src/share/vm/gc_implementation/g1/concurrentMark.hpp

Mon, 07 Jul 2014 10:12:40 +0200

author
stefank
date
Mon, 07 Jul 2014 10:12:40 +0200
changeset 6992
2c6ef90f030a
parent 6906
581e70386ec9
child 7007
7df07d855c8e
permissions
-rw-r--r--

8049421: G1 Class Unloading after completing a concurrent mark cycle
Reviewed-by: tschatzl, ehelin, brutisso, coleenp, roland, iveresov
Contributed-by: stefan.karlsson@oracle.com, mikael.gerdin@oracle.com

ysr@777 1 /*
johnc@4386 2 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
stefank@2314 27
stefank@6992 28 #include "classfile/javaClasses.hpp"
brutisso@6385 29 #include "gc_implementation/g1/heapRegionSet.hpp"
brutisso@6904 30 #include "gc_implementation/shared/gcId.hpp"
stefank@2314 31 #include "utilities/taskqueue.hpp"
stefank@2314 32
ysr@777 33 class G1CollectedHeap;
ysr@777 34 class CMTask;
zgu@3900 35 typedef GenericTaskQueue<oop, mtGC> CMTaskQueue;
zgu@3900 36 typedef GenericTaskQueueSet<CMTaskQueue, mtGC> CMTaskQueueSet;
ysr@777 37
johnc@2379 38 // Closure used by CM during concurrent reference discovery
johnc@2379 39 // and reference processing (during remarking) to determine
johnc@2379 40 // if a particular object is alive. It is primarily used
johnc@2379 41 // to determine if referents of discovered reference objects
johnc@2379 42 // are alive. An instance is also embedded into the
johnc@2379 43 // reference processor as the _is_alive_non_header field
johnc@2379 44 class G1CMIsAliveClosure: public BoolObjectClosure {
johnc@2379 45 G1CollectedHeap* _g1;
johnc@2379 46 public:
tonyp@3691 47 G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
johnc@2379 48
johnc@2379 49 bool do_object_b(oop obj);
johnc@2379 50 };
johnc@2379 51
ysr@777 52 // A generic CM bit map. This is essentially a wrapper around the BitMap
ysr@777 53 // class, with one bit per (1<<_shifter) HeapWords.
ysr@777 54
apetrusenko@984 55 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
ysr@777 56 protected:
ysr@777 57 HeapWord* _bmStartWord; // base address of range covered by map
ysr@777 58 size_t _bmWordSize; // map size (in #HeapWords covered)
ysr@777 59 const int _shifter; // map to char or bit
ysr@777 60 VirtualSpace _virtual_space; // underlying the bit map
ysr@777 61 BitMap _bm; // the bit map itself
ysr@777 62
ysr@777 63 public:
ysr@777 64 // constructor
johnc@4333 65 CMBitMapRO(int shifter);
ysr@777 66
ysr@777 67 enum { do_yield = true };
ysr@777 68
ysr@777 69 // inquiries
ysr@777 70 HeapWord* startWord() const { return _bmStartWord; }
ysr@777 71 size_t sizeInWords() const { return _bmWordSize; }
ysr@777 72 // the following is one past the last word in space
ysr@777 73 HeapWord* endWord() const { return _bmStartWord + _bmWordSize; }
ysr@777 74
ysr@777 75 // read marks
ysr@777 76
ysr@777 77 bool isMarked(HeapWord* addr) const {
ysr@777 78 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 79 "outside underlying space?");
ysr@777 80 return _bm.at(heapWordToOffset(addr));
ysr@777 81 }
ysr@777 82
ysr@777 83 // iteration
johnc@3454 84 inline bool iterate(BitMapClosure* cl, MemRegion mr);
johnc@3454 85 inline bool iterate(BitMapClosure* cl);
ysr@777 86
ysr@777 87 // Return the address corresponding to the next marked bit at or after
ysr@777 88 // "addr", and before "limit", if "limit" is non-NULL. If there is no
ysr@777 89 // such bit, returns "limit" if that is non-NULL, or else "endWord()".
stefank@6992 90 HeapWord* getNextMarkedWordAddress(const HeapWord* addr,
stefank@6992 91 const HeapWord* limit = NULL) const;
ysr@777 92 // Return the address corresponding to the next unmarked bit at or after
ysr@777 93 // "addr", and before "limit", if "limit" is non-NULL. If there is no
ysr@777 94 // such bit, returns "limit" if that is non-NULL, or else "endWord()".
stefank@6992 95 HeapWord* getNextUnmarkedWordAddress(const HeapWord* addr,
stefank@6992 96 const HeapWord* limit = NULL) const;
ysr@777 97
ysr@777 98 // conversion utilities
ysr@777 99 HeapWord* offsetToHeapWord(size_t offset) const {
ysr@777 100 return _bmStartWord + (offset << _shifter);
ysr@777 101 }
stefank@6992 102 size_t heapWordToOffset(const HeapWord* addr) const {
ysr@777 103 return pointer_delta(addr, _bmStartWord) >> _shifter;
ysr@777 104 }
ysr@777 105 int heapWordDiffToOffsetDiff(size_t diff) const;
tamao@4733 106
tamao@4733 107 // The argument addr should be the start address of a valid object
tamao@4733 108 HeapWord* nextObject(HeapWord* addr) {
tamao@4733 109 oop obj = (oop) addr;
tamao@4733 110 HeapWord* res = addr + obj->size();
tamao@4733 111 assert(offsetToHeapWord(heapWordToOffset(res)) == res, "sanity");
tamao@4733 112 return res;
ysr@777 113 }
ysr@777 114
stefank@4904 115 void print_on_error(outputStream* st, const char* prefix) const;
stefank@4904 116
ysr@777 117 // debugging
ysr@777 118 NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
ysr@777 119 };
ysr@777 120
ysr@777 121 class CMBitMap : public CMBitMapRO {
ysr@777 122
ysr@777 123 public:
ysr@777 124 // constructor
johnc@4333 125 CMBitMap(int shifter) :
johnc@4333 126 CMBitMapRO(shifter) {}
johnc@4333 127
johnc@4333 128 // Allocates the back store for the marking bitmap
johnc@4333 129 bool allocate(ReservedSpace heap_rs);
ysr@777 130
ysr@777 131 // write marks
ysr@777 132 void mark(HeapWord* addr) {
ysr@777 133 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 134 "outside underlying space?");
tonyp@2968 135 _bm.set_bit(heapWordToOffset(addr));
ysr@777 136 }
ysr@777 137 void clear(HeapWord* addr) {
ysr@777 138 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 139 "outside underlying space?");
tonyp@2968 140 _bm.clear_bit(heapWordToOffset(addr));
ysr@777 141 }
ysr@777 142 bool parMark(HeapWord* addr) {
ysr@777 143 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 144 "outside underlying space?");
tonyp@2968 145 return _bm.par_set_bit(heapWordToOffset(addr));
ysr@777 146 }
ysr@777 147 bool parClear(HeapWord* addr) {
ysr@777 148 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 149 "outside underlying space?");
tonyp@2968 150 return _bm.par_clear_bit(heapWordToOffset(addr));
ysr@777 151 }
ysr@777 152 void markRange(MemRegion mr);
ysr@777 153 void clearAll();
ysr@777 154 void clearRange(MemRegion mr);
ysr@777 155
ysr@777 156 // Starting at the bit corresponding to "addr" (inclusive), find the next
ysr@777 157 // "1" bit, if any. This bit starts some run of consecutive "1"'s; find
ysr@777 158 // the end of this run (stopping at "end_addr"). Return the MemRegion
ysr@777 159 // covering from the start of the region corresponding to the first bit
ysr@777 160 // of the run to the end of the region corresponding to the last bit of
ysr@777 161 // the run. If there is no "1" bit at or after "addr", return an empty
ysr@777 162 // MemRegion.
ysr@777 163 MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
ysr@777 164 };
ysr@777 165
johnc@4333 166 // Represents a marking stack used by ConcurrentMarking in the G1 collector.
apetrusenko@984 167 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
johnc@4333 168 VirtualSpace _virtual_space; // Underlying backing store for actual stack
ysr@777 169 ConcurrentMark* _cm;
johnc@4787 170 oop* _base; // bottom of stack
johnc@4333 171 jint _index; // one more than last occupied index
johnc@4333 172 jint _capacity; // max #elements
johnc@4333 173 jint _saved_index; // value of _index saved at start of GC
johnc@4333 174 NOT_PRODUCT(jint _max_depth;) // max depth plumbed during run
ysr@777 175
johnc@4333 176 bool _overflow;
johnc@4333 177 bool _should_expand;
ysr@777 178 DEBUG_ONLY(bool _drain_in_progress;)
ysr@777 179 DEBUG_ONLY(bool _drain_in_progress_yields;)
ysr@777 180
ysr@777 181 public:
ysr@777 182 CMMarkStack(ConcurrentMark* cm);
ysr@777 183 ~CMMarkStack();
ysr@777 184
johnc@4333 185 #ifndef PRODUCT
johnc@4333 186 jint max_depth() const {
johnc@4333 187 return _max_depth;
johnc@4333 188 }
johnc@4333 189 #endif
johnc@4333 190
johnc@4333 191 bool allocate(size_t capacity);
ysr@777 192
ysr@777 193 oop pop() {
ysr@777 194 if (!isEmpty()) {
ysr@777 195 return _base[--_index] ;
ysr@777 196 }
ysr@777 197 return NULL;
ysr@777 198 }
ysr@777 199
ysr@777 200 // If overflow happens, don't do the push, and record the overflow.
ysr@777 201 // *Requires* that "ptr" is already marked.
ysr@777 202 void push(oop ptr) {
ysr@777 203 if (isFull()) {
ysr@777 204 // Record overflow.
ysr@777 205 _overflow = true;
ysr@777 206 return;
ysr@777 207 } else {
ysr@777 208 _base[_index++] = ptr;
ysr@777 209 NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
ysr@777 210 }
ysr@777 211 }
ysr@777 212 // Non-block impl. Note: concurrency is allowed only with other
ysr@777 213 // "par_push" operations, not with "pop" or "drain". We would need
ysr@777 214 // parallel versions of them if such concurrency was desired.
ysr@777 215 void par_push(oop ptr);
ysr@777 216
ysr@777 217 // Pushes the first "n" elements of "ptr_arr" on the stack.
ysr@777 218 // Non-block impl. Note: concurrency is allowed only with other
ysr@777 219 // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
ysr@777 220 void par_adjoin_arr(oop* ptr_arr, int n);
ysr@777 221
ysr@777 222 // Pushes the first "n" elements of "ptr_arr" on the stack.
ysr@777 223 // Locking impl: concurrency is allowed only with
ysr@777 224 // "par_push_arr" and/or "par_pop_arr" operations, which use the same
ysr@777 225 // locking strategy.
ysr@777 226 void par_push_arr(oop* ptr_arr, int n);
ysr@777 227
ysr@777 228 // If returns false, the array was empty. Otherwise, removes up to "max"
ysr@777 229 // elements from the stack, and transfers them to "ptr_arr" in an
ysr@777 230 // unspecified order. The actual number transferred is given in "n" ("n
ysr@777 231 // == 0" is deliberately redundant with the return value.) Locking impl:
ysr@777 232 // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
ysr@777 233 // operations, which use the same locking strategy.
ysr@777 234 bool par_pop_arr(oop* ptr_arr, int max, int* n);
ysr@777 235
ysr@777 236 // Drain the mark stack, applying the given closure to all fields of
ysr@777 237 // objects on the stack. (That is, continue until the stack is empty,
ysr@777 238 // even if closure applications add entries to the stack.) The "bm"
ysr@777 239 // argument, if non-null, may be used to verify that only marked objects
ysr@777 240 // are on the mark stack. If "yield_after" is "true", then the
ysr@777 241 // concurrent marker performing the drain offers to yield after
ysr@777 242 // processing each object. If a yield occurs, stops the drain operation
ysr@777 243 // and returns false. Otherwise, returns true.
ysr@777 244 template<class OopClosureClass>
ysr@777 245 bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
ysr@777 246
ysr@777 247 bool isEmpty() { return _index == 0; }
ysr@777 248 bool isFull() { return _index == _capacity; }
johnc@4333 249 int maxElems() { return _capacity; }
ysr@777 250
ysr@777 251 bool overflow() { return _overflow; }
ysr@777 252 void clear_overflow() { _overflow = false; }
ysr@777 253
johnc@4333 254 bool should_expand() const { return _should_expand; }
johnc@4333 255 void set_should_expand();
johnc@4333 256
johnc@4333 257 // Expand the stack, typically in response to an overflow condition
johnc@4333 258 void expand();
johnc@4333 259
ysr@777 260 int size() { return _index; }
ysr@777 261
ysr@777 262 void setEmpty() { _index = 0; clear_overflow(); }
ysr@777 263
tonyp@3416 264 // Record the current index.
tonyp@3416 265 void note_start_of_gc();
tonyp@3416 266
tonyp@3416 267 // Make sure that we have not added any entries to the stack during GC.
tonyp@3416 268 void note_end_of_gc();
tonyp@3416 269
ysr@777 270 // iterate over the oops in the mark stack, up to the bound recorded via
ysr@777 271 // the call above.
ysr@777 272 void oops_do(OopClosure* f);
ysr@777 273 };
ysr@777 274
tonyp@2848 275 class ForceOverflowSettings VALUE_OBJ_CLASS_SPEC {
tonyp@2848 276 private:
tonyp@2848 277 #ifndef PRODUCT
tonyp@2848 278 uintx _num_remaining;
tonyp@2848 279 bool _force;
tonyp@2848 280 #endif // !defined(PRODUCT)
tonyp@2848 281
tonyp@2848 282 public:
tonyp@2848 283 void init() PRODUCT_RETURN;
tonyp@2848 284 void update() PRODUCT_RETURN;
tonyp@2848 285 bool should_force() PRODUCT_RETURN_( return false; );
tonyp@2848 286 };
tonyp@2848 287
ysr@777 288 // this will enable a variety of different statistics per GC task
ysr@777 289 #define _MARKING_STATS_ 0
ysr@777 290 // this will enable the higher verbose levels
ysr@777 291 #define _MARKING_VERBOSE_ 0
ysr@777 292
ysr@777 293 #if _MARKING_STATS_
ysr@777 294 #define statsOnly(statement) \
ysr@777 295 do { \
ysr@777 296 statement ; \
ysr@777 297 } while (0)
ysr@777 298 #else // _MARKING_STATS_
ysr@777 299 #define statsOnly(statement) \
ysr@777 300 do { \
ysr@777 301 } while (0)
ysr@777 302 #endif // _MARKING_STATS_
ysr@777 303
ysr@777 304 typedef enum {
ysr@777 305 no_verbose = 0, // verbose turned off
ysr@777 306 stats_verbose, // only prints stats at the end of marking
ysr@777 307 low_verbose, // low verbose, mostly per region and per major event
ysr@777 308 medium_verbose, // a bit more detailed than low
ysr@777 309 high_verbose // per object verbose
ysr@777 310 } CMVerboseLevel;
ysr@777 311
tonyp@3464 312 class YoungList;
tonyp@3464 313
tonyp@3464 314 // Root Regions are regions that are not empty at the beginning of a
tonyp@3464 315 // marking cycle and which we might collect during an evacuation pause
tonyp@3464 316 // while the cycle is active. Given that, during evacuation pauses, we
tonyp@3464 317 // do not copy objects that are explicitly marked, what we have to do
tonyp@3464 318 // for the root regions is to scan them and mark all objects reachable
tonyp@3464 319 // from them. According to the SATB assumptions, we only need to visit
tonyp@3464 320 // each object once during marking. So, as long as we finish this scan
tonyp@3464 321 // before the next evacuation pause, we can copy the objects from the
tonyp@3464 322 // root regions without having to mark them or do anything else to them.
tonyp@3464 323 //
tonyp@3464 324 // Currently, we only support root region scanning once (at the start
tonyp@3464 325 // of the marking cycle) and the root regions are all the survivor
tonyp@3464 326 // regions populated during the initial-mark pause.
tonyp@3464 327 class CMRootRegions VALUE_OBJ_CLASS_SPEC {
tonyp@3464 328 private:
tonyp@3464 329 YoungList* _young_list;
tonyp@3464 330 ConcurrentMark* _cm;
tonyp@3464 331
tonyp@3464 332 volatile bool _scan_in_progress;
tonyp@3464 333 volatile bool _should_abort;
tonyp@3464 334 HeapRegion* volatile _next_survivor;
tonyp@3464 335
tonyp@3464 336 public:
tonyp@3464 337 CMRootRegions();
tonyp@3464 338 // We actually do most of the initialization in this method.
tonyp@3464 339 void init(G1CollectedHeap* g1h, ConcurrentMark* cm);
tonyp@3464 340
tonyp@3464 341 // Reset the claiming / scanning of the root regions.
tonyp@3464 342 void prepare_for_scan();
tonyp@3464 343
tonyp@3464 344 // Forces get_next() to return NULL so that the iteration aborts early.
tonyp@3464 345 void abort() { _should_abort = true; }
tonyp@3464 346
tonyp@3464 347 // Return true if the CM thread are actively scanning root regions,
tonyp@3464 348 // false otherwise.
tonyp@3464 349 bool scan_in_progress() { return _scan_in_progress; }
tonyp@3464 350
tonyp@3464 351 // Claim the next root region to scan atomically, or return NULL if
tonyp@3464 352 // all have been claimed.
tonyp@3464 353 HeapRegion* claim_next();
tonyp@3464 354
tonyp@3464 355 // Flag that we're done with root region scanning and notify anyone
tonyp@3464 356 // who's waiting on it. If aborted is false, assume that all regions
tonyp@3464 357 // have been claimed.
tonyp@3464 358 void scan_finished();
tonyp@3464 359
tonyp@3464 360 // If CM threads are still scanning root regions, wait until they
tonyp@3464 361 // are done. Return true if we had to wait, false otherwise.
tonyp@3464 362 bool wait_until_scan_finished();
tonyp@3464 363 };
ysr@777 364
ysr@777 365 class ConcurrentMarkThread;
ysr@777 366
zgu@3900 367 class ConcurrentMark: public CHeapObj<mtGC> {
johnc@4333 368 friend class CMMarkStack;
ysr@777 369 friend class ConcurrentMarkThread;
ysr@777 370 friend class CMTask;
ysr@777 371 friend class CMBitMapClosure;
ysr@777 372 friend class CMGlobalObjectClosure;
ysr@777 373 friend class CMRemarkTask;
ysr@777 374 friend class CMConcurrentMarkingTask;
ysr@777 375 friend class G1ParNoteEndTask;
ysr@777 376 friend class CalcLiveObjectsClosure;
johnc@3175 377 friend class G1CMRefProcTaskProxy;
johnc@3175 378 friend class G1CMRefProcTaskExecutor;
johnc@4555 379 friend class G1CMKeepAliveAndDrainClosure;
johnc@4555 380 friend class G1CMDrainMarkingStackClosure;
ysr@777 381
ysr@777 382 protected:
ysr@777 383 ConcurrentMarkThread* _cmThread; // the thread doing the work
ysr@777 384 G1CollectedHeap* _g1h; // the heap.
jmasa@3357 385 uint _parallel_marking_threads; // the number of marking
jmasa@3294 386 // threads we're use
jmasa@3357 387 uint _max_parallel_marking_threads; // max number of marking
jmasa@3294 388 // threads we'll ever use
ysr@777 389 double _sleep_factor; // how much we have to sleep, with
ysr@777 390 // respect to the work we just did, to
ysr@777 391 // meet the marking overhead goal
ysr@777 392 double _marking_task_overhead; // marking target overhead for
ysr@777 393 // a single task
ysr@777 394
ysr@777 395 // same as the two above, but for the cleanup task
ysr@777 396 double _cleanup_sleep_factor;
ysr@777 397 double _cleanup_task_overhead;
ysr@777 398
tonyp@2472 399 FreeRegionList _cleanup_list;
ysr@777 400
brutisso@3455 401 // Concurrent marking support structures
ysr@777 402 CMBitMap _markBitMap1;
ysr@777 403 CMBitMap _markBitMap2;
ysr@777 404 CMBitMapRO* _prevMarkBitMap; // completed mark bitmap
ysr@777 405 CMBitMap* _nextMarkBitMap; // under-construction mark bitmap
ysr@777 406
ysr@777 407 BitMap _region_bm;
ysr@777 408 BitMap _card_bm;
ysr@777 409
ysr@777 410 // Heap bounds
ysr@777 411 HeapWord* _heap_start;
ysr@777 412 HeapWord* _heap_end;
ysr@777 413
tonyp@3464 414 // Root region tracking and claiming.
tonyp@3464 415 CMRootRegions _root_regions;
tonyp@3464 416
ysr@777 417 // For gray objects
ysr@777 418 CMMarkStack _markStack; // Grey objects behind global finger.
ysr@777 419 HeapWord* volatile _finger; // the global finger, region aligned,
ysr@777 420 // always points to the end of the
ysr@777 421 // last claimed region
ysr@777 422
ysr@777 423 // marking tasks
johnc@4173 424 uint _max_worker_id;// maximum worker id
jmasa@3357 425 uint _active_tasks; // task num currently active
johnc@4173 426 CMTask** _tasks; // task queue array (max_worker_id len)
ysr@777 427 CMTaskQueueSet* _task_queues; // task queue set
ysr@777 428 ParallelTaskTerminator _terminator; // for termination
ysr@777 429
ysr@777 430 // Two sync barriers that are used to synchronise tasks when an
ysr@777 431 // overflow occurs. The algorithm is the following. All tasks enter
ysr@777 432 // the first one to ensure that they have all stopped manipulating
ysr@777 433 // the global data structures. After they exit it, they re-initialise
ysr@777 434 // their data structures and task 0 re-initialises the global data
ysr@777 435 // structures. Then, they enter the second sync barrier. This
ysr@777 436 // ensure, that no task starts doing work before all data
ysr@777 437 // structures (local and global) have been re-initialised. When they
ysr@777 438 // exit it, they are free to start working again.
ysr@777 439 WorkGangBarrierSync _first_overflow_barrier_sync;
ysr@777 440 WorkGangBarrierSync _second_overflow_barrier_sync;
ysr@777 441
ysr@777 442 // this is set by any task, when an overflow on the global data
ysr@777 443 // structures is detected.
ysr@777 444 volatile bool _has_overflown;
ysr@777 445 // true: marking is concurrent, false: we're in remark
ysr@777 446 volatile bool _concurrent;
ysr@777 447 // set at the end of a Full GC so that marking aborts
ysr@777 448 volatile bool _has_aborted;
brutisso@6904 449 GCId _aborted_gc_id;
johnc@2190 450
ysr@777 451 // used when remark aborts due to an overflow to indicate that
ysr@777 452 // another concurrent marking phase should start
ysr@777 453 volatile bool _restart_for_overflow;
ysr@777 454
ysr@777 455 // This is true from the very start of concurrent marking until the
ysr@777 456 // point when all the tasks complete their work. It is really used
ysr@777 457 // to determine the points between the end of concurrent marking and
ysr@777 458 // time of remark.
ysr@777 459 volatile bool _concurrent_marking_in_progress;
ysr@777 460
ysr@777 461 // verbose level
ysr@777 462 CMVerboseLevel _verbose_level;
ysr@777 463
ysr@777 464 // All of these times are in ms.
ysr@777 465 NumberSeq _init_times;
ysr@777 466 NumberSeq _remark_times;
ysr@777 467 NumberSeq _remark_mark_times;
ysr@777 468 NumberSeq _remark_weak_ref_times;
ysr@777 469 NumberSeq _cleanup_times;
ysr@777 470 double _total_counting_time;
ysr@777 471 double _total_rs_scrub_time;
ysr@777 472
ysr@777 473 double* _accum_task_vtime; // accumulated task vtime
ysr@777 474
jmasa@3294 475 FlexibleWorkGang* _parallel_workers;
ysr@777 476
tonyp@2848 477 ForceOverflowSettings _force_overflow_conc;
tonyp@2848 478 ForceOverflowSettings _force_overflow_stw;
tonyp@2848 479
stefank@6992 480 void weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes);
ysr@777 481 void weakRefsWork(bool clear_all_soft_refs);
ysr@777 482
ysr@777 483 void swapMarkBitMaps();
ysr@777 484
ysr@777 485 // It resets the global marking data structures, as well as the
ysr@777 486 // task local ones; should be called during initial mark.
ysr@777 487 void reset();
johnc@4386 488
johnc@4386 489 // Resets all the marking data structures. Called when we have to restart
johnc@4386 490 // marking or when marking completes (via set_non_marking_state below).
johnc@4386 491 void reset_marking_state(bool clear_overflow = true);
johnc@4386 492
johnc@4386 493 // We do this after we're done with marking so that the marking data
johnc@4386 494 // structures are initialised to a sensible and predictable state.
johnc@4386 495 void set_non_marking_state();
ysr@777 496
johnc@4788 497 // Called to indicate how many threads are currently active.
johnc@4788 498 void set_concurrency(uint active_tasks);
johnc@4788 499
ysr@777 500 // It should be called to indicate which phase we're in (concurrent
ysr@777 501 // mark or remark) and how many threads are currently active.
johnc@4788 502 void set_concurrency_and_phase(uint active_tasks, bool concurrent);
ysr@777 503
ysr@777 504 // prints all gathered CM-related statistics
ysr@777 505 void print_stats();
ysr@777 506
tonyp@2472 507 bool cleanup_list_is_empty() {
tonyp@2472 508 return _cleanup_list.is_empty();
tonyp@2472 509 }
tonyp@2472 510
ysr@777 511 // accessor methods
johnc@4549 512 uint parallel_marking_threads() const { return _parallel_marking_threads; }
johnc@4549 513 uint max_parallel_marking_threads() const { return _max_parallel_marking_threads;}
johnc@4549 514 double sleep_factor() { return _sleep_factor; }
johnc@4549 515 double marking_task_overhead() { return _marking_task_overhead;}
johnc@4549 516 double cleanup_sleep_factor() { return _cleanup_sleep_factor; }
johnc@4549 517 double cleanup_task_overhead() { return _cleanup_task_overhead;}
ysr@777 518
johnc@4549 519 bool use_parallel_marking_threads() const {
johnc@4549 520 assert(parallel_marking_threads() <=
johnc@4549 521 max_parallel_marking_threads(), "sanity");
johnc@4549 522 assert((_parallel_workers == NULL && parallel_marking_threads() == 0) ||
johnc@4549 523 parallel_marking_threads() > 0,
johnc@4549 524 "parallel workers not set up correctly");
johnc@4549 525 return _parallel_workers != NULL;
johnc@4549 526 }
johnc@4549 527
johnc@4549 528 HeapWord* finger() { return _finger; }
johnc@4549 529 bool concurrent() { return _concurrent; }
johnc@4549 530 uint active_tasks() { return _active_tasks; }
johnc@4549 531 ParallelTaskTerminator* terminator() { return &_terminator; }
ysr@777 532
ysr@777 533 // It claims the next available region to be scanned by a marking
johnc@4173 534 // task/thread. It might return NULL if the next region is empty or
johnc@4173 535 // we have run out of regions. In the latter case, out_of_regions()
ysr@777 536 // determines whether we've really run out of regions or the task
johnc@4173 537 // should call claim_region() again. This might seem a bit
ysr@777 538 // awkward. Originally, the code was written so that claim_region()
ysr@777 539 // either successfully returned with a non-empty region or there
ysr@777 540 // were no more regions to be claimed. The problem with this was
ysr@777 541 // that, in certain circumstances, it iterated over large chunks of
ysr@777 542 // the heap finding only empty regions and, while it was working, it
ysr@777 543 // was preventing the calling task to call its regular clock
ysr@777 544 // method. So, this way, each task will spend very little time in
ysr@777 545 // claim_region() and is allowed to call the regular clock method
ysr@777 546 // frequently.
johnc@4173 547 HeapRegion* claim_region(uint worker_id);
ysr@777 548
pliden@6693 549 // It determines whether we've run out of regions to scan. Note that
pliden@6693 550 // the finger can point past the heap end in case the heap was expanded
pliden@6693 551 // to satisfy an allocation without doing a GC. This is fine, because all
pliden@6693 552 // objects in those regions will be considered live anyway because of
pliden@6693 553 // SATB guarantees (i.e. their TAMS will be equal to bottom).
pliden@6693 554 bool out_of_regions() { return _finger >= _heap_end; }
ysr@777 555
ysr@777 556 // Returns the task with the given id
ysr@777 557 CMTask* task(int id) {
tonyp@1458 558 assert(0 <= id && id < (int) _active_tasks,
tonyp@1458 559 "task id not within active bounds");
ysr@777 560 return _tasks[id];
ysr@777 561 }
ysr@777 562
ysr@777 563 // Returns the task queue with the given id
ysr@777 564 CMTaskQueue* task_queue(int id) {
tonyp@1458 565 assert(0 <= id && id < (int) _active_tasks,
tonyp@1458 566 "task queue id not within active bounds");
ysr@777 567 return (CMTaskQueue*) _task_queues->queue(id);
ysr@777 568 }
ysr@777 569
ysr@777 570 // Returns the task queue set
ysr@777 571 CMTaskQueueSet* task_queues() { return _task_queues; }
ysr@777 572
ysr@777 573 // Access / manipulation of the overflow flag which is set to
tonyp@3691 574 // indicate that the global stack has overflown
ysr@777 575 bool has_overflown() { return _has_overflown; }
ysr@777 576 void set_has_overflown() { _has_overflown = true; }
ysr@777 577 void clear_has_overflown() { _has_overflown = false; }
tonyp@3464 578 bool restart_for_overflow() { return _restart_for_overflow; }
ysr@777 579
ysr@777 580 // Methods to enter the two overflow sync barriers
johnc@4173 581 void enter_first_sync_barrier(uint worker_id);
johnc@4173 582 void enter_second_sync_barrier(uint worker_id);
ysr@777 583
tonyp@2848 584 ForceOverflowSettings* force_overflow_conc() {
tonyp@2848 585 return &_force_overflow_conc;
tonyp@2848 586 }
tonyp@2848 587
tonyp@2848 588 ForceOverflowSettings* force_overflow_stw() {
tonyp@2848 589 return &_force_overflow_stw;
tonyp@2848 590 }
tonyp@2848 591
tonyp@2848 592 ForceOverflowSettings* force_overflow() {
tonyp@2848 593 if (concurrent()) {
tonyp@2848 594 return force_overflow_conc();
tonyp@2848 595 } else {
tonyp@2848 596 return force_overflow_stw();
tonyp@2848 597 }
tonyp@2848 598 }
tonyp@2848 599
johnc@3463 600 // Live Data Counting data structures...
johnc@3463 601 // These data structures are initialized at the start of
johnc@3463 602 // marking. They are written to while marking is active.
johnc@3463 603 // They are aggregated during remark; the aggregated values
johnc@3463 604 // are then used to populate the _region_bm, _card_bm, and
johnc@3463 605 // the total live bytes, which are then subsequently updated
johnc@3463 606 // during cleanup.
johnc@3463 607
johnc@3463 608 // An array of bitmaps (one bit map per task). Each bitmap
johnc@3463 609 // is used to record the cards spanned by the live objects
johnc@3463 610 // marked by that task/worker.
johnc@3463 611 BitMap* _count_card_bitmaps;
johnc@3463 612
johnc@3463 613 // Used to record the number of marked live bytes
johnc@3463 614 // (for each region, by worker thread).
johnc@3463 615 size_t** _count_marked_bytes;
johnc@3463 616
johnc@3463 617 // Card index of the bottom of the G1 heap. Used for biasing indices into
johnc@3463 618 // the card bitmaps.
johnc@3463 619 intptr_t _heap_bottom_card_num;
johnc@3463 620
johnc@4333 621 // Set to true when initialization is complete
johnc@4333 622 bool _completed_initialization;
johnc@4333 623
ysr@777 624 public:
ysr@777 625 // Manipulation of the global mark stack.
ysr@777 626 // Notice that the first mark_stack_push is CAS-based, whereas the
ysr@777 627 // two below are Mutex-based. This is OK since the first one is only
ysr@777 628 // called during evacuation pauses and doesn't compete with the
ysr@777 629 // other two (which are called by the marking tasks during
ysr@777 630 // concurrent marking or remark).
ysr@777 631 bool mark_stack_push(oop p) {
ysr@777 632 _markStack.par_push(p);
ysr@777 633 if (_markStack.overflow()) {
ysr@777 634 set_has_overflown();
ysr@777 635 return false;
ysr@777 636 }
ysr@777 637 return true;
ysr@777 638 }
ysr@777 639 bool mark_stack_push(oop* arr, int n) {
ysr@777 640 _markStack.par_push_arr(arr, n);
ysr@777 641 if (_markStack.overflow()) {
ysr@777 642 set_has_overflown();
ysr@777 643 return false;
ysr@777 644 }
ysr@777 645 return true;
ysr@777 646 }
ysr@777 647 void mark_stack_pop(oop* arr, int max, int* n) {
ysr@777 648 _markStack.par_pop_arr(arr, max, n);
ysr@777 649 }
tonyp@2973 650 size_t mark_stack_size() { return _markStack.size(); }
ysr@777 651 size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
tonyp@2973 652 bool mark_stack_overflow() { return _markStack.overflow(); }
tonyp@2973 653 bool mark_stack_empty() { return _markStack.isEmpty(); }
ysr@777 654
tonyp@3464 655 CMRootRegions* root_regions() { return &_root_regions; }
tonyp@3464 656
ysr@777 657 bool concurrent_marking_in_progress() {
ysr@777 658 return _concurrent_marking_in_progress;
ysr@777 659 }
ysr@777 660 void set_concurrent_marking_in_progress() {
ysr@777 661 _concurrent_marking_in_progress = true;
ysr@777 662 }
ysr@777 663 void clear_concurrent_marking_in_progress() {
ysr@777 664 _concurrent_marking_in_progress = false;
ysr@777 665 }
ysr@777 666
ysr@777 667 void update_accum_task_vtime(int i, double vtime) {
ysr@777 668 _accum_task_vtime[i] += vtime;
ysr@777 669 }
ysr@777 670
ysr@777 671 double all_task_accum_vtime() {
ysr@777 672 double ret = 0.0;
johnc@4173 673 for (uint i = 0; i < _max_worker_id; ++i)
ysr@777 674 ret += _accum_task_vtime[i];
ysr@777 675 return ret;
ysr@777 676 }
ysr@777 677
ysr@777 678 // Attempts to steal an object from the task queues of other tasks
johnc@4173 679 bool try_stealing(uint worker_id, int* hash_seed, oop& obj) {
johnc@4173 680 return _task_queues->steal(worker_id, hash_seed, obj);
ysr@777 681 }
ysr@777 682
johnc@4333 683 ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs);
ysr@777 684 ~ConcurrentMark();
johnc@3463 685
ysr@777 686 ConcurrentMarkThread* cmThread() { return _cmThread; }
ysr@777 687
ysr@777 688 CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
ysr@777 689 CMBitMap* nextMarkBitMap() const { return _nextMarkBitMap; }
ysr@777 690
jmasa@3294 691 // Returns the number of GC threads to be used in a concurrent
jmasa@3294 692 // phase based on the number of GC threads being used in a STW
jmasa@3294 693 // phase.
jmasa@3357 694 uint scale_parallel_threads(uint n_par_threads);
jmasa@3294 695
jmasa@3294 696 // Calculates the number of GC threads to be used in a concurrent phase.
jmasa@3357 697 uint calc_parallel_marking_threads();
jmasa@3294 698
ysr@777 699 // The following three are interaction between CM and
ysr@777 700 // G1CollectedHeap
ysr@777 701
ysr@777 702 // This notifies CM that a root during initial-mark needs to be
tonyp@3464 703 // grayed. It is MT-safe. word_size is the size of the object in
tonyp@3464 704 // words. It is passed explicitly as sometimes we cannot calculate
tonyp@3464 705 // it from the given object because it might be in an inconsistent
tonyp@3464 706 // state (e.g., in to-space and being copied). So the caller is
tonyp@3464 707 // responsible for dealing with this issue (e.g., get the size from
tonyp@3464 708 // the from-space image when the to-space image might be
tonyp@3464 709 // inconsistent) and always passing the size. hr is the region that
tonyp@3464 710 // contains the object and it's passed optionally from callers who
tonyp@3464 711 // might already have it (no point in recalculating it).
tonyp@3464 712 inline void grayRoot(oop obj, size_t word_size,
tonyp@3464 713 uint worker_id, HeapRegion* hr = NULL);
tonyp@3416 714
tonyp@1823 715 // It iterates over the heap and for each object it comes across it
tonyp@1823 716 // will dump the contents of its reference fields, as well as
tonyp@1823 717 // liveness information for the object and its referents. The dump
tonyp@1823 718 // will be written to a file with the following name:
johnc@2969 719 // G1PrintReachableBaseFile + "." + str.
johnc@2969 720 // vo decides whether the prev (vo == UsePrevMarking), the next
johnc@2969 721 // (vo == UseNextMarking) marking information, or the mark word
johnc@2969 722 // (vo == UseMarkWord) will be used to determine the liveness of
johnc@2969 723 // each object / referent.
johnc@2969 724 // If all is true, all objects in the heap will be dumped, otherwise
johnc@2969 725 // only the live ones. In the dump the following symbols / breviations
johnc@2969 726 // are used:
tonyp@1823 727 // M : an explicitly live object (its bitmap bit is set)
tonyp@1823 728 // > : an implicitly live object (over tams)
tonyp@1823 729 // O : an object outside the G1 heap (typically: in the perm gen)
tonyp@1823 730 // NOT : a reference field whose referent is not live
tonyp@1823 731 // AND MARKED : indicates that an object is both explicitly and
tonyp@1823 732 // implicitly live (it should be one or the other, not both)
tonyp@1823 733 void print_reachable(const char* str,
johnc@2969 734 VerifyOption vo, bool all) PRODUCT_RETURN;
ysr@777 735
ysr@777 736 // Clear the next marking bitmap (will be called concurrently).
ysr@777 737 void clearNextBitmap();
ysr@777 738
ysr@777 739 // These two do the work that needs to be done before and after the
ysr@777 740 // initial root checkpoint. Since this checkpoint can be done at two
ysr@777 741 // different points (i.e. an explicit pause or piggy-backed on a
ysr@777 742 // young collection), then it's nice to be able to easily share the
ysr@777 743 // pre/post code. It might be the case that we can put everything in
ysr@777 744 // the post method. TP
ysr@777 745 void checkpointRootsInitialPre();
ysr@777 746 void checkpointRootsInitialPost();
ysr@777 747
tonyp@3464 748 // Scan all the root regions and mark everything reachable from
tonyp@3464 749 // them.
tonyp@3464 750 void scanRootRegions();
tonyp@3464 751
tonyp@3464 752 // Scan a single root region and mark everything reachable from it.
tonyp@3464 753 void scanRootRegion(HeapRegion* hr, uint worker_id);
tonyp@3464 754
ysr@777 755 // Do concurrent phase of marking, to a tentative transitive closure.
ysr@777 756 void markFromRoots();
ysr@777 757
ysr@777 758 void checkpointRootsFinal(bool clear_all_soft_refs);
ysr@777 759 void checkpointRootsFinalWork();
ysr@777 760 void cleanup();
ysr@777 761 void completeCleanup();
ysr@777 762
ysr@777 763 // Mark in the previous bitmap. NB: this is usually read-only, so use
ysr@777 764 // this carefully!
tonyp@3416 765 inline void markPrev(oop p);
johnc@3463 766
tonyp@3416 767 // Clears marks for all objects in the given range, for the prev,
tonyp@3416 768 // next, or both bitmaps. NB: the previous bitmap is usually
tonyp@3416 769 // read-only, so use this carefully!
tonyp@3416 770 void clearRangePrevBitmap(MemRegion mr);
tonyp@3416 771 void clearRangeNextBitmap(MemRegion mr);
tonyp@3416 772 void clearRangeBothBitmaps(MemRegion mr);
ysr@777 773
tonyp@3416 774 // Notify data structures that a GC has started.
tonyp@3416 775 void note_start_of_gc() {
tonyp@3416 776 _markStack.note_start_of_gc();
ysr@777 777 }
tonyp@3416 778
tonyp@3416 779 // Notify data structures that a GC is finished.
tonyp@3416 780 void note_end_of_gc() {
tonyp@3416 781 _markStack.note_end_of_gc();
tonyp@3416 782 }
tonyp@3416 783
tonyp@3416 784 // Verify that there are no CSet oops on the stacks (taskqueues /
tonyp@3416 785 // global mark stack), enqueued SATB buffers, per-thread SATB
tonyp@3416 786 // buffers, and fingers (global / per-task). The boolean parameters
tonyp@3416 787 // decide which of the above data structures to verify. If marking
tonyp@3416 788 // is not in progress, it's a no-op.
tonyp@3416 789 void verify_no_cset_oops(bool verify_stacks,
tonyp@3416 790 bool verify_enqueued_buffers,
tonyp@3416 791 bool verify_thread_buffers,
tonyp@3416 792 bool verify_fingers) PRODUCT_RETURN;
tonyp@3416 793
ysr@777 794 // It is called at the end of an evacuation pause during marking so
ysr@777 795 // that CM is notified of where the new end of the heap is. It
ysr@777 796 // doesn't do anything if concurrent_marking_in_progress() is false,
ysr@777 797 // unless the force parameter is true.
ysr@777 798 void update_g1_committed(bool force = false);
ysr@777 799
ysr@777 800 bool isMarked(oop p) const {
ysr@777 801 assert(p != NULL && p->is_oop(), "expected an oop");
ysr@777 802 HeapWord* addr = (HeapWord*)p;
ysr@777 803 assert(addr >= _nextMarkBitMap->startWord() ||
ysr@777 804 addr < _nextMarkBitMap->endWord(), "in a region");
ysr@777 805
ysr@777 806 return _nextMarkBitMap->isMarked(addr);
ysr@777 807 }
ysr@777 808
ysr@777 809 inline bool not_yet_marked(oop p) const;
ysr@777 810
ysr@777 811 // XXX Debug code
ysr@777 812 bool containing_card_is_marked(void* p);
ysr@777 813 bool containing_cards_are_marked(void* start, void* last);
ysr@777 814
ysr@777 815 bool isPrevMarked(oop p) const {
ysr@777 816 assert(p != NULL && p->is_oop(), "expected an oop");
ysr@777 817 HeapWord* addr = (HeapWord*)p;
ysr@777 818 assert(addr >= _prevMarkBitMap->startWord() ||
ysr@777 819 addr < _prevMarkBitMap->endWord(), "in a region");
ysr@777 820
ysr@777 821 return _prevMarkBitMap->isMarked(addr);
ysr@777 822 }
ysr@777 823
jmasa@3357 824 inline bool do_yield_check(uint worker_i = 0);
ysr@777 825
ysr@777 826 // Called to abort the marking cycle after a Full GC takes palce.
ysr@777 827 void abort();
ysr@777 828
sla@5237 829 bool has_aborted() { return _has_aborted; }
sla@5237 830
brutisso@6904 831 const GCId& concurrent_gc_id();
brutisso@6904 832
ysr@777 833 // This prints the global/local fingers. It is used for debugging.
ysr@777 834 NOT_PRODUCT(void print_finger();)
ysr@777 835
ysr@777 836 void print_summary_info();
ysr@777 837
tonyp@1454 838 void print_worker_threads_on(outputStream* st) const;
tonyp@1454 839
stefank@4904 840 void print_on_error(outputStream* st) const;
stefank@4904 841
ysr@777 842 // The following indicate whether a given verbose level has been
ysr@777 843 // set. Notice that anything above stats is conditional to
ysr@777 844 // _MARKING_VERBOSE_ having been set to 1
tonyp@2973 845 bool verbose_stats() {
tonyp@2973 846 return _verbose_level >= stats_verbose;
tonyp@2973 847 }
tonyp@2973 848 bool verbose_low() {
tonyp@2973 849 return _MARKING_VERBOSE_ && _verbose_level >= low_verbose;
tonyp@2973 850 }
tonyp@2973 851 bool verbose_medium() {
tonyp@2973 852 return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose;
tonyp@2973 853 }
tonyp@2973 854 bool verbose_high() {
tonyp@2973 855 return _MARKING_VERBOSE_ && _verbose_level >= high_verbose;
tonyp@2973 856 }
johnc@3463 857
johnc@4123 858 // Liveness counting
johnc@4123 859
johnc@4123 860 // Utility routine to set an exclusive range of cards on the given
johnc@4123 861 // card liveness bitmap
johnc@4123 862 inline void set_card_bitmap_range(BitMap* card_bm,
johnc@4123 863 BitMap::idx_t start_idx,
johnc@4123 864 BitMap::idx_t end_idx,
johnc@4123 865 bool is_par);
johnc@3463 866
johnc@3463 867 // Returns the card number of the bottom of the G1 heap.
johnc@3463 868 // Used in biasing indices into accounting card bitmaps.
johnc@3463 869 intptr_t heap_bottom_card_num() const {
johnc@3463 870 return _heap_bottom_card_num;
johnc@3463 871 }
johnc@3463 872
johnc@3463 873 // Returns the card bitmap for a given task or worker id.
johnc@3463 874 BitMap* count_card_bitmap_for(uint worker_id) {
johnc@4173 875 assert(0 <= worker_id && worker_id < _max_worker_id, "oob");
johnc@3463 876 assert(_count_card_bitmaps != NULL, "uninitialized");
johnc@3463 877 BitMap* task_card_bm = &_count_card_bitmaps[worker_id];
johnc@3463 878 assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
johnc@3463 879 return task_card_bm;
johnc@3463 880 }
johnc@3463 881
johnc@3463 882 // Returns the array containing the marked bytes for each region,
johnc@3463 883 // for the given worker or task id.
johnc@3463 884 size_t* count_marked_bytes_array_for(uint worker_id) {
johnc@4173 885 assert(0 <= worker_id && worker_id < _max_worker_id, "oob");
johnc@3463 886 assert(_count_marked_bytes != NULL, "uninitialized");
johnc@3463 887 size_t* marked_bytes_array = _count_marked_bytes[worker_id];
johnc@3463 888 assert(marked_bytes_array != NULL, "uninitialized");
johnc@3463 889 return marked_bytes_array;
johnc@3463 890 }
johnc@3463 891
johnc@3463 892 // Returns the index in the liveness accounting card table bitmap
johnc@3463 893 // for the given address
johnc@3463 894 inline BitMap::idx_t card_bitmap_index_for(HeapWord* addr);
johnc@3463 895
johnc@3463 896 // Counts the size of the given memory region in the the given
johnc@3463 897 // marked_bytes array slot for the given HeapRegion.
johnc@3463 898 // Sets the bits in the given card bitmap that are associated with the
johnc@3463 899 // cards that are spanned by the memory region.
johnc@3463 900 inline void count_region(MemRegion mr, HeapRegion* hr,
johnc@3463 901 size_t* marked_bytes_array,
johnc@3463 902 BitMap* task_card_bm);
johnc@3463 903
johnc@3463 904 // Counts the given memory region in the task/worker counting
johnc@3463 905 // data structures for the given worker id.
tonyp@3464 906 inline void count_region(MemRegion mr, HeapRegion* hr, uint worker_id);
tonyp@3464 907
tonyp@3464 908 // Counts the given memory region in the task/worker counting
tonyp@3464 909 // data structures for the given worker id.
johnc@3463 910 inline void count_region(MemRegion mr, uint worker_id);
johnc@3463 911
johnc@3463 912 // Counts the given object in the given task/worker counting
johnc@3463 913 // data structures.
johnc@3463 914 inline void count_object(oop obj, HeapRegion* hr,
johnc@3463 915 size_t* marked_bytes_array,
johnc@3463 916 BitMap* task_card_bm);
johnc@3463 917
johnc@3463 918 // Counts the given object in the task/worker counting data
johnc@3463 919 // structures for the given worker id.
johnc@3463 920 inline void count_object(oop obj, HeapRegion* hr, uint worker_id);
johnc@3463 921
johnc@3463 922 // Attempts to mark the given object and, if successful, counts
johnc@3463 923 // the object in the given task/worker counting structures.
johnc@3463 924 inline bool par_mark_and_count(oop obj, HeapRegion* hr,
johnc@3463 925 size_t* marked_bytes_array,
johnc@3463 926 BitMap* task_card_bm);
johnc@3463 927
johnc@3463 928 // Attempts to mark the given object and, if successful, counts
johnc@3463 929 // the object in the task/worker counting structures for the
johnc@3463 930 // given worker id.
tonyp@3464 931 inline bool par_mark_and_count(oop obj, size_t word_size,
tonyp@3464 932 HeapRegion* hr, uint worker_id);
tonyp@3464 933
tonyp@3464 934 // Attempts to mark the given object and, if successful, counts
tonyp@3464 935 // the object in the task/worker counting structures for the
tonyp@3464 936 // given worker id.
johnc@3463 937 inline bool par_mark_and_count(oop obj, HeapRegion* hr, uint worker_id);
johnc@3463 938
johnc@3463 939 // Similar to the above routine but we don't know the heap region that
johnc@3463 940 // contains the object to be marked/counted, which this routine looks up.
johnc@3463 941 inline bool par_mark_and_count(oop obj, uint worker_id);
johnc@3463 942
johnc@3463 943 // Similar to the above routine but there are times when we cannot
johnc@3463 944 // safely calculate the size of obj due to races and we, therefore,
johnc@3463 945 // pass the size in as a parameter. It is the caller's reponsibility
johnc@3463 946 // to ensure that the size passed in for obj is valid.
johnc@3463 947 inline bool par_mark_and_count(oop obj, size_t word_size, uint worker_id);
johnc@3463 948
johnc@3463 949 // Unconditionally mark the given object, and unconditinally count
johnc@3463 950 // the object in the counting structures for worker id 0.
johnc@3463 951 // Should *not* be called from parallel code.
johnc@3463 952 inline bool mark_and_count(oop obj, HeapRegion* hr);
johnc@3463 953
johnc@3463 954 // Similar to the above routine but we don't know the heap region that
johnc@3463 955 // contains the object to be marked/counted, which this routine looks up.
johnc@3463 956 // Should *not* be called from parallel code.
johnc@3463 957 inline bool mark_and_count(oop obj);
johnc@3463 958
johnc@4333 959 // Returns true if initialization was successfully completed.
johnc@4333 960 bool completed_initialization() const {
johnc@4333 961 return _completed_initialization;
johnc@4333 962 }
johnc@4333 963
johnc@3463 964 protected:
johnc@3463 965 // Clear all the per-task bitmaps and arrays used to store the
johnc@3463 966 // counting data.
johnc@3463 967 void clear_all_count_data();
johnc@3463 968
johnc@3463 969 // Aggregates the counting data for each worker/task
johnc@3463 970 // that was constructed while marking. Also sets
johnc@3463 971 // the amount of marked bytes for each region and
johnc@3463 972 // the top at concurrent mark count.
johnc@3463 973 void aggregate_count_data();
johnc@3463 974
johnc@3463 975 // Verification routine
johnc@3463 976 void verify_count_data();
ysr@777 977 };
ysr@777 978
ysr@777 979 // A class representing a marking task.
ysr@777 980 class CMTask : public TerminatorTerminator {
ysr@777 981 private:
ysr@777 982 enum PrivateConstants {
ysr@777 983 // the regular clock call is called once the scanned words reaches
ysr@777 984 // this limit
ysr@777 985 words_scanned_period = 12*1024,
ysr@777 986 // the regular clock call is called once the number of visited
ysr@777 987 // references reaches this limit
ysr@777 988 refs_reached_period = 384,
ysr@777 989 // initial value for the hash seed, used in the work stealing code
ysr@777 990 init_hash_seed = 17,
ysr@777 991 // how many entries will be transferred between global stack and
ysr@777 992 // local queues
ysr@777 993 global_stack_transfer_size = 16
ysr@777 994 };
ysr@777 995
johnc@4173 996 uint _worker_id;
ysr@777 997 G1CollectedHeap* _g1h;
ysr@777 998 ConcurrentMark* _cm;
ysr@777 999 CMBitMap* _nextMarkBitMap;
ysr@777 1000 // the task queue of this task
ysr@777 1001 CMTaskQueue* _task_queue;
ysr@1280 1002 private:
ysr@777 1003 // the task queue set---needed for stealing
ysr@777 1004 CMTaskQueueSet* _task_queues;
ysr@777 1005 // indicates whether the task has been claimed---this is only for
ysr@777 1006 // debugging purposes
ysr@777 1007 bool _claimed;
ysr@777 1008
ysr@777 1009 // number of calls to this task
ysr@777 1010 int _calls;
ysr@777 1011
ysr@777 1012 // when the virtual timer reaches this time, the marking step should
ysr@777 1013 // exit
ysr@777 1014 double _time_target_ms;
ysr@777 1015 // the start time of the current marking step
ysr@777 1016 double _start_time_ms;
ysr@777 1017
ysr@777 1018 // the oop closure used for iterations over oops
tonyp@2968 1019 G1CMOopClosure* _cm_oop_closure;
ysr@777 1020
ysr@777 1021 // the region this task is scanning, NULL if we're not scanning any
ysr@777 1022 HeapRegion* _curr_region;
ysr@777 1023 // the local finger of this task, NULL if we're not scanning a region
ysr@777 1024 HeapWord* _finger;
ysr@777 1025 // limit of the region this task is scanning, NULL if we're not scanning one
ysr@777 1026 HeapWord* _region_limit;
ysr@777 1027
ysr@777 1028 // the number of words this task has scanned
ysr@777 1029 size_t _words_scanned;
ysr@777 1030 // When _words_scanned reaches this limit, the regular clock is
ysr@777 1031 // called. Notice that this might be decreased under certain
ysr@777 1032 // circumstances (i.e. when we believe that we did an expensive
ysr@777 1033 // operation).
ysr@777 1034 size_t _words_scanned_limit;
ysr@777 1035 // the initial value of _words_scanned_limit (i.e. what it was
ysr@777 1036 // before it was decreased).
ysr@777 1037 size_t _real_words_scanned_limit;
ysr@777 1038
ysr@777 1039 // the number of references this task has visited
ysr@777 1040 size_t _refs_reached;
ysr@777 1041 // When _refs_reached reaches this limit, the regular clock is
ysr@777 1042 // called. Notice this this might be decreased under certain
ysr@777 1043 // circumstances (i.e. when we believe that we did an expensive
ysr@777 1044 // operation).
ysr@777 1045 size_t _refs_reached_limit;
ysr@777 1046 // the initial value of _refs_reached_limit (i.e. what it was before
ysr@777 1047 // it was decreased).
ysr@777 1048 size_t _real_refs_reached_limit;
ysr@777 1049
ysr@777 1050 // used by the work stealing stuff
ysr@777 1051 int _hash_seed;
ysr@777 1052 // if this is true, then the task has aborted for some reason
ysr@777 1053 bool _has_aborted;
ysr@777 1054 // set when the task aborts because it has met its time quota
johnc@2494 1055 bool _has_timed_out;
ysr@777 1056 // true when we're draining SATB buffers; this avoids the task
ysr@777 1057 // aborting due to SATB buffers being available (as we're already
ysr@777 1058 // dealing with them)
ysr@777 1059 bool _draining_satb_buffers;
ysr@777 1060
ysr@777 1061 // number sequence of past step times
ysr@777 1062 NumberSeq _step_times_ms;
ysr@777 1063 // elapsed time of this task
ysr@777 1064 double _elapsed_time_ms;
ysr@777 1065 // termination time of this task
ysr@777 1066 double _termination_time_ms;
ysr@777 1067 // when this task got into the termination protocol
ysr@777 1068 double _termination_start_time_ms;
ysr@777 1069
ysr@777 1070 // true when the task is during a concurrent phase, false when it is
ysr@777 1071 // in the remark phase (so, in the latter case, we do not have to
ysr@777 1072 // check all the things that we have to check during the concurrent
ysr@777 1073 // phase, i.e. SATB buffer availability...)
ysr@777 1074 bool _concurrent;
ysr@777 1075
ysr@777 1076 TruncatedSeq _marking_step_diffs_ms;
ysr@777 1077
johnc@3463 1078 // Counting data structures. Embedding the task's marked_bytes_array
johnc@3463 1079 // and card bitmap into the actual task saves having to go through
johnc@3463 1080 // the ConcurrentMark object.
johnc@3463 1081 size_t* _marked_bytes_array;
johnc@3463 1082 BitMap* _card_bm;
johnc@3463 1083
ysr@777 1084 // LOTS of statistics related with this task
ysr@777 1085 #if _MARKING_STATS_
ysr@777 1086 NumberSeq _all_clock_intervals_ms;
ysr@777 1087 double _interval_start_time_ms;
ysr@777 1088
ysr@777 1089 int _aborted;
ysr@777 1090 int _aborted_overflow;
ysr@777 1091 int _aborted_cm_aborted;
ysr@777 1092 int _aborted_yield;
ysr@777 1093 int _aborted_timed_out;
ysr@777 1094 int _aborted_satb;
ysr@777 1095 int _aborted_termination;
ysr@777 1096
ysr@777 1097 int _steal_attempts;
ysr@777 1098 int _steals;
ysr@777 1099
ysr@777 1100 int _clock_due_to_marking;
ysr@777 1101 int _clock_due_to_scanning;
ysr@777 1102
ysr@777 1103 int _local_pushes;
ysr@777 1104 int _local_pops;
ysr@777 1105 int _local_max_size;
ysr@777 1106 int _objs_scanned;
ysr@777 1107
ysr@777 1108 int _global_pushes;
ysr@777 1109 int _global_pops;
ysr@777 1110 int _global_max_size;
ysr@777 1111
ysr@777 1112 int _global_transfers_to;
ysr@777 1113 int _global_transfers_from;
ysr@777 1114
ysr@777 1115 int _regions_claimed;
ysr@777 1116 int _objs_found_on_bitmap;
ysr@777 1117
ysr@777 1118 int _satb_buffers_processed;
ysr@777 1119 #endif // _MARKING_STATS_
ysr@777 1120
ysr@777 1121 // it updates the local fields after this task has claimed
ysr@777 1122 // a new region to scan
ysr@777 1123 void setup_for_region(HeapRegion* hr);
ysr@777 1124 // it brings up-to-date the limit of the region
ysr@777 1125 void update_region_limit();
ysr@777 1126
ysr@777 1127 // called when either the words scanned or the refs visited limit
ysr@777 1128 // has been reached
ysr@777 1129 void reached_limit();
ysr@777 1130 // recalculates the words scanned and refs visited limits
ysr@777 1131 void recalculate_limits();
ysr@777 1132 // decreases the words scanned and refs visited limits when we reach
ysr@777 1133 // an expensive operation
ysr@777 1134 void decrease_limits();
ysr@777 1135 // it checks whether the words scanned or refs visited reached their
ysr@777 1136 // respective limit and calls reached_limit() if they have
ysr@777 1137 void check_limits() {
ysr@777 1138 if (_words_scanned >= _words_scanned_limit ||
tonyp@2973 1139 _refs_reached >= _refs_reached_limit) {
ysr@777 1140 reached_limit();
tonyp@2973 1141 }
ysr@777 1142 }
ysr@777 1143 // this is supposed to be called regularly during a marking step as
ysr@777 1144 // it checks a bunch of conditions that might cause the marking step
ysr@777 1145 // to abort
ysr@777 1146 void regular_clock_call();
ysr@777 1147 bool concurrent() { return _concurrent; }
ysr@777 1148
ysr@777 1149 public:
ysr@777 1150 // It resets the task; it should be called right at the beginning of
ysr@777 1151 // a marking phase.
ysr@777 1152 void reset(CMBitMap* _nextMarkBitMap);
ysr@777 1153 // it clears all the fields that correspond to a claimed region.
ysr@777 1154 void clear_region_fields();
ysr@777 1155
ysr@777 1156 void set_concurrent(bool concurrent) { _concurrent = concurrent; }
ysr@777 1157
ysr@777 1158 // The main method of this class which performs a marking step
ysr@777 1159 // trying not to exceed the given duration. However, it might exit
ysr@777 1160 // prematurely, according to some conditions (i.e. SATB buffers are
ysr@777 1161 // available for processing).
johnc@4787 1162 void do_marking_step(double target_ms,
johnc@4787 1163 bool do_termination,
johnc@4787 1164 bool is_serial);
ysr@777 1165
ysr@777 1166 // These two calls start and stop the timer
ysr@777 1167 void record_start_time() {
ysr@777 1168 _elapsed_time_ms = os::elapsedTime() * 1000.0;
ysr@777 1169 }
ysr@777 1170 void record_end_time() {
ysr@777 1171 _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
ysr@777 1172 }
ysr@777 1173
johnc@4173 1174 // returns the worker ID associated with this task.
johnc@4173 1175 uint worker_id() { return _worker_id; }
ysr@777 1176
ysr@777 1177 // From TerminatorTerminator. It determines whether this task should
ysr@777 1178 // exit the termination protocol after it's entered it.
ysr@777 1179 virtual bool should_exit_termination();
ysr@777 1180
johnc@2910 1181 // Resets the local region fields after a task has finished scanning a
johnc@2910 1182 // region; or when they have become stale as a result of the region
johnc@2910 1183 // being evacuated.
johnc@2910 1184 void giveup_current_region();
johnc@2910 1185
ysr@777 1186 HeapWord* finger() { return _finger; }
ysr@777 1187
ysr@777 1188 bool has_aborted() { return _has_aborted; }
ysr@777 1189 void set_has_aborted() { _has_aborted = true; }
ysr@777 1190 void clear_has_aborted() { _has_aborted = false; }
johnc@2494 1191 bool has_timed_out() { return _has_timed_out; }
johnc@2494 1192 bool claimed() { return _claimed; }
ysr@777 1193
tonyp@2968 1194 void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
ysr@777 1195
ysr@777 1196 // It grays the object by marking it and, if necessary, pushing it
ysr@777 1197 // on the local queue
tonyp@2968 1198 inline void deal_with_reference(oop obj);
ysr@777 1199
ysr@777 1200 // It scans an object and visits its children.
tonyp@2968 1201 void scan_object(oop obj);
ysr@777 1202
ysr@777 1203 // It pushes an object on the local queue.
tonyp@2968 1204 inline void push(oop obj);
ysr@777 1205
ysr@777 1206 // These two move entries to/from the global stack.
ysr@777 1207 void move_entries_to_global_stack();
ysr@777 1208 void get_entries_from_global_stack();
ysr@777 1209
ysr@777 1210 // It pops and scans objects from the local queue. If partially is
ysr@777 1211 // true, then it stops when the queue size is of a given limit. If
ysr@777 1212 // partially is false, then it stops when the queue is empty.
ysr@777 1213 void drain_local_queue(bool partially);
ysr@777 1214 // It moves entries from the global stack to the local queue and
ysr@777 1215 // drains the local queue. If partially is true, then it stops when
ysr@777 1216 // both the global stack and the local queue reach a given size. If
ysr@777 1217 // partially if false, it tries to empty them totally.
ysr@777 1218 void drain_global_stack(bool partially);
ysr@777 1219 // It keeps picking SATB buffers and processing them until no SATB
ysr@777 1220 // buffers are available.
ysr@777 1221 void drain_satb_buffers();
tonyp@3416 1222
ysr@777 1223 // moves the local finger to a new location
ysr@777 1224 inline void move_finger_to(HeapWord* new_finger) {
tonyp@1458 1225 assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
ysr@777 1226 _finger = new_finger;
ysr@777 1227 }
ysr@777 1228
johnc@4173 1229 CMTask(uint worker_id, ConcurrentMark *cm,
johnc@3463 1230 size_t* marked_bytes, BitMap* card_bm,
ysr@777 1231 CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
ysr@777 1232
ysr@777 1233 // it prints statistics associated with this task
ysr@777 1234 void print_stats();
ysr@777 1235
ysr@777 1236 #if _MARKING_STATS_
ysr@777 1237 void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
ysr@777 1238 #endif // _MARKING_STATS_
ysr@777 1239 };
stefank@2314 1240
tonyp@2717 1241 // Class that's used to to print out per-region liveness
tonyp@2717 1242 // information. It's currently used at the end of marking and also
tonyp@2717 1243 // after we sort the old regions at the end of the cleanup operation.
tonyp@2717 1244 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
tonyp@2717 1245 private:
tonyp@2717 1246 outputStream* _out;
tonyp@2717 1247
tonyp@2717 1248 // Accumulators for these values.
tonyp@2717 1249 size_t _total_used_bytes;
tonyp@2717 1250 size_t _total_capacity_bytes;
tonyp@2717 1251 size_t _total_prev_live_bytes;
tonyp@2717 1252 size_t _total_next_live_bytes;
tonyp@2717 1253
tonyp@2717 1254 // These are set up when we come across a "stars humongous" region
tonyp@2717 1255 // (as this is where most of this information is stored, not in the
tonyp@2717 1256 // subsequent "continues humongous" regions). After that, for every
tonyp@2717 1257 // region in a given humongous region series we deduce the right
tonyp@2717 1258 // values for it by simply subtracting the appropriate amount from
tonyp@2717 1259 // these fields. All these values should reach 0 after we've visited
tonyp@2717 1260 // the last region in the series.
tonyp@2717 1261 size_t _hum_used_bytes;
tonyp@2717 1262 size_t _hum_capacity_bytes;
tonyp@2717 1263 size_t _hum_prev_live_bytes;
tonyp@2717 1264 size_t _hum_next_live_bytes;
tonyp@2717 1265
tschatzl@5122 1266 // Accumulator for the remembered set size
tschatzl@5122 1267 size_t _total_remset_bytes;
tschatzl@5122 1268
johnc@5548 1269 // Accumulator for strong code roots memory size
johnc@5548 1270 size_t _total_strong_code_roots_bytes;
johnc@5548 1271
tonyp@2717 1272 static double perc(size_t val, size_t total) {
tonyp@2717 1273 if (total == 0) {
tonyp@2717 1274 return 0.0;
tonyp@2717 1275 } else {
tonyp@2717 1276 return 100.0 * ((double) val / (double) total);
tonyp@2717 1277 }
tonyp@2717 1278 }
tonyp@2717 1279
tonyp@2717 1280 static double bytes_to_mb(size_t val) {
tonyp@2717 1281 return (double) val / (double) M;
tonyp@2717 1282 }
tonyp@2717 1283
tonyp@2717 1284 // See the .cpp file.
tonyp@2717 1285 size_t get_hum_bytes(size_t* hum_bytes);
tonyp@2717 1286 void get_hum_bytes(size_t* used_bytes, size_t* capacity_bytes,
tonyp@2717 1287 size_t* prev_live_bytes, size_t* next_live_bytes);
tonyp@2717 1288
tonyp@2717 1289 public:
tonyp@2717 1290 // The header and footer are printed in the constructor and
tonyp@2717 1291 // destructor respectively.
tonyp@2717 1292 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name);
tonyp@2717 1293 virtual bool doHeapRegion(HeapRegion* r);
tonyp@2717 1294 ~G1PrintRegionLivenessInfoClosure();
tonyp@2717 1295 };
tonyp@2717 1296
stefank@2314 1297 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP

mercurial