src/share/vm/gc_implementation/g1/concurrentMark.hpp

Tue, 14 Jul 2009 15:40:39 -0700

author
ysr
date
Tue, 14 Jul 2009 15:40:39 -0700
changeset 1280
df6caf649ff7
parent 1014
0fbdb4381b99
child 1371
e1fdf4fd34dc
permissions
-rw-r--r--

6700789: G1: Enable use of compressed oops with G1 heaps
Summary: Modifications to G1 so as to allow the use of compressed oops.
Reviewed-by: apetrusenko, coleenp, jmasa, kvn, never, phh, tonyp

ysr@777 1 /*
xdono@1014 2 * Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
ysr@777 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
ysr@777 20 * CA 95054 USA or visit www.sun.com if you need additional information or
ysr@777 21 * have any questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
ysr@777 25 class G1CollectedHeap;
ysr@777 26 class CMTask;
ysr@777 27 typedef GenericTaskQueue<oop> CMTaskQueue;
ysr@777 28 typedef GenericTaskQueueSet<oop> CMTaskQueueSet;
ysr@777 29
ysr@777 30 // A generic CM bit map. This is essentially a wrapper around the BitMap
ysr@777 31 // class, with one bit per (1<<_shifter) HeapWords.
ysr@777 32
apetrusenko@984 33 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
ysr@777 34 protected:
ysr@777 35 HeapWord* _bmStartWord; // base address of range covered by map
ysr@777 36 size_t _bmWordSize; // map size (in #HeapWords covered)
ysr@777 37 const int _shifter; // map to char or bit
ysr@777 38 VirtualSpace _virtual_space; // underlying the bit map
ysr@777 39 BitMap _bm; // the bit map itself
ysr@777 40
ysr@777 41 public:
ysr@777 42 // constructor
ysr@777 43 CMBitMapRO(ReservedSpace rs, int shifter);
ysr@777 44
ysr@777 45 enum { do_yield = true };
ysr@777 46
ysr@777 47 // inquiries
ysr@777 48 HeapWord* startWord() const { return _bmStartWord; }
ysr@777 49 size_t sizeInWords() const { return _bmWordSize; }
ysr@777 50 // the following is one past the last word in space
ysr@777 51 HeapWord* endWord() const { return _bmStartWord + _bmWordSize; }
ysr@777 52
ysr@777 53 // read marks
ysr@777 54
ysr@777 55 bool isMarked(HeapWord* addr) const {
ysr@777 56 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 57 "outside underlying space?");
ysr@777 58 return _bm.at(heapWordToOffset(addr));
ysr@777 59 }
ysr@777 60
ysr@777 61 // iteration
ysr@777 62 bool iterate(BitMapClosure* cl) { return _bm.iterate(cl); }
ysr@777 63 bool iterate(BitMapClosure* cl, MemRegion mr);
ysr@777 64
ysr@777 65 // Return the address corresponding to the next marked bit at or after
ysr@777 66 // "addr", and before "limit", if "limit" is non-NULL. If there is no
ysr@777 67 // such bit, returns "limit" if that is non-NULL, or else "endWord()".
ysr@777 68 HeapWord* getNextMarkedWordAddress(HeapWord* addr,
ysr@777 69 HeapWord* limit = NULL) const;
ysr@777 70 // Return the address corresponding to the next unmarked bit at or after
ysr@777 71 // "addr", and before "limit", if "limit" is non-NULL. If there is no
ysr@777 72 // such bit, returns "limit" if that is non-NULL, or else "endWord()".
ysr@777 73 HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
ysr@777 74 HeapWord* limit = NULL) const;
ysr@777 75
ysr@777 76 // conversion utilities
ysr@777 77 // XXX Fix these so that offsets are size_t's...
ysr@777 78 HeapWord* offsetToHeapWord(size_t offset) const {
ysr@777 79 return _bmStartWord + (offset << _shifter);
ysr@777 80 }
ysr@777 81 size_t heapWordToOffset(HeapWord* addr) const {
ysr@777 82 return pointer_delta(addr, _bmStartWord) >> _shifter;
ysr@777 83 }
ysr@777 84 int heapWordDiffToOffsetDiff(size_t diff) const;
ysr@777 85 HeapWord* nextWord(HeapWord* addr) {
ysr@777 86 return offsetToHeapWord(heapWordToOffset(addr) + 1);
ysr@777 87 }
ysr@777 88
ysr@777 89 void mostly_disjoint_range_union(BitMap* from_bitmap,
ysr@777 90 size_t from_start_index,
ysr@777 91 HeapWord* to_start_word,
ysr@777 92 size_t word_num);
ysr@777 93
ysr@777 94 // debugging
ysr@777 95 NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
ysr@777 96 };
ysr@777 97
ysr@777 98 class CMBitMap : public CMBitMapRO {
ysr@777 99
ysr@777 100 public:
ysr@777 101 // constructor
ysr@777 102 CMBitMap(ReservedSpace rs, int shifter) :
ysr@777 103 CMBitMapRO(rs, shifter) {}
ysr@777 104
ysr@777 105 // write marks
ysr@777 106 void mark(HeapWord* addr) {
ysr@777 107 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 108 "outside underlying space?");
ysr@777 109 _bm.at_put(heapWordToOffset(addr), true);
ysr@777 110 }
ysr@777 111 void clear(HeapWord* addr) {
ysr@777 112 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 113 "outside underlying space?");
ysr@777 114 _bm.at_put(heapWordToOffset(addr), false);
ysr@777 115 }
ysr@777 116 bool parMark(HeapWord* addr) {
ysr@777 117 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 118 "outside underlying space?");
ysr@777 119 return _bm.par_at_put(heapWordToOffset(addr), true);
ysr@777 120 }
ysr@777 121 bool parClear(HeapWord* addr) {
ysr@777 122 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 123 "outside underlying space?");
ysr@777 124 return _bm.par_at_put(heapWordToOffset(addr), false);
ysr@777 125 }
ysr@777 126 void markRange(MemRegion mr);
ysr@777 127 void clearAll();
ysr@777 128 void clearRange(MemRegion mr);
ysr@777 129
ysr@777 130 // Starting at the bit corresponding to "addr" (inclusive), find the next
ysr@777 131 // "1" bit, if any. This bit starts some run of consecutive "1"'s; find
ysr@777 132 // the end of this run (stopping at "end_addr"). Return the MemRegion
ysr@777 133 // covering from the start of the region corresponding to the first bit
ysr@777 134 // of the run to the end of the region corresponding to the last bit of
ysr@777 135 // the run. If there is no "1" bit at or after "addr", return an empty
ysr@777 136 // MemRegion.
ysr@777 137 MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
ysr@777 138 };
ysr@777 139
ysr@777 140 // Represents a marking stack used by the CM collector.
ysr@777 141 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
apetrusenko@984 142 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
ysr@777 143 ConcurrentMark* _cm;
ysr@777 144 oop* _base; // bottom of stack
ysr@777 145 jint _index; // one more than last occupied index
ysr@777 146 jint _capacity; // max #elements
ysr@777 147 jint _oops_do_bound; // Number of elements to include in next iteration.
ysr@777 148 NOT_PRODUCT(jint _max_depth;) // max depth plumbed during run
ysr@777 149
ysr@777 150 bool _overflow;
ysr@777 151 DEBUG_ONLY(bool _drain_in_progress;)
ysr@777 152 DEBUG_ONLY(bool _drain_in_progress_yields;)
ysr@777 153
ysr@777 154 public:
ysr@777 155 CMMarkStack(ConcurrentMark* cm);
ysr@777 156 ~CMMarkStack();
ysr@777 157
ysr@777 158 void allocate(size_t size);
ysr@777 159
ysr@777 160 oop pop() {
ysr@777 161 if (!isEmpty()) {
ysr@777 162 return _base[--_index] ;
ysr@777 163 }
ysr@777 164 return NULL;
ysr@777 165 }
ysr@777 166
ysr@777 167 // If overflow happens, don't do the push, and record the overflow.
ysr@777 168 // *Requires* that "ptr" is already marked.
ysr@777 169 void push(oop ptr) {
ysr@777 170 if (isFull()) {
ysr@777 171 // Record overflow.
ysr@777 172 _overflow = true;
ysr@777 173 return;
ysr@777 174 } else {
ysr@777 175 _base[_index++] = ptr;
ysr@777 176 NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
ysr@777 177 }
ysr@777 178 }
ysr@777 179 // Non-block impl. Note: concurrency is allowed only with other
ysr@777 180 // "par_push" operations, not with "pop" or "drain". We would need
ysr@777 181 // parallel versions of them if such concurrency was desired.
ysr@777 182 void par_push(oop ptr);
ysr@777 183
ysr@777 184 // Pushes the first "n" elements of "ptr_arr" on the stack.
ysr@777 185 // Non-block impl. Note: concurrency is allowed only with other
ysr@777 186 // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
ysr@777 187 void par_adjoin_arr(oop* ptr_arr, int n);
ysr@777 188
ysr@777 189 // Pushes the first "n" elements of "ptr_arr" on the stack.
ysr@777 190 // Locking impl: concurrency is allowed only with
ysr@777 191 // "par_push_arr" and/or "par_pop_arr" operations, which use the same
ysr@777 192 // locking strategy.
ysr@777 193 void par_push_arr(oop* ptr_arr, int n);
ysr@777 194
ysr@777 195 // If returns false, the array was empty. Otherwise, removes up to "max"
ysr@777 196 // elements from the stack, and transfers them to "ptr_arr" in an
ysr@777 197 // unspecified order. The actual number transferred is given in "n" ("n
ysr@777 198 // == 0" is deliberately redundant with the return value.) Locking impl:
ysr@777 199 // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
ysr@777 200 // operations, which use the same locking strategy.
ysr@777 201 bool par_pop_arr(oop* ptr_arr, int max, int* n);
ysr@777 202
ysr@777 203 // Drain the mark stack, applying the given closure to all fields of
ysr@777 204 // objects on the stack. (That is, continue until the stack is empty,
ysr@777 205 // even if closure applications add entries to the stack.) The "bm"
ysr@777 206 // argument, if non-null, may be used to verify that only marked objects
ysr@777 207 // are on the mark stack. If "yield_after" is "true", then the
ysr@777 208 // concurrent marker performing the drain offers to yield after
ysr@777 209 // processing each object. If a yield occurs, stops the drain operation
ysr@777 210 // and returns false. Otherwise, returns true.
ysr@777 211 template<class OopClosureClass>
ysr@777 212 bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
ysr@777 213
ysr@777 214 bool isEmpty() { return _index == 0; }
ysr@777 215 bool isFull() { return _index == _capacity; }
ysr@777 216 int maxElems() { return _capacity; }
ysr@777 217
ysr@777 218 bool overflow() { return _overflow; }
ysr@777 219 void clear_overflow() { _overflow = false; }
ysr@777 220
ysr@777 221 int size() { return _index; }
ysr@777 222
ysr@777 223 void setEmpty() { _index = 0; clear_overflow(); }
ysr@777 224
ysr@777 225 // Record the current size; a subsequent "oops_do" will iterate only over
ysr@777 226 // indices valid at the time of this call.
ysr@777 227 void set_oops_do_bound(jint bound = -1) {
ysr@777 228 if (bound == -1) {
ysr@777 229 _oops_do_bound = _index;
ysr@777 230 } else {
ysr@777 231 _oops_do_bound = bound;
ysr@777 232 }
ysr@777 233 }
ysr@777 234 jint oops_do_bound() { return _oops_do_bound; }
ysr@777 235 // iterate over the oops in the mark stack, up to the bound recorded via
ysr@777 236 // the call above.
ysr@777 237 void oops_do(OopClosure* f);
ysr@777 238 };
ysr@777 239
apetrusenko@984 240 class CMRegionStack VALUE_OBJ_CLASS_SPEC {
ysr@777 241 MemRegion* _base;
ysr@777 242 jint _capacity;
ysr@777 243 jint _index;
ysr@777 244 jint _oops_do_bound;
ysr@777 245 bool _overflow;
ysr@777 246 public:
ysr@777 247 CMRegionStack();
ysr@777 248 ~CMRegionStack();
ysr@777 249 void allocate(size_t size);
ysr@777 250
ysr@777 251 // This is lock-free; assumes that it will only be called in parallel
ysr@777 252 // with other "push" operations (no pops).
ysr@777 253 void push(MemRegion mr);
ysr@777 254
ysr@777 255 // Lock-free; assumes that it will only be called in parallel
ysr@777 256 // with other "pop" operations (no pushes).
ysr@777 257 MemRegion pop();
ysr@777 258
ysr@777 259 bool isEmpty() { return _index == 0; }
ysr@777 260 bool isFull() { return _index == _capacity; }
ysr@777 261
ysr@777 262 bool overflow() { return _overflow; }
ysr@777 263 void clear_overflow() { _overflow = false; }
ysr@777 264
ysr@777 265 int size() { return _index; }
ysr@777 266
ysr@777 267 // It iterates over the entries in the region stack and it
ysr@777 268 // invalidates (i.e. assigns MemRegion()) the ones that point to
ysr@777 269 // regions in the collection set.
ysr@777 270 bool invalidate_entries_into_cset();
ysr@777 271
ysr@777 272 // This gives an upper bound up to which the iteration in
ysr@777 273 // invalidate_entries_into_cset() will reach. This prevents
ysr@777 274 // newly-added entries to be unnecessarily scanned.
ysr@777 275 void set_oops_do_bound() {
ysr@777 276 _oops_do_bound = _index;
ysr@777 277 }
ysr@777 278
ysr@777 279 void setEmpty() { _index = 0; clear_overflow(); }
ysr@777 280 };
ysr@777 281
ysr@777 282 // this will enable a variety of different statistics per GC task
ysr@777 283 #define _MARKING_STATS_ 0
ysr@777 284 // this will enable the higher verbose levels
ysr@777 285 #define _MARKING_VERBOSE_ 0
ysr@777 286
ysr@777 287 #if _MARKING_STATS_
ysr@777 288 #define statsOnly(statement) \
ysr@777 289 do { \
ysr@777 290 statement ; \
ysr@777 291 } while (0)
ysr@777 292 #else // _MARKING_STATS_
ysr@777 293 #define statsOnly(statement) \
ysr@777 294 do { \
ysr@777 295 } while (0)
ysr@777 296 #endif // _MARKING_STATS_
ysr@777 297
ysr@777 298 // Some extra guarantees that I like to also enable in optimised mode
ysr@777 299 // when debugging. If you want to enable them, comment out the assert
ysr@777 300 // macro and uncomment out the guaratee macro
ysr@777 301 // #define tmp_guarantee_CM(expr, str) guarantee(expr, str)
ysr@777 302 #define tmp_guarantee_CM(expr, str) assert(expr, str)
ysr@777 303
ysr@777 304 typedef enum {
ysr@777 305 no_verbose = 0, // verbose turned off
ysr@777 306 stats_verbose, // only prints stats at the end of marking
ysr@777 307 low_verbose, // low verbose, mostly per region and per major event
ysr@777 308 medium_verbose, // a bit more detailed than low
ysr@777 309 high_verbose // per object verbose
ysr@777 310 } CMVerboseLevel;
ysr@777 311
ysr@777 312
ysr@777 313 class ConcurrentMarkThread;
ysr@777 314
apetrusenko@984 315 class ConcurrentMark: public CHeapObj {
ysr@777 316 friend class ConcurrentMarkThread;
ysr@777 317 friend class CMTask;
ysr@777 318 friend class CMBitMapClosure;
ysr@777 319 friend class CSMarkOopClosure;
ysr@777 320 friend class CMGlobalObjectClosure;
ysr@777 321 friend class CMRemarkTask;
ysr@777 322 friend class CMConcurrentMarkingTask;
ysr@777 323 friend class G1ParNoteEndTask;
ysr@777 324 friend class CalcLiveObjectsClosure;
ysr@777 325
ysr@777 326 protected:
ysr@777 327 ConcurrentMarkThread* _cmThread; // the thread doing the work
ysr@777 328 G1CollectedHeap* _g1h; // the heap.
ysr@777 329 size_t _parallel_marking_threads; // the number of marking
ysr@777 330 // threads we'll use
ysr@777 331 double _sleep_factor; // how much we have to sleep, with
ysr@777 332 // respect to the work we just did, to
ysr@777 333 // meet the marking overhead goal
ysr@777 334 double _marking_task_overhead; // marking target overhead for
ysr@777 335 // a single task
ysr@777 336
ysr@777 337 // same as the two above, but for the cleanup task
ysr@777 338 double _cleanup_sleep_factor;
ysr@777 339 double _cleanup_task_overhead;
ysr@777 340
ysr@777 341 // Stuff related to age cohort processing.
ysr@777 342 struct ParCleanupThreadState {
ysr@777 343 char _pre[64];
ysr@777 344 UncleanRegionList list;
ysr@777 345 char _post[64];
ysr@777 346 };
ysr@777 347 ParCleanupThreadState** _par_cleanup_thread_state;
ysr@777 348
ysr@777 349 // CMS marking support structures
ysr@777 350 CMBitMap _markBitMap1;
ysr@777 351 CMBitMap _markBitMap2;
ysr@777 352 CMBitMapRO* _prevMarkBitMap; // completed mark bitmap
ysr@777 353 CMBitMap* _nextMarkBitMap; // under-construction mark bitmap
ysr@777 354 bool _at_least_one_mark_complete;
ysr@777 355
ysr@777 356 BitMap _region_bm;
ysr@777 357 BitMap _card_bm;
ysr@777 358
ysr@777 359 // Heap bounds
ysr@777 360 HeapWord* _heap_start;
ysr@777 361 HeapWord* _heap_end;
ysr@777 362
ysr@777 363 // For gray objects
ysr@777 364 CMMarkStack _markStack; // Grey objects behind global finger.
ysr@777 365 CMRegionStack _regionStack; // Grey regions behind global finger.
ysr@777 366 HeapWord* volatile _finger; // the global finger, region aligned,
ysr@777 367 // always points to the end of the
ysr@777 368 // last claimed region
ysr@777 369
ysr@777 370 // marking tasks
ysr@777 371 size_t _max_task_num; // maximum task number
ysr@777 372 size_t _active_tasks; // task num currently active
ysr@777 373 CMTask** _tasks; // task queue array (max_task_num len)
ysr@777 374 CMTaskQueueSet* _task_queues; // task queue set
ysr@777 375 ParallelTaskTerminator _terminator; // for termination
ysr@777 376
ysr@777 377 // Two sync barriers that are used to synchronise tasks when an
ysr@777 378 // overflow occurs. The algorithm is the following. All tasks enter
ysr@777 379 // the first one to ensure that they have all stopped manipulating
ysr@777 380 // the global data structures. After they exit it, they re-initialise
ysr@777 381 // their data structures and task 0 re-initialises the global data
ysr@777 382 // structures. Then, they enter the second sync barrier. This
ysr@777 383 // ensure, that no task starts doing work before all data
ysr@777 384 // structures (local and global) have been re-initialised. When they
ysr@777 385 // exit it, they are free to start working again.
ysr@777 386 WorkGangBarrierSync _first_overflow_barrier_sync;
ysr@777 387 WorkGangBarrierSync _second_overflow_barrier_sync;
ysr@777 388
ysr@777 389
ysr@777 390 // this is set by any task, when an overflow on the global data
ysr@777 391 // structures is detected.
ysr@777 392 volatile bool _has_overflown;
ysr@777 393 // true: marking is concurrent, false: we're in remark
ysr@777 394 volatile bool _concurrent;
ysr@777 395 // set at the end of a Full GC so that marking aborts
ysr@777 396 volatile bool _has_aborted;
ysr@777 397 // used when remark aborts due to an overflow to indicate that
ysr@777 398 // another concurrent marking phase should start
ysr@777 399 volatile bool _restart_for_overflow;
ysr@777 400
ysr@777 401 // This is true from the very start of concurrent marking until the
ysr@777 402 // point when all the tasks complete their work. It is really used
ysr@777 403 // to determine the points between the end of concurrent marking and
ysr@777 404 // time of remark.
ysr@777 405 volatile bool _concurrent_marking_in_progress;
ysr@777 406
ysr@777 407 // verbose level
ysr@777 408 CMVerboseLevel _verbose_level;
ysr@777 409
ysr@777 410 COTracker _cleanup_co_tracker;
ysr@777 411
ysr@777 412 // These two fields are used to implement the optimisation that
ysr@777 413 // avoids pushing objects on the global/region stack if there are
ysr@777 414 // no collection set regions above the lowest finger.
ysr@777 415
ysr@777 416 // This is the lowest finger (among the global and local fingers),
ysr@777 417 // which is calculated before a new collection set is chosen.
ysr@777 418 HeapWord* _min_finger;
ysr@777 419 // If this flag is true, objects/regions that are marked below the
ysr@777 420 // finger should be pushed on the stack(s). If this is flag is
ysr@777 421 // false, it is safe not to push them on the stack(s).
ysr@777 422 bool _should_gray_objects;
ysr@777 423
ysr@777 424 // All of these times are in ms.
ysr@777 425 NumberSeq _init_times;
ysr@777 426 NumberSeq _remark_times;
ysr@777 427 NumberSeq _remark_mark_times;
ysr@777 428 NumberSeq _remark_weak_ref_times;
ysr@777 429 NumberSeq _cleanup_times;
ysr@777 430 double _total_counting_time;
ysr@777 431 double _total_rs_scrub_time;
ysr@777 432
ysr@777 433 double* _accum_task_vtime; // accumulated task vtime
ysr@777 434
ysr@777 435 WorkGang* _parallel_workers;
ysr@777 436
ysr@777 437 void weakRefsWork(bool clear_all_soft_refs);
ysr@777 438
ysr@777 439 void swapMarkBitMaps();
ysr@777 440
ysr@777 441 // It resets the global marking data structures, as well as the
ysr@777 442 // task local ones; should be called during initial mark.
ysr@777 443 void reset();
ysr@777 444 // It resets all the marking data structures.
ysr@777 445 void clear_marking_state();
ysr@777 446
ysr@777 447 // It should be called to indicate which phase we're in (concurrent
ysr@777 448 // mark or remark) and how many threads are currently active.
ysr@777 449 void set_phase(size_t active_tasks, bool concurrent);
ysr@777 450 // We do this after we're done with marking so that the marking data
ysr@777 451 // structures are initialised to a sensible and predictable state.
ysr@777 452 void set_non_marking_state();
ysr@777 453
ysr@777 454 // prints all gathered CM-related statistics
ysr@777 455 void print_stats();
ysr@777 456
ysr@777 457 // accessor methods
ysr@777 458 size_t parallel_marking_threads() { return _parallel_marking_threads; }
ysr@777 459 double sleep_factor() { return _sleep_factor; }
ysr@777 460 double marking_task_overhead() { return _marking_task_overhead;}
ysr@777 461 double cleanup_sleep_factor() { return _cleanup_sleep_factor; }
ysr@777 462 double cleanup_task_overhead() { return _cleanup_task_overhead;}
ysr@777 463
ysr@777 464 HeapWord* finger() { return _finger; }
ysr@777 465 bool concurrent() { return _concurrent; }
ysr@777 466 size_t active_tasks() { return _active_tasks; }
ysr@777 467 ParallelTaskTerminator* terminator() { return &_terminator; }
ysr@777 468
ysr@777 469 // It claims the next available region to be scanned by a marking
ysr@777 470 // task. It might return NULL if the next region is empty or we have
ysr@777 471 // run out of regions. In the latter case, out_of_regions()
ysr@777 472 // determines whether we've really run out of regions or the task
ysr@777 473 // should call claim_region() again. This might seem a bit
ysr@777 474 // awkward. Originally, the code was written so that claim_region()
ysr@777 475 // either successfully returned with a non-empty region or there
ysr@777 476 // were no more regions to be claimed. The problem with this was
ysr@777 477 // that, in certain circumstances, it iterated over large chunks of
ysr@777 478 // the heap finding only empty regions and, while it was working, it
ysr@777 479 // was preventing the calling task to call its regular clock
ysr@777 480 // method. So, this way, each task will spend very little time in
ysr@777 481 // claim_region() and is allowed to call the regular clock method
ysr@777 482 // frequently.
ysr@777 483 HeapRegion* claim_region(int task);
ysr@777 484
ysr@777 485 // It determines whether we've run out of regions to scan.
ysr@777 486 bool out_of_regions() { return _finger == _heap_end; }
ysr@777 487
ysr@777 488 // Returns the task with the given id
ysr@777 489 CMTask* task(int id) {
ysr@777 490 guarantee( 0 <= id && id < (int) _active_tasks, "task id not within "
ysr@777 491 "active bounds" );
ysr@777 492 return _tasks[id];
ysr@777 493 }
ysr@777 494
ysr@777 495 // Returns the task queue with the given id
ysr@777 496 CMTaskQueue* task_queue(int id) {
ysr@777 497 guarantee( 0 <= id && id < (int) _active_tasks, "task queue id not within "
ysr@777 498 "active bounds" );
ysr@777 499 return (CMTaskQueue*) _task_queues->queue(id);
ysr@777 500 }
ysr@777 501
ysr@777 502 // Returns the task queue set
ysr@777 503 CMTaskQueueSet* task_queues() { return _task_queues; }
ysr@777 504
ysr@777 505 // Access / manipulation of the overflow flag which is set to
ysr@777 506 // indicate that the global stack or region stack has overflown
ysr@777 507 bool has_overflown() { return _has_overflown; }
ysr@777 508 void set_has_overflown() { _has_overflown = true; }
ysr@777 509 void clear_has_overflown() { _has_overflown = false; }
ysr@777 510
ysr@777 511 bool has_aborted() { return _has_aborted; }
ysr@777 512 bool restart_for_overflow() { return _restart_for_overflow; }
ysr@777 513
ysr@777 514 // Methods to enter the two overflow sync barriers
ysr@777 515 void enter_first_sync_barrier(int task_num);
ysr@777 516 void enter_second_sync_barrier(int task_num);
ysr@777 517
ysr@777 518 public:
ysr@777 519 // Manipulation of the global mark stack.
ysr@777 520 // Notice that the first mark_stack_push is CAS-based, whereas the
ysr@777 521 // two below are Mutex-based. This is OK since the first one is only
ysr@777 522 // called during evacuation pauses and doesn't compete with the
ysr@777 523 // other two (which are called by the marking tasks during
ysr@777 524 // concurrent marking or remark).
ysr@777 525 bool mark_stack_push(oop p) {
ysr@777 526 _markStack.par_push(p);
ysr@777 527 if (_markStack.overflow()) {
ysr@777 528 set_has_overflown();
ysr@777 529 return false;
ysr@777 530 }
ysr@777 531 return true;
ysr@777 532 }
ysr@777 533 bool mark_stack_push(oop* arr, int n) {
ysr@777 534 _markStack.par_push_arr(arr, n);
ysr@777 535 if (_markStack.overflow()) {
ysr@777 536 set_has_overflown();
ysr@777 537 return false;
ysr@777 538 }
ysr@777 539 return true;
ysr@777 540 }
ysr@777 541 void mark_stack_pop(oop* arr, int max, int* n) {
ysr@777 542 _markStack.par_pop_arr(arr, max, n);
ysr@777 543 }
ysr@777 544 size_t mark_stack_size() { return _markStack.size(); }
ysr@777 545 size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
ysr@777 546 bool mark_stack_overflow() { return _markStack.overflow(); }
ysr@777 547 bool mark_stack_empty() { return _markStack.isEmpty(); }
ysr@777 548
ysr@777 549 // Manipulation of the region stack
ysr@777 550 bool region_stack_push(MemRegion mr) {
ysr@777 551 _regionStack.push(mr);
ysr@777 552 if (_regionStack.overflow()) {
ysr@777 553 set_has_overflown();
ysr@777 554 return false;
ysr@777 555 }
ysr@777 556 return true;
ysr@777 557 }
ysr@777 558 MemRegion region_stack_pop() { return _regionStack.pop(); }
ysr@777 559 int region_stack_size() { return _regionStack.size(); }
ysr@777 560 bool region_stack_overflow() { return _regionStack.overflow(); }
ysr@777 561 bool region_stack_empty() { return _regionStack.isEmpty(); }
ysr@777 562
ysr@777 563 bool concurrent_marking_in_progress() {
ysr@777 564 return _concurrent_marking_in_progress;
ysr@777 565 }
ysr@777 566 void set_concurrent_marking_in_progress() {
ysr@777 567 _concurrent_marking_in_progress = true;
ysr@777 568 }
ysr@777 569 void clear_concurrent_marking_in_progress() {
ysr@777 570 _concurrent_marking_in_progress = false;
ysr@777 571 }
ysr@777 572
ysr@777 573 void update_accum_task_vtime(int i, double vtime) {
ysr@777 574 _accum_task_vtime[i] += vtime;
ysr@777 575 }
ysr@777 576
ysr@777 577 double all_task_accum_vtime() {
ysr@777 578 double ret = 0.0;
ysr@777 579 for (int i = 0; i < (int)_max_task_num; ++i)
ysr@777 580 ret += _accum_task_vtime[i];
ysr@777 581 return ret;
ysr@777 582 }
ysr@777 583
ysr@777 584 // Attempts to steal an object from the task queues of other tasks
ysr@777 585 bool try_stealing(int task_num, int* hash_seed, oop& obj) {
ysr@777 586 return _task_queues->steal(task_num, hash_seed, obj);
ysr@777 587 }
ysr@777 588
ysr@777 589 // It grays an object by first marking it. Then, if it's behind the
ysr@777 590 // global finger, it also pushes it on the global stack.
ysr@777 591 void deal_with_reference(oop obj);
ysr@777 592
ysr@777 593 ConcurrentMark(ReservedSpace rs, int max_regions);
ysr@777 594 ~ConcurrentMark();
ysr@777 595 ConcurrentMarkThread* cmThread() { return _cmThread; }
ysr@777 596
ysr@777 597 CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
ysr@777 598 CMBitMap* nextMarkBitMap() const { return _nextMarkBitMap; }
ysr@777 599
ysr@777 600 // The following three are interaction between CM and
ysr@777 601 // G1CollectedHeap
ysr@777 602
ysr@777 603 // This notifies CM that a root during initial-mark needs to be
ysr@777 604 // grayed and it's MT-safe. Currently, we just mark it. But, in the
ysr@777 605 // future, we can experiment with pushing it on the stack and we can
ysr@777 606 // do this without changing G1CollectedHeap.
ysr@777 607 void grayRoot(oop p);
ysr@777 608 // It's used during evacuation pauses to gray a region, if
ysr@777 609 // necessary, and it's MT-safe. It assumes that the caller has
ysr@777 610 // marked any objects on that region. If _should_gray_objects is
ysr@777 611 // true and we're still doing concurrent marking, the region is
ysr@777 612 // pushed on the region stack, if it is located below the global
ysr@777 613 // finger, otherwise we do nothing.
ysr@777 614 void grayRegionIfNecessary(MemRegion mr);
ysr@777 615 // It's used during evacuation pauses to mark and, if necessary,
ysr@777 616 // gray a single object and it's MT-safe. It assumes the caller did
ysr@777 617 // not mark the object. If _should_gray_objects is true and we're
ysr@777 618 // still doing concurrent marking, the objects is pushed on the
ysr@777 619 // global stack, if it is located below the global finger, otherwise
ysr@777 620 // we do nothing.
ysr@777 621 void markAndGrayObjectIfNecessary(oop p);
ysr@777 622
ysr@777 623 // This iterates over the bitmap of the previous marking and prints
ysr@777 624 // out all objects that are marked on the bitmap and indicates
ysr@777 625 // whether what they point to is also marked or not.
ysr@777 626 void print_prev_bitmap_reachable();
ysr@777 627
ysr@777 628 // Clear the next marking bitmap (will be called concurrently).
ysr@777 629 void clearNextBitmap();
ysr@777 630
ysr@777 631 // main CMS steps and related support
ysr@777 632 void checkpointRootsInitial();
ysr@777 633
ysr@777 634 // These two do the work that needs to be done before and after the
ysr@777 635 // initial root checkpoint. Since this checkpoint can be done at two
ysr@777 636 // different points (i.e. an explicit pause or piggy-backed on a
ysr@777 637 // young collection), then it's nice to be able to easily share the
ysr@777 638 // pre/post code. It might be the case that we can put everything in
ysr@777 639 // the post method. TP
ysr@777 640 void checkpointRootsInitialPre();
ysr@777 641 void checkpointRootsInitialPost();
ysr@777 642
ysr@777 643 // Do concurrent phase of marking, to a tentative transitive closure.
ysr@777 644 void markFromRoots();
ysr@777 645
ysr@777 646 // Process all unprocessed SATB buffers. It is called at the
ysr@777 647 // beginning of an evacuation pause.
ysr@777 648 void drainAllSATBBuffers();
ysr@777 649
ysr@777 650 void checkpointRootsFinal(bool clear_all_soft_refs);
ysr@777 651 void checkpointRootsFinalWork();
ysr@777 652 void calcDesiredRegions();
ysr@777 653 void cleanup();
ysr@777 654 void completeCleanup();
ysr@777 655
ysr@777 656 // Mark in the previous bitmap. NB: this is usually read-only, so use
ysr@777 657 // this carefully!
ysr@777 658 void markPrev(oop p);
ysr@777 659 void clear(oop p);
ysr@777 660 // Clears marks for all objects in the given range, for both prev and
ysr@777 661 // next bitmaps. NB: the previous bitmap is usually read-only, so use
ysr@777 662 // this carefully!
ysr@777 663 void clearRangeBothMaps(MemRegion mr);
ysr@777 664
ysr@777 665 // Record the current top of the mark and region stacks; a
ysr@777 666 // subsequent oops_do() on the mark stack and
ysr@777 667 // invalidate_entries_into_cset() on the region stack will iterate
ysr@777 668 // only over indices valid at the time of this call.
ysr@777 669 void set_oops_do_bound() {
ysr@777 670 _markStack.set_oops_do_bound();
ysr@777 671 _regionStack.set_oops_do_bound();
ysr@777 672 }
ysr@777 673 // Iterate over the oops in the mark stack and all local queues. It
ysr@777 674 // also calls invalidate_entries_into_cset() on the region stack.
ysr@777 675 void oops_do(OopClosure* f);
ysr@777 676 // It is called at the end of an evacuation pause during marking so
ysr@777 677 // that CM is notified of where the new end of the heap is. It
ysr@777 678 // doesn't do anything if concurrent_marking_in_progress() is false,
ysr@777 679 // unless the force parameter is true.
ysr@777 680 void update_g1_committed(bool force = false);
ysr@777 681
ysr@777 682 void complete_marking_in_collection_set();
ysr@777 683
ysr@777 684 // It indicates that a new collection set is being chosen.
ysr@777 685 void newCSet();
ysr@777 686 // It registers a collection set heap region with CM. This is used
ysr@777 687 // to determine whether any heap regions are located above the finger.
ysr@777 688 void registerCSetRegion(HeapRegion* hr);
ysr@777 689
ysr@777 690 // Returns "true" if at least one mark has been completed.
ysr@777 691 bool at_least_one_mark_complete() { return _at_least_one_mark_complete; }
ysr@777 692
ysr@777 693 bool isMarked(oop p) const {
ysr@777 694 assert(p != NULL && p->is_oop(), "expected an oop");
ysr@777 695 HeapWord* addr = (HeapWord*)p;
ysr@777 696 assert(addr >= _nextMarkBitMap->startWord() ||
ysr@777 697 addr < _nextMarkBitMap->endWord(), "in a region");
ysr@777 698
ysr@777 699 return _nextMarkBitMap->isMarked(addr);
ysr@777 700 }
ysr@777 701
ysr@777 702 inline bool not_yet_marked(oop p) const;
ysr@777 703
ysr@777 704 // XXX Debug code
ysr@777 705 bool containing_card_is_marked(void* p);
ysr@777 706 bool containing_cards_are_marked(void* start, void* last);
ysr@777 707
ysr@777 708 bool isPrevMarked(oop p) const {
ysr@777 709 assert(p != NULL && p->is_oop(), "expected an oop");
ysr@777 710 HeapWord* addr = (HeapWord*)p;
ysr@777 711 assert(addr >= _prevMarkBitMap->startWord() ||
ysr@777 712 addr < _prevMarkBitMap->endWord(), "in a region");
ysr@777 713
ysr@777 714 return _prevMarkBitMap->isMarked(addr);
ysr@777 715 }
ysr@777 716
ysr@777 717 inline bool do_yield_check(int worker_i = 0);
ysr@777 718 inline bool should_yield();
ysr@777 719
ysr@777 720 // Called to abort the marking cycle after a Full GC takes palce.
ysr@777 721 void abort();
ysr@777 722
ysr@777 723 void disable_co_trackers();
ysr@777 724
ysr@777 725 // This prints the global/local fingers. It is used for debugging.
ysr@777 726 NOT_PRODUCT(void print_finger();)
ysr@777 727
ysr@777 728 void print_summary_info();
ysr@777 729
ysr@777 730 // The following indicate whether a given verbose level has been
ysr@777 731 // set. Notice that anything above stats is conditional to
ysr@777 732 // _MARKING_VERBOSE_ having been set to 1
ysr@777 733 bool verbose_stats()
ysr@777 734 { return _verbose_level >= stats_verbose; }
ysr@777 735 bool verbose_low()
ysr@777 736 { return _MARKING_VERBOSE_ && _verbose_level >= low_verbose; }
ysr@777 737 bool verbose_medium()
ysr@777 738 { return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose; }
ysr@777 739 bool verbose_high()
ysr@777 740 { return _MARKING_VERBOSE_ && _verbose_level >= high_verbose; }
ysr@777 741 };
ysr@777 742
ysr@777 743 // A class representing a marking task.
ysr@777 744 class CMTask : public TerminatorTerminator {
ysr@777 745 private:
ysr@777 746 enum PrivateConstants {
ysr@777 747 // the regular clock call is called once the scanned words reaches
ysr@777 748 // this limit
ysr@777 749 words_scanned_period = 12*1024,
ysr@777 750 // the regular clock call is called once the number of visited
ysr@777 751 // references reaches this limit
ysr@777 752 refs_reached_period = 384,
ysr@777 753 // initial value for the hash seed, used in the work stealing code
ysr@777 754 init_hash_seed = 17,
ysr@777 755 // how many entries will be transferred between global stack and
ysr@777 756 // local queues
ysr@777 757 global_stack_transfer_size = 16
ysr@777 758 };
ysr@777 759
ysr@777 760 int _task_id;
ysr@777 761 G1CollectedHeap* _g1h;
ysr@777 762 ConcurrentMark* _cm;
ysr@777 763 CMBitMap* _nextMarkBitMap;
ysr@777 764 // the task queue of this task
ysr@777 765 CMTaskQueue* _task_queue;
ysr@1280 766 private:
ysr@777 767 // the task queue set---needed for stealing
ysr@777 768 CMTaskQueueSet* _task_queues;
ysr@777 769 // indicates whether the task has been claimed---this is only for
ysr@777 770 // debugging purposes
ysr@777 771 bool _claimed;
ysr@777 772
ysr@777 773 // number of calls to this task
ysr@777 774 int _calls;
ysr@777 775
ysr@777 776 // concurrent overhead over a single CPU for this task
ysr@777 777 COTracker _co_tracker;
ysr@777 778
ysr@777 779 // when the virtual timer reaches this time, the marking step should
ysr@777 780 // exit
ysr@777 781 double _time_target_ms;
ysr@777 782 // the start time of the current marking step
ysr@777 783 double _start_time_ms;
ysr@777 784
ysr@777 785 // the oop closure used for iterations over oops
ysr@777 786 OopClosure* _oop_closure;
ysr@777 787
ysr@777 788 // the region this task is scanning, NULL if we're not scanning any
ysr@777 789 HeapRegion* _curr_region;
ysr@777 790 // the local finger of this task, NULL if we're not scanning a region
ysr@777 791 HeapWord* _finger;
ysr@777 792 // limit of the region this task is scanning, NULL if we're not scanning one
ysr@777 793 HeapWord* _region_limit;
ysr@777 794
ysr@777 795 // This is used only when we scan regions popped from the region
ysr@777 796 // stack. It records what the last object on such a region we
ysr@777 797 // scanned was. It is used to ensure that, if we abort region
ysr@777 798 // iteration, we do not rescan the first part of the region. This
ysr@777 799 // should be NULL when we're not scanning a region from the region
ysr@777 800 // stack.
ysr@777 801 HeapWord* _region_finger;
ysr@777 802
ysr@777 803 // the number of words this task has scanned
ysr@777 804 size_t _words_scanned;
ysr@777 805 // When _words_scanned reaches this limit, the regular clock is
ysr@777 806 // called. Notice that this might be decreased under certain
ysr@777 807 // circumstances (i.e. when we believe that we did an expensive
ysr@777 808 // operation).
ysr@777 809 size_t _words_scanned_limit;
ysr@777 810 // the initial value of _words_scanned_limit (i.e. what it was
ysr@777 811 // before it was decreased).
ysr@777 812 size_t _real_words_scanned_limit;
ysr@777 813
ysr@777 814 // the number of references this task has visited
ysr@777 815 size_t _refs_reached;
ysr@777 816 // When _refs_reached reaches this limit, the regular clock is
ysr@777 817 // called. Notice this this might be decreased under certain
ysr@777 818 // circumstances (i.e. when we believe that we did an expensive
ysr@777 819 // operation).
ysr@777 820 size_t _refs_reached_limit;
ysr@777 821 // the initial value of _refs_reached_limit (i.e. what it was before
ysr@777 822 // it was decreased).
ysr@777 823 size_t _real_refs_reached_limit;
ysr@777 824
ysr@777 825 // used by the work stealing stuff
ysr@777 826 int _hash_seed;
ysr@777 827 // if this is true, then the task has aborted for some reason
ysr@777 828 bool _has_aborted;
ysr@777 829 // set when the task aborts because it has met its time quota
ysr@777 830 bool _has_aborted_timed_out;
ysr@777 831 // true when we're draining SATB buffers; this avoids the task
ysr@777 832 // aborting due to SATB buffers being available (as we're already
ysr@777 833 // dealing with them)
ysr@777 834 bool _draining_satb_buffers;
ysr@777 835
ysr@777 836 // number sequence of past step times
ysr@777 837 NumberSeq _step_times_ms;
ysr@777 838 // elapsed time of this task
ysr@777 839 double _elapsed_time_ms;
ysr@777 840 // termination time of this task
ysr@777 841 double _termination_time_ms;
ysr@777 842 // when this task got into the termination protocol
ysr@777 843 double _termination_start_time_ms;
ysr@777 844
ysr@777 845 // true when the task is during a concurrent phase, false when it is
ysr@777 846 // in the remark phase (so, in the latter case, we do not have to
ysr@777 847 // check all the things that we have to check during the concurrent
ysr@777 848 // phase, i.e. SATB buffer availability...)
ysr@777 849 bool _concurrent;
ysr@777 850
ysr@777 851 TruncatedSeq _marking_step_diffs_ms;
ysr@777 852
ysr@777 853 // LOTS of statistics related with this task
ysr@777 854 #if _MARKING_STATS_
ysr@777 855 NumberSeq _all_clock_intervals_ms;
ysr@777 856 double _interval_start_time_ms;
ysr@777 857
ysr@777 858 int _aborted;
ysr@777 859 int _aborted_overflow;
ysr@777 860 int _aborted_cm_aborted;
ysr@777 861 int _aborted_yield;
ysr@777 862 int _aborted_timed_out;
ysr@777 863 int _aborted_satb;
ysr@777 864 int _aborted_termination;
ysr@777 865
ysr@777 866 int _steal_attempts;
ysr@777 867 int _steals;
ysr@777 868
ysr@777 869 int _clock_due_to_marking;
ysr@777 870 int _clock_due_to_scanning;
ysr@777 871
ysr@777 872 int _local_pushes;
ysr@777 873 int _local_pops;
ysr@777 874 int _local_max_size;
ysr@777 875 int _objs_scanned;
ysr@777 876
ysr@777 877 int _global_pushes;
ysr@777 878 int _global_pops;
ysr@777 879 int _global_max_size;
ysr@777 880
ysr@777 881 int _global_transfers_to;
ysr@777 882 int _global_transfers_from;
ysr@777 883
ysr@777 884 int _region_stack_pops;
ysr@777 885
ysr@777 886 int _regions_claimed;
ysr@777 887 int _objs_found_on_bitmap;
ysr@777 888
ysr@777 889 int _satb_buffers_processed;
ysr@777 890 #endif // _MARKING_STATS_
ysr@777 891
ysr@777 892 // it updates the local fields after this task has claimed
ysr@777 893 // a new region to scan
ysr@777 894 void setup_for_region(HeapRegion* hr);
ysr@777 895 // it brings up-to-date the limit of the region
ysr@777 896 void update_region_limit();
ysr@777 897 // it resets the local fields after a task has finished scanning a
ysr@777 898 // region
ysr@777 899 void giveup_current_region();
ysr@777 900
ysr@777 901 // called when either the words scanned or the refs visited limit
ysr@777 902 // has been reached
ysr@777 903 void reached_limit();
ysr@777 904 // recalculates the words scanned and refs visited limits
ysr@777 905 void recalculate_limits();
ysr@777 906 // decreases the words scanned and refs visited limits when we reach
ysr@777 907 // an expensive operation
ysr@777 908 void decrease_limits();
ysr@777 909 // it checks whether the words scanned or refs visited reached their
ysr@777 910 // respective limit and calls reached_limit() if they have
ysr@777 911 void check_limits() {
ysr@777 912 if (_words_scanned >= _words_scanned_limit ||
ysr@777 913 _refs_reached >= _refs_reached_limit)
ysr@777 914 reached_limit();
ysr@777 915 }
ysr@777 916 // this is supposed to be called regularly during a marking step as
ysr@777 917 // it checks a bunch of conditions that might cause the marking step
ysr@777 918 // to abort
ysr@777 919 void regular_clock_call();
ysr@777 920 bool concurrent() { return _concurrent; }
ysr@777 921
ysr@777 922 public:
ysr@777 923 // It resets the task; it should be called right at the beginning of
ysr@777 924 // a marking phase.
ysr@777 925 void reset(CMBitMap* _nextMarkBitMap);
ysr@777 926 // it clears all the fields that correspond to a claimed region.
ysr@777 927 void clear_region_fields();
ysr@777 928
ysr@777 929 void set_concurrent(bool concurrent) { _concurrent = concurrent; }
ysr@777 930
ysr@777 931 void enable_co_tracker() {
ysr@777 932 guarantee( !_co_tracker.enabled(), "invariant" );
ysr@777 933 _co_tracker.enable();
ysr@777 934 }
ysr@777 935 void disable_co_tracker() {
ysr@777 936 guarantee( _co_tracker.enabled(), "invariant" );
ysr@777 937 _co_tracker.disable();
ysr@777 938 }
ysr@777 939 bool co_tracker_enabled() {
ysr@777 940 return _co_tracker.enabled();
ysr@777 941 }
ysr@777 942 void reset_co_tracker(double starting_conc_overhead = 0.0) {
ysr@777 943 _co_tracker.reset(starting_conc_overhead);
ysr@777 944 }
ysr@777 945 void start_co_tracker() {
ysr@777 946 _co_tracker.start();
ysr@777 947 }
ysr@777 948 void update_co_tracker(bool force_end = false) {
ysr@777 949 _co_tracker.update(force_end);
ysr@777 950 }
ysr@777 951
ysr@777 952 // The main method of this class which performs a marking step
ysr@777 953 // trying not to exceed the given duration. However, it might exit
ysr@777 954 // prematurely, according to some conditions (i.e. SATB buffers are
ysr@777 955 // available for processing).
ysr@777 956 void do_marking_step(double target_ms);
ysr@777 957
ysr@777 958 // These two calls start and stop the timer
ysr@777 959 void record_start_time() {
ysr@777 960 _elapsed_time_ms = os::elapsedTime() * 1000.0;
ysr@777 961 }
ysr@777 962 void record_end_time() {
ysr@777 963 _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
ysr@777 964 }
ysr@777 965
ysr@777 966 // returns the task ID
ysr@777 967 int task_id() { return _task_id; }
ysr@777 968
ysr@777 969 // From TerminatorTerminator. It determines whether this task should
ysr@777 970 // exit the termination protocol after it's entered it.
ysr@777 971 virtual bool should_exit_termination();
ysr@777 972
ysr@777 973 HeapWord* finger() { return _finger; }
ysr@777 974
ysr@777 975 bool has_aborted() { return _has_aborted; }
ysr@777 976 void set_has_aborted() { _has_aborted = true; }
ysr@777 977 void clear_has_aborted() { _has_aborted = false; }
ysr@777 978 bool claimed() { return _claimed; }
ysr@777 979
ysr@777 980 void set_oop_closure(OopClosure* oop_closure) {
ysr@777 981 _oop_closure = oop_closure;
ysr@777 982 }
ysr@777 983
ysr@777 984 // It grays the object by marking it and, if necessary, pushing it
ysr@777 985 // on the local queue
ysr@777 986 void deal_with_reference(oop obj);
ysr@777 987
ysr@777 988 // It scans an object and visits its children.
ysr@777 989 void scan_object(oop obj) {
ysr@777 990 tmp_guarantee_CM( _nextMarkBitMap->isMarked((HeapWord*) obj),
ysr@777 991 "invariant" );
ysr@777 992
ysr@777 993 if (_cm->verbose_high())
ysr@777 994 gclog_or_tty->print_cr("[%d] we're scanning object "PTR_FORMAT,
ysr@777 995 _task_id, (void*) obj);
ysr@777 996
ysr@777 997 size_t obj_size = obj->size();
ysr@777 998 _words_scanned += obj_size;
ysr@777 999
ysr@777 1000 obj->oop_iterate(_oop_closure);
ysr@777 1001 statsOnly( ++_objs_scanned );
ysr@777 1002 check_limits();
ysr@777 1003 }
ysr@777 1004
ysr@777 1005 // It pushes an object on the local queue.
ysr@777 1006 void push(oop obj);
ysr@777 1007
ysr@777 1008 // These two move entries to/from the global stack.
ysr@777 1009 void move_entries_to_global_stack();
ysr@777 1010 void get_entries_from_global_stack();
ysr@777 1011
ysr@777 1012 // It pops and scans objects from the local queue. If partially is
ysr@777 1013 // true, then it stops when the queue size is of a given limit. If
ysr@777 1014 // partially is false, then it stops when the queue is empty.
ysr@777 1015 void drain_local_queue(bool partially);
ysr@777 1016 // It moves entries from the global stack to the local queue and
ysr@777 1017 // drains the local queue. If partially is true, then it stops when
ysr@777 1018 // both the global stack and the local queue reach a given size. If
ysr@777 1019 // partially if false, it tries to empty them totally.
ysr@777 1020 void drain_global_stack(bool partially);
ysr@777 1021 // It keeps picking SATB buffers and processing them until no SATB
ysr@777 1022 // buffers are available.
ysr@777 1023 void drain_satb_buffers();
ysr@777 1024 // It keeps popping regions from the region stack and processing
ysr@777 1025 // them until the region stack is empty.
ysr@777 1026 void drain_region_stack(BitMapClosure* closure);
ysr@777 1027
ysr@777 1028 // moves the local finger to a new location
ysr@777 1029 inline void move_finger_to(HeapWord* new_finger) {
ysr@777 1030 tmp_guarantee_CM( new_finger >= _finger && new_finger < _region_limit,
ysr@777 1031 "invariant" );
ysr@777 1032 _finger = new_finger;
ysr@777 1033 }
ysr@777 1034
ysr@777 1035 // moves the region finger to a new location
ysr@777 1036 inline void move_region_finger_to(HeapWord* new_finger) {
ysr@777 1037 tmp_guarantee_CM( new_finger < _cm->finger(), "invariant" );
ysr@777 1038 _region_finger = new_finger;
ysr@777 1039 }
ysr@777 1040
ysr@777 1041 CMTask(int task_num, ConcurrentMark *cm,
ysr@777 1042 CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
ysr@777 1043
ysr@777 1044 // it prints statistics associated with this task
ysr@777 1045 void print_stats();
ysr@777 1046
ysr@777 1047 #if _MARKING_STATS_
ysr@777 1048 void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
ysr@777 1049 #endif // _MARKING_STATS_
ysr@777 1050 };

mercurial