_constant_ptr();
   762   LIR_Address* addr = dest->as_address_ptr();
   764   int null_check_here = code_offset();
   765   switch (type) {
   766     case T_INT:    // fall through
   767     case T_FLOAT:
   768       __ movl(as_Address(addr), c->as_jint_bits());
   769       break;
   771     case T_ADDRESS:
   772       __ movptr(as_Address(addr), c->as_jint_bits());
   773       break;
   775     case T_OBJECT:  // fall through
   776     case T_ARRAY:
   777       if (c->as_jobject() == NULL) {
   778         if (UseCompressedOops && !wide) {
   779           __ movl(as_Address(addr), (int32_t)NULL_WORD);
   780         } else {
   781           __ movptr(as_Address(addr), NULL_WORD);
   782         }
   783       } else {
   784         if (is_literal_address(addr)) {
   785           ShouldNotReachHere();
   786           __ movoop(as_Address(addr, noreg), c->as_jobject());
   787         } else {
   788 #ifdef _LP64
   789           __ movoop(rscratch1, c->as_jobject());
   790           if (UseCompressedOops && !wide) {
   791             __ encode_heap_oop(rscratch1);
   792             null_check_here = code_offset();
   793             __ movl(as_Address_lo(addr), rscratch1);
   794           } else {
   795             null_check_here = code_offset();
   796             __ movptr(as_Address_lo(addr), rscratch1);
   797           }
   798 #else
   799           __ movoop(as_Address(addr), c->as_jobject());
   800 #endif
   801         }
   802       }
   803       break;
   805     case T_LONG:    // fall through
   806     case T_DOUBLE:
   807 #ifdef _LP64
   808       if (is_literal_address(addr)) {
   809         ShouldNotReachHere();
   810         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
   811       } else {
   812         __ movptr(r10, (intptr_t)c->as_jlong_bits());
   813         null_check_here = code_offset();
   814         __ movptr(as_Address_lo(addr), r10);
   815       }
   816 #else
   817       // Always reachable in 32bit so this doesn't produce useless move literal
   818       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
   819       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
   820 #endif // _LP64
   821       break;
   823     case T_BOOLEAN: // fall through
   824     case T_BYTE:
   825       __ movb(as_Address(addr), c->as_jint() & 0xFF);
   826       break;
   828     case T_CHAR:    // fall through
   829     case T_SHORT:
   830       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
   831       break;
   833     default:
   834       ShouldNotReachHere();
   835   };
   837   if (info != NULL) {
   838     add_debug_info_for_null_check(null_check_here, info);
   839   }
   840 }
   843 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
   844   assert(src->is_register(), "should not call otherwise");
   845   assert(dest->is_register(), "should not call otherwise");
   847   // move between cpu-registers
   848   if (dest->is_single_cpu()) {
   849 #ifdef _LP64
   850     if (src->type() == T_LONG) {
   851       // Can do LONG -> OBJECT
   852       move_regs(src->as_register_lo(), dest->as_register());
   853       return;
   854     }
   855 #endif
   856     assert(src->is_single_cpu(), "must match");
   857     if (src->type() == T_OBJECT) {
   858       __ verify_oop(src->as_register());
   859     }
   860     move_regs(src->as_register(), dest->as_register());
   862   } else if (dest->is_double_cpu()) {
   863 #ifdef _LP64
   864     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
   865       // Surprising to me but we can see move of a long to t_object
   866       __ verify_oop(src->as_register());
   867       move_regs(src->as_register(), dest->as_register_lo());
   868       return;
   869     }
   870 #endif
   871     assert(src->is_double_cpu(), "must match");
   872     Register f_lo = src->as_register_lo();
   873     Register f_hi = src->as_register_hi();
   874     Register t_lo = dest->as_register_lo();
   875     Register t_hi = dest->as_register_hi();
   876 #ifdef _LP64
   877     assert(f_hi == f_lo, "must be same");
   878     assert(t_hi == t_lo, "must be same");
   879     move_regs(f_lo, t_lo);
   880 #else
   881     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
   884     if (f_lo == t_hi && f_hi == t_lo) {
   885       swap_reg(f_lo, f_hi);
   886     } else if (f_hi == t_lo) {
   887       assert(f_lo != t_hi, "overwriting register");
   888       move_regs(f_hi, t_hi);
   889       move_regs(f_lo, t_lo);
   890     } else {
   891       assert(f_hi != t_lo, "overwriting register");
   892       move_regs(f_lo, t_lo);
   893       move_regs(f_hi, t_hi);
   894     }
   895 #endif // LP64
   897     // special moves from fpu-register to xmm-register
   898     // necessary for method results
   899   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
   900     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
   901     __ fld_s(Address(rsp, 0));
   902   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
   903     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
   904     __ fld_d(Address(rsp, 0));
   905   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
   906     __ fstp_s(Address(rsp, 0));
   907     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
   908   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
   909     __ fstp_d(Address(rsp, 0));
   910     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
   912     // move between xmm-registers
   913   } else if (dest->is_single_xmm()) {
   914     assert(src->is_single_xmm(), "must match");
   915     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
   916   } else if (dest->is_double_xmm()) {
   917     assert(src->is_double_xmm(), "must match");
   918     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
   920     // move between fpu-registers (no instruction necessary because of fpu-stack)
   921   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
   922     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
   923     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
   924   } else {
   925     ShouldNotReachHere();
   926   }
   927 }
   929 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
   930   assert(src->is_register(), "should not call otherwise");
   931   assert(dest->is_stack(), "should not call otherwise");
   933   if (src->is_single_cpu()) {
   934     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
   935     if (type == T_OBJECT || type == T_ARRAY) {
   936       __ verify_oop(src->as_register());
   937       __ movptr (dst, src->as_register());
   938     } else {
   939       __ movl (dst, src->as_register());
   940     }
   942   } else if (src->is_double_cpu()) {
   943     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
   944     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
   945     __ movptr (dstLO, src->as_register_lo());
   946     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
   948   } else if (src->is_single_xmm()) {
   949     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
   950     __ movflt(dst_addr, src->as_xmm_float_reg());
   952   } else if (src->is_double_xmm()) {
   953     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
   954     __ movdbl(dst_addr, src->as_xmm_double_reg());
   956   } else if (src->is_single_fpu()) {
   957     assert(src->fpu_regnr() == 0, "argument must be on TOS");
   958     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
   959     if (pop_fpu_stack)     __ fstp_s (dst_addr);
   960     else                   __ fst_s  (dst_addr);
   962   } else if (src->is_double_fpu()) {
   963     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
   964     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
   965     if (pop_fpu_stack)     __ fstp_d (dst_addr);
   966     else                   __ fst_d  (dst_addr);
   968   } else {
   969     ShouldNotReachHere();
   970   }
   971 }
   974 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
   975   LIR_Address* to_addr = dest->as_address_ptr();
   976   PatchingStub* patch = NULL;
   977   Register compressed_src = rscratch1;
   979   if (type == T_ARRAY || type == T_OBJECT) {
   980     __ verify_oop(src->as_register());
   981 #ifdef _LP64
   982     if (UseCompressedOops && !wide) {
   983       __ movptr(compressed_src, src->as_register());
   984       __ encode_heap_oop(compressed_src);
   985     }
   986 #endif
   987   }
   989   if (patch_code != lir_patch_none) {
   990     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
   991     Address toa = as_Address(to_addr);
   992     assert(toa.disp() != 0, "must have");
   993   }
   995   int null_check_here = code_offset();
   996   switch (type) {
   997     case T_FLOAT: {
   998       if (src->is_single_xmm()) {
   999         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
  1000       } else {
  1001         assert(src->is_single_fpu(), "must be");
  1002         assert(src->fpu_regnr() == 0, "argument must be on TOS");
  1003         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
  1004         else                    __ fst_s (as_Address(to_addr));
  1006       break;
  1009     case T_DOUBLE: {
  1010       if (src->is_double_xmm()) {
  1011         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
  1012       } else {
  1013         assert(src->is_double_fpu(), "must be");
  1014         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
  1015         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
  1016         else                    __ fst_d (as_Address(to_addr));
  1018       break;
  1021     case T_ARRAY:   // fall through
  1022     case T_OBJECT:  // fall through
  1023       if (UseCompressedOops && !wide) {
  1024         __ movl(as_Address(to_addr), compressed_src);
  1025       } else {
  1026         __ movptr(as_Address(to_addr), src->as_register());
  1028       break;
  1029     case T_ADDRESS:
  1030       __ movptr(as_Address(to_addr), src->as_register());
  1031       break;
  1032     case T_INT:
  1033       __ movl(as_Address(to_addr), src->as_register());
  1034       break;
  1036     case T_LONG: {
  1037       Register from_lo = src->as_register_lo();
  1038       Register from_hi = src->as_register_hi();
  1039 #ifdef _LP64
  1040       __ movptr(as_Address_lo(to_addr), from_lo);
  1041 #else
  1042       Register base = to_addr->base()->as_register();
  1043       Register index = noreg;
  1044       if (to_addr->index()->is_register()) {
  1045         index = to_addr->index()->as_register();
  1047       if (base == from_lo || index == from_lo) {
  1048         assert(base != from_hi, "can't be");
  1049         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
  1050         __ movl(as_Address_hi(to_addr), from_hi);
  1051         if (patch != NULL) {
  1052           patching_epilog(patch, lir_patch_high, base, info);
  1053           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1054           patch_code = lir_patch_low;
  1056         __ movl(as_Address_lo(to_addr), from_lo);
  1057       } else {
  1058         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
  1059         __ movl(as_Address_lo(to_addr), from_lo);
  1060         if (patch != NULL) {
  1061           patching_epilog(patch, lir_patch_low, base, info);
  1062           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1063           patch_code = lir_patch_high;
  1065         __ movl(as_Address_hi(to_addr), from_hi);
  1067 #endif // _LP64
  1068       break;
  1071     case T_BYTE:    // fall through
  1072     case T_BOOLEAN: {
  1073       Register src_reg = src->as_register();
  1074       Address dst_addr = as_Address(to_addr);
  1075       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
  1076       __ movb(dst_addr, src_reg);
  1077       break;
  1080     case T_CHAR:    // fall through
  1081     case T_SHORT:
  1082       __ movw(as_Address(to_addr), src->as_register());
  1083       break;
  1085     default:
  1086       ShouldNotReachHere();
  1088   if (info != NULL) {
  1089     add_debug_info_for_null_check(null_check_here, info);
  1092   if (patch_code != lir_patch_none) {
  1093     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
  1098 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1099   assert(src->is_stack(), "should not call otherwise");
  1100   assert(dest->is_register(), "should not call otherwise");
  1102   if (dest->is_single_cpu()) {
  1103     if (type == T_ARRAY || type == T_OBJECT) {
  1104       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1105       __ verify_oop(dest->as_register());
  1106     } else {
  1107       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
  1110   } else if (dest->is_double_cpu()) {
  1111     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
  1112     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
  1113     __ movptr(dest->as_register_lo(), src_addr_LO);
  1114     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
  1116   } else if (dest->is_single_xmm()) {
  1117     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1118     __ movflt(dest->as_xmm_float_reg(), src_addr);
  1120   } else if (dest->is_double_xmm()) {
  1121     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1122     __ movdbl(dest->as_xmm_double_reg(), src_addr);
  1124   } else if (dest->is_single_fpu()) {
  1125     assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1126     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
  1127     __ fld_s(src_addr);
  1129   } else if (dest->is_double_fpu()) {
  1130     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1131     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
  1132     __ fld_d(src_addr);
  1134   } else {
  1135     ShouldNotReachHere();
  1140 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
  1141   if (src->is_single_stack()) {
  1142     if (type == T_OBJECT || type == T_ARRAY) {
  1143       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
  1144       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
  1145     } else {
  1146 #ifndef _LP64
  1147       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
  1148       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
  1149 #else
  1150       //no pushl on 64bits
  1151       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
  1152       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
  1153 #endif
  1156   } else if (src->is_double_stack()) {
  1157 #ifdef _LP64
  1158     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
  1159     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
  1160 #else
  1161     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
  1162     // push and pop the part at src + wordSize, adding wordSize for the previous push
  1163     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
  1164     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
  1165     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
  1166 #endif // _LP64
  1168   } else {
  1169     ShouldNotReachHere();
  1174 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
  1175   assert(src->is_address(), "should not call otherwise");
  1176   assert(dest->is_register(), "should not call otherwise");
  1178   LIR_Address* addr = src->as_address_ptr();
  1179   Address from_addr = as_Address(addr);
  1181   switch (type) {
  1182     case T_BOOLEAN: // fall through
  1183     case T_BYTE:    // fall through
  1184     case T_CHAR:    // fall through
  1185     case T_SHORT:
  1186       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
  1187         // on pre P6 processors we may get partial register stalls
  1188         // so blow away the value of to_rinfo before loading a
  1189         // partial word into it.  Do it here so that it precedes
  1190         // the potential patch point below.
  1191         __ xorptr(dest->as_register(), dest->as_register());
  1193       break;
  1196   PatchingStub* patch = NULL;
  1197   if (patch_code != lir_patch_none) {
  1198     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1199     assert(from_addr.disp() != 0, "must have");
  1201   if (info != NULL) {
  1202     add_debug_info_for_null_check_here(info);
  1205   switch (type) {
  1206     case T_FLOAT: {
  1207       if (dest->is_single_xmm()) {
  1208         __ movflt(dest->as_xmm_float_reg(), from_addr);
  1209       } else {
  1210         assert(dest->is_single_fpu(), "must be");
  1211         assert(dest->fpu_regnr() == 0, "dest must be TOS");
  1212         __ fld_s(from_addr);
  1214       break;
  1217     case T_DOUBLE: {
  1218       if (dest->is_double_xmm()) {
  1219         __ movdbl(dest->as_xmm_double_reg(), from_addr);
  1220       } else {
  1221         assert(dest->is_double_fpu(), "must be");
  1222         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
  1223         __ fld_d(from_addr);
  1225       break;
  1228     case T_OBJECT:  // fall through
  1229     case T_ARRAY:   // fall through
  1230       if (UseCompressedOops && !wide) {
  1231         __ movl(dest->as_register(), from_addr);
  1232       } else {
  1233         __ movptr(dest->as_register(), from_addr);
  1235       break;
  1237     case T_ADDRESS:
  1238       __ movptr(dest->as_register(), from_addr);
  1239       break;
  1240     case T_INT:
  1241       __ movl(dest->as_register(), from_addr);
  1242       break;
  1244     case T_LONG: {
  1245       Register to_lo = dest->as_register_lo();
  1246       Register to_hi = dest->as_register_hi();
  1247 #ifdef _LP64
  1248       __ movptr(to_lo, as_Address_lo(addr));
  1249 #else
  1250       Register base = addr->base()->as_register();
  1251       Register index = noreg;
  1252       if (addr->index()->is_register()) {
  1253         index = addr->index()->as_register();
  1255       if ((base == to_lo && index == to_hi) ||
  1256           (base == to_hi && index == to_lo)) {
  1257         // addresses with 2 registers are only formed as a result of
  1258         // array access so this code will never have to deal with
  1259         // patches or null checks.
  1260         assert(info == NULL && patch == NULL, "must be");
  1261         __ lea(to_hi, as_Address(addr));
  1262         __ movl(to_lo, Address(to_hi, 0));
  1263         __ movl(to_hi, Address(to_hi, BytesPerWord));
  1264       } else if (base == to_lo || index == to_lo) {
  1265         assert(base != to_hi, "can't be");
  1266         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
  1267         __ movl(to_hi, as_Address_hi(addr));
  1268         if (patch != NULL) {
  1269           patching_epilog(patch, lir_patch_high, base, info);
  1270           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1271           patch_code = lir_patch_low;
  1273         __ movl(to_lo, as_Address_lo(addr));
  1274       } else {
  1275         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
  1276         __ movl(to_lo, as_Address_lo(addr));
  1277         if (patch != NULL) {
  1278           patching_epilog(patch, lir_patch_low, base, info);
  1279           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
  1280           patch_code = lir_patch_high;
  1282         __ movl(to_hi, as_Address_hi(addr));
  1284 #endif // _LP64
  1285       break;
  1288     case T_BOOLEAN: // fall through
  1289     case T_BYTE: {
  1290       Register dest_reg = dest->as_register();
  1291       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1292       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1293         __ movsbl(dest_reg, from_addr);
  1294       } else {
  1295         __ movb(dest_reg, from_addr);
  1296         __ shll(dest_reg, 24);
  1297         __ sarl(dest_reg, 24);
  1299       break;
  1302     case T_CHAR: {
  1303       Register dest_reg = dest->as_register();
  1304       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
  1305       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1306         __ movzwl(dest_reg, from_addr);
  1307       } else {
  1308         __ movw(dest_reg, from_addr);
  1310       break;
  1313     case T_SHORT: {
  1314       Register dest_reg = dest->as_register();
  1315       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
  1316         __ movswl(dest_reg, from_addr);
  1317       } else {
  1318         __ movw(dest_reg, from_addr);
  1319         __ shll(dest_reg, 16);
  1320         __ sarl(dest_reg, 16);
  1322       break;
  1325     default:
  1326       ShouldNotReachHere();
  1329   if (patch != NULL) {
  1330     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
  1333   if (type == T_ARRAY || type == T_OBJECT) {
  1334 #ifdef _LP64
  1335     if (UseCompressedOops && !wide) {
  1336       __ decode_heap_oop(dest->as_register());
  1338 #endif
  1339     __ verify_oop(dest->as_register());
  1344 void LIR_Assembler::prefetchr(LIR_Opr src) {
  1345   LIR_Address* addr = src->as_address_ptr();
  1346   Address from_addr = as_Address(addr);
  1348   if (VM_Version::supports_sse()) {
  1349     switch (ReadPrefetchInstr) {
  1350       case 0:
  1351         __ prefetchnta(from_addr); break;
  1352       case 1:
  1353         __ prefetcht0(from_addr); break;
  1354       case 2:
  1355         __ prefetcht2(from_addr); break;
  1356       default:
  1357         ShouldNotReachHere(); break;
  1359   } else if (VM_Version::supports_3dnow_prefetch()) {
  1360     __ prefetchr(from_addr);
  1365 void LIR_Assembler::prefetchw(LIR_Opr src) {
  1366   LIR_Address* addr = src->as_address_ptr();
  1367   Address from_addr = as_Address(addr);
  1369   if (VM_Version::supports_sse()) {
  1370     switch (AllocatePrefetchInstr) {
  1371       case 0:
  1372         __ prefetchnta(from_addr); break;
  1373       case 1:
  1374         __ prefetcht0(from_addr); break;
  1375       case 2:
  1376         __ prefetcht2(from_addr); break;
  1377       case 3:
  1378         __ prefetchw(from_addr); break;
  1379       default:
  1380         ShouldNotReachHere(); break;
  1382   } else if (VM_Version::supports_3dnow_prefetch()) {
  1383     __ prefetchw(from_addr);
  1388 NEEDS_CLEANUP; // This could be static?
  1389 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
  1390   int elem_size = type2aelembytes(type);
  1391   switch (elem_size) {
  1392     case 1: return Address::times_1;
  1393     case 2: return Address::times_2;
  1394     case 4: return Address::times_4;
  1395     case 8: return Address::times_8;
  1397   ShouldNotReachHere();
  1398   return Address::no_scale;
  1402 void LIR_Assembler::emit_op3(LIR_Op3* op) {
  1403   switch (op->code()) {
  1404     case lir_idiv:
  1405     case lir_irem:
  1406       arithmetic_idiv(op->code(),
  1407                       op->in_opr1(),
  1408                       op->in_opr2(),
  1409                       op->in_opr3(),
  1410                       op->result_opr(),
  1411                       op->info());
  1412       break;
  1413     default:      ShouldNotReachHere(); break;
  1417 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
  1418 #ifdef ASSERT
  1419   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
  1420   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
  1421   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
  1422 #endif
  1424   if (op->cond() == lir_cond_always) {
  1425     if (op->info() != NULL) add_debug_info_for_branch(op->info());
  1426     __ jmp (*(op->label()));
  1427   } else {
  1428     Assembler::Condition acond = Assembler::zero;
  1429     if (op->code() == lir_cond_float_branch) {
  1430       assert(op->ublock() != NULL, "must have unordered successor");
  1431       __ jcc(Assembler::parity, *(op->ublock()->label()));
  1432       switch(op->cond()) {
  1433         case lir_cond_equal:        acond = Assembler::equal;      break;
  1434         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
  1435         case lir_cond_less:         acond = Assembler::below;      break;
  1436         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
  1437         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
  1438         case lir_cond_greater:      acond = Assembler::above;      break;
  1439         default:                         ShouldNotReachHere();
  1441     } else {
  1442       switch (op->cond()) {
  1443         case lir_cond_equal:        acond = Assembler::equal;       break;
  1444         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
  1445         case lir_cond_less:         acond = Assembler::less;        break;
  1446         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
  1447         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
  1448         case lir_cond_greater:      acond = Assembler::greater;     break;
  1449         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
  1450         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
  1451         default:                         ShouldNotReachHere();
  1454     __ jcc(acond,*(op->label()));
  1458 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
  1459   LIR_Opr src  = op->in_opr();
  1460   LIR_Opr dest = op->result_opr();
  1462   switch (op->bytecode()) {
  1463     case Bytecodes::_i2l:
  1464 #ifdef _LP64
  1465       __ movl2ptr(dest->as_register_lo(), src->as_register());
  1466 #else
  1467       move_regs(src->as_register(), dest->as_register_lo());
  1468       move_regs(src->as_register(), dest->as_register_hi());
  1469       __ sarl(dest->as_register_hi(), 31);
  1470 #endif // LP64
  1471       break;
  1473     case Bytecodes::_l2i:
  1474 #ifdef _LP64
  1475       __ movl(dest->as_register(), src->as_register_lo());
  1476 #else
  1477       move_regs(src->as_register_lo(), dest->as_register());
  1478 #endif
  1479       break;
  1481     case Bytecodes::_i2b:
  1482       move_regs(src->as_register(), dest->as_register());
  1483       __ sign_extend_byte(dest->as_register());
  1484       break;
  1486     case Bytecodes::_i2c:
  1487       move_regs(src->as_register(), dest->as_register());
  1488       __ andl(dest->as_register(), 0xFFFF);
  1489       break;
  1491     case Bytecodes::_i2s:
  1492       move_regs(src->as_register(), dest->as_register());
  1493       __ sign_extend_short(dest->as_register());
  1494       break;
  1497     case Bytecodes::_f2d:
  1498     case Bytecodes::_d2f:
  1499       if (dest->is_single_xmm()) {
  1500         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
  1501       } else if (dest->is_double_xmm()) {
  1502         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
  1503       } else {
  1504         assert(src->fpu() == dest->fpu(), "register must be equal");
  1505         // do nothing (float result is rounded later through spilling)
  1507       break;
  1509     case Bytecodes::_i2f:
  1510     case Bytecodes::_i2d:
  1511       if (dest->is_single_xmm()) {
  1512         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
  1513       } else if (dest->is_double_xmm()) {
  1514         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
  1515       } else {
  1516         assert(dest->fpu() == 0, "result must be on TOS");
  1517         __ movl(Address(rsp, 0), src->as_register());
  1518         __ fild_s(Address(rsp, 0));
  1520       break;
  1522     case Bytecodes::_f2i:
  1523     case Bytecodes::_d2i:
  1524       if (src->is_single_xmm()) {
  1525         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
  1526       } else if (src->is_double_xmm()) {
  1527         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
  1528       } else {
  1529         assert(src->fpu() == 0, "input must be on TOS");
  1530         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
  1531         __ fist_s(Address(rsp, 0));
  1532         __ movl(dest->as_register(), Address(rsp, 0));
  1533         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
  1536       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
  1537       assert(op->stub() != NULL, "stub required");
  1538       __ cmpl(dest->as_register(), 0x80000000);
  1539       __ jcc(Assembler::equal, *op->stub()->entry());
  1540       __ bind(*op->stub()->continuation());
  1541       break;
  1543     case Bytecodes::_l2f:
  1544     case Bytecodes::_l2d:
  1545       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
  1546       assert(dest->fpu() == 0, "result must be on TOS");
  1548       __ movptr(Address(rsp, 0),            src->as_register_lo());
  1549       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
  1550       __ fild_d(Address(rsp, 0));
  1551       // float result is rounded later through spilling
  1552       break;
  1554     case Bytecodes::_f2l:
  1555     case Bytecodes::_d2l:
  1556       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
  1557       assert(src->fpu() == 0, "input must be on TOS");
  1558       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
  1560       // instruction sequence too long to inline it here
  1562         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
  1564       break;
  1566     default: ShouldNotReachHere();
  1570 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
  1571   if (op->init_check()) {
  1572     __ cmpb(Address(op->klass()->as_register(),
  1573                     instanceKlass::init_state_offset()),
  1574             instanceKlass::fully_initialized);
  1575     add_debug_info_for_null_check_here(op->stub()->info());
  1576     __ jcc(Assembler::notEqual, *op->stub()->entry());
  1578   __ allocate_object(op->obj()->as_register(),
  1579                      op->tmp1()->as_register(),
  1580                      op->tmp2()->as_register(),
  1581                      op->header_size(),
  1582                      op->object_size(),
  1583                      op->klass()->as_register(),
  1584                      *op->stub()->entry());
  1585   __ bind(*op->stub()->continuation());
  1588 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
  1589   Register len =  op->len()->as_register();
  1590   LP64_ONLY( __ movslq(len, len); )
  1592   if (UseSlowPath ||
  1593       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
  1594       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
  1595     __ jmp(*op->stub()->entry());
  1596   } else {
  1597     Register tmp1 = op->tmp1()->as_register();
  1598     Register tmp2 = op->tmp2()->as_register();
  1599     Register tmp3 = op->tmp3()->as_register();
  1600     if (len == tmp1) {
  1601       tmp1 = tmp3;
  1602     } else if (len == tmp2) {
  1603       tmp2 = tmp3;
  1604     } else if (len == tmp3) {
  1605       // everything is ok
  1606     } else {
  1607       __ mov(tmp3, len);
  1609     __ allocate_array(op->obj()->as_register(),
  1610                       len,
  1611                       tmp1,
  1612                       tmp2,
  1613                       arrayOopDesc::header_size(op->type()),
  1614                       array_element_size(op->type()),
  1615                       op->klass()->as_register(),
  1616                       *op->stub()->entry());
  1618   __ bind(*op->stub()->continuation());
  1621 void LIR_Assembler::type_profile_helper(Register mdo,
  1622                                         ciMethodData *md, ciProfileData *data,
  1623                                         Register recv, Label* update_done) {
  1624   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
  1625     Label next_test;
  1626     // See if the receiver is receiver[n].
  1627     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
  1628     __ jccb(Assembler::notEqual, next_test);
  1629     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
  1630     __ addptr(data_addr, DataLayout::counter_increment);
  1631     __ jmp(*update_done);
  1632     __ bind(next_test);
  1635   // Didn't find receiver; find next empty slot and fill it in
  1636   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
  1637     Label next_test;
  1638     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
  1639     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
  1640     __ jccb(Assembler::notEqual, next_test);
  1641     __ movptr(recv_addr, recv);
  1642     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
  1643     __ jmp(*update_done);
  1644     __ bind(next_test);
  1648 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
  1649   // we always need a stub for the failure case.
  1650   CodeStub* stub = op->stub();
  1651   Register obj = op->object()->as_register();
  1652   Register k_RInfo = op->tmp1()->as_register();
  1653   Register klass_RInfo = op->tmp2()->as_register();
  1654   Register dst = op->result_opr()->as_register();
  1655   ciKlass* k = op->klass();
  1656   Register Rtmp1 = noreg;
  1658   // check if it needs to be profiled
  1659   ciMethodData* md;
  1660   ciProfileData* data;
  1662   if (op->should_profile()) {
  1663     ciMethod* method = op->profiled_method();
  1664     assert(method != NULL, "Should have method");
  1665     int bci = op->profiled_bci();
  1666     md = method->method_data_or_null();
  1667     assert(md != NULL, "Sanity");
  1668     data = md->bci_to_data(bci);
  1669     assert(data != NULL,                "need data for type check");
  1670     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  1672   Label profile_cast_success, profile_cast_failure;
  1673   Label *success_target = op->should_profile() ? &profile_cast_success : success;
  1674   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
  1676   if (obj == k_RInfo) {
  1677     k_RInfo = dst;
  1678   } else if (obj == klass_RInfo) {
  1679     klass_RInfo = dst;
  1681   if (k->is_loaded() && !UseCompressedOops) {
  1682     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
  1683   } else {
  1684     Rtmp1 = op->tmp3()->as_register();
  1685     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
  1688   assert_different_registers(obj, k_RInfo, klass_RInfo);
  1689   if (!k->is_loaded()) {
  1690     jobject2reg_with_patching(k_RInfo, op->info_for_patch());
  1691   } else {
  1692 #ifdef _LP64
  1693     __ movoop(k_RInfo, k->constant_encoding());
  1694 #endif // _LP64
  1696   assert(obj != k_RInfo, "must be different");
  1698   __ cmpptr(obj, (int32_t)NULL_WORD);
  1699   if (op->should_profile()) {
  1700     Label not_null;
  1701     __ jccb(Assembler::notEqual, not_null);
  1702     // Object is null; update MDO and exit
  1703     Register mdo  = klass_RInfo;
  1704     __ movoop(mdo, md->constant_encoding());
  1705     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
  1706     int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
  1707     __ orl(data_addr, header_bits);
  1708     __ jmp(*obj_is_null);
  1709     __ bind(not_null);
  1710   } else {
  1711     __ jcc(Assembler::equal, *obj_is_null);
  1713   __ verify_oop(obj);
  1715   if (op->fast_check()) {
  1716     // get object class
  1717     // not a safepoint as obj null check happens earlier
  1718 #ifdef _LP64
  1719     if (UseCompressedOops) {
  1720       __ load_klass(Rtmp1, obj);
  1721       __ cmpptr(k_RInfo, Rtmp1);
  1722     } else {
  1723       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1725 #else
  1726     if (k->is_loaded()) {
  1727       __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
  1728     } else {
  1729       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
  1731 #endif
  1732     __ jcc(Assembler::notEqual, *failure_target);
  1733     // successful cast, fall through to profile or jump
  1734   } else {
  1735     // get object class
  1736     // not a safepoint as obj null check happens earlier
  1737     __ load_klass(klass_RInfo, obj);
  1738     if (k->is_loaded()) {
  1739       // See if we get an immediate positive hit
  1740 #ifdef _LP64
  1741       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
  1742 #else
  1743       __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
  1744 #endif // _LP64
  1745       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
  1746         __ jcc(Assembler::notEqual, *failure_target);
  1747         // successful cast, fall through to profile or jump
  1748       } else {
  1749         // See if we get an immediate positive hit
  1750         __ jcc(Assembler::equal, *success_target);
  1751         // check for self
  1752 #ifdef _LP64
  1753         __ cmpptr(klass_RInfo, k_RInfo);
  1754 #else
  1755         __ cmpoop(klass_RInfo, k->constant_encoding());
  1756 #endif // _LP64
  1757         __ jcc(Assembler::equal, *success_target);
  1759         __ push(klass_RInfo);
  1760 #ifdef _LP64
  1761         __ push(k_RInfo);
  1762 #else
  1763         __ pushoop(k->constant_encoding());
  1764 #endif // _LP64
  1765         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1766         __ pop(klass_RInfo);
  1767         __ pop(klass_RInfo);
  1768         // result is a boolean
  1769         __ cmpl(klass_RInfo, 0);
  1770         __ jcc(Assembler::equal, *failure_target);
  1771         // successful cast, fall through to profile or jump
  1773     } else {
  1774       // perform the fast part of the checking logic
  1775       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
  1776       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1777       __ push(klass_RInfo);
  1778       __ push(k_RInfo);
  1779       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1780       __ pop(klass_RInfo);
  1781       __ pop(k_RInfo);
  1782       // result is a boolean
  1783       __ cmpl(k_RInfo, 0);
  1784       __ jcc(Assembler::equal, *failure_target);
  1785       // successful cast, fall through to profile or jump
  1788   if (op->should_profile()) {
  1789     Register mdo  = klass_RInfo, recv = k_RInfo;
  1790     __ bind(profile_cast_success);
  1791     __ movoop(mdo, md->constant_encoding());
  1792     __ load_klass(recv, obj);
  1793     Label update_done;
  1794     type_profile_helper(mdo, md, data, recv, success);
  1795     __ jmp(*success);
  1797     __ bind(profile_cast_failure);
  1798     __ movoop(mdo, md->constant_encoding());
  1799     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  1800     __ subptr(counter_addr, DataLayout::counter_increment);
  1801     __ jmp(*failure);
  1803   __ jmp(*success);
  1807 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
  1808   LIR_Code code = op->code();
  1809   if (code == lir_store_check) {
  1810     Register value = op->object()->as_register();
  1811     Register array = op->array()->as_register();
  1812     Register k_RInfo = op->tmp1()->as_register();
  1813     Register klass_RInfo = op->tmp2()->as_register();
  1814     Register Rtmp1 = op->tmp3()->as_register();
  1816     CodeStub* stub = op->stub();
  1818     // check if it needs to be profiled
  1819     ciMethodData* md;
  1820     ciProfileData* data;
  1822     if (op->should_profile()) {
  1823       ciMethod* method = op->profiled_method();
  1824       assert(method != NULL, "Should have method");
  1825       int bci = op->profiled_bci();
  1826       md = method->method_data_or_null();
  1827       assert(md != NULL, "Sanity");
  1828       data = md->bci_to_data(bci);
  1829       assert(data != NULL,                "need data for type check");
  1830       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
  1832     Label profile_cast_success, profile_cast_failure, done;
  1833     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
  1834     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
  1836     __ cmpptr(value, (int32_t)NULL_WORD);
  1837     if (op->should_profile()) {
  1838       Label not_null;
  1839       __ jccb(Assembler::notEqual, not_null);
  1840       // Object is null; update MDO and exit
  1841       Register mdo  = klass_RInfo;
  1842       __ movoop(mdo, md->constant_encoding());
  1843       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
  1844       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
  1845       __ orl(data_addr, header_bits);
  1846       __ jmp(done);
  1847       __ bind(not_null);
  1848     } else {
  1849       __ jcc(Assembler::equal, done);
  1852     add_debug_info_for_null_check_here(op->info_for_exception());
  1853     __ load_klass(k_RInfo, array);
  1854     __ load_klass(klass_RInfo, value);
  1856     // get instance klass (it's already uncompressed)
  1857     __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset()));
  1858     // perform the fast part of the checking logic
  1859     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
  1860     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
  1861     __ push(klass_RInfo);
  1862     __ push(k_RInfo);
  1863     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  1864     __ pop(klass_RInfo);
  1865     __ pop(k_RInfo);
  1866     // result is a boolean
  1867     __ cmpl(k_RInfo, 0);
  1868     __ jcc(Assembler::equal, *failure_target);
  1869     // fall through to the success case
  1871     if (op->should_profile()) {
  1872       Register mdo  = klass_RInfo, recv = k_RInfo;
  1873       __ bind(profile_cast_success);
  1874       __ movoop(mdo, md->constant_encoding());
  1875       __ load_klass(recv, value);
  1876       Label update_done;
  1877       type_profile_helper(mdo, md, data, recv, &done);
  1878       __ jmpb(done);
  1880       __ bind(profile_cast_failure);
  1881       __ movoop(mdo, md->constant_encoding());
  1882       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  1883       __ subptr(counter_addr, DataLayout::counter_increment);
  1884       __ jmp(*stub->entry());
  1887     __ bind(done);
  1888   } else
  1889     if (code == lir_checkcast) {
  1890       Register obj = op->object()->as_register();
  1891       Register dst = op->result_opr()->as_register();
  1892       Label success;
  1893       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
  1894       __ bind(success);
  1895       if (dst != obj) {
  1896         __ mov(dst, obj);
  1898     } else
  1899       if (code == lir_instanceof) {
  1900         Register obj = op->object()->as_register();
  1901         Register dst = op->result_opr()->as_register();
  1902         Label success, failure, done;
  1903         emit_typecheck_helper(op, &success, &failure, &failure);
  1904         __ bind(failure);
  1905         __ xorptr(dst, dst);
  1906         __ jmpb(done);
  1907         __ bind(success);
  1908         __ movptr(dst, 1);
  1909         __ bind(done);
  1910       } else {
  1911         ShouldNotReachHere();
  1917 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
  1918   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
  1919     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
  1920     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
  1921     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
  1922     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
  1923     Register addr = op->addr()->as_register();
  1924     if (os::is_MP()) {
  1925       __ lock();
  1927     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
  1929   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
  1930     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
  1931     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  1932     Register newval = op->new_value()->as_register();
  1933     Register cmpval = op->cmp_value()->as_register();
  1934     assert(cmpval == rax, "wrong register");
  1935     assert(newval != NULL, "new val must be register");
  1936     assert(cmpval != newval, "cmp and new values must be in different registers");
  1937     assert(cmpval != addr, "cmp and addr must be in different registers");
  1938     assert(newval != addr, "new value and addr must be in different registers");
  1940     if ( op->code() == lir_cas_obj) {
  1941 #ifdef _LP64
  1942       if (UseCompressedOops) {
  1943         __ encode_heap_oop(cmpval);
  1944         __ mov(rscratch1, newval);
  1945         __ encode_heap_oop(rscratch1);
  1946         if (os::is_MP()) {
  1947           __ lock();
  1949         // cmpval (rax) is implicitly used by this instruction
  1950         __ cmpxchgl(rscratch1, Address(addr, 0));
  1951       } else
  1952 #endif
  1954         if (os::is_MP()) {
  1955           __ lock();
  1957         __ cmpxchgptr(newval, Address(addr, 0));
  1959     } else {
  1960       assert(op->code() == lir_cas_int, "lir_cas_int expected");
  1961       if (os::is_MP()) {
  1962         __ lock();
  1964       __ cmpxchgl(newval, Address(addr, 0));
  1966 #ifdef _LP64
  1967   } else if (op->code() == lir_cas_long) {
  1968     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
  1969     Register newval = op->new_value()->as_register_lo();
  1970     Register cmpval = op->cmp_value()->as_register_lo();
  1971     assert(cmpval == rax, "wrong register");
  1972     assert(newval != NULL, "new val must be register");
  1973     assert(cmpval != newval, "cmp and new values must be in different registers");
  1974     assert(cmpval != addr, "cmp and addr must be in different registers");
  1975     assert(newval != addr, "new value and addr must be in different registers");
  1976     if (os::is_MP()) {
  1977       __ lock();
  1979     __ cmpxchgq(newval, Address(addr, 0));
  1980 #endif // _LP64
  1981   } else {
  1982     Unimplemented();
  1986 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
  1987   Assembler::Condition acond, ncond;
  1988   switch (condition) {
  1989     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
  1990     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
  1991     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
  1992     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
  1993     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
  1994     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
  1995     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
  1996     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
  1997     default:                    ShouldNotReachHere();
  2000   if (opr1->is_cpu_register()) {
  2001     reg2reg(opr1, result);
  2002   } else if (opr1->is_stack()) {
  2003     stack2reg(opr1, result, result->type());
  2004   } else if (opr1->is_constant()) {
  2005     const2reg(opr1, result, lir_patch_none, NULL);
  2006   } else {
  2007     ShouldNotReachHere();
  2010   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
  2011     // optimized version that does not require a branch
  2012     if (opr2->is_single_cpu()) {
  2013       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
  2014       __ cmov(ncond, result->as_register(), opr2->as_register());
  2015     } else if (opr2->is_double_cpu()) {
  2016       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  2017       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
  2018       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
  2019       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
  2020     } else if (opr2->is_single_stack()) {
  2021       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
  2022     } else if (opr2->is_double_stack()) {
  2023       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
  2024       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
  2025     } else {
  2026       ShouldNotReachHere();
  2029   } else {
  2030     Label skip;
  2031     __ jcc (acond, skip);
  2032     if (opr2->is_cpu_register()) {
  2033       reg2reg(opr2, result);
  2034     } else if (opr2->is_stack()) {
  2035       stack2reg(opr2, result, result->type());
  2036     } else if (opr2->is_constant()) {
  2037       const2reg(opr2, result, lir_patch_none, NULL);
  2038     } else {
  2039       ShouldNotReachHere();
  2041     __ bind(skip);
  2046 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
  2047   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
  2049   if (left->is_single_cpu()) {
  2050     assert(left == dest, "left and dest must be equal");
  2051     Register lreg = left->as_register();
  2053     if (right->is_single_cpu()) {
  2054       // cpu register - cpu register
  2055       Register rreg = right->as_register();
  2056       switch (code) {
  2057         case lir_add: __ addl (lreg, rreg); break;
  2058         case lir_sub: __ subl (lreg, rreg); break;
  2059         case lir_mul: __ imull(lreg, rreg); break;
  2060         default:      ShouldNotReachHere();
  2063     } else if (right->is_stack()) {
  2064       // cpu register - stack
  2065       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2066       switch (code) {
  2067         case lir_add: __ addl(lreg, raddr); break;
  2068         case lir_sub: __ subl(lreg, raddr); break;
  2069         default:      ShouldNotReachHere();
  2072     } else if (right->is_constant()) {
  2073       // cpu register - constant
  2074       jint c = right->as_constant_ptr()->as_jint();
  2075       switch (code) {
  2076         case lir_add: {
  2077           __ incrementl(lreg, c);
  2078           break;
  2080         case lir_sub: {
  2081           __ decrementl(lreg, c);
  2082           break;
  2084         default: ShouldNotReachHere();
  2087     } else {
  2088       ShouldNotReachHere();
  2091   } else if (left->is_double_cpu()) {
  2092     assert(left == dest, "left and dest must be equal");
  2093     Register lreg_lo = left->as_register_lo();
  2094     Register lreg_hi = left->as_register_hi();
  2096     if (right->is_double_cpu()) {
  2097       // cpu register - cpu register
  2098       Register rreg_lo = right->as_register_lo();
  2099       Register rreg_hi = right->as_register_hi();
  2100       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
  2101       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
  2102       switch (code) {
  2103         case lir_add:
  2104           __ addptr(lreg_lo, rreg_lo);
  2105           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
  2106           break;
  2107         case lir_sub:
  2108           __ subptr(lreg_lo, rreg_lo);
  2109           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
  2110           break;
  2111         case lir_mul:
  2112 #ifdef _LP64
  2113           __ imulq(lreg_lo, rreg_lo);
  2114 #else
  2115           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
  2116           __ imull(lreg_hi, rreg_lo);
  2117           __ imull(rreg_hi, lreg_lo);
  2118           __ addl (rreg_hi, lreg_hi);
  2119           __ mull (rreg_lo);
  2120           __ addl (lreg_hi, rreg_hi);
  2121 #endif // _LP64
  2122           break;
  2123         default:
  2124           ShouldNotReachHere();
  2127     } else if (right->is_constant()) {
  2128       // cpu register - constant
  2129 #ifdef _LP64
  2130       jlong c = right->as_constant_ptr()->as_jlong_bits();
  2131       __ movptr(r10, (intptr_t) c);
  2132       switch (code) {
  2133         case lir_add:
  2134           __ addptr(lreg_lo, r10);
  2135           break;
  2136         case lir_sub:
  2137           __ subptr(lreg_lo, r10);
  2138           break;
  2139         default:
  2140           ShouldNotReachHere();
  2142 #else
  2143       jint c_lo = right->as_constant_ptr()->as_jint_lo();
  2144       jint c_hi = right->as_constant_ptr()->as_jint_hi();
  2145       switch (code) {
  2146         case lir_add:
  2147           __ addptr(lreg_lo, c_lo);
  2148           __ adcl(lreg_hi, c_hi);
  2149           break;
  2150         case lir_sub:
  2151           __ subptr(lreg_lo, c_lo);
  2152           __ sbbl(lreg_hi, c_hi);
  2153           break;
  2154         default:
  2155           ShouldNotReachHere();
  2157 #endif // _LP64
  2159     } else {
  2160       ShouldNotReachHere();
  2163   } else if (left->is_single_xmm()) {
  2164     assert(left == dest, "left and dest must be equal");
  2165     XMMRegister lreg = left->as_xmm_float_reg();
  2167     if (right->is_single_xmm()) {
  2168       XMMRegister rreg = right->as_xmm_float_reg();
  2169       switch (code) {
  2170         case lir_add: __ addss(lreg, rreg);  break;
  2171         case lir_sub: __ subss(lreg, rreg);  break;
  2172         case lir_mul_strictfp: // fall through
  2173         case lir_mul: __ mulss(lreg, rreg);  break;
  2174         case lir_div_strictfp: // fall through
  2175         case lir_div: __ divss(lreg, rreg);  break;
  2176         default: ShouldNotReachHere();
  2178     } else {
  2179       Address raddr;
  2180       if (right->is_single_stack()) {
  2181         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2182       } else if (right->is_constant()) {
  2183         // hack for now
  2184         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
  2185       } else {
  2186         ShouldNotReachHere();
  2188       switch (code) {
  2189         case lir_add: __ addss(lreg, raddr);  break;
  2190         case lir_sub: __ subss(lreg, raddr);  break;
  2191         case lir_mul_strictfp: // fall through
  2192         case lir_mul: __ mulss(lreg, raddr);  break;
  2193         case lir_div_strictfp: // fall through
  2194         case lir_div: __ divss(lreg, raddr);  break;
  2195         default: ShouldNotReachHere();
  2199   } else if (left->is_double_xmm()) {
  2200     assert(left == dest, "left and dest must be equal");
  2202     XMMRegister lreg = left->as_xmm_double_reg();
  2203     if (right->is_double_xmm()) {
  2204       XMMRegister rreg = right->as_xmm_double_reg();
  2205       switch (code) {
  2206         case lir_add: __ addsd(lreg, rreg);  break;
  2207         case lir_sub: __ subsd(lreg, rreg);  break;
  2208         case lir_mul_strictfp: // fall through
  2209         case lir_mul: __ mulsd(lreg, rreg);  break;
  2210         case lir_div_strictfp: // fall through
  2211         case lir_div: __ divsd(lreg, rreg);  break;
  2212         default: ShouldNotReachHere();
  2214     } else {
  2215       Address raddr;
  2216       if (right->is_double_stack()) {
  2217         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2218       } else if (right->is_constant()) {
  2219         // hack for now
  2220         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2221       } else {
  2222         ShouldNotReachHere();
  2224       switch (code) {
  2225         case lir_add: __ addsd(lreg, raddr);  break;
  2226         case lir_sub: __ subsd(lreg, raddr);  break;
  2227         case lir_mul_strictfp: // fall through
  2228         case lir_mul: __ mulsd(lreg, raddr);  break;
  2229         case lir_div_strictfp: // fall through
  2230         case lir_div: __ divsd(lreg, raddr);  break;
  2231         default: ShouldNotReachHere();
  2235   } else if (left->is_single_fpu()) {
  2236     assert(dest->is_single_fpu(),  "fpu stack allocation required");
  2238     if (right->is_single_fpu()) {
  2239       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
  2241     } else {
  2242       assert(left->fpu_regnr() == 0, "left must be on TOS");
  2243       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
  2245       Address raddr;
  2246       if (right->is_single_stack()) {
  2247         raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2248       } else if (right->is_constant()) {
  2249         address const_addr = float_constant(right->as_jfloat());
  2250         assert(const_addr != NULL, "incorrect float/double constant maintainance");
  2251         // hack for now
  2252         raddr = __ as_Address(InternalAddress(const_addr));
  2253       } else {
  2254         ShouldNotReachHere();
  2257       switch (code) {
  2258         case lir_add: __ fadd_s(raddr); break;
  2259         case lir_sub: __ fsub_s(raddr); break;
  2260         case lir_mul_strictfp: // fall through
  2261         case lir_mul: __ fmul_s(raddr); break;
  2262         case lir_div_strictfp: // fall through
  2263         case lir_div: __ fdiv_s(raddr); break;
  2264         default:      ShouldNotReachHere();
  2268   } else if (left->is_double_fpu()) {
  2269     assert(dest->is_double_fpu(),  "fpu stack allocation required");
  2271     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2272       // Double values require special handling for strictfp mul/div on x86
  2273       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
  2274       __ fmulp(left->fpu_regnrLo() + 1);
  2277     if (right->is_double_fpu()) {
  2278       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
  2280     } else {
  2281       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
  2282       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
  2284       Address raddr;
  2285       if (right->is_double_stack()) {
  2286         raddr = frame_map()->address_for_slot(right->double_stack_ix());
  2287       } else if (right->is_constant()) {
  2288         // hack for now
  2289         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
  2290       } else {
  2291         ShouldNotReachHere();
  2294       switch (code) {
  2295         case lir_add: __ fadd_d(raddr); break;
  2296         case lir_sub: __ fsub_d(raddr); break;
  2297         case lir_mul_strictfp: // fall through
  2298         case lir_mul: __ fmul_d(raddr); break;
  2299         case lir_div_strictfp: // fall through
  2300         case lir_div: __ fdiv_d(raddr); break;
  2301         default: ShouldNotReachHere();
  2305     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
  2306       // Double values require special handling for strictfp mul/div on x86
  2307       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
  2308       __ fmulp(dest->fpu_regnrLo() + 1);
  2311   } else if (left->is_single_stack() || left->is_address()) {
  2312     assert(left == dest, "left and dest must be equal");
  2314     Address laddr;
  2315     if (left->is_single_stack()) {
  2316       laddr = frame_map()->address_for_slot(left->single_stack_ix());
  2317     } else if (left->is_address()) {
  2318       laddr = as_Address(left->as_address_ptr());
  2319     } else {
  2320       ShouldNotReachHere();
  2323     if (right->is_single_cpu()) {
  2324       Register rreg = right->as_register();
  2325       switch (code) {
  2326         case lir_add: __ addl(laddr, rreg); break;
  2327         case lir_sub: __ subl(laddr, rreg); break;
  2328         default:      ShouldNotReachHere();
  2330     } else if (right->is_constant()) {
  2331       jint c = right->as_constant_ptr()->as_jint();
  2332       switch (code) {
  2333         case lir_add: {
  2334           __ incrementl(laddr, c);
  2335           break;
  2337         case lir_sub: {
  2338           __ decrementl(laddr, c);
  2339           break;
  2341         default: ShouldNotReachHere();
  2343     } else {
  2344       ShouldNotReachHere();
  2347   } else {
  2348     ShouldNotReachHere();
  2352 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
  2353   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
  2354   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
  2355   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
  2357   bool left_is_tos = (left_index == 0);
  2358   bool dest_is_tos = (dest_index == 0);
  2359   int non_tos_index = (left_is_tos ? right_index : left_index);
  2361   switch (code) {
  2362     case lir_add:
  2363       if (pop_fpu_stack)       __ faddp(non_tos_index);
  2364       else if (dest_is_tos)    __ fadd (non_tos_index);
  2365       else                     __ fadda(non_tos_index);
  2366       break;
  2368     case lir_sub:
  2369       if (left_is_tos) {
  2370         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
  2371         else if (dest_is_tos)  __ fsub  (non_tos_index);
  2372         else                   __ fsubra(non_tos_index);
  2373       } else {
  2374         if (pop_fpu_stack)     __ fsubp (non_tos_index);
  2375         else if (dest_is_tos)  __ fsubr (non_tos_index);
  2376         else                   __ fsuba (non_tos_index);
  2378       break;
  2380     case lir_mul_strictfp: // fall through
  2381     case lir_mul:
  2382       if (pop_fpu_stack)       __ fmulp(non_tos_index);
  2383       else if (dest_is_tos)    __ fmul (non_tos_index);
  2384       else                     __ fmula(non_tos_index);
  2385       break;
  2387     case lir_div_strictfp: // fall through
  2388     case lir_div:
  2389       if (left_is_tos) {
  2390         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
  2391         else if (dest_is_tos)  __ fdiv  (non_tos_index);
  2392         else                   __ fdivra(non_tos_index);
  2393       } else {
  2394         if (pop_fpu_stack)     __ fdivp (non_tos_index);
  2395         else if (dest_is_tos)  __ fdivr (non_tos_index);
  2396         else                   __ fdiva (non_tos_index);
  2398       break;
  2400     case lir_rem:
  2401       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
  2402       __ fremr(noreg);
  2403       break;
  2405     default:
  2406       ShouldNotReachHere();
  2411 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
  2412   if (value->is_double_xmm()) {
  2413     switch(code) {
  2414       case lir_abs :
  2416           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
  2417             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
  2419           __ andpd(dest->as_xmm_double_reg(),
  2420                     ExternalAddress((address)double_signmask_pool));
  2422         break;
  2424       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
  2425       // all other intrinsics are not available in the SSE instruction set, so FPU is used
  2426       default      : ShouldNotReachHere();
  2429   } else if (value->is_double_fpu()) {
  2430     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
  2431     switch(code) {
  2432       case lir_log   : __ flog() ; break;
  2433       case lir_log10 : __ flog10() ; break;
  2434       case lir_abs   : __ fabs() ; break;
  2435       case lir_sqrt  : __ fsqrt(); break;
  2436       case lir_sin   :
  2437         // Should consider not saving rbx, if not necessary
  2438         __ trigfunc('s', op->as_Op2()->fpu_stack_size());
  2439         break;
  2440       case lir_cos :
  2441         // Should consider not saving rbx, if not necessary
  2442         assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
  2443         __ trigfunc('c', op->as_Op2()->fpu_stack_size());
  2444         break;
  2445       case lir_tan :
  2446         // Should consider not saving rbx, if not necessary
  2447         __ trigfunc('t', op->as_Op2()->fpu_stack_size());
  2448         break;
  2449       default      : ShouldNotReachHere();
  2451   } else {
  2452     Unimplemented();
  2456 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
  2457   // assert(left->destroys_register(), "check");
  2458   if (left->is_single_cpu()) {
  2459     Register reg = left->as_register();
  2460     if (right->is_constant()) {
  2461       int val = right->as_constant_ptr()->as_jint();
  2462       switch (code) {
  2463         case lir_logic_and: __ andl (reg, val); break;
  2464         case lir_logic_or:  __ orl  (reg, val); break;
  2465         case lir_logic_xor: __ xorl (reg, val); break;
  2466         default: ShouldNotReachHere();
  2468     } else if (right->is_stack()) {
  2469       // added support for stack operands
  2470       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
  2471       switch (code) {
  2472         case lir_logic_and: __ andl (reg, raddr); break;
  2473         case lir_logic_or:  __ orl  (reg, raddr); break;
  2474         case lir_logic_xor: __ xorl (reg, raddr); break;
  2475         default: ShouldNotReachHere();
  2477     } else {
  2478       Register rright = right->as_register();
  2479       switch (code) {
  2480         case lir_logic_and: __ andptr (reg, rright); break;
  2481         case lir_logic_or : __ orptr  (reg, rright); break;
  2482         case lir_logic_xor: __ xorptr (reg, rright); break;
  2483         default: ShouldNotReachHere();
  2486     move_regs(reg, dst->as_register());
  2487   } else {
  2488     Register l_lo = left->as_register_lo();
  2489     Register l_hi = left->as_register_hi();
  2490     if (right->is_constant()) {
  2491 #ifdef _LP64
  2492       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
  2493       switch (code) {
  2494         case lir_logic_and:
  2495           __ andq(l_lo, rscratch1);
  2496           break;
  2497         case lir_logic_or:
  2498           __ orq(l_lo, rscratch1);
  2499           break;
  2500         case lir_logic_xor:
  2501           __ xorq(l_lo, rscratch1);
  2502           break;
  2503         default: ShouldNotReachHere();
  2505 #else
  2506       int r_lo = right->as_constant_ptr()->as_jint_lo();
  2507       int r_hi = right->as_constant_ptr()->as_jint_hi();
  2508       switch (code) {
  2509         case lir_logic_and:
  2510           __ andl(l_lo, r_lo);
  2511           __ andl(l_hi, r_hi);
  2512           break;
  2513         case lir_logic_or:
  2514           __ orl(l_lo, r_lo);
  2515           __ orl(l_hi, r_hi);
  2516           break;
  2517         case lir_logic_xor:
  2518           __ xorl(l_lo, r_lo);
  2519           __ xorl(l_hi, r_hi);
  2520           break;
  2521         default: ShouldNotReachHere();
  2523 #endif // _LP64
  2524     } else {
  2525 #ifdef _LP64
  2526       Register r_lo;
  2527       if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
  2528         r_lo = right->as_register();
  2529       } else {
  2530         r_lo = right->as_register_lo();
  2532 #else
  2533       Register r_lo = right->as_register_lo();
  2534       Register r_hi = right->as_register_hi();
  2535       assert(l_lo != r_hi, "overwriting registers");
  2536 #endif
  2537       switch (code) {
  2538         case lir_logic_and:
  2539           __ andptr(l_lo, r_lo);
  2540           NOT_LP64(__ andptr(l_hi, r_hi);)
  2541           break;
  2542         case lir_logic_or:
  2543           __ orptr(l_lo, r_lo);
  2544           NOT_LP64(__ orptr(l_hi, r_hi);)
  2545           break;
  2546         case lir_logic_xor:
  2547           __ xorptr(l_lo, r_lo);
  2548           NOT_LP64(__ xorptr(l_hi, r_hi);)
  2549           break;
  2550         default: ShouldNotReachHere();
  2554     Register dst_lo = dst->as_register_lo();
  2555     Register dst_hi = dst->as_register_hi();
  2557 #ifdef _LP64
  2558     move_regs(l_lo, dst_lo);
  2559 #else
  2560     if (dst_lo == l_hi) {
  2561       assert(dst_hi != l_lo, "overwriting registers");
  2562       move_regs(l_hi, dst_hi);
  2563       move_regs(l_lo, dst_lo);
  2564     } else {
  2565       assert(dst_lo != l_hi, "overwriting registers");
  2566       move_regs(l_lo, dst_lo);
  2567       move_regs(l_hi, dst_hi);
  2569 #endif // _LP64
  2574 // we assume that rax, and rdx can be overwritten
  2575 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
  2577   assert(left->is_single_cpu(),   "left must be register");
  2578   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
  2579   assert(result->is_single_cpu(), "result must be register");
  2581   //  assert(left->destroys_register(), "check");
  2582   //  assert(right->destroys_register(), "check");
  2584   Register lreg = left->as_register();
  2585   Register dreg = result->as_register();
  2587   if (right->is_constant()) {
  2588     int divisor = right->as_constant_ptr()->as_jint();
  2589     assert(divisor > 0 && is_power_of_2(divisor), "must be");
  2590     if (code == lir_idiv) {
  2591       assert(lreg == rax, "must be rax,");
  2592       assert(temp->as_register() == rdx, "tmp register must be rdx");
  2593       __ cdql(); // sign extend into rdx:rax
  2594       if (divisor == 2) {
  2595         __ subl(lreg, rdx);
  2596       } else {
  2597         __ andl(rdx, divisor - 1);
  2598         __ addl(lreg, rdx);
  2600       __ sarl(lreg, log2_intptr(divisor));
  2601       move_regs(lreg, dreg);
  2602     } else if (code == lir_irem) {
  2603       Label done;
  2604       __ mov(dreg, lreg);
  2605       __ andl(dreg, 0x80000000 | (divisor - 1));
  2606       __ jcc(Assembler::positive, done);
  2607       __ decrement(dreg);
  2608       __ orl(dreg, ~(divisor - 1));
  2609       __ increment(dreg);
  2610       __ bind(done);
  2611     } else {
  2612       ShouldNotReachHere();
  2614   } else {
  2615     Register rreg = right->as_register();
  2616     assert(lreg == rax, "left register must be rax,");
  2617     assert(rreg != rdx, "right register must not be rdx");
  2618     assert(temp->as_register() == rdx, "tmp register must be rdx");
  2620     move_regs(lreg, rax);
  2622     int idivl_offset = __ corrected_idivl(rreg);
  2623     add_debug_info_for_div0(idivl_offset, info);
  2624     if (code == lir_irem) {
  2625       move_regs(rdx, dreg); // result is in rdx
  2626     } else {
  2627       move_regs(rax, dreg);
  2633 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
  2634   if (opr1->is_single_cpu()) {
  2635     Register reg1 = opr1->as_register();
  2636     if (opr2->is_single_cpu()) {
  2637       // cpu register - cpu register
  2638       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2639         __ cmpptr(reg1, opr2->as_register());
  2640       } else {
  2641         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
  2642         __ cmpl(reg1, opr2->as_register());
  2644     } else if (opr2->is_stack()) {
  2645       // cpu register - stack
  2646       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
  2647         __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2648       } else {
  2649         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2651     } else if (opr2->is_constant()) {
  2652       // cpu register - constant
  2653       LIR_Const* c = opr2->as_constant_ptr();
  2654       if (c->type() == T_INT) {
  2655         __ cmpl(reg1, c->as_jint());
  2656       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2657         // In 64bit oops are single register
  2658         jobject o = c->as_jobject();
  2659         if (o == NULL) {
  2660           __ cmpptr(reg1, (int32_t)NULL_WORD);
  2661         } else {
  2662 #ifdef _LP64
  2663           __ movoop(rscratch1, o);
  2664           __ cmpptr(reg1, rscratch1);
  2665 #else
  2666           __ cmpoop(reg1, c->as_jobject());
  2667 #endif // _LP64
  2669       } else {
  2670         ShouldNotReachHere();
  2672       // cpu register - address
  2673     } else if (opr2->is_address()) {
  2674       if (op->info() != NULL) {
  2675         add_debug_info_for_null_check_here(op->info());
  2677       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
  2678     } else {
  2679       ShouldNotReachHere();
  2682   } else if(opr1->is_double_cpu()) {
  2683     Register xlo = opr1->as_register_lo();
  2684     Register xhi = opr1->as_register_hi();
  2685     if (opr2->is_double_cpu()) {
  2686 #ifdef _LP64
  2687       __ cmpptr(xlo, opr2->as_register_lo());
  2688 #else
  2689       // cpu register - cpu register
  2690       Register ylo = opr2->as_register_lo();
  2691       Register yhi = opr2->as_register_hi();
  2692       __ subl(xlo, ylo);
  2693       __ sbbl(xhi, yhi);
  2694       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
  2695         __ orl(xhi, xlo);
  2697 #endif // _LP64
  2698     } else if (opr2->is_constant()) {
  2699       // cpu register - constant 0
  2700       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
  2701 #ifdef _LP64
  2702       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
  2703 #else
  2704       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
  2705       __ orl(xhi, xlo);
  2706 #endif // _LP64
  2707     } else {
  2708       ShouldNotReachHere();
  2711   } else if (opr1->is_single_xmm()) {
  2712     XMMRegister reg1 = opr1->as_xmm_float_reg();
  2713     if (opr2->is_single_xmm()) {
  2714       // xmm register - xmm register
  2715       __ ucomiss(reg1, opr2->as_xmm_float_reg());
  2716     } else if (opr2->is_stack()) {
  2717       // xmm register - stack
  2718       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
  2719     } else if (opr2->is_constant()) {
  2720       // xmm register - constant
  2721       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
  2722     } else if (opr2->is_address()) {
  2723       // xmm register - address
  2724       if (op->info() != NULL) {
  2725         add_debug_info_for_null_check_here(op->info());
  2727       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
  2728     } else {
  2729       ShouldNotReachHere();
  2732   } else if (opr1->is_double_xmm()) {
  2733     XMMRegister reg1 = opr1->as_xmm_double_reg();
  2734     if (opr2->is_double_xmm()) {
  2735       // xmm register - xmm register
  2736       __ ucomisd(reg1, opr2->as_xmm_double_reg());
  2737     } else if (opr2->is_stack()) {
  2738       // xmm register - stack
  2739       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
  2740     } else if (opr2->is_constant()) {
  2741       // xmm register - constant
  2742       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
  2743     } else if (opr2->is_address()) {
  2744       // xmm register - address
  2745       if (op->info() != NULL) {
  2746         add_debug_info_for_null_check_here(op->info());
  2748       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
  2749     } else {
  2750       ShouldNotReachHere();
  2753   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
  2754     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
  2755     assert(opr2->is_fpu_register(), "both must be registers");
  2756     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2758   } else if (opr1->is_address() && opr2->is_constant()) {
  2759     LIR_Const* c = opr2->as_constant_ptr();
  2760 #ifdef _LP64
  2761     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2762       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
  2763       __ movoop(rscratch1, c->as_jobject());
  2765 #endif // LP64
  2766     if (op->info() != NULL) {
  2767       add_debug_info_for_null_check_here(op->info());
  2769     // special case: address - constant
  2770     LIR_Address* addr = opr1->as_address_ptr();
  2771     if (c->type() == T_INT) {
  2772       __ cmpl(as_Address(addr), c->as_jint());
  2773     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
  2774 #ifdef _LP64
  2775       // %%% Make this explode if addr isn't reachable until we figure out a
  2776       // better strategy by giving noreg as the temp for as_Address
  2777       __ cmpptr(rscratch1, as_Address(addr, noreg));
  2778 #else
  2779       __ cmpoop(as_Address(addr), c->as_jobject());
  2780 #endif // _LP64
  2781     } else {
  2782       ShouldNotReachHere();
  2785   } else {
  2786     ShouldNotReachHere();
  2790 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
  2791   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
  2792     if (left->is_single_xmm()) {
  2793       assert(right->is_single_xmm(), "must match");
  2794       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2795     } else if (left->is_double_xmm()) {
  2796       assert(right->is_double_xmm(), "must match");
  2797       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
  2799     } else {
  2800       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
  2801       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
  2803       assert(left->fpu() == 0, "left must be on TOS");
  2804       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
  2805                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
  2807   } else {
  2808     assert(code == lir_cmp_l2i, "check");
  2809 #ifdef _LP64
  2810     Label done;
  2811     Register dest = dst->as_register();
  2812     __ cmpptr(left->as_register_lo(), right->as_register_lo());
  2813     __ movl(dest, -1);
  2814     __ jccb(Assembler::less, done);
  2815     __ set_byte_if_not_zero(dest);
  2816     __ movzbl(dest, dest);
  2817     __ bind(done);
  2818 #else
  2819     __ lcmp2int(left->as_register_hi(),
  2820                 left->as_register_lo(),
  2821                 right->as_register_hi(),
  2822                 right->as_register_lo());
  2823     move_regs(left->as_register_hi(), dst->as_register());
  2824 #endif // _LP64
  2829 void LIR_Assembler::align_call(LIR_Code code) {
  2830   if (os::is_MP()) {
  2831     // make sure that the displacement word of the call ends up word aligned
  2832     int offset = __ offset();
  2833     switch (code) {
  2834       case lir_static_call:
  2835       case lir_optvirtual_call:
  2836       case lir_dynamic_call:
  2837         offset += NativeCall::displacement_offset;
  2838         break;
  2839       case lir_icvirtual_call:
  2840         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
  2841       break;
  2842       case lir_virtual_call:  // currently, sparc-specific for niagara
  2843       default: ShouldNotReachHere();
  2845     while (offset++ % BytesPerWord != 0) {
  2846       __ nop();
  2852 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
  2853   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
  2854          "must be aligned");
  2855   __ call(AddressLiteral(op->addr(), rtype));
  2856   add_call_info(code_offset(), op->info());
  2860 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
  2861   RelocationHolder rh = virtual_call_Relocation::spec(pc());
  2862   __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
  2863   assert(!os::is_MP() ||
  2864          (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
  2865          "must be aligned");
  2866   __ call(AddressLiteral(op->addr(), rh));
  2867   add_call_info(code_offset(), op->info());
  2871 /* Currently, vtable-dispatch is only enabled for sparc platforms */
  2872 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
  2873   ShouldNotReachHere();
  2877 void LIR_Assembler::emit_static_call_stub() {
  2878   address call_pc = __ pc();
  2879   address stub = __ start_a_stub(call_stub_size);
  2880   if (stub == NULL) {
  2881     bailout("static call stub overflow");
  2882     return;
  2885   int start = __ offset();
  2886   if (os::is_MP()) {
  2887     // make sure that the displacement word of the call ends up word aligned
  2888     int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
  2889     while (offset++ % BytesPerWord != 0) {
  2890       __ nop();
  2893   __ relocate(static_stub_Relocation::spec(call_pc));
  2894   __ movoop(rbx, (jobject)NULL);
  2895   // must be set to -1 at code generation time
  2896   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
  2897   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
  2898   __ jump(RuntimeAddress(__ pc()));
  2900   assert(__ offset() - start <= call_stub_size, "stub too big");
  2901   __ end_a_stub();
  2905 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
  2906   assert(exceptionOop->as_register() == rax, "must match");
  2907   assert(exceptionPC->as_register() == rdx, "must match");
  2909   // exception object is not added to oop map by LinearScan
  2910   // (LinearScan assumes that no oops are in fixed registers)
  2911   info->add_register_oop(exceptionOop);
  2912   Runtime1::StubID unwind_id;
  2914   // get current pc information
  2915   // pc is only needed if the method has an exception handler, the unwind code does not need it.
  2916   int pc_for_athrow_offset = __ offset();
  2917   InternalAddress pc_for_athrow(__ pc());
  2918   __ lea(exceptionPC->as_register(), pc_for_athrow);
  2919   add_call_info(pc_for_athrow_offset, info); // for exception handler
  2921   __ verify_not_null_oop(rax);
  2922   // search an exception handler (rax: exception oop, rdx: throwing pc)
  2923   if (compilation()->has_fpu_code()) {
  2924     unwind_id = Runtime1::handle_exception_id;
  2925   } else {
  2926     unwind_id = Runtime1::handle_exception_nofpu_id;
  2928   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
  2930   // enough room for two byte trap
  2931   __ nop();
  2935 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
  2936   assert(exceptionOop->as_register() == rax, "must match");
  2938   __ jmp(_unwind_handler_entry);
  2942 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
  2944   // optimized version for linear scan:
  2945   // * count must be already in ECX (guaranteed by LinearScan)
  2946   // * left and dest must be equal
  2947   // * tmp must be unused
  2948   assert(count->as_register() == SHIFT_count, "count must be in ECX");
  2949   assert(left == dest, "left and dest must be equal");
  2950   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
  2952   if (left->is_single_cpu()) {
  2953     Register value = left->as_register();
  2954     assert(value != SHIFT_count, "left cannot be ECX");
  2956     switch (code) {
  2957       case lir_shl:  __ shll(value); break;
  2958       case lir_shr:  __ sarl(value); break;
  2959       case lir_ushr: __ shrl(value); break;
  2960       default: ShouldNotReachHere();
  2962   } else if (left->is_double_cpu()) {
  2963     Register lo = left->as_register_lo();
  2964     Register hi = left->as_register_hi();
  2965     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
  2966 #ifdef _LP64
  2967     switch (code) {
  2968       case lir_shl:  __ shlptr(lo);        break;
  2969       case lir_shr:  __ sarptr(lo);        break;
  2970       case lir_ushr: __ shrptr(lo);        break;
  2971       default: ShouldNotReachHere();
  2973 #else
  2975     switch (code) {
  2976       case lir_shl:  __ lshl(hi, lo);        break;
  2977       case lir_shr:  __ lshr(hi, lo, true);  break;
  2978       case lir_ushr: __ lshr(hi, lo, false); break;
  2979       default: ShouldNotReachHere();
  2981 #endif // LP64
  2982   } else {
  2983     ShouldNotReachHere();
  2988 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
  2989   if (dest->is_single_cpu()) {
  2990     // first move left into dest so that left is not destroyed by the shift
  2991     Register value = dest->as_register();
  2992     count = count & 0x1F; // Java spec
  2994     move_regs(left->as_register(), value);
  2995     switch (code) {
  2996       case lir_shl:  __ shll(value, count); break;
  2997       case lir_shr:  __ sarl(value, count); break;
  2998       case lir_ushr: __ shrl(value, count); break;
  2999       default: ShouldNotReachHere();
  3001   } else if (dest->is_double_cpu()) {
  3002 #ifndef _LP64
  3003     Unimplemented();
  3004 #else
  3005     // first move left into dest so that left is not destroyed by the shift
  3006     Register value = dest->as_register_lo();
  3007     count = count & 0x1F; // Java spec
  3009     move_regs(left->as_register_lo(), value);
  3010     switch (code) {
  3011       case lir_shl:  __ shlptr(value, count); break;
  3012       case lir_shr:  __ sarptr(value, count); break;
  3013       case lir_ushr: __ shrptr(value, count); break;
  3014       default: ShouldNotReachHere();
  3016 #endif // _LP64
  3017   } else {
  3018     ShouldNotReachHere();
  3023 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
  3024   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3025   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3026   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3027   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
  3031 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
  3032   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3033   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3034   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3035   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
  3039 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
  3040   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
  3041   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
  3042   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
  3043   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
  3047 // This code replaces a call to arraycopy; no exception may
  3048 // be thrown in this code, they must be thrown in the System.arraycopy
  3049 // activation frame; we could save some checks if this would not be the case
  3050 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
  3051   ciArrayKlass* default_type = op->expected_type();
  3052   Register src = op->src()->as_register();
  3053   Register dst = op->dst()->as_register();
  3054   Register src_pos = op->src_pos()->as_register();
  3055   Register dst_pos = op->dst_pos()->as_register();
  3056   Register length  = op->length()->as_register();
  3057   Register tmp = op->tmp()->as_register();
  3059   CodeStub* stub = op->stub();
  3060   int flags = op->flags();
  3061   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
  3062   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
  3064   // if we don't know anything, just go through the generic arraycopy
  3065   if (default_type == NULL) {
  3066     Label done;
  3067     // save outgoing arguments on stack in case call to System.arraycopy is needed
  3068     // HACK ALERT. This code used to push the parameters in a hardwired fashion
  3069     // for interpreter calling conventions. Now we have to do it in new style conventions.
  3070     // For the moment until C1 gets the new register allocator I just force all the
  3071     // args to the right place (except the register args) and then on the back side
  3072     // reload the register args properly if we go slow path. Yuck
  3074     // These are proper for the calling convention
  3075     store_parameter(length, 2);
  3076     store_parameter(dst_pos, 1);
  3077     store_parameter(dst, 0);
  3079     // these are just temporary placements until we need to reload
  3080     store_parameter(src_pos, 3);
  3081     store_parameter(src, 4);
  3082     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
  3084     address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
  3086     address copyfunc_addr = StubRoutines::generic_arraycopy();
  3088     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
  3089 #ifdef _LP64
  3090     // The arguments are in java calling convention so we can trivially shift them to C
  3091     // convention
  3092     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
  3093     __ mov(c_rarg0, j_rarg0);
  3094     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
  3095     __ mov(c_rarg1, j_rarg1);
  3096     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
  3097     __ mov(c_rarg2, j_rarg2);
  3098     assert_different_registers(c_rarg3, j_rarg4);
  3099     __ mov(c_rarg3, j_rarg3);
  3100 #ifdef _WIN64
  3101     // Allocate abi space for args but be sure to keep stack aligned
  3102     __ subptr(rsp, 6*wordSize);
  3103     store_parameter(j_rarg4, 4);
  3104     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  3105       __ call(RuntimeAddress(C_entry));
  3106     } else {
  3107 #ifndef PRODUCT
  3108       if (PrintC1Statistics) {
  3109         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
  3111 #endif
  3112       __ call(RuntimeAddress(copyfunc_addr));
  3114     __ addptr(rsp, 6*wordSize);
  3115 #else
  3116     __ mov(c_rarg4, j_rarg4);
  3117     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  3118       __ call(RuntimeAddress(C_entry));
  3119     } else {
  3120 #ifndef PRODUCT
  3121       if (PrintC1Statistics) {
  3122         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
  3124 #endif
  3125       __ call(RuntimeAddress(copyfunc_addr));
  3127 #endif // _WIN64
  3128 #else
  3129     __ push(length);
  3130     __ push(dst_pos);
  3131     __ push(dst);
  3132     __ push(src_pos);
  3133     __ push(src);
  3135     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
  3136       __ call_VM_leaf(C_entry, 5); // removes pushed parameter from the stack
  3137     } else {
  3138 #ifndef PRODUCT
  3139       if (PrintC1Statistics) {
  3140         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
  3142 #endif
  3143       __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
  3146 #endif // _LP64
  3148     __ cmpl(rax, 0);
  3149     __ jcc(Assembler::equal, *stub->continuation());
  3151     if (copyfunc_addr != NULL) {
  3152       __ mov(tmp, rax);
  3153       __ xorl(tmp, -1);
  3156     // Reload values from the stack so they are where the stub
  3157     // expects them.
  3158     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
  3159     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
  3160     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
  3161     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
  3162     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
  3164     if (copyfunc_addr != NULL) {
  3165       __ subl(length, tmp);
  3166       __ addl(src_pos, tmp);
  3167       __ addl(dst_pos, tmp);
  3169     __ jmp(*stub->entry());
  3171     __ bind(*stub->continuation());
  3172     return;
  3175   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
  3177   int elem_size = type2aelembytes(basic_type);
  3178   int shift_amount;
  3179   Address::ScaleFactor scale;
  3181   switch (elem_size) {
  3182     case 1 :
  3183       shift_amount = 0;
  3184       scale = Address::times_1;
  3185       break;
  3186     case 2 :
  3187       shift_amount = 1;
  3188       scale = Address::times_2;
  3189       break;
  3190     case 4 :
  3191       shift_amount = 2;
  3192       scale = Address::times_4;
  3193       break;
  3194     case 8 :
  3195       shift_amount = 3;
  3196       scale = Address::times_8;
  3197       break;
  3198     default:
  3199       ShouldNotReachHere();
  3202   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
  3203   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
  3204   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
  3205   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
  3207   // length and pos's are all sign extended at this point on 64bit
  3209   // test for NULL
  3210   if (flags & LIR_OpArrayCopy::src_null_check) {
  3211     __ testptr(src, src);
  3212     __ jcc(Assembler::zero, *stub->entry());
  3214   if (flags & LIR_OpArrayCopy::dst_null_check) {
  3215     __ testptr(dst, dst);
  3216     __ jcc(Assembler::zero, *stub->entry());
  3219   // check if negative
  3220   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
  3221     __ testl(src_pos, src_pos);
  3222     __ jcc(Assembler::less, *stub->entry());
  3224   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
  3225     __ testl(dst_pos, dst_pos);
  3226     __ jcc(Assembler::less, *stub->entry());
  3229   if (flags & LIR_OpArrayCopy::src_range_check) {
  3230     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
  3231     __ cmpl(tmp, src_length_addr);
  3232     __ jcc(Assembler::above, *stub->entry());
  3234   if (flags & LIR_OpArrayCopy::dst_range_check) {
  3235     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
  3236     __ cmpl(tmp, dst_length_addr);
  3237     __ jcc(Assembler::above, *stub->entry());
  3240   if (flags & LIR_OpArrayCopy::length_positive_check) {
  3241     __ testl(length, length);
  3242     __ jcc(Assembler::less, *stub->entry());
  3243     __ jcc(Assembler::zero, *stub->continuation());
  3246 #ifdef _LP64
  3247   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
  3248   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
  3249 #endif
  3251   if (flags & LIR_OpArrayCopy::type_check) {
  3252     // We don't know the array types are compatible
  3253     if (basic_type != T_OBJECT) {
  3254       // Simple test for basic type arrays
  3255       if (UseCompressedOops) {
  3256         __ movl(tmp, src_klass_addr);
  3257         __ cmpl(tmp, dst_klass_addr);
  3258       } else {
  3259         __ movptr(tmp, src_klass_addr);
  3260         __ cmpptr(tmp, dst_klass_addr);
  3262       __ jcc(Assembler::notEqual, *stub->entry());
  3263     } else {
  3264       // For object arrays, if src is a sub class of dst then we can
  3265       // safely do the copy.
  3266       Label cont, slow;
  3268       __ push(src);
  3269       __ push(dst);
  3271       __ load_klass(src, src);
  3272       __ load_klass(dst, dst);
  3274       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
  3276       __ push(src);
  3277       __ push(dst);
  3278       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
  3279       __ pop(dst);
  3280       __ pop(src);
  3282       __ cmpl(src, 0);
  3283       __ jcc(Assembler::notEqual, cont);
  3285       __ bind(slow);
  3286       __ pop(dst);
  3287       __ pop(src);
  3289       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
  3290       if (copyfunc_addr != NULL) { // use stub if available
  3291         // src is not a sub class of dst so we have to do a
  3292         // per-element check.
  3294         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
  3295         if ((flags & mask) != mask) {
  3296           // Check that at least both of them object arrays.
  3297           assert(flags & mask, "one of the two should be known to be an object array");
  3299           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
  3300             __ load_klass(tmp, src);
  3301           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
  3302             __ load_klass(tmp, dst);
  3304           int lh_offset = in_bytes(Klass::layout_helper_offset());
  3305           Address klass_lh_addr(tmp, lh_offset);
  3306           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
  3307           __ cmpl(klass_lh_addr, objArray_lh);
  3308           __ jcc(Assembler::notEqual, *stub->entry());
  3311        // Spill because stubs can use any register they like and it's
  3312        // easier to restore just those that we care about.
  3313        store_parameter(dst, 0);
  3314        store_parameter(dst_pos, 1);
  3315        store_parameter(length, 2);
  3316        store_parameter(src_pos, 3);
  3317        store_parameter(src, 4);
  3319 #ifndef _LP64
  3320         __ movptr(tmp, dst_klass_addr);
  3321         __ movptr(tmp, Address(tmp, objArrayKlass::element_klass_offset()));
  3322         __ push(tmp);
  3323         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
  3324         __ push(tmp);
  3325         __ push(length);
  3326         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3327         __ push(tmp);
  3328         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3329         __ push(tmp);
  3331         __ call_VM_leaf(copyfunc_addr, 5);
  3332 #else
  3333         __ movl2ptr(length, length); //higher 32bits must be null
  3335         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3336         assert_different_registers(c_rarg0, dst, dst_pos, length);
  3337         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3338         assert_different_registers(c_rarg1, dst, length);
  3340         __ mov(c_rarg2, length);
  3341         assert_different_registers(c_rarg2, dst);
  3343 #ifdef _WIN64
  3344         // Allocate abi space for args but be sure to keep stack aligned
  3345         __ subptr(rsp, 6*wordSize);
  3346         __ load_klass(c_rarg3, dst);
  3347         __ movptr(c_rarg3, Address(c_rarg3, objArrayKlass::element_klass_offset()));
  3348         store_parameter(c_rarg3, 4);
  3349         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
  3350         __ call(RuntimeAddress(copyfunc_addr));
  3351         __ addptr(rsp, 6*wordSize);
  3352 #else
  3353         __ load_klass(c_rarg4, dst);
  3354         __ movptr(c_rarg4, Address(c_rarg4, objArrayKlass::element_klass_offset()));
  3355         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
  3356         __ call(RuntimeAddress(copyfunc_addr));
  3357 #endif
  3359 #endif
  3361 #ifndef PRODUCT
  3362         if (PrintC1Statistics) {
  3363           Label failed;
  3364           __ testl(rax, rax);
  3365           __ jcc(Assembler::notZero, failed);
  3366           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
  3367           __ bind(failed);
  3369 #endif
  3371         __ testl(rax, rax);
  3372         __ jcc(Assembler::zero, *stub->continuation());
  3374 #ifndef PRODUCT
  3375         if (PrintC1Statistics) {
  3376           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
  3378 #endif
  3380         __ mov(tmp, rax);
  3382         __ xorl(tmp, -1);
  3384         // Restore previously spilled arguments
  3385         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
  3386         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
  3387         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
  3388         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
  3389         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
  3392         __ subl(length, tmp);
  3393         __ addl(src_pos, tmp);
  3394         __ addl(dst_pos, tmp);
  3397       __ jmp(*stub->entry());
  3399       __ bind(cont);
  3400       __ pop(dst);
  3401       __ pop(src);
  3405 #ifdef ASSERT
  3406   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
  3407     // Sanity check the known type with the incoming class.  For the
  3408     // primitive case the types must match exactly with src.klass and
  3409     // dst.klass each exactly matching the default type.  For the
  3410     // object array case, if no type check is needed then either the
  3411     // dst type is exactly the expected type and the src type is a
  3412     // subtype which we can't check or src is the same array as dst
  3413     // but not necessarily exactly of type default_type.
  3414     Label known_ok, halt;
  3415     __ movoop(tmp, default_type->constant_encoding());
  3416 #ifdef _LP64
  3417     if (UseCompressedOops) {
  3418       __ encode_heap_oop(tmp);
  3420 #endif
  3422     if (basic_type != T_OBJECT) {
  3424       if (UseCompressedOops) __ cmpl(tmp, dst_klass_addr);
  3425       else                   __ cmpptr(tmp, dst_klass_addr);
  3426       __ jcc(Assembler::notEqual, halt);
  3427       if (UseCompressedOops) __ cmpl(tmp, src_klass_addr);
  3428       else                   __ cmpptr(tmp, src_klass_addr);
  3429       __ jcc(Assembler::equal, known_ok);
  3430     } else {
  3431       if (UseCompressedOops) __ cmpl(tmp, dst_klass_addr);
  3432       else                   __ cmpptr(tmp, dst_klass_addr);
  3433       __ jcc(Assembler::equal, known_ok);
  3434       __ cmpptr(src, dst);
  3435       __ jcc(Assembler::equal, known_ok);
  3437     __ bind(halt);
  3438     __ stop("incorrect type information in arraycopy");
  3439     __ bind(known_ok);
  3441 #endif
  3443 #ifndef PRODUCT
  3444   if (PrintC1Statistics) {
  3445     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
  3447 #endif
  3449 #ifdef _LP64
  3450   assert_different_registers(c_rarg0, dst, dst_pos, length);
  3451   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3452   assert_different_registers(c_rarg1, length);
  3453   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3454   __ mov(c_rarg2, length);
  3456 #else
  3457   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3458   store_parameter(tmp, 0);
  3459   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
  3460   store_parameter(tmp, 1);
  3461   store_parameter(length, 2);
  3462 #endif // _LP64
  3464   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
  3465   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
  3466   const char *name;
  3467   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
  3468   __ call_VM_leaf(entry, 0);
  3470   __ bind(*stub->continuation());
  3474 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
  3475   Register obj = op->obj_opr()->as_register();  // may not be an oop
  3476   Register hdr = op->hdr_opr()->as_register();
  3477   Register lock = op->lock_opr()->as_register();
  3478   if (!UseFastLocking) {
  3479     __ jmp(*op->stub()->entry());
  3480   } else if (op->code() == lir_lock) {
  3481     Register scratch = noreg;
  3482     if (UseBiasedLocking) {
  3483       scratch = op->scratch_opr()->as_register();
  3485     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3486     // add debug info for NullPointerException only if one is possible
  3487     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
  3488     if (op->info() != NULL) {
  3489       add_debug_info_for_null_check(null_check_offset, op->info());
  3491     // done
  3492   } else if (op->code() == lir_unlock) {
  3493     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
  3494     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
  3495   } else {
  3496     Unimplemented();
  3498   __ bind(*op->stub()->continuation());
  3502 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
  3503   ciMethod* method = op->profiled_method();
  3504   int bci          = op->profiled_bci();
  3506   // Update counter for all call types
  3507   ciMethodData* md = method->method_data_or_null();
  3508   assert(md != NULL, "Sanity");
  3509   ciProfileData* data = md->bci_to_data(bci);
  3510   assert(data->is_CounterData(), "need CounterData for calls");
  3511   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
  3512   Register mdo  = op->mdo()->as_register();
  3513   __ movoop(mdo, md->constant_encoding());
  3514   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
  3515   Bytecodes::Code bc = method->java_code_at_bci(bci);
  3516   // Perform additional virtual call profiling for invokevirtual and
  3517   // invokeinterface bytecodes
  3518   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
  3519       C1ProfileVirtualCalls) {
  3520     assert(op->recv()->is_single_cpu(), "recv must be allocated");
  3521     Register recv = op->recv()->as_register();
  3522     assert_different_registers(mdo, recv);
  3523     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
  3524     ciKlass* known_klass = op->known_holder();
  3525     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
  3526       // We know the type that will be seen at this call site; we can
  3527       // statically update the methodDataOop rather than needing to do
  3528       // dynamic tests on the receiver type
  3530       // NOTE: we should probably put a lock around this search to
  3531       // avoid collisions by concurrent compilations
  3532       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
  3533       uint i;
  3534       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3535         ciKlass* receiver = vc_data->receiver(i);
  3536         if (known_klass->equals(receiver)) {
  3537           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3538           __ addptr(data_addr, DataLayout::counter_increment);
  3539           return;
  3543       // Receiver type not found in profile data; select an empty slot
  3545       // Note that this is less efficient than it should be because it
  3546       // always does a write to the receiver part of the
  3547       // VirtualCallData rather than just the first time
  3548       for (i = 0; i < VirtualCallData::row_limit(); i++) {
  3549         ciKlass* receiver = vc_data->receiver(i);
  3550         if (receiver == NULL) {
  3551           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
  3552           __ movoop(recv_addr, known_klass->constant_encoding());
  3553           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
  3554           __ addptr(data_addr, DataLayout::counter_increment);
  3555           return;
  3558     } else {
  3559       __ load_klass(recv, recv);
  3560       Label update_done;
  3561       type_profile_helper(mdo, md, data, recv, &update_done);
  3562       // Receiver did not match any saved receiver and there is no empty row for it.
  3563       // Increment total counter to indicate polymorphic case.
  3564       __ addptr(counter_addr, DataLayout::counter_increment);
  3566       __ bind(update_done);
  3568   } else {
  3569     // Static call
  3570     __ addptr(counter_addr, DataLayout::counter_increment);
  3574 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
  3575   Unimplemented();
  3579 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
  3580   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
  3584 void LIR_Assembler::align_backward_branch_target() {
  3585   __ align(BytesPerWord);
  3589 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
  3590   if (left->is_single_cpu()) {
  3591     __ negl(left->as_register());
  3592     move_regs(left->as_register(), dest->as_register());
  3594   } else if (left->is_double_cpu()) {
  3595     Register lo = left->as_register_lo();
  3596 #ifdef _LP64
  3597     Register dst = dest->as_register_lo();
  3598     __ movptr(dst, lo);
  3599     __ negptr(dst);
  3600 #else
  3601     Register hi = left->as_register_hi();
  3602     __ lneg(hi, lo);
  3603     if (dest->as_register_lo() == hi) {
  3604       assert(dest->as_register_hi() != lo, "destroying register");
  3605       move_regs(hi, dest->as_register_hi());
  3606       move_regs(lo, dest->as_register_lo());
  3607     } else {
  3608       move_regs(lo, dest->as_register_lo());
  3609       move_regs(hi, dest->as_register_hi());
  3611 #endif // _LP64
  3613   } else if (dest->is_single_xmm()) {
  3614     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
  3615       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
  3617     __ xorps(dest->as_xmm_float_reg(),
  3618              ExternalAddress((address)float_signflip_pool));
  3620   } else if (dest->is_double_xmm()) {
  3621     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
  3622       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
  3624     __ xorpd(dest->as_xmm_double_reg(),
  3625              ExternalAddress((address)double_signflip_pool));
  3627   } else if (left->is_single_fpu() || left->is_double_fpu()) {
  3628     assert(left->fpu() == 0, "arg must be on TOS");
  3629     assert(dest->fpu() == 0, "dest must be TOS");
  3630     __ fchs();
  3632   } else {
  3633     ShouldNotReachHere();
  3638 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
  3639   assert(addr->is_address() && dest->is_register(), "check");
  3640   Register reg;
  3641   reg = dest->as_pointer_register();
  3642   __ lea(reg, as_Address(addr->as_address_ptr()));
  3647 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
  3648   assert(!tmp->is_valid(), "don't need temporary");
  3649   __ call(RuntimeAddress(dest));
  3650   if (info != NULL) {
  3651     add_call_info_here(info);
  3656 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
  3657   assert(type == T_LONG, "only for volatile long fields");
  3659   if (info != NULL) {
  3660     add_debug_info_for_null_check_here(info);
  3663   if (src->is_double_xmm()) {
  3664     if (dest->is_double_cpu()) {
  3665 #ifdef _LP64
  3666       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
  3667 #else
  3668       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
  3669       __ psrlq(src->as_xmm_double_reg(), 32);
  3670       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
  3671 #endif // _LP64
  3672     } else if (dest->is_double_stack()) {
  3673       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
  3674     } else if (dest->is_address()) {
  3675       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
  3676     } else {
  3677       ShouldNotReachHere();
  3680   } else if (dest->is_double_xmm()) {
  3681     if (src->is_double_stack()) {
  3682       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
  3683     } else if (src->is_address()) {
  3684       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
  3685     } else {
  3686       ShouldNotReachHere();
  3689   } else if (src->is_double_fpu()) {
  3690     assert(src->fpu_regnrLo() == 0, "must be TOS");
  3691     if (dest->is_double_stack()) {
  3692       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
  3693     } else if (dest->is_address()) {
  3694       __ fistp_d(as_Address(dest->as_address_ptr()));
  3695     } else {
  3696       ShouldNotReachHere();
  3699   } else if (dest->is_double_fpu()) {
  3700     assert(dest->fpu_regnrLo() == 0, "must be TOS");
  3701     if (src->is_double_stack()) {
  3702       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
  3703     } else if (src->is_address()) {
  3704       __ fild_d(as_Address(src->as_address_ptr()));
  3705     } else {
  3706       ShouldNotReachHere();
  3708   } else {
  3709     ShouldNotReachHere();
  3714 void LIR_Assembler::membar() {
  3715   // QQQ sparc TSO uses this,
  3716   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
  3719 void LIR_Assembler::membar_acquire() {
  3720   // No x86 machines currently require load fences
  3721   // __ load_fence();
  3724 void LIR_Assembler::membar_release() {
  3725   // No x86 machines currently require store fences
  3726   // __ store_fence();
  3729 void LIR_Assembler::membar_loadload() {
  3730   // no-op
  3731   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
  3734 void LIR_Assembler::membar_storestore() {
  3735   // no-op
  3736   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
  3739 void LIR_Assembler::membar_loadstore() {
  3740   // no-op
  3741   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
  3744 void LIR_Assembler::membar_storeload() {
  3745   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
  3748 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
  3749   assert(result_reg->is_register(), "check");
  3750 #ifdef _LP64
  3751   // __ get_thread(result_reg->as_register_lo());
  3752   __ mov(result_reg->as_register(), r15_thread);
  3753 #else
  3754   __ get_thread(result_reg->as_register());
  3755 #endif // _LP64
  3759 void LIR_Assembler::peephole(LIR_List*) {
  3760   // do nothing for now
  3764 #undef __

mercurial