src/share/vm/gc_implementation/g1/concurrentMark.hpp

Thu, 05 Apr 2012 13:57:23 -0400

author
tonyp
date
Thu, 05 Apr 2012 13:57:23 -0400
changeset 3691
2a0172480595
parent 3464
eff609af17d7
child 3713
720b6a76dd9d
permissions
-rw-r--r--

7127697: G1: remove dead code after recent concurrent mark changes
Summary: Removed lots of dead code after some recent conc mark changes.
Reviewed-by: brutisso, johnc

ysr@777 1 /*
tonyp@3416 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
stefank@2314 27
tonyp@2472 28 #include "gc_implementation/g1/heapRegionSets.hpp"
stefank@2314 29 #include "utilities/taskqueue.hpp"
stefank@2314 30
ysr@777 31 class G1CollectedHeap;
ysr@777 32 class CMTask;
jcoomes@1746 33 typedef GenericTaskQueue<oop> CMTaskQueue;
jcoomes@1746 34 typedef GenericTaskQueueSet<CMTaskQueue> CMTaskQueueSet;
ysr@777 35
johnc@2379 36 // Closure used by CM during concurrent reference discovery
johnc@2379 37 // and reference processing (during remarking) to determine
johnc@2379 38 // if a particular object is alive. It is primarily used
johnc@2379 39 // to determine if referents of discovered reference objects
johnc@2379 40 // are alive. An instance is also embedded into the
johnc@2379 41 // reference processor as the _is_alive_non_header field
johnc@2379 42 class G1CMIsAliveClosure: public BoolObjectClosure {
johnc@2379 43 G1CollectedHeap* _g1;
johnc@2379 44 public:
tonyp@3691 45 G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
johnc@2379 46
johnc@2379 47 void do_object(oop obj) {
johnc@2379 48 ShouldNotCallThis();
johnc@2379 49 }
johnc@2379 50 bool do_object_b(oop obj);
johnc@2379 51 };
johnc@2379 52
ysr@777 53 // A generic CM bit map. This is essentially a wrapper around the BitMap
ysr@777 54 // class, with one bit per (1<<_shifter) HeapWords.
ysr@777 55
apetrusenko@984 56 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
ysr@777 57 protected:
ysr@777 58 HeapWord* _bmStartWord; // base address of range covered by map
ysr@777 59 size_t _bmWordSize; // map size (in #HeapWords covered)
ysr@777 60 const int _shifter; // map to char or bit
ysr@777 61 VirtualSpace _virtual_space; // underlying the bit map
ysr@777 62 BitMap _bm; // the bit map itself
ysr@777 63
ysr@777 64 public:
ysr@777 65 // constructor
ysr@777 66 CMBitMapRO(ReservedSpace rs, int shifter);
ysr@777 67
ysr@777 68 enum { do_yield = true };
ysr@777 69
ysr@777 70 // inquiries
ysr@777 71 HeapWord* startWord() const { return _bmStartWord; }
ysr@777 72 size_t sizeInWords() const { return _bmWordSize; }
ysr@777 73 // the following is one past the last word in space
ysr@777 74 HeapWord* endWord() const { return _bmStartWord + _bmWordSize; }
ysr@777 75
ysr@777 76 // read marks
ysr@777 77
ysr@777 78 bool isMarked(HeapWord* addr) const {
ysr@777 79 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 80 "outside underlying space?");
ysr@777 81 return _bm.at(heapWordToOffset(addr));
ysr@777 82 }
ysr@777 83
ysr@777 84 // iteration
johnc@3454 85 inline bool iterate(BitMapClosure* cl, MemRegion mr);
johnc@3454 86 inline bool iterate(BitMapClosure* cl);
ysr@777 87
ysr@777 88 // Return the address corresponding to the next marked bit at or after
ysr@777 89 // "addr", and before "limit", if "limit" is non-NULL. If there is no
ysr@777 90 // such bit, returns "limit" if that is non-NULL, or else "endWord()".
ysr@777 91 HeapWord* getNextMarkedWordAddress(HeapWord* addr,
ysr@777 92 HeapWord* limit = NULL) const;
ysr@777 93 // Return the address corresponding to the next unmarked bit at or after
ysr@777 94 // "addr", and before "limit", if "limit" is non-NULL. If there is no
ysr@777 95 // such bit, returns "limit" if that is non-NULL, or else "endWord()".
ysr@777 96 HeapWord* getNextUnmarkedWordAddress(HeapWord* addr,
ysr@777 97 HeapWord* limit = NULL) const;
ysr@777 98
ysr@777 99 // conversion utilities
ysr@777 100 // XXX Fix these so that offsets are size_t's...
ysr@777 101 HeapWord* offsetToHeapWord(size_t offset) const {
ysr@777 102 return _bmStartWord + (offset << _shifter);
ysr@777 103 }
ysr@777 104 size_t heapWordToOffset(HeapWord* addr) const {
ysr@777 105 return pointer_delta(addr, _bmStartWord) >> _shifter;
ysr@777 106 }
ysr@777 107 int heapWordDiffToOffsetDiff(size_t diff) const;
ysr@777 108 HeapWord* nextWord(HeapWord* addr) {
ysr@777 109 return offsetToHeapWord(heapWordToOffset(addr) + 1);
ysr@777 110 }
ysr@777 111
ysr@777 112 // debugging
ysr@777 113 NOT_PRODUCT(bool covers(ReservedSpace rs) const;)
ysr@777 114 };
ysr@777 115
ysr@777 116 class CMBitMap : public CMBitMapRO {
ysr@777 117
ysr@777 118 public:
ysr@777 119 // constructor
ysr@777 120 CMBitMap(ReservedSpace rs, int shifter) :
ysr@777 121 CMBitMapRO(rs, shifter) {}
ysr@777 122
ysr@777 123 // write marks
ysr@777 124 void mark(HeapWord* addr) {
ysr@777 125 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 126 "outside underlying space?");
tonyp@2968 127 _bm.set_bit(heapWordToOffset(addr));
ysr@777 128 }
ysr@777 129 void clear(HeapWord* addr) {
ysr@777 130 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 131 "outside underlying space?");
tonyp@2968 132 _bm.clear_bit(heapWordToOffset(addr));
ysr@777 133 }
ysr@777 134 bool parMark(HeapWord* addr) {
ysr@777 135 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 136 "outside underlying space?");
tonyp@2968 137 return _bm.par_set_bit(heapWordToOffset(addr));
ysr@777 138 }
ysr@777 139 bool parClear(HeapWord* addr) {
ysr@777 140 assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
ysr@777 141 "outside underlying space?");
tonyp@2968 142 return _bm.par_clear_bit(heapWordToOffset(addr));
ysr@777 143 }
ysr@777 144 void markRange(MemRegion mr);
ysr@777 145 void clearAll();
ysr@777 146 void clearRange(MemRegion mr);
ysr@777 147
ysr@777 148 // Starting at the bit corresponding to "addr" (inclusive), find the next
ysr@777 149 // "1" bit, if any. This bit starts some run of consecutive "1"'s; find
ysr@777 150 // the end of this run (stopping at "end_addr"). Return the MemRegion
ysr@777 151 // covering from the start of the region corresponding to the first bit
ysr@777 152 // of the run to the end of the region corresponding to the last bit of
ysr@777 153 // the run. If there is no "1" bit at or after "addr", return an empty
ysr@777 154 // MemRegion.
ysr@777 155 MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
ysr@777 156 };
ysr@777 157
ysr@777 158 // Represents a marking stack used by the CM collector.
ysr@777 159 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
apetrusenko@984 160 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
ysr@777 161 ConcurrentMark* _cm;
tonyp@3416 162 oop* _base; // bottom of stack
tonyp@3416 163 jint _index; // one more than last occupied index
tonyp@3416 164 jint _capacity; // max #elements
tonyp@3416 165 jint _saved_index; // value of _index saved at start of GC
ysr@777 166 NOT_PRODUCT(jint _max_depth;) // max depth plumbed during run
ysr@777 167
ysr@777 168 bool _overflow;
ysr@777 169 DEBUG_ONLY(bool _drain_in_progress;)
ysr@777 170 DEBUG_ONLY(bool _drain_in_progress_yields;)
ysr@777 171
ysr@777 172 public:
ysr@777 173 CMMarkStack(ConcurrentMark* cm);
ysr@777 174 ~CMMarkStack();
ysr@777 175
ysr@777 176 void allocate(size_t size);
ysr@777 177
ysr@777 178 oop pop() {
ysr@777 179 if (!isEmpty()) {
ysr@777 180 return _base[--_index] ;
ysr@777 181 }
ysr@777 182 return NULL;
ysr@777 183 }
ysr@777 184
ysr@777 185 // If overflow happens, don't do the push, and record the overflow.
ysr@777 186 // *Requires* that "ptr" is already marked.
ysr@777 187 void push(oop ptr) {
ysr@777 188 if (isFull()) {
ysr@777 189 // Record overflow.
ysr@777 190 _overflow = true;
ysr@777 191 return;
ysr@777 192 } else {
ysr@777 193 _base[_index++] = ptr;
ysr@777 194 NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
ysr@777 195 }
ysr@777 196 }
ysr@777 197 // Non-block impl. Note: concurrency is allowed only with other
ysr@777 198 // "par_push" operations, not with "pop" or "drain". We would need
ysr@777 199 // parallel versions of them if such concurrency was desired.
ysr@777 200 void par_push(oop ptr);
ysr@777 201
ysr@777 202 // Pushes the first "n" elements of "ptr_arr" on the stack.
ysr@777 203 // Non-block impl. Note: concurrency is allowed only with other
ysr@777 204 // "par_adjoin_arr" or "push" operations, not with "pop" or "drain".
ysr@777 205 void par_adjoin_arr(oop* ptr_arr, int n);
ysr@777 206
ysr@777 207 // Pushes the first "n" elements of "ptr_arr" on the stack.
ysr@777 208 // Locking impl: concurrency is allowed only with
ysr@777 209 // "par_push_arr" and/or "par_pop_arr" operations, which use the same
ysr@777 210 // locking strategy.
ysr@777 211 void par_push_arr(oop* ptr_arr, int n);
ysr@777 212
ysr@777 213 // If returns false, the array was empty. Otherwise, removes up to "max"
ysr@777 214 // elements from the stack, and transfers them to "ptr_arr" in an
ysr@777 215 // unspecified order. The actual number transferred is given in "n" ("n
ysr@777 216 // == 0" is deliberately redundant with the return value.) Locking impl:
ysr@777 217 // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
ysr@777 218 // operations, which use the same locking strategy.
ysr@777 219 bool par_pop_arr(oop* ptr_arr, int max, int* n);
ysr@777 220
ysr@777 221 // Drain the mark stack, applying the given closure to all fields of
ysr@777 222 // objects on the stack. (That is, continue until the stack is empty,
ysr@777 223 // even if closure applications add entries to the stack.) The "bm"
ysr@777 224 // argument, if non-null, may be used to verify that only marked objects
ysr@777 225 // are on the mark stack. If "yield_after" is "true", then the
ysr@777 226 // concurrent marker performing the drain offers to yield after
ysr@777 227 // processing each object. If a yield occurs, stops the drain operation
ysr@777 228 // and returns false. Otherwise, returns true.
ysr@777 229 template<class OopClosureClass>
ysr@777 230 bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
ysr@777 231
ysr@777 232 bool isEmpty() { return _index == 0; }
ysr@777 233 bool isFull() { return _index == _capacity; }
ysr@777 234 int maxElems() { return _capacity; }
ysr@777 235
ysr@777 236 bool overflow() { return _overflow; }
ysr@777 237 void clear_overflow() { _overflow = false; }
ysr@777 238
ysr@777 239 int size() { return _index; }
ysr@777 240
ysr@777 241 void setEmpty() { _index = 0; clear_overflow(); }
ysr@777 242
tonyp@3416 243 // Record the current index.
tonyp@3416 244 void note_start_of_gc();
tonyp@3416 245
tonyp@3416 246 // Make sure that we have not added any entries to the stack during GC.
tonyp@3416 247 void note_end_of_gc();
tonyp@3416 248
ysr@777 249 // iterate over the oops in the mark stack, up to the bound recorded via
ysr@777 250 // the call above.
ysr@777 251 void oops_do(OopClosure* f);
ysr@777 252 };
ysr@777 253
tonyp@2848 254 class ForceOverflowSettings VALUE_OBJ_CLASS_SPEC {
tonyp@2848 255 private:
tonyp@2848 256 #ifndef PRODUCT
tonyp@2848 257 uintx _num_remaining;
tonyp@2848 258 bool _force;
tonyp@2848 259 #endif // !defined(PRODUCT)
tonyp@2848 260
tonyp@2848 261 public:
tonyp@2848 262 void init() PRODUCT_RETURN;
tonyp@2848 263 void update() PRODUCT_RETURN;
tonyp@2848 264 bool should_force() PRODUCT_RETURN_( return false; );
tonyp@2848 265 };
tonyp@2848 266
ysr@777 267 // this will enable a variety of different statistics per GC task
ysr@777 268 #define _MARKING_STATS_ 0
ysr@777 269 // this will enable the higher verbose levels
ysr@777 270 #define _MARKING_VERBOSE_ 0
ysr@777 271
ysr@777 272 #if _MARKING_STATS_
ysr@777 273 #define statsOnly(statement) \
ysr@777 274 do { \
ysr@777 275 statement ; \
ysr@777 276 } while (0)
ysr@777 277 #else // _MARKING_STATS_
ysr@777 278 #define statsOnly(statement) \
ysr@777 279 do { \
ysr@777 280 } while (0)
ysr@777 281 #endif // _MARKING_STATS_
ysr@777 282
ysr@777 283 typedef enum {
ysr@777 284 no_verbose = 0, // verbose turned off
ysr@777 285 stats_verbose, // only prints stats at the end of marking
ysr@777 286 low_verbose, // low verbose, mostly per region and per major event
ysr@777 287 medium_verbose, // a bit more detailed than low
ysr@777 288 high_verbose // per object verbose
ysr@777 289 } CMVerboseLevel;
ysr@777 290
tonyp@3464 291 class YoungList;
tonyp@3464 292
tonyp@3464 293 // Root Regions are regions that are not empty at the beginning of a
tonyp@3464 294 // marking cycle and which we might collect during an evacuation pause
tonyp@3464 295 // while the cycle is active. Given that, during evacuation pauses, we
tonyp@3464 296 // do not copy objects that are explicitly marked, what we have to do
tonyp@3464 297 // for the root regions is to scan them and mark all objects reachable
tonyp@3464 298 // from them. According to the SATB assumptions, we only need to visit
tonyp@3464 299 // each object once during marking. So, as long as we finish this scan
tonyp@3464 300 // before the next evacuation pause, we can copy the objects from the
tonyp@3464 301 // root regions without having to mark them or do anything else to them.
tonyp@3464 302 //
tonyp@3464 303 // Currently, we only support root region scanning once (at the start
tonyp@3464 304 // of the marking cycle) and the root regions are all the survivor
tonyp@3464 305 // regions populated during the initial-mark pause.
tonyp@3464 306 class CMRootRegions VALUE_OBJ_CLASS_SPEC {
tonyp@3464 307 private:
tonyp@3464 308 YoungList* _young_list;
tonyp@3464 309 ConcurrentMark* _cm;
tonyp@3464 310
tonyp@3464 311 volatile bool _scan_in_progress;
tonyp@3464 312 volatile bool _should_abort;
tonyp@3464 313 HeapRegion* volatile _next_survivor;
tonyp@3464 314
tonyp@3464 315 public:
tonyp@3464 316 CMRootRegions();
tonyp@3464 317 // We actually do most of the initialization in this method.
tonyp@3464 318 void init(G1CollectedHeap* g1h, ConcurrentMark* cm);
tonyp@3464 319
tonyp@3464 320 // Reset the claiming / scanning of the root regions.
tonyp@3464 321 void prepare_for_scan();
tonyp@3464 322
tonyp@3464 323 // Forces get_next() to return NULL so that the iteration aborts early.
tonyp@3464 324 void abort() { _should_abort = true; }
tonyp@3464 325
tonyp@3464 326 // Return true if the CM thread are actively scanning root regions,
tonyp@3464 327 // false otherwise.
tonyp@3464 328 bool scan_in_progress() { return _scan_in_progress; }
tonyp@3464 329
tonyp@3464 330 // Claim the next root region to scan atomically, or return NULL if
tonyp@3464 331 // all have been claimed.
tonyp@3464 332 HeapRegion* claim_next();
tonyp@3464 333
tonyp@3464 334 // Flag that we're done with root region scanning and notify anyone
tonyp@3464 335 // who's waiting on it. If aborted is false, assume that all regions
tonyp@3464 336 // have been claimed.
tonyp@3464 337 void scan_finished();
tonyp@3464 338
tonyp@3464 339 // If CM threads are still scanning root regions, wait until they
tonyp@3464 340 // are done. Return true if we had to wait, false otherwise.
tonyp@3464 341 bool wait_until_scan_finished();
tonyp@3464 342 };
ysr@777 343
ysr@777 344 class ConcurrentMarkThread;
ysr@777 345
tonyp@3464 346 class ConcurrentMark : public CHeapObj {
ysr@777 347 friend class ConcurrentMarkThread;
ysr@777 348 friend class CMTask;
ysr@777 349 friend class CMBitMapClosure;
ysr@777 350 friend class CMGlobalObjectClosure;
ysr@777 351 friend class CMRemarkTask;
ysr@777 352 friend class CMConcurrentMarkingTask;
ysr@777 353 friend class G1ParNoteEndTask;
ysr@777 354 friend class CalcLiveObjectsClosure;
johnc@3175 355 friend class G1CMRefProcTaskProxy;
johnc@3175 356 friend class G1CMRefProcTaskExecutor;
johnc@2494 357 friend class G1CMParKeepAliveAndDrainClosure;
johnc@2494 358 friend class G1CMParDrainMarkingStackClosure;
ysr@777 359
ysr@777 360 protected:
ysr@777 361 ConcurrentMarkThread* _cmThread; // the thread doing the work
ysr@777 362 G1CollectedHeap* _g1h; // the heap.
jmasa@3357 363 uint _parallel_marking_threads; // the number of marking
jmasa@3294 364 // threads we're use
jmasa@3357 365 uint _max_parallel_marking_threads; // max number of marking
jmasa@3294 366 // threads we'll ever use
ysr@777 367 double _sleep_factor; // how much we have to sleep, with
ysr@777 368 // respect to the work we just did, to
ysr@777 369 // meet the marking overhead goal
ysr@777 370 double _marking_task_overhead; // marking target overhead for
ysr@777 371 // a single task
ysr@777 372
ysr@777 373 // same as the two above, but for the cleanup task
ysr@777 374 double _cleanup_sleep_factor;
ysr@777 375 double _cleanup_task_overhead;
ysr@777 376
tonyp@2472 377 FreeRegionList _cleanup_list;
ysr@777 378
brutisso@3455 379 // Concurrent marking support structures
ysr@777 380 CMBitMap _markBitMap1;
ysr@777 381 CMBitMap _markBitMap2;
ysr@777 382 CMBitMapRO* _prevMarkBitMap; // completed mark bitmap
ysr@777 383 CMBitMap* _nextMarkBitMap; // under-construction mark bitmap
ysr@777 384
ysr@777 385 BitMap _region_bm;
ysr@777 386 BitMap _card_bm;
ysr@777 387
ysr@777 388 // Heap bounds
ysr@777 389 HeapWord* _heap_start;
ysr@777 390 HeapWord* _heap_end;
ysr@777 391
tonyp@3464 392 // Root region tracking and claiming.
tonyp@3464 393 CMRootRegions _root_regions;
tonyp@3464 394
ysr@777 395 // For gray objects
ysr@777 396 CMMarkStack _markStack; // Grey objects behind global finger.
ysr@777 397 HeapWord* volatile _finger; // the global finger, region aligned,
ysr@777 398 // always points to the end of the
ysr@777 399 // last claimed region
ysr@777 400
ysr@777 401 // marking tasks
jmasa@3357 402 uint _max_task_num; // maximum task number
jmasa@3357 403 uint _active_tasks; // task num currently active
ysr@777 404 CMTask** _tasks; // task queue array (max_task_num len)
ysr@777 405 CMTaskQueueSet* _task_queues; // task queue set
ysr@777 406 ParallelTaskTerminator _terminator; // for termination
ysr@777 407
ysr@777 408 // Two sync barriers that are used to synchronise tasks when an
ysr@777 409 // overflow occurs. The algorithm is the following. All tasks enter
ysr@777 410 // the first one to ensure that they have all stopped manipulating
ysr@777 411 // the global data structures. After they exit it, they re-initialise
ysr@777 412 // their data structures and task 0 re-initialises the global data
ysr@777 413 // structures. Then, they enter the second sync barrier. This
ysr@777 414 // ensure, that no task starts doing work before all data
ysr@777 415 // structures (local and global) have been re-initialised. When they
ysr@777 416 // exit it, they are free to start working again.
ysr@777 417 WorkGangBarrierSync _first_overflow_barrier_sync;
ysr@777 418 WorkGangBarrierSync _second_overflow_barrier_sync;
ysr@777 419
ysr@777 420 // this is set by any task, when an overflow on the global data
ysr@777 421 // structures is detected.
ysr@777 422 volatile bool _has_overflown;
ysr@777 423 // true: marking is concurrent, false: we're in remark
ysr@777 424 volatile bool _concurrent;
ysr@777 425 // set at the end of a Full GC so that marking aborts
ysr@777 426 volatile bool _has_aborted;
johnc@2190 427
ysr@777 428 // used when remark aborts due to an overflow to indicate that
ysr@777 429 // another concurrent marking phase should start
ysr@777 430 volatile bool _restart_for_overflow;
ysr@777 431
ysr@777 432 // This is true from the very start of concurrent marking until the
ysr@777 433 // point when all the tasks complete their work. It is really used
ysr@777 434 // to determine the points between the end of concurrent marking and
ysr@777 435 // time of remark.
ysr@777 436 volatile bool _concurrent_marking_in_progress;
ysr@777 437
ysr@777 438 // verbose level
ysr@777 439 CMVerboseLevel _verbose_level;
ysr@777 440
ysr@777 441 // All of these times are in ms.
ysr@777 442 NumberSeq _init_times;
ysr@777 443 NumberSeq _remark_times;
ysr@777 444 NumberSeq _remark_mark_times;
ysr@777 445 NumberSeq _remark_weak_ref_times;
ysr@777 446 NumberSeq _cleanup_times;
ysr@777 447 double _total_counting_time;
ysr@777 448 double _total_rs_scrub_time;
ysr@777 449
ysr@777 450 double* _accum_task_vtime; // accumulated task vtime
ysr@777 451
jmasa@3294 452 FlexibleWorkGang* _parallel_workers;
ysr@777 453
tonyp@2848 454 ForceOverflowSettings _force_overflow_conc;
tonyp@2848 455 ForceOverflowSettings _force_overflow_stw;
tonyp@2848 456
ysr@777 457 void weakRefsWork(bool clear_all_soft_refs);
ysr@777 458
ysr@777 459 void swapMarkBitMaps();
ysr@777 460
ysr@777 461 // It resets the global marking data structures, as well as the
ysr@777 462 // task local ones; should be called during initial mark.
ysr@777 463 void reset();
ysr@777 464 // It resets all the marking data structures.
tonyp@2848 465 void clear_marking_state(bool clear_overflow = true);
ysr@777 466
ysr@777 467 // It should be called to indicate which phase we're in (concurrent
ysr@777 468 // mark or remark) and how many threads are currently active.
jmasa@3357 469 void set_phase(uint active_tasks, bool concurrent);
ysr@777 470 // We do this after we're done with marking so that the marking data
ysr@777 471 // structures are initialised to a sensible and predictable state.
ysr@777 472 void set_non_marking_state();
ysr@777 473
ysr@777 474 // prints all gathered CM-related statistics
ysr@777 475 void print_stats();
ysr@777 476
tonyp@2472 477 bool cleanup_list_is_empty() {
tonyp@2472 478 return _cleanup_list.is_empty();
tonyp@2472 479 }
tonyp@2472 480
ysr@777 481 // accessor methods
jmasa@3357 482 uint parallel_marking_threads() { return _parallel_marking_threads; }
jmasa@3357 483 uint max_parallel_marking_threads() { return _max_parallel_marking_threads;}
ysr@777 484 double sleep_factor() { return _sleep_factor; }
ysr@777 485 double marking_task_overhead() { return _marking_task_overhead;}
ysr@777 486 double cleanup_sleep_factor() { return _cleanup_sleep_factor; }
ysr@777 487 double cleanup_task_overhead() { return _cleanup_task_overhead;}
ysr@777 488
ysr@777 489 HeapWord* finger() { return _finger; }
ysr@777 490 bool concurrent() { return _concurrent; }
jmasa@3357 491 uint active_tasks() { return _active_tasks; }
ysr@777 492 ParallelTaskTerminator* terminator() { return &_terminator; }
ysr@777 493
ysr@777 494 // It claims the next available region to be scanned by a marking
ysr@777 495 // task. It might return NULL if the next region is empty or we have
ysr@777 496 // run out of regions. In the latter case, out_of_regions()
ysr@777 497 // determines whether we've really run out of regions or the task
ysr@777 498 // should call claim_region() again. This might seem a bit
ysr@777 499 // awkward. Originally, the code was written so that claim_region()
ysr@777 500 // either successfully returned with a non-empty region or there
ysr@777 501 // were no more regions to be claimed. The problem with this was
ysr@777 502 // that, in certain circumstances, it iterated over large chunks of
ysr@777 503 // the heap finding only empty regions and, while it was working, it
ysr@777 504 // was preventing the calling task to call its regular clock
ysr@777 505 // method. So, this way, each task will spend very little time in
ysr@777 506 // claim_region() and is allowed to call the regular clock method
ysr@777 507 // frequently.
ysr@777 508 HeapRegion* claim_region(int task);
ysr@777 509
ysr@777 510 // It determines whether we've run out of regions to scan.
ysr@777 511 bool out_of_regions() { return _finger == _heap_end; }
ysr@777 512
ysr@777 513 // Returns the task with the given id
ysr@777 514 CMTask* task(int id) {
tonyp@1458 515 assert(0 <= id && id < (int) _active_tasks,
tonyp@1458 516 "task id not within active bounds");
ysr@777 517 return _tasks[id];
ysr@777 518 }
ysr@777 519
ysr@777 520 // Returns the task queue with the given id
ysr@777 521 CMTaskQueue* task_queue(int id) {
tonyp@1458 522 assert(0 <= id && id < (int) _active_tasks,
tonyp@1458 523 "task queue id not within active bounds");
ysr@777 524 return (CMTaskQueue*) _task_queues->queue(id);
ysr@777 525 }
ysr@777 526
ysr@777 527 // Returns the task queue set
ysr@777 528 CMTaskQueueSet* task_queues() { return _task_queues; }
ysr@777 529
ysr@777 530 // Access / manipulation of the overflow flag which is set to
tonyp@3691 531 // indicate that the global stack has overflown
ysr@777 532 bool has_overflown() { return _has_overflown; }
ysr@777 533 void set_has_overflown() { _has_overflown = true; }
ysr@777 534 void clear_has_overflown() { _has_overflown = false; }
tonyp@3464 535 bool restart_for_overflow() { return _restart_for_overflow; }
ysr@777 536
ysr@777 537 bool has_aborted() { return _has_aborted; }
ysr@777 538
ysr@777 539 // Methods to enter the two overflow sync barriers
ysr@777 540 void enter_first_sync_barrier(int task_num);
ysr@777 541 void enter_second_sync_barrier(int task_num);
ysr@777 542
tonyp@2848 543 ForceOverflowSettings* force_overflow_conc() {
tonyp@2848 544 return &_force_overflow_conc;
tonyp@2848 545 }
tonyp@2848 546
tonyp@2848 547 ForceOverflowSettings* force_overflow_stw() {
tonyp@2848 548 return &_force_overflow_stw;
tonyp@2848 549 }
tonyp@2848 550
tonyp@2848 551 ForceOverflowSettings* force_overflow() {
tonyp@2848 552 if (concurrent()) {
tonyp@2848 553 return force_overflow_conc();
tonyp@2848 554 } else {
tonyp@2848 555 return force_overflow_stw();
tonyp@2848 556 }
tonyp@2848 557 }
tonyp@2848 558
johnc@3463 559 // Live Data Counting data structures...
johnc@3463 560 // These data structures are initialized at the start of
johnc@3463 561 // marking. They are written to while marking is active.
johnc@3463 562 // They are aggregated during remark; the aggregated values
johnc@3463 563 // are then used to populate the _region_bm, _card_bm, and
johnc@3463 564 // the total live bytes, which are then subsequently updated
johnc@3463 565 // during cleanup.
johnc@3463 566
johnc@3463 567 // An array of bitmaps (one bit map per task). Each bitmap
johnc@3463 568 // is used to record the cards spanned by the live objects
johnc@3463 569 // marked by that task/worker.
johnc@3463 570 BitMap* _count_card_bitmaps;
johnc@3463 571
johnc@3463 572 // Used to record the number of marked live bytes
johnc@3463 573 // (for each region, by worker thread).
johnc@3463 574 size_t** _count_marked_bytes;
johnc@3463 575
johnc@3463 576 // Card index of the bottom of the G1 heap. Used for biasing indices into
johnc@3463 577 // the card bitmaps.
johnc@3463 578 intptr_t _heap_bottom_card_num;
johnc@3463 579
ysr@777 580 public:
ysr@777 581 // Manipulation of the global mark stack.
ysr@777 582 // Notice that the first mark_stack_push is CAS-based, whereas the
ysr@777 583 // two below are Mutex-based. This is OK since the first one is only
ysr@777 584 // called during evacuation pauses and doesn't compete with the
ysr@777 585 // other two (which are called by the marking tasks during
ysr@777 586 // concurrent marking or remark).
ysr@777 587 bool mark_stack_push(oop p) {
ysr@777 588 _markStack.par_push(p);
ysr@777 589 if (_markStack.overflow()) {
ysr@777 590 set_has_overflown();
ysr@777 591 return false;
ysr@777 592 }
ysr@777 593 return true;
ysr@777 594 }
ysr@777 595 bool mark_stack_push(oop* arr, int n) {
ysr@777 596 _markStack.par_push_arr(arr, n);
ysr@777 597 if (_markStack.overflow()) {
ysr@777 598 set_has_overflown();
ysr@777 599 return false;
ysr@777 600 }
ysr@777 601 return true;
ysr@777 602 }
ysr@777 603 void mark_stack_pop(oop* arr, int max, int* n) {
ysr@777 604 _markStack.par_pop_arr(arr, max, n);
ysr@777 605 }
tonyp@2973 606 size_t mark_stack_size() { return _markStack.size(); }
ysr@777 607 size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
tonyp@2973 608 bool mark_stack_overflow() { return _markStack.overflow(); }
tonyp@2973 609 bool mark_stack_empty() { return _markStack.isEmpty(); }
ysr@777 610
tonyp@3464 611 CMRootRegions* root_regions() { return &_root_regions; }
tonyp@3464 612
ysr@777 613 bool concurrent_marking_in_progress() {
ysr@777 614 return _concurrent_marking_in_progress;
ysr@777 615 }
ysr@777 616 void set_concurrent_marking_in_progress() {
ysr@777 617 _concurrent_marking_in_progress = true;
ysr@777 618 }
ysr@777 619 void clear_concurrent_marking_in_progress() {
ysr@777 620 _concurrent_marking_in_progress = false;
ysr@777 621 }
ysr@777 622
ysr@777 623 void update_accum_task_vtime(int i, double vtime) {
ysr@777 624 _accum_task_vtime[i] += vtime;
ysr@777 625 }
ysr@777 626
ysr@777 627 double all_task_accum_vtime() {
ysr@777 628 double ret = 0.0;
ysr@777 629 for (int i = 0; i < (int)_max_task_num; ++i)
ysr@777 630 ret += _accum_task_vtime[i];
ysr@777 631 return ret;
ysr@777 632 }
ysr@777 633
ysr@777 634 // Attempts to steal an object from the task queues of other tasks
ysr@777 635 bool try_stealing(int task_num, int* hash_seed, oop& obj) {
ysr@777 636 return _task_queues->steal(task_num, hash_seed, obj);
ysr@777 637 }
ysr@777 638
ysr@777 639 ConcurrentMark(ReservedSpace rs, int max_regions);
ysr@777 640 ~ConcurrentMark();
johnc@3463 641
ysr@777 642 ConcurrentMarkThread* cmThread() { return _cmThread; }
ysr@777 643
ysr@777 644 CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
ysr@777 645 CMBitMap* nextMarkBitMap() const { return _nextMarkBitMap; }
ysr@777 646
jmasa@3294 647 // Returns the number of GC threads to be used in a concurrent
jmasa@3294 648 // phase based on the number of GC threads being used in a STW
jmasa@3294 649 // phase.
jmasa@3357 650 uint scale_parallel_threads(uint n_par_threads);
jmasa@3294 651
jmasa@3294 652 // Calculates the number of GC threads to be used in a concurrent phase.
jmasa@3357 653 uint calc_parallel_marking_threads();
jmasa@3294 654
ysr@777 655 // The following three are interaction between CM and
ysr@777 656 // G1CollectedHeap
ysr@777 657
ysr@777 658 // This notifies CM that a root during initial-mark needs to be
tonyp@3464 659 // grayed. It is MT-safe. word_size is the size of the object in
tonyp@3464 660 // words. It is passed explicitly as sometimes we cannot calculate
tonyp@3464 661 // it from the given object because it might be in an inconsistent
tonyp@3464 662 // state (e.g., in to-space and being copied). So the caller is
tonyp@3464 663 // responsible for dealing with this issue (e.g., get the size from
tonyp@3464 664 // the from-space image when the to-space image might be
tonyp@3464 665 // inconsistent) and always passing the size. hr is the region that
tonyp@3464 666 // contains the object and it's passed optionally from callers who
tonyp@3464 667 // might already have it (no point in recalculating it).
tonyp@3464 668 inline void grayRoot(oop obj, size_t word_size,
tonyp@3464 669 uint worker_id, HeapRegion* hr = NULL);
tonyp@3416 670
tonyp@1823 671 // It iterates over the heap and for each object it comes across it
tonyp@1823 672 // will dump the contents of its reference fields, as well as
tonyp@1823 673 // liveness information for the object and its referents. The dump
tonyp@1823 674 // will be written to a file with the following name:
johnc@2969 675 // G1PrintReachableBaseFile + "." + str.
johnc@2969 676 // vo decides whether the prev (vo == UsePrevMarking), the next
johnc@2969 677 // (vo == UseNextMarking) marking information, or the mark word
johnc@2969 678 // (vo == UseMarkWord) will be used to determine the liveness of
johnc@2969 679 // each object / referent.
johnc@2969 680 // If all is true, all objects in the heap will be dumped, otherwise
johnc@2969 681 // only the live ones. In the dump the following symbols / breviations
johnc@2969 682 // are used:
tonyp@1823 683 // M : an explicitly live object (its bitmap bit is set)
tonyp@1823 684 // > : an implicitly live object (over tams)
tonyp@1823 685 // O : an object outside the G1 heap (typically: in the perm gen)
tonyp@1823 686 // NOT : a reference field whose referent is not live
tonyp@1823 687 // AND MARKED : indicates that an object is both explicitly and
tonyp@1823 688 // implicitly live (it should be one or the other, not both)
tonyp@1823 689 void print_reachable(const char* str,
johnc@2969 690 VerifyOption vo, bool all) PRODUCT_RETURN;
ysr@777 691
ysr@777 692 // Clear the next marking bitmap (will be called concurrently).
ysr@777 693 void clearNextBitmap();
ysr@777 694
ysr@777 695 // These two do the work that needs to be done before and after the
ysr@777 696 // initial root checkpoint. Since this checkpoint can be done at two
ysr@777 697 // different points (i.e. an explicit pause or piggy-backed on a
ysr@777 698 // young collection), then it's nice to be able to easily share the
ysr@777 699 // pre/post code. It might be the case that we can put everything in
ysr@777 700 // the post method. TP
ysr@777 701 void checkpointRootsInitialPre();
ysr@777 702 void checkpointRootsInitialPost();
ysr@777 703
tonyp@3464 704 // Scan all the root regions and mark everything reachable from
tonyp@3464 705 // them.
tonyp@3464 706 void scanRootRegions();
tonyp@3464 707
tonyp@3464 708 // Scan a single root region and mark everything reachable from it.
tonyp@3464 709 void scanRootRegion(HeapRegion* hr, uint worker_id);
tonyp@3464 710
ysr@777 711 // Do concurrent phase of marking, to a tentative transitive closure.
ysr@777 712 void markFromRoots();
ysr@777 713
ysr@777 714 void checkpointRootsFinal(bool clear_all_soft_refs);
ysr@777 715 void checkpointRootsFinalWork();
ysr@777 716 void cleanup();
ysr@777 717 void completeCleanup();
ysr@777 718
ysr@777 719 // Mark in the previous bitmap. NB: this is usually read-only, so use
ysr@777 720 // this carefully!
tonyp@3416 721 inline void markPrev(oop p);
johnc@3463 722
tonyp@3416 723 // Clears marks for all objects in the given range, for the prev,
tonyp@3416 724 // next, or both bitmaps. NB: the previous bitmap is usually
tonyp@3416 725 // read-only, so use this carefully!
tonyp@3416 726 void clearRangePrevBitmap(MemRegion mr);
tonyp@3416 727 void clearRangeNextBitmap(MemRegion mr);
tonyp@3416 728 void clearRangeBothBitmaps(MemRegion mr);
ysr@777 729
tonyp@3416 730 // Notify data structures that a GC has started.
tonyp@3416 731 void note_start_of_gc() {
tonyp@3416 732 _markStack.note_start_of_gc();
ysr@777 733 }
tonyp@3416 734
tonyp@3416 735 // Notify data structures that a GC is finished.
tonyp@3416 736 void note_end_of_gc() {
tonyp@3416 737 _markStack.note_end_of_gc();
tonyp@3416 738 }
tonyp@3416 739
tonyp@3416 740 // Verify that there are no CSet oops on the stacks (taskqueues /
tonyp@3416 741 // global mark stack), enqueued SATB buffers, per-thread SATB
tonyp@3416 742 // buffers, and fingers (global / per-task). The boolean parameters
tonyp@3416 743 // decide which of the above data structures to verify. If marking
tonyp@3416 744 // is not in progress, it's a no-op.
tonyp@3416 745 void verify_no_cset_oops(bool verify_stacks,
tonyp@3416 746 bool verify_enqueued_buffers,
tonyp@3416 747 bool verify_thread_buffers,
tonyp@3416 748 bool verify_fingers) PRODUCT_RETURN;
tonyp@3416 749
ysr@777 750 // It is called at the end of an evacuation pause during marking so
ysr@777 751 // that CM is notified of where the new end of the heap is. It
ysr@777 752 // doesn't do anything if concurrent_marking_in_progress() is false,
ysr@777 753 // unless the force parameter is true.
ysr@777 754 void update_g1_committed(bool force = false);
ysr@777 755
ysr@777 756 bool isMarked(oop p) const {
ysr@777 757 assert(p != NULL && p->is_oop(), "expected an oop");
ysr@777 758 HeapWord* addr = (HeapWord*)p;
ysr@777 759 assert(addr >= _nextMarkBitMap->startWord() ||
ysr@777 760 addr < _nextMarkBitMap->endWord(), "in a region");
ysr@777 761
ysr@777 762 return _nextMarkBitMap->isMarked(addr);
ysr@777 763 }
ysr@777 764
ysr@777 765 inline bool not_yet_marked(oop p) const;
ysr@777 766
ysr@777 767 // XXX Debug code
ysr@777 768 bool containing_card_is_marked(void* p);
ysr@777 769 bool containing_cards_are_marked(void* start, void* last);
ysr@777 770
ysr@777 771 bool isPrevMarked(oop p) const {
ysr@777 772 assert(p != NULL && p->is_oop(), "expected an oop");
ysr@777 773 HeapWord* addr = (HeapWord*)p;
ysr@777 774 assert(addr >= _prevMarkBitMap->startWord() ||
ysr@777 775 addr < _prevMarkBitMap->endWord(), "in a region");
ysr@777 776
ysr@777 777 return _prevMarkBitMap->isMarked(addr);
ysr@777 778 }
ysr@777 779
jmasa@3357 780 inline bool do_yield_check(uint worker_i = 0);
ysr@777 781 inline bool should_yield();
ysr@777 782
ysr@777 783 // Called to abort the marking cycle after a Full GC takes palce.
ysr@777 784 void abort();
ysr@777 785
ysr@777 786 // This prints the global/local fingers. It is used for debugging.
ysr@777 787 NOT_PRODUCT(void print_finger();)
ysr@777 788
ysr@777 789 void print_summary_info();
ysr@777 790
tonyp@1454 791 void print_worker_threads_on(outputStream* st) const;
tonyp@1454 792
ysr@777 793 // The following indicate whether a given verbose level has been
ysr@777 794 // set. Notice that anything above stats is conditional to
ysr@777 795 // _MARKING_VERBOSE_ having been set to 1
tonyp@2973 796 bool verbose_stats() {
tonyp@2973 797 return _verbose_level >= stats_verbose;
tonyp@2973 798 }
tonyp@2973 799 bool verbose_low() {
tonyp@2973 800 return _MARKING_VERBOSE_ && _verbose_level >= low_verbose;
tonyp@2973 801 }
tonyp@2973 802 bool verbose_medium() {
tonyp@2973 803 return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose;
tonyp@2973 804 }
tonyp@2973 805 bool verbose_high() {
tonyp@2973 806 return _MARKING_VERBOSE_ && _verbose_level >= high_verbose;
tonyp@2973 807 }
johnc@3463 808
johnc@3463 809 // Counting data structure accessors
johnc@3463 810
johnc@3463 811 // Returns the card number of the bottom of the G1 heap.
johnc@3463 812 // Used in biasing indices into accounting card bitmaps.
johnc@3463 813 intptr_t heap_bottom_card_num() const {
johnc@3463 814 return _heap_bottom_card_num;
johnc@3463 815 }
johnc@3463 816
johnc@3463 817 // Returns the card bitmap for a given task or worker id.
johnc@3463 818 BitMap* count_card_bitmap_for(uint worker_id) {
johnc@3463 819 assert(0 <= worker_id && worker_id < _max_task_num, "oob");
johnc@3463 820 assert(_count_card_bitmaps != NULL, "uninitialized");
johnc@3463 821 BitMap* task_card_bm = &_count_card_bitmaps[worker_id];
johnc@3463 822 assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
johnc@3463 823 return task_card_bm;
johnc@3463 824 }
johnc@3463 825
johnc@3463 826 // Returns the array containing the marked bytes for each region,
johnc@3463 827 // for the given worker or task id.
johnc@3463 828 size_t* count_marked_bytes_array_for(uint worker_id) {
johnc@3463 829 assert(0 <= worker_id && worker_id < _max_task_num, "oob");
johnc@3463 830 assert(_count_marked_bytes != NULL, "uninitialized");
johnc@3463 831 size_t* marked_bytes_array = _count_marked_bytes[worker_id];
johnc@3463 832 assert(marked_bytes_array != NULL, "uninitialized");
johnc@3463 833 return marked_bytes_array;
johnc@3463 834 }
johnc@3463 835
johnc@3463 836 // Returns the index in the liveness accounting card table bitmap
johnc@3463 837 // for the given address
johnc@3463 838 inline BitMap::idx_t card_bitmap_index_for(HeapWord* addr);
johnc@3463 839
johnc@3463 840 // Counts the size of the given memory region in the the given
johnc@3463 841 // marked_bytes array slot for the given HeapRegion.
johnc@3463 842 // Sets the bits in the given card bitmap that are associated with the
johnc@3463 843 // cards that are spanned by the memory region.
johnc@3463 844 inline void count_region(MemRegion mr, HeapRegion* hr,
johnc@3463 845 size_t* marked_bytes_array,
johnc@3463 846 BitMap* task_card_bm);
johnc@3463 847
johnc@3463 848 // Counts the given memory region in the task/worker counting
johnc@3463 849 // data structures for the given worker id.
tonyp@3464 850 inline void count_region(MemRegion mr, HeapRegion* hr, uint worker_id);
tonyp@3464 851
tonyp@3464 852 // Counts the given memory region in the task/worker counting
tonyp@3464 853 // data structures for the given worker id.
johnc@3463 854 inline void count_region(MemRegion mr, uint worker_id);
johnc@3463 855
johnc@3463 856 // Counts the given object in the given task/worker counting
johnc@3463 857 // data structures.
johnc@3463 858 inline void count_object(oop obj, HeapRegion* hr,
johnc@3463 859 size_t* marked_bytes_array,
johnc@3463 860 BitMap* task_card_bm);
johnc@3463 861
johnc@3463 862 // Counts the given object in the task/worker counting data
johnc@3463 863 // structures for the given worker id.
johnc@3463 864 inline void count_object(oop obj, HeapRegion* hr, uint worker_id);
johnc@3463 865
johnc@3463 866 // Attempts to mark the given object and, if successful, counts
johnc@3463 867 // the object in the given task/worker counting structures.
johnc@3463 868 inline bool par_mark_and_count(oop obj, HeapRegion* hr,
johnc@3463 869 size_t* marked_bytes_array,
johnc@3463 870 BitMap* task_card_bm);
johnc@3463 871
johnc@3463 872 // Attempts to mark the given object and, if successful, counts
johnc@3463 873 // the object in the task/worker counting structures for the
johnc@3463 874 // given worker id.
tonyp@3464 875 inline bool par_mark_and_count(oop obj, size_t word_size,
tonyp@3464 876 HeapRegion* hr, uint worker_id);
tonyp@3464 877
tonyp@3464 878 // Attempts to mark the given object and, if successful, counts
tonyp@3464 879 // the object in the task/worker counting structures for the
tonyp@3464 880 // given worker id.
johnc@3463 881 inline bool par_mark_and_count(oop obj, HeapRegion* hr, uint worker_id);
johnc@3463 882
johnc@3463 883 // Similar to the above routine but we don't know the heap region that
johnc@3463 884 // contains the object to be marked/counted, which this routine looks up.
johnc@3463 885 inline bool par_mark_and_count(oop obj, uint worker_id);
johnc@3463 886
johnc@3463 887 // Similar to the above routine but there are times when we cannot
johnc@3463 888 // safely calculate the size of obj due to races and we, therefore,
johnc@3463 889 // pass the size in as a parameter. It is the caller's reponsibility
johnc@3463 890 // to ensure that the size passed in for obj is valid.
johnc@3463 891 inline bool par_mark_and_count(oop obj, size_t word_size, uint worker_id);
johnc@3463 892
johnc@3463 893 // Unconditionally mark the given object, and unconditinally count
johnc@3463 894 // the object in the counting structures for worker id 0.
johnc@3463 895 // Should *not* be called from parallel code.
johnc@3463 896 inline bool mark_and_count(oop obj, HeapRegion* hr);
johnc@3463 897
johnc@3463 898 // Similar to the above routine but we don't know the heap region that
johnc@3463 899 // contains the object to be marked/counted, which this routine looks up.
johnc@3463 900 // Should *not* be called from parallel code.
johnc@3463 901 inline bool mark_and_count(oop obj);
johnc@3463 902
johnc@3463 903 protected:
johnc@3463 904 // Clear all the per-task bitmaps and arrays used to store the
johnc@3463 905 // counting data.
johnc@3463 906 void clear_all_count_data();
johnc@3463 907
johnc@3463 908 // Aggregates the counting data for each worker/task
johnc@3463 909 // that was constructed while marking. Also sets
johnc@3463 910 // the amount of marked bytes for each region and
johnc@3463 911 // the top at concurrent mark count.
johnc@3463 912 void aggregate_count_data();
johnc@3463 913
johnc@3463 914 // Verification routine
johnc@3463 915 void verify_count_data();
ysr@777 916 };
ysr@777 917
ysr@777 918 // A class representing a marking task.
ysr@777 919 class CMTask : public TerminatorTerminator {
ysr@777 920 private:
ysr@777 921 enum PrivateConstants {
ysr@777 922 // the regular clock call is called once the scanned words reaches
ysr@777 923 // this limit
ysr@777 924 words_scanned_period = 12*1024,
ysr@777 925 // the regular clock call is called once the number of visited
ysr@777 926 // references reaches this limit
ysr@777 927 refs_reached_period = 384,
ysr@777 928 // initial value for the hash seed, used in the work stealing code
ysr@777 929 init_hash_seed = 17,
ysr@777 930 // how many entries will be transferred between global stack and
ysr@777 931 // local queues
ysr@777 932 global_stack_transfer_size = 16
ysr@777 933 };
ysr@777 934
ysr@777 935 int _task_id;
ysr@777 936 G1CollectedHeap* _g1h;
ysr@777 937 ConcurrentMark* _cm;
ysr@777 938 CMBitMap* _nextMarkBitMap;
ysr@777 939 // the task queue of this task
ysr@777 940 CMTaskQueue* _task_queue;
ysr@1280 941 private:
ysr@777 942 // the task queue set---needed for stealing
ysr@777 943 CMTaskQueueSet* _task_queues;
ysr@777 944 // indicates whether the task has been claimed---this is only for
ysr@777 945 // debugging purposes
ysr@777 946 bool _claimed;
ysr@777 947
ysr@777 948 // number of calls to this task
ysr@777 949 int _calls;
ysr@777 950
ysr@777 951 // when the virtual timer reaches this time, the marking step should
ysr@777 952 // exit
ysr@777 953 double _time_target_ms;
ysr@777 954 // the start time of the current marking step
ysr@777 955 double _start_time_ms;
ysr@777 956
ysr@777 957 // the oop closure used for iterations over oops
tonyp@2968 958 G1CMOopClosure* _cm_oop_closure;
ysr@777 959
ysr@777 960 // the region this task is scanning, NULL if we're not scanning any
ysr@777 961 HeapRegion* _curr_region;
ysr@777 962 // the local finger of this task, NULL if we're not scanning a region
ysr@777 963 HeapWord* _finger;
ysr@777 964 // limit of the region this task is scanning, NULL if we're not scanning one
ysr@777 965 HeapWord* _region_limit;
ysr@777 966
ysr@777 967 // the number of words this task has scanned
ysr@777 968 size_t _words_scanned;
ysr@777 969 // When _words_scanned reaches this limit, the regular clock is
ysr@777 970 // called. Notice that this might be decreased under certain
ysr@777 971 // circumstances (i.e. when we believe that we did an expensive
ysr@777 972 // operation).
ysr@777 973 size_t _words_scanned_limit;
ysr@777 974 // the initial value of _words_scanned_limit (i.e. what it was
ysr@777 975 // before it was decreased).
ysr@777 976 size_t _real_words_scanned_limit;
ysr@777 977
ysr@777 978 // the number of references this task has visited
ysr@777 979 size_t _refs_reached;
ysr@777 980 // When _refs_reached reaches this limit, the regular clock is
ysr@777 981 // called. Notice this this might be decreased under certain
ysr@777 982 // circumstances (i.e. when we believe that we did an expensive
ysr@777 983 // operation).
ysr@777 984 size_t _refs_reached_limit;
ysr@777 985 // the initial value of _refs_reached_limit (i.e. what it was before
ysr@777 986 // it was decreased).
ysr@777 987 size_t _real_refs_reached_limit;
ysr@777 988
ysr@777 989 // used by the work stealing stuff
ysr@777 990 int _hash_seed;
ysr@777 991 // if this is true, then the task has aborted for some reason
ysr@777 992 bool _has_aborted;
ysr@777 993 // set when the task aborts because it has met its time quota
johnc@2494 994 bool _has_timed_out;
ysr@777 995 // true when we're draining SATB buffers; this avoids the task
ysr@777 996 // aborting due to SATB buffers being available (as we're already
ysr@777 997 // dealing with them)
ysr@777 998 bool _draining_satb_buffers;
ysr@777 999
ysr@777 1000 // number sequence of past step times
ysr@777 1001 NumberSeq _step_times_ms;
ysr@777 1002 // elapsed time of this task
ysr@777 1003 double _elapsed_time_ms;
ysr@777 1004 // termination time of this task
ysr@777 1005 double _termination_time_ms;
ysr@777 1006 // when this task got into the termination protocol
ysr@777 1007 double _termination_start_time_ms;
ysr@777 1008
ysr@777 1009 // true when the task is during a concurrent phase, false when it is
ysr@777 1010 // in the remark phase (so, in the latter case, we do not have to
ysr@777 1011 // check all the things that we have to check during the concurrent
ysr@777 1012 // phase, i.e. SATB buffer availability...)
ysr@777 1013 bool _concurrent;
ysr@777 1014
ysr@777 1015 TruncatedSeq _marking_step_diffs_ms;
ysr@777 1016
johnc@3463 1017 // Counting data structures. Embedding the task's marked_bytes_array
johnc@3463 1018 // and card bitmap into the actual task saves having to go through
johnc@3463 1019 // the ConcurrentMark object.
johnc@3463 1020 size_t* _marked_bytes_array;
johnc@3463 1021 BitMap* _card_bm;
johnc@3463 1022
ysr@777 1023 // LOTS of statistics related with this task
ysr@777 1024 #if _MARKING_STATS_
ysr@777 1025 NumberSeq _all_clock_intervals_ms;
ysr@777 1026 double _interval_start_time_ms;
ysr@777 1027
ysr@777 1028 int _aborted;
ysr@777 1029 int _aborted_overflow;
ysr@777 1030 int _aborted_cm_aborted;
ysr@777 1031 int _aborted_yield;
ysr@777 1032 int _aborted_timed_out;
ysr@777 1033 int _aborted_satb;
ysr@777 1034 int _aborted_termination;
ysr@777 1035
ysr@777 1036 int _steal_attempts;
ysr@777 1037 int _steals;
ysr@777 1038
ysr@777 1039 int _clock_due_to_marking;
ysr@777 1040 int _clock_due_to_scanning;
ysr@777 1041
ysr@777 1042 int _local_pushes;
ysr@777 1043 int _local_pops;
ysr@777 1044 int _local_max_size;
ysr@777 1045 int _objs_scanned;
ysr@777 1046
ysr@777 1047 int _global_pushes;
ysr@777 1048 int _global_pops;
ysr@777 1049 int _global_max_size;
ysr@777 1050
ysr@777 1051 int _global_transfers_to;
ysr@777 1052 int _global_transfers_from;
ysr@777 1053
ysr@777 1054 int _regions_claimed;
ysr@777 1055 int _objs_found_on_bitmap;
ysr@777 1056
ysr@777 1057 int _satb_buffers_processed;
ysr@777 1058 #endif // _MARKING_STATS_
ysr@777 1059
ysr@777 1060 // it updates the local fields after this task has claimed
ysr@777 1061 // a new region to scan
ysr@777 1062 void setup_for_region(HeapRegion* hr);
ysr@777 1063 // it brings up-to-date the limit of the region
ysr@777 1064 void update_region_limit();
ysr@777 1065
ysr@777 1066 // called when either the words scanned or the refs visited limit
ysr@777 1067 // has been reached
ysr@777 1068 void reached_limit();
ysr@777 1069 // recalculates the words scanned and refs visited limits
ysr@777 1070 void recalculate_limits();
ysr@777 1071 // decreases the words scanned and refs visited limits when we reach
ysr@777 1072 // an expensive operation
ysr@777 1073 void decrease_limits();
ysr@777 1074 // it checks whether the words scanned or refs visited reached their
ysr@777 1075 // respective limit and calls reached_limit() if they have
ysr@777 1076 void check_limits() {
ysr@777 1077 if (_words_scanned >= _words_scanned_limit ||
tonyp@2973 1078 _refs_reached >= _refs_reached_limit) {
ysr@777 1079 reached_limit();
tonyp@2973 1080 }
ysr@777 1081 }
ysr@777 1082 // this is supposed to be called regularly during a marking step as
ysr@777 1083 // it checks a bunch of conditions that might cause the marking step
ysr@777 1084 // to abort
ysr@777 1085 void regular_clock_call();
ysr@777 1086 bool concurrent() { return _concurrent; }
ysr@777 1087
ysr@777 1088 public:
ysr@777 1089 // It resets the task; it should be called right at the beginning of
ysr@777 1090 // a marking phase.
ysr@777 1091 void reset(CMBitMap* _nextMarkBitMap);
ysr@777 1092 // it clears all the fields that correspond to a claimed region.
ysr@777 1093 void clear_region_fields();
ysr@777 1094
ysr@777 1095 void set_concurrent(bool concurrent) { _concurrent = concurrent; }
ysr@777 1096
ysr@777 1097 // The main method of this class which performs a marking step
ysr@777 1098 // trying not to exceed the given duration. However, it might exit
ysr@777 1099 // prematurely, according to some conditions (i.e. SATB buffers are
ysr@777 1100 // available for processing).
johnc@2494 1101 void do_marking_step(double target_ms, bool do_stealing, bool do_termination);
ysr@777 1102
ysr@777 1103 // These two calls start and stop the timer
ysr@777 1104 void record_start_time() {
ysr@777 1105 _elapsed_time_ms = os::elapsedTime() * 1000.0;
ysr@777 1106 }
ysr@777 1107 void record_end_time() {
ysr@777 1108 _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
ysr@777 1109 }
ysr@777 1110
ysr@777 1111 // returns the task ID
ysr@777 1112 int task_id() { return _task_id; }
ysr@777 1113
ysr@777 1114 // From TerminatorTerminator. It determines whether this task should
ysr@777 1115 // exit the termination protocol after it's entered it.
ysr@777 1116 virtual bool should_exit_termination();
ysr@777 1117
johnc@2910 1118 // Resets the local region fields after a task has finished scanning a
johnc@2910 1119 // region; or when they have become stale as a result of the region
johnc@2910 1120 // being evacuated.
johnc@2910 1121 void giveup_current_region();
johnc@2910 1122
ysr@777 1123 HeapWord* finger() { return _finger; }
ysr@777 1124
ysr@777 1125 bool has_aborted() { return _has_aborted; }
ysr@777 1126 void set_has_aborted() { _has_aborted = true; }
ysr@777 1127 void clear_has_aborted() { _has_aborted = false; }
johnc@2494 1128 bool has_timed_out() { return _has_timed_out; }
johnc@2494 1129 bool claimed() { return _claimed; }
ysr@777 1130
tonyp@2968 1131 void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
ysr@777 1132
ysr@777 1133 // It grays the object by marking it and, if necessary, pushing it
ysr@777 1134 // on the local queue
tonyp@2968 1135 inline void deal_with_reference(oop obj);
ysr@777 1136
ysr@777 1137 // It scans an object and visits its children.
tonyp@2968 1138 void scan_object(oop obj);
ysr@777 1139
ysr@777 1140 // It pushes an object on the local queue.
tonyp@2968 1141 inline void push(oop obj);
ysr@777 1142
ysr@777 1143 // These two move entries to/from the global stack.
ysr@777 1144 void move_entries_to_global_stack();
ysr@777 1145 void get_entries_from_global_stack();
ysr@777 1146
ysr@777 1147 // It pops and scans objects from the local queue. If partially is
ysr@777 1148 // true, then it stops when the queue size is of a given limit. If
ysr@777 1149 // partially is false, then it stops when the queue is empty.
ysr@777 1150 void drain_local_queue(bool partially);
ysr@777 1151 // It moves entries from the global stack to the local queue and
ysr@777 1152 // drains the local queue. If partially is true, then it stops when
ysr@777 1153 // both the global stack and the local queue reach a given size. If
ysr@777 1154 // partially if false, it tries to empty them totally.
ysr@777 1155 void drain_global_stack(bool partially);
ysr@777 1156 // It keeps picking SATB buffers and processing them until no SATB
ysr@777 1157 // buffers are available.
ysr@777 1158 void drain_satb_buffers();
tonyp@3416 1159
ysr@777 1160 // moves the local finger to a new location
ysr@777 1161 inline void move_finger_to(HeapWord* new_finger) {
tonyp@1458 1162 assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
ysr@777 1163 _finger = new_finger;
ysr@777 1164 }
ysr@777 1165
ysr@777 1166 CMTask(int task_num, ConcurrentMark *cm,
johnc@3463 1167 size_t* marked_bytes, BitMap* card_bm,
ysr@777 1168 CMTaskQueue* task_queue, CMTaskQueueSet* task_queues);
ysr@777 1169
ysr@777 1170 // it prints statistics associated with this task
ysr@777 1171 void print_stats();
ysr@777 1172
ysr@777 1173 #if _MARKING_STATS_
ysr@777 1174 void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
ysr@777 1175 #endif // _MARKING_STATS_
ysr@777 1176 };
stefank@2314 1177
tonyp@2717 1178 // Class that's used to to print out per-region liveness
tonyp@2717 1179 // information. It's currently used at the end of marking and also
tonyp@2717 1180 // after we sort the old regions at the end of the cleanup operation.
tonyp@2717 1181 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
tonyp@2717 1182 private:
tonyp@2717 1183 outputStream* _out;
tonyp@2717 1184
tonyp@2717 1185 // Accumulators for these values.
tonyp@2717 1186 size_t _total_used_bytes;
tonyp@2717 1187 size_t _total_capacity_bytes;
tonyp@2717 1188 size_t _total_prev_live_bytes;
tonyp@2717 1189 size_t _total_next_live_bytes;
tonyp@2717 1190
tonyp@2717 1191 // These are set up when we come across a "stars humongous" region
tonyp@2717 1192 // (as this is where most of this information is stored, not in the
tonyp@2717 1193 // subsequent "continues humongous" regions). After that, for every
tonyp@2717 1194 // region in a given humongous region series we deduce the right
tonyp@2717 1195 // values for it by simply subtracting the appropriate amount from
tonyp@2717 1196 // these fields. All these values should reach 0 after we've visited
tonyp@2717 1197 // the last region in the series.
tonyp@2717 1198 size_t _hum_used_bytes;
tonyp@2717 1199 size_t _hum_capacity_bytes;
tonyp@2717 1200 size_t _hum_prev_live_bytes;
tonyp@2717 1201 size_t _hum_next_live_bytes;
tonyp@2717 1202
tonyp@2717 1203 static double perc(size_t val, size_t total) {
tonyp@2717 1204 if (total == 0) {
tonyp@2717 1205 return 0.0;
tonyp@2717 1206 } else {
tonyp@2717 1207 return 100.0 * ((double) val / (double) total);
tonyp@2717 1208 }
tonyp@2717 1209 }
tonyp@2717 1210
tonyp@2717 1211 static double bytes_to_mb(size_t val) {
tonyp@2717 1212 return (double) val / (double) M;
tonyp@2717 1213 }
tonyp@2717 1214
tonyp@2717 1215 // See the .cpp file.
tonyp@2717 1216 size_t get_hum_bytes(size_t* hum_bytes);
tonyp@2717 1217 void get_hum_bytes(size_t* used_bytes, size_t* capacity_bytes,
tonyp@2717 1218 size_t* prev_live_bytes, size_t* next_live_bytes);
tonyp@2717 1219
tonyp@2717 1220 public:
tonyp@2717 1221 // The header and footer are printed in the constructor and
tonyp@2717 1222 // destructor respectively.
tonyp@2717 1223 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name);
tonyp@2717 1224 virtual bool doHeapRegion(HeapRegion* r);
tonyp@2717 1225 ~G1PrintRegionLivenessInfoClosure();
tonyp@2717 1226 };
tonyp@2717 1227
stefank@2314 1228 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP

mercurial