src/share/vm/gc_implementation/g1/concurrentMark.hpp

Thu, 24 Nov 2016 11:27:57 +0100

author
tschatzl
date
Thu, 24 Nov 2016 11:27:57 +0100
changeset 9982
72053ed6f8d4
parent 7834
399885e13e90
child 10015
eb7ce841ccec
permissions
-rw-r--r--

8057003: Large reference arrays cause extremely long synchronization times
Summary: Slice large object arrays into parts so that the synchronization of marking threads with an STW pause request does not take long.
Reviewed-by: ehelin, pliden
Contributed-by: maoliang.ml@alibaba-inc.com

ysr@777 1 /*
johnc@4386 2 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
stefank@2314 27
stefank@6992 28 #include "classfile/javaClasses.hpp"
tschatzl@9982 29 #include "gc_implementation/g1/g1ConcurrentMarkObjArrayProcessor.hpp"
brutisso@6385 30 #include "gc_implementation/g1/heapRegionSet.hpp"
tschatzl@7051 31 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
brutisso@6904 32 #include "gc_implementation/shared/gcId.hpp"
stefank@2314 33 #include "utilities/taskqueue.hpp"
stefank@2314 34
ysr@777 35 class G1CollectedHeap;
tschatzl@7051 36 class CMBitMap;
ysr@777 37 class CMTask;
zgu@3900 38 typedef GenericTaskQueue<oop, mtGC> CMTaskQueue;
zgu@3900 39 typedef GenericTaskQueueSet<CMTaskQueue, mtGC> CMTaskQueueSet;
ysr@777 40
johnc@2379 41 // Closure used by CM during concurrent reference discovery
johnc@2379 42 // and reference processing (during remarking) to determine
johnc@2379 43 // if a particular object is alive. It is primarily used
johnc@2379 44 // to determine if referents of discovered reference objects
johnc@2379 45 // are alive. An instance is also embedded into the
johnc@2379 46 // reference processor as the _is_alive_non_header field
johnc@2379 47 class G1CMIsAliveClosure: public BoolObjectClosure {
johnc@2379 48 G1CollectedHeap* _g1;
johnc@2379 49 public:
tonyp@3691 50 G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
johnc@2379 51
johnc@2379 52 bool do_object_b(oop obj);
johnc@2379 53 };
johnc@2379 54
ysr@777 55 // A generic CM bit map. This is essentially a wrapper around the BitMap
ysr@777 56 // class, with one bit per (1<<_shifter) HeapWords.
ysr@777 57
apetrusenko@984 58 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
ysr@777 59 protected:
ysr@777 60 HeapWord* _bmStartWord; // base address of range covered by map
ysr@777 61 size_t _bmWordSize; // map size (in #HeapWords covered)
ysr@777 62 const int _shifter; // map to char or bit
ysr@777 63 BitMap _bm; // the bit map itself
ysr@777 64
ysr@777 65 public:
ysr@777 66 // constructor
johnc@4333 67 CMBitMapRO(int shifter);
ysr@777 68
ysr@777 69 enum { do_yield = true };
ysr@777 70
ysr@777 71 // inquiries
ysr@777 72 HeapWord* startWord() const { return _bmStartWord; }
ysr@777 73 size_t sizeInWords() const { return _bmWordSize; }
ysr@777 74 // the following is one past the last word in space
ysr@777 75 HeapWord* endWord() const { return _bmStartWord + _bmWordSize; }
ysr@777 76
ysr@777 77 // read marks
ysr@777 78
ysr@777 79 bool isMarked(HeapWord* addr) const {
ysr@777 80 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 81 "outside underlying space?");
ysr@777 82 return _bm.at(heapWordToOffset(addr));
ysr@777 83 }
ysr@777 84
ysr@777 85 // iteration
johnc@3454 86 inline bool iterate(BitMapClosure* cl, MemRegion mr);
johnc@3454 87 inline bool iterate(BitMapClosure* cl);
ysr@777 88
ysr@777 89 // Return the address corresponding to the next marked bit at or after
ysr@777 90 // "addr", and before "limit", if "limit" is non-NULL. If there is no
ysr@777 91 // such bit, returns "limit" if that is non-NULL, or else "endWord()".
stefank@6992 92 HeapWord* getNextMarkedWordAddress(const HeapWord* addr,
stefank@6992 93 const HeapWord* limit = NULL) const;
ysr@777 94 // Return the address corresponding to the next unmarked bit at or after
ysr@777 95 // "addr", and before "limit", if "limit" is non-NULL. If there is no
ysr@777 96 // such bit, returns "limit" if that is non-NULL, or else "endWord()".
stefank@6992 97 HeapWord* getNextUnmarkedWordAddress(const HeapWord* addr,
stefank@6992 98 const HeapWord* limit = NULL) const;
ysr@777 99
ysr@777 100 // conversion utilities
ysr@777 101 HeapWord* offsetToHeapWord(size_t offset) const {
ysr@777 102 return _bmStartWord + (offset << _shifter);
ysr@777 103 }
stefank@6992 104 size_t heapWordToOffset(const HeapWord* addr) const {
ysr@777 105 return pointer_delta(addr, _bmStartWord) >> _shifter;
ysr@777 106 }
ysr@777 107 int heapWordDiffToOffsetDiff(size_t diff) const;
tamao@4733 108
tamao@4733 109 // The argument addr should be the start address of a valid object
tamao@4733 110 HeapWord* nextObject(HeapWord* addr) {
tamao@4733 111 oop obj = (oop) addr;
tamao@4733 112 HeapWord* res = addr + obj->size();
tamao@4733 113 assert(offsetToHeapWord(heapWordToOffset(res)) == res, "sanity");
tamao@4733 114 return res;
ysr@777 115 }
ysr@777 116
stefank@4904 117 void print_on_error(outputStream* st, const char* prefix) const;
stefank@4904 118
ysr@777 119 // debugging
tschatzl@7051 120 NOT_PRODUCT(bool covers(MemRegion rs) const;)
tschatzl@7051 121 };
tschatzl@7051 122
tschatzl@7051 123 class CMBitMapMappingChangedListener : public G1MappingChangedListener {
tschatzl@7051 124 private:
tschatzl@7051 125 CMBitMap* _bm;
tschatzl@7051 126 public:
tschatzl@7051 127 CMBitMapMappingChangedListener() : _bm(NULL) {}
tschatzl@7051 128
tschatzl@7051 129 void set_bitmap(CMBitMap* bm) { _bm = bm; }
tschatzl@7051 130
tschatzl@7257 131 virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
ysr@777 132 };
ysr@777 133
ysr@777 134 class CMBitMap : public CMBitMapRO {
tschatzl@7051 135 private:
tschatzl@7051 136 CMBitMapMappingChangedListener _listener;
ysr@777 137
ysr@777 138 public:
tschatzl@7051 139 static size_t compute_size(size_t heap_size);
tschatzl@7051 140 // Returns the amount of bytes on the heap between two marks in the bitmap.
tschatzl@7051 141 static size_t mark_distance();
johnc@4333 142
tschatzl@7051 143 CMBitMap() : CMBitMapRO(LogMinObjAlignment), _listener() { _listener.set_bitmap(this); }
ysr@777 144
tschatzl@7051 145 // Initializes the underlying BitMap to cover the given area.
tschatzl@7051 146 void initialize(MemRegion heap, G1RegionToSpaceMapper* storage);
tschatzl@7051 147
tschatzl@7051 148 // Write marks.
tschatzl@7051 149 inline void mark(HeapWord* addr);
tschatzl@7051 150 inline void clear(HeapWord* addr);
tschatzl@7051 151 inline bool parMark(HeapWord* addr);
tschatzl@7051 152 inline bool parClear(HeapWord* addr);
tschatzl@7051 153
ysr@777 154 void markRange(MemRegion mr);
ysr@777 155 void clearRange(MemRegion mr);
ysr@777 156
ysr@777 157 // Starting at the bit corresponding to "addr" (inclusive), find the next
ysr@777 158 // "1" bit, if any. This bit starts some run of consecutive "1"'s; find
ysr@777 159 // the end of this run (stopping at "end_addr"). Return the MemRegion
ysr@777 160 // covering from the start of the region corresponding to the first bit
ysr@777 161 // of the run to the end of the region corresponding to the last bit of
ysr@777 162 // the run. If there is no "1" bit at or after "addr", return an empty
ysr@777 163 // MemRegion.
ysr@777 164 MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
tschatzl@7051 165
tschatzl@7051 166 // Clear the whole mark bitmap.
tschatzl@7051 167 void clearAll();
ysr@777 168 };
ysr@777 169
johnc@4333 170 // Represents a marking stack used by ConcurrentMarking in the G1 collector.
apetrusenko@984 171 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
johnc@4333 172 VirtualSpace _virtual_space; // Underlying backing store for actual stack
ysr@777 173 ConcurrentMark* _cm;
johnc@4787 174 oop* _base; // bottom of stack
johnc@4333 175 jint _index; // one more than last occupied index
johnc@4333 176 jint _capacity; // max #elements
johnc@4333 177 jint _saved_index; // value of _index saved at start of GC
johnc@4333 178 NOT_PRODUCT(jint _max_depth;) // max depth plumbed during run
ysr@777 179
johnc@4333 180 bool _overflow;
johnc@4333 181 bool _should_expand;
ysr@777 182 DEBUG_ONLY(bool _drain_in_progress;)
ysr@777 183 DEBUG_ONLY(bool _drain_in_progress_yields;)
ysr@777 184
ysr@777 185 public:
ysr@777 186 CMMarkStack(ConcurrentMark* cm);
ysr@777 187 ~CMMarkStack();
ysr@777 188
johnc@4333 189 #ifndef PRODUCT
johnc@4333 190 jint max_depth() const {
johnc@4333 191 return _max_depth;
johnc@4333 192 }
johnc@4333 193 #endif
johnc@4333 194
johnc@4333 195 bool allocate(size_t capacity);
ysr@777 196
ysr@777 197 oop pop() {
ysr@777 198 if (!isEmpty()) {
ysr@777 199 return _base[--_index] ;
ysr@777 200 }
ysr@777 201 return NULL;
ysr@777 202 }
ysr@777 203
ysr@777 204 // If overflow happens, don't do the push, and record the overflow.
ysr@777 205 // *Requires* that "ptr" is already marked.
ysr@777 206 void push(oop ptr) {
ysr@777 207 if (isFull()) {
ysr@777 208 // Record overflow.
ysr@777 209 _overflow = true;
ysr@777 210 return;
ysr@777 211 } else {
ysr@777 212 _base[_index++] = ptr;
ysr@777 213 NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
ysr@777 214 }
ysr@777 215 }
ysr@777 216 // Non-block impl. Note: concurrency is allowed only with other
ysr@777 217 // "par_push" operations, not with "pop" or "drain". We would need
ysr@777 218 // parallel versions of them if such concurrency was desired.
ysr@777 219 void par_push(oop ptr);
ysr@777 220
ysr@777 221 // Pushes the first "n" elements of "ptr_arr" on the stack.
ysr@777 222 // Non-block impl. Note: concurrency is allowed only with other
ysr@777 223 // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
ysr@777 224 void par_adjoin_arr(oop* ptr_arr, int n);
ysr@777 225
ysr@777 226 // Pushes the first "n" elements of "ptr_arr" on the stack.
ysr@777 227 // Locking impl: concurrency is allowed only with
ysr@777 228 // "par_push_arr" and/or "par_pop_arr" operations, which use the same
ysr@777 229 // locking strategy.
ysr@777 230 void par_push_arr(oop* ptr_arr, int n);
ysr@777 231
ysr@777 232 // If returns false, the array was empty. Otherwise, removes up to "max"
ysr@777 233 // elements from the stack, and transfers them to "ptr_arr" in an
ysr@777 234 // unspecified order. The actual number transferred is given in "n" ("n
ysr@777 235 // == 0" is deliberately redundant with the return value.) Locking impl:
ysr@777 236 // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
ysr@777 237 // operations, which use the same locking strategy.
ysr@777 238 bool par_pop_arr(oop* ptr_arr, int max, int* n);
ysr@777 239
ysr@777 240 // Drain the mark stack, applying the given closure to all fields of
ysr@777 241 // objects on the stack. (That is, continue until the stack is empty,
ysr@777 242 // even if closure applications add entries to the stack.) The "bm"
ysr@777 243 // argument, if non-null, may be used to verify that only marked objects
ysr@777 244 // are on the mark stack. If "yield_after" is "true", then the
ysr@777 245 // concurrent marker performing the drain offers to yield after
ysr@777 246 // processing each object. If a yield occurs, stops the drain operation
ysr@777 247 // and returns false. Otherwise, returns true.
ysr@777 248 template<class OopClosureClass>
ysr@777 249 bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
ysr@777 250
ysr@777 251 bool isEmpty() { return _index == 0; }
ysr@777 252 bool isFull() { return _index == _capacity; }
johnc@4333 253 int maxElems() { return _capacity; }
ysr@777 254
ysr@777 255 bool overflow() { return _overflow; }
ysr@777 256 void clear_overflow() { _overflow = false; }
ysr@777 257
johnc@4333 258 bool should_expand() const { return _should_expand; }
johnc@4333 259 void set_should_expand();
johnc@4333 260
johnc@4333 261 // Expand the stack, typically in response to an overflow condition
johnc@4333 262 void expand();
johnc@4333 263
ysr@777 264 int size() { return _index; }
ysr@777 265
ysr@777 266 void setEmpty() { _index = 0; clear_overflow(); }
ysr@777 267
tonyp@3416 268 // Record the current index.
tonyp@3416 269 void note_start_of_gc();
tonyp@3416 270
tonyp@3416 271 // Make sure that we have not added any entries to the stack during GC.
tonyp@3416 272 void note_end_of_gc();
tonyp@3416 273
ysr@777 274 // iterate over the oops in the mark stack, up to the bound recorded via
ysr@777 275 // the call above.
ysr@777 276 void oops_do(OopClosure* f);
ysr@777 277 };
ysr@777 278
tonyp@2848 279 class ForceOverflowSettings VALUE_OBJ_CLASS_SPEC {
tonyp@2848 280 private:
tonyp@2848 281 #ifndef PRODUCT
tonyp@2848 282 uintx _num_remaining;
tonyp@2848 283 bool _force;
tonyp@2848 284 #endif // !defined(PRODUCT)
tonyp@2848 285
tonyp@2848 286 public:
tonyp@2848 287 void init() PRODUCT_RETURN;
tonyp@2848 288 void update() PRODUCT_RETURN;
tonyp@2848 289 bool should_force() PRODUCT_RETURN_( return false; );
tonyp@2848 290 };
tonyp@2848 291
ysr@777 292 // this will enable a variety of different statistics per GC task
ysr@777 293 #define _MARKING_STATS_ 0
ysr@777 294 // this will enable the higher verbose levels
ysr@777 295 #define _MARKING_VERBOSE_ 0
ysr@777 296
ysr@777 297 #if _MARKING_STATS_
ysr@777 298 #define statsOnly(statement) \
ysr@777 299 do { \
ysr@777 300 statement ; \
ysr@777 301 } while (0)
ysr@777 302 #else // _MARKING_STATS_
ysr@777 303 #define statsOnly(statement) \
ysr@777 304 do { \
ysr@777 305 } while (0)
ysr@777 306 #endif // _MARKING_STATS_
ysr@777 307
ysr@777 308 typedef enum {
ysr@777 309 no_verbose = 0, // verbose turned off
ysr@777 310 stats_verbose, // only prints stats at the end of marking
ysr@777 311 low_verbose, // low verbose, mostly per region and per major event
ysr@777 312 medium_verbose, // a bit more detailed than low
ysr@777 313 high_verbose // per object verbose
ysr@777 314 } CMVerboseLevel;
ysr@777 315
tonyp@3464 316 class YoungList;
tonyp@3464 317
tonyp@3464 318 // Root Regions are regions that are not empty at the beginning of a
tonyp@3464 319 // marking cycle and which we might collect during an evacuation pause
tonyp@3464 320 // while the cycle is active. Given that, during evacuation pauses, we
tonyp@3464 321 // do not copy objects that are explicitly marked, what we have to do
tonyp@3464 322 // for the root regions is to scan them and mark all objects reachable
tonyp@3464 323 // from them. According to the SATB assumptions, we only need to visit
tonyp@3464 324 // each object once during marking. So, as long as we finish this scan
tonyp@3464 325 // before the next evacuation pause, we can copy the objects from the
tonyp@3464 326 // root regions without having to mark them or do anything else to them.
tonyp@3464 327 //
tonyp@3464 328 // Currently, we only support root region scanning once (at the start
tonyp@3464 329 // of the marking cycle) and the root regions are all the survivor
tonyp@3464 330 // regions populated during the initial-mark pause.
tonyp@3464 331 class CMRootRegions VALUE_OBJ_CLASS_SPEC {
tonyp@3464 332 private:
tonyp@3464 333 YoungList* _young_list;
tonyp@3464 334 ConcurrentMark* _cm;
tonyp@3464 335
tonyp@3464 336 volatile bool _scan_in_progress;
tonyp@3464 337 volatile bool _should_abort;
tonyp@3464 338 HeapRegion* volatile _next_survivor;
tonyp@3464 339
tonyp@3464 340 public:
tonyp@3464 341 CMRootRegions();
tonyp@3464 342 // We actually do most of the initialization in this method.
tonyp@3464 343 void init(G1CollectedHeap* g1h, ConcurrentMark* cm);
tonyp@3464 344
tonyp@3464 345 // Reset the claiming / scanning of the root regions.
tonyp@3464 346 void prepare_for_scan();
tonyp@3464 347
tonyp@3464 348 // Forces get_next() to return NULL so that the iteration aborts early.
tonyp@3464 349 void abort() { _should_abort = true; }
tonyp@3464 350
tonyp@3464 351 // Return true if the CM thread are actively scanning root regions,
tonyp@3464 352 // false otherwise.
tonyp@3464 353 bool scan_in_progress() { return _scan_in_progress; }
tonyp@3464 354
tonyp@3464 355 // Claim the next root region to scan atomically, or return NULL if
tonyp@3464 356 // all have been claimed.
tonyp@3464 357 HeapRegion* claim_next();
tonyp@3464 358
tonyp@3464 359 // Flag that we're done with root region scanning and notify anyone
tonyp@3464 360 // who's waiting on it. If aborted is false, assume that all regions
tonyp@3464 361 // have been claimed.
tonyp@3464 362 void scan_finished();
tonyp@3464 363
tonyp@3464 364 // If CM threads are still scanning root regions, wait until they
tonyp@3464 365 // are done. Return true if we had to wait, false otherwise.
tonyp@3464 366 bool wait_until_scan_finished();
tonyp@3464 367 };
ysr@777 368
ysr@777 369 class ConcurrentMarkThread;
ysr@777 370
zgu@3900 371 class ConcurrentMark: public CHeapObj<mtGC> {
johnc@4333 372 friend class CMMarkStack;
ysr@777 373 friend class ConcurrentMarkThread;
ysr@777 374 friend class CMTask;
ysr@777 375 friend class CMBitMapClosure;
ysr@777 376 friend class CMGlobalObjectClosure;
ysr@777 377 friend class CMRemarkTask;
ysr@777 378 friend class CMConcurrentMarkingTask;
ysr@777 379 friend class G1ParNoteEndTask;
ysr@777 380 friend class CalcLiveObjectsClosure;
johnc@3175 381 friend class G1CMRefProcTaskProxy;
johnc@3175 382 friend class G1CMRefProcTaskExecutor;
johnc@4555 383 friend class G1CMKeepAliveAndDrainClosure;
johnc@4555 384 friend class G1CMDrainMarkingStackClosure;
ysr@777 385
ysr@777 386 protected:
ysr@777 387 ConcurrentMarkThread* _cmThread; // the thread doing the work
ysr@777 388 G1CollectedHeap* _g1h; // the heap.
jmasa@3357 389 uint _parallel_marking_threads; // the number of marking
jmasa@3294 390 // threads we're use
jmasa@3357 391 uint _max_parallel_marking_threads; // max number of marking
jmasa@3294 392 // threads we'll ever use
ysr@777 393 double _sleep_factor; // how much we have to sleep, with
ysr@777 394 // respect to the work we just did, to
ysr@777 395 // meet the marking overhead goal
ysr@777 396 double _marking_task_overhead; // marking target overhead for
ysr@777 397 // a single task
ysr@777 398
ysr@777 399 // same as the two above, but for the cleanup task
ysr@777 400 double _cleanup_sleep_factor;
ysr@777 401 double _cleanup_task_overhead;
ysr@777 402
tonyp@2472 403 FreeRegionList _cleanup_list;
ysr@777 404
brutisso@3455 405 // Concurrent marking support structures
ysr@777 406 CMBitMap _markBitMap1;
ysr@777 407 CMBitMap _markBitMap2;
ysr@777 408 CMBitMapRO* _prevMarkBitMap; // completed mark bitmap
ysr@777 409 CMBitMap* _nextMarkBitMap; // under-construction mark bitmap
ysr@777 410
ysr@777 411 BitMap _region_bm;
ysr@777 412 BitMap _card_bm;
ysr@777 413
ysr@777 414 // Heap bounds
ysr@777 415 HeapWord* _heap_start;
ysr@777 416 HeapWord* _heap_end;
ysr@777 417
tonyp@3464 418 // Root region tracking and claiming.
tonyp@3464 419 CMRootRegions _root_regions;
tonyp@3464 420
ysr@777 421 // For gray objects
ysr@777 422 CMMarkStack _markStack; // Grey objects behind global finger.
ysr@777 423 HeapWord* volatile _finger; // the global finger, region aligned,
ysr@777 424 // always points to the end of the
ysr@777 425 // last claimed region
ysr@777 426
ysr@777 427 // marking tasks
johnc@4173 428 uint _max_worker_id;// maximum worker id
jmasa@3357 429 uint _active_tasks; // task num currently active
johnc@4173 430 CMTask** _tasks; // task queue array (max_worker_id len)
ysr@777 431 CMTaskQueueSet* _task_queues; // task queue set
ysr@777 432 ParallelTaskTerminator _terminator; // for termination
ysr@777 433
ysr@777 434 // Two sync barriers that are used to synchronise tasks when an
ysr@777 435 // overflow occurs. The algorithm is the following. All tasks enter
ysr@777 436 // the first one to ensure that they have all stopped manipulating
ysr@777 437 // the global data structures. After they exit it, they re-initialise
ysr@777 438 // their data structures and task 0 re-initialises the global data
ysr@777 439 // structures. Then, they enter the second sync barrier. This
ysr@777 440 // ensure, that no task starts doing work before all data
ysr@777 441 // structures (local and global) have been re-initialised. When they
ysr@777 442 // exit it, they are free to start working again.
ysr@777 443 WorkGangBarrierSync _first_overflow_barrier_sync;
ysr@777 444 WorkGangBarrierSync _second_overflow_barrier_sync;
ysr@777 445
ysr@777 446 // this is set by any task, when an overflow on the global data
ysr@777 447 // structures is detected.
ysr@777 448 volatile bool _has_overflown;
ysr@777 449 // true: marking is concurrent, false: we're in remark
ysr@777 450 volatile bool _concurrent;
ysr@777 451 // set at the end of a Full GC so that marking aborts
ysr@777 452 volatile bool _has_aborted;
brutisso@6904 453 GCId _aborted_gc_id;
johnc@2190 454
ysr@777 455 // used when remark aborts due to an overflow to indicate that
ysr@777 456 // another concurrent marking phase should start
ysr@777 457 volatile bool _restart_for_overflow;
ysr@777 458
ysr@777 459 // This is true from the very start of concurrent marking until the
ysr@777 460 // point when all the tasks complete their work. It is really used
ysr@777 461 // to determine the points between the end of concurrent marking and
ysr@777 462 // time of remark.
ysr@777 463 volatile bool _concurrent_marking_in_progress;
ysr@777 464
ysr@777 465 // verbose level
ysr@777 466 CMVerboseLevel _verbose_level;
ysr@777 467
ysr@777 468 // All of these times are in ms.
ysr@777 469 NumberSeq _init_times;
ysr@777 470 NumberSeq _remark_times;
ysr@777 471 NumberSeq _remark_mark_times;
ysr@777 472 NumberSeq _remark_weak_ref_times;
ysr@777 473 NumberSeq _cleanup_times;
ysr@777 474 double _total_counting_time;
ysr@777 475 double _total_rs_scrub_time;
ysr@777 476
ysr@777 477 double* _accum_task_vtime; // accumulated task vtime
ysr@777 478
jmasa@3294 479 FlexibleWorkGang* _parallel_workers;
ysr@777 480
tonyp@2848 481 ForceOverflowSettings _force_overflow_conc;
tonyp@2848 482 ForceOverflowSettings _force_overflow_stw;
tonyp@2848 483
stefank@6992 484 void weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes);
ysr@777 485 void weakRefsWork(bool clear_all_soft_refs);
ysr@777 486
ysr@777 487 void swapMarkBitMaps();
ysr@777 488
ysr@777 489 // It resets the global marking data structures, as well as the
ysr@777 490 // task local ones; should be called during initial mark.
ysr@777 491 void reset();
johnc@4386 492
johnc@4386 493 // Resets all the marking data structures. Called when we have to restart
johnc@4386 494 // marking or when marking completes (via set_non_marking_state below).
johnc@4386 495 void reset_marking_state(bool clear_overflow = true);
johnc@4386 496
johnc@4386 497 // We do this after we're done with marking so that the marking data
johnc@4386 498 // structures are initialised to a sensible and predictable state.
johnc@4386 499 void set_non_marking_state();
ysr@777 500
johnc@4788 501 // Called to indicate how many threads are currently active.
johnc@4788 502 void set_concurrency(uint active_tasks);
johnc@4788 503
ysr@777 504 // It should be called to indicate which phase we're in (concurrent
ysr@777 505 // mark or remark) and how many threads are currently active.
johnc@4788 506 void set_concurrency_and_phase(uint active_tasks, bool concurrent);
ysr@777 507
ysr@777 508 // prints all gathered CM-related statistics
ysr@777 509 void print_stats();
ysr@777 510
tonyp@2472 511 bool cleanup_list_is_empty() {
tonyp@2472 512 return _cleanup_list.is_empty();
tonyp@2472 513 }
tonyp@2472 514
ysr@777 515 // accessor methods
johnc@4549 516 uint parallel_marking_threads() const { return _parallel_marking_threads; }
johnc@4549 517 uint max_parallel_marking_threads() const { return _max_parallel_marking_threads;}
johnc@4549 518 double sleep_factor() { return _sleep_factor; }
johnc@4549 519 double marking_task_overhead() { return _marking_task_overhead;}
johnc@4549 520 double cleanup_sleep_factor() { return _cleanup_sleep_factor; }
johnc@4549 521 double cleanup_task_overhead() { return _cleanup_task_overhead;}
ysr@777 522
johnc@4549 523 bool use_parallel_marking_threads() const {
johnc@4549 524 assert(parallel_marking_threads() <=
johnc@4549 525 max_parallel_marking_threads(), "sanity");
johnc@4549 526 assert((_parallel_workers == NULL && parallel_marking_threads() == 0) ||
johnc@4549 527 parallel_marking_threads() > 0,
johnc@4549 528 "parallel workers not set up correctly");
johnc@4549 529 return _parallel_workers != NULL;
johnc@4549 530 }
johnc@4549 531
johnc@4549 532 HeapWord* finger() { return _finger; }
johnc@4549 533 bool concurrent() { return _concurrent; }
johnc@4549 534 uint active_tasks() { return _active_tasks; }
johnc@4549 535 ParallelTaskTerminator* terminator() { return &_terminator; }
ysr@777 536
ysr@777 537 // It claims the next available region to be scanned by a marking
johnc@4173 538 // task/thread. It might return NULL if the next region is empty or
johnc@4173 539 // we have run out of regions. In the latter case, out_of_regions()
ysr@777 540 // determines whether we've really run out of regions or the task
johnc@4173 541 // should call claim_region() again. This might seem a bit
ysr@777 542 // awkward. Originally, the code was written so that claim_region()
ysr@777 543 // either successfully returned with a non-empty region or there
ysr@777 544 // were no more regions to be claimed. The problem with this was
ysr@777 545 // that, in certain circumstances, it iterated over large chunks of
ysr@777 546 // the heap finding only empty regions and, while it was working, it
ysr@777 547 // was preventing the calling task to call its regular clock
ysr@777 548 // method. So, this way, each task will spend very little time in
ysr@777 549 // claim_region() and is allowed to call the regular clock method
ysr@777 550 // frequently.
johnc@4173 551 HeapRegion* claim_region(uint worker_id);
ysr@777 552
pliden@6693 553 // It determines whether we've run out of regions to scan. Note that
pliden@6693 554 // the finger can point past the heap end in case the heap was expanded
pliden@6693 555 // to satisfy an allocation without doing a GC. This is fine, because all
pliden@6693 556 // objects in those regions will be considered live anyway because of
pliden@6693 557 // SATB guarantees (i.e. their TAMS will be equal to bottom).
pliden@6693 558 bool out_of_regions() { return _finger >= _heap_end; }
ysr@777 559
ysr@777 560 // Returns the task with the given id
ysr@777 561 CMTask* task(int id) {
tonyp@1458 562 assert(0 <= id && id < (int) _active_tasks,
tonyp@1458 563 "task id not within active bounds");
ysr@777 564 return _tasks[id];
ysr@777 565 }
ysr@777 566
ysr@777 567 // Returns the task queue with the given id
ysr@777 568 CMTaskQueue* task_queue(int id) {
tonyp@1458 569 assert(0 <= id && id < (int) _active_tasks,
tonyp@1458 570 "task queue id not within active bounds");
ysr@777 571 return (CMTaskQueue*) _task_queues->queue(id);
ysr@777 572 }
ysr@777 573
ysr@777 574 // Returns the task queue set
ysr@777 575 CMTaskQueueSet* task_queues() { return _task_queues; }
ysr@777 576
ysr@777 577 // Access / manipulation of the overflow flag which is set to
tonyp@3691 578 // indicate that the global stack has overflown
ysr@777 579 bool has_overflown() { return _has_overflown; }
ysr@777 580 void set_has_overflown() { _has_overflown = true; }
ysr@777 581 void clear_has_overflown() { _has_overflown = false; }
tonyp@3464 582 bool restart_for_overflow() { return _restart_for_overflow; }
ysr@777 583
ysr@777 584 // Methods to enter the two overflow sync barriers
johnc@4173 585 void enter_first_sync_barrier(uint worker_id);
johnc@4173 586 void enter_second_sync_barrier(uint worker_id);
ysr@777 587
tonyp@2848 588 ForceOverflowSettings* force_overflow_conc() {
tonyp@2848 589 return &_force_overflow_conc;
tonyp@2848 590 }
tonyp@2848 591
tonyp@2848 592 ForceOverflowSettings* force_overflow_stw() {
tonyp@2848 593 return &_force_overflow_stw;
tonyp@2848 594 }
tonyp@2848 595
tonyp@2848 596 ForceOverflowSettings* force_overflow() {
tonyp@2848 597 if (concurrent()) {
tonyp@2848 598 return force_overflow_conc();
tonyp@2848 599 } else {
tonyp@2848 600 return force_overflow_stw();
tonyp@2848 601 }
tonyp@2848 602 }
tonyp@2848 603
johnc@3463 604 // Live Data Counting data structures...
johnc@3463 605 // These data structures are initialized at the start of
johnc@3463 606 // marking. They are written to while marking is active.
johnc@3463 607 // They are aggregated during remark; the aggregated values
johnc@3463 608 // are then used to populate the _region_bm, _card_bm, and
johnc@3463 609 // the total live bytes, which are then subsequently updated
johnc@3463 610 // during cleanup.
johnc@3463 611
johnc@3463 612 // An array of bitmaps (one bit map per task). Each bitmap
johnc@3463 613 // is used to record the cards spanned by the live objects
johnc@3463 614 // marked by that task/worker.
johnc@3463 615 BitMap* _count_card_bitmaps;
johnc@3463 616
johnc@3463 617 // Used to record the number of marked live bytes
johnc@3463 618 // (for each region, by worker thread).
johnc@3463 619 size_t** _count_marked_bytes;
johnc@3463 620
johnc@3463 621 // Card index of the bottom of the G1 heap. Used for biasing indices into
johnc@3463 622 // the card bitmaps.
johnc@3463 623 intptr_t _heap_bottom_card_num;
johnc@3463 624
johnc@4333 625 // Set to true when initialization is complete
johnc@4333 626 bool _completed_initialization;
johnc@4333 627
ysr@777 628 public:
ysr@777 629 // Manipulation of the global mark stack.
ysr@777 630 // Notice that the first mark_stack_push is CAS-based, whereas the
ysr@777 631 // two below are Mutex-based. This is OK since the first one is only
ysr@777 632 // called during evacuation pauses and doesn't compete with the
ysr@777 633 // other two (which are called by the marking tasks during
ysr@777 634 // concurrent marking or remark).
ysr@777 635 bool mark_stack_push(oop p) {
ysr@777 636 _markStack.par_push(p);
ysr@777 637 if (_markStack.overflow()) {
ysr@777 638 set_has_overflown();
ysr@777 639 return false;
ysr@777 640 }
ysr@777 641 return true;
ysr@777 642 }
ysr@777 643 bool mark_stack_push(oop* arr, int n) {
ysr@777 644 _markStack.par_push_arr(arr, n);
ysr@777 645 if (_markStack.overflow()) {
ysr@777 646 set_has_overflown();
ysr@777 647 return false;
ysr@777 648 }
ysr@777 649 return true;
ysr@777 650 }
ysr@777 651 void mark_stack_pop(oop* arr, int max, int* n) {
ysr@777 652 _markStack.par_pop_arr(arr, max, n);
ysr@777 653 }
tonyp@2973 654 size_t mark_stack_size() { return _markStack.size(); }
ysr@777 655 size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
tonyp@2973 656 bool mark_stack_overflow() { return _markStack.overflow(); }
tonyp@2973 657 bool mark_stack_empty() { return _markStack.isEmpty(); }
ysr@777 658
tonyp@3464 659 CMRootRegions* root_regions() { return &_root_regions; }
tonyp@3464 660
ysr@777 661 bool concurrent_marking_in_progress() {
ysr@777 662 return _concurrent_marking_in_progress;
ysr@777 663 }
ysr@777 664 void set_concurrent_marking_in_progress() {
ysr@777 665 _concurrent_marking_in_progress = true;
ysr@777 666 }
ysr@777 667 void clear_concurrent_marking_in_progress() {
ysr@777 668 _concurrent_marking_in_progress = false;
ysr@777 669 }
ysr@777 670
ysr@777 671 void update_accum_task_vtime(int i, double vtime) {
ysr@777 672 _accum_task_vtime[i] += vtime;
ysr@777 673 }
ysr@777 674
ysr@777 675 double all_task_accum_vtime() {
ysr@777 676 double ret = 0.0;
johnc@4173 677 for (uint i = 0; i < _max_worker_id; ++i)
ysr@777 678 ret += _accum_task_vtime[i];
ysr@777 679 return ret;
ysr@777 680 }
ysr@777 681
ysr@777 682 // Attempts to steal an object from the task queues of other tasks
johnc@4173 683 bool try_stealing(uint worker_id, int* hash_seed, oop& obj) {
johnc@4173 684 return _task_queues->steal(worker_id, hash_seed, obj);
ysr@777 685 }
ysr@777 686
tschatzl@7094 687 ConcurrentMark(G1CollectedHeap* g1h,
tschatzl@7094 688 G1RegionToSpaceMapper* prev_bitmap_storage,
tschatzl@7094 689 G1RegionToSpaceMapper* next_bitmap_storage);
ysr@777 690 ~ConcurrentMark();
johnc@3463 691
ysr@777 692 ConcurrentMarkThread* cmThread() { return _cmThread; }
ysr@777 693
ysr@777 694 CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
ysr@777 695 CMBitMap* nextMarkBitMap() const { return _nextMarkBitMap; }
ysr@777 696
jmasa@3294 697 // Returns the number of GC threads to be used in a concurrent
jmasa@3294 698 // phase based on the number of GC threads being used in a STW
jmasa@3294 699 // phase.
jmasa@3357 700 uint scale_parallel_threads(uint n_par_threads);
jmasa@3294 701
jmasa@3294 702 // Calculates the number of GC threads to be used in a concurrent phase.
jmasa@3357 703 uint calc_parallel_marking_threads();
jmasa@3294 704
ysr@777 705 // The following three are interaction between CM and
ysr@777 706 // G1CollectedHeap
ysr@777 707
ysr@777 708 // This notifies CM that a root during initial-mark needs to be
tonyp@3464 709 // grayed. It is MT-safe. word_size is the size of the object in
tonyp@3464 710 // words. It is passed explicitly as sometimes we cannot calculate
tonyp@3464 711 // it from the given object because it might be in an inconsistent
tonyp@3464 712 // state (e.g., in to-space and being copied). So the caller is
tonyp@3464 713 // responsible for dealing with this issue (e.g., get the size from
tonyp@3464 714 // the from-space image when the to-space image might be
tonyp@3464 715 // inconsistent) and always passing the size. hr is the region that
tonyp@3464 716 // contains the object and it's passed optionally from callers who
tonyp@3464 717 // might already have it (no point in recalculating it).
tschatzl@7094 718 inline void grayRoot(oop obj,
tschatzl@7094 719 size_t word_size,
tschatzl@7094 720 uint worker_id,
tschatzl@7094 721 HeapRegion* hr = NULL);
tonyp@3416 722
tonyp@1823 723 // It iterates over the heap and for each object it comes across it
tonyp@1823 724 // will dump the contents of its reference fields, as well as
tonyp@1823 725 // liveness information for the object and its referents. The dump
tonyp@1823 726 // will be written to a file with the following name:
johnc@2969 727 // G1PrintReachableBaseFile + "." + str.
johnc@2969 728 // vo decides whether the prev (vo == UsePrevMarking), the next
johnc@2969 729 // (vo == UseNextMarking) marking information, or the mark word
johnc@2969 730 // (vo == UseMarkWord) will be used to determine the liveness of
johnc@2969 731 // each object / referent.
johnc@2969 732 // If all is true, all objects in the heap will be dumped, otherwise
johnc@2969 733 // only the live ones. In the dump the following symbols / breviations
johnc@2969 734 // are used:
tonyp@1823 735 // M : an explicitly live object (its bitmap bit is set)
tonyp@1823 736 // > : an implicitly live object (over tams)
tonyp@1823 737 // O : an object outside the G1 heap (typically: in the perm gen)
tonyp@1823 738 // NOT : a reference field whose referent is not live
tonyp@1823 739 // AND MARKED : indicates that an object is both explicitly and
tonyp@1823 740 // implicitly live (it should be one or the other, not both)
tonyp@1823 741 void print_reachable(const char* str,
tschatzl@7094 742 VerifyOption vo,
tschatzl@7094 743 bool all) PRODUCT_RETURN;
ysr@777 744
ysr@777 745 // Clear the next marking bitmap (will be called concurrently).
ysr@777 746 void clearNextBitmap();
ysr@777 747
tschatzl@7051 748 // Return whether the next mark bitmap has no marks set. To be used for assertions
tschatzl@7051 749 // only. Will not yield to pause requests.
tschatzl@7007 750 bool nextMarkBitmapIsClear();
tschatzl@7007 751
ysr@777 752 // These two do the work that needs to be done before and after the
ysr@777 753 // initial root checkpoint. Since this checkpoint can be done at two
ysr@777 754 // different points (i.e. an explicit pause or piggy-backed on a
ysr@777 755 // young collection), then it's nice to be able to easily share the
ysr@777 756 // pre/post code. It might be the case that we can put everything in
ysr@777 757 // the post method. TP
ysr@777 758 void checkpointRootsInitialPre();
ysr@777 759 void checkpointRootsInitialPost();
ysr@777 760
tonyp@3464 761 // Scan all the root regions and mark everything reachable from
tonyp@3464 762 // them.
tonyp@3464 763 void scanRootRegions();
tonyp@3464 764
tonyp@3464 765 // Scan a single root region and mark everything reachable from it.
tonyp@3464 766 void scanRootRegion(HeapRegion* hr, uint worker_id);
tonyp@3464 767
ysr@777 768 // Do concurrent phase of marking, to a tentative transitive closure.
ysr@777 769 void markFromRoots();
ysr@777 770
ysr@777 771 void checkpointRootsFinal(bool clear_all_soft_refs);
ysr@777 772 void checkpointRootsFinalWork();
ysr@777 773 void cleanup();
ysr@777 774 void completeCleanup();
ysr@777 775
ysr@777 776 // Mark in the previous bitmap. NB: this is usually read-only, so use
ysr@777 777 // this carefully!
tonyp@3416 778 inline void markPrev(oop p);
johnc@3463 779
tschatzl@7094 780 // Clears marks for all objects in the given range, for the prev or
tschatzl@7094 781 // next bitmaps. NB: the previous bitmap is usually
tonyp@3416 782 // read-only, so use this carefully!
tonyp@3416 783 void clearRangePrevBitmap(MemRegion mr);
tonyp@3416 784 void clearRangeNextBitmap(MemRegion mr);
ysr@777 785
tonyp@3416 786 // Notify data structures that a GC has started.
tonyp@3416 787 void note_start_of_gc() {
tonyp@3416 788 _markStack.note_start_of_gc();
ysr@777 789 }
tonyp@3416 790
tonyp@3416 791 // Notify data structures that a GC is finished.
tonyp@3416 792 void note_end_of_gc() {
tonyp@3416 793 _markStack.note_end_of_gc();
tonyp@3416 794 }
tonyp@3416 795
tonyp@3416 796 // Verify that there are no CSet oops on the stacks (taskqueues /
kbarrett@7833 797 // global mark stack) and fingers (global / per-task).
kbarrett@7833 798 // If marking is not in progress, it's a no-op.
kbarrett@7833 799 void verify_no_cset_oops() PRODUCT_RETURN;
tonyp@3416 800
ysr@777 801 bool isPrevMarked(oop p) const {
ysr@777 802 assert(p != NULL && p->is_oop(), "expected an oop");
ysr@777 803 HeapWord* addr = (HeapWord*)p;
ysr@777 804 assert(addr >= _prevMarkBitMap->startWord() ||
ysr@777 805 addr < _prevMarkBitMap->endWord(), "in a region");
ysr@777 806
ysr@777 807 return _prevMarkBitMap->isMarked(addr);
ysr@777 808 }
ysr@777 809
jmasa@3357 810 inline bool do_yield_check(uint worker_i = 0);
ysr@777 811
ysr@777 812 // Called to abort the marking cycle after a Full GC takes palce.
ysr@777 813 void abort();
ysr@777 814
sla@5237 815 bool has_aborted() { return _has_aborted; }
sla@5237 816
brutisso@6904 817 const GCId& concurrent_gc_id();
brutisso@6904 818
ysr@777 819 // This prints the global/local fingers. It is used for debugging.
ysr@777 820 NOT_PRODUCT(void print_finger();)
ysr@777 821
ysr@777 822 void print_summary_info();
ysr@777 823
tonyp@1454 824 void print_worker_threads_on(outputStream* st) const;
tonyp@1454 825
stefank@4904 826 void print_on_error(outputStream* st) const;
stefank@4904 827
ysr@777 828 // The following indicate whether a given verbose level has been
ysr@777 829 // set. Notice that anything above stats is conditional to
ysr@777 830 // _MARKING_VERBOSE_ having been set to 1
tonyp@2973 831 bool verbose_stats() {
tonyp@2973 832 return _verbose_level >= stats_verbose;
tonyp@2973 833 }
tonyp@2973 834 bool verbose_low() {
tonyp@2973 835 return _MARKING_VERBOSE_ && _verbose_level >= low_verbose;
tonyp@2973 836 }
tonyp@2973 837 bool verbose_medium() {
tonyp@2973 838 return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose;
tonyp@2973 839 }
tonyp@2973 840 bool verbose_high() {
tonyp@2973 841 return _MARKING_VERBOSE_ && _verbose_level >= high_verbose;
tonyp@2973 842 }
johnc@3463 843
johnc@4123 844 // Liveness counting
johnc@4123 845
johnc@4123 846 // Utility routine to set an exclusive range of cards on the given
johnc@4123 847 // card liveness bitmap
johnc@4123 848 inline void set_card_bitmap_range(BitMap* card_bm,
johnc@4123 849 BitMap::idx_t start_idx,
johnc@4123 850 BitMap::idx_t end_idx,
johnc@4123 851 bool is_par);
johnc@3463 852
johnc@3463 853 // Returns the card number of the bottom of the G1 heap.
johnc@3463 854 // Used in biasing indices into accounting card bitmaps.
johnc@3463 855 intptr_t heap_bottom_card_num() const {
johnc@3463 856 return _heap_bottom_card_num;
johnc@3463 857 }
johnc@3463 858
johnc@3463 859 // Returns the card bitmap for a given task or worker id.
johnc@3463 860 BitMap* count_card_bitmap_for(uint worker_id) {
johnc@4173 861 assert(0 <= worker_id && worker_id < _max_worker_id, "oob");
johnc@3463 862 assert(_count_card_bitmaps != NULL, "uninitialized");
johnc@3463 863 BitMap* task_card_bm = &_count_card_bitmaps[worker_id];
johnc@3463 864 assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
johnc@3463 865 return task_card_bm;
johnc@3463 866 }
johnc@3463 867
johnc@3463 868 // Returns the array containing the marked bytes for each region,
johnc@3463 869 // for the given worker or task id.
johnc@3463 870 size_t* count_marked_bytes_array_for(uint worker_id) {
johnc@4173 871 assert(0 <= worker_id && worker_id < _max_worker_id, "oob");
johnc@3463 872 assert(_count_marked_bytes != NULL, "uninitialized");
johnc@3463 873 size_t* marked_bytes_array = _count_marked_bytes[worker_id];
johnc@3463 874 assert(marked_bytes_array != NULL, "uninitialized");
johnc@3463 875 return marked_bytes_array;
johnc@3463 876 }
johnc@3463 877
johnc@3463 878 // Returns the index in the liveness accounting card table bitmap
johnc@3463 879 // for the given address
johnc@3463 880 inline BitMap::idx_t card_bitmap_index_for(HeapWord* addr);
johnc@3463 881
johnc@3463 882 // Counts the size of the given memory region in the the given
johnc@3463 883 // marked_bytes array slot for the given HeapRegion.
johnc@3463 884 // Sets the bits in the given card bitmap that are associated with the
johnc@3463 885 // cards that are spanned by the memory region.
tschatzl@7094 886 inline void count_region(MemRegion mr,
tschatzl@7094 887 HeapRegion* hr,
johnc@3463 888 size_t* marked_bytes_array,
johnc@3463 889 BitMap* task_card_bm);
johnc@3463 890
johnc@3463 891 // Counts the given memory region in the task/worker counting
johnc@3463 892 // data structures for the given worker id.
tonyp@3464 893 inline void count_region(MemRegion mr, HeapRegion* hr, uint worker_id);
tonyp@3464 894
johnc@3463 895 // Counts the given object in the given task/worker counting
johnc@3463 896 // data structures.
tschatzl@7094 897 inline void count_object(oop obj,
tschatzl@7094 898 HeapRegion* hr,
johnc@3463 899 size_t* marked_bytes_array,
johnc@3463 900 BitMap* task_card_bm);
johnc@3463 901
johnc@3463 902 // Attempts to mark the given object and, if successful, counts
johnc@3463 903 // the object in the given task/worker counting structures.
tschatzl@7094 904 inline bool par_mark_and_count(oop obj,
tschatzl@7094 905 HeapRegion* hr,
johnc@3463 906 size_t* marked_bytes_array,
johnc@3463 907 BitMap* task_card_bm);
johnc@3463 908
johnc@3463 909 // Attempts to mark the given object and, if successful, counts
johnc@3463 910 // the object in the task/worker counting structures for the
johnc@3463 911 // given worker id.
tschatzl@7094 912 inline bool par_mark_and_count(oop obj,
tschatzl@7094 913 size_t word_size,
tschatzl@7094 914 HeapRegion* hr,
tschatzl@7094 915 uint worker_id);
johnc@3463 916
johnc@4333 917 // Returns true if initialization was successfully completed.
johnc@4333 918 bool completed_initialization() const {
johnc@4333 919 return _completed_initialization;
johnc@4333 920 }
johnc@4333 921
johnc@3463 922 protected:
johnc@3463 923 // Clear all the per-task bitmaps and arrays used to store the
johnc@3463 924 // counting data.
johnc@3463 925 void clear_all_count_data();
johnc@3463 926
johnc@3463 927 // Aggregates the counting data for each worker/task
johnc@3463 928 // that was constructed while marking. Also sets
johnc@3463 929 // the amount of marked bytes for each region and
johnc@3463 930 // the top at concurrent mark count.
johnc@3463 931 void aggregate_count_data();
johnc@3463 932
johnc@3463 933 // Verification routine
johnc@3463 934 void verify_count_data();
ysr@777 935 };
ysr@777 936
ysr@777 937 // A class representing a marking task.
ysr@777 938 class CMTask : public TerminatorTerminator {
ysr@777 939 private:
ysr@777 940 enum PrivateConstants {
ysr@777 941 // the regular clock call is called once the scanned words reaches
ysr@777 942 // this limit
ysr@777 943 words_scanned_period = 12*1024,
ysr@777 944 // the regular clock call is called once the number of visited
ysr@777 945 // references reaches this limit
tschatzl@9982 946 refs_reached_period = 1024,
ysr@777 947 // initial value for the hash seed, used in the work stealing code
ysr@777 948 init_hash_seed = 17,
ysr@777 949 // how many entries will be transferred between global stack and
ysr@777 950 // local queues
ysr@777 951 global_stack_transfer_size = 16
ysr@777 952 };
ysr@777 953
tschatzl@9982 954 G1CMObjArrayProcessor _objArray_processor;
tschatzl@9982 955
johnc@4173 956 uint _worker_id;
ysr@777 957 G1CollectedHeap* _g1h;
ysr@777 958 ConcurrentMark* _cm;
ysr@777 959 CMBitMap* _nextMarkBitMap;
ysr@777 960 // the task queue of this task
ysr@777 961 CMTaskQueue* _task_queue;
ysr@1280 962 private:
ysr@777 963 // the task queue set---needed for stealing
ysr@777 964 CMTaskQueueSet* _task_queues;
ysr@777 965 // indicates whether the task has been claimed---this is only for
ysr@777 966 // debugging purposes
ysr@777 967 bool _claimed;
ysr@777 968
ysr@777 969 // number of calls to this task
ysr@777 970 int _calls;
ysr@777 971
ysr@777 972 // when the virtual timer reaches this time, the marking step should
ysr@777 973 // exit
ysr@777 974 double _time_target_ms;
ysr@777 975 // the start time of the current marking step
ysr@777 976 double _start_time_ms;
ysr@777 977
ysr@777 978 // the oop closure used for iterations over oops
tonyp@2968 979 G1CMOopClosure* _cm_oop_closure;
ysr@777 980
ysr@777 981 // the region this task is scanning, NULL if we're not scanning any
ysr@777 982 HeapRegion* _curr_region;
ysr@777 983 // the local finger of this task, NULL if we're not scanning a region
ysr@777 984 HeapWord* _finger;
ysr@777 985 // limit of the region this task is scanning, NULL if we're not scanning one
ysr@777 986 HeapWord* _region_limit;
ysr@777 987
ysr@777 988 // the number of words this task has scanned
ysr@777 989 size_t _words_scanned;
ysr@777 990 // When _words_scanned reaches this limit, the regular clock is
ysr@777 991 // called. Notice that this might be decreased under certain
ysr@777 992 // circumstances (i.e. when we believe that we did an expensive
ysr@777 993 // operation).
ysr@777 994 size_t _words_scanned_limit;
ysr@777 995 // the initial value of _words_scanned_limit (i.e. what it was
ysr@777 996 // before it was decreased).
ysr@777 997 size_t _real_words_scanned_limit;
ysr@777 998
ysr@777 999 // the number of references this task has visited
ysr@777 1000 size_t _refs_reached;
ysr@777 1001 // When _refs_reached reaches this limit, the regular clock is
ysr@777 1002 // called. Notice this this might be decreased under certain
ysr@777 1003 // circumstances (i.e. when we believe that we did an expensive
ysr@777 1004 // operation).
ysr@777 1005 size_t _refs_reached_limit;
ysr@777 1006 // the initial value of _refs_reached_limit (i.e. what it was before
ysr@777 1007 // it was decreased).
ysr@777 1008 size_t _real_refs_reached_limit;
ysr@777 1009
ysr@777 1010 // used by the work stealing stuff
ysr@777 1011 int _hash_seed;
ysr@777 1012 // if this is true, then the task has aborted for some reason
ysr@777 1013 bool _has_aborted;
ysr@777 1014 // set when the task aborts because it has met its time quota
johnc@2494 1015 bool _has_timed_out;
ysr@777 1016 // true when we're draining SATB buffers; this avoids the task
ysr@777 1017 // aborting due to SATB buffers being available (as we're already
ysr@777 1018 // dealing with them)
ysr@777 1019 bool _draining_satb_buffers;
ysr@777 1020
ysr@777 1021 // number sequence of past step times
ysr@777 1022 NumberSeq _step_times_ms;
ysr@777 1023 // elapsed time of this task
ysr@777 1024 double _elapsed_time_ms;
ysr@777 1025 // termination time of this task
ysr@777 1026 double _termination_time_ms;
ysr@777 1027 // when this task got into the termination protocol
ysr@777 1028 double _termination_start_time_ms;
ysr@777 1029
ysr@777 1030 // true when the task is during a concurrent phase, false when it is
ysr@777 1031 // in the remark phase (so, in the latter case, we do not have to
ysr@777 1032 // check all the things that we have to check during the concurrent
ysr@777 1033 // phase, i.e. SATB buffer availability...)
ysr@777 1034 bool _concurrent;
ysr@777 1035
ysr@777 1036 TruncatedSeq _marking_step_diffs_ms;
ysr@777 1037
johnc@3463 1038 // Counting data structures. Embedding the task's marked_bytes_array
johnc@3463 1039 // and card bitmap into the actual task saves having to go through
johnc@3463 1040 // the ConcurrentMark object.
johnc@3463 1041 size_t* _marked_bytes_array;
johnc@3463 1042 BitMap* _card_bm;
johnc@3463 1043
ysr@777 1044 // LOTS of statistics related with this task
ysr@777 1045 #if _MARKING_STATS_
ysr@777 1046 NumberSeq _all_clock_intervals_ms;
ysr@777 1047 double _interval_start_time_ms;
ysr@777 1048
ysr@777 1049 int _aborted;
ysr@777 1050 int _aborted_overflow;
ysr@777 1051 int _aborted_cm_aborted;
ysr@777 1052 int _aborted_yield;
ysr@777 1053 int _aborted_timed_out;
ysr@777 1054 int _aborted_satb;
ysr@777 1055 int _aborted_termination;
ysr@777 1056
ysr@777 1057 int _steal_attempts;
ysr@777 1058 int _steals;
ysr@777 1059
ysr@777 1060 int _clock_due_to_marking;
ysr@777 1061 int _clock_due_to_scanning;
ysr@777 1062
ysr@777 1063 int _local_pushes;
ysr@777 1064 int _local_pops;
ysr@777 1065 int _local_max_size;
ysr@777 1066 int _objs_scanned;
ysr@777 1067
ysr@777 1068 int _global_pushes;
ysr@777 1069 int _global_pops;
ysr@777 1070 int _global_max_size;
ysr@777 1071
ysr@777 1072 int _global_transfers_to;
ysr@777 1073 int _global_transfers_from;
ysr@777 1074
ysr@777 1075 int _regions_claimed;
ysr@777 1076 int _objs_found_on_bitmap;
ysr@777 1077
ysr@777 1078 int _satb_buffers_processed;
ysr@777 1079 #endif // _MARKING_STATS_
ysr@777 1080
ysr@777 1081 // it updates the local fields after this task has claimed
ysr@777 1082 // a new region to scan
ysr@777 1083 void setup_for_region(HeapRegion* hr);
ysr@777 1084 // it brings up-to-date the limit of the region
ysr@777 1085 void update_region_limit();
ysr@777 1086
ysr@777 1087 // called when either the words scanned or the refs visited limit
ysr@777 1088 // has been reached
ysr@777 1089 void reached_limit();
ysr@777 1090 // recalculates the words scanned and refs visited limits
ysr@777 1091 void recalculate_limits();
ysr@777 1092 // decreases the words scanned and refs visited limits when we reach
ysr@777 1093 // an expensive operation
ysr@777 1094 void decrease_limits();
ysr@777 1095 // it checks whether the words scanned or refs visited reached their
ysr@777 1096 // respective limit and calls reached_limit() if they have
ysr@777 1097 void check_limits() {
ysr@777 1098 if (_words_scanned >= _words_scanned_limit ||
tonyp@2973 1099 _refs_reached >= _refs_reached_limit) {
ysr@777 1100 reached_limit();
tonyp@2973 1101 }
ysr@777 1102 }
ysr@777 1103 // this is supposed to be called regularly during a marking step as
ysr@777 1104 // it checks a bunch of conditions that might cause the marking step
ysr@777 1105 // to abort
ysr@777 1106 void regular_clock_call();
ysr@777 1107 bool concurrent() { return _concurrent; }
ysr@777 1108
kbarrett@7834 1109 // Test whether obj might have already been passed over by the
kbarrett@7829 1110 // mark bitmap scan, and so needs to be pushed onto the mark stack.
kbarrett@7834 1111 bool is_below_finger(oop obj, HeapWord* global_finger) const;
kbarrett@7829 1112
kbarrett@7830 1113 template<bool scan> void process_grey_object(oop obj);
kbarrett@7830 1114
ysr@777 1115 public:
tschatzl@9982 1116 // Apply the closure on the given area of the objArray. Return the number of words
tschatzl@9982 1117 // scanned.
tschatzl@9982 1118 inline size_t scan_objArray(objArrayOop obj, MemRegion mr);
ysr@777 1119 // It resets the task; it should be called right at the beginning of
ysr@777 1120 // a marking phase.
ysr@777 1121 void reset(CMBitMap* _nextMarkBitMap);
ysr@777 1122 // it clears all the fields that correspond to a claimed region.
ysr@777 1123 void clear_region_fields();
ysr@777 1124
ysr@777 1125 void set_concurrent(bool concurrent) { _concurrent = concurrent; }
ysr@777 1126
ysr@777 1127 // The main method of this class which performs a marking step
ysr@777 1128 // trying not to exceed the given duration. However, it might exit
ysr@777 1129 // prematurely, according to some conditions (i.e. SATB buffers are
ysr@777 1130 // available for processing).
johnc@4787 1131 void do_marking_step(double target_ms,
johnc@4787 1132 bool do_termination,
johnc@4787 1133 bool is_serial);
ysr@777 1134
ysr@777 1135 // These two calls start and stop the timer
ysr@777 1136 void record_start_time() {
ysr@777 1137 _elapsed_time_ms = os::elapsedTime() * 1000.0;
ysr@777 1138 }
ysr@777 1139 void record_end_time() {
ysr@777 1140 _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
ysr@777 1141 }
ysr@777 1142
johnc@4173 1143 // returns the worker ID associated with this task.
johnc@4173 1144 uint worker_id() { return _worker_id; }
ysr@777 1145
ysr@777 1146 // From TerminatorTerminator. It determines whether this task should
ysr@777 1147 // exit the termination protocol after it's entered it.
ysr@777 1148 virtual bool should_exit_termination();
ysr@777 1149
johnc@2910 1150 // Resets the local region fields after a task has finished scanning a
johnc@2910 1151 // region; or when they have become stale as a result of the region
johnc@2910 1152 // being evacuated.
johnc@2910 1153 void giveup_current_region();
johnc@2910 1154
ysr@777 1155 HeapWord* finger() { return _finger; }
ysr@777 1156
ysr@777 1157 bool has_aborted() { return _has_aborted; }
ysr@777 1158 void set_has_aborted() { _has_aborted = true; }
ysr@777 1159 void clear_has_aborted() { _has_aborted = false; }
johnc@2494 1160 bool has_timed_out() { return _has_timed_out; }
johnc@2494 1161 bool claimed() { return _claimed; }
ysr@777 1162
tonyp@2968 1163 void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
ysr@777 1164
kbarrett@7834 1165 // Increment the number of references this task has visited.
kbarrett@7834 1166 void increment_refs_reached() { ++_refs_reached; }
kbarrett@7834 1167
kbarrett@7834 1168 // Grey the object by marking it. If not already marked, push it on
kbarrett@7834 1169 // the local queue if below the finger.
kbarrett@7834 1170 // Precondition: obj is in region.
kbarrett@7834 1171 // Precondition: obj is below region's NTAMS.
kbarrett@7834 1172 inline void make_reference_grey(oop obj, HeapRegion* region);
kbarrett@7834 1173
kbarrett@7834 1174 // Grey the object (by calling make_grey_reference) if required,
kbarrett@7834 1175 // e.g. obj is below its containing region's NTAMS.
kbarrett@7834 1176 // Precondition: obj is a valid heap object.
tonyp@2968 1177 inline void deal_with_reference(oop obj);
ysr@777 1178
ysr@777 1179 // It scans an object and visits its children.
kbarrett@7830 1180 void scan_object(oop obj) { process_grey_object<true>(obj); }
ysr@777 1181
ysr@777 1182 // It pushes an object on the local queue.
tonyp@2968 1183 inline void push(oop obj);
ysr@777 1184
ysr@777 1185 // These two move entries to/from the global stack.
ysr@777 1186 void move_entries_to_global_stack();
ysr@777 1187 void get_entries_from_global_stack();
ysr@777 1188
ysr@777 1189 // It pops and scans objects from the local queue. If partially is
ysr@777 1190 // true, then it stops when the queue size is of a given limit. If
ysr@777 1191 // partially is false, then it stops when the queue is empty.
ysr@777 1192 void drain_local_queue(bool partially);
ysr@777 1193 // It moves entries from the global stack to the local queue and
ysr@777 1194 // drains the local queue. If partially is true, then it stops when
ysr@777 1195 // both the global stack and the local queue reach a given size. If
ysr@777 1196 // partially if false, it tries to empty them totally.
ysr@777 1197 void drain_global_stack(bool partially);
ysr@777 1198 // It keeps picking SATB buffers and processing them until no SATB
ysr@777 1199 // buffers are available.
ysr@777 1200 void drain_satb_buffers();
tonyp@3416 1201
ysr@777 1202 // moves the local finger to a new location
ysr@777 1203 inline void move_finger_to(HeapWord* new_finger) {
tonyp@1458 1204 assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
ysr@777 1205 _finger = new_finger;
ysr@777 1206 }
ysr@777 1207
tschatzl@7094 1208 CMTask(uint worker_id,
tschatzl@7094 1209 ConcurrentMark *cm,
tschatzl@7094 1210 size_t* marked_bytes,
tschatzl@7094 1211 BitMap* card_bm,
tschatzl@7094 1212 CMTaskQueue* task_queue,
tschatzl@7094 1213 CMTaskQueueSet* task_queues);
ysr@777 1214
ysr@777 1215 // it prints statistics associated with this task
ysr@777 1216 void print_stats();
ysr@777 1217
ysr@777 1218 #if _MARKING_STATS_
ysr@777 1219 void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
ysr@777 1220 #endif // _MARKING_STATS_
ysr@777 1221 };
stefank@2314 1222
tonyp@2717 1223 // Class that's used to to print out per-region liveness
tonyp@2717 1224 // information. It's currently used at the end of marking and also
tonyp@2717 1225 // after we sort the old regions at the end of the cleanup operation.
tonyp@2717 1226 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
tonyp@2717 1227 private:
tonyp@2717 1228 outputStream* _out;
tonyp@2717 1229
tonyp@2717 1230 // Accumulators for these values.
tonyp@2717 1231 size_t _total_used_bytes;
tonyp@2717 1232 size_t _total_capacity_bytes;
tonyp@2717 1233 size_t _total_prev_live_bytes;
tonyp@2717 1234 size_t _total_next_live_bytes;
tonyp@2717 1235
tonyp@2717 1236 // These are set up when we come across a "stars humongous" region
tonyp@2717 1237 // (as this is where most of this information is stored, not in the
tonyp@2717 1238 // subsequent "continues humongous" regions). After that, for every
tonyp@2717 1239 // region in a given humongous region series we deduce the right
tonyp@2717 1240 // values for it by simply subtracting the appropriate amount from
tonyp@2717 1241 // these fields. All these values should reach 0 after we've visited
tonyp@2717 1242 // the last region in the series.
tonyp@2717 1243 size_t _hum_used_bytes;
tonyp@2717 1244 size_t _hum_capacity_bytes;
tonyp@2717 1245 size_t _hum_prev_live_bytes;
tonyp@2717 1246 size_t _hum_next_live_bytes;
tonyp@2717 1247
tschatzl@5122 1248 // Accumulator for the remembered set size
tschatzl@5122 1249 size_t _total_remset_bytes;
tschatzl@5122 1250
johnc@5548 1251 // Accumulator for strong code roots memory size
johnc@5548 1252 size_t _total_strong_code_roots_bytes;
johnc@5548 1253
tonyp@2717 1254 static double perc(size_t val, size_t total) {
tonyp@2717 1255 if (total == 0) {
tonyp@2717 1256 return 0.0;
tonyp@2717 1257 } else {
tonyp@2717 1258 return 100.0 * ((double) val / (double) total);
tonyp@2717 1259 }
tonyp@2717 1260 }
tonyp@2717 1261
tonyp@2717 1262 static double bytes_to_mb(size_t val) {
tonyp@2717 1263 return (double) val / (double) M;
tonyp@2717 1264 }
tonyp@2717 1265
tonyp@2717 1266 // See the .cpp file.
tonyp@2717 1267 size_t get_hum_bytes(size_t* hum_bytes);
tonyp@2717 1268 void get_hum_bytes(size_t* used_bytes, size_t* capacity_bytes,
tonyp@2717 1269 size_t* prev_live_bytes, size_t* next_live_bytes);
tonyp@2717 1270
tonyp@2717 1271 public:
tonyp@2717 1272 // The header and footer are printed in the constructor and
tonyp@2717 1273 // destructor respectively.
tonyp@2717 1274 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name);
tonyp@2717 1275 virtual bool doHeapRegion(HeapRegion* r);
tonyp@2717 1276 ~G1PrintRegionLivenessInfoClosure();
tonyp@2717 1277 };
tonyp@2717 1278
stefank@2314 1279 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP

mercurial