src/share/vm/gc_implementation/g1/concurrentMark.hpp

Tue, 10 Jan 2012 18:58:13 -0500

author
tonyp
date
Tue, 10 Jan 2012 18:58:13 -0500
changeset 3416
2ace1c4ee8da
parent 3357
441e946dc1af
child 3454
2e966d967c5c
permissions
-rw-r--r--

6888336: G1: avoid explicitly marking and pushing objects in survivor spaces
Summary: This change simplifies the interaction between GC and concurrent marking. By disabling survivor spaces during the initial-mark pause we don't need to propagate marks of objects we copy during each GC (since we never need to copy an explicitly marked object).
Reviewed-by: johnc, brutisso

ysr@777 1 /*
tonyp@3416 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
stefank@2314 27
tonyp@2472 28 #include "gc_implementation/g1/heapRegionSets.hpp"
stefank@2314 29 #include "utilities/taskqueue.hpp"
stefank@2314 30
ysr@777 31 class G1CollectedHeap;
ysr@777 32 class CMTask;
jcoomes@1746 33 typedef GenericTaskQueue<oop> CMTaskQueue;
jcoomes@1746 34 typedef GenericTaskQueueSet<CMTaskQueue> CMTaskQueueSet;
ysr@777 35
johnc@2379 36 // Closure used by CM during concurrent reference discovery
johnc@2379 37 // and reference processing (during remarking) to determine
johnc@2379 38 // if a particular object is alive. It is primarily used
johnc@2379 39 // to determine if referents of discovered reference objects
johnc@2379 40 // are alive. An instance is also embedded into the
johnc@2379 41 // reference processor as the _is_alive_non_header field
johnc@2379 42 class G1CMIsAliveClosure: public BoolObjectClosure {
johnc@2379 43 G1CollectedHeap* _g1;
johnc@2379 44 public:
johnc@2379 45 G1CMIsAliveClosure(G1CollectedHeap* g1) :
johnc@2379 46 _g1(g1)
johnc@2379 47 {}
johnc@2379 48
johnc@2379 49 void do_object(oop obj) {
johnc@2379 50 ShouldNotCallThis();
johnc@2379 51 }
johnc@2379 52 bool do_object_b(oop obj);
johnc@2379 53 };
johnc@2379 54
ysr@777 55 // A generic CM bit map. This is essentially a wrapper around the BitMap
ysr@777 56 // class, with one bit per (1<<_shifter) HeapWords.
ysr@777 57
apetrusenko@984 58 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
ysr@777 59 protected:
ysr@777 60 HeapWord* _bmStartWord; // base address of range covered by map
ysr@777 61 size_t _bmWordSize; // map size (in #HeapWords covered)
ysr@777 62 const int _shifter; // map to char or bit
ysr@777 63 VirtualSpace _virtual_space; // underlying the bit map
ysr@777 64 BitMap _bm; // the bit map itself
ysr@777 65
ysr@777 66 public:
ysr@777 67 // constructor
ysr@777 68 CMBitMapRO(ReservedSpace rs, int shifter);
ysr@777 69
ysr@777 70 enum { do_yield = true };
ysr@777 71
ysr@777 72 // inquiries
ysr@777 73 HeapWord* startWord() const { return _bmStartWord; }
ysr@777 74 size_t sizeInWords() const { return _bmWordSize; }
ysr@777 75 // the following is one past the last word in space
ysr@777 76 HeapWord* endWord() const { return _bmStartWord + _bmWordSize; }
ysr@777 77
ysr@777 78 // read marks
ysr@777 79
ysr@777 80 bool isMarked(HeapWord* addr) const {
ysr@777 81 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 82 "outside underlying space?");
ysr@777 83 return _bm.at(heapWordToOffset(addr));
ysr@777 84 }
ysr@777 85
ysr@777 86 // iteration
ysr@777 87 bool iterate(BitMapClosure* cl) { return _bm.iterate(cl); }
ysr@777 88 bool iterate(BitMapClosure* cl, MemRegion mr);
ysr@777 89
ysr@777 90 // Return the address corresponding to the next marked bit at or after
ysr@777 91 // "addr", and before "limit", if "limit" is non-NULL. If there is no
ysr@777 92 // such bit, returns "limit" if that is non-NULL, or else "endWord()".
ysr@777 93 HeapWord* getNextMarkedWordAddress(HeapWord* addr,
ysr@777 94 HeapWord* limit = NULL) const;
ysr@777 95 // Return the address corresponding to the next unmarked bit at or after
ysr@777 96 // "addr", and before "limit", if "limit" is non-NULL. If there is no
ysr@777 97 // such bit, returns "limit" if that is non-NULL, or else "endWord()".
ysr@777 98 HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
ysr@777 99 HeapWord* limit = NULL) const;
ysr@777 100
ysr@777 101 // conversion utilities
ysr@777 102 // XXX Fix these so that offsets are size_t's...
ysr@777 103 HeapWord* offsetToHeapWord(size_t offset) const {
ysr@777 104 return _bmStartWord + (offset << _shifter);
ysr@777 105 }
ysr@777 106 size_t heapWordToOffset(HeapWord* addr) const {
ysr@777 107 return pointer_delta(addr, _bmStartWord) >> _shifter;
ysr@777 108 }
ysr@777 109 int heapWordDiffToOffsetDiff(size_t diff) const;
ysr@777 110 HeapWord* nextWord(HeapWord* addr) {
ysr@777 111 return offsetToHeapWord(heapWordToOffset(addr) + 1);
ysr@777 112 }
ysr@777 113
ysr@777 114 void mostly_disjoint_range_union(BitMap* from_bitmap,
ysr@777 115 size_t from_start_index,
ysr@777 116 HeapWord* to_start_word,
ysr@777 117 size_t word_num);
ysr@777 118
ysr@777 119 // debugging
ysr@777 120 NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
ysr@777 121 };
ysr@777 122
ysr@777 123 class CMBitMap : public CMBitMapRO {
ysr@777 124
ysr@777 125 public:
ysr@777 126 // constructor
ysr@777 127 CMBitMap(ReservedSpace rs, int shifter) :
ysr@777 128 CMBitMapRO(rs, shifter) {}
ysr@777 129
ysr@777 130 // write marks
ysr@777 131 void mark(HeapWord* addr) {
ysr@777 132 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 133 "outside underlying space?");
tonyp@2968 134 _bm.set_bit(heapWordToOffset(addr));
ysr@777 135 }
ysr@777 136 void clear(HeapWord* addr) {
ysr@777 137 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 138 "outside underlying space?");
tonyp@2968 139 _bm.clear_bit(heapWordToOffset(addr));
ysr@777 140 }
ysr@777 141 bool parMark(HeapWord* addr) {
ysr@777 142 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 143 "outside underlying space?");
tonyp@2968 144 return _bm.par_set_bit(heapWordToOffset(addr));
ysr@777 145 }
ysr@777 146 bool parClear(HeapWord* addr) {
ysr@777 147 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 148 "outside underlying space?");
tonyp@2968 149 return _bm.par_clear_bit(heapWordToOffset(addr));
ysr@777 150 }
ysr@777 151 void markRange(MemRegion mr);
ysr@777 152 void clearAll();
ysr@777 153 void clearRange(MemRegion mr);
ysr@777 154
ysr@777 155 // Starting at the bit corresponding to "addr" (inclusive), find the next
ysr@777 156 // "1" bit, if any. This bit starts some run of consecutive "1"'s; find
ysr@777 157 // the end of this run (stopping at "end_addr"). Return the MemRegion
ysr@777 158 // covering from the start of the region corresponding to the first bit
ysr@777 159 // of the run to the end of the region corresponding to the last bit of
ysr@777 160 // the run. If there is no "1" bit at or after "addr", return an empty
ysr@777 161 // MemRegion.
ysr@777 162 MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
ysr@777 163 };
ysr@777 164
ysr@777 165 // Represents a marking stack used by the CM collector.
ysr@777 166 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
apetrusenko@984 167 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
ysr@777 168 ConcurrentMark* _cm;
tonyp@3416 169 oop* _base; // bottom of stack
tonyp@3416 170 jint _index; // one more than last occupied index
tonyp@3416 171 jint _capacity; // max #elements
tonyp@3416 172 jint _saved_index; // value of _index saved at start of GC
ysr@777 173 NOT_PRODUCT(jint _max_depth;) // max depth plumbed during run
ysr@777 174
ysr@777 175 bool _overflow;
ysr@777 176 DEBUG_ONLY(bool _drain_in_progress;)
ysr@777 177 DEBUG_ONLY(bool _drain_in_progress_yields;)
ysr@777 178
ysr@777 179 public:
ysr@777 180 CMMarkStack(ConcurrentMark* cm);
ysr@777 181 ~CMMarkStack();
ysr@777 182
ysr@777 183 void allocate(size_t size);
ysr@777 184
ysr@777 185 oop pop() {
ysr@777 186 if (!isEmpty()) {
ysr@777 187 return _base[--_index] ;
ysr@777 188 }
ysr@777 189 return NULL;
ysr@777 190 }
ysr@777 191
ysr@777 192 // If overflow happens, don't do the push, and record the overflow.
ysr@777 193 // *Requires* that "ptr" is already marked.
ysr@777 194 void push(oop ptr) {
ysr@777 195 if (isFull()) {
ysr@777 196 // Record overflow.
ysr@777 197 _overflow = true;
ysr@777 198 return;
ysr@777 199 } else {
ysr@777 200 _base[_index++] = ptr;
ysr@777 201 NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
ysr@777 202 }
ysr@777 203 }
ysr@777 204 // Non-block impl. Note: concurrency is allowed only with other
ysr@777 205 // "par_push" operations, not with "pop" or "drain". We would need
ysr@777 206 // parallel versions of them if such concurrency was desired.
ysr@777 207 void par_push(oop ptr);
ysr@777 208
ysr@777 209 // Pushes the first "n" elements of "ptr_arr" on the stack.
ysr@777 210 // Non-block impl. Note: concurrency is allowed only with other
ysr@777 211 // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
ysr@777 212 void par_adjoin_arr(oop* ptr_arr, int n);
ysr@777 213
ysr@777 214 // Pushes the first "n" elements of "ptr_arr" on the stack.
ysr@777 215 // Locking impl: concurrency is allowed only with
ysr@777 216 // "par_push_arr" and/or "par_pop_arr" operations, which use the same
ysr@777 217 // locking strategy.
ysr@777 218 void par_push_arr(oop* ptr_arr, int n);
ysr@777 219
ysr@777 220 // If returns false, the array was empty. Otherwise, removes up to "max"
ysr@777 221 // elements from the stack, and transfers them to "ptr_arr" in an
ysr@777 222 // unspecified order. The actual number transferred is given in "n" ("n
ysr@777 223 // == 0" is deliberately redundant with the return value.) Locking impl:
ysr@777 224 // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
ysr@777 225 // operations, which use the same locking strategy.
ysr@777 226 bool par_pop_arr(oop* ptr_arr, int max, int* n);
ysr@777 227
ysr@777 228 // Drain the mark stack, applying the given closure to all fields of
ysr@777 229 // objects on the stack. (That is, continue until the stack is empty,
ysr@777 230 // even if closure applications add entries to the stack.) The "bm"
ysr@777 231 // argument, if non-null, may be used to verify that only marked objects
ysr@777 232 // are on the mark stack. If "yield_after" is "true", then the
ysr@777 233 // concurrent marker performing the drain offers to yield after
ysr@777 234 // processing each object. If a yield occurs, stops the drain operation
ysr@777 235 // and returns false. Otherwise, returns true.
ysr@777 236 template<class OopClosureClass>
ysr@777 237 bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
ysr@777 238
ysr@777 239 bool isEmpty() { return _index == 0; }
ysr@777 240 bool isFull() { return _index == _capacity; }
ysr@777 241 int maxElems() { return _capacity; }
ysr@777 242
ysr@777 243 bool overflow() { return _overflow; }
ysr@777 244 void clear_overflow() { _overflow = false; }
ysr@777 245
ysr@777 246 int size() { return _index; }
ysr@777 247
ysr@777 248 void setEmpty() { _index = 0; clear_overflow(); }
ysr@777 249
tonyp@3416 250 // Record the current index.
tonyp@3416 251 void note_start_of_gc();
tonyp@3416 252
tonyp@3416 253 // Make sure that we have not added any entries to the stack during GC.
tonyp@3416 254 void note_end_of_gc();
tonyp@3416 255
ysr@777 256 // iterate over the oops in the mark stack, up to the bound recorded via
ysr@777 257 // the call above.
ysr@777 258 void oops_do(OopClosure* f);
ysr@777 259 };
ysr@777 260
apetrusenko@984 261 class CMRegionStack VALUE_OBJ_CLASS_SPEC {
ysr@777 262 MemRegion* _base;
ysr@777 263 jint _capacity;
ysr@777 264 jint _index;
ysr@777 265 jint _oops_do_bound;
ysr@777 266 bool _overflow;
ysr@777 267 public:
ysr@777 268 CMRegionStack();
ysr@777 269 ~CMRegionStack();
ysr@777 270 void allocate(size_t size);
ysr@777 271
ysr@777 272 // This is lock-free; assumes that it will only be called in parallel
ysr@777 273 // with other "push" operations (no pops).
johnc@2190 274 void push_lock_free(MemRegion mr);
tonyp@1793 275
ysr@777 276 // Lock-free; assumes that it will only be called in parallel
ysr@777 277 // with other "pop" operations (no pushes).
johnc@2190 278 MemRegion pop_lock_free();
johnc@2190 279
johnc@2190 280 #if 0
johnc@2190 281 // The routines that manipulate the region stack with a lock are
johnc@2190 282 // not currently used. They should be retained, however, as a
johnc@2190 283 // diagnostic aid.
tonyp@1793 284
tonyp@1793 285 // These two are the implementations that use a lock. They can be
tonyp@1793 286 // called concurrently with each other but they should not be called
tonyp@1793 287 // concurrently with the lock-free versions (push() / pop()).
tonyp@1793 288 void push_with_lock(MemRegion mr);
tonyp@1793 289 MemRegion pop_with_lock();
johnc@2190 290 #endif
ysr@777 291
ysr@777 292 bool isEmpty() { return _index == 0; }
ysr@777 293 bool isFull() { return _index == _capacity; }
ysr@777 294
ysr@777 295 bool overflow() { return _overflow; }
ysr@777 296 void clear_overflow() { _overflow = false; }
ysr@777 297
ysr@777 298 int size() { return _index; }
ysr@777 299
ysr@777 300 // It iterates over the entries in the region stack and it
ysr@777 301 // invalidates (i.e. assigns MemRegion()) the ones that point to
ysr@777 302 // regions in the collection set.
ysr@777 303 bool invalidate_entries_into_cset();
ysr@777 304
ysr@777 305 // This gives an upper bound up to which the iteration in
ysr@777 306 // invalidate_entries_into_cset() will reach. This prevents
ysr@777 307 // newly-added entries to be unnecessarily scanned.
ysr@777 308 void set_oops_do_bound() {
ysr@777 309 _oops_do_bound = _index;
ysr@777 310 }
ysr@777 311
ysr@777 312 void setEmpty() { _index = 0; clear_overflow(); }
ysr@777 313 };
ysr@777 314
tonyp@2848 315 class ForceOverflowSettings VALUE_OBJ_CLASS_SPEC {
tonyp@2848 316 private:
tonyp@2848 317 #ifndef PRODUCT
tonyp@2848 318 uintx _num_remaining;
tonyp@2848 319 bool _force;
tonyp@2848 320 #endif // !defined(PRODUCT)
tonyp@2848 321
tonyp@2848 322 public:
tonyp@2848 323 void init() PRODUCT_RETURN;
tonyp@2848 324 void update() PRODUCT_RETURN;
tonyp@2848 325 bool should_force() PRODUCT_RETURN_( return false; );
tonyp@2848 326 };
tonyp@2848 327
ysr@777 328 // this will enable a variety of different statistics per GC task
ysr@777 329 #define _MARKING_STATS_ 0
ysr@777 330 // this will enable the higher verbose levels
ysr@777 331 #define _MARKING_VERBOSE_ 0
ysr@777 332
ysr@777 333 #if _MARKING_STATS_
ysr@777 334 #define statsOnly(statement) \
ysr@777 335 do { \
ysr@777 336 statement ; \
ysr@777 337 } while (0)
ysr@777 338 #else // _MARKING_STATS_
ysr@777 339 #define statsOnly(statement) \
ysr@777 340 do { \
ysr@777 341 } while (0)
ysr@777 342 #endif // _MARKING_STATS_
ysr@777 343
ysr@777 344 typedef enum {
ysr@777 345 no_verbose = 0, // verbose turned off
ysr@777 346 stats_verbose, // only prints stats at the end of marking
ysr@777 347 low_verbose, // low verbose, mostly per region and per major event
ysr@777 348 medium_verbose, // a bit more detailed than low
ysr@777 349 high_verbose // per object verbose
ysr@777 350 } CMVerboseLevel;
ysr@777 351
ysr@777 352
ysr@777 353 class ConcurrentMarkThread;
ysr@777 354
apetrusenko@984 355 class ConcurrentMark: public CHeapObj {
ysr@777 356 friend class ConcurrentMarkThread;
ysr@777 357 friend class CMTask;
ysr@777 358 friend class CMBitMapClosure;
johnc@3296 359 friend class CSetMarkOopClosure;
ysr@777 360 friend class CMGlobalObjectClosure;
ysr@777 361 friend class CMRemarkTask;
ysr@777 362 friend class CMConcurrentMarkingTask;
ysr@777 363 friend class G1ParNoteEndTask;
ysr@777 364 friend class CalcLiveObjectsClosure;
johnc@3175 365 friend class G1CMRefProcTaskProxy;
johnc@3175 366 friend class G1CMRefProcTaskExecutor;
johnc@2494 367 friend class G1CMParKeepAliveAndDrainClosure;
johnc@2494 368 friend class G1CMParDrainMarkingStackClosure;
ysr@777 369
ysr@777 370 protected:
ysr@777 371 ConcurrentMarkThread* _cmThread; // the thread doing the work
ysr@777 372 G1CollectedHeap* _g1h; // the heap.
jmasa@3357 373 uint _parallel_marking_threads; // the number of marking
jmasa@3294 374 // threads we're use
jmasa@3357 375 uint _max_parallel_marking_threads; // max number of marking
jmasa@3294 376 // threads we'll ever use
ysr@777 377 double _sleep_factor; // how much we have to sleep, with
ysr@777 378 // respect to the work we just did, to
ysr@777 379 // meet the marking overhead goal
ysr@777 380 double _marking_task_overhead; // marking target overhead for
ysr@777 381 // a single task
ysr@777 382
ysr@777 383 // same as the two above, but for the cleanup task
ysr@777 384 double _cleanup_sleep_factor;
ysr@777 385 double _cleanup_task_overhead;
ysr@777 386
tonyp@2472 387 FreeRegionList _cleanup_list;
ysr@777 388
ysr@777 389 // CMS marking support structures
ysr@777 390 CMBitMap _markBitMap1;
ysr@777 391 CMBitMap _markBitMap2;
ysr@777 392 CMBitMapRO* _prevMarkBitMap; // completed mark bitmap
ysr@777 393 CMBitMap* _nextMarkBitMap; // under-construction mark bitmap
ysr@777 394 bool _at_least_one_mark_complete;
ysr@777 395
ysr@777 396 BitMap _region_bm;
ysr@777 397 BitMap _card_bm;
ysr@777 398
ysr@777 399 // Heap bounds
ysr@777 400 HeapWord* _heap_start;
ysr@777 401 HeapWord* _heap_end;
ysr@777 402
ysr@777 403 // For gray objects
ysr@777 404 CMMarkStack _markStack; // Grey objects behind global finger.
ysr@777 405 CMRegionStack _regionStack; // Grey regions behind global finger.
ysr@777 406 HeapWord* volatile _finger; // the global finger, region aligned,
ysr@777 407 // always points to the end of the
ysr@777 408 // last claimed region
ysr@777 409
ysr@777 410 // marking tasks
jmasa@3357 411 uint _max_task_num; // maximum task number
jmasa@3357 412 uint _active_tasks; // task num currently active
ysr@777 413 CMTask** _tasks; // task queue array (max_task_num len)
ysr@777 414 CMTaskQueueSet* _task_queues; // task queue set
ysr@777 415 ParallelTaskTerminator _terminator; // for termination
ysr@777 416
ysr@777 417 // Two sync barriers that are used to synchronise tasks when an
ysr@777 418 // overflow occurs. The algorithm is the following. All tasks enter
ysr@777 419 // the first one to ensure that they have all stopped manipulating
ysr@777 420 // the global data structures. After they exit it, they re-initialise
ysr@777 421 // their data structures and task 0 re-initialises the global data
ysr@777 422 // structures. Then, they enter the second sync barrier. This
ysr@777 423 // ensure, that no task starts doing work before all data
ysr@777 424 // structures (local and global) have been re-initialised. When they
ysr@777 425 // exit it, they are free to start working again.
ysr@777 426 WorkGangBarrierSync _first_overflow_barrier_sync;
ysr@777 427 WorkGangBarrierSync _second_overflow_barrier_sync;
ysr@777 428
ysr@777 429
ysr@777 430 // this is set by any task, when an overflow on the global data
ysr@777 431 // structures is detected.
ysr@777 432 volatile bool _has_overflown;
ysr@777 433 // true: marking is concurrent, false: we're in remark
ysr@777 434 volatile bool _concurrent;
ysr@777 435 // set at the end of a Full GC so that marking aborts
ysr@777 436 volatile bool _has_aborted;
johnc@2190 437
ysr@777 438 // used when remark aborts due to an overflow to indicate that
ysr@777 439 // another concurrent marking phase should start
ysr@777 440 volatile bool _restart_for_overflow;
ysr@777 441
ysr@777 442 // This is true from the very start of concurrent marking until the
ysr@777 443 // point when all the tasks complete their work. It is really used
ysr@777 444 // to determine the points between the end of concurrent marking and
ysr@777 445 // time of remark.
ysr@777 446 volatile bool _concurrent_marking_in_progress;
ysr@777 447
ysr@777 448 // verbose level
ysr@777 449 CMVerboseLevel _verbose_level;
ysr@777 450
ysr@777 451 // These two fields are used to implement the optimisation that
ysr@777 452 // avoids pushing objects on the global/region stack if there are
ysr@777 453 // no collection set regions above the lowest finger.
ysr@777 454
ysr@777 455 // This is the lowest finger (among the global and local fingers),
ysr@777 456 // which is calculated before a new collection set is chosen.
ysr@777 457 HeapWord* _min_finger;
ysr@777 458 // If this flag is true, objects/regions that are marked below the
ysr@777 459 // finger should be pushed on the stack(s). If this is flag is
ysr@777 460 // false, it is safe not to push them on the stack(s).
ysr@777 461 bool _should_gray_objects;
ysr@777 462
ysr@777 463 // All of these times are in ms.
ysr@777 464 NumberSeq _init_times;
ysr@777 465 NumberSeq _remark_times;
ysr@777 466 NumberSeq _remark_mark_times;
ysr@777 467 NumberSeq _remark_weak_ref_times;
ysr@777 468 NumberSeq _cleanup_times;
ysr@777 469 double _total_counting_time;
ysr@777 470 double _total_rs_scrub_time;
ysr@777 471
ysr@777 472 double* _accum_task_vtime; // accumulated task vtime
ysr@777 473
jmasa@3294 474 FlexibleWorkGang* _parallel_workers;
ysr@777 475
tonyp@2848 476 ForceOverflowSettings _force_overflow_conc;
tonyp@2848 477 ForceOverflowSettings _force_overflow_stw;
tonyp@2848 478
ysr@777 479 void weakRefsWork(bool clear_all_soft_refs);
ysr@777 480
ysr@777 481 void swapMarkBitMaps();
ysr@777 482
ysr@777 483 // It resets the global marking data structures, as well as the
ysr@777 484 // task local ones; should be called during initial mark.
ysr@777 485 void reset();
ysr@777 486 // It resets all the marking data structures.
tonyp@2848 487 void clear_marking_state(bool clear_overflow = true);
ysr@777 488
ysr@777 489 // It should be called to indicate which phase we're in (concurrent
ysr@777 490 // mark or remark) and how many threads are currently active.
jmasa@3357 491 void set_phase(uint active_tasks, bool concurrent);
ysr@777 492 // We do this after we're done with marking so that the marking data
ysr@777 493 // structures are initialised to a sensible and predictable state.
ysr@777 494 void set_non_marking_state();
ysr@777 495
ysr@777 496 // prints all gathered CM-related statistics
ysr@777 497 void print_stats();
ysr@777 498
tonyp@2472 499 bool cleanup_list_is_empty() {
tonyp@2472 500 return _cleanup_list.is_empty();
tonyp@2472 501 }
tonyp@2472 502
ysr@777 503 // accessor methods
jmasa@3357 504 uint parallel_marking_threads() { return _parallel_marking_threads; }
jmasa@3357 505 uint max_parallel_marking_threads() { return _max_parallel_marking_threads;}
ysr@777 506 double sleep_factor() { return _sleep_factor; }
ysr@777 507 double marking_task_overhead() { return _marking_task_overhead;}
ysr@777 508 double cleanup_sleep_factor() { return _cleanup_sleep_factor; }
ysr@777 509 double cleanup_task_overhead() { return _cleanup_task_overhead;}
ysr@777 510
ysr@777 511 HeapWord* finger() { return _finger; }
ysr@777 512 bool concurrent() { return _concurrent; }
jmasa@3357 513 uint active_tasks() { return _active_tasks; }
ysr@777 514 ParallelTaskTerminator* terminator() { return &_terminator; }
ysr@777 515
ysr@777 516 // It claims the next available region to be scanned by a marking
ysr@777 517 // task. It might return NULL if the next region is empty or we have
ysr@777 518 // run out of regions. In the latter case, out_of_regions()
ysr@777 519 // determines whether we've really run out of regions or the task
ysr@777 520 // should call claim_region() again. This might seem a bit
ysr@777 521 // awkward. Originally, the code was written so that claim_region()
ysr@777 522 // either successfully returned with a non-empty region or there
ysr@777 523 // were no more regions to be claimed. The problem with this was
ysr@777 524 // that, in certain circumstances, it iterated over large chunks of
ysr@777 525 // the heap finding only empty regions and, while it was working, it
ysr@777 526 // was preventing the calling task to call its regular clock
ysr@777 527 // method. So, this way, each task will spend very little time in
ysr@777 528 // claim_region() and is allowed to call the regular clock method
ysr@777 529 // frequently.
ysr@777 530 HeapRegion* claim_region(int task);
ysr@777 531
ysr@777 532 // It determines whether we've run out of regions to scan.
ysr@777 533 bool out_of_regions() { return _finger == _heap_end; }
ysr@777 534
ysr@777 535 // Returns the task with the given id
ysr@777 536 CMTask* task(int id) {
tonyp@1458 537 assert(0 <= id && id < (int) _active_tasks,
tonyp@1458 538 "task id not within active bounds");
ysr@777 539 return _tasks[id];
ysr@777 540 }
ysr@777 541
ysr@777 542 // Returns the task queue with the given id
ysr@777 543 CMTaskQueue* task_queue(int id) {
tonyp@1458 544 assert(0 <= id && id < (int) _active_tasks,
tonyp@1458 545 "task queue id not within active bounds");
ysr@777 546 return (CMTaskQueue*) _task_queues->queue(id);
ysr@777 547 }
ysr@777 548
ysr@777 549 // Returns the task queue set
ysr@777 550 CMTaskQueueSet* task_queues() { return _task_queues; }
ysr@777 551
ysr@777 552 // Access / manipulation of the overflow flag which is set to
ysr@777 553 // indicate that the global stack or region stack has overflown
ysr@777 554 bool has_overflown() { return _has_overflown; }
ysr@777 555 void set_has_overflown() { _has_overflown = true; }
ysr@777 556 void clear_has_overflown() { _has_overflown = false; }
ysr@777 557
ysr@777 558 bool has_aborted() { return _has_aborted; }
ysr@777 559 bool restart_for_overflow() { return _restart_for_overflow; }
ysr@777 560
ysr@777 561 // Methods to enter the two overflow sync barriers
ysr@777 562 void enter_first_sync_barrier(int task_num);
ysr@777 563 void enter_second_sync_barrier(int task_num);
ysr@777 564
tonyp@2848 565 ForceOverflowSettings* force_overflow_conc() {
tonyp@2848 566 return &_force_overflow_conc;
tonyp@2848 567 }
tonyp@2848 568
tonyp@2848 569 ForceOverflowSettings* force_overflow_stw() {
tonyp@2848 570 return &_force_overflow_stw;
tonyp@2848 571 }
tonyp@2848 572
tonyp@2848 573 ForceOverflowSettings* force_overflow() {
tonyp@2848 574 if (concurrent()) {
tonyp@2848 575 return force_overflow_conc();
tonyp@2848 576 } else {
tonyp@2848 577 return force_overflow_stw();
tonyp@2848 578 }
tonyp@2848 579 }
tonyp@2848 580
ysr@777 581 public:
ysr@777 582 // Manipulation of the global mark stack.
ysr@777 583 // Notice that the first mark_stack_push is CAS-based, whereas the
ysr@777 584 // two below are Mutex-based. This is OK since the first one is only
ysr@777 585 // called during evacuation pauses and doesn't compete with the
ysr@777 586 // other two (which are called by the marking tasks during
ysr@777 587 // concurrent marking or remark).
ysr@777 588 bool mark_stack_push(oop p) {
ysr@777 589 _markStack.par_push(p);
ysr@777 590 if (_markStack.overflow()) {
ysr@777 591 set_has_overflown();
ysr@777 592 return false;
ysr@777 593 }
ysr@777 594 return true;
ysr@777 595 }
ysr@777 596 bool mark_stack_push(oop* arr, int n) {
ysr@777 597 _markStack.par_push_arr(arr, n);
ysr@777 598 if (_markStack.overflow()) {
ysr@777 599 set_has_overflown();
ysr@777 600 return false;
ysr@777 601 }
ysr@777 602 return true;
ysr@777 603 }
ysr@777 604 void mark_stack_pop(oop* arr, int max, int* n) {
ysr@777 605 _markStack.par_pop_arr(arr, max, n);
ysr@777 606 }
tonyp@2973 607 size_t mark_stack_size() { return _markStack.size(); }
ysr@777 608 size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
tonyp@2973 609 bool mark_stack_overflow() { return _markStack.overflow(); }
tonyp@2973 610 bool mark_stack_empty() { return _markStack.isEmpty(); }
ysr@777 611
johnc@2190 612 // (Lock-free) Manipulation of the region stack
johnc@2190 613 bool region_stack_push_lock_free(MemRegion mr) {
tonyp@1793 614 // Currently we only call the lock-free version during evacuation
tonyp@1793 615 // pauses.
tonyp@1793 616 assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
tonyp@1793 617
johnc@2190 618 _regionStack.push_lock_free(mr);
ysr@777 619 if (_regionStack.overflow()) {
ysr@777 620 set_has_overflown();
ysr@777 621 return false;
ysr@777 622 }
ysr@777 623 return true;
ysr@777 624 }
johnc@2190 625
johnc@2190 626 // Lock-free version of region-stack pop. Should only be
johnc@2190 627 // called in tandem with other lock-free pops.
johnc@2190 628 MemRegion region_stack_pop_lock_free() {
johnc@2190 629 return _regionStack.pop_lock_free();
johnc@2190 630 }
johnc@2190 631
tonyp@1793 632 #if 0
johnc@2190 633 // The routines that manipulate the region stack with a lock are
johnc@2190 634 // not currently used. They should be retained, however, as a
johnc@2190 635 // diagnostic aid.
tonyp@1793 636
tonyp@1793 637 bool region_stack_push_with_lock(MemRegion mr) {
tonyp@1793 638 // Currently we only call the lock-based version during either
tonyp@1793 639 // concurrent marking or remark.
tonyp@1793 640 assert(!SafepointSynchronize::is_at_safepoint() || !concurrent(),
tonyp@1793 641 "if we are at a safepoint it should be the remark safepoint");
tonyp@1793 642
tonyp@1793 643 _regionStack.push_with_lock(mr);
tonyp@1793 644 if (_regionStack.overflow()) {
tonyp@1793 645 set_has_overflown();
tonyp@1793 646 return false;
tonyp@1793 647 }
tonyp@1793 648 return true;
tonyp@1793 649 }
johnc@2190 650
tonyp@1793 651 MemRegion region_stack_pop_with_lock() {
tonyp@1793 652 // Currently we only call the lock-based version during either
tonyp@1793 653 // concurrent marking or remark.
tonyp@1793 654 assert(!SafepointSynchronize::is_at_safepoint() || !concurrent(),
tonyp@1793 655 "if we are at a safepoint it should be the remark safepoint");
tonyp@1793 656
tonyp@1793 657 return _regionStack.pop_with_lock();
tonyp@1793 658 }
johnc@2190 659 #endif
tonyp@1793 660
ysr@777 661 int region_stack_size() { return _regionStack.size(); }
ysr@777 662 bool region_stack_overflow() { return _regionStack.overflow(); }
ysr@777 663 bool region_stack_empty() { return _regionStack.isEmpty(); }
ysr@777 664
johnc@2190 665 // Iterate over any regions that were aborted while draining the
johnc@2190 666 // region stack (any such regions are saved in the corresponding
johnc@2190 667 // CMTask) and invalidate (i.e. assign to the empty MemRegion())
johnc@2190 668 // any regions that point into the collection set.
johnc@2190 669 bool invalidate_aborted_regions_in_cset();
johnc@2190 670
johnc@2190 671 // Returns true if there are any aborted memory regions.
johnc@2190 672 bool has_aborted_regions();
johnc@2190 673
ysr@777 674 bool concurrent_marking_in_progress() {
ysr@777 675 return _concurrent_marking_in_progress;
ysr@777 676 }
ysr@777 677 void set_concurrent_marking_in_progress() {
ysr@777 678 _concurrent_marking_in_progress = true;
ysr@777 679 }
ysr@777 680 void clear_concurrent_marking_in_progress() {
ysr@777 681 _concurrent_marking_in_progress = false;
ysr@777 682 }
ysr@777 683
ysr@777 684 void update_accum_task_vtime(int i, double vtime) {
ysr@777 685 _accum_task_vtime[i] += vtime;
ysr@777 686 }
ysr@777 687
ysr@777 688 double all_task_accum_vtime() {
ysr@777 689 double ret = 0.0;
ysr@777 690 for (int i = 0; i < (int)_max_task_num; ++i)
ysr@777 691 ret += _accum_task_vtime[i];
ysr@777 692 return ret;
ysr@777 693 }
ysr@777 694
ysr@777 695 // Attempts to steal an object from the task queues of other tasks
ysr@777 696 bool try_stealing(int task_num, int* hash_seed, oop& obj) {
ysr@777 697 return _task_queues->steal(task_num, hash_seed, obj);
ysr@777 698 }
ysr@777 699
ysr@777 700 // It grays an object by first marking it. Then, if it's behind the
ysr@777 701 // global finger, it also pushes it on the global stack.
ysr@777 702 void deal_with_reference(oop obj);
ysr@777 703
ysr@777 704 ConcurrentMark(ReservedSpace rs, int max_regions);
ysr@777 705 ~ConcurrentMark();
ysr@777 706 ConcurrentMarkThread* cmThread() { return _cmThread; }
ysr@777 707
ysr@777 708 CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
ysr@777 709 CMBitMap* nextMarkBitMap() const { return _nextMarkBitMap; }
ysr@777 710
jmasa@3294 711 // Returns the number of GC threads to be used in a concurrent
jmasa@3294 712 // phase based on the number of GC threads being used in a STW
jmasa@3294 713 // phase.
jmasa@3357 714 uint scale_parallel_threads(uint n_par_threads);
jmasa@3294 715
jmasa@3294 716 // Calculates the number of GC threads to be used in a concurrent phase.
jmasa@3357 717 uint calc_parallel_marking_threads();
jmasa@3294 718
ysr@777 719 // The following three are interaction between CM and
ysr@777 720 // G1CollectedHeap
ysr@777 721
ysr@777 722 // This notifies CM that a root during initial-mark needs to be
tonyp@3416 723 // grayed. It is MT-safe.
tonyp@3416 724 inline void grayRoot(oop obj, size_t word_size);
tonyp@3416 725
ysr@777 726 // It's used during evacuation pauses to gray a region, if
ysr@777 727 // necessary, and it's MT-safe. It assumes that the caller has
ysr@777 728 // marked any objects on that region. If _should_gray_objects is
ysr@777 729 // true and we're still doing concurrent marking, the region is
ysr@777 730 // pushed on the region stack, if it is located below the global
ysr@777 731 // finger, otherwise we do nothing.
ysr@777 732 void grayRegionIfNecessary(MemRegion mr);
tonyp@3416 733
ysr@777 734 // It's used during evacuation pauses to mark and, if necessary,
ysr@777 735 // gray a single object and it's MT-safe. It assumes the caller did
ysr@777 736 // not mark the object. If _should_gray_objects is true and we're
ysr@777 737 // still doing concurrent marking, the objects is pushed on the
ysr@777 738 // global stack, if it is located below the global finger, otherwise
ysr@777 739 // we do nothing.
ysr@777 740 void markAndGrayObjectIfNecessary(oop p);
ysr@777 741
tonyp@1823 742 // It iterates over the heap and for each object it comes across it
tonyp@1823 743 // will dump the contents of its reference fields, as well as
tonyp@1823 744 // liveness information for the object and its referents. The dump
tonyp@1823 745 // will be written to a file with the following name:
johnc@2969 746 // G1PrintReachableBaseFile + "." + str.
johnc@2969 747 // vo decides whether the prev (vo == UsePrevMarking), the next
johnc@2969 748 // (vo == UseNextMarking) marking information, or the mark word
johnc@2969 749 // (vo == UseMarkWord) will be used to determine the liveness of
johnc@2969 750 // each object / referent.
johnc@2969 751 // If all is true, all objects in the heap will be dumped, otherwise
johnc@2969 752 // only the live ones. In the dump the following symbols / breviations
johnc@2969 753 // are used:
tonyp@1823 754 // M : an explicitly live object (its bitmap bit is set)
tonyp@1823 755 // > : an implicitly live object (over tams)
tonyp@1823 756 // O : an object outside the G1 heap (typically: in the perm gen)
tonyp@1823 757 // NOT : a reference field whose referent is not live
tonyp@1823 758 // AND MARKED : indicates that an object is both explicitly and
tonyp@1823 759 // implicitly live (it should be one or the other, not both)
tonyp@1823 760 void print_reachable(const char* str,
johnc@2969 761 VerifyOption vo, bool all) PRODUCT_RETURN;
ysr@777 762
ysr@777 763 // Clear the next marking bitmap (will be called concurrently).
ysr@777 764 void clearNextBitmap();
ysr@777 765
ysr@777 766 // These two do the work that needs to be done before and after the
ysr@777 767 // initial root checkpoint. Since this checkpoint can be done at two
ysr@777 768 // different points (i.e. an explicit pause or piggy-backed on a
ysr@777 769 // young collection), then it's nice to be able to easily share the
ysr@777 770 // pre/post code. It might be the case that we can put everything in
ysr@777 771 // the post method. TP
ysr@777 772 void checkpointRootsInitialPre();
ysr@777 773 void checkpointRootsInitialPost();
ysr@777 774
ysr@777 775 // Do concurrent phase of marking, to a tentative transitive closure.
ysr@777 776 void markFromRoots();
ysr@777 777
ysr@777 778 // Process all unprocessed SATB buffers. It is called at the
ysr@777 779 // beginning of an evacuation pause.
ysr@777 780 void drainAllSATBBuffers();
ysr@777 781
ysr@777 782 void checkpointRootsFinal(bool clear_all_soft_refs);
ysr@777 783 void checkpointRootsFinalWork();
ysr@777 784 void calcDesiredRegions();
ysr@777 785 void cleanup();
ysr@777 786 void completeCleanup();
ysr@777 787
ysr@777 788 // Mark in the previous bitmap. NB: this is usually read-only, so use
ysr@777 789 // this carefully!
tonyp@3416 790 inline void markPrev(oop p);
tonyp@3416 791 inline void markNext(oop p);
ysr@777 792 void clear(oop p);
tonyp@3416 793 // Clears marks for all objects in the given range, for the prev,
tonyp@3416 794 // next, or both bitmaps. NB: the previous bitmap is usually
tonyp@3416 795 // read-only, so use this carefully!
tonyp@3416 796 void clearRangePrevBitmap(MemRegion mr);
tonyp@3416 797 void clearRangeNextBitmap(MemRegion mr);
tonyp@3416 798 void clearRangeBothBitmaps(MemRegion mr);
ysr@777 799
tonyp@3416 800 // Notify data structures that a GC has started.
tonyp@3416 801 void note_start_of_gc() {
tonyp@3416 802 _markStack.note_start_of_gc();
ysr@777 803 }
tonyp@3416 804
tonyp@3416 805 // Notify data structures that a GC is finished.
tonyp@3416 806 void note_end_of_gc() {
tonyp@3416 807 _markStack.note_end_of_gc();
tonyp@3416 808 }
tonyp@3416 809
ysr@777 810 // Iterate over the oops in the mark stack and all local queues. It
ysr@777 811 // also calls invalidate_entries_into_cset() on the region stack.
ysr@777 812 void oops_do(OopClosure* f);
tonyp@3416 813
tonyp@3416 814 // Verify that there are no CSet oops on the stacks (taskqueues /
tonyp@3416 815 // global mark stack), enqueued SATB buffers, per-thread SATB
tonyp@3416 816 // buffers, and fingers (global / per-task). The boolean parameters
tonyp@3416 817 // decide which of the above data structures to verify. If marking
tonyp@3416 818 // is not in progress, it's a no-op.
tonyp@3416 819 void verify_no_cset_oops(bool verify_stacks,
tonyp@3416 820 bool verify_enqueued_buffers,
tonyp@3416 821 bool verify_thread_buffers,
tonyp@3416 822 bool verify_fingers) PRODUCT_RETURN;
tonyp@3416 823
ysr@777 824 // It is called at the end of an evacuation pause during marking so
ysr@777 825 // that CM is notified of where the new end of the heap is. It
ysr@777 826 // doesn't do anything if concurrent_marking_in_progress() is false,
ysr@777 827 // unless the force parameter is true.
ysr@777 828 void update_g1_committed(bool force = false);
ysr@777 829
ysr@777 830 void complete_marking_in_collection_set();
ysr@777 831
ysr@777 832 // It indicates that a new collection set is being chosen.
ysr@777 833 void newCSet();
johnc@2910 834
ysr@777 835 // It registers a collection set heap region with CM. This is used
ysr@777 836 // to determine whether any heap regions are located above the finger.
ysr@777 837 void registerCSetRegion(HeapRegion* hr);
ysr@777 838
johnc@2910 839 // Resets the region fields of any active CMTask whose region fields
johnc@2910 840 // are in the collection set (i.e. the region currently claimed by
johnc@2910 841 // the CMTask will be evacuated and may be used, subsequently, as
johnc@2910 842 // an alloc region). When this happens the region fields in the CMTask
johnc@2910 843 // are stale and, hence, should be cleared causing the worker thread
johnc@2910 844 // to claim a new region.
johnc@2910 845 void reset_active_task_region_fields_in_cset();
johnc@2910 846
johnc@1829 847 // Registers the maximum region-end associated with a set of
johnc@1829 848 // regions with CM. Again this is used to determine whether any
johnc@1829 849 // heap regions are located above the finger.
johnc@1829 850 void register_collection_set_finger(HeapWord* max_finger) {
johnc@1829 851 // max_finger is the highest heap region end of the regions currently
johnc@1829 852 // contained in the collection set. If this value is larger than
johnc@1829 853 // _min_finger then we need to gray objects.
johnc@1829 854 // This routine is like registerCSetRegion but for an entire
johnc@1829 855 // collection of regions.
tonyp@2973 856 if (max_finger > _min_finger) {
johnc@1829 857 _should_gray_objects = true;
tonyp@2973 858 }
johnc@1829 859 }
johnc@1829 860
ysr@777 861 // Returns "true" if at least one mark has been completed.
ysr@777 862 bool at_least_one_mark_complete() { return _at_least_one_mark_complete; }
ysr@777 863
ysr@777 864 bool isMarked(oop p) const {
ysr@777 865 assert(p != NULL && p->is_oop(), "expected an oop");
ysr@777 866 HeapWord* addr = (HeapWord*)p;
ysr@777 867 assert(addr >= _nextMarkBitMap->startWord() ||
ysr@777 868 addr < _nextMarkBitMap->endWord(), "in a region");
ysr@777 869
ysr@777 870 return _nextMarkBitMap->isMarked(addr);
ysr@777 871 }
ysr@777 872
ysr@777 873 inline bool not_yet_marked(oop p) const;
ysr@777 874
ysr@777 875 // XXX Debug code
ysr@777 876 bool containing_card_is_marked(void* p);
ysr@777 877 bool containing_cards_are_marked(void* start, void* last);
ysr@777 878
ysr@777 879 bool isPrevMarked(oop p) const {
ysr@777 880 assert(p != NULL && p->is_oop(), "expected an oop");
ysr@777 881 HeapWord* addr = (HeapWord*)p;
ysr@777 882 assert(addr >= _prevMarkBitMap->startWord() ||
ysr@777 883 addr < _prevMarkBitMap->endWord(), "in a region");
ysr@777 884
ysr@777 885 return _prevMarkBitMap->isMarked(addr);
ysr@777 886 }
ysr@777 887
jmasa@3357 888 inline bool do_yield_check(uint worker_i = 0);
ysr@777 889 inline bool should_yield();
ysr@777 890
ysr@777 891 // Called to abort the marking cycle after a Full GC takes palce.
ysr@777 892 void abort();
ysr@777 893
ysr@777 894 // This prints the global/local fingers. It is used for debugging.
ysr@777 895 NOT_PRODUCT(void print_finger();)
ysr@777 896
ysr@777 897 void print_summary_info();
ysr@777 898
tonyp@1454 899 void print_worker_threads_on(outputStream* st) const;
tonyp@1454 900
ysr@777 901 // The following indicate whether a given verbose level has been
ysr@777 902 // set. Notice that anything above stats is conditional to
ysr@777 903 // _MARKING_VERBOSE_ having been set to 1
tonyp@2973 904 bool verbose_stats() {
tonyp@2973 905 return _verbose_level >= stats_verbose;
tonyp@2973 906 }
tonyp@2973 907 bool verbose_low() {
tonyp@2973 908 return _MARKING_VERBOSE_ && _verbose_level >= low_verbose;
tonyp@2973 909 }
tonyp@2973 910 bool verbose_medium() {
tonyp@2973 911 return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose;
tonyp@2973 912 }
tonyp@2973 913 bool verbose_high() {
tonyp@2973 914 return _MARKING_VERBOSE_ && _verbose_level >= high_verbose;
tonyp@2973 915 }
ysr@777 916 };
ysr@777 917
ysr@777 918 // A class representing a marking task.
ysr@777 919 class CMTask : public TerminatorTerminator {
ysr@777 920 private:
ysr@777 921 enum PrivateConstants {
ysr@777 922 // the regular clock call is called once the scanned words reaches
ysr@777 923 // this limit
ysr@777 924 words_scanned_period = 12*1024,
ysr@777 925 // the regular clock call is called once the number of visited
ysr@777 926 // references reaches this limit
ysr@777 927 refs_reached_period = 384,
ysr@777 928 // initial value for the hash seed, used in the work stealing code
ysr@777 929 init_hash_seed = 17,
ysr@777 930 // how many entries will be transferred between global stack and
ysr@777 931 // local queues
ysr@777 932 global_stack_transfer_size = 16
ysr@777 933 };
ysr@777 934
ysr@777 935 int _task_id;
ysr@777 936 G1CollectedHeap* _g1h;
ysr@777 937 ConcurrentMark* _cm;
ysr@777 938 CMBitMap* _nextMarkBitMap;
ysr@777 939 // the task queue of this task
ysr@777 940 CMTaskQueue* _task_queue;
ysr@1280 941 private:
ysr@777 942 // the task queue set---needed for stealing
ysr@777 943 CMTaskQueueSet* _task_queues;
ysr@777 944 // indicates whether the task has been claimed---this is only for
ysr@777 945 // debugging purposes
ysr@777 946 bool _claimed;
ysr@777 947
ysr@777 948 // number of calls to this task
ysr@777 949 int _calls;
ysr@777 950
ysr@777 951 // when the virtual timer reaches this time, the marking step should
ysr@777 952 // exit
ysr@777 953 double _time_target_ms;
ysr@777 954 // the start time of the current marking step
ysr@777 955 double _start_time_ms;
ysr@777 956
ysr@777 957 // the oop closure used for iterations over oops
tonyp@2968 958 G1CMOopClosure* _cm_oop_closure;
ysr@777 959
ysr@777 960 // the region this task is scanning, NULL if we're not scanning any
ysr@777 961 HeapRegion* _curr_region;
ysr@777 962 // the local finger of this task, NULL if we're not scanning a region
ysr@777 963 HeapWord* _finger;
ysr@777 964 // limit of the region this task is scanning, NULL if we're not scanning one
ysr@777 965 HeapWord* _region_limit;
ysr@777 966
ysr@777 967 // This is used only when we scan regions popped from the region
ysr@777 968 // stack. It records what the last object on such a region we
ysr@777 969 // scanned was. It is used to ensure that, if we abort region
ysr@777 970 // iteration, we do not rescan the first part of the region. This
ysr@777 971 // should be NULL when we're not scanning a region from the region
ysr@777 972 // stack.
ysr@777 973 HeapWord* _region_finger;
ysr@777 974
johnc@2190 975 // If we abort while scanning a region we record the remaining
johnc@2190 976 // unscanned portion and check this field when marking restarts.
johnc@2190 977 // This avoids having to push on the region stack while other
johnc@2190 978 // marking threads may still be popping regions.
johnc@2190 979 // If we were to push the unscanned portion directly to the
johnc@2190 980 // region stack then we would need to using locking versions
johnc@2190 981 // of the push and pop operations.
johnc@2190 982 MemRegion _aborted_region;
johnc@2190 983
ysr@777 984 // the number of words this task has scanned
ysr@777 985 size_t _words_scanned;
ysr@777 986 // When _words_scanned reaches this limit, the regular clock is
ysr@777 987 // called. Notice that this might be decreased under certain
ysr@777 988 // circumstances (i.e. when we believe that we did an expensive
ysr@777 989 // operation).
ysr@777 990 size_t _words_scanned_limit;
ysr@777 991 // the initial value of _words_scanned_limit (i.e. what it was
ysr@777 992 // before it was decreased).
ysr@777 993 size_t _real_words_scanned_limit;
ysr@777 994
ysr@777 995 // the number of references this task has visited
ysr@777 996 size_t _refs_reached;
ysr@777 997 // When _refs_reached reaches this limit, the regular clock is
ysr@777 998 // called. Notice this this might be decreased under certain
ysr@777 999 // circumstances (i.e. when we believe that we did an expensive
ysr@777 1000 // operation).
ysr@777 1001 size_t _refs_reached_limit;
ysr@777 1002 // the initial value of _refs_reached_limit (i.e. what it was before
ysr@777 1003 // it was decreased).
ysr@777 1004 size_t _real_refs_reached_limit;
ysr@777 1005
ysr@777 1006 // used by the work stealing stuff
ysr@777 1007 int _hash_seed;
ysr@777 1008 // if this is true, then the task has aborted for some reason
ysr@777 1009 bool _has_aborted;
ysr@777 1010 // set when the task aborts because it has met its time quota
johnc@2494 1011 bool _has_timed_out;
ysr@777 1012 // true when we're draining SATB buffers; this avoids the task
ysr@777 1013 // aborting due to SATB buffers being available (as we're already
ysr@777 1014 // dealing with them)
ysr@777 1015 bool _draining_satb_buffers;
ysr@777 1016
ysr@777 1017 // number sequence of past step times
ysr@777 1018 NumberSeq _step_times_ms;
ysr@777 1019 // elapsed time of this task
ysr@777 1020 double _elapsed_time_ms;
ysr@777 1021 // termination time of this task
ysr@777 1022 double _termination_time_ms;
ysr@777 1023 // when this task got into the termination protocol
ysr@777 1024 double _termination_start_time_ms;
ysr@777 1025
ysr@777 1026 // true when the task is during a concurrent phase, false when it is
ysr@777 1027 // in the remark phase (so, in the latter case, we do not have to
ysr@777 1028 // check all the things that we have to check during the concurrent
ysr@777 1029 // phase, i.e. SATB buffer availability...)
ysr@777 1030 bool _concurrent;
ysr@777 1031
ysr@777 1032 TruncatedSeq _marking_step_diffs_ms;
ysr@777 1033
ysr@777 1034 // LOTS of statistics related with this task
ysr@777 1035 #if _MARKING_STATS_
ysr@777 1036 NumberSeq _all_clock_intervals_ms;
ysr@777 1037 double _interval_start_time_ms;
ysr@777 1038
ysr@777 1039 int _aborted;
ysr@777 1040 int _aborted_overflow;
ysr@777 1041 int _aborted_cm_aborted;
ysr@777 1042 int _aborted_yield;
ysr@777 1043 int _aborted_timed_out;
ysr@777 1044 int _aborted_satb;
ysr@777 1045 int _aborted_termination;
ysr@777 1046
ysr@777 1047 int _steal_attempts;
ysr@777 1048 int _steals;
ysr@777 1049
ysr@777 1050 int _clock_due_to_marking;
ysr@777 1051 int _clock_due_to_scanning;
ysr@777 1052
ysr@777 1053 int _local_pushes;
ysr@777 1054 int _local_pops;
ysr@777 1055 int _local_max_size;
ysr@777 1056 int _objs_scanned;
ysr@777 1057
ysr@777 1058 int _global_pushes;
ysr@777 1059 int _global_pops;
ysr@777 1060 int _global_max_size;
ysr@777 1061
ysr@777 1062 int _global_transfers_to;
ysr@777 1063 int _global_transfers_from;
ysr@777 1064
ysr@777 1065 int _region_stack_pops;
ysr@777 1066
ysr@777 1067 int _regions_claimed;
ysr@777 1068 int _objs_found_on_bitmap;
ysr@777 1069
ysr@777 1070 int _satb_buffers_processed;
ysr@777 1071 #endif // _MARKING_STATS_
ysr@777 1072
ysr@777 1073 // it updates the local fields after this task has claimed
ysr@777 1074 // a new region to scan
ysr@777 1075 void setup_for_region(HeapRegion* hr);
ysr@777 1076 // it brings up-to-date the limit of the region
ysr@777 1077 void update_region_limit();
ysr@777 1078
ysr@777 1079 // called when either the words scanned or the refs visited limit
ysr@777 1080 // has been reached
ysr@777 1081 void reached_limit();
ysr@777 1082 // recalculates the words scanned and refs visited limits
ysr@777 1083 void recalculate_limits();
ysr@777 1084 // decreases the words scanned and refs visited limits when we reach
ysr@777 1085 // an expensive operation
ysr@777 1086 void decrease_limits();
ysr@777 1087 // it checks whether the words scanned or refs visited reached their
ysr@777 1088 // respective limit and calls reached_limit() if they have
ysr@777 1089 void check_limits() {
ysr@777 1090 if (_words_scanned >= _words_scanned_limit ||
tonyp@2973 1091 _refs_reached >= _refs_reached_limit) {
ysr@777 1092 reached_limit();
tonyp@2973 1093 }
ysr@777 1094 }
ysr@777 1095 // this is supposed to be called regularly during a marking step as
ysr@777 1096 // it checks a bunch of conditions that might cause the marking step
ysr@777 1097 // to abort
ysr@777 1098 void regular_clock_call();
ysr@777 1099 bool concurrent() { return _concurrent; }
ysr@777 1100
ysr@777 1101 public:
ysr@777 1102 // It resets the task; it should be called right at the beginning of
ysr@777 1103 // a marking phase.
ysr@777 1104 void reset(CMBitMap* _nextMarkBitMap);
ysr@777 1105 // it clears all the fields that correspond to a claimed region.
ysr@777 1106 void clear_region_fields();
ysr@777 1107
ysr@777 1108 void set_concurrent(bool concurrent) { _concurrent = concurrent; }
ysr@777 1109
ysr@777 1110 // The main method of this class which performs a marking step
ysr@777 1111 // trying not to exceed the given duration. However, it might exit
ysr@777 1112 // prematurely, according to some conditions (i.e. SATB buffers are
ysr@777 1113 // available for processing).
johnc@2494 1114 void do_marking_step(double target_ms, bool do_stealing, bool do_termination);
ysr@777 1115
ysr@777 1116 // These two calls start and stop the timer
ysr@777 1117 void record_start_time() {
ysr@777 1118 _elapsed_time_ms = os::elapsedTime() * 1000.0;
ysr@777 1119 }
ysr@777 1120 void record_end_time() {
ysr@777 1121 _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
ysr@777 1122 }
ysr@777 1123
ysr@777 1124 // returns the task ID
ysr@777 1125 int task_id() { return _task_id; }
ysr@777 1126
ysr@777 1127 // From TerminatorTerminator. It determines whether this task should
ysr@777 1128 // exit the termination protocol after it's entered it.
ysr@777 1129 virtual bool should_exit_termination();
ysr@777 1130
johnc@2910 1131 // Resets the local region fields after a task has finished scanning a
johnc@2910 1132 // region; or when they have become stale as a result of the region
johnc@2910 1133 // being evacuated.
johnc@2910 1134 void giveup_current_region();
johnc@2910 1135
ysr@777 1136 HeapWord* finger() { return _finger; }
ysr@777 1137
ysr@777 1138 bool has_aborted() { return _has_aborted; }
ysr@777 1139 void set_has_aborted() { _has_aborted = true; }
ysr@777 1140 void clear_has_aborted() { _has_aborted = false; }
johnc@2494 1141 bool has_timed_out() { return _has_timed_out; }
johnc@2494 1142 bool claimed() { return _claimed; }
ysr@777 1143
johnc@2190 1144 // Support routines for the partially scanned region that may be
johnc@2190 1145 // recorded as a result of aborting while draining the CMRegionStack
johnc@2190 1146 MemRegion aborted_region() { return _aborted_region; }
johnc@2190 1147 void set_aborted_region(MemRegion mr)
johnc@2190 1148 { _aborted_region = mr; }
johnc@2190 1149
johnc@2190 1150 // Clears any recorded partially scanned region
johnc@2190 1151 void clear_aborted_region() { set_aborted_region(MemRegion()); }
johnc@2190 1152
tonyp@2968 1153 void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
ysr@777 1154
ysr@777 1155 // It grays the object by marking it and, if necessary, pushing it
ysr@777 1156 // on the local queue
tonyp@2968 1157 inline void deal_with_reference(oop obj);
ysr@777 1158
ysr@777 1159 // It scans an object and visits its children.
tonyp@2968 1160 void scan_object(oop obj);
ysr@777 1161
ysr@777 1162 // It pushes an object on the local queue.
tonyp@2968 1163 inline void push(oop obj);
ysr@777 1164
ysr@777 1165 // These two move entries to/from the global stack.
ysr@777 1166 void move_entries_to_global_stack();
ysr@777 1167 void get_entries_from_global_stack();
ysr@777 1168
ysr@777 1169 // It pops and scans objects from the local queue. If partially is
ysr@777 1170 // true, then it stops when the queue size is of a given limit. If
ysr@777 1171 // partially is false, then it stops when the queue is empty.
ysr@777 1172 void drain_local_queue(bool partially);
ysr@777 1173 // It moves entries from the global stack to the local queue and
ysr@777 1174 // drains the local queue. If partially is true, then it stops when
ysr@777 1175 // both the global stack and the local queue reach a given size. If
ysr@777 1176 // partially if false, it tries to empty them totally.
ysr@777 1177 void drain_global_stack(bool partially);
ysr@777 1178 // It keeps picking SATB buffers and processing them until no SATB
ysr@777 1179 // buffers are available.
ysr@777 1180 void drain_satb_buffers();
tonyp@3416 1181
ysr@777 1182 // It keeps popping regions from the region stack and processing
ysr@777 1183 // them until the region stack is empty.
ysr@777 1184 void drain_region_stack(BitMapClosure* closure);
ysr@777 1185
ysr@777 1186 // moves the local finger to a new location
ysr@777 1187 inline void move_finger_to(HeapWord* new_finger) {
tonyp@1458 1188 assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
ysr@777 1189 _finger = new_finger;
ysr@777 1190 }
ysr@777 1191
ysr@777 1192 // moves the region finger to a new location
ysr@777 1193 inline void move_region_finger_to(HeapWord* new_finger) {
tonyp@1458 1194 assert(new_finger < _cm->finger(), "invariant");
ysr@777 1195 _region_finger = new_finger;
ysr@777 1196 }
ysr@777 1197
ysr@777 1198 CMTask(int task_num, ConcurrentMark *cm,
ysr@777 1199 CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
ysr@777 1200
ysr@777 1201 // it prints statistics associated with this task
ysr@777 1202 void print_stats();
ysr@777 1203
ysr@777 1204 #if _MARKING_STATS_
ysr@777 1205 void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
ysr@777 1206 #endif // _MARKING_STATS_
ysr@777 1207 };
stefank@2314 1208
tonyp@2717 1209 // Class that's used to to print out per-region liveness
tonyp@2717 1210 // information. It's currently used at the end of marking and also
tonyp@2717 1211 // after we sort the old regions at the end of the cleanup operation.
tonyp@2717 1212 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
tonyp@2717 1213 private:
tonyp@2717 1214 outputStream* _out;
tonyp@2717 1215
tonyp@2717 1216 // Accumulators for these values.
tonyp@2717 1217 size_t _total_used_bytes;
tonyp@2717 1218 size_t _total_capacity_bytes;
tonyp@2717 1219 size_t _total_prev_live_bytes;
tonyp@2717 1220 size_t _total_next_live_bytes;
tonyp@2717 1221
tonyp@2717 1222 // These are set up when we come across a "stars humongous" region
tonyp@2717 1223 // (as this is where most of this information is stored, not in the
tonyp@2717 1224 // subsequent "continues humongous" regions). After that, for every
tonyp@2717 1225 // region in a given humongous region series we deduce the right
tonyp@2717 1226 // values for it by simply subtracting the appropriate amount from
tonyp@2717 1227 // these fields. All these values should reach 0 after we've visited
tonyp@2717 1228 // the last region in the series.
tonyp@2717 1229 size_t _hum_used_bytes;
tonyp@2717 1230 size_t _hum_capacity_bytes;
tonyp@2717 1231 size_t _hum_prev_live_bytes;
tonyp@2717 1232 size_t _hum_next_live_bytes;
tonyp@2717 1233
tonyp@2717 1234 static double perc(size_t val, size_t total) {
tonyp@2717 1235 if (total == 0) {
tonyp@2717 1236 return 0.0;
tonyp@2717 1237 } else {
tonyp@2717 1238 return 100.0 * ((double) val / (double) total);
tonyp@2717 1239 }
tonyp@2717 1240 }
tonyp@2717 1241
tonyp@2717 1242 static double bytes_to_mb(size_t val) {
tonyp@2717 1243 return (double) val / (double) M;
tonyp@2717 1244 }
tonyp@2717 1245
tonyp@2717 1246 // See the .cpp file.
tonyp@2717 1247 size_t get_hum_bytes(size_t* hum_bytes);
tonyp@2717 1248 void get_hum_bytes(size_t* used_bytes, size_t* capacity_bytes,
tonyp@2717 1249 size_t* prev_live_bytes, size_t* next_live_bytes);
tonyp@2717 1250
tonyp@2717 1251 public:
tonyp@2717 1252 // The header and footer are printed in the constructor and
tonyp@2717 1253 // destructor respectively.
tonyp@2717 1254 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name);
tonyp@2717 1255 virtual bool doHeapRegion(HeapRegion* r);
tonyp@2717 1256 ~G1PrintRegionLivenessInfoClosure();
tonyp@2717 1257 };
tonyp@2717 1258
stefank@2314 1259 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP

mercurial