src/share/vm/gc_implementation/g1/concurrentMark.hpp

Thu, 03 Jan 2013 16:28:22 -0800

author
johnc
date
Thu, 03 Jan 2013 16:28:22 -0800
changeset 4386
d275c3dc73e6
parent 4333
442f942757c0
child 4549
256d3f43c177
permissions
-rw-r--r--

8004816: G1: Kitchensink failures after marking stack changes
Summary: Reset the marking state, including the mark stack overflow flag, in the event of a marking stack overflow during serial reference processing.
Reviewed-by: jmasa

ysr@777 1 /*
johnc@4386 2 * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
stefank@2314 27
tonyp@2472 28 #include "gc_implementation/g1/heapRegionSets.hpp"
stefank@2314 29 #include "utilities/taskqueue.hpp"
stefank@2314 30
ysr@777 31 class G1CollectedHeap;
ysr@777 32 class CMTask;
zgu@3900 33 typedef GenericTaskQueue<oop, mtGC> CMTaskQueue;
zgu@3900 34 typedef GenericTaskQueueSet<CMTaskQueue, mtGC> CMTaskQueueSet;
ysr@777 35
johnc@2379 36 // Closure used by CM during concurrent reference discovery
johnc@2379 37 // and reference processing (during remarking) to determine
johnc@2379 38 // if a particular object is alive. It is primarily used
johnc@2379 39 // to determine if referents of discovered reference objects
johnc@2379 40 // are alive. An instance is also embedded into the
johnc@2379 41 // reference processor as the _is_alive_non_header field
johnc@2379 42 class G1CMIsAliveClosure: public BoolObjectClosure {
johnc@2379 43 G1CollectedHeap* _g1;
johnc@2379 44 public:
tonyp@3691 45 G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
johnc@2379 46
johnc@2379 47 void do_object(oop obj) {
johnc@2379 48 ShouldNotCallThis();
johnc@2379 49 }
johnc@2379 50 bool do_object_b(oop obj);
johnc@2379 51 };
johnc@2379 52
ysr@777 53 // A generic CM bit map. This is essentially a wrapper around the BitMap
ysr@777 54 // class, with one bit per (1<<_shifter) HeapWords.
ysr@777 55
apetrusenko@984 56 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
ysr@777 57 protected:
ysr@777 58 HeapWord* _bmStartWord; // base address of range covered by map
ysr@777 59 size_t _bmWordSize; // map size (in #HeapWords covered)
ysr@777 60 const int _shifter; // map to char or bit
ysr@777 61 VirtualSpace _virtual_space; // underlying the bit map
ysr@777 62 BitMap _bm; // the bit map itself
ysr@777 63
ysr@777 64 public:
ysr@777 65 // constructor
johnc@4333 66 CMBitMapRO(int shifter);
ysr@777 67
ysr@777 68 enum { do_yield = true };
ysr@777 69
ysr@777 70 // inquiries
ysr@777 71 HeapWord* startWord() const { return _bmStartWord; }
ysr@777 72 size_t sizeInWords() const { return _bmWordSize; }
ysr@777 73 // the following is one past the last word in space
ysr@777 74 HeapWord* endWord() const { return _bmStartWord + _bmWordSize; }
ysr@777 75
ysr@777 76 // read marks
ysr@777 77
ysr@777 78 bool isMarked(HeapWord* addr) const {
ysr@777 79 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 80 "outside underlying space?");
ysr@777 81 return _bm.at(heapWordToOffset(addr));
ysr@777 82 }
ysr@777 83
ysr@777 84 // iteration
johnc@3454 85 inline bool iterate(BitMapClosure* cl, MemRegion mr);
johnc@3454 86 inline bool iterate(BitMapClosure* cl);
ysr@777 87
ysr@777 88 // Return the address corresponding to the next marked bit at or after
ysr@777 89 // "addr", and before "limit", if "limit" is non-NULL. If there is no
ysr@777 90 // such bit, returns "limit" if that is non-NULL, or else "endWord()".
ysr@777 91 HeapWord* getNextMarkedWordAddress(HeapWord* addr,
ysr@777 92 HeapWord* limit = NULL) const;
ysr@777 93 // Return the address corresponding to the next unmarked bit at or after
ysr@777 94 // "addr", and before "limit", if "limit" is non-NULL. If there is no
ysr@777 95 // such bit, returns "limit" if that is non-NULL, or else "endWord()".
ysr@777 96 HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
ysr@777 97 HeapWord* limit = NULL) const;
ysr@777 98
ysr@777 99 // conversion utilities
ysr@777 100 // XXX Fix these so that offsets are size_t's...
ysr@777 101 HeapWord* offsetToHeapWord(size_t offset) const {
ysr@777 102 return _bmStartWord + (offset << _shifter);
ysr@777 103 }
ysr@777 104 size_t heapWordToOffset(HeapWord* addr) const {
ysr@777 105 return pointer_delta(addr, _bmStartWord) >> _shifter;
ysr@777 106 }
ysr@777 107 int heapWordDiffToOffsetDiff(size_t diff) const;
ysr@777 108 HeapWord* nextWord(HeapWord* addr) {
ysr@777 109 return offsetToHeapWord(heapWordToOffset(addr) + 1);
ysr@777 110 }
ysr@777 111
ysr@777 112 // debugging
ysr@777 113 NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
ysr@777 114 };
ysr@777 115
ysr@777 116 class CMBitMap : public CMBitMapRO {
ysr@777 117
ysr@777 118 public:
ysr@777 119 // constructor
johnc@4333 120 CMBitMap(int shifter) :
johnc@4333 121 CMBitMapRO(shifter) {}
johnc@4333 122
johnc@4333 123 // Allocates the back store for the marking bitmap
johnc@4333 124 bool allocate(ReservedSpace heap_rs);
ysr@777 125
ysr@777 126 // write marks
ysr@777 127 void mark(HeapWord* addr) {
ysr@777 128 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 129 "outside underlying space?");
tonyp@2968 130 _bm.set_bit(heapWordToOffset(addr));
ysr@777 131 }
ysr@777 132 void clear(HeapWord* addr) {
ysr@777 133 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 134 "outside underlying space?");
tonyp@2968 135 _bm.clear_bit(heapWordToOffset(addr));
ysr@777 136 }
ysr@777 137 bool parMark(HeapWord* addr) {
ysr@777 138 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 139 "outside underlying space?");
tonyp@2968 140 return _bm.par_set_bit(heapWordToOffset(addr));
ysr@777 141 }
ysr@777 142 bool parClear(HeapWord* addr) {
ysr@777 143 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 144 "outside underlying space?");
tonyp@2968 145 return _bm.par_clear_bit(heapWordToOffset(addr));
ysr@777 146 }
ysr@777 147 void markRange(MemRegion mr);
ysr@777 148 void clearAll();
ysr@777 149 void clearRange(MemRegion mr);
ysr@777 150
ysr@777 151 // Starting at the bit corresponding to "addr" (inclusive), find the next
ysr@777 152 // "1" bit, if any. This bit starts some run of consecutive "1"'s; find
ysr@777 153 // the end of this run (stopping at "end_addr"). Return the MemRegion
ysr@777 154 // covering from the start of the region corresponding to the first bit
ysr@777 155 // of the run to the end of the region corresponding to the last bit of
ysr@777 156 // the run. If there is no "1" bit at or after "addr", return an empty
ysr@777 157 // MemRegion.
ysr@777 158 MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
ysr@777 159 };
ysr@777 160
johnc@4333 161 // Represents a marking stack used by ConcurrentMarking in the G1 collector.
apetrusenko@984 162 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
johnc@4333 163 VirtualSpace _virtual_space; // Underlying backing store for actual stack
ysr@777 164 ConcurrentMark* _cm;
tonyp@3416 165 oop* _base; // bottom of stack
johnc@4333 166 jint _index; // one more than last occupied index
johnc@4333 167 jint _capacity; // max #elements
johnc@4333 168 jint _saved_index; // value of _index saved at start of GC
johnc@4333 169 NOT_PRODUCT(jint _max_depth;) // max depth plumbed during run
ysr@777 170
johnc@4333 171 bool _overflow;
johnc@4333 172 bool _should_expand;
ysr@777 173 DEBUG_ONLY(bool _drain_in_progress;)
ysr@777 174 DEBUG_ONLY(bool _drain_in_progress_yields;)
ysr@777 175
ysr@777 176 public:
ysr@777 177 CMMarkStack(ConcurrentMark* cm);
ysr@777 178 ~CMMarkStack();
ysr@777 179
johnc@4333 180 #ifndef PRODUCT
johnc@4333 181 jint max_depth() const {
johnc@4333 182 return _max_depth;
johnc@4333 183 }
johnc@4333 184 #endif
johnc@4333 185
johnc@4333 186 bool allocate(size_t capacity);
ysr@777 187
ysr@777 188 oop pop() {
ysr@777 189 if (!isEmpty()) {
ysr@777 190 return _base[--_index] ;
ysr@777 191 }
ysr@777 192 return NULL;
ysr@777 193 }
ysr@777 194
ysr@777 195 // If overflow happens, don't do the push, and record the overflow.
ysr@777 196 // *Requires* that "ptr" is already marked.
ysr@777 197 void push(oop ptr) {
ysr@777 198 if (isFull()) {
ysr@777 199 // Record overflow.
ysr@777 200 _overflow = true;
ysr@777 201 return;
ysr@777 202 } else {
ysr@777 203 _base[_index++] = ptr;
ysr@777 204 NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
ysr@777 205 }
ysr@777 206 }
ysr@777 207 // Non-block impl. Note: concurrency is allowed only with other
ysr@777 208 // "par_push" operations, not with "pop" or "drain". We would need
ysr@777 209 // parallel versions of them if such concurrency was desired.
ysr@777 210 void par_push(oop ptr);
ysr@777 211
ysr@777 212 // Pushes the first "n" elements of "ptr_arr" on the stack.
ysr@777 213 // Non-block impl. Note: concurrency is allowed only with other
ysr@777 214 // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
ysr@777 215 void par_adjoin_arr(oop* ptr_arr, int n);
ysr@777 216
ysr@777 217 // Pushes the first "n" elements of "ptr_arr" on the stack.
ysr@777 218 // Locking impl: concurrency is allowed only with
ysr@777 219 // "par_push_arr" and/or "par_pop_arr" operations, which use the same
ysr@777 220 // locking strategy.
ysr@777 221 void par_push_arr(oop* ptr_arr, int n);
ysr@777 222
ysr@777 223 // If returns false, the array was empty. Otherwise, removes up to "max"
ysr@777 224 // elements from the stack, and transfers them to "ptr_arr" in an
ysr@777 225 // unspecified order. The actual number transferred is given in "n" ("n
ysr@777 226 // == 0" is deliberately redundant with the return value.) Locking impl:
ysr@777 227 // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
ysr@777 228 // operations, which use the same locking strategy.
ysr@777 229 bool par_pop_arr(oop* ptr_arr, int max, int* n);
ysr@777 230
ysr@777 231 // Drain the mark stack, applying the given closure to all fields of
ysr@777 232 // objects on the stack. (That is, continue until the stack is empty,
ysr@777 233 // even if closure applications add entries to the stack.) The "bm"
ysr@777 234 // argument, if non-null, may be used to verify that only marked objects
ysr@777 235 // are on the mark stack. If "yield_after" is "true", then the
ysr@777 236 // concurrent marker performing the drain offers to yield after
ysr@777 237 // processing each object. If a yield occurs, stops the drain operation
ysr@777 238 // and returns false. Otherwise, returns true.
ysr@777 239 template<class OopClosureClass>
ysr@777 240 bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
ysr@777 241
ysr@777 242 bool isEmpty() { return _index == 0; }
ysr@777 243 bool isFull() { return _index == _capacity; }
johnc@4333 244 int maxElems() { return _capacity; }
ysr@777 245
ysr@777 246 bool overflow() { return _overflow; }
ysr@777 247 void clear_overflow() { _overflow = false; }
ysr@777 248
johnc@4333 249 bool should_expand() const { return _should_expand; }
johnc@4333 250 void set_should_expand();
johnc@4333 251
johnc@4333 252 // Expand the stack, typically in response to an overflow condition
johnc@4333 253 void expand();
johnc@4333 254
ysr@777 255 int size() { return _index; }
ysr@777 256
ysr@777 257 void setEmpty() { _index = 0; clear_overflow(); }
ysr@777 258
tonyp@3416 259 // Record the current index.
tonyp@3416 260 void note_start_of_gc();
tonyp@3416 261
tonyp@3416 262 // Make sure that we have not added any entries to the stack during GC.
tonyp@3416 263 void note_end_of_gc();
tonyp@3416 264
ysr@777 265 // iterate over the oops in the mark stack, up to the bound recorded via
ysr@777 266 // the call above.
ysr@777 267 void oops_do(OopClosure* f);
ysr@777 268 };
ysr@777 269
tonyp@2848 270 class ForceOverflowSettings VALUE_OBJ_CLASS_SPEC {
tonyp@2848 271 private:
tonyp@2848 272 #ifndef PRODUCT
tonyp@2848 273 uintx _num_remaining;
tonyp@2848 274 bool _force;
tonyp@2848 275 #endif // !defined(PRODUCT)
tonyp@2848 276
tonyp@2848 277 public:
tonyp@2848 278 void init() PRODUCT_RETURN;
tonyp@2848 279 void update() PRODUCT_RETURN;
tonyp@2848 280 bool should_force() PRODUCT_RETURN_( return false; );
tonyp@2848 281 };
tonyp@2848 282
ysr@777 283 // this will enable a variety of different statistics per GC task
ysr@777 284 #define _MARKING_STATS_ 0
ysr@777 285 // this will enable the higher verbose levels
ysr@777 286 #define _MARKING_VERBOSE_ 0
ysr@777 287
ysr@777 288 #if _MARKING_STATS_
ysr@777 289 #define statsOnly(statement) \
ysr@777 290 do { \
ysr@777 291 statement ; \
ysr@777 292 } while (0)
ysr@777 293 #else // _MARKING_STATS_
ysr@777 294 #define statsOnly(statement) \
ysr@777 295 do { \
ysr@777 296 } while (0)
ysr@777 297 #endif // _MARKING_STATS_
ysr@777 298
ysr@777 299 typedef enum {
ysr@777 300 no_verbose = 0, // verbose turned off
ysr@777 301 stats_verbose, // only prints stats at the end of marking
ysr@777 302 low_verbose, // low verbose, mostly per region and per major event
ysr@777 303 medium_verbose, // a bit more detailed than low
ysr@777 304 high_verbose // per object verbose
ysr@777 305 } CMVerboseLevel;
ysr@777 306
tonyp@3464 307 class YoungList;
tonyp@3464 308
tonyp@3464 309 // Root Regions are regions that are not empty at the beginning of a
tonyp@3464 310 // marking cycle and which we might collect during an evacuation pause
tonyp@3464 311 // while the cycle is active. Given that, during evacuation pauses, we
tonyp@3464 312 // do not copy objects that are explicitly marked, what we have to do
tonyp@3464 313 // for the root regions is to scan them and mark all objects reachable
tonyp@3464 314 // from them. According to the SATB assumptions, we only need to visit
tonyp@3464 315 // each object once during marking. So, as long as we finish this scan
tonyp@3464 316 // before the next evacuation pause, we can copy the objects from the
tonyp@3464 317 // root regions without having to mark them or do anything else to them.
tonyp@3464 318 //
tonyp@3464 319 // Currently, we only support root region scanning once (at the start
tonyp@3464 320 // of the marking cycle) and the root regions are all the survivor
tonyp@3464 321 // regions populated during the initial-mark pause.
tonyp@3464 322 class CMRootRegions VALUE_OBJ_CLASS_SPEC {
tonyp@3464 323 private:
tonyp@3464 324 YoungList* _young_list;
tonyp@3464 325 ConcurrentMark* _cm;
tonyp@3464 326
tonyp@3464 327 volatile bool _scan_in_progress;
tonyp@3464 328 volatile bool _should_abort;
tonyp@3464 329 HeapRegion* volatile _next_survivor;
tonyp@3464 330
tonyp@3464 331 public:
tonyp@3464 332 CMRootRegions();
tonyp@3464 333 // We actually do most of the initialization in this method.
tonyp@3464 334 void init(G1CollectedHeap* g1h, ConcurrentMark* cm);
tonyp@3464 335
tonyp@3464 336 // Reset the claiming / scanning of the root regions.
tonyp@3464 337 void prepare_for_scan();
tonyp@3464 338
tonyp@3464 339 // Forces get_next() to return NULL so that the iteration aborts early.
tonyp@3464 340 void abort() { _should_abort = true; }
tonyp@3464 341
tonyp@3464 342 // Return true if the CM thread are actively scanning root regions,
tonyp@3464 343 // false otherwise.
tonyp@3464 344 bool scan_in_progress() { return _scan_in_progress; }
tonyp@3464 345
tonyp@3464 346 // Claim the next root region to scan atomically, or return NULL if
tonyp@3464 347 // all have been claimed.
tonyp@3464 348 HeapRegion* claim_next();
tonyp@3464 349
tonyp@3464 350 // Flag that we're done with root region scanning and notify anyone
tonyp@3464 351 // who's waiting on it. If aborted is false, assume that all regions
tonyp@3464 352 // have been claimed.
tonyp@3464 353 void scan_finished();
tonyp@3464 354
tonyp@3464 355 // If CM threads are still scanning root regions, wait until they
tonyp@3464 356 // are done. Return true if we had to wait, false otherwise.
tonyp@3464 357 bool wait_until_scan_finished();
tonyp@3464 358 };
ysr@777 359
ysr@777 360 class ConcurrentMarkThread;
ysr@777 361
zgu@3900 362 class ConcurrentMark: public CHeapObj<mtGC> {
johnc@4333 363 friend class CMMarkStack;
ysr@777 364 friend class ConcurrentMarkThread;
ysr@777 365 friend class CMTask;
ysr@777 366 friend class CMBitMapClosure;
ysr@777 367 friend class CMGlobalObjectClosure;
ysr@777 368 friend class CMRemarkTask;
ysr@777 369 friend class CMConcurrentMarkingTask;
ysr@777 370 friend class G1ParNoteEndTask;
ysr@777 371 friend class CalcLiveObjectsClosure;
johnc@3175 372 friend class G1CMRefProcTaskProxy;
johnc@3175 373 friend class G1CMRefProcTaskExecutor;
johnc@2494 374 friend class G1CMParKeepAliveAndDrainClosure;
johnc@2494 375 friend class G1CMParDrainMarkingStackClosure;
ysr@777 376
ysr@777 377 protected:
ysr@777 378 ConcurrentMarkThread* _cmThread; // the thread doing the work
ysr@777 379 G1CollectedHeap* _g1h; // the heap.
jmasa@3357 380 uint _parallel_marking_threads; // the number of marking
jmasa@3294 381 // threads we're use
jmasa@3357 382 uint _max_parallel_marking_threads; // max number of marking
jmasa@3294 383 // threads we'll ever use
ysr@777 384 double _sleep_factor; // how much we have to sleep, with
ysr@777 385 // respect to the work we just did, to
ysr@777 386 // meet the marking overhead goal
ysr@777 387 double _marking_task_overhead; // marking target overhead for
ysr@777 388 // a single task
ysr@777 389
ysr@777 390 // same as the two above, but for the cleanup task
ysr@777 391 double _cleanup_sleep_factor;
ysr@777 392 double _cleanup_task_overhead;
ysr@777 393
tonyp@2472 394 FreeRegionList _cleanup_list;
ysr@777 395
brutisso@3455 396 // Concurrent marking support structures
ysr@777 397 CMBitMap _markBitMap1;
ysr@777 398 CMBitMap _markBitMap2;
ysr@777 399 CMBitMapRO* _prevMarkBitMap; // completed mark bitmap
ysr@777 400 CMBitMap* _nextMarkBitMap; // under-construction mark bitmap
ysr@777 401
ysr@777 402 BitMap _region_bm;
ysr@777 403 BitMap _card_bm;
ysr@777 404
ysr@777 405 // Heap bounds
ysr@777 406 HeapWord* _heap_start;
ysr@777 407 HeapWord* _heap_end;
ysr@777 408
tonyp@3464 409 // Root region tracking and claiming.
tonyp@3464 410 CMRootRegions _root_regions;
tonyp@3464 411
ysr@777 412 // For gray objects
ysr@777 413 CMMarkStack _markStack; // Grey objects behind global finger.
ysr@777 414 HeapWord* volatile _finger; // the global finger, region aligned,
ysr@777 415 // always points to the end of the
ysr@777 416 // last claimed region
ysr@777 417
ysr@777 418 // marking tasks
johnc@4173 419 uint _max_worker_id;// maximum worker id
jmasa@3357 420 uint _active_tasks; // task num currently active
johnc@4173 421 CMTask** _tasks; // task queue array (max_worker_id len)
ysr@777 422 CMTaskQueueSet* _task_queues; // task queue set
ysr@777 423 ParallelTaskTerminator _terminator; // for termination
ysr@777 424
ysr@777 425 // Two sync barriers that are used to synchronise tasks when an
ysr@777 426 // overflow occurs. The algorithm is the following. All tasks enter
ysr@777 427 // the first one to ensure that they have all stopped manipulating
ysr@777 428 // the global data structures. After they exit it, they re-initialise
ysr@777 429 // their data structures and task 0 re-initialises the global data
ysr@777 430 // structures. Then, they enter the second sync barrier. This
ysr@777 431 // ensure, that no task starts doing work before all data
ysr@777 432 // structures (local and global) have been re-initialised. When they
ysr@777 433 // exit it, they are free to start working again.
ysr@777 434 WorkGangBarrierSync _first_overflow_barrier_sync;
ysr@777 435 WorkGangBarrierSync _second_overflow_barrier_sync;
ysr@777 436
ysr@777 437 // this is set by any task, when an overflow on the global data
ysr@777 438 // structures is detected.
ysr@777 439 volatile bool _has_overflown;
ysr@777 440 // true: marking is concurrent, false: we're in remark
ysr@777 441 volatile bool _concurrent;
ysr@777 442 // set at the end of a Full GC so that marking aborts
ysr@777 443 volatile bool _has_aborted;
johnc@2190 444
ysr@777 445 // used when remark aborts due to an overflow to indicate that
ysr@777 446 // another concurrent marking phase should start
ysr@777 447 volatile bool _restart_for_overflow;
ysr@777 448
ysr@777 449 // This is true from the very start of concurrent marking until the
ysr@777 450 // point when all the tasks complete their work. It is really used
ysr@777 451 // to determine the points between the end of concurrent marking and
ysr@777 452 // time of remark.
ysr@777 453 volatile bool _concurrent_marking_in_progress;
ysr@777 454
ysr@777 455 // verbose level
ysr@777 456 CMVerboseLevel _verbose_level;
ysr@777 457
ysr@777 458 // All of these times are in ms.
ysr@777 459 NumberSeq _init_times;
ysr@777 460 NumberSeq _remark_times;
ysr@777 461 NumberSeq _remark_mark_times;
ysr@777 462 NumberSeq _remark_weak_ref_times;
ysr@777 463 NumberSeq _cleanup_times;
ysr@777 464 double _total_counting_time;
ysr@777 465 double _total_rs_scrub_time;
ysr@777 466
ysr@777 467 double* _accum_task_vtime; // accumulated task vtime
ysr@777 468
jmasa@3294 469 FlexibleWorkGang* _parallel_workers;
ysr@777 470
tonyp@2848 471 ForceOverflowSettings _force_overflow_conc;
tonyp@2848 472 ForceOverflowSettings _force_overflow_stw;
tonyp@2848 473
ysr@777 474 void weakRefsWork(bool clear_all_soft_refs);
ysr@777 475
ysr@777 476 void swapMarkBitMaps();
ysr@777 477
ysr@777 478 // It resets the global marking data structures, as well as the
ysr@777 479 // task local ones; should be called during initial mark.
ysr@777 480 void reset();
johnc@4386 481
johnc@4386 482 // Resets all the marking data structures. Called when we have to restart
johnc@4386 483 // marking or when marking completes (via set_non_marking_state below).
johnc@4386 484 void reset_marking_state(bool clear_overflow = true);
johnc@4386 485
johnc@4386 486 // We do this after we're done with marking so that the marking data
johnc@4386 487 // structures are initialised to a sensible and predictable state.
johnc@4386 488 void set_non_marking_state();
ysr@777 489
ysr@777 490 // It should be called to indicate which phase we're in (concurrent
ysr@777 491 // mark or remark) and how many threads are currently active.
jmasa@3357 492 void set_phase(uint active_tasks, bool concurrent);
ysr@777 493
ysr@777 494 // prints all gathered CM-related statistics
ysr@777 495 void print_stats();
ysr@777 496
tonyp@2472 497 bool cleanup_list_is_empty() {
tonyp@2472 498 return _cleanup_list.is_empty();
tonyp@2472 499 }
tonyp@2472 500
ysr@777 501 // accessor methods
jmasa@3357 502 uint parallel_marking_threads() { return _parallel_marking_threads; }
jmasa@3357 503 uint max_parallel_marking_threads() { return _max_parallel_marking_threads;}
ysr@777 504 double sleep_factor() { return _sleep_factor; }
ysr@777 505 double marking_task_overhead() { return _marking_task_overhead;}
ysr@777 506 double cleanup_sleep_factor() { return _cleanup_sleep_factor; }
ysr@777 507 double cleanup_task_overhead() { return _cleanup_task_overhead;}
ysr@777 508
ysr@777 509 HeapWord* finger() { return _finger; }
ysr@777 510 bool concurrent() { return _concurrent; }
jmasa@3357 511 uint active_tasks() { return _active_tasks; }
ysr@777 512 ParallelTaskTerminator* terminator() { return &_terminator; }
ysr@777 513
ysr@777 514 // It claims the next available region to be scanned by a marking
johnc@4173 515 // task/thread. It might return NULL if the next region is empty or
johnc@4173 516 // we have run out of regions. In the latter case, out_of_regions()
ysr@777 517 // determines whether we've really run out of regions or the task
johnc@4173 518 // should call claim_region() again. This might seem a bit
ysr@777 519 // awkward. Originally, the code was written so that claim_region()
ysr@777 520 // either successfully returned with a non-empty region or there
ysr@777 521 // were no more regions to be claimed. The problem with this was
ysr@777 522 // that, in certain circumstances, it iterated over large chunks of
ysr@777 523 // the heap finding only empty regions and, while it was working, it
ysr@777 524 // was preventing the calling task to call its regular clock
ysr@777 525 // method. So, this way, each task will spend very little time in
ysr@777 526 // claim_region() and is allowed to call the regular clock method
ysr@777 527 // frequently.
johnc@4173 528 HeapRegion* claim_region(uint worker_id);
ysr@777 529
ysr@777 530 // It determines whether we've run out of regions to scan.
ysr@777 531 bool out_of_regions() { return _finger == _heap_end; }
ysr@777 532
ysr@777 533 // Returns the task with the given id
ysr@777 534 CMTask* task(int id) {
tonyp@1458 535 assert(0 <= id && id < (int) _active_tasks,
tonyp@1458 536 "task id not within active bounds");
ysr@777 537 return _tasks[id];
ysr@777 538 }
ysr@777 539
ysr@777 540 // Returns the task queue with the given id
ysr@777 541 CMTaskQueue* task_queue(int id) {
tonyp@1458 542 assert(0 <= id && id < (int) _active_tasks,
tonyp@1458 543 "task queue id not within active bounds");
ysr@777 544 return (CMTaskQueue*) _task_queues->queue(id);
ysr@777 545 }
ysr@777 546
ysr@777 547 // Returns the task queue set
ysr@777 548 CMTaskQueueSet* task_queues() { return _task_queues; }
ysr@777 549
ysr@777 550 // Access / manipulation of the overflow flag which is set to
tonyp@3691 551 // indicate that the global stack has overflown
ysr@777 552 bool has_overflown() { return _has_overflown; }
ysr@777 553 void set_has_overflown() { _has_overflown = true; }
ysr@777 554 void clear_has_overflown() { _has_overflown = false; }
tonyp@3464 555 bool restart_for_overflow() { return _restart_for_overflow; }
ysr@777 556
ysr@777 557 bool has_aborted() { return _has_aborted; }
ysr@777 558
ysr@777 559 // Methods to enter the two overflow sync barriers
johnc@4173 560 void enter_first_sync_barrier(uint worker_id);
johnc@4173 561 void enter_second_sync_barrier(uint worker_id);
ysr@777 562
tonyp@2848 563 ForceOverflowSettings* force_overflow_conc() {
tonyp@2848 564 return &_force_overflow_conc;
tonyp@2848 565 }
tonyp@2848 566
tonyp@2848 567 ForceOverflowSettings* force_overflow_stw() {
tonyp@2848 568 return &_force_overflow_stw;
tonyp@2848 569 }
tonyp@2848 570
tonyp@2848 571 ForceOverflowSettings* force_overflow() {
tonyp@2848 572 if (concurrent()) {
tonyp@2848 573 return force_overflow_conc();
tonyp@2848 574 } else {
tonyp@2848 575 return force_overflow_stw();
tonyp@2848 576 }
tonyp@2848 577 }
tonyp@2848 578
johnc@3463 579 // Live Data Counting data structures...
johnc@3463 580 // These data structures are initialized at the start of
johnc@3463 581 // marking. They are written to while marking is active.
johnc@3463 582 // They are aggregated during remark; the aggregated values
johnc@3463 583 // are then used to populate the _region_bm, _card_bm, and
johnc@3463 584 // the total live bytes, which are then subsequently updated
johnc@3463 585 // during cleanup.
johnc@3463 586
johnc@3463 587 // An array of bitmaps (one bit map per task). Each bitmap
johnc@3463 588 // is used to record the cards spanned by the live objects
johnc@3463 589 // marked by that task/worker.
johnc@3463 590 BitMap* _count_card_bitmaps;
johnc@3463 591
johnc@3463 592 // Used to record the number of marked live bytes
johnc@3463 593 // (for each region, by worker thread).
johnc@3463 594 size_t** _count_marked_bytes;
johnc@3463 595
johnc@3463 596 // Card index of the bottom of the G1 heap. Used for biasing indices into
johnc@3463 597 // the card bitmaps.
johnc@3463 598 intptr_t _heap_bottom_card_num;
johnc@3463 599
johnc@4333 600 // Set to true when initialization is complete
johnc@4333 601 bool _completed_initialization;
johnc@4333 602
ysr@777 603 public:
ysr@777 604 // Manipulation of the global mark stack.
ysr@777 605 // Notice that the first mark_stack_push is CAS-based, whereas the
ysr@777 606 // two below are Mutex-based. This is OK since the first one is only
ysr@777 607 // called during evacuation pauses and doesn't compete with the
ysr@777 608 // other two (which are called by the marking tasks during
ysr@777 609 // concurrent marking or remark).
ysr@777 610 bool mark_stack_push(oop p) {
ysr@777 611 _markStack.par_push(p);
ysr@777 612 if (_markStack.overflow()) {
ysr@777 613 set_has_overflown();
ysr@777 614 return false;
ysr@777 615 }
ysr@777 616 return true;
ysr@777 617 }
ysr@777 618 bool mark_stack_push(oop* arr, int n) {
ysr@777 619 _markStack.par_push_arr(arr, n);
ysr@777 620 if (_markStack.overflow()) {
ysr@777 621 set_has_overflown();
ysr@777 622 return false;
ysr@777 623 }
ysr@777 624 return true;
ysr@777 625 }
ysr@777 626 void mark_stack_pop(oop* arr, int max, int* n) {
ysr@777 627 _markStack.par_pop_arr(arr, max, n);
ysr@777 628 }
tonyp@2973 629 size_t mark_stack_size() { return _markStack.size(); }
ysr@777 630 size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
tonyp@2973 631 bool mark_stack_overflow() { return _markStack.overflow(); }
tonyp@2973 632 bool mark_stack_empty() { return _markStack.isEmpty(); }
ysr@777 633
tonyp@3464 634 CMRootRegions* root_regions() { return &_root_regions; }
tonyp@3464 635
ysr@777 636 bool concurrent_marking_in_progress() {
ysr@777 637 return _concurrent_marking_in_progress;
ysr@777 638 }
ysr@777 639 void set_concurrent_marking_in_progress() {
ysr@777 640 _concurrent_marking_in_progress = true;
ysr@777 641 }
ysr@777 642 void clear_concurrent_marking_in_progress() {
ysr@777 643 _concurrent_marking_in_progress = false;
ysr@777 644 }
ysr@777 645
ysr@777 646 void update_accum_task_vtime(int i, double vtime) {
ysr@777 647 _accum_task_vtime[i] += vtime;
ysr@777 648 }
ysr@777 649
ysr@777 650 double all_task_accum_vtime() {
ysr@777 651 double ret = 0.0;
johnc@4173 652 for (uint i = 0; i < _max_worker_id; ++i)
ysr@777 653 ret += _accum_task_vtime[i];
ysr@777 654 return ret;
ysr@777 655 }
ysr@777 656
ysr@777 657 // Attempts to steal an object from the task queues of other tasks
johnc@4173 658 bool try_stealing(uint worker_id, int* hash_seed, oop& obj) {
johnc@4173 659 return _task_queues->steal(worker_id, hash_seed, obj);
ysr@777 660 }
ysr@777 661
johnc@4333 662 ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs);
ysr@777 663 ~ConcurrentMark();
johnc@3463 664
ysr@777 665 ConcurrentMarkThread* cmThread() { return _cmThread; }
ysr@777 666
ysr@777 667 CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
ysr@777 668 CMBitMap* nextMarkBitMap() const { return _nextMarkBitMap; }
ysr@777 669
jmasa@3294 670 // Returns the number of GC threads to be used in a concurrent
jmasa@3294 671 // phase based on the number of GC threads being used in a STW
jmasa@3294 672 // phase.
jmasa@3357 673 uint scale_parallel_threads(uint n_par_threads);
jmasa@3294 674
jmasa@3294 675 // Calculates the number of GC threads to be used in a concurrent phase.
jmasa@3357 676 uint calc_parallel_marking_threads();
jmasa@3294 677
ysr@777 678 // The following three are interaction between CM and
ysr@777 679 // G1CollectedHeap
ysr@777 680
ysr@777 681 // This notifies CM that a root during initial-mark needs to be
tonyp@3464 682 // grayed. It is MT-safe. word_size is the size of the object in
tonyp@3464 683 // words. It is passed explicitly as sometimes we cannot calculate
tonyp@3464 684 // it from the given object because it might be in an inconsistent
tonyp@3464 685 // state (e.g., in to-space and being copied). So the caller is
tonyp@3464 686 // responsible for dealing with this issue (e.g., get the size from
tonyp@3464 687 // the from-space image when the to-space image might be
tonyp@3464 688 // inconsistent) and always passing the size. hr is the region that
tonyp@3464 689 // contains the object and it's passed optionally from callers who
tonyp@3464 690 // might already have it (no point in recalculating it).
tonyp@3464 691 inline void grayRoot(oop obj, size_t word_size,
tonyp@3464 692 uint worker_id, HeapRegion* hr = NULL);
tonyp@3416 693
tonyp@1823 694 // It iterates over the heap and for each object it comes across it
tonyp@1823 695 // will dump the contents of its reference fields, as well as
tonyp@1823 696 // liveness information for the object and its referents. The dump
tonyp@1823 697 // will be written to a file with the following name:
johnc@2969 698 // G1PrintReachableBaseFile + "." + str.
johnc@2969 699 // vo decides whether the prev (vo == UsePrevMarking), the next
johnc@2969 700 // (vo == UseNextMarking) marking information, or the mark word
johnc@2969 701 // (vo == UseMarkWord) will be used to determine the liveness of
johnc@2969 702 // each object / referent.
johnc@2969 703 // If all is true, all objects in the heap will be dumped, otherwise
johnc@2969 704 // only the live ones. In the dump the following symbols / breviations
johnc@2969 705 // are used:
tonyp@1823 706 // M : an explicitly live object (its bitmap bit is set)
tonyp@1823 707 // > : an implicitly live object (over tams)
tonyp@1823 708 // O : an object outside the G1 heap (typically: in the perm gen)
tonyp@1823 709 // NOT : a reference field whose referent is not live
tonyp@1823 710 // AND MARKED : indicates that an object is both explicitly and
tonyp@1823 711 // implicitly live (it should be one or the other, not both)
tonyp@1823 712 void print_reachable(const char* str,
johnc@2969 713 VerifyOption vo, bool all) PRODUCT_RETURN;
ysr@777 714
ysr@777 715 // Clear the next marking bitmap (will be called concurrently).
ysr@777 716 void clearNextBitmap();
ysr@777 717
ysr@777 718 // These two do the work that needs to be done before and after the
ysr@777 719 // initial root checkpoint. Since this checkpoint can be done at two
ysr@777 720 // different points (i.e. an explicit pause or piggy-backed on a
ysr@777 721 // young collection), then it's nice to be able to easily share the
ysr@777 722 // pre/post code. It might be the case that we can put everything in
ysr@777 723 // the post method. TP
ysr@777 724 void checkpointRootsInitialPre();
ysr@777 725 void checkpointRootsInitialPost();
ysr@777 726
tonyp@3464 727 // Scan all the root regions and mark everything reachable from
tonyp@3464 728 // them.
tonyp@3464 729 void scanRootRegions();
tonyp@3464 730
tonyp@3464 731 // Scan a single root region and mark everything reachable from it.
tonyp@3464 732 void scanRootRegion(HeapRegion* hr, uint worker_id);
tonyp@3464 733
ysr@777 734 // Do concurrent phase of marking, to a tentative transitive closure.
ysr@777 735 void markFromRoots();
ysr@777 736
ysr@777 737 void checkpointRootsFinal(bool clear_all_soft_refs);
ysr@777 738 void checkpointRootsFinalWork();
ysr@777 739 void cleanup();
ysr@777 740 void completeCleanup();
ysr@777 741
ysr@777 742 // Mark in the previous bitmap. NB: this is usually read-only, so use
ysr@777 743 // this carefully!
tonyp@3416 744 inline void markPrev(oop p);
johnc@3463 745
tonyp@3416 746 // Clears marks for all objects in the given range, for the prev,
tonyp@3416 747 // next, or both bitmaps. NB: the previous bitmap is usually
tonyp@3416 748 // read-only, so use this carefully!
tonyp@3416 749 void clearRangePrevBitmap(MemRegion mr);
tonyp@3416 750 void clearRangeNextBitmap(MemRegion mr);
tonyp@3416 751 void clearRangeBothBitmaps(MemRegion mr);
ysr@777 752
tonyp@3416 753 // Notify data structures that a GC has started.
tonyp@3416 754 void note_start_of_gc() {
tonyp@3416 755 _markStack.note_start_of_gc();
ysr@777 756 }
tonyp@3416 757
tonyp@3416 758 // Notify data structures that a GC is finished.
tonyp@3416 759 void note_end_of_gc() {
tonyp@3416 760 _markStack.note_end_of_gc();
tonyp@3416 761 }
tonyp@3416 762
tonyp@3416 763 // Verify that there are no CSet oops on the stacks (taskqueues /
tonyp@3416 764 // global mark stack), enqueued SATB buffers, per-thread SATB
tonyp@3416 765 // buffers, and fingers (global / per-task). The boolean parameters
tonyp@3416 766 // decide which of the above data structures to verify. If marking
tonyp@3416 767 // is not in progress, it's a no-op.
tonyp@3416 768 void verify_no_cset_oops(bool verify_stacks,
tonyp@3416 769 bool verify_enqueued_buffers,
tonyp@3416 770 bool verify_thread_buffers,
tonyp@3416 771 bool verify_fingers) PRODUCT_RETURN;
tonyp@3416 772
ysr@777 773 // It is called at the end of an evacuation pause during marking so
ysr@777 774 // that CM is notified of where the new end of the heap is. It
ysr@777 775 // doesn't do anything if concurrent_marking_in_progress() is false,
ysr@777 776 // unless the force parameter is true.
ysr@777 777 void update_g1_committed(bool force = false);
ysr@777 778
ysr@777 779 bool isMarked(oop p) const {
ysr@777 780 assert(p != NULL && p->is_oop(), "expected an oop");
ysr@777 781 HeapWord* addr = (HeapWord*)p;
ysr@777 782 assert(addr >= _nextMarkBitMap->startWord() ||
ysr@777 783 addr < _nextMarkBitMap->endWord(), "in a region");
ysr@777 784
ysr@777 785 return _nextMarkBitMap->isMarked(addr);
ysr@777 786 }
ysr@777 787
ysr@777 788 inline bool not_yet_marked(oop p) const;
ysr@777 789
ysr@777 790 // XXX Debug code
ysr@777 791 bool containing_card_is_marked(void* p);
ysr@777 792 bool containing_cards_are_marked(void* start, void* last);
ysr@777 793
ysr@777 794 bool isPrevMarked(oop p) const {
ysr@777 795 assert(p != NULL && p->is_oop(), "expected an oop");
ysr@777 796 HeapWord* addr = (HeapWord*)p;
ysr@777 797 assert(addr >= _prevMarkBitMap->startWord() ||
ysr@777 798 addr < _prevMarkBitMap->endWord(), "in a region");
ysr@777 799
ysr@777 800 return _prevMarkBitMap->isMarked(addr);
ysr@777 801 }
ysr@777 802
jmasa@3357 803 inline bool do_yield_check(uint worker_i = 0);
ysr@777 804 inline bool should_yield();
ysr@777 805
ysr@777 806 // Called to abort the marking cycle after a Full GC takes palce.
ysr@777 807 void abort();
ysr@777 808
ysr@777 809 // This prints the global/local fingers. It is used for debugging.
ysr@777 810 NOT_PRODUCT(void print_finger();)
ysr@777 811
ysr@777 812 void print_summary_info();
ysr@777 813
tonyp@1454 814 void print_worker_threads_on(outputStream* st) const;
tonyp@1454 815
ysr@777 816 // The following indicate whether a given verbose level has been
ysr@777 817 // set. Notice that anything above stats is conditional to
ysr@777 818 // _MARKING_VERBOSE_ having been set to 1
tonyp@2973 819 bool verbose_stats() {
tonyp@2973 820 return _verbose_level >= stats_verbose;
tonyp@2973 821 }
tonyp@2973 822 bool verbose_low() {
tonyp@2973 823 return _MARKING_VERBOSE_ && _verbose_level >= low_verbose;
tonyp@2973 824 }
tonyp@2973 825 bool verbose_medium() {
tonyp@2973 826 return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose;
tonyp@2973 827 }
tonyp@2973 828 bool verbose_high() {
tonyp@2973 829 return _MARKING_VERBOSE_ && _verbose_level >= high_verbose;
tonyp@2973 830 }
johnc@3463 831
johnc@4123 832 // Liveness counting
johnc@4123 833
johnc@4123 834 // Utility routine to set an exclusive range of cards on the given
johnc@4123 835 // card liveness bitmap
johnc@4123 836 inline void set_card_bitmap_range(BitMap* card_bm,
johnc@4123 837 BitMap::idx_t start_idx,
johnc@4123 838 BitMap::idx_t end_idx,
johnc@4123 839 bool is_par);
johnc@3463 840
johnc@3463 841 // Returns the card number of the bottom of the G1 heap.
johnc@3463 842 // Used in biasing indices into accounting card bitmaps.
johnc@3463 843 intptr_t heap_bottom_card_num() const {
johnc@3463 844 return _heap_bottom_card_num;
johnc@3463 845 }
johnc@3463 846
johnc@3463 847 // Returns the card bitmap for a given task or worker id.
johnc@3463 848 BitMap* count_card_bitmap_for(uint worker_id) {
johnc@4173 849 assert(0 <= worker_id && worker_id < _max_worker_id, "oob");
johnc@3463 850 assert(_count_card_bitmaps != NULL, "uninitialized");
johnc@3463 851 BitMap* task_card_bm = &_count_card_bitmaps[worker_id];
johnc@3463 852 assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
johnc@3463 853 return task_card_bm;
johnc@3463 854 }
johnc@3463 855
johnc@3463 856 // Returns the array containing the marked bytes for each region,
johnc@3463 857 // for the given worker or task id.
johnc@3463 858 size_t* count_marked_bytes_array_for(uint worker_id) {
johnc@4173 859 assert(0 <= worker_id && worker_id < _max_worker_id, "oob");
johnc@3463 860 assert(_count_marked_bytes != NULL, "uninitialized");
johnc@3463 861 size_t* marked_bytes_array = _count_marked_bytes[worker_id];
johnc@3463 862 assert(marked_bytes_array != NULL, "uninitialized");
johnc@3463 863 return marked_bytes_array;
johnc@3463 864 }
johnc@3463 865
johnc@3463 866 // Returns the index in the liveness accounting card table bitmap
johnc@3463 867 // for the given address
johnc@3463 868 inline BitMap::idx_t card_bitmap_index_for(HeapWord* addr);
johnc@3463 869
johnc@3463 870 // Counts the size of the given memory region in the the given
johnc@3463 871 // marked_bytes array slot for the given HeapRegion.
johnc@3463 872 // Sets the bits in the given card bitmap that are associated with the
johnc@3463 873 // cards that are spanned by the memory region.
johnc@3463 874 inline void count_region(MemRegion mr, HeapRegion* hr,
johnc@3463 875 size_t* marked_bytes_array,
johnc@3463 876 BitMap* task_card_bm);
johnc@3463 877
johnc@3463 878 // Counts the given memory region in the task/worker counting
johnc@3463 879 // data structures for the given worker id.
tonyp@3464 880 inline void count_region(MemRegion mr, HeapRegion* hr, uint worker_id);
tonyp@3464 881
tonyp@3464 882 // Counts the given memory region in the task/worker counting
tonyp@3464 883 // data structures for the given worker id.
johnc@3463 884 inline void count_region(MemRegion mr, uint worker_id);
johnc@3463 885
johnc@3463 886 // Counts the given object in the given task/worker counting
johnc@3463 887 // data structures.
johnc@3463 888 inline void count_object(oop obj, HeapRegion* hr,
johnc@3463 889 size_t* marked_bytes_array,
johnc@3463 890 BitMap* task_card_bm);
johnc@3463 891
johnc@3463 892 // Counts the given object in the task/worker counting data
johnc@3463 893 // structures for the given worker id.
johnc@3463 894 inline void count_object(oop obj, HeapRegion* hr, uint worker_id);
johnc@3463 895
johnc@3463 896 // Attempts to mark the given object and, if successful, counts
johnc@3463 897 // the object in the given task/worker counting structures.
johnc@3463 898 inline bool par_mark_and_count(oop obj, HeapRegion* hr,
johnc@3463 899 size_t* marked_bytes_array,
johnc@3463 900 BitMap* task_card_bm);
johnc@3463 901
johnc@3463 902 // Attempts to mark the given object and, if successful, counts
johnc@3463 903 // the object in the task/worker counting structures for the
johnc@3463 904 // given worker id.
tonyp@3464 905 inline bool par_mark_and_count(oop obj, size_t word_size,
tonyp@3464 906 HeapRegion* hr, uint worker_id);
tonyp@3464 907
tonyp@3464 908 // Attempts to mark the given object and, if successful, counts
tonyp@3464 909 // the object in the task/worker counting structures for the
tonyp@3464 910 // given worker id.
johnc@3463 911 inline bool par_mark_and_count(oop obj, HeapRegion* hr, uint worker_id);
johnc@3463 912
johnc@3463 913 // Similar to the above routine but we don't know the heap region that
johnc@3463 914 // contains the object to be marked/counted, which this routine looks up.
johnc@3463 915 inline bool par_mark_and_count(oop obj, uint worker_id);
johnc@3463 916
johnc@3463 917 // Similar to the above routine but there are times when we cannot
johnc@3463 918 // safely calculate the size of obj due to races and we, therefore,
johnc@3463 919 // pass the size in as a parameter. It is the caller's reponsibility
johnc@3463 920 // to ensure that the size passed in for obj is valid.
johnc@3463 921 inline bool par_mark_and_count(oop obj, size_t word_size, uint worker_id);
johnc@3463 922
johnc@3463 923 // Unconditionally mark the given object, and unconditinally count
johnc@3463 924 // the object in the counting structures for worker id 0.
johnc@3463 925 // Should *not* be called from parallel code.
johnc@3463 926 inline bool mark_and_count(oop obj, HeapRegion* hr);
johnc@3463 927
johnc@3463 928 // Similar to the above routine but we don't know the heap region that
johnc@3463 929 // contains the object to be marked/counted, which this routine looks up.
johnc@3463 930 // Should *not* be called from parallel code.
johnc@3463 931 inline bool mark_and_count(oop obj);
johnc@3463 932
johnc@4333 933 // Returns true if initialization was successfully completed.
johnc@4333 934 bool completed_initialization() const {
johnc@4333 935 return _completed_initialization;
johnc@4333 936 }
johnc@4333 937
johnc@3463 938 protected:
johnc@3463 939 // Clear all the per-task bitmaps and arrays used to store the
johnc@3463 940 // counting data.
johnc@3463 941 void clear_all_count_data();
johnc@3463 942
johnc@3463 943 // Aggregates the counting data for each worker/task
johnc@3463 944 // that was constructed while marking. Also sets
johnc@3463 945 // the amount of marked bytes for each region and
johnc@3463 946 // the top at concurrent mark count.
johnc@3463 947 void aggregate_count_data();
johnc@3463 948
johnc@3463 949 // Verification routine
johnc@3463 950 void verify_count_data();
ysr@777 951 };
ysr@777 952
ysr@777 953 // A class representing a marking task.
ysr@777 954 class CMTask : public TerminatorTerminator {
ysr@777 955 private:
ysr@777 956 enum PrivateConstants {
ysr@777 957 // the regular clock call is called once the scanned words reaches
ysr@777 958 // this limit
ysr@777 959 words_scanned_period = 12*1024,
ysr@777 960 // the regular clock call is called once the number of visited
ysr@777 961 // references reaches this limit
ysr@777 962 refs_reached_period = 384,
ysr@777 963 // initial value for the hash seed, used in the work stealing code
ysr@777 964 init_hash_seed = 17,
ysr@777 965 // how many entries will be transferred between global stack and
ysr@777 966 // local queues
ysr@777 967 global_stack_transfer_size = 16
ysr@777 968 };
ysr@777 969
johnc@4173 970 uint _worker_id;
ysr@777 971 G1CollectedHeap* _g1h;
ysr@777 972 ConcurrentMark* _cm;
ysr@777 973 CMBitMap* _nextMarkBitMap;
ysr@777 974 // the task queue of this task
ysr@777 975 CMTaskQueue* _task_queue;
ysr@1280 976 private:
ysr@777 977 // the task queue set---needed for stealing
ysr@777 978 CMTaskQueueSet* _task_queues;
ysr@777 979 // indicates whether the task has been claimed---this is only for
ysr@777 980 // debugging purposes
ysr@777 981 bool _claimed;
ysr@777 982
ysr@777 983 // number of calls to this task
ysr@777 984 int _calls;
ysr@777 985
ysr@777 986 // when the virtual timer reaches this time, the marking step should
ysr@777 987 // exit
ysr@777 988 double _time_target_ms;
ysr@777 989 // the start time of the current marking step
ysr@777 990 double _start_time_ms;
ysr@777 991
ysr@777 992 // the oop closure used for iterations over oops
tonyp@2968 993 G1CMOopClosure* _cm_oop_closure;
ysr@777 994
ysr@777 995 // the region this task is scanning, NULL if we're not scanning any
ysr@777 996 HeapRegion* _curr_region;
ysr@777 997 // the local finger of this task, NULL if we're not scanning a region
ysr@777 998 HeapWord* _finger;
ysr@777 999 // limit of the region this task is scanning, NULL if we're not scanning one
ysr@777 1000 HeapWord* _region_limit;
ysr@777 1001
ysr@777 1002 // the number of words this task has scanned
ysr@777 1003 size_t _words_scanned;
ysr@777 1004 // When _words_scanned reaches this limit, the regular clock is
ysr@777 1005 // called. Notice that this might be decreased under certain
ysr@777 1006 // circumstances (i.e. when we believe that we did an expensive
ysr@777 1007 // operation).
ysr@777 1008 size_t _words_scanned_limit;
ysr@777 1009 // the initial value of _words_scanned_limit (i.e. what it was
ysr@777 1010 // before it was decreased).
ysr@777 1011 size_t _real_words_scanned_limit;
ysr@777 1012
ysr@777 1013 // the number of references this task has visited
ysr@777 1014 size_t _refs_reached;
ysr@777 1015 // When _refs_reached reaches this limit, the regular clock is
ysr@777 1016 // called. Notice this this might be decreased under certain
ysr@777 1017 // circumstances (i.e. when we believe that we did an expensive
ysr@777 1018 // operation).
ysr@777 1019 size_t _refs_reached_limit;
ysr@777 1020 // the initial value of _refs_reached_limit (i.e. what it was before
ysr@777 1021 // it was decreased).
ysr@777 1022 size_t _real_refs_reached_limit;
ysr@777 1023
ysr@777 1024 // used by the work stealing stuff
ysr@777 1025 int _hash_seed;
ysr@777 1026 // if this is true, then the task has aborted for some reason
ysr@777 1027 bool _has_aborted;
ysr@777 1028 // set when the task aborts because it has met its time quota
johnc@2494 1029 bool _has_timed_out;
ysr@777 1030 // true when we're draining SATB buffers; this avoids the task
ysr@777 1031 // aborting due to SATB buffers being available (as we're already
ysr@777 1032 // dealing with them)
ysr@777 1033 bool _draining_satb_buffers;
ysr@777 1034
ysr@777 1035 // number sequence of past step times
ysr@777 1036 NumberSeq _step_times_ms;
ysr@777 1037 // elapsed time of this task
ysr@777 1038 double _elapsed_time_ms;
ysr@777 1039 // termination time of this task
ysr@777 1040 double _termination_time_ms;
ysr@777 1041 // when this task got into the termination protocol
ysr@777 1042 double _termination_start_time_ms;
ysr@777 1043
ysr@777 1044 // true when the task is during a concurrent phase, false when it is
ysr@777 1045 // in the remark phase (so, in the latter case, we do not have to
ysr@777 1046 // check all the things that we have to check during the concurrent
ysr@777 1047 // phase, i.e. SATB buffer availability...)
ysr@777 1048 bool _concurrent;
ysr@777 1049
ysr@777 1050 TruncatedSeq _marking_step_diffs_ms;
ysr@777 1051
johnc@3463 1052 // Counting data structures. Embedding the task's marked_bytes_array
johnc@3463 1053 // and card bitmap into the actual task saves having to go through
johnc@3463 1054 // the ConcurrentMark object.
johnc@3463 1055 size_t* _marked_bytes_array;
johnc@3463 1056 BitMap* _card_bm;
johnc@3463 1057
ysr@777 1058 // LOTS of statistics related with this task
ysr@777 1059 #if _MARKING_STATS_
ysr@777 1060 NumberSeq _all_clock_intervals_ms;
ysr@777 1061 double _interval_start_time_ms;
ysr@777 1062
ysr@777 1063 int _aborted;
ysr@777 1064 int _aborted_overflow;
ysr@777 1065 int _aborted_cm_aborted;
ysr@777 1066 int _aborted_yield;
ysr@777 1067 int _aborted_timed_out;
ysr@777 1068 int _aborted_satb;
ysr@777 1069 int _aborted_termination;
ysr@777 1070
ysr@777 1071 int _steal_attempts;
ysr@777 1072 int _steals;
ysr@777 1073
ysr@777 1074 int _clock_due_to_marking;
ysr@777 1075 int _clock_due_to_scanning;
ysr@777 1076
ysr@777 1077 int _local_pushes;
ysr@777 1078 int _local_pops;
ysr@777 1079 int _local_max_size;
ysr@777 1080 int _objs_scanned;
ysr@777 1081
ysr@777 1082 int _global_pushes;
ysr@777 1083 int _global_pops;
ysr@777 1084 int _global_max_size;
ysr@777 1085
ysr@777 1086 int _global_transfers_to;
ysr@777 1087 int _global_transfers_from;
ysr@777 1088
ysr@777 1089 int _regions_claimed;
ysr@777 1090 int _objs_found_on_bitmap;
ysr@777 1091
ysr@777 1092 int _satb_buffers_processed;
ysr@777 1093 #endif // _MARKING_STATS_
ysr@777 1094
ysr@777 1095 // it updates the local fields after this task has claimed
ysr@777 1096 // a new region to scan
ysr@777 1097 void setup_for_region(HeapRegion* hr);
ysr@777 1098 // it brings up-to-date the limit of the region
ysr@777 1099 void update_region_limit();
ysr@777 1100
ysr@777 1101 // called when either the words scanned or the refs visited limit
ysr@777 1102 // has been reached
ysr@777 1103 void reached_limit();
ysr@777 1104 // recalculates the words scanned and refs visited limits
ysr@777 1105 void recalculate_limits();
ysr@777 1106 // decreases the words scanned and refs visited limits when we reach
ysr@777 1107 // an expensive operation
ysr@777 1108 void decrease_limits();
ysr@777 1109 // it checks whether the words scanned or refs visited reached their
ysr@777 1110 // respective limit and calls reached_limit() if they have
ysr@777 1111 void check_limits() {
ysr@777 1112 if (_words_scanned >= _words_scanned_limit ||
tonyp@2973 1113 _refs_reached >= _refs_reached_limit) {
ysr@777 1114 reached_limit();
tonyp@2973 1115 }
ysr@777 1116 }
ysr@777 1117 // this is supposed to be called regularly during a marking step as
ysr@777 1118 // it checks a bunch of conditions that might cause the marking step
ysr@777 1119 // to abort
ysr@777 1120 void regular_clock_call();
ysr@777 1121 bool concurrent() { return _concurrent; }
ysr@777 1122
ysr@777 1123 public:
ysr@777 1124 // It resets the task; it should be called right at the beginning of
ysr@777 1125 // a marking phase.
ysr@777 1126 void reset(CMBitMap* _nextMarkBitMap);
ysr@777 1127 // it clears all the fields that correspond to a claimed region.
ysr@777 1128 void clear_region_fields();
ysr@777 1129
ysr@777 1130 void set_concurrent(bool concurrent) { _concurrent = concurrent; }
ysr@777 1131
ysr@777 1132 // The main method of this class which performs a marking step
ysr@777 1133 // trying not to exceed the given duration. However, it might exit
ysr@777 1134 // prematurely, according to some conditions (i.e. SATB buffers are
ysr@777 1135 // available for processing).
johnc@2494 1136 void do_marking_step(double target_ms, bool do_stealing, bool do_termination);
ysr@777 1137
ysr@777 1138 // These two calls start and stop the timer
ysr@777 1139 void record_start_time() {
ysr@777 1140 _elapsed_time_ms = os::elapsedTime() * 1000.0;
ysr@777 1141 }
ysr@777 1142 void record_end_time() {
ysr@777 1143 _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
ysr@777 1144 }
ysr@777 1145
johnc@4173 1146 // returns the worker ID associated with this task.
johnc@4173 1147 uint worker_id() { return _worker_id; }
ysr@777 1148
ysr@777 1149 // From TerminatorTerminator. It determines whether this task should
ysr@777 1150 // exit the termination protocol after it's entered it.
ysr@777 1151 virtual bool should_exit_termination();
ysr@777 1152
johnc@2910 1153 // Resets the local region fields after a task has finished scanning a
johnc@2910 1154 // region; or when they have become stale as a result of the region
johnc@2910 1155 // being evacuated.
johnc@2910 1156 void giveup_current_region();
johnc@2910 1157
ysr@777 1158 HeapWord* finger() { return _finger; }
ysr@777 1159
ysr@777 1160 bool has_aborted() { return _has_aborted; }
ysr@777 1161 void set_has_aborted() { _has_aborted = true; }
ysr@777 1162 void clear_has_aborted() { _has_aborted = false; }
johnc@2494 1163 bool has_timed_out() { return _has_timed_out; }
johnc@2494 1164 bool claimed() { return _claimed; }
ysr@777 1165
tonyp@2968 1166 void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
ysr@777 1167
ysr@777 1168 // It grays the object by marking it and, if necessary, pushing it
ysr@777 1169 // on the local queue
tonyp@2968 1170 inline void deal_with_reference(oop obj);
ysr@777 1171
ysr@777 1172 // It scans an object and visits its children.
tonyp@2968 1173 void scan_object(oop obj);
ysr@777 1174
ysr@777 1175 // It pushes an object on the local queue.
tonyp@2968 1176 inline void push(oop obj);
ysr@777 1177
ysr@777 1178 // These two move entries to/from the global stack.
ysr@777 1179 void move_entries_to_global_stack();
ysr@777 1180 void get_entries_from_global_stack();
ysr@777 1181
ysr@777 1182 // It pops and scans objects from the local queue. If partially is
ysr@777 1183 // true, then it stops when the queue size is of a given limit. If
ysr@777 1184 // partially is false, then it stops when the queue is empty.
ysr@777 1185 void drain_local_queue(bool partially);
ysr@777 1186 // It moves entries from the global stack to the local queue and
ysr@777 1187 // drains the local queue. If partially is true, then it stops when
ysr@777 1188 // both the global stack and the local queue reach a given size. If
ysr@777 1189 // partially if false, it tries to empty them totally.
ysr@777 1190 void drain_global_stack(bool partially);
ysr@777 1191 // It keeps picking SATB buffers and processing them until no SATB
ysr@777 1192 // buffers are available.
ysr@777 1193 void drain_satb_buffers();
tonyp@3416 1194
ysr@777 1195 // moves the local finger to a new location
ysr@777 1196 inline void move_finger_to(HeapWord* new_finger) {
tonyp@1458 1197 assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
ysr@777 1198 _finger = new_finger;
ysr@777 1199 }
ysr@777 1200
johnc@4173 1201 CMTask(uint worker_id, ConcurrentMark *cm,
johnc@3463 1202 size_t* marked_bytes, BitMap* card_bm,
ysr@777 1203 CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
ysr@777 1204
ysr@777 1205 // it prints statistics associated with this task
ysr@777 1206 void print_stats();
ysr@777 1207
ysr@777 1208 #if _MARKING_STATS_
ysr@777 1209 void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
ysr@777 1210 #endif // _MARKING_STATS_
ysr@777 1211 };
stefank@2314 1212
tonyp@2717 1213 // Class that's used to to print out per-region liveness
tonyp@2717 1214 // information. It's currently used at the end of marking and also
tonyp@2717 1215 // after we sort the old regions at the end of the cleanup operation.
tonyp@2717 1216 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
tonyp@2717 1217 private:
tonyp@2717 1218 outputStream* _out;
tonyp@2717 1219
tonyp@2717 1220 // Accumulators for these values.
tonyp@2717 1221 size_t _total_used_bytes;
tonyp@2717 1222 size_t _total_capacity_bytes;
tonyp@2717 1223 size_t _total_prev_live_bytes;
tonyp@2717 1224 size_t _total_next_live_bytes;
tonyp@2717 1225
tonyp@2717 1226 // These are set up when we come across a "stars humongous" region
tonyp@2717 1227 // (as this is where most of this information is stored, not in the
tonyp@2717 1228 // subsequent "continues humongous" regions). After that, for every
tonyp@2717 1229 // region in a given humongous region series we deduce the right
tonyp@2717 1230 // values for it by simply subtracting the appropriate amount from
tonyp@2717 1231 // these fields. All these values should reach 0 after we've visited
tonyp@2717 1232 // the last region in the series.
tonyp@2717 1233 size_t _hum_used_bytes;
tonyp@2717 1234 size_t _hum_capacity_bytes;
tonyp@2717 1235 size_t _hum_prev_live_bytes;
tonyp@2717 1236 size_t _hum_next_live_bytes;
tonyp@2717 1237
tonyp@2717 1238 static double perc(size_t val, size_t total) {
tonyp@2717 1239 if (total == 0) {
tonyp@2717 1240 return 0.0;
tonyp@2717 1241 } else {
tonyp@2717 1242 return 100.0 * ((double) val / (double) total);
tonyp@2717 1243 }
tonyp@2717 1244 }
tonyp@2717 1245
tonyp@2717 1246 static double bytes_to_mb(size_t val) {
tonyp@2717 1247 return (double) val / (double) M;
tonyp@2717 1248 }
tonyp@2717 1249
tonyp@2717 1250 // See the .cpp file.
tonyp@2717 1251 size_t get_hum_bytes(size_t* hum_bytes);
tonyp@2717 1252 void get_hum_bytes(size_t* used_bytes, size_t* capacity_bytes,
tonyp@2717 1253 size_t* prev_live_bytes, size_t* next_live_bytes);
tonyp@2717 1254
tonyp@2717 1255 public:
tonyp@2717 1256 // The header and footer are printed in the constructor and
tonyp@2717 1257 // destructor respectively.
tonyp@2717 1258 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name);
tonyp@2717 1259 virtual bool doHeapRegion(HeapRegion* r);
tonyp@2717 1260 ~G1PrintRegionLivenessInfoClosure();
tonyp@2717 1261 };
tonyp@2717 1262
stefank@2314 1263 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP

mercurial