src/share/vm/gc_implementation/g1/concurrentMark.hpp

Wed, 19 Jan 2011 19:30:42 -0500

author
tonyp
date
Wed, 19 Jan 2011 19:30:42 -0500
changeset 2472
0fa27f37d4d4
parent 2379
b03260081e9b
child 2494
234761c55641
permissions
-rw-r--r--

6977804: G1: remove the zero-filling thread
Summary: This changeset removes the zero-filling thread from G1 and collapses the two free region lists we had before (the "free" and "unclean" lists) into one. The new free list uses the new heap region sets / lists abstractions that we'll ultimately use it to keep track of all regions in the heap. A heap region set was also introduced for the humongous regions. Finally, this change increases the concurrency between the thread that completes freeing regions (after a cleanup pause) and the rest of the system (before we'd have to wait for said thread to complete before allocating a new region). The changest also includes a lot of refactoring and code simplification.
Reviewed-by: jcoomes, johnc

ysr@777 1 /*
tonyp@2472 2 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
stefank@2314 27
tonyp@2472 28 #include "gc_implementation/g1/heapRegionSets.hpp"
stefank@2314 29 #include "utilities/taskqueue.hpp"
stefank@2314 30
ysr@777 31 class G1CollectedHeap;
ysr@777 32 class CMTask;
jcoomes@1746 33 typedef GenericTaskQueue<oop> CMTaskQueue;
jcoomes@1746 34 typedef GenericTaskQueueSet<CMTaskQueue> CMTaskQueueSet;
ysr@777 35
johnc@2379 36 // Closure used by CM during concurrent reference discovery
johnc@2379 37 // and reference processing (during remarking) to determine
johnc@2379 38 // if a particular object is alive. It is primarily used
johnc@2379 39 // to determine if referents of discovered reference objects
johnc@2379 40 // are alive. An instance is also embedded into the
johnc@2379 41 // reference processor as the _is_alive_non_header field
johnc@2379 42 class G1CMIsAliveClosure: public BoolObjectClosure {
johnc@2379 43 G1CollectedHeap* _g1;
johnc@2379 44 public:
johnc@2379 45 G1CMIsAliveClosure(G1CollectedHeap* g1) :
johnc@2379 46 _g1(g1)
johnc@2379 47 {}
johnc@2379 48
johnc@2379 49 void do_object(oop obj) {
johnc@2379 50 ShouldNotCallThis();
johnc@2379 51 }
johnc@2379 52 bool do_object_b(oop obj);
johnc@2379 53 };
johnc@2379 54
ysr@777 55 // A generic CM bit map. This is essentially a wrapper around the BitMap
ysr@777 56 // class, with one bit per (1<<_shifter) HeapWords.
ysr@777 57
apetrusenko@984 58 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
ysr@777 59 protected:
ysr@777 60 HeapWord* _bmStartWord; // base address of range covered by map
ysr@777 61 size_t _bmWordSize; // map size (in #HeapWords covered)
ysr@777 62 const int _shifter; // map to char or bit
ysr@777 63 VirtualSpace _virtual_space; // underlying the bit map
ysr@777 64 BitMap _bm; // the bit map itself
ysr@777 65
ysr@777 66 public:
ysr@777 67 // constructor
ysr@777 68 CMBitMapRO(ReservedSpace rs, int shifter);
ysr@777 69
ysr@777 70 enum { do_yield = true };
ysr@777 71
ysr@777 72 // inquiries
ysr@777 73 HeapWord* startWord() const { return _bmStartWord; }
ysr@777 74 size_t sizeInWords() const { return _bmWordSize; }
ysr@777 75 // the following is one past the last word in space
ysr@777 76 HeapWord* endWord() const { return _bmStartWord + _bmWordSize; }
ysr@777 77
ysr@777 78 // read marks
ysr@777 79
ysr@777 80 bool isMarked(HeapWord* addr) const {
ysr@777 81 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 82 "outside underlying space?");
ysr@777 83 return _bm.at(heapWordToOffset(addr));
ysr@777 84 }
ysr@777 85
ysr@777 86 // iteration
ysr@777 87 bool iterate(BitMapClosure* cl) { return _bm.iterate(cl); }
ysr@777 88 bool iterate(BitMapClosure* cl, MemRegion mr);
ysr@777 89
ysr@777 90 // Return the address corresponding to the next marked bit at or after
ysr@777 91 // "addr", and before "limit", if "limit" is non-NULL. If there is no
ysr@777 92 // such bit, returns "limit" if that is non-NULL, or else "endWord()".
ysr@777 93 HeapWord* getNextMarkedWordAddress(HeapWord* addr,
ysr@777 94 HeapWord* limit = NULL) const;
ysr@777 95 // Return the address corresponding to the next unmarked bit at or after
ysr@777 96 // "addr", and before "limit", if "limit" is non-NULL. If there is no
ysr@777 97 // such bit, returns "limit" if that is non-NULL, or else "endWord()".
ysr@777 98 HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
ysr@777 99 HeapWord* limit = NULL) const;
ysr@777 100
ysr@777 101 // conversion utilities
ysr@777 102 // XXX Fix these so that offsets are size_t's...
ysr@777 103 HeapWord* offsetToHeapWord(size_t offset) const {
ysr@777 104 return _bmStartWord + (offset << _shifter);
ysr@777 105 }
ysr@777 106 size_t heapWordToOffset(HeapWord* addr) const {
ysr@777 107 return pointer_delta(addr, _bmStartWord) >> _shifter;
ysr@777 108 }
ysr@777 109 int heapWordDiffToOffsetDiff(size_t diff) const;
ysr@777 110 HeapWord* nextWord(HeapWord* addr) {
ysr@777 111 return offsetToHeapWord(heapWordToOffset(addr) + 1);
ysr@777 112 }
ysr@777 113
ysr@777 114 void mostly_disjoint_range_union(BitMap* from_bitmap,
ysr@777 115 size_t from_start_index,
ysr@777 116 HeapWord* to_start_word,
ysr@777 117 size_t word_num);
ysr@777 118
ysr@777 119 // debugging
ysr@777 120 NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
ysr@777 121 };
ysr@777 122
ysr@777 123 class CMBitMap : public CMBitMapRO {
ysr@777 124
ysr@777 125 public:
ysr@777 126 // constructor
ysr@777 127 CMBitMap(ReservedSpace rs, int shifter) :
ysr@777 128 CMBitMapRO(rs, shifter) {}
ysr@777 129
ysr@777 130 // write marks
ysr@777 131 void mark(HeapWord* addr) {
ysr@777 132 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 133 "outside underlying space?");
ysr@777 134 _bm.at_put(heapWordToOffset(addr), true);
ysr@777 135 }
ysr@777 136 void clear(HeapWord* addr) {
ysr@777 137 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 138 "outside underlying space?");
ysr@777 139 _bm.at_put(heapWordToOffset(addr), false);
ysr@777 140 }
ysr@777 141 bool parMark(HeapWord* addr) {
ysr@777 142 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 143 "outside underlying space?");
ysr@777 144 return _bm.par_at_put(heapWordToOffset(addr), true);
ysr@777 145 }
ysr@777 146 bool parClear(HeapWord* addr) {
ysr@777 147 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 148 "outside underlying space?");
ysr@777 149 return _bm.par_at_put(heapWordToOffset(addr), false);
ysr@777 150 }
ysr@777 151 void markRange(MemRegion mr);
ysr@777 152 void clearAll();
ysr@777 153 void clearRange(MemRegion mr);
ysr@777 154
ysr@777 155 // Starting at the bit corresponding to "addr" (inclusive), find the next
ysr@777 156 // "1" bit, if any. This bit starts some run of consecutive "1"'s; find
ysr@777 157 // the end of this run (stopping at "end_addr"). Return the MemRegion
ysr@777 158 // covering from the start of the region corresponding to the first bit
ysr@777 159 // of the run to the end of the region corresponding to the last bit of
ysr@777 160 // the run. If there is no "1" bit at or after "addr", return an empty
ysr@777 161 // MemRegion.
ysr@777 162 MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
ysr@777 163 };
ysr@777 164
ysr@777 165 // Represents a marking stack used by the CM collector.
ysr@777 166 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
apetrusenko@984 167 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
ysr@777 168 ConcurrentMark* _cm;
ysr@777 169 oop* _base; // bottom of stack
ysr@777 170 jint _index; // one more than last occupied index
ysr@777 171 jint _capacity; // max #elements
ysr@777 172 jint _oops_do_bound; // Number of elements to include in next iteration.
ysr@777 173 NOT_PRODUCT(jint _max_depth;) // max depth plumbed during run
ysr@777 174
ysr@777 175 bool _overflow;
ysr@777 176 DEBUG_ONLY(bool _drain_in_progress;)
ysr@777 177 DEBUG_ONLY(bool _drain_in_progress_yields;)
ysr@777 178
ysr@777 179 public:
ysr@777 180 CMMarkStack(ConcurrentMark* cm);
ysr@777 181 ~CMMarkStack();
ysr@777 182
ysr@777 183 void allocate(size_t size);
ysr@777 184
ysr@777 185 oop pop() {
ysr@777 186 if (!isEmpty()) {
ysr@777 187 return _base[--_index] ;
ysr@777 188 }
ysr@777 189 return NULL;
ysr@777 190 }
ysr@777 191
ysr@777 192 // If overflow happens, don't do the push, and record the overflow.
ysr@777 193 // *Requires* that "ptr" is already marked.
ysr@777 194 void push(oop ptr) {
ysr@777 195 if (isFull()) {
ysr@777 196 // Record overflow.
ysr@777 197 _overflow = true;
ysr@777 198 return;
ysr@777 199 } else {
ysr@777 200 _base[_index++] = ptr;
ysr@777 201 NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
ysr@777 202 }
ysr@777 203 }
ysr@777 204 // Non-block impl. Note: concurrency is allowed only with other
ysr@777 205 // "par_push" operations, not with "pop" or "drain". We would need
ysr@777 206 // parallel versions of them if such concurrency was desired.
ysr@777 207 void par_push(oop ptr);
ysr@777 208
ysr@777 209 // Pushes the first "n" elements of "ptr_arr" on the stack.
ysr@777 210 // Non-block impl. Note: concurrency is allowed only with other
ysr@777 211 // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
ysr@777 212 void par_adjoin_arr(oop* ptr_arr, int n);
ysr@777 213
ysr@777 214 // Pushes the first "n" elements of "ptr_arr" on the stack.
ysr@777 215 // Locking impl: concurrency is allowed only with
ysr@777 216 // "par_push_arr" and/or "par_pop_arr" operations, which use the same
ysr@777 217 // locking strategy.
ysr@777 218 void par_push_arr(oop* ptr_arr, int n);
ysr@777 219
ysr@777 220 // If returns false, the array was empty. Otherwise, removes up to "max"
ysr@777 221 // elements from the stack, and transfers them to "ptr_arr" in an
ysr@777 222 // unspecified order. The actual number transferred is given in "n" ("n
ysr@777 223 // == 0" is deliberately redundant with the return value.) Locking impl:
ysr@777 224 // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
ysr@777 225 // operations, which use the same locking strategy.
ysr@777 226 bool par_pop_arr(oop* ptr_arr, int max, int* n);
ysr@777 227
ysr@777 228 // Drain the mark stack, applying the given closure to all fields of
ysr@777 229 // objects on the stack. (That is, continue until the stack is empty,
ysr@777 230 // even if closure applications add entries to the stack.) The "bm"
ysr@777 231 // argument, if non-null, may be used to verify that only marked objects
ysr@777 232 // are on the mark stack. If "yield_after" is "true", then the
ysr@777 233 // concurrent marker performing the drain offers to yield after
ysr@777 234 // processing each object. If a yield occurs, stops the drain operation
ysr@777 235 // and returns false. Otherwise, returns true.
ysr@777 236 template<class OopClosureClass>
ysr@777 237 bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
ysr@777 238
ysr@777 239 bool isEmpty() { return _index == 0; }
ysr@777 240 bool isFull() { return _index == _capacity; }
ysr@777 241 int maxElems() { return _capacity; }
ysr@777 242
ysr@777 243 bool overflow() { return _overflow; }
ysr@777 244 void clear_overflow() { _overflow = false; }
ysr@777 245
ysr@777 246 int size() { return _index; }
ysr@777 247
ysr@777 248 void setEmpty() { _index = 0; clear_overflow(); }
ysr@777 249
ysr@777 250 // Record the current size; a subsequent "oops_do" will iterate only over
ysr@777 251 // indices valid at the time of this call.
ysr@777 252 void set_oops_do_bound(jint bound = -1) {
ysr@777 253 if (bound == -1) {
ysr@777 254 _oops_do_bound = _index;
ysr@777 255 } else {
ysr@777 256 _oops_do_bound = bound;
ysr@777 257 }
ysr@777 258 }
ysr@777 259 jint oops_do_bound() { return _oops_do_bound; }
ysr@777 260 // iterate over the oops in the mark stack, up to the bound recorded via
ysr@777 261 // the call above.
ysr@777 262 void oops_do(OopClosure* f);
ysr@777 263 };
ysr@777 264
apetrusenko@984 265 class CMRegionStack VALUE_OBJ_CLASS_SPEC {
ysr@777 266 MemRegion* _base;
ysr@777 267 jint _capacity;
ysr@777 268 jint _index;
ysr@777 269 jint _oops_do_bound;
ysr@777 270 bool _overflow;
ysr@777 271 public:
ysr@777 272 CMRegionStack();
ysr@777 273 ~CMRegionStack();
ysr@777 274 void allocate(size_t size);
ysr@777 275
ysr@777 276 // This is lock-free; assumes that it will only be called in parallel
ysr@777 277 // with other "push" operations (no pops).
johnc@2190 278 void push_lock_free(MemRegion mr);
tonyp@1793 279
ysr@777 280 // Lock-free; assumes that it will only be called in parallel
ysr@777 281 // with other "pop" operations (no pushes).
johnc@2190 282 MemRegion pop_lock_free();
johnc@2190 283
johnc@2190 284 #if 0
johnc@2190 285 // The routines that manipulate the region stack with a lock are
johnc@2190 286 // not currently used. They should be retained, however, as a
johnc@2190 287 // diagnostic aid.
tonyp@1793 288
tonyp@1793 289 // These two are the implementations that use a lock. They can be
tonyp@1793 290 // called concurrently with each other but they should not be called
tonyp@1793 291 // concurrently with the lock-free versions (push() / pop()).
tonyp@1793 292 void push_with_lock(MemRegion mr);
tonyp@1793 293 MemRegion pop_with_lock();
johnc@2190 294 #endif
ysr@777 295
ysr@777 296 bool isEmpty() { return _index == 0; }
ysr@777 297 bool isFull() { return _index == _capacity; }
ysr@777 298
ysr@777 299 bool overflow() { return _overflow; }
ysr@777 300 void clear_overflow() { _overflow = false; }
ysr@777 301
ysr@777 302 int size() { return _index; }
ysr@777 303
ysr@777 304 // It iterates over the entries in the region stack and it
ysr@777 305 // invalidates (i.e. assigns MemRegion()) the ones that point to
ysr@777 306 // regions in the collection set.
ysr@777 307 bool invalidate_entries_into_cset();
ysr@777 308
ysr@777 309 // This gives an upper bound up to which the iteration in
ysr@777 310 // invalidate_entries_into_cset() will reach. This prevents
ysr@777 311 // newly-added entries to be unnecessarily scanned.
ysr@777 312 void set_oops_do_bound() {
ysr@777 313 _oops_do_bound = _index;
ysr@777 314 }
ysr@777 315
ysr@777 316 void setEmpty() { _index = 0; clear_overflow(); }
ysr@777 317 };
ysr@777 318
ysr@777 319 // this will enable a variety of different statistics per GC task
ysr@777 320 #define _MARKING_STATS_ 0
ysr@777 321 // this will enable the higher verbose levels
ysr@777 322 #define _MARKING_VERBOSE_ 0
ysr@777 323
ysr@777 324 #if _MARKING_STATS_
ysr@777 325 #define statsOnly(statement) \
ysr@777 326 do { \
ysr@777 327 statement ; \
ysr@777 328 } while (0)
ysr@777 329 #else // _MARKING_STATS_
ysr@777 330 #define statsOnly(statement) \
ysr@777 331 do { \
ysr@777 332 } while (0)
ysr@777 333 #endif // _MARKING_STATS_
ysr@777 334
ysr@777 335 typedef enum {
ysr@777 336 no_verbose = 0, // verbose turned off
ysr@777 337 stats_verbose, // only prints stats at the end of marking
ysr@777 338 low_verbose, // low verbose, mostly per region and per major event
ysr@777 339 medium_verbose, // a bit more detailed than low
ysr@777 340 high_verbose // per object verbose
ysr@777 341 } CMVerboseLevel;
ysr@777 342
ysr@777 343
ysr@777 344 class ConcurrentMarkThread;
ysr@777 345
apetrusenko@984 346 class ConcurrentMark: public CHeapObj {
ysr@777 347 friend class ConcurrentMarkThread;
ysr@777 348 friend class CMTask;
ysr@777 349 friend class CMBitMapClosure;
ysr@777 350 friend class CSMarkOopClosure;
ysr@777 351 friend class CMGlobalObjectClosure;
ysr@777 352 friend class CMRemarkTask;
ysr@777 353 friend class CMConcurrentMarkingTask;
ysr@777 354 friend class G1ParNoteEndTask;
ysr@777 355 friend class CalcLiveObjectsClosure;
ysr@777 356
ysr@777 357 protected:
ysr@777 358 ConcurrentMarkThread* _cmThread; // the thread doing the work
ysr@777 359 G1CollectedHeap* _g1h; // the heap.
ysr@777 360 size_t _parallel_marking_threads; // the number of marking
ysr@777 361 // threads we'll use
ysr@777 362 double _sleep_factor; // how much we have to sleep, with
ysr@777 363 // respect to the work we just did, to
ysr@777 364 // meet the marking overhead goal
ysr@777 365 double _marking_task_overhead; // marking target overhead for
ysr@777 366 // a single task
ysr@777 367
ysr@777 368 // same as the two above, but for the cleanup task
ysr@777 369 double _cleanup_sleep_factor;
ysr@777 370 double _cleanup_task_overhead;
ysr@777 371
tonyp@2472 372 FreeRegionList _cleanup_list;
ysr@777 373
ysr@777 374 // CMS marking support structures
ysr@777 375 CMBitMap _markBitMap1;
ysr@777 376 CMBitMap _markBitMap2;
ysr@777 377 CMBitMapRO* _prevMarkBitMap; // completed mark bitmap
ysr@777 378 CMBitMap* _nextMarkBitMap; // under-construction mark bitmap
ysr@777 379 bool _at_least_one_mark_complete;
ysr@777 380
ysr@777 381 BitMap _region_bm;
ysr@777 382 BitMap _card_bm;
ysr@777 383
ysr@777 384 // Heap bounds
ysr@777 385 HeapWord* _heap_start;
ysr@777 386 HeapWord* _heap_end;
ysr@777 387
ysr@777 388 // For gray objects
ysr@777 389 CMMarkStack _markStack; // Grey objects behind global finger.
ysr@777 390 CMRegionStack _regionStack; // Grey regions behind global finger.
ysr@777 391 HeapWord* volatile _finger; // the global finger, region aligned,
ysr@777 392 // always points to the end of the
ysr@777 393 // last claimed region
ysr@777 394
ysr@777 395 // marking tasks
ysr@777 396 size_t _max_task_num; // maximum task number
ysr@777 397 size_t _active_tasks; // task num currently active
ysr@777 398 CMTask** _tasks; // task queue array (max_task_num len)
ysr@777 399 CMTaskQueueSet* _task_queues; // task queue set
ysr@777 400 ParallelTaskTerminator _terminator; // for termination
ysr@777 401
ysr@777 402 // Two sync barriers that are used to synchronise tasks when an
ysr@777 403 // overflow occurs. The algorithm is the following. All tasks enter
ysr@777 404 // the first one to ensure that they have all stopped manipulating
ysr@777 405 // the global data structures. After they exit it, they re-initialise
ysr@777 406 // their data structures and task 0 re-initialises the global data
ysr@777 407 // structures. Then, they enter the second sync barrier. This
ysr@777 408 // ensure, that no task starts doing work before all data
ysr@777 409 // structures (local and global) have been re-initialised. When they
ysr@777 410 // exit it, they are free to start working again.
ysr@777 411 WorkGangBarrierSync _first_overflow_barrier_sync;
ysr@777 412 WorkGangBarrierSync _second_overflow_barrier_sync;
ysr@777 413
ysr@777 414
ysr@777 415 // this is set by any task, when an overflow on the global data
ysr@777 416 // structures is detected.
ysr@777 417 volatile bool _has_overflown;
ysr@777 418 // true: marking is concurrent, false: we're in remark
ysr@777 419 volatile bool _concurrent;
ysr@777 420 // set at the end of a Full GC so that marking aborts
ysr@777 421 volatile bool _has_aborted;
johnc@2190 422
ysr@777 423 // used when remark aborts due to an overflow to indicate that
ysr@777 424 // another concurrent marking phase should start
ysr@777 425 volatile bool _restart_for_overflow;
ysr@777 426
ysr@777 427 // This is true from the very start of concurrent marking until the
ysr@777 428 // point when all the tasks complete their work. It is really used
ysr@777 429 // to determine the points between the end of concurrent marking and
ysr@777 430 // time of remark.
ysr@777 431 volatile bool _concurrent_marking_in_progress;
ysr@777 432
ysr@777 433 // verbose level
ysr@777 434 CMVerboseLevel _verbose_level;
ysr@777 435
ysr@777 436 // These two fields are used to implement the optimisation that
ysr@777 437 // avoids pushing objects on the global/region stack if there are
ysr@777 438 // no collection set regions above the lowest finger.
ysr@777 439
ysr@777 440 // This is the lowest finger (among the global and local fingers),
ysr@777 441 // which is calculated before a new collection set is chosen.
ysr@777 442 HeapWord* _min_finger;
ysr@777 443 // If this flag is true, objects/regions that are marked below the
ysr@777 444 // finger should be pushed on the stack(s). If this is flag is
ysr@777 445 // false, it is safe not to push them on the stack(s).
ysr@777 446 bool _should_gray_objects;
ysr@777 447
ysr@777 448 // All of these times are in ms.
ysr@777 449 NumberSeq _init_times;
ysr@777 450 NumberSeq _remark_times;
ysr@777 451 NumberSeq _remark_mark_times;
ysr@777 452 NumberSeq _remark_weak_ref_times;
ysr@777 453 NumberSeq _cleanup_times;
ysr@777 454 double _total_counting_time;
ysr@777 455 double _total_rs_scrub_time;
ysr@777 456
ysr@777 457 double* _accum_task_vtime; // accumulated task vtime
ysr@777 458
ysr@777 459 WorkGang* _parallel_workers;
ysr@777 460
ysr@777 461 void weakRefsWork(bool clear_all_soft_refs);
ysr@777 462
ysr@777 463 void swapMarkBitMaps();
ysr@777 464
ysr@777 465 // It resets the global marking data structures, as well as the
ysr@777 466 // task local ones; should be called during initial mark.
ysr@777 467 void reset();
ysr@777 468 // It resets all the marking data structures.
ysr@777 469 void clear_marking_state();
ysr@777 470
ysr@777 471 // It should be called to indicate which phase we're in (concurrent
ysr@777 472 // mark or remark) and how many threads are currently active.
ysr@777 473 void set_phase(size_t active_tasks, bool concurrent);
ysr@777 474 // We do this after we're done with marking so that the marking data
ysr@777 475 // structures are initialised to a sensible and predictable state.
ysr@777 476 void set_non_marking_state();
ysr@777 477
ysr@777 478 // prints all gathered CM-related statistics
ysr@777 479 void print_stats();
ysr@777 480
tonyp@2472 481 bool cleanup_list_is_empty() {
tonyp@2472 482 return _cleanup_list.is_empty();
tonyp@2472 483 }
tonyp@2472 484
ysr@777 485 // accessor methods
ysr@777 486 size_t parallel_marking_threads() { return _parallel_marking_threads; }
ysr@777 487 double sleep_factor() { return _sleep_factor; }
ysr@777 488 double marking_task_overhead() { return _marking_task_overhead;}
ysr@777 489 double cleanup_sleep_factor() { return _cleanup_sleep_factor; }
ysr@777 490 double cleanup_task_overhead() { return _cleanup_task_overhead;}
ysr@777 491
ysr@777 492 HeapWord* finger() { return _finger; }
ysr@777 493 bool concurrent() { return _concurrent; }
ysr@777 494 size_t active_tasks() { return _active_tasks; }
ysr@777 495 ParallelTaskTerminator* terminator() { return &_terminator; }
ysr@777 496
ysr@777 497 // It claims the next available region to be scanned by a marking
ysr@777 498 // task. It might return NULL if the next region is empty or we have
ysr@777 499 // run out of regions. In the latter case, out_of_regions()
ysr@777 500 // determines whether we've really run out of regions or the task
ysr@777 501 // should call claim_region() again. This might seem a bit
ysr@777 502 // awkward. Originally, the code was written so that claim_region()
ysr@777 503 // either successfully returned with a non-empty region or there
ysr@777 504 // were no more regions to be claimed. The problem with this was
ysr@777 505 // that, in certain circumstances, it iterated over large chunks of
ysr@777 506 // the heap finding only empty regions and, while it was working, it
ysr@777 507 // was preventing the calling task to call its regular clock
ysr@777 508 // method. So, this way, each task will spend very little time in
ysr@777 509 // claim_region() and is allowed to call the regular clock method
ysr@777 510 // frequently.
ysr@777 511 HeapRegion* claim_region(int task);
ysr@777 512
ysr@777 513 // It determines whether we've run out of regions to scan.
ysr@777 514 bool out_of_regions() { return _finger == _heap_end; }
ysr@777 515
ysr@777 516 // Returns the task with the given id
ysr@777 517 CMTask* task(int id) {
tonyp@1458 518 assert(0 <= id && id < (int) _active_tasks,
tonyp@1458 519 "task id not within active bounds");
ysr@777 520 return _tasks[id];
ysr@777 521 }
ysr@777 522
ysr@777 523 // Returns the task queue with the given id
ysr@777 524 CMTaskQueue* task_queue(int id) {
tonyp@1458 525 assert(0 <= id && id < (int) _active_tasks,
tonyp@1458 526 "task queue id not within active bounds");
ysr@777 527 return (CMTaskQueue*) _task_queues->queue(id);
ysr@777 528 }
ysr@777 529
ysr@777 530 // Returns the task queue set
ysr@777 531 CMTaskQueueSet* task_queues() { return _task_queues; }
ysr@777 532
ysr@777 533 // Access / manipulation of the overflow flag which is set to
ysr@777 534 // indicate that the global stack or region stack has overflown
ysr@777 535 bool has_overflown() { return _has_overflown; }
ysr@777 536 void set_has_overflown() { _has_overflown = true; }
ysr@777 537 void clear_has_overflown() { _has_overflown = false; }
ysr@777 538
ysr@777 539 bool has_aborted() { return _has_aborted; }
ysr@777 540 bool restart_for_overflow() { return _restart_for_overflow; }
ysr@777 541
ysr@777 542 // Methods to enter the two overflow sync barriers
ysr@777 543 void enter_first_sync_barrier(int task_num);
ysr@777 544 void enter_second_sync_barrier(int task_num);
ysr@777 545
ysr@777 546 public:
ysr@777 547 // Manipulation of the global mark stack.
ysr@777 548 // Notice that the first mark_stack_push is CAS-based, whereas the
ysr@777 549 // two below are Mutex-based. This is OK since the first one is only
ysr@777 550 // called during evacuation pauses and doesn't compete with the
ysr@777 551 // other two (which are called by the marking tasks during
ysr@777 552 // concurrent marking or remark).
ysr@777 553 bool mark_stack_push(oop p) {
ysr@777 554 _markStack.par_push(p);
ysr@777 555 if (_markStack.overflow()) {
ysr@777 556 set_has_overflown();
ysr@777 557 return false;
ysr@777 558 }
ysr@777 559 return true;
ysr@777 560 }
ysr@777 561 bool mark_stack_push(oop* arr, int n) {
ysr@777 562 _markStack.par_push_arr(arr, n);
ysr@777 563 if (_markStack.overflow()) {
ysr@777 564 set_has_overflown();
ysr@777 565 return false;
ysr@777 566 }
ysr@777 567 return true;
ysr@777 568 }
ysr@777 569 void mark_stack_pop(oop* arr, int max, int* n) {
ysr@777 570 _markStack.par_pop_arr(arr, max, n);
ysr@777 571 }
ysr@777 572 size_t mark_stack_size() { return _markStack.size(); }
ysr@777 573 size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
ysr@777 574 bool mark_stack_overflow() { return _markStack.overflow(); }
ysr@777 575 bool mark_stack_empty() { return _markStack.isEmpty(); }
ysr@777 576
johnc@2190 577 // (Lock-free) Manipulation of the region stack
johnc@2190 578 bool region_stack_push_lock_free(MemRegion mr) {
tonyp@1793 579 // Currently we only call the lock-free version during evacuation
tonyp@1793 580 // pauses.
tonyp@1793 581 assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
tonyp@1793 582
johnc@2190 583 _regionStack.push_lock_free(mr);
ysr@777 584 if (_regionStack.overflow()) {
ysr@777 585 set_has_overflown();
ysr@777 586 return false;
ysr@777 587 }
ysr@777 588 return true;
ysr@777 589 }
johnc@2190 590
johnc@2190 591 // Lock-free version of region-stack pop. Should only be
johnc@2190 592 // called in tandem with other lock-free pops.
johnc@2190 593 MemRegion region_stack_pop_lock_free() {
johnc@2190 594 return _regionStack.pop_lock_free();
johnc@2190 595 }
johnc@2190 596
tonyp@1793 597 #if 0
johnc@2190 598 // The routines that manipulate the region stack with a lock are
johnc@2190 599 // not currently used. They should be retained, however, as a
johnc@2190 600 // diagnostic aid.
tonyp@1793 601
tonyp@1793 602 bool region_stack_push_with_lock(MemRegion mr) {
tonyp@1793 603 // Currently we only call the lock-based version during either
tonyp@1793 604 // concurrent marking or remark.
tonyp@1793 605 assert(!SafepointSynchronize::is_at_safepoint() || !concurrent(),
tonyp@1793 606 "if we are at a safepoint it should be the remark safepoint");
tonyp@1793 607
tonyp@1793 608 _regionStack.push_with_lock(mr);
tonyp@1793 609 if (_regionStack.overflow()) {
tonyp@1793 610 set_has_overflown();
tonyp@1793 611 return false;
tonyp@1793 612 }
tonyp@1793 613 return true;
tonyp@1793 614 }
johnc@2190 615
tonyp@1793 616 MemRegion region_stack_pop_with_lock() {
tonyp@1793 617 // Currently we only call the lock-based version during either
tonyp@1793 618 // concurrent marking or remark.
tonyp@1793 619 assert(!SafepointSynchronize::is_at_safepoint() || !concurrent(),
tonyp@1793 620 "if we are at a safepoint it should be the remark safepoint");
tonyp@1793 621
tonyp@1793 622 return _regionStack.pop_with_lock();
tonyp@1793 623 }
johnc@2190 624 #endif
tonyp@1793 625
ysr@777 626 int region_stack_size() { return _regionStack.size(); }
ysr@777 627 bool region_stack_overflow() { return _regionStack.overflow(); }
ysr@777 628 bool region_stack_empty() { return _regionStack.isEmpty(); }
ysr@777 629
johnc@2190 630 // Iterate over any regions that were aborted while draining the
johnc@2190 631 // region stack (any such regions are saved in the corresponding
johnc@2190 632 // CMTask) and invalidate (i.e. assign to the empty MemRegion())
johnc@2190 633 // any regions that point into the collection set.
johnc@2190 634 bool invalidate_aborted_regions_in_cset();
johnc@2190 635
johnc@2190 636 // Returns true if there are any aborted memory regions.
johnc@2190 637 bool has_aborted_regions();
johnc@2190 638
ysr@777 639 bool concurrent_marking_in_progress() {
ysr@777 640 return _concurrent_marking_in_progress;
ysr@777 641 }
ysr@777 642 void set_concurrent_marking_in_progress() {
ysr@777 643 _concurrent_marking_in_progress = true;
ysr@777 644 }
ysr@777 645 void clear_concurrent_marking_in_progress() {
ysr@777 646 _concurrent_marking_in_progress = false;
ysr@777 647 }
ysr@777 648
ysr@777 649 void update_accum_task_vtime(int i, double vtime) {
ysr@777 650 _accum_task_vtime[i] += vtime;
ysr@777 651 }
ysr@777 652
ysr@777 653 double all_task_accum_vtime() {
ysr@777 654 double ret = 0.0;
ysr@777 655 for (int i = 0; i < (int)_max_task_num; ++i)
ysr@777 656 ret += _accum_task_vtime[i];
ysr@777 657 return ret;
ysr@777 658 }
ysr@777 659
ysr@777 660 // Attempts to steal an object from the task queues of other tasks
ysr@777 661 bool try_stealing(int task_num, int* hash_seed, oop& obj) {
ysr@777 662 return _task_queues->steal(task_num, hash_seed, obj);
ysr@777 663 }
ysr@777 664
ysr@777 665 // It grays an object by first marking it. Then, if it's behind the
ysr@777 666 // global finger, it also pushes it on the global stack.
ysr@777 667 void deal_with_reference(oop obj);
ysr@777 668
ysr@777 669 ConcurrentMark(ReservedSpace rs, int max_regions);
ysr@777 670 ~ConcurrentMark();
ysr@777 671 ConcurrentMarkThread* cmThread() { return _cmThread; }
ysr@777 672
ysr@777 673 CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
ysr@777 674 CMBitMap* nextMarkBitMap() const { return _nextMarkBitMap; }
ysr@777 675
ysr@777 676 // The following three are interaction between CM and
ysr@777 677 // G1CollectedHeap
ysr@777 678
ysr@777 679 // This notifies CM that a root during initial-mark needs to be
ysr@777 680 // grayed and it's MT-safe. Currently, we just mark it. But, in the
ysr@777 681 // future, we can experiment with pushing it on the stack and we can
ysr@777 682 // do this without changing G1CollectedHeap.
ysr@777 683 void grayRoot(oop p);
ysr@777 684 // It's used during evacuation pauses to gray a region, if
ysr@777 685 // necessary, and it's MT-safe. It assumes that the caller has
ysr@777 686 // marked any objects on that region. If _should_gray_objects is
ysr@777 687 // true and we're still doing concurrent marking, the region is
ysr@777 688 // pushed on the region stack, if it is located below the global
ysr@777 689 // finger, otherwise we do nothing.
ysr@777 690 void grayRegionIfNecessary(MemRegion mr);
ysr@777 691 // It's used during evacuation pauses to mark and, if necessary,
ysr@777 692 // gray a single object and it's MT-safe. It assumes the caller did
ysr@777 693 // not mark the object. If _should_gray_objects is true and we're
ysr@777 694 // still doing concurrent marking, the objects is pushed on the
ysr@777 695 // global stack, if it is located below the global finger, otherwise
ysr@777 696 // we do nothing.
ysr@777 697 void markAndGrayObjectIfNecessary(oop p);
ysr@777 698
tonyp@1823 699 // It iterates over the heap and for each object it comes across it
tonyp@1823 700 // will dump the contents of its reference fields, as well as
tonyp@1823 701 // liveness information for the object and its referents. The dump
tonyp@1823 702 // will be written to a file with the following name:
tonyp@1823 703 // G1PrintReachableBaseFile + "." + str. use_prev_marking decides
tonyp@1823 704 // whether the prev (use_prev_marking == true) or next
tonyp@1823 705 // (use_prev_marking == false) marking information will be used to
tonyp@1823 706 // determine the liveness of each object / referent. If all is true,
tonyp@1823 707 // all objects in the heap will be dumped, otherwise only the live
tonyp@1823 708 // ones. In the dump the following symbols / abbreviations are used:
tonyp@1823 709 // M : an explicitly live object (its bitmap bit is set)
tonyp@1823 710 // > : an implicitly live object (over tams)
tonyp@1823 711 // O : an object outside the G1 heap (typically: in the perm gen)
tonyp@1823 712 // NOT : a reference field whose referent is not live
tonyp@1823 713 // AND MARKED : indicates that an object is both explicitly and
tonyp@1823 714 // implicitly live (it should be one or the other, not both)
tonyp@1823 715 void print_reachable(const char* str,
tonyp@1823 716 bool use_prev_marking, bool all) PRODUCT_RETURN;
ysr@777 717
ysr@777 718 // Clear the next marking bitmap (will be called concurrently).
ysr@777 719 void clearNextBitmap();
ysr@777 720
ysr@777 721 // main CMS steps and related support
ysr@777 722 void checkpointRootsInitial();
ysr@777 723
ysr@777 724 // These two do the work that needs to be done before and after the
ysr@777 725 // initial root checkpoint. Since this checkpoint can be done at two
ysr@777 726 // different points (i.e. an explicit pause or piggy-backed on a
ysr@777 727 // young collection), then it's nice to be able to easily share the
ysr@777 728 // pre/post code. It might be the case that we can put everything in
ysr@777 729 // the post method. TP
ysr@777 730 void checkpointRootsInitialPre();
ysr@777 731 void checkpointRootsInitialPost();
ysr@777 732
ysr@777 733 // Do concurrent phase of marking, to a tentative transitive closure.
ysr@777 734 void markFromRoots();
ysr@777 735
ysr@777 736 // Process all unprocessed SATB buffers. It is called at the
ysr@777 737 // beginning of an evacuation pause.
ysr@777 738 void drainAllSATBBuffers();
ysr@777 739
ysr@777 740 void checkpointRootsFinal(bool clear_all_soft_refs);
ysr@777 741 void checkpointRootsFinalWork();
ysr@777 742 void calcDesiredRegions();
ysr@777 743 void cleanup();
ysr@777 744 void completeCleanup();
ysr@777 745
ysr@777 746 // Mark in the previous bitmap. NB: this is usually read-only, so use
ysr@777 747 // this carefully!
ysr@777 748 void markPrev(oop p);
ysr@777 749 void clear(oop p);
ysr@777 750 // Clears marks for all objects in the given range, for both prev and
ysr@777 751 // next bitmaps. NB: the previous bitmap is usually read-only, so use
ysr@777 752 // this carefully!
ysr@777 753 void clearRangeBothMaps(MemRegion mr);
ysr@777 754
ysr@777 755 // Record the current top of the mark and region stacks; a
ysr@777 756 // subsequent oops_do() on the mark stack and
ysr@777 757 // invalidate_entries_into_cset() on the region stack will iterate
ysr@777 758 // only over indices valid at the time of this call.
ysr@777 759 void set_oops_do_bound() {
ysr@777 760 _markStack.set_oops_do_bound();
ysr@777 761 _regionStack.set_oops_do_bound();
ysr@777 762 }
ysr@777 763 // Iterate over the oops in the mark stack and all local queues. It
ysr@777 764 // also calls invalidate_entries_into_cset() on the region stack.
ysr@777 765 void oops_do(OopClosure* f);
ysr@777 766 // It is called at the end of an evacuation pause during marking so
ysr@777 767 // that CM is notified of where the new end of the heap is. It
ysr@777 768 // doesn't do anything if concurrent_marking_in_progress() is false,
ysr@777 769 // unless the force parameter is true.
ysr@777 770 void update_g1_committed(bool force = false);
ysr@777 771
ysr@777 772 void complete_marking_in_collection_set();
ysr@777 773
ysr@777 774 // It indicates that a new collection set is being chosen.
ysr@777 775 void newCSet();
ysr@777 776 // It registers a collection set heap region with CM. This is used
ysr@777 777 // to determine whether any heap regions are located above the finger.
ysr@777 778 void registerCSetRegion(HeapRegion* hr);
ysr@777 779
johnc@1829 780 // Registers the maximum region-end associated with a set of
johnc@1829 781 // regions with CM. Again this is used to determine whether any
johnc@1829 782 // heap regions are located above the finger.
johnc@1829 783 void register_collection_set_finger(HeapWord* max_finger) {
johnc@1829 784 // max_finger is the highest heap region end of the regions currently
johnc@1829 785 // contained in the collection set. If this value is larger than
johnc@1829 786 // _min_finger then we need to gray objects.
johnc@1829 787 // This routine is like registerCSetRegion but for an entire
johnc@1829 788 // collection of regions.
johnc@1829 789 if (max_finger > _min_finger)
johnc@1829 790 _should_gray_objects = true;
johnc@1829 791 }
johnc@1829 792
ysr@777 793 // Returns "true" if at least one mark has been completed.
ysr@777 794 bool at_least_one_mark_complete() { return _at_least_one_mark_complete; }
ysr@777 795
ysr@777 796 bool isMarked(oop p) const {
ysr@777 797 assert(p != NULL && p->is_oop(), "expected an oop");
ysr@777 798 HeapWord* addr = (HeapWord*)p;
ysr@777 799 assert(addr >= _nextMarkBitMap->startWord() ||
ysr@777 800 addr < _nextMarkBitMap->endWord(), "in a region");
ysr@777 801
ysr@777 802 return _nextMarkBitMap->isMarked(addr);
ysr@777 803 }
ysr@777 804
ysr@777 805 inline bool not_yet_marked(oop p) const;
ysr@777 806
ysr@777 807 // XXX Debug code
ysr@777 808 bool containing_card_is_marked(void* p);
ysr@777 809 bool containing_cards_are_marked(void* start, void* last);
ysr@777 810
ysr@777 811 bool isPrevMarked(oop p) const {
ysr@777 812 assert(p != NULL && p->is_oop(), "expected an oop");
ysr@777 813 HeapWord* addr = (HeapWord*)p;
ysr@777 814 assert(addr >= _prevMarkBitMap->startWord() ||
ysr@777 815 addr < _prevMarkBitMap->endWord(), "in a region");
ysr@777 816
ysr@777 817 return _prevMarkBitMap->isMarked(addr);
ysr@777 818 }
ysr@777 819
ysr@777 820 inline bool do_yield_check(int worker_i = 0);
ysr@777 821 inline bool should_yield();
ysr@777 822
ysr@777 823 // Called to abort the marking cycle after a Full GC takes palce.
ysr@777 824 void abort();
ysr@777 825
ysr@777 826 // This prints the global/local fingers. It is used for debugging.
ysr@777 827 NOT_PRODUCT(void print_finger();)
ysr@777 828
ysr@777 829 void print_summary_info();
ysr@777 830
tonyp@1454 831 void print_worker_threads_on(outputStream* st) const;
tonyp@1454 832
ysr@777 833 // The following indicate whether a given verbose level has been
ysr@777 834 // set. Notice that anything above stats is conditional to
ysr@777 835 // _MARKING_VERBOSE_ having been set to 1
ysr@777 836 bool verbose_stats()
ysr@777 837 { return _verbose_level >= stats_verbose; }
ysr@777 838 bool verbose_low()
ysr@777 839 { return _MARKING_VERBOSE_ && _verbose_level >= low_verbose; }
ysr@777 840 bool verbose_medium()
ysr@777 841 { return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose; }
ysr@777 842 bool verbose_high()
ysr@777 843 { return _MARKING_VERBOSE_ && _verbose_level >= high_verbose; }
ysr@777 844 };
ysr@777 845
ysr@777 846 // A class representing a marking task.
ysr@777 847 class CMTask : public TerminatorTerminator {
ysr@777 848 private:
ysr@777 849 enum PrivateConstants {
ysr@777 850 // the regular clock call is called once the scanned words reaches
ysr@777 851 // this limit
ysr@777 852 words_scanned_period = 12*1024,
ysr@777 853 // the regular clock call is called once the number of visited
ysr@777 854 // references reaches this limit
ysr@777 855 refs_reached_period = 384,
ysr@777 856 // initial value for the hash seed, used in the work stealing code
ysr@777 857 init_hash_seed = 17,
ysr@777 858 // how many entries will be transferred between global stack and
ysr@777 859 // local queues
ysr@777 860 global_stack_transfer_size = 16
ysr@777 861 };
ysr@777 862
ysr@777 863 int _task_id;
ysr@777 864 G1CollectedHeap* _g1h;
ysr@777 865 ConcurrentMark* _cm;
ysr@777 866 CMBitMap* _nextMarkBitMap;
ysr@777 867 // the task queue of this task
ysr@777 868 CMTaskQueue* _task_queue;
ysr@1280 869 private:
ysr@777 870 // the task queue set---needed for stealing
ysr@777 871 CMTaskQueueSet* _task_queues;
ysr@777 872 // indicates whether the task has been claimed---this is only for
ysr@777 873 // debugging purposes
ysr@777 874 bool _claimed;
ysr@777 875
ysr@777 876 // number of calls to this task
ysr@777 877 int _calls;
ysr@777 878
ysr@777 879 // when the virtual timer reaches this time, the marking step should
ysr@777 880 // exit
ysr@777 881 double _time_target_ms;
ysr@777 882 // the start time of the current marking step
ysr@777 883 double _start_time_ms;
ysr@777 884
ysr@777 885 // the oop closure used for iterations over oops
ysr@777 886 OopClosure* _oop_closure;
ysr@777 887
ysr@777 888 // the region this task is scanning, NULL if we're not scanning any
ysr@777 889 HeapRegion* _curr_region;
ysr@777 890 // the local finger of this task, NULL if we're not scanning a region
ysr@777 891 HeapWord* _finger;
ysr@777 892 // limit of the region this task is scanning, NULL if we're not scanning one
ysr@777 893 HeapWord* _region_limit;
ysr@777 894
ysr@777 895 // This is used only when we scan regions popped from the region
ysr@777 896 // stack. It records what the last object on such a region we
ysr@777 897 // scanned was. It is used to ensure that, if we abort region
ysr@777 898 // iteration, we do not rescan the first part of the region. This
ysr@777 899 // should be NULL when we're not scanning a region from the region
ysr@777 900 // stack.
ysr@777 901 HeapWord* _region_finger;
ysr@777 902
johnc@2190 903 // If we abort while scanning a region we record the remaining
johnc@2190 904 // unscanned portion and check this field when marking restarts.
johnc@2190 905 // This avoids having to push on the region stack while other
johnc@2190 906 // marking threads may still be popping regions.
johnc@2190 907 // If we were to push the unscanned portion directly to the
johnc@2190 908 // region stack then we would need to using locking versions
johnc@2190 909 // of the push and pop operations.
johnc@2190 910 MemRegion _aborted_region;
johnc@2190 911
ysr@777 912 // the number of words this task has scanned
ysr@777 913 size_t _words_scanned;
ysr@777 914 // When _words_scanned reaches this limit, the regular clock is
ysr@777 915 // called. Notice that this might be decreased under certain
ysr@777 916 // circumstances (i.e. when we believe that we did an expensive
ysr@777 917 // operation).
ysr@777 918 size_t _words_scanned_limit;
ysr@777 919 // the initial value of _words_scanned_limit (i.e. what it was
ysr@777 920 // before it was decreased).
ysr@777 921 size_t _real_words_scanned_limit;
ysr@777 922
ysr@777 923 // the number of references this task has visited
ysr@777 924 size_t _refs_reached;
ysr@777 925 // When _refs_reached reaches this limit, the regular clock is
ysr@777 926 // called. Notice this this might be decreased under certain
ysr@777 927 // circumstances (i.e. when we believe that we did an expensive
ysr@777 928 // operation).
ysr@777 929 size_t _refs_reached_limit;
ysr@777 930 // the initial value of _refs_reached_limit (i.e. what it was before
ysr@777 931 // it was decreased).
ysr@777 932 size_t _real_refs_reached_limit;
ysr@777 933
ysr@777 934 // used by the work stealing stuff
ysr@777 935 int _hash_seed;
ysr@777 936 // if this is true, then the task has aborted for some reason
ysr@777 937 bool _has_aborted;
ysr@777 938 // set when the task aborts because it has met its time quota
ysr@777 939 bool _has_aborted_timed_out;
ysr@777 940 // true when we're draining SATB buffers; this avoids the task
ysr@777 941 // aborting due to SATB buffers being available (as we're already
ysr@777 942 // dealing with them)
ysr@777 943 bool _draining_satb_buffers;
ysr@777 944
ysr@777 945 // number sequence of past step times
ysr@777 946 NumberSeq _step_times_ms;
ysr@777 947 // elapsed time of this task
ysr@777 948 double _elapsed_time_ms;
ysr@777 949 // termination time of this task
ysr@777 950 double _termination_time_ms;
ysr@777 951 // when this task got into the termination protocol
ysr@777 952 double _termination_start_time_ms;
ysr@777 953
ysr@777 954 // true when the task is during a concurrent phase, false when it is
ysr@777 955 // in the remark phase (so, in the latter case, we do not have to
ysr@777 956 // check all the things that we have to check during the concurrent
ysr@777 957 // phase, i.e. SATB buffer availability...)
ysr@777 958 bool _concurrent;
ysr@777 959
ysr@777 960 TruncatedSeq _marking_step_diffs_ms;
ysr@777 961
ysr@777 962 // LOTS of statistics related with this task
ysr@777 963 #if _MARKING_STATS_
ysr@777 964 NumberSeq _all_clock_intervals_ms;
ysr@777 965 double _interval_start_time_ms;
ysr@777 966
ysr@777 967 int _aborted;
ysr@777 968 int _aborted_overflow;
ysr@777 969 int _aborted_cm_aborted;
ysr@777 970 int _aborted_yield;
ysr@777 971 int _aborted_timed_out;
ysr@777 972 int _aborted_satb;
ysr@777 973 int _aborted_termination;
ysr@777 974
ysr@777 975 int _steal_attempts;
ysr@777 976 int _steals;
ysr@777 977
ysr@777 978 int _clock_due_to_marking;
ysr@777 979 int _clock_due_to_scanning;
ysr@777 980
ysr@777 981 int _local_pushes;
ysr@777 982 int _local_pops;
ysr@777 983 int _local_max_size;
ysr@777 984 int _objs_scanned;
ysr@777 985
ysr@777 986 int _global_pushes;
ysr@777 987 int _global_pops;
ysr@777 988 int _global_max_size;
ysr@777 989
ysr@777 990 int _global_transfers_to;
ysr@777 991 int _global_transfers_from;
ysr@777 992
ysr@777 993 int _region_stack_pops;
ysr@777 994
ysr@777 995 int _regions_claimed;
ysr@777 996 int _objs_found_on_bitmap;
ysr@777 997
ysr@777 998 int _satb_buffers_processed;
ysr@777 999 #endif // _MARKING_STATS_
ysr@777 1000
ysr@777 1001 // it updates the local fields after this task has claimed
ysr@777 1002 // a new region to scan
ysr@777 1003 void setup_for_region(HeapRegion* hr);
ysr@777 1004 // it brings up-to-date the limit of the region
ysr@777 1005 void update_region_limit();
ysr@777 1006 // it resets the local fields after a task has finished scanning a
ysr@777 1007 // region
ysr@777 1008 void giveup_current_region();
ysr@777 1009
ysr@777 1010 // called when either the words scanned or the refs visited limit
ysr@777 1011 // has been reached
ysr@777 1012 void reached_limit();
ysr@777 1013 // recalculates the words scanned and refs visited limits
ysr@777 1014 void recalculate_limits();
ysr@777 1015 // decreases the words scanned and refs visited limits when we reach
ysr@777 1016 // an expensive operation
ysr@777 1017 void decrease_limits();
ysr@777 1018 // it checks whether the words scanned or refs visited reached their
ysr@777 1019 // respective limit and calls reached_limit() if they have
ysr@777 1020 void check_limits() {
ysr@777 1021 if (_words_scanned >= _words_scanned_limit ||
ysr@777 1022 _refs_reached >= _refs_reached_limit)
ysr@777 1023 reached_limit();
ysr@777 1024 }
ysr@777 1025 // this is supposed to be called regularly during a marking step as
ysr@777 1026 // it checks a bunch of conditions that might cause the marking step
ysr@777 1027 // to abort
ysr@777 1028 void regular_clock_call();
ysr@777 1029 bool concurrent() { return _concurrent; }
ysr@777 1030
ysr@777 1031 public:
ysr@777 1032 // It resets the task; it should be called right at the beginning of
ysr@777 1033 // a marking phase.
ysr@777 1034 void reset(CMBitMap* _nextMarkBitMap);
ysr@777 1035 // it clears all the fields that correspond to a claimed region.
ysr@777 1036 void clear_region_fields();
ysr@777 1037
ysr@777 1038 void set_concurrent(bool concurrent) { _concurrent = concurrent; }
ysr@777 1039
ysr@777 1040 // The main method of this class which performs a marking step
ysr@777 1041 // trying not to exceed the given duration. However, it might exit
ysr@777 1042 // prematurely, according to some conditions (i.e. SATB buffers are
ysr@777 1043 // available for processing).
ysr@777 1044 void do_marking_step(double target_ms);
ysr@777 1045
ysr@777 1046 // These two calls start and stop the timer
ysr@777 1047 void record_start_time() {
ysr@777 1048 _elapsed_time_ms = os::elapsedTime() * 1000.0;
ysr@777 1049 }
ysr@777 1050 void record_end_time() {
ysr@777 1051 _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
ysr@777 1052 }
ysr@777 1053
ysr@777 1054 // returns the task ID
ysr@777 1055 int task_id() { return _task_id; }
ysr@777 1056
ysr@777 1057 // From TerminatorTerminator. It determines whether this task should
ysr@777 1058 // exit the termination protocol after it's entered it.
ysr@777 1059 virtual bool should_exit_termination();
ysr@777 1060
ysr@777 1061 HeapWord* finger() { return _finger; }
ysr@777 1062
ysr@777 1063 bool has_aborted() { return _has_aborted; }
ysr@777 1064 void set_has_aborted() { _has_aborted = true; }
ysr@777 1065 void clear_has_aborted() { _has_aborted = false; }
ysr@777 1066 bool claimed() { return _claimed; }
ysr@777 1067
johnc@2190 1068 // Support routines for the partially scanned region that may be
johnc@2190 1069 // recorded as a result of aborting while draining the CMRegionStack
johnc@2190 1070 MemRegion aborted_region() { return _aborted_region; }
johnc@2190 1071 void set_aborted_region(MemRegion mr)
johnc@2190 1072 { _aborted_region = mr; }
johnc@2190 1073
johnc@2190 1074 // Clears any recorded partially scanned region
johnc@2190 1075 void clear_aborted_region() { set_aborted_region(MemRegion()); }
johnc@2190 1076
ysr@777 1077 void set_oop_closure(OopClosure* oop_closure) {
ysr@777 1078 _oop_closure = oop_closure;
ysr@777 1079 }
ysr@777 1080
ysr@777 1081 // It grays the object by marking it and, if necessary, pushing it
ysr@777 1082 // on the local queue
ysr@777 1083 void deal_with_reference(oop obj);
ysr@777 1084
ysr@777 1085 // It scans an object and visits its children.
ysr@777 1086 void scan_object(oop obj) {
tonyp@1458 1087 assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
ysr@777 1088
ysr@777 1089 if (_cm->verbose_high())
ysr@777 1090 gclog_or_tty->print_cr("[%d] we're scanning object "PTR_FORMAT,
ysr@777 1091 _task_id, (void*) obj);
ysr@777 1092
ysr@777 1093 size_t obj_size = obj->size();
ysr@777 1094 _words_scanned += obj_size;
ysr@777 1095
ysr@777 1096 obj->oop_iterate(_oop_closure);
ysr@777 1097 statsOnly( ++_objs_scanned );
ysr@777 1098 check_limits();
ysr@777 1099 }
ysr@777 1100
ysr@777 1101 // It pushes an object on the local queue.
ysr@777 1102 void push(oop obj);
ysr@777 1103
ysr@777 1104 // These two move entries to/from the global stack.
ysr@777 1105 void move_entries_to_global_stack();
ysr@777 1106 void get_entries_from_global_stack();
ysr@777 1107
ysr@777 1108 // It pops and scans objects from the local queue. If partially is
ysr@777 1109 // true, then it stops when the queue size is of a given limit. If
ysr@777 1110 // partially is false, then it stops when the queue is empty.
ysr@777 1111 void drain_local_queue(bool partially);
ysr@777 1112 // It moves entries from the global stack to the local queue and
ysr@777 1113 // drains the local queue. If partially is true, then it stops when
ysr@777 1114 // both the global stack and the local queue reach a given size. If
ysr@777 1115 // partially if false, it tries to empty them totally.
ysr@777 1116 void drain_global_stack(bool partially);
ysr@777 1117 // It keeps picking SATB buffers and processing them until no SATB
ysr@777 1118 // buffers are available.
ysr@777 1119 void drain_satb_buffers();
ysr@777 1120 // It keeps popping regions from the region stack and processing
ysr@777 1121 // them until the region stack is empty.
ysr@777 1122 void drain_region_stack(BitMapClosure* closure);
ysr@777 1123
ysr@777 1124 // moves the local finger to a new location
ysr@777 1125 inline void move_finger_to(HeapWord* new_finger) {
tonyp@1458 1126 assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
ysr@777 1127 _finger = new_finger;
ysr@777 1128 }
ysr@777 1129
ysr@777 1130 // moves the region finger to a new location
ysr@777 1131 inline void move_region_finger_to(HeapWord* new_finger) {
tonyp@1458 1132 assert(new_finger < _cm->finger(), "invariant");
ysr@777 1133 _region_finger = new_finger;
ysr@777 1134 }
ysr@777 1135
ysr@777 1136 CMTask(int task_num, ConcurrentMark *cm,
ysr@777 1137 CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
ysr@777 1138
ysr@777 1139 // it prints statistics associated with this task
ysr@777 1140 void print_stats();
ysr@777 1141
ysr@777 1142 #if _MARKING_STATS_
ysr@777 1143 void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
ysr@777 1144 #endif // _MARKING_STATS_
ysr@777 1145 };
stefank@2314 1146
stefank@2314 1147 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP

mercurial