src/share/vm/gc_implementation/g1/concurrentMark.hpp

Wed, 14 May 2014 14:32:23 +0200

author
pliden
date
Wed, 14 May 2014 14:32:23 +0200
changeset 6693
8a140676873f
parent 6385
58fc1b1523dc
child 6876
710a3c8b516e
child 6904
0982ec23da03
permissions
-rw-r--r--

8040804: G1: Concurrent mark stuck in loop calling os::elapsedVTime()
Reviewed-by: brutisso, tschatzl

ysr@777 1 /*
johnc@4386 2 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
stefank@2314 27
brutisso@6385 28 #include "gc_implementation/g1/heapRegionSet.hpp"
stefank@2314 29 #include "utilities/taskqueue.hpp"
stefank@2314 30
ysr@777 31 class G1CollectedHeap;
ysr@777 32 class CMTask;
zgu@3900 33 typedef GenericTaskQueue<oop, mtGC> CMTaskQueue;
zgu@3900 34 typedef GenericTaskQueueSet<CMTaskQueue, mtGC> CMTaskQueueSet;
ysr@777 35
johnc@2379 36 // Closure used by CM during concurrent reference discovery
johnc@2379 37 // and reference processing (during remarking) to determine
johnc@2379 38 // if a particular object is alive. It is primarily used
johnc@2379 39 // to determine if referents of discovered reference objects
johnc@2379 40 // are alive. An instance is also embedded into the
johnc@2379 41 // reference processor as the _is_alive_non_header field
johnc@2379 42 class G1CMIsAliveClosure: public BoolObjectClosure {
johnc@2379 43 G1CollectedHeap* _g1;
johnc@2379 44 public:
tonyp@3691 45 G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
johnc@2379 46
johnc@2379 47 bool do_object_b(oop obj);
johnc@2379 48 };
johnc@2379 49
ysr@777 50 // A generic CM bit map. This is essentially a wrapper around the BitMap
ysr@777 51 // class, with one bit per (1<<_shifter) HeapWords.
ysr@777 52
apetrusenko@984 53 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
ysr@777 54 protected:
ysr@777 55 HeapWord* _bmStartWord; // base address of range covered by map
ysr@777 56 size_t _bmWordSize; // map size (in #HeapWords covered)
ysr@777 57 const int _shifter; // map to char or bit
ysr@777 58 VirtualSpace _virtual_space; // underlying the bit map
ysr@777 59 BitMap _bm; // the bit map itself
ysr@777 60
ysr@777 61 public:
ysr@777 62 // constructor
johnc@4333 63 CMBitMapRO(int shifter);
ysr@777 64
ysr@777 65 enum { do_yield = true };
ysr@777 66
ysr@777 67 // inquiries
ysr@777 68 HeapWord* startWord() const { return _bmStartWord; }
ysr@777 69 size_t sizeInWords() const { return _bmWordSize; }
ysr@777 70 // the following is one past the last word in space
ysr@777 71 HeapWord* endWord() const { return _bmStartWord + _bmWordSize; }
ysr@777 72
ysr@777 73 // read marks
ysr@777 74
ysr@777 75 bool isMarked(HeapWord* addr) const {
ysr@777 76 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 77 "outside underlying space?");
ysr@777 78 return _bm.at(heapWordToOffset(addr));
ysr@777 79 }
ysr@777 80
ysr@777 81 // iteration
johnc@3454 82 inline bool iterate(BitMapClosure* cl, MemRegion mr);
johnc@3454 83 inline bool iterate(BitMapClosure* cl);
ysr@777 84
ysr@777 85 // Return the address corresponding to the next marked bit at or after
ysr@777 86 // "addr", and before "limit", if "limit" is non-NULL. If there is no
ysr@777 87 // such bit, returns "limit" if that is non-NULL, or else "endWord()".
ysr@777 88 HeapWord* getNextMarkedWordAddress(HeapWord* addr,
ysr@777 89 HeapWord* limit = NULL) const;
ysr@777 90 // Return the address corresponding to the next unmarked bit at or after
ysr@777 91 // "addr", and before "limit", if "limit" is non-NULL. If there is no
ysr@777 92 // such bit, returns "limit" if that is non-NULL, or else "endWord()".
ysr@777 93 HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
ysr@777 94 HeapWord* limit = NULL) const;
ysr@777 95
ysr@777 96 // conversion utilities
ysr@777 97 HeapWord* offsetToHeapWord(size_t offset) const {
ysr@777 98 return _bmStartWord + (offset << _shifter);
ysr@777 99 }
ysr@777 100 size_t heapWordToOffset(HeapWord* addr) const {
ysr@777 101 return pointer_delta(addr, _bmStartWord) >> _shifter;
ysr@777 102 }
ysr@777 103 int heapWordDiffToOffsetDiff(size_t diff) const;
tamao@4733 104
tamao@4733 105 // The argument addr should be the start address of a valid object
tamao@4733 106 HeapWord* nextObject(HeapWord* addr) {
tamao@4733 107 oop obj = (oop) addr;
tamao@4733 108 HeapWord* res = addr + obj->size();
tamao@4733 109 assert(offsetToHeapWord(heapWordToOffset(res)) == res, "sanity");
tamao@4733 110 return res;
ysr@777 111 }
ysr@777 112
stefank@4904 113 void print_on_error(outputStream* st, const char* prefix) const;
stefank@4904 114
ysr@777 115 // debugging
ysr@777 116 NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
ysr@777 117 };
ysr@777 118
ysr@777 119 class CMBitMap : public CMBitMapRO {
ysr@777 120
ysr@777 121 public:
ysr@777 122 // constructor
johnc@4333 123 CMBitMap(int shifter) :
johnc@4333 124 CMBitMapRO(shifter) {}
johnc@4333 125
johnc@4333 126 // Allocates the back store for the marking bitmap
johnc@4333 127 bool allocate(ReservedSpace heap_rs);
ysr@777 128
ysr@777 129 // write marks
ysr@777 130 void mark(HeapWord* addr) {
ysr@777 131 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 132 "outside underlying space?");
tonyp@2968 133 _bm.set_bit(heapWordToOffset(addr));
ysr@777 134 }
ysr@777 135 void clear(HeapWord* addr) {
ysr@777 136 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 137 "outside underlying space?");
tonyp@2968 138 _bm.clear_bit(heapWordToOffset(addr));
ysr@777 139 }
ysr@777 140 bool parMark(HeapWord* addr) {
ysr@777 141 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 142 "outside underlying space?");
tonyp@2968 143 return _bm.par_set_bit(heapWordToOffset(addr));
ysr@777 144 }
ysr@777 145 bool parClear(HeapWord* addr) {
ysr@777 146 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 147 "outside underlying space?");
tonyp@2968 148 return _bm.par_clear_bit(heapWordToOffset(addr));
ysr@777 149 }
ysr@777 150 void markRange(MemRegion mr);
ysr@777 151 void clearAll();
ysr@777 152 void clearRange(MemRegion mr);
ysr@777 153
ysr@777 154 // Starting at the bit corresponding to "addr" (inclusive), find the next
ysr@777 155 // "1" bit, if any. This bit starts some run of consecutive "1"'s; find
ysr@777 156 // the end of this run (stopping at "end_addr"). Return the MemRegion
ysr@777 157 // covering from the start of the region corresponding to the first bit
ysr@777 158 // of the run to the end of the region corresponding to the last bit of
ysr@777 159 // the run. If there is no "1" bit at or after "addr", return an empty
ysr@777 160 // MemRegion.
ysr@777 161 MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
ysr@777 162 };
ysr@777 163
johnc@4333 164 // Represents a marking stack used by ConcurrentMarking in the G1 collector.
apetrusenko@984 165 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
johnc@4333 166 VirtualSpace _virtual_space; // Underlying backing store for actual stack
ysr@777 167 ConcurrentMark* _cm;
johnc@4787 168 oop* _base; // bottom of stack
johnc@4333 169 jint _index; // one more than last occupied index
johnc@4333 170 jint _capacity; // max #elements
johnc@4333 171 jint _saved_index; // value of _index saved at start of GC
johnc@4333 172 NOT_PRODUCT(jint _max_depth;) // max depth plumbed during run
ysr@777 173
johnc@4333 174 bool _overflow;
johnc@4333 175 bool _should_expand;
ysr@777 176 DEBUG_ONLY(bool _drain_in_progress;)
ysr@777 177 DEBUG_ONLY(bool _drain_in_progress_yields;)
ysr@777 178
ysr@777 179 public:
ysr@777 180 CMMarkStack(ConcurrentMark* cm);
ysr@777 181 ~CMMarkStack();
ysr@777 182
johnc@4333 183 #ifndef PRODUCT
johnc@4333 184 jint max_depth() const {
johnc@4333 185 return _max_depth;
johnc@4333 186 }
johnc@4333 187 #endif
johnc@4333 188
johnc@4333 189 bool allocate(size_t capacity);
ysr@777 190
ysr@777 191 oop pop() {
ysr@777 192 if (!isEmpty()) {
ysr@777 193 return _base[--_index] ;
ysr@777 194 }
ysr@777 195 return NULL;
ysr@777 196 }
ysr@777 197
ysr@777 198 // If overflow happens, don't do the push, and record the overflow.
ysr@777 199 // *Requires* that "ptr" is already marked.
ysr@777 200 void push(oop ptr) {
ysr@777 201 if (isFull()) {
ysr@777 202 // Record overflow.
ysr@777 203 _overflow = true;
ysr@777 204 return;
ysr@777 205 } else {
ysr@777 206 _base[_index++] = ptr;
ysr@777 207 NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
ysr@777 208 }
ysr@777 209 }
ysr@777 210 // Non-block impl. Note: concurrency is allowed only with other
ysr@777 211 // "par_push" operations, not with "pop" or "drain". We would need
ysr@777 212 // parallel versions of them if such concurrency was desired.
ysr@777 213 void par_push(oop ptr);
ysr@777 214
ysr@777 215 // Pushes the first "n" elements of "ptr_arr" on the stack.
ysr@777 216 // Non-block impl. Note: concurrency is allowed only with other
ysr@777 217 // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
ysr@777 218 void par_adjoin_arr(oop* ptr_arr, int n);
ysr@777 219
ysr@777 220 // Pushes the first "n" elements of "ptr_arr" on the stack.
ysr@777 221 // Locking impl: concurrency is allowed only with
ysr@777 222 // "par_push_arr" and/or "par_pop_arr" operations, which use the same
ysr@777 223 // locking strategy.
ysr@777 224 void par_push_arr(oop* ptr_arr, int n);
ysr@777 225
ysr@777 226 // If returns false, the array was empty. Otherwise, removes up to "max"
ysr@777 227 // elements from the stack, and transfers them to "ptr_arr" in an
ysr@777 228 // unspecified order. The actual number transferred is given in "n" ("n
ysr@777 229 // == 0" is deliberately redundant with the return value.) Locking impl:
ysr@777 230 // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
ysr@777 231 // operations, which use the same locking strategy.
ysr@777 232 bool par_pop_arr(oop* ptr_arr, int max, int* n);
ysr@777 233
ysr@777 234 // Drain the mark stack, applying the given closure to all fields of
ysr@777 235 // objects on the stack. (That is, continue until the stack is empty,
ysr@777 236 // even if closure applications add entries to the stack.) The "bm"
ysr@777 237 // argument, if non-null, may be used to verify that only marked objects
ysr@777 238 // are on the mark stack. If "yield_after" is "true", then the
ysr@777 239 // concurrent marker performing the drain offers to yield after
ysr@777 240 // processing each object. If a yield occurs, stops the drain operation
ysr@777 241 // and returns false. Otherwise, returns true.
ysr@777 242 template<class OopClosureClass>
ysr@777 243 bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
ysr@777 244
ysr@777 245 bool isEmpty() { return _index == 0; }
ysr@777 246 bool isFull() { return _index == _capacity; }
johnc@4333 247 int maxElems() { return _capacity; }
ysr@777 248
ysr@777 249 bool overflow() { return _overflow; }
ysr@777 250 void clear_overflow() { _overflow = false; }
ysr@777 251
johnc@4333 252 bool should_expand() const { return _should_expand; }
johnc@4333 253 void set_should_expand();
johnc@4333 254
johnc@4333 255 // Expand the stack, typically in response to an overflow condition
johnc@4333 256 void expand();
johnc@4333 257
ysr@777 258 int size() { return _index; }
ysr@777 259
ysr@777 260 void setEmpty() { _index = 0; clear_overflow(); }
ysr@777 261
tonyp@3416 262 // Record the current index.
tonyp@3416 263 void note_start_of_gc();
tonyp@3416 264
tonyp@3416 265 // Make sure that we have not added any entries to the stack during GC.
tonyp@3416 266 void note_end_of_gc();
tonyp@3416 267
ysr@777 268 // iterate over the oops in the mark stack, up to the bound recorded via
ysr@777 269 // the call above.
ysr@777 270 void oops_do(OopClosure* f);
ysr@777 271 };
ysr@777 272
tonyp@2848 273 class ForceOverflowSettings VALUE_OBJ_CLASS_SPEC {
tonyp@2848 274 private:
tonyp@2848 275 #ifndef PRODUCT
tonyp@2848 276 uintx _num_remaining;
tonyp@2848 277 bool _force;
tonyp@2848 278 #endif // !defined(PRODUCT)
tonyp@2848 279
tonyp@2848 280 public:
tonyp@2848 281 void init() PRODUCT_RETURN;
tonyp@2848 282 void update() PRODUCT_RETURN;
tonyp@2848 283 bool should_force() PRODUCT_RETURN_( return false; );
tonyp@2848 284 };
tonyp@2848 285
ysr@777 286 // this will enable a variety of different statistics per GC task
ysr@777 287 #define _MARKING_STATS_ 0
ysr@777 288 // this will enable the higher verbose levels
ysr@777 289 #define _MARKING_VERBOSE_ 0
ysr@777 290
ysr@777 291 #if _MARKING_STATS_
ysr@777 292 #define statsOnly(statement) \
ysr@777 293 do { \
ysr@777 294 statement ; \
ysr@777 295 } while (0)
ysr@777 296 #else // _MARKING_STATS_
ysr@777 297 #define statsOnly(statement) \
ysr@777 298 do { \
ysr@777 299 } while (0)
ysr@777 300 #endif // _MARKING_STATS_
ysr@777 301
ysr@777 302 typedef enum {
ysr@777 303 no_verbose = 0, // verbose turned off
ysr@777 304 stats_verbose, // only prints stats at the end of marking
ysr@777 305 low_verbose, // low verbose, mostly per region and per major event
ysr@777 306 medium_verbose, // a bit more detailed than low
ysr@777 307 high_verbose // per object verbose
ysr@777 308 } CMVerboseLevel;
ysr@777 309
tonyp@3464 310 class YoungList;
tonyp@3464 311
tonyp@3464 312 // Root Regions are regions that are not empty at the beginning of a
tonyp@3464 313 // marking cycle and which we might collect during an evacuation pause
tonyp@3464 314 // while the cycle is active. Given that, during evacuation pauses, we
tonyp@3464 315 // do not copy objects that are explicitly marked, what we have to do
tonyp@3464 316 // for the root regions is to scan them and mark all objects reachable
tonyp@3464 317 // from them. According to the SATB assumptions, we only need to visit
tonyp@3464 318 // each object once during marking. So, as long as we finish this scan
tonyp@3464 319 // before the next evacuation pause, we can copy the objects from the
tonyp@3464 320 // root regions without having to mark them or do anything else to them.
tonyp@3464 321 //
tonyp@3464 322 // Currently, we only support root region scanning once (at the start
tonyp@3464 323 // of the marking cycle) and the root regions are all the survivor
tonyp@3464 324 // regions populated during the initial-mark pause.
tonyp@3464 325 class CMRootRegions VALUE_OBJ_CLASS_SPEC {
tonyp@3464 326 private:
tonyp@3464 327 YoungList* _young_list;
tonyp@3464 328 ConcurrentMark* _cm;
tonyp@3464 329
tonyp@3464 330 volatile bool _scan_in_progress;
tonyp@3464 331 volatile bool _should_abort;
tonyp@3464 332 HeapRegion* volatile _next_survivor;
tonyp@3464 333
tonyp@3464 334 public:
tonyp@3464 335 CMRootRegions();
tonyp@3464 336 // We actually do most of the initialization in this method.
tonyp@3464 337 void init(G1CollectedHeap* g1h, ConcurrentMark* cm);
tonyp@3464 338
tonyp@3464 339 // Reset the claiming / scanning of the root regions.
tonyp@3464 340 void prepare_for_scan();
tonyp@3464 341
tonyp@3464 342 // Forces get_next() to return NULL so that the iteration aborts early.
tonyp@3464 343 void abort() { _should_abort = true; }
tonyp@3464 344
tonyp@3464 345 // Return true if the CM thread are actively scanning root regions,
tonyp@3464 346 // false otherwise.
tonyp@3464 347 bool scan_in_progress() { return _scan_in_progress; }
tonyp@3464 348
tonyp@3464 349 // Claim the next root region to scan atomically, or return NULL if
tonyp@3464 350 // all have been claimed.
tonyp@3464 351 HeapRegion* claim_next();
tonyp@3464 352
tonyp@3464 353 // Flag that we're done with root region scanning and notify anyone
tonyp@3464 354 // who's waiting on it. If aborted is false, assume that all regions
tonyp@3464 355 // have been claimed.
tonyp@3464 356 void scan_finished();
tonyp@3464 357
tonyp@3464 358 // If CM threads are still scanning root regions, wait until they
tonyp@3464 359 // are done. Return true if we had to wait, false otherwise.
tonyp@3464 360 bool wait_until_scan_finished();
tonyp@3464 361 };
ysr@777 362
ysr@777 363 class ConcurrentMarkThread;
ysr@777 364
zgu@3900 365 class ConcurrentMark: public CHeapObj<mtGC> {
johnc@4333 366 friend class CMMarkStack;
ysr@777 367 friend class ConcurrentMarkThread;
ysr@777 368 friend class CMTask;
ysr@777 369 friend class CMBitMapClosure;
ysr@777 370 friend class CMGlobalObjectClosure;
ysr@777 371 friend class CMRemarkTask;
ysr@777 372 friend class CMConcurrentMarkingTask;
ysr@777 373 friend class G1ParNoteEndTask;
ysr@777 374 friend class CalcLiveObjectsClosure;
johnc@3175 375 friend class G1CMRefProcTaskProxy;
johnc@3175 376 friend class G1CMRefProcTaskExecutor;
johnc@4555 377 friend class G1CMKeepAliveAndDrainClosure;
johnc@4555 378 friend class G1CMDrainMarkingStackClosure;
ysr@777 379
ysr@777 380 protected:
ysr@777 381 ConcurrentMarkThread* _cmThread; // the thread doing the work
ysr@777 382 G1CollectedHeap* _g1h; // the heap.
jmasa@3357 383 uint _parallel_marking_threads; // the number of marking
jmasa@3294 384 // threads we're use
jmasa@3357 385 uint _max_parallel_marking_threads; // max number of marking
jmasa@3294 386 // threads we'll ever use
ysr@777 387 double _sleep_factor; // how much we have to sleep, with
ysr@777 388 // respect to the work we just did, to
ysr@777 389 // meet the marking overhead goal
ysr@777 390 double _marking_task_overhead; // marking target overhead for
ysr@777 391 // a single task
ysr@777 392
ysr@777 393 // same as the two above, but for the cleanup task
ysr@777 394 double _cleanup_sleep_factor;
ysr@777 395 double _cleanup_task_overhead;
ysr@777 396
tonyp@2472 397 FreeRegionList _cleanup_list;
ysr@777 398
brutisso@3455 399 // Concurrent marking support structures
ysr@777 400 CMBitMap _markBitMap1;
ysr@777 401 CMBitMap _markBitMap2;
ysr@777 402 CMBitMapRO* _prevMarkBitMap; // completed mark bitmap
ysr@777 403 CMBitMap* _nextMarkBitMap; // under-construction mark bitmap
ysr@777 404
ysr@777 405 BitMap _region_bm;
ysr@777 406 BitMap _card_bm;
ysr@777 407
ysr@777 408 // Heap bounds
ysr@777 409 HeapWord* _heap_start;
ysr@777 410 HeapWord* _heap_end;
ysr@777 411
tonyp@3464 412 // Root region tracking and claiming.
tonyp@3464 413 CMRootRegions _root_regions;
tonyp@3464 414
ysr@777 415 // For gray objects
ysr@777 416 CMMarkStack _markStack; // Grey objects behind global finger.
ysr@777 417 HeapWord* volatile _finger; // the global finger, region aligned,
ysr@777 418 // always points to the end of the
ysr@777 419 // last claimed region
ysr@777 420
ysr@777 421 // marking tasks
johnc@4173 422 uint _max_worker_id;// maximum worker id
jmasa@3357 423 uint _active_tasks; // task num currently active
johnc@4173 424 CMTask** _tasks; // task queue array (max_worker_id len)
ysr@777 425 CMTaskQueueSet* _task_queues; // task queue set
ysr@777 426 ParallelTaskTerminator _terminator; // for termination
ysr@777 427
ysr@777 428 // Two sync barriers that are used to synchronise tasks when an
ysr@777 429 // overflow occurs. The algorithm is the following. All tasks enter
ysr@777 430 // the first one to ensure that they have all stopped manipulating
ysr@777 431 // the global data structures. After they exit it, they re-initialise
ysr@777 432 // their data structures and task 0 re-initialises the global data
ysr@777 433 // structures. Then, they enter the second sync barrier. This
ysr@777 434 // ensure, that no task starts doing work before all data
ysr@777 435 // structures (local and global) have been re-initialised. When they
ysr@777 436 // exit it, they are free to start working again.
ysr@777 437 WorkGangBarrierSync _first_overflow_barrier_sync;
ysr@777 438 WorkGangBarrierSync _second_overflow_barrier_sync;
ysr@777 439
ysr@777 440 // this is set by any task, when an overflow on the global data
ysr@777 441 // structures is detected.
ysr@777 442 volatile bool _has_overflown;
ysr@777 443 // true: marking is concurrent, false: we're in remark
ysr@777 444 volatile bool _concurrent;
ysr@777 445 // set at the end of a Full GC so that marking aborts
ysr@777 446 volatile bool _has_aborted;
johnc@2190 447
ysr@777 448 // used when remark aborts due to an overflow to indicate that
ysr@777 449 // another concurrent marking phase should start
ysr@777 450 volatile bool _restart_for_overflow;
ysr@777 451
ysr@777 452 // This is true from the very start of concurrent marking until the
ysr@777 453 // point when all the tasks complete their work. It is really used
ysr@777 454 // to determine the points between the end of concurrent marking and
ysr@777 455 // time of remark.
ysr@777 456 volatile bool _concurrent_marking_in_progress;
ysr@777 457
ysr@777 458 // verbose level
ysr@777 459 CMVerboseLevel _verbose_level;
ysr@777 460
ysr@777 461 // All of these times are in ms.
ysr@777 462 NumberSeq _init_times;
ysr@777 463 NumberSeq _remark_times;
ysr@777 464 NumberSeq _remark_mark_times;
ysr@777 465 NumberSeq _remark_weak_ref_times;
ysr@777 466 NumberSeq _cleanup_times;
ysr@777 467 double _total_counting_time;
ysr@777 468 double _total_rs_scrub_time;
ysr@777 469
ysr@777 470 double* _accum_task_vtime; // accumulated task vtime
ysr@777 471
jmasa@3294 472 FlexibleWorkGang* _parallel_workers;
ysr@777 473
tonyp@2848 474 ForceOverflowSettings _force_overflow_conc;
tonyp@2848 475 ForceOverflowSettings _force_overflow_stw;
tonyp@2848 476
ysr@777 477 void weakRefsWork(bool clear_all_soft_refs);
ysr@777 478
ysr@777 479 void swapMarkBitMaps();
ysr@777 480
ysr@777 481 // It resets the global marking data structures, as well as the
ysr@777 482 // task local ones; should be called during initial mark.
ysr@777 483 void reset();
johnc@4386 484
johnc@4386 485 // Resets all the marking data structures. Called when we have to restart
johnc@4386 486 // marking or when marking completes (via set_non_marking_state below).
johnc@4386 487 void reset_marking_state(bool clear_overflow = true);
johnc@4386 488
johnc@4386 489 // We do this after we're done with marking so that the marking data
johnc@4386 490 // structures are initialised to a sensible and predictable state.
johnc@4386 491 void set_non_marking_state();
ysr@777 492
johnc@4788 493 // Called to indicate how many threads are currently active.
johnc@4788 494 void set_concurrency(uint active_tasks);
johnc@4788 495
ysr@777 496 // It should be called to indicate which phase we're in (concurrent
ysr@777 497 // mark or remark) and how many threads are currently active.
johnc@4788 498 void set_concurrency_and_phase(uint active_tasks, bool concurrent);
ysr@777 499
ysr@777 500 // prints all gathered CM-related statistics
ysr@777 501 void print_stats();
ysr@777 502
tonyp@2472 503 bool cleanup_list_is_empty() {
tonyp@2472 504 return _cleanup_list.is_empty();
tonyp@2472 505 }
tonyp@2472 506
ysr@777 507 // accessor methods
johnc@4549 508 uint parallel_marking_threads() const { return _parallel_marking_threads; }
johnc@4549 509 uint max_parallel_marking_threads() const { return _max_parallel_marking_threads;}
johnc@4549 510 double sleep_factor() { return _sleep_factor; }
johnc@4549 511 double marking_task_overhead() { return _marking_task_overhead;}
johnc@4549 512 double cleanup_sleep_factor() { return _cleanup_sleep_factor; }
johnc@4549 513 double cleanup_task_overhead() { return _cleanup_task_overhead;}
ysr@777 514
johnc@4549 515 bool use_parallel_marking_threads() const {
johnc@4549 516 assert(parallel_marking_threads() <=
johnc@4549 517 max_parallel_marking_threads(), "sanity");
johnc@4549 518 assert((_parallel_workers == NULL && parallel_marking_threads() == 0) ||
johnc@4549 519 parallel_marking_threads() > 0,
johnc@4549 520 "parallel workers not set up correctly");
johnc@4549 521 return _parallel_workers != NULL;
johnc@4549 522 }
johnc@4549 523
johnc@4549 524 HeapWord* finger() { return _finger; }
johnc@4549 525 bool concurrent() { return _concurrent; }
johnc@4549 526 uint active_tasks() { return _active_tasks; }
johnc@4549 527 ParallelTaskTerminator* terminator() { return &_terminator; }
ysr@777 528
ysr@777 529 // It claims the next available region to be scanned by a marking
johnc@4173 530 // task/thread. It might return NULL if the next region is empty or
johnc@4173 531 // we have run out of regions. In the latter case, out_of_regions()
ysr@777 532 // determines whether we've really run out of regions or the task
johnc@4173 533 // should call claim_region() again. This might seem a bit
ysr@777 534 // awkward. Originally, the code was written so that claim_region()
ysr@777 535 // either successfully returned with a non-empty region or there
ysr@777 536 // were no more regions to be claimed. The problem with this was
ysr@777 537 // that, in certain circumstances, it iterated over large chunks of
ysr@777 538 // the heap finding only empty regions and, while it was working, it
ysr@777 539 // was preventing the calling task to call its regular clock
ysr@777 540 // method. So, this way, each task will spend very little time in
ysr@777 541 // claim_region() and is allowed to call the regular clock method
ysr@777 542 // frequently.
johnc@4173 543 HeapRegion* claim_region(uint worker_id);
ysr@777 544
pliden@6693 545 // It determines whether we've run out of regions to scan. Note that
pliden@6693 546 // the finger can point past the heap end in case the heap was expanded
pliden@6693 547 // to satisfy an allocation without doing a GC. This is fine, because all
pliden@6693 548 // objects in those regions will be considered live anyway because of
pliden@6693 549 // SATB guarantees (i.e. their TAMS will be equal to bottom).
pliden@6693 550 bool out_of_regions() { return _finger >= _heap_end; }
ysr@777 551
ysr@777 552 // Returns the task with the given id
ysr@777 553 CMTask* task(int id) {
tonyp@1458 554 assert(0 <= id && id < (int) _active_tasks,
tonyp@1458 555 "task id not within active bounds");
ysr@777 556 return _tasks[id];
ysr@777 557 }
ysr@777 558
ysr@777 559 // Returns the task queue with the given id
ysr@777 560 CMTaskQueue* task_queue(int id) {
tonyp@1458 561 assert(0 <= id && id < (int) _active_tasks,
tonyp@1458 562 "task queue id not within active bounds");
ysr@777 563 return (CMTaskQueue*) _task_queues->queue(id);
ysr@777 564 }
ysr@777 565
ysr@777 566 // Returns the task queue set
ysr@777 567 CMTaskQueueSet* task_queues() { return _task_queues; }
ysr@777 568
ysr@777 569 // Access / manipulation of the overflow flag which is set to
tonyp@3691 570 // indicate that the global stack has overflown
ysr@777 571 bool has_overflown() { return _has_overflown; }
ysr@777 572 void set_has_overflown() { _has_overflown = true; }
ysr@777 573 void clear_has_overflown() { _has_overflown = false; }
tonyp@3464 574 bool restart_for_overflow() { return _restart_for_overflow; }
ysr@777 575
ysr@777 576 // Methods to enter the two overflow sync barriers
johnc@4173 577 void enter_first_sync_barrier(uint worker_id);
johnc@4173 578 void enter_second_sync_barrier(uint worker_id);
ysr@777 579
tonyp@2848 580 ForceOverflowSettings* force_overflow_conc() {
tonyp@2848 581 return &_force_overflow_conc;
tonyp@2848 582 }
tonyp@2848 583
tonyp@2848 584 ForceOverflowSettings* force_overflow_stw() {
tonyp@2848 585 return &_force_overflow_stw;
tonyp@2848 586 }
tonyp@2848 587
tonyp@2848 588 ForceOverflowSettings* force_overflow() {
tonyp@2848 589 if (concurrent()) {
tonyp@2848 590 return force_overflow_conc();
tonyp@2848 591 } else {
tonyp@2848 592 return force_overflow_stw();
tonyp@2848 593 }
tonyp@2848 594 }
tonyp@2848 595
johnc@3463 596 // Live Data Counting data structures...
johnc@3463 597 // These data structures are initialized at the start of
johnc@3463 598 // marking. They are written to while marking is active.
johnc@3463 599 // They are aggregated during remark; the aggregated values
johnc@3463 600 // are then used to populate the _region_bm, _card_bm, and
johnc@3463 601 // the total live bytes, which are then subsequently updated
johnc@3463 602 // during cleanup.
johnc@3463 603
johnc@3463 604 // An array of bitmaps (one bit map per task). Each bitmap
johnc@3463 605 // is used to record the cards spanned by the live objects
johnc@3463 606 // marked by that task/worker.
johnc@3463 607 BitMap* _count_card_bitmaps;
johnc@3463 608
johnc@3463 609 // Used to record the number of marked live bytes
johnc@3463 610 // (for each region, by worker thread).
johnc@3463 611 size_t** _count_marked_bytes;
johnc@3463 612
johnc@3463 613 // Card index of the bottom of the G1 heap. Used for biasing indices into
johnc@3463 614 // the card bitmaps.
johnc@3463 615 intptr_t _heap_bottom_card_num;
johnc@3463 616
johnc@4333 617 // Set to true when initialization is complete
johnc@4333 618 bool _completed_initialization;
johnc@4333 619
ysr@777 620 public:
ysr@777 621 // Manipulation of the global mark stack.
ysr@777 622 // Notice that the first mark_stack_push is CAS-based, whereas the
ysr@777 623 // two below are Mutex-based. This is OK since the first one is only
ysr@777 624 // called during evacuation pauses and doesn't compete with the
ysr@777 625 // other two (which are called by the marking tasks during
ysr@777 626 // concurrent marking or remark).
ysr@777 627 bool mark_stack_push(oop p) {
ysr@777 628 _markStack.par_push(p);
ysr@777 629 if (_markStack.overflow()) {
ysr@777 630 set_has_overflown();
ysr@777 631 return false;
ysr@777 632 }
ysr@777 633 return true;
ysr@777 634 }
ysr@777 635 bool mark_stack_push(oop* arr, int n) {
ysr@777 636 _markStack.par_push_arr(arr, n);
ysr@777 637 if (_markStack.overflow()) {
ysr@777 638 set_has_overflown();
ysr@777 639 return false;
ysr@777 640 }
ysr@777 641 return true;
ysr@777 642 }
ysr@777 643 void mark_stack_pop(oop* arr, int max, int* n) {
ysr@777 644 _markStack.par_pop_arr(arr, max, n);
ysr@777 645 }
tonyp@2973 646 size_t mark_stack_size() { return _markStack.size(); }
ysr@777 647 size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
tonyp@2973 648 bool mark_stack_overflow() { return _markStack.overflow(); }
tonyp@2973 649 bool mark_stack_empty() { return _markStack.isEmpty(); }
ysr@777 650
tonyp@3464 651 CMRootRegions* root_regions() { return &_root_regions; }
tonyp@3464 652
ysr@777 653 bool concurrent_marking_in_progress() {
ysr@777 654 return _concurrent_marking_in_progress;
ysr@777 655 }
ysr@777 656 void set_concurrent_marking_in_progress() {
ysr@777 657 _concurrent_marking_in_progress = true;
ysr@777 658 }
ysr@777 659 void clear_concurrent_marking_in_progress() {
ysr@777 660 _concurrent_marking_in_progress = false;
ysr@777 661 }
ysr@777 662
ysr@777 663 void update_accum_task_vtime(int i, double vtime) {
ysr@777 664 _accum_task_vtime[i] += vtime;
ysr@777 665 }
ysr@777 666
ysr@777 667 double all_task_accum_vtime() {
ysr@777 668 double ret = 0.0;
johnc@4173 669 for (uint i = 0; i < _max_worker_id; ++i)
ysr@777 670 ret += _accum_task_vtime[i];
ysr@777 671 return ret;
ysr@777 672 }
ysr@777 673
ysr@777 674 // Attempts to steal an object from the task queues of other tasks
johnc@4173 675 bool try_stealing(uint worker_id, int* hash_seed, oop& obj) {
johnc@4173 676 return _task_queues->steal(worker_id, hash_seed, obj);
ysr@777 677 }
ysr@777 678
johnc@4333 679 ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs);
ysr@777 680 ~ConcurrentMark();
johnc@3463 681
ysr@777 682 ConcurrentMarkThread* cmThread() { return _cmThread; }
ysr@777 683
ysr@777 684 CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
ysr@777 685 CMBitMap* nextMarkBitMap() const { return _nextMarkBitMap; }
ysr@777 686
jmasa@3294 687 // Returns the number of GC threads to be used in a concurrent
jmasa@3294 688 // phase based on the number of GC threads being used in a STW
jmasa@3294 689 // phase.
jmasa@3357 690 uint scale_parallel_threads(uint n_par_threads);
jmasa@3294 691
jmasa@3294 692 // Calculates the number of GC threads to be used in a concurrent phase.
jmasa@3357 693 uint calc_parallel_marking_threads();
jmasa@3294 694
ysr@777 695 // The following three are interaction between CM and
ysr@777 696 // G1CollectedHeap
ysr@777 697
ysr@777 698 // This notifies CM that a root during initial-mark needs to be
tonyp@3464 699 // grayed. It is MT-safe. word_size is the size of the object in
tonyp@3464 700 // words. It is passed explicitly as sometimes we cannot calculate
tonyp@3464 701 // it from the given object because it might be in an inconsistent
tonyp@3464 702 // state (e.g., in to-space and being copied). So the caller is
tonyp@3464 703 // responsible for dealing with this issue (e.g., get the size from
tonyp@3464 704 // the from-space image when the to-space image might be
tonyp@3464 705 // inconsistent) and always passing the size. hr is the region that
tonyp@3464 706 // contains the object and it's passed optionally from callers who
tonyp@3464 707 // might already have it (no point in recalculating it).
tonyp@3464 708 inline void grayRoot(oop obj, size_t word_size,
tonyp@3464 709 uint worker_id, HeapRegion* hr = NULL);
tonyp@3416 710
tonyp@1823 711 // It iterates over the heap and for each object it comes across it
tonyp@1823 712 // will dump the contents of its reference fields, as well as
tonyp@1823 713 // liveness information for the object and its referents. The dump
tonyp@1823 714 // will be written to a file with the following name:
johnc@2969 715 // G1PrintReachableBaseFile + "." + str.
johnc@2969 716 // vo decides whether the prev (vo == UsePrevMarking), the next
johnc@2969 717 // (vo == UseNextMarking) marking information, or the mark word
johnc@2969 718 // (vo == UseMarkWord) will be used to determine the liveness of
johnc@2969 719 // each object / referent.
johnc@2969 720 // If all is true, all objects in the heap will be dumped, otherwise
johnc@2969 721 // only the live ones. In the dump the following symbols / breviations
johnc@2969 722 // are used:
tonyp@1823 723 // M : an explicitly live object (its bitmap bit is set)
tonyp@1823 724 // > : an implicitly live object (over tams)
tonyp@1823 725 // O : an object outside the G1 heap (typically: in the perm gen)
tonyp@1823 726 // NOT : a reference field whose referent is not live
tonyp@1823 727 // AND MARKED : indicates that an object is both explicitly and
tonyp@1823 728 // implicitly live (it should be one or the other, not both)
tonyp@1823 729 void print_reachable(const char* str,
johnc@2969 730 VerifyOption vo, bool all) PRODUCT_RETURN;
ysr@777 731
ysr@777 732 // Clear the next marking bitmap (will be called concurrently).
ysr@777 733 void clearNextBitmap();
ysr@777 734
ysr@777 735 // These two do the work that needs to be done before and after the
ysr@777 736 // initial root checkpoint. Since this checkpoint can be done at two
ysr@777 737 // different points (i.e. an explicit pause or piggy-backed on a
ysr@777 738 // young collection), then it's nice to be able to easily share the
ysr@777 739 // pre/post code. It might be the case that we can put everything in
ysr@777 740 // the post method. TP
ysr@777 741 void checkpointRootsInitialPre();
ysr@777 742 void checkpointRootsInitialPost();
ysr@777 743
tonyp@3464 744 // Scan all the root regions and mark everything reachable from
tonyp@3464 745 // them.
tonyp@3464 746 void scanRootRegions();
tonyp@3464 747
tonyp@3464 748 // Scan a single root region and mark everything reachable from it.
tonyp@3464 749 void scanRootRegion(HeapRegion* hr, uint worker_id);
tonyp@3464 750
ysr@777 751 // Do concurrent phase of marking, to a tentative transitive closure.
ysr@777 752 void markFromRoots();
ysr@777 753
ysr@777 754 void checkpointRootsFinal(bool clear_all_soft_refs);
ysr@777 755 void checkpointRootsFinalWork();
ysr@777 756 void cleanup();
ysr@777 757 void completeCleanup();
ysr@777 758
ysr@777 759 // Mark in the previous bitmap. NB: this is usually read-only, so use
ysr@777 760 // this carefully!
tonyp@3416 761 inline void markPrev(oop p);
johnc@3463 762
tonyp@3416 763 // Clears marks for all objects in the given range, for the prev,
tonyp@3416 764 // next, or both bitmaps. NB: the previous bitmap is usually
tonyp@3416 765 // read-only, so use this carefully!
tonyp@3416 766 void clearRangePrevBitmap(MemRegion mr);
tonyp@3416 767 void clearRangeNextBitmap(MemRegion mr);
tonyp@3416 768 void clearRangeBothBitmaps(MemRegion mr);
ysr@777 769
tonyp@3416 770 // Notify data structures that a GC has started.
tonyp@3416 771 void note_start_of_gc() {
tonyp@3416 772 _markStack.note_start_of_gc();
ysr@777 773 }
tonyp@3416 774
tonyp@3416 775 // Notify data structures that a GC is finished.
tonyp@3416 776 void note_end_of_gc() {
tonyp@3416 777 _markStack.note_end_of_gc();
tonyp@3416 778 }
tonyp@3416 779
tonyp@3416 780 // Verify that there are no CSet oops on the stacks (taskqueues /
tonyp@3416 781 // global mark stack), enqueued SATB buffers, per-thread SATB
tonyp@3416 782 // buffers, and fingers (global / per-task). The boolean parameters
tonyp@3416 783 // decide which of the above data structures to verify. If marking
tonyp@3416 784 // is not in progress, it's a no-op.
tonyp@3416 785 void verify_no_cset_oops(bool verify_stacks,
tonyp@3416 786 bool verify_enqueued_buffers,
tonyp@3416 787 bool verify_thread_buffers,
tonyp@3416 788 bool verify_fingers) PRODUCT_RETURN;
tonyp@3416 789
ysr@777 790 // It is called at the end of an evacuation pause during marking so
ysr@777 791 // that CM is notified of where the new end of the heap is. It
ysr@777 792 // doesn't do anything if concurrent_marking_in_progress() is false,
ysr@777 793 // unless the force parameter is true.
ysr@777 794 void update_g1_committed(bool force = false);
ysr@777 795
ysr@777 796 bool isMarked(oop p) const {
ysr@777 797 assert(p != NULL && p->is_oop(), "expected an oop");
ysr@777 798 HeapWord* addr = (HeapWord*)p;
ysr@777 799 assert(addr >= _nextMarkBitMap->startWord() ||
ysr@777 800 addr < _nextMarkBitMap->endWord(), "in a region");
ysr@777 801
ysr@777 802 return _nextMarkBitMap->isMarked(addr);
ysr@777 803 }
ysr@777 804
ysr@777 805 inline bool not_yet_marked(oop p) const;
ysr@777 806
ysr@777 807 // XXX Debug code
ysr@777 808 bool containing_card_is_marked(void* p);
ysr@777 809 bool containing_cards_are_marked(void* start, void* last);
ysr@777 810
ysr@777 811 bool isPrevMarked(oop p) const {
ysr@777 812 assert(p != NULL && p->is_oop(), "expected an oop");
ysr@777 813 HeapWord* addr = (HeapWord*)p;
ysr@777 814 assert(addr >= _prevMarkBitMap->startWord() ||
ysr@777 815 addr < _prevMarkBitMap->endWord(), "in a region");
ysr@777 816
ysr@777 817 return _prevMarkBitMap->isMarked(addr);
ysr@777 818 }
ysr@777 819
jmasa@3357 820 inline bool do_yield_check(uint worker_i = 0);
ysr@777 821 inline bool should_yield();
ysr@777 822
ysr@777 823 // Called to abort the marking cycle after a Full GC takes palce.
ysr@777 824 void abort();
ysr@777 825
sla@5237 826 bool has_aborted() { return _has_aborted; }
sla@5237 827
ysr@777 828 // This prints the global/local fingers. It is used for debugging.
ysr@777 829 NOT_PRODUCT(void print_finger();)
ysr@777 830
ysr@777 831 void print_summary_info();
ysr@777 832
tonyp@1454 833 void print_worker_threads_on(outputStream* st) const;
tonyp@1454 834
stefank@4904 835 void print_on_error(outputStream* st) const;
stefank@4904 836
ysr@777 837 // The following indicate whether a given verbose level has been
ysr@777 838 // set. Notice that anything above stats is conditional to
ysr@777 839 // _MARKING_VERBOSE_ having been set to 1
tonyp@2973 840 bool verbose_stats() {
tonyp@2973 841 return _verbose_level >= stats_verbose;
tonyp@2973 842 }
tonyp@2973 843 bool verbose_low() {
tonyp@2973 844 return _MARKING_VERBOSE_ && _verbose_level >= low_verbose;
tonyp@2973 845 }
tonyp@2973 846 bool verbose_medium() {
tonyp@2973 847 return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose;
tonyp@2973 848 }
tonyp@2973 849 bool verbose_high() {
tonyp@2973 850 return _MARKING_VERBOSE_ && _verbose_level >= high_verbose;
tonyp@2973 851 }
johnc@3463 852
johnc@4123 853 // Liveness counting
johnc@4123 854
johnc@4123 855 // Utility routine to set an exclusive range of cards on the given
johnc@4123 856 // card liveness bitmap
johnc@4123 857 inline void set_card_bitmap_range(BitMap* card_bm,
johnc@4123 858 BitMap::idx_t start_idx,
johnc@4123 859 BitMap::idx_t end_idx,
johnc@4123 860 bool is_par);
johnc@3463 861
johnc@3463 862 // Returns the card number of the bottom of the G1 heap.
johnc@3463 863 // Used in biasing indices into accounting card bitmaps.
johnc@3463 864 intptr_t heap_bottom_card_num() const {
johnc@3463 865 return _heap_bottom_card_num;
johnc@3463 866 }
johnc@3463 867
johnc@3463 868 // Returns the card bitmap for a given task or worker id.
johnc@3463 869 BitMap* count_card_bitmap_for(uint worker_id) {
johnc@4173 870 assert(0 <= worker_id && worker_id < _max_worker_id, "oob");
johnc@3463 871 assert(_count_card_bitmaps != NULL, "uninitialized");
johnc@3463 872 BitMap* task_card_bm = &_count_card_bitmaps[worker_id];
johnc@3463 873 assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
johnc@3463 874 return task_card_bm;
johnc@3463 875 }
johnc@3463 876
johnc@3463 877 // Returns the array containing the marked bytes for each region,
johnc@3463 878 // for the given worker or task id.
johnc@3463 879 size_t* count_marked_bytes_array_for(uint worker_id) {
johnc@4173 880 assert(0 <= worker_id && worker_id < _max_worker_id, "oob");
johnc@3463 881 assert(_count_marked_bytes != NULL, "uninitialized");
johnc@3463 882 size_t* marked_bytes_array = _count_marked_bytes[worker_id];
johnc@3463 883 assert(marked_bytes_array != NULL, "uninitialized");
johnc@3463 884 return marked_bytes_array;
johnc@3463 885 }
johnc@3463 886
johnc@3463 887 // Returns the index in the liveness accounting card table bitmap
johnc@3463 888 // for the given address
johnc@3463 889 inline BitMap::idx_t card_bitmap_index_for(HeapWord* addr);
johnc@3463 890
johnc@3463 891 // Counts the size of the given memory region in the the given
johnc@3463 892 // marked_bytes array slot for the given HeapRegion.
johnc@3463 893 // Sets the bits in the given card bitmap that are associated with the
johnc@3463 894 // cards that are spanned by the memory region.
johnc@3463 895 inline void count_region(MemRegion mr, HeapRegion* hr,
johnc@3463 896 size_t* marked_bytes_array,
johnc@3463 897 BitMap* task_card_bm);
johnc@3463 898
johnc@3463 899 // Counts the given memory region in the task/worker counting
johnc@3463 900 // data structures for the given worker id.
tonyp@3464 901 inline void count_region(MemRegion mr, HeapRegion* hr, uint worker_id);
tonyp@3464 902
tonyp@3464 903 // Counts the given memory region in the task/worker counting
tonyp@3464 904 // data structures for the given worker id.
johnc@3463 905 inline void count_region(MemRegion mr, uint worker_id);
johnc@3463 906
johnc@3463 907 // Counts the given object in the given task/worker counting
johnc@3463 908 // data structures.
johnc@3463 909 inline void count_object(oop obj, HeapRegion* hr,
johnc@3463 910 size_t* marked_bytes_array,
johnc@3463 911 BitMap* task_card_bm);
johnc@3463 912
johnc@3463 913 // Counts the given object in the task/worker counting data
johnc@3463 914 // structures for the given worker id.
johnc@3463 915 inline void count_object(oop obj, HeapRegion* hr, uint worker_id);
johnc@3463 916
johnc@3463 917 // Attempts to mark the given object and, if successful, counts
johnc@3463 918 // the object in the given task/worker counting structures.
johnc@3463 919 inline bool par_mark_and_count(oop obj, HeapRegion* hr,
johnc@3463 920 size_t* marked_bytes_array,
johnc@3463 921 BitMap* task_card_bm);
johnc@3463 922
johnc@3463 923 // Attempts to mark the given object and, if successful, counts
johnc@3463 924 // the object in the task/worker counting structures for the
johnc@3463 925 // given worker id.
tonyp@3464 926 inline bool par_mark_and_count(oop obj, size_t word_size,
tonyp@3464 927 HeapRegion* hr, uint worker_id);
tonyp@3464 928
tonyp@3464 929 // Attempts to mark the given object and, if successful, counts
tonyp@3464 930 // the object in the task/worker counting structures for the
tonyp@3464 931 // given worker id.
johnc@3463 932 inline bool par_mark_and_count(oop obj, HeapRegion* hr, uint worker_id);
johnc@3463 933
johnc@3463 934 // Similar to the above routine but we don't know the heap region that
johnc@3463 935 // contains the object to be marked/counted, which this routine looks up.
johnc@3463 936 inline bool par_mark_and_count(oop obj, uint worker_id);
johnc@3463 937
johnc@3463 938 // Similar to the above routine but there are times when we cannot
johnc@3463 939 // safely calculate the size of obj due to races and we, therefore,
johnc@3463 940 // pass the size in as a parameter. It is the caller's reponsibility
johnc@3463 941 // to ensure that the size passed in for obj is valid.
johnc@3463 942 inline bool par_mark_and_count(oop obj, size_t word_size, uint worker_id);
johnc@3463 943
johnc@3463 944 // Unconditionally mark the given object, and unconditinally count
johnc@3463 945 // the object in the counting structures for worker id 0.
johnc@3463 946 // Should *not* be called from parallel code.
johnc@3463 947 inline bool mark_and_count(oop obj, HeapRegion* hr);
johnc@3463 948
johnc@3463 949 // Similar to the above routine but we don't know the heap region that
johnc@3463 950 // contains the object to be marked/counted, which this routine looks up.
johnc@3463 951 // Should *not* be called from parallel code.
johnc@3463 952 inline bool mark_and_count(oop obj);
johnc@3463 953
johnc@4333 954 // Returns true if initialization was successfully completed.
johnc@4333 955 bool completed_initialization() const {
johnc@4333 956 return _completed_initialization;
johnc@4333 957 }
johnc@4333 958
johnc@3463 959 protected:
johnc@3463 960 // Clear all the per-task bitmaps and arrays used to store the
johnc@3463 961 // counting data.
johnc@3463 962 void clear_all_count_data();
johnc@3463 963
johnc@3463 964 // Aggregates the counting data for each worker/task
johnc@3463 965 // that was constructed while marking. Also sets
johnc@3463 966 // the amount of marked bytes for each region and
johnc@3463 967 // the top at concurrent mark count.
johnc@3463 968 void aggregate_count_data();
johnc@3463 969
johnc@3463 970 // Verification routine
johnc@3463 971 void verify_count_data();
ysr@777 972 };
ysr@777 973
ysr@777 974 // A class representing a marking task.
ysr@777 975 class CMTask : public TerminatorTerminator {
ysr@777 976 private:
ysr@777 977 enum PrivateConstants {
ysr@777 978 // the regular clock call is called once the scanned words reaches
ysr@777 979 // this limit
ysr@777 980 words_scanned_period = 12*1024,
ysr@777 981 // the regular clock call is called once the number of visited
ysr@777 982 // references reaches this limit
ysr@777 983 refs_reached_period = 384,
ysr@777 984 // initial value for the hash seed, used in the work stealing code
ysr@777 985 init_hash_seed = 17,
ysr@777 986 // how many entries will be transferred between global stack and
ysr@777 987 // local queues
ysr@777 988 global_stack_transfer_size = 16
ysr@777 989 };
ysr@777 990
johnc@4173 991 uint _worker_id;
ysr@777 992 G1CollectedHeap* _g1h;
ysr@777 993 ConcurrentMark* _cm;
ysr@777 994 CMBitMap* _nextMarkBitMap;
ysr@777 995 // the task queue of this task
ysr@777 996 CMTaskQueue* _task_queue;
ysr@1280 997 private:
ysr@777 998 // the task queue set---needed for stealing
ysr@777 999 CMTaskQueueSet* _task_queues;
ysr@777 1000 // indicates whether the task has been claimed---this is only for
ysr@777 1001 // debugging purposes
ysr@777 1002 bool _claimed;
ysr@777 1003
ysr@777 1004 // number of calls to this task
ysr@777 1005 int _calls;
ysr@777 1006
ysr@777 1007 // when the virtual timer reaches this time, the marking step should
ysr@777 1008 // exit
ysr@777 1009 double _time_target_ms;
ysr@777 1010 // the start time of the current marking step
ysr@777 1011 double _start_time_ms;
ysr@777 1012
ysr@777 1013 // the oop closure used for iterations over oops
tonyp@2968 1014 G1CMOopClosure* _cm_oop_closure;
ysr@777 1015
ysr@777 1016 // the region this task is scanning, NULL if we're not scanning any
ysr@777 1017 HeapRegion* _curr_region;
ysr@777 1018 // the local finger of this task, NULL if we're not scanning a region
ysr@777 1019 HeapWord* _finger;
ysr@777 1020 // limit of the region this task is scanning, NULL if we're not scanning one
ysr@777 1021 HeapWord* _region_limit;
ysr@777 1022
ysr@777 1023 // the number of words this task has scanned
ysr@777 1024 size_t _words_scanned;
ysr@777 1025 // When _words_scanned reaches this limit, the regular clock is
ysr@777 1026 // called. Notice that this might be decreased under certain
ysr@777 1027 // circumstances (i.e. when we believe that we did an expensive
ysr@777 1028 // operation).
ysr@777 1029 size_t _words_scanned_limit;
ysr@777 1030 // the initial value of _words_scanned_limit (i.e. what it was
ysr@777 1031 // before it was decreased).
ysr@777 1032 size_t _real_words_scanned_limit;
ysr@777 1033
ysr@777 1034 // the number of references this task has visited
ysr@777 1035 size_t _refs_reached;
ysr@777 1036 // When _refs_reached reaches this limit, the regular clock is
ysr@777 1037 // called. Notice this this might be decreased under certain
ysr@777 1038 // circumstances (i.e. when we believe that we did an expensive
ysr@777 1039 // operation).
ysr@777 1040 size_t _refs_reached_limit;
ysr@777 1041 // the initial value of _refs_reached_limit (i.e. what it was before
ysr@777 1042 // it was decreased).
ysr@777 1043 size_t _real_refs_reached_limit;
ysr@777 1044
ysr@777 1045 // used by the work stealing stuff
ysr@777 1046 int _hash_seed;
ysr@777 1047 // if this is true, then the task has aborted for some reason
ysr@777 1048 bool _has_aborted;
ysr@777 1049 // set when the task aborts because it has met its time quota
johnc@2494 1050 bool _has_timed_out;
ysr@777 1051 // true when we're draining SATB buffers; this avoids the task
ysr@777 1052 // aborting due to SATB buffers being available (as we're already
ysr@777 1053 // dealing with them)
ysr@777 1054 bool _draining_satb_buffers;
ysr@777 1055
ysr@777 1056 // number sequence of past step times
ysr@777 1057 NumberSeq _step_times_ms;
ysr@777 1058 // elapsed time of this task
ysr@777 1059 double _elapsed_time_ms;
ysr@777 1060 // termination time of this task
ysr@777 1061 double _termination_time_ms;
ysr@777 1062 // when this task got into the termination protocol
ysr@777 1063 double _termination_start_time_ms;
ysr@777 1064
ysr@777 1065 // true when the task is during a concurrent phase, false when it is
ysr@777 1066 // in the remark phase (so, in the latter case, we do not have to
ysr@777 1067 // check all the things that we have to check during the concurrent
ysr@777 1068 // phase, i.e. SATB buffer availability...)
ysr@777 1069 bool _concurrent;
ysr@777 1070
ysr@777 1071 TruncatedSeq _marking_step_diffs_ms;
ysr@777 1072
johnc@3463 1073 // Counting data structures. Embedding the task's marked_bytes_array
johnc@3463 1074 // and card bitmap into the actual task saves having to go through
johnc@3463 1075 // the ConcurrentMark object.
johnc@3463 1076 size_t* _marked_bytes_array;
johnc@3463 1077 BitMap* _card_bm;
johnc@3463 1078
ysr@777 1079 // LOTS of statistics related with this task
ysr@777 1080 #if _MARKING_STATS_
ysr@777 1081 NumberSeq _all_clock_intervals_ms;
ysr@777 1082 double _interval_start_time_ms;
ysr@777 1083
ysr@777 1084 int _aborted;
ysr@777 1085 int _aborted_overflow;
ysr@777 1086 int _aborted_cm_aborted;
ysr@777 1087 int _aborted_yield;
ysr@777 1088 int _aborted_timed_out;
ysr@777 1089 int _aborted_satb;
ysr@777 1090 int _aborted_termination;
ysr@777 1091
ysr@777 1092 int _steal_attempts;
ysr@777 1093 int _steals;
ysr@777 1094
ysr@777 1095 int _clock_due_to_marking;
ysr@777 1096 int _clock_due_to_scanning;
ysr@777 1097
ysr@777 1098 int _local_pushes;
ysr@777 1099 int _local_pops;
ysr@777 1100 int _local_max_size;
ysr@777 1101 int _objs_scanned;
ysr@777 1102
ysr@777 1103 int _global_pushes;
ysr@777 1104 int _global_pops;
ysr@777 1105 int _global_max_size;
ysr@777 1106
ysr@777 1107 int _global_transfers_to;
ysr@777 1108 int _global_transfers_from;
ysr@777 1109
ysr@777 1110 int _regions_claimed;
ysr@777 1111 int _objs_found_on_bitmap;
ysr@777 1112
ysr@777 1113 int _satb_buffers_processed;
ysr@777 1114 #endif // _MARKING_STATS_
ysr@777 1115
ysr@777 1116 // it updates the local fields after this task has claimed
ysr@777 1117 // a new region to scan
ysr@777 1118 void setup_for_region(HeapRegion* hr);
ysr@777 1119 // it brings up-to-date the limit of the region
ysr@777 1120 void update_region_limit();
ysr@777 1121
ysr@777 1122 // called when either the words scanned or the refs visited limit
ysr@777 1123 // has been reached
ysr@777 1124 void reached_limit();
ysr@777 1125 // recalculates the words scanned and refs visited limits
ysr@777 1126 void recalculate_limits();
ysr@777 1127 // decreases the words scanned and refs visited limits when we reach
ysr@777 1128 // an expensive operation
ysr@777 1129 void decrease_limits();
ysr@777 1130 // it checks whether the words scanned or refs visited reached their
ysr@777 1131 // respective limit and calls reached_limit() if they have
ysr@777 1132 void check_limits() {
ysr@777 1133 if (_words_scanned >= _words_scanned_limit ||
tonyp@2973 1134 _refs_reached >= _refs_reached_limit) {
ysr@777 1135 reached_limit();
tonyp@2973 1136 }
ysr@777 1137 }
ysr@777 1138 // this is supposed to be called regularly during a marking step as
ysr@777 1139 // it checks a bunch of conditions that might cause the marking step
ysr@777 1140 // to abort
ysr@777 1141 void regular_clock_call();
ysr@777 1142 bool concurrent() { return _concurrent; }
ysr@777 1143
ysr@777 1144 public:
ysr@777 1145 // It resets the task; it should be called right at the beginning of
ysr@777 1146 // a marking phase.
ysr@777 1147 void reset(CMBitMap* _nextMarkBitMap);
ysr@777 1148 // it clears all the fields that correspond to a claimed region.
ysr@777 1149 void clear_region_fields();
ysr@777 1150
ysr@777 1151 void set_concurrent(bool concurrent) { _concurrent = concurrent; }
ysr@777 1152
ysr@777 1153 // The main method of this class which performs a marking step
ysr@777 1154 // trying not to exceed the given duration. However, it might exit
ysr@777 1155 // prematurely, according to some conditions (i.e. SATB buffers are
ysr@777 1156 // available for processing).
johnc@4787 1157 void do_marking_step(double target_ms,
johnc@4787 1158 bool do_termination,
johnc@4787 1159 bool is_serial);
ysr@777 1160
ysr@777 1161 // These two calls start and stop the timer
ysr@777 1162 void record_start_time() {
ysr@777 1163 _elapsed_time_ms = os::elapsedTime() * 1000.0;
ysr@777 1164 }
ysr@777 1165 void record_end_time() {
ysr@777 1166 _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
ysr@777 1167 }
ysr@777 1168
johnc@4173 1169 // returns the worker ID associated with this task.
johnc@4173 1170 uint worker_id() { return _worker_id; }
ysr@777 1171
ysr@777 1172 // From TerminatorTerminator. It determines whether this task should
ysr@777 1173 // exit the termination protocol after it's entered it.
ysr@777 1174 virtual bool should_exit_termination();
ysr@777 1175
johnc@2910 1176 // Resets the local region fields after a task has finished scanning a
johnc@2910 1177 // region; or when they have become stale as a result of the region
johnc@2910 1178 // being evacuated.
johnc@2910 1179 void giveup_current_region();
johnc@2910 1180
ysr@777 1181 HeapWord* finger() { return _finger; }
ysr@777 1182
ysr@777 1183 bool has_aborted() { return _has_aborted; }
ysr@777 1184 void set_has_aborted() { _has_aborted = true; }
ysr@777 1185 void clear_has_aborted() { _has_aborted = false; }
johnc@2494 1186 bool has_timed_out() { return _has_timed_out; }
johnc@2494 1187 bool claimed() { return _claimed; }
ysr@777 1188
tonyp@2968 1189 void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
ysr@777 1190
ysr@777 1191 // It grays the object by marking it and, if necessary, pushing it
ysr@777 1192 // on the local queue
tonyp@2968 1193 inline void deal_with_reference(oop obj);
ysr@777 1194
ysr@777 1195 // It scans an object and visits its children.
tonyp@2968 1196 void scan_object(oop obj);
ysr@777 1197
ysr@777 1198 // It pushes an object on the local queue.
tonyp@2968 1199 inline void push(oop obj);
ysr@777 1200
ysr@777 1201 // These two move entries to/from the global stack.
ysr@777 1202 void move_entries_to_global_stack();
ysr@777 1203 void get_entries_from_global_stack();
ysr@777 1204
ysr@777 1205 // It pops and scans objects from the local queue. If partially is
ysr@777 1206 // true, then it stops when the queue size is of a given limit. If
ysr@777 1207 // partially is false, then it stops when the queue is empty.
ysr@777 1208 void drain_local_queue(bool partially);
ysr@777 1209 // It moves entries from the global stack to the local queue and
ysr@777 1210 // drains the local queue. If partially is true, then it stops when
ysr@777 1211 // both the global stack and the local queue reach a given size. If
ysr@777 1212 // partially if false, it tries to empty them totally.
ysr@777 1213 void drain_global_stack(bool partially);
ysr@777 1214 // It keeps picking SATB buffers and processing them until no SATB
ysr@777 1215 // buffers are available.
ysr@777 1216 void drain_satb_buffers();
tonyp@3416 1217
ysr@777 1218 // moves the local finger to a new location
ysr@777 1219 inline void move_finger_to(HeapWord* new_finger) {
tonyp@1458 1220 assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
ysr@777 1221 _finger = new_finger;
ysr@777 1222 }
ysr@777 1223
johnc@4173 1224 CMTask(uint worker_id, ConcurrentMark *cm,
johnc@3463 1225 size_t* marked_bytes, BitMap* card_bm,
ysr@777 1226 CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
ysr@777 1227
ysr@777 1228 // it prints statistics associated with this task
ysr@777 1229 void print_stats();
ysr@777 1230
ysr@777 1231 #if _MARKING_STATS_
ysr@777 1232 void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
ysr@777 1233 #endif // _MARKING_STATS_
ysr@777 1234 };
stefank@2314 1235
tonyp@2717 1236 // Class that's used to to print out per-region liveness
tonyp@2717 1237 // information. It's currently used at the end of marking and also
tonyp@2717 1238 // after we sort the old regions at the end of the cleanup operation.
tonyp@2717 1239 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
tonyp@2717 1240 private:
tonyp@2717 1241 outputStream* _out;
tonyp@2717 1242
tonyp@2717 1243 // Accumulators for these values.
tonyp@2717 1244 size_t _total_used_bytes;
tonyp@2717 1245 size_t _total_capacity_bytes;
tonyp@2717 1246 size_t _total_prev_live_bytes;
tonyp@2717 1247 size_t _total_next_live_bytes;
tonyp@2717 1248
tonyp@2717 1249 // These are set up when we come across a "stars humongous" region
tonyp@2717 1250 // (as this is where most of this information is stored, not in the
tonyp@2717 1251 // subsequent "continues humongous" regions). After that, for every
tonyp@2717 1252 // region in a given humongous region series we deduce the right
tonyp@2717 1253 // values for it by simply subtracting the appropriate amount from
tonyp@2717 1254 // these fields. All these values should reach 0 after we've visited
tonyp@2717 1255 // the last region in the series.
tonyp@2717 1256 size_t _hum_used_bytes;
tonyp@2717 1257 size_t _hum_capacity_bytes;
tonyp@2717 1258 size_t _hum_prev_live_bytes;
tonyp@2717 1259 size_t _hum_next_live_bytes;
tonyp@2717 1260
tschatzl@5122 1261 // Accumulator for the remembered set size
tschatzl@5122 1262 size_t _total_remset_bytes;
tschatzl@5122 1263
johnc@5548 1264 // Accumulator for strong code roots memory size
johnc@5548 1265 size_t _total_strong_code_roots_bytes;
johnc@5548 1266
tonyp@2717 1267 static double perc(size_t val, size_t total) {
tonyp@2717 1268 if (total == 0) {
tonyp@2717 1269 return 0.0;
tonyp@2717 1270 } else {
tonyp@2717 1271 return 100.0 * ((double) val / (double) total);
tonyp@2717 1272 }
tonyp@2717 1273 }
tonyp@2717 1274
tonyp@2717 1275 static double bytes_to_mb(size_t val) {
tonyp@2717 1276 return (double) val / (double) M;
tonyp@2717 1277 }
tonyp@2717 1278
tonyp@2717 1279 // See the .cpp file.
tonyp@2717 1280 size_t get_hum_bytes(size_t* hum_bytes);
tonyp@2717 1281 void get_hum_bytes(size_t* used_bytes, size_t* capacity_bytes,
tonyp@2717 1282 size_t* prev_live_bytes, size_t* next_live_bytes);
tonyp@2717 1283
tonyp@2717 1284 public:
tonyp@2717 1285 // The header and footer are printed in the constructor and
tonyp@2717 1286 // destructor respectively.
tonyp@2717 1287 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name);
tonyp@2717 1288 virtual bool doHeapRegion(HeapRegion* r);
tonyp@2717 1289 ~G1PrintRegionLivenessInfoClosure();
tonyp@2717 1290 };
tonyp@2717 1291
stefank@2314 1292 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP

mercurial