src/share/vm/adlc/formssel.cpp

Thu, 21 Nov 2013 12:30:35 -0800

author
kvn
date
Thu, 21 Nov 2013 12:30:35 -0800
changeset 6485
da862781b584
parent 6484
318d0622a6d7
child 6489
50fdb38839eb
permissions
-rw-r--r--

Merge

duke@435 1 /*
kvn@3882 2 * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // FORMS.CPP - Definitions for ADL Parser Forms Classes
duke@435 26 #include "adlc.hpp"
duke@435 27
duke@435 28 //==============================Instructions===================================
duke@435 29 //------------------------------InstructForm-----------------------------------
duke@435 30 InstructForm::InstructForm(const char *id, bool ideal_only)
duke@435 31 : _ident(id), _ideal_only(ideal_only),
duke@435 32 _localNames(cmpstr, hashstr, Form::arena),
twisti@2350 33 _effects(cmpstr, hashstr, Form::arena),
roland@3316 34 _is_mach_constant(false),
goetz@6484 35 _needs_constant_base(false),
roland@3316 36 _has_call(false)
twisti@2350 37 {
duke@435 38 _ftype = Form::INS;
duke@435 39
goetz@6478 40 _matrule = NULL;
goetz@6478 41 _insencode = NULL;
goetz@6478 42 _constant = NULL;
goetz@6478 43 _is_postalloc_expand = false;
goetz@6478 44 _opcode = NULL;
goetz@6478 45 _size = NULL;
goetz@6478 46 _attribs = NULL;
goetz@6478 47 _predicate = NULL;
goetz@6478 48 _exprule = NULL;
goetz@6478 49 _rewrule = NULL;
goetz@6478 50 _format = NULL;
goetz@6478 51 _peephole = NULL;
goetz@6478 52 _ins_pipe = NULL;
goetz@6478 53 _uniq_idx = NULL;
goetz@6478 54 _num_uniq = 0;
goetz@6478 55 _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
duke@435 56 _cisc_spill_alternate = NULL; // possible cisc replacement
goetz@6478 57 _cisc_reg_mask_name = NULL;
goetz@6478 58 _is_cisc_alternate = false;
goetz@6478 59 _is_short_branch = false;
goetz@6478 60 _short_branch_form = NULL;
goetz@6478 61 _alignment = 1;
duke@435 62 }
duke@435 63
duke@435 64 InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
duke@435 65 : _ident(id), _ideal_only(false),
duke@435 66 _localNames(instr->_localNames),
twisti@2350 67 _effects(instr->_effects),
roland@3316 68 _is_mach_constant(false),
goetz@6484 69 _needs_constant_base(false),
roland@3316 70 _has_call(false)
twisti@2350 71 {
duke@435 72 _ftype = Form::INS;
duke@435 73
goetz@6478 74 _matrule = rule;
goetz@6478 75 _insencode = instr->_insencode;
goetz@6478 76 _constant = instr->_constant;
goetz@6478 77 _is_postalloc_expand = instr->_is_postalloc_expand;
goetz@6478 78 _opcode = instr->_opcode;
goetz@6478 79 _size = instr->_size;
goetz@6478 80 _attribs = instr->_attribs;
goetz@6478 81 _predicate = instr->_predicate;
goetz@6478 82 _exprule = instr->_exprule;
goetz@6478 83 _rewrule = instr->_rewrule;
goetz@6478 84 _format = instr->_format;
goetz@6478 85 _peephole = instr->_peephole;
goetz@6478 86 _ins_pipe = instr->_ins_pipe;
goetz@6478 87 _uniq_idx = instr->_uniq_idx;
goetz@6478 88 _num_uniq = instr->_num_uniq;
goetz@6478 89 _cisc_spill_operand = Not_cisc_spillable; // Which operand may cisc-spill
goetz@6478 90 _cisc_spill_alternate = NULL; // possible cisc replacement
goetz@6478 91 _cisc_reg_mask_name = NULL;
goetz@6478 92 _is_cisc_alternate = false;
goetz@6478 93 _is_short_branch = false;
goetz@6478 94 _short_branch_form = NULL;
goetz@6478 95 _alignment = 1;
duke@435 96 // Copy parameters
duke@435 97 const char *name;
duke@435 98 instr->_parameters.reset();
duke@435 99 for (; (name = instr->_parameters.iter()) != NULL;)
duke@435 100 _parameters.addName(name);
duke@435 101 }
duke@435 102
duke@435 103 InstructForm::~InstructForm() {
duke@435 104 }
duke@435 105
duke@435 106 InstructForm *InstructForm::is_instruction() const {
duke@435 107 return (InstructForm*)this;
duke@435 108 }
duke@435 109
duke@435 110 bool InstructForm::ideal_only() const {
duke@435 111 return _ideal_only;
duke@435 112 }
duke@435 113
duke@435 114 bool InstructForm::sets_result() const {
duke@435 115 return (_matrule != NULL && _matrule->sets_result());
duke@435 116 }
duke@435 117
duke@435 118 bool InstructForm::needs_projections() {
duke@435 119 _components.reset();
duke@435 120 for( Component *comp; (comp = _components.iter()) != NULL; ) {
duke@435 121 if (comp->isa(Component::KILL)) {
duke@435 122 return true;
duke@435 123 }
duke@435 124 }
duke@435 125 return false;
duke@435 126 }
duke@435 127
duke@435 128
duke@435 129 bool InstructForm::has_temps() {
duke@435 130 if (_matrule) {
duke@435 131 // Examine each component to see if it is a TEMP
duke@435 132 _components.reset();
duke@435 133 // Skip the first component, if already handled as (SET dst (...))
duke@435 134 Component *comp = NULL;
duke@435 135 if (sets_result()) comp = _components.iter();
duke@435 136 while ((comp = _components.iter()) != NULL) {
duke@435 137 if (comp->isa(Component::TEMP)) {
duke@435 138 return true;
duke@435 139 }
duke@435 140 }
duke@435 141 }
duke@435 142
duke@435 143 return false;
duke@435 144 }
duke@435 145
duke@435 146 uint InstructForm::num_defs_or_kills() {
duke@435 147 uint defs_or_kills = 0;
duke@435 148
duke@435 149 _components.reset();
duke@435 150 for( Component *comp; (comp = _components.iter()) != NULL; ) {
duke@435 151 if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
duke@435 152 ++defs_or_kills;
duke@435 153 }
duke@435 154 }
duke@435 155
duke@435 156 return defs_or_kills;
duke@435 157 }
duke@435 158
duke@435 159 // This instruction has an expand rule?
duke@435 160 bool InstructForm::expands() const {
duke@435 161 return ( _exprule != NULL );
duke@435 162 }
duke@435 163
goetz@6478 164 // This instruction has a late expand rule?
goetz@6478 165 bool InstructForm::postalloc_expands() const {
goetz@6478 166 return _is_postalloc_expand;
goetz@6478 167 }
goetz@6478 168
duke@435 169 // This instruction has a peephole rule?
duke@435 170 Peephole *InstructForm::peepholes() const {
duke@435 171 return _peephole;
duke@435 172 }
duke@435 173
duke@435 174 // This instruction has a peephole rule?
duke@435 175 void InstructForm::append_peephole(Peephole *peephole) {
duke@435 176 if( _peephole == NULL ) {
duke@435 177 _peephole = peephole;
duke@435 178 } else {
duke@435 179 _peephole->append_peephole(peephole);
duke@435 180 }
duke@435 181 }
duke@435 182
duke@435 183
duke@435 184 // ideal opcode enumeration
duke@435 185 const char *InstructForm::ideal_Opcode( FormDict &globalNames ) const {
duke@435 186 if( !_matrule ) return "Node"; // Something weird
duke@435 187 // Chain rules do not really have ideal Opcodes; use their source
duke@435 188 // operand ideal Opcode instead.
duke@435 189 if( is_simple_chain_rule(globalNames) ) {
duke@435 190 const char *src = _matrule->_rChild->_opType;
duke@435 191 OperandForm *src_op = globalNames[src]->is_operand();
duke@435 192 assert( src_op, "Not operand class of chain rule" );
duke@435 193 if( !src_op->_matrule ) return "Node";
duke@435 194 return src_op->_matrule->_opType;
duke@435 195 }
duke@435 196 // Operand chain rules do not really have ideal Opcodes
duke@435 197 if( _matrule->is_chain_rule(globalNames) )
duke@435 198 return "Node";
duke@435 199 return strcmp(_matrule->_opType,"Set")
duke@435 200 ? _matrule->_opType
duke@435 201 : _matrule->_rChild->_opType;
duke@435 202 }
duke@435 203
duke@435 204 // Recursive check on all operands' match rules in my match rule
duke@435 205 bool InstructForm::is_pinned(FormDict &globals) {
duke@435 206 if ( ! _matrule) return false;
duke@435 207
duke@435 208 int index = 0;
duke@435 209 if (_matrule->find_type("Goto", index)) return true;
duke@435 210 if (_matrule->find_type("If", index)) return true;
duke@435 211 if (_matrule->find_type("CountedLoopEnd",index)) return true;
duke@435 212 if (_matrule->find_type("Return", index)) return true;
duke@435 213 if (_matrule->find_type("Rethrow", index)) return true;
duke@435 214 if (_matrule->find_type("TailCall", index)) return true;
duke@435 215 if (_matrule->find_type("TailJump", index)) return true;
duke@435 216 if (_matrule->find_type("Halt", index)) return true;
duke@435 217 if (_matrule->find_type("Jump", index)) return true;
duke@435 218
duke@435 219 return is_parm(globals);
duke@435 220 }
duke@435 221
duke@435 222 // Recursive check on all operands' match rules in my match rule
duke@435 223 bool InstructForm::is_projection(FormDict &globals) {
duke@435 224 if ( ! _matrule) return false;
duke@435 225
duke@435 226 int index = 0;
duke@435 227 if (_matrule->find_type("Goto", index)) return true;
duke@435 228 if (_matrule->find_type("Return", index)) return true;
duke@435 229 if (_matrule->find_type("Rethrow", index)) return true;
duke@435 230 if (_matrule->find_type("TailCall",index)) return true;
duke@435 231 if (_matrule->find_type("TailJump",index)) return true;
duke@435 232 if (_matrule->find_type("Halt", index)) return true;
duke@435 233
duke@435 234 return false;
duke@435 235 }
duke@435 236
duke@435 237 // Recursive check on all operands' match rules in my match rule
duke@435 238 bool InstructForm::is_parm(FormDict &globals) {
duke@435 239 if ( ! _matrule) return false;
duke@435 240
duke@435 241 int index = 0;
duke@435 242 if (_matrule->find_type("Parm",index)) return true;
duke@435 243
duke@435 244 return false;
duke@435 245 }
duke@435 246
adlertz@5288 247 bool InstructForm::is_ideal_negD() const {
adlertz@5288 248 return (_matrule && _matrule->_rChild && strcmp(_matrule->_rChild->_opType, "NegD") == 0);
adlertz@5288 249 }
duke@435 250
duke@435 251 // Return 'true' if this instruction matches an ideal 'Copy*' node
duke@435 252 int InstructForm::is_ideal_copy() const {
duke@435 253 return _matrule ? _matrule->is_ideal_copy() : 0;
duke@435 254 }
duke@435 255
duke@435 256 // Return 'true' if this instruction is too complex to rematerialize.
duke@435 257 int InstructForm::is_expensive() const {
duke@435 258 // We can prove it is cheap if it has an empty encoding.
duke@435 259 // This helps with platform-specific nops like ThreadLocal and RoundFloat.
duke@435 260 if (is_empty_encoding())
duke@435 261 return 0;
duke@435 262
duke@435 263 if (is_tls_instruction())
duke@435 264 return 1;
duke@435 265
duke@435 266 if (_matrule == NULL) return 0;
duke@435 267
duke@435 268 return _matrule->is_expensive();
duke@435 269 }
duke@435 270
duke@435 271 // Has an empty encoding if _size is a constant zero or there
duke@435 272 // are no ins_encode tokens.
duke@435 273 int InstructForm::is_empty_encoding() const {
duke@435 274 if (_insencode != NULL) {
duke@435 275 _insencode->reset();
duke@435 276 if (_insencode->encode_class_iter() == NULL) {
duke@435 277 return 1;
duke@435 278 }
duke@435 279 }
duke@435 280 if (_size != NULL && strcmp(_size, "0") == 0) {
duke@435 281 return 1;
duke@435 282 }
duke@435 283 return 0;
duke@435 284 }
duke@435 285
duke@435 286 int InstructForm::is_tls_instruction() const {
duke@435 287 if (_ident != NULL &&
duke@435 288 ( ! strcmp( _ident,"tlsLoadP") ||
duke@435 289 ! strncmp(_ident,"tlsLoadP_",9)) ) {
duke@435 290 return 1;
duke@435 291 }
duke@435 292
duke@435 293 if (_matrule != NULL && _insencode != NULL) {
duke@435 294 const char* opType = _matrule->_opType;
duke@435 295 if (strcmp(opType, "Set")==0)
duke@435 296 opType = _matrule->_rChild->_opType;
duke@435 297 if (strcmp(opType,"ThreadLocal")==0) {
duke@435 298 fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
duke@435 299 (_ident == NULL ? "NULL" : _ident));
duke@435 300 return 1;
duke@435 301 }
duke@435 302 }
duke@435 303
duke@435 304 return 0;
duke@435 305 }
duke@435 306
duke@435 307
duke@435 308 // Return 'true' if this instruction matches an ideal 'If' node
duke@435 309 bool InstructForm::is_ideal_if() const {
duke@435 310 if( _matrule == NULL ) return false;
duke@435 311
duke@435 312 return _matrule->is_ideal_if();
duke@435 313 }
duke@435 314
duke@435 315 // Return 'true' if this instruction matches an ideal 'FastLock' node
duke@435 316 bool InstructForm::is_ideal_fastlock() const {
duke@435 317 if( _matrule == NULL ) return false;
duke@435 318
duke@435 319 return _matrule->is_ideal_fastlock();
duke@435 320 }
duke@435 321
duke@435 322 // Return 'true' if this instruction matches an ideal 'MemBarXXX' node
duke@435 323 bool InstructForm::is_ideal_membar() const {
duke@435 324 if( _matrule == NULL ) return false;
duke@435 325
duke@435 326 return _matrule->is_ideal_membar();
duke@435 327 }
duke@435 328
duke@435 329 // Return 'true' if this instruction matches an ideal 'LoadPC' node
duke@435 330 bool InstructForm::is_ideal_loadPC() const {
duke@435 331 if( _matrule == NULL ) return false;
duke@435 332
duke@435 333 return _matrule->is_ideal_loadPC();
duke@435 334 }
duke@435 335
duke@435 336 // Return 'true' if this instruction matches an ideal 'Box' node
duke@435 337 bool InstructForm::is_ideal_box() const {
duke@435 338 if( _matrule == NULL ) return false;
duke@435 339
duke@435 340 return _matrule->is_ideal_box();
duke@435 341 }
duke@435 342
duke@435 343 // Return 'true' if this instruction matches an ideal 'Goto' node
duke@435 344 bool InstructForm::is_ideal_goto() const {
duke@435 345 if( _matrule == NULL ) return false;
duke@435 346
duke@435 347 return _matrule->is_ideal_goto();
duke@435 348 }
duke@435 349
duke@435 350 // Return 'true' if this instruction matches an ideal 'Jump' node
duke@435 351 bool InstructForm::is_ideal_jump() const {
duke@435 352 if( _matrule == NULL ) return false;
duke@435 353
duke@435 354 return _matrule->is_ideal_jump();
duke@435 355 }
duke@435 356
kvn@3051 357 // Return 'true' if instruction matches ideal 'If' | 'Goto' | 'CountedLoopEnd'
duke@435 358 bool InstructForm::is_ideal_branch() const {
duke@435 359 if( _matrule == NULL ) return false;
duke@435 360
kvn@3051 361 return _matrule->is_ideal_if() || _matrule->is_ideal_goto();
duke@435 362 }
duke@435 363
duke@435 364
duke@435 365 // Return 'true' if this instruction matches an ideal 'Return' node
duke@435 366 bool InstructForm::is_ideal_return() const {
duke@435 367 if( _matrule == NULL ) return false;
duke@435 368
duke@435 369 // Check MatchRule to see if the first entry is the ideal "Return" node
duke@435 370 int index = 0;
duke@435 371 if (_matrule->find_type("Return",index)) return true;
duke@435 372 if (_matrule->find_type("Rethrow",index)) return true;
duke@435 373 if (_matrule->find_type("TailCall",index)) return true;
duke@435 374 if (_matrule->find_type("TailJump",index)) return true;
duke@435 375
duke@435 376 return false;
duke@435 377 }
duke@435 378
duke@435 379 // Return 'true' if this instruction matches an ideal 'Halt' node
duke@435 380 bool InstructForm::is_ideal_halt() const {
duke@435 381 int index = 0;
duke@435 382 return _matrule && _matrule->find_type("Halt",index);
duke@435 383 }
duke@435 384
duke@435 385 // Return 'true' if this instruction matches an ideal 'SafePoint' node
duke@435 386 bool InstructForm::is_ideal_safepoint() const {
duke@435 387 int index = 0;
duke@435 388 return _matrule && _matrule->find_type("SafePoint",index);
duke@435 389 }
duke@435 390
duke@435 391 // Return 'true' if this instruction matches an ideal 'Nop' node
duke@435 392 bool InstructForm::is_ideal_nop() const {
duke@435 393 return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
duke@435 394 }
duke@435 395
duke@435 396 bool InstructForm::is_ideal_control() const {
duke@435 397 if ( ! _matrule) return false;
duke@435 398
kvn@3051 399 return is_ideal_return() || is_ideal_branch() || _matrule->is_ideal_jump() || is_ideal_halt();
duke@435 400 }
duke@435 401
duke@435 402 // Return 'true' if this instruction matches an ideal 'Call' node
duke@435 403 Form::CallType InstructForm::is_ideal_call() const {
duke@435 404 if( _matrule == NULL ) return Form::invalid_type;
duke@435 405
duke@435 406 // Check MatchRule to see if the first entry is the ideal "Call" node
duke@435 407 int idx = 0;
duke@435 408 if(_matrule->find_type("CallStaticJava",idx)) return Form::JAVA_STATIC;
duke@435 409 idx = 0;
duke@435 410 if(_matrule->find_type("Lock",idx)) return Form::JAVA_STATIC;
duke@435 411 idx = 0;
duke@435 412 if(_matrule->find_type("Unlock",idx)) return Form::JAVA_STATIC;
duke@435 413 idx = 0;
duke@435 414 if(_matrule->find_type("CallDynamicJava",idx)) return Form::JAVA_DYNAMIC;
duke@435 415 idx = 0;
duke@435 416 if(_matrule->find_type("CallRuntime",idx)) return Form::JAVA_RUNTIME;
duke@435 417 idx = 0;
duke@435 418 if(_matrule->find_type("CallLeaf",idx)) return Form::JAVA_LEAF;
duke@435 419 idx = 0;
duke@435 420 if(_matrule->find_type("CallLeafNoFP",idx)) return Form::JAVA_LEAF;
duke@435 421 idx = 0;
duke@435 422
duke@435 423 return Form::invalid_type;
duke@435 424 }
duke@435 425
duke@435 426 // Return 'true' if this instruction matches an ideal 'Load?' node
duke@435 427 Form::DataType InstructForm::is_ideal_load() const {
duke@435 428 if( _matrule == NULL ) return Form::none;
duke@435 429
duke@435 430 return _matrule->is_ideal_load();
duke@435 431 }
duke@435 432
never@1290 433 // Return 'true' if this instruction matches an ideal 'LoadKlass' node
never@1290 434 bool InstructForm::skip_antidep_check() const {
never@1290 435 if( _matrule == NULL ) return false;
never@1290 436
never@1290 437 return _matrule->skip_antidep_check();
never@1290 438 }
never@1290 439
duke@435 440 // Return 'true' if this instruction matches an ideal 'Load?' node
duke@435 441 Form::DataType InstructForm::is_ideal_store() const {
duke@435 442 if( _matrule == NULL ) return Form::none;
duke@435 443
duke@435 444 return _matrule->is_ideal_store();
duke@435 445 }
duke@435 446
kvn@3882 447 // Return 'true' if this instruction matches an ideal vector node
kvn@3882 448 bool InstructForm::is_vector() const {
kvn@3882 449 if( _matrule == NULL ) return false;
kvn@3882 450
kvn@3882 451 return _matrule->is_vector();
kvn@3882 452 }
kvn@3882 453
kvn@3882 454
duke@435 455 // Return the input register that must match the output register
duke@435 456 // If this is not required, return 0
duke@435 457 uint InstructForm::two_address(FormDict &globals) {
duke@435 458 uint matching_input = 0;
duke@435 459 if(_components.count() == 0) return 0;
duke@435 460
duke@435 461 _components.reset();
duke@435 462 Component *comp = _components.iter();
duke@435 463 // Check if there is a DEF
duke@435 464 if( comp->isa(Component::DEF) ) {
duke@435 465 // Check that this is a register
duke@435 466 const char *def_type = comp->_type;
duke@435 467 const Form *form = globals[def_type];
duke@435 468 OperandForm *op = form->is_operand();
duke@435 469 if( op ) {
duke@435 470 if( op->constrained_reg_class() != NULL &&
duke@435 471 op->interface_type(globals) == Form::register_interface ) {
duke@435 472 // Remember the local name for equality test later
duke@435 473 const char *def_name = comp->_name;
duke@435 474 // Check if a component has the same name and is a USE
duke@435 475 do {
duke@435 476 if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
duke@435 477 return operand_position_format(def_name);
duke@435 478 }
duke@435 479 } while( (comp = _components.iter()) != NULL);
duke@435 480 }
duke@435 481 }
duke@435 482 }
duke@435 483
duke@435 484 return 0;
duke@435 485 }
duke@435 486
duke@435 487
duke@435 488 // when chaining a constant to an instruction, returns 'true' and sets opType
duke@435 489 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
duke@435 490 const char *dummy = NULL;
duke@435 491 const char *dummy2 = NULL;
duke@435 492 return is_chain_of_constant(globals, dummy, dummy2);
duke@435 493 }
duke@435 494 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
duke@435 495 const char * &opTypeParam) {
duke@435 496 const char *result = NULL;
duke@435 497
duke@435 498 return is_chain_of_constant(globals, opTypeParam, result);
duke@435 499 }
duke@435 500
duke@435 501 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
duke@435 502 const char * &opTypeParam, const char * &resultParam) {
duke@435 503 Form::DataType data_type = Form::none;
duke@435 504 if ( ! _matrule) return data_type;
duke@435 505
duke@435 506 // !!!!!
duke@435 507 // The source of the chain rule is 'position = 1'
duke@435 508 uint position = 1;
duke@435 509 const char *result = NULL;
duke@435 510 const char *name = NULL;
duke@435 511 const char *opType = NULL;
duke@435 512 // Here base_operand is looking for an ideal type to be returned (opType).
duke@435 513 if ( _matrule->is_chain_rule(globals)
duke@435 514 && _matrule->base_operand(position, globals, result, name, opType) ) {
duke@435 515 data_type = ideal_to_const_type(opType);
duke@435 516
duke@435 517 // if it isn't an ideal constant type, just return
duke@435 518 if ( data_type == Form::none ) return data_type;
duke@435 519
duke@435 520 // Ideal constant types also adjust the opType parameter.
duke@435 521 resultParam = result;
duke@435 522 opTypeParam = opType;
duke@435 523 return data_type;
duke@435 524 }
duke@435 525
duke@435 526 return data_type;
duke@435 527 }
duke@435 528
duke@435 529 // Check if a simple chain rule
duke@435 530 bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
duke@435 531 if( _matrule && _matrule->sets_result()
duke@435 532 && _matrule->_rChild->_lChild == NULL
duke@435 533 && globals[_matrule->_rChild->_opType]
duke@435 534 && globals[_matrule->_rChild->_opType]->is_opclass() ) {
duke@435 535 return true;
duke@435 536 }
duke@435 537 return false;
duke@435 538 }
duke@435 539
duke@435 540 // check for structural rematerialization
duke@435 541 bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
duke@435 542 bool rematerialize = false;
duke@435 543
duke@435 544 Form::DataType data_type = is_chain_of_constant(globals);
duke@435 545 if( data_type != Form::none )
duke@435 546 rematerialize = true;
duke@435 547
duke@435 548 // Constants
duke@435 549 if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) )
duke@435 550 rematerialize = true;
duke@435 551
duke@435 552 // Pseudo-constants (values easily available to the runtime)
duke@435 553 if (is_empty_encoding() && is_tls_instruction())
duke@435 554 rematerialize = true;
duke@435 555
duke@435 556 // 1-input, 1-output, such as copies or increments.
duke@435 557 if( _components.count() == 2 &&
duke@435 558 _components[0]->is(Component::DEF) &&
duke@435 559 _components[1]->isa(Component::USE) )
duke@435 560 rematerialize = true;
duke@435 561
duke@435 562 // Check for an ideal 'Load?' and eliminate rematerialize option
duke@435 563 if ( is_ideal_load() != Form::none || // Ideal load? Do not rematerialize
duke@435 564 is_ideal_copy() != Form::none || // Ideal copy? Do not rematerialize
duke@435 565 is_expensive() != Form::none) { // Expensive? Do not rematerialize
duke@435 566 rematerialize = false;
duke@435 567 }
duke@435 568
duke@435 569 // Always rematerialize the flags. They are more expensive to save &
duke@435 570 // restore than to recompute (and possibly spill the compare's inputs).
duke@435 571 if( _components.count() >= 1 ) {
duke@435 572 Component *c = _components[0];
duke@435 573 const Form *form = globals[c->_type];
duke@435 574 OperandForm *opform = form->is_operand();
duke@435 575 if( opform ) {
duke@435 576 // Avoid the special stack_slots register classes
duke@435 577 const char *rc_name = opform->constrained_reg_class();
duke@435 578 if( rc_name ) {
duke@435 579 if( strcmp(rc_name,"stack_slots") ) {
duke@435 580 // Check for ideal_type of RegFlags
duke@435 581 const char *type = opform->ideal_type( globals, registers );
kvn@4161 582 if( (type != NULL) && !strcmp(type, "RegFlags") )
duke@435 583 rematerialize = true;
duke@435 584 } else
duke@435 585 rematerialize = false; // Do not rematerialize things target stk
duke@435 586 }
duke@435 587 }
duke@435 588 }
duke@435 589
duke@435 590 return rematerialize;
duke@435 591 }
duke@435 592
duke@435 593 // loads from memory, so must check for anti-dependence
duke@435 594 bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
never@1290 595 if ( skip_antidep_check() ) return false;
never@1290 596
duke@435 597 // Machine independent loads must be checked for anti-dependences
duke@435 598 if( is_ideal_load() != Form::none ) return true;
duke@435 599
duke@435 600 // !!!!! !!!!! !!!!!
duke@435 601 // TEMPORARY
duke@435 602 // if( is_simple_chain_rule(globals) ) return false;
duke@435 603
cfang@1116 604 // String.(compareTo/equals/indexOf) and Arrays.equals use many memorys edges,
cfang@1116 605 // but writes none
duke@435 606 if( _matrule && _matrule->_rChild &&
cfang@1116 607 ( strcmp(_matrule->_rChild->_opType,"StrComp" )==0 ||
cfang@1116 608 strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 ||
cfang@1116 609 strcmp(_matrule->_rChild->_opType,"StrIndexOf" )==0 ||
cfang@1116 610 strcmp(_matrule->_rChild->_opType,"AryEq" )==0 ))
duke@435 611 return true;
duke@435 612
duke@435 613 // Check if instruction has a USE of a memory operand class, but no defs
duke@435 614 bool USE_of_memory = false;
duke@435 615 bool DEF_of_memory = false;
duke@435 616 Component *comp = NULL;
duke@435 617 ComponentList &components = (ComponentList &)_components;
duke@435 618
duke@435 619 components.reset();
duke@435 620 while( (comp = components.iter()) != NULL ) {
duke@435 621 const Form *form = globals[comp->_type];
duke@435 622 if( !form ) continue;
duke@435 623 OpClassForm *op = form->is_opclass();
duke@435 624 if( !op ) continue;
duke@435 625 if( form->interface_type(globals) == Form::memory_interface ) {
duke@435 626 if( comp->isa(Component::USE) ) USE_of_memory = true;
duke@435 627 if( comp->isa(Component::DEF) ) {
duke@435 628 OperandForm *oper = form->is_operand();
duke@435 629 if( oper && oper->is_user_name_for_sReg() ) {
duke@435 630 // Stack slots are unaliased memory handled by allocator
duke@435 631 oper = oper; // debug stopping point !!!!!
duke@435 632 } else {
duke@435 633 DEF_of_memory = true;
duke@435 634 }
duke@435 635 }
duke@435 636 }
duke@435 637 }
duke@435 638 return (USE_of_memory && !DEF_of_memory);
duke@435 639 }
duke@435 640
duke@435 641
duke@435 642 bool InstructForm::is_wide_memory_kill(FormDict &globals) const {
duke@435 643 if( _matrule == NULL ) return false;
duke@435 644 if( !_matrule->_opType ) return false;
duke@435 645
duke@435 646 if( strcmp(_matrule->_opType,"MemBarRelease") == 0 ) return true;
duke@435 647 if( strcmp(_matrule->_opType,"MemBarAcquire") == 0 ) return true;
roland@3047 648 if( strcmp(_matrule->_opType,"MemBarReleaseLock") == 0 ) return true;
roland@3047 649 if( strcmp(_matrule->_opType,"MemBarAcquireLock") == 0 ) return true;
roland@3392 650 if( strcmp(_matrule->_opType,"MemBarStoreStore") == 0 ) return true;
duke@435 651
duke@435 652 return false;
duke@435 653 }
duke@435 654
duke@435 655 int InstructForm::memory_operand(FormDict &globals) const {
duke@435 656 // Machine independent loads must be checked for anti-dependences
duke@435 657 // Check if instruction has a USE of a memory operand class, or a def.
duke@435 658 int USE_of_memory = 0;
duke@435 659 int DEF_of_memory = 0;
duke@435 660 const char* last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
duke@435 661 Component *unique = NULL;
duke@435 662 Component *comp = NULL;
duke@435 663 ComponentList &components = (ComponentList &)_components;
duke@435 664
duke@435 665 components.reset();
duke@435 666 while( (comp = components.iter()) != NULL ) {
duke@435 667 const Form *form = globals[comp->_type];
duke@435 668 if( !form ) continue;
duke@435 669 OpClassForm *op = form->is_opclass();
duke@435 670 if( !op ) continue;
duke@435 671 if( op->stack_slots_only(globals) ) continue;
duke@435 672 if( form->interface_type(globals) == Form::memory_interface ) {
duke@435 673 if( comp->isa(Component::DEF) ) {
duke@435 674 last_memory_DEF = comp->_name;
duke@435 675 DEF_of_memory++;
duke@435 676 unique = comp;
duke@435 677 } else if( comp->isa(Component::USE) ) {
duke@435 678 if( last_memory_DEF != NULL ) {
duke@435 679 assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
duke@435 680 last_memory_DEF = NULL;
duke@435 681 }
duke@435 682 USE_of_memory++;
duke@435 683 if (DEF_of_memory == 0) // defs take precedence
duke@435 684 unique = comp;
duke@435 685 } else {
duke@435 686 assert(last_memory_DEF == NULL, "unpaired memory DEF");
duke@435 687 }
duke@435 688 }
duke@435 689 }
duke@435 690 assert(last_memory_DEF == NULL, "unpaired memory DEF");
duke@435 691 assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
duke@435 692 USE_of_memory -= DEF_of_memory; // treat paired DEF/USE as one occurrence
duke@435 693 if( (USE_of_memory + DEF_of_memory) > 0 ) {
duke@435 694 if( is_simple_chain_rule(globals) ) {
duke@435 695 //fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
duke@435 696 //((InstructForm*)this)->dump();
duke@435 697 // Preceding code prints nothing on sparc and these insns on intel:
duke@435 698 // leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
duke@435 699 // leaPIdxOff leaPIdxScale leaPIdxScaleOff
duke@435 700 return NO_MEMORY_OPERAND;
duke@435 701 }
duke@435 702
duke@435 703 if( DEF_of_memory == 1 ) {
duke@435 704 assert(unique != NULL, "");
duke@435 705 if( USE_of_memory == 0 ) {
duke@435 706 // unique def, no uses
duke@435 707 } else {
duke@435 708 // // unique def, some uses
duke@435 709 // // must return bottom unless all uses match def
duke@435 710 // unique = NULL;
duke@435 711 }
duke@435 712 } else if( DEF_of_memory > 0 ) {
duke@435 713 // multiple defs, don't care about uses
duke@435 714 unique = NULL;
duke@435 715 } else if( USE_of_memory == 1) {
duke@435 716 // unique use, no defs
duke@435 717 assert(unique != NULL, "");
duke@435 718 } else if( USE_of_memory > 0 ) {
duke@435 719 // multiple uses, no defs
duke@435 720 unique = NULL;
duke@435 721 } else {
duke@435 722 assert(false, "bad case analysis");
duke@435 723 }
duke@435 724 // process the unique DEF or USE, if there is one
duke@435 725 if( unique == NULL ) {
duke@435 726 return MANY_MEMORY_OPERANDS;
duke@435 727 } else {
duke@435 728 int pos = components.operand_position(unique->_name);
duke@435 729 if( unique->isa(Component::DEF) ) {
duke@435 730 pos += 1; // get corresponding USE from DEF
duke@435 731 }
duke@435 732 assert(pos >= 1, "I was just looking at it!");
duke@435 733 return pos;
duke@435 734 }
duke@435 735 }
duke@435 736
duke@435 737 // missed the memory op??
duke@435 738 if( true ) { // %%% should not be necessary
duke@435 739 if( is_ideal_store() != Form::none ) {
duke@435 740 fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
duke@435 741 ((InstructForm*)this)->dump();
duke@435 742 // pretend it has multiple defs and uses
duke@435 743 return MANY_MEMORY_OPERANDS;
duke@435 744 }
duke@435 745 if( is_ideal_load() != Form::none ) {
duke@435 746 fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
duke@435 747 ((InstructForm*)this)->dump();
duke@435 748 // pretend it has multiple uses and no defs
duke@435 749 return MANY_MEMORY_OPERANDS;
duke@435 750 }
duke@435 751 }
duke@435 752
duke@435 753 return NO_MEMORY_OPERAND;
duke@435 754 }
duke@435 755
duke@435 756
duke@435 757 // This instruction captures the machine-independent bottom_type
duke@435 758 // Expected use is for pointer vs oop determination for LoadP
never@1896 759 bool InstructForm::captures_bottom_type(FormDict &globals) const {
duke@435 760 if( _matrule && _matrule->_rChild &&
roland@4159 761 (!strcmp(_matrule->_rChild->_opType,"CastPP") || // new result type
roland@4159 762 !strcmp(_matrule->_rChild->_opType,"CastX2P") || // new result type
roland@4159 763 !strcmp(_matrule->_rChild->_opType,"DecodeN") ||
roland@4159 764 !strcmp(_matrule->_rChild->_opType,"EncodeP") ||
roland@4159 765 !strcmp(_matrule->_rChild->_opType,"DecodeNKlass") ||
roland@4159 766 !strcmp(_matrule->_rChild->_opType,"EncodePKlass") ||
roland@4159 767 !strcmp(_matrule->_rChild->_opType,"LoadN") ||
roland@4159 768 !strcmp(_matrule->_rChild->_opType,"LoadNKlass") ||
roland@4159 769 !strcmp(_matrule->_rChild->_opType,"CreateEx") || // type of exception
roland@4658 770 !strcmp(_matrule->_rChild->_opType,"CheckCastPP") ||
roland@4658 771 !strcmp(_matrule->_rChild->_opType,"GetAndSetP") ||
roland@4658 772 !strcmp(_matrule->_rChild->_opType,"GetAndSetN")) ) return true;
duke@435 773 else if ( is_ideal_load() == Form::idealP ) return true;
duke@435 774 else if ( is_ideal_store() != Form::none ) return true;
duke@435 775
never@1896 776 if (needs_base_oop_edge(globals)) return true;
never@1896 777
kvn@3882 778 if (is_vector()) return true;
kvn@3882 779 if (is_mach_constant()) return true;
kvn@3882 780
duke@435 781 return false;
duke@435 782 }
duke@435 783
duke@435 784
duke@435 785 // Access instr_cost attribute or return NULL.
duke@435 786 const char* InstructForm::cost() {
duke@435 787 for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
duke@435 788 if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
duke@435 789 return cur->_val;
duke@435 790 }
duke@435 791 }
duke@435 792 return NULL;
duke@435 793 }
duke@435 794
duke@435 795 // Return count of top-level operands.
duke@435 796 uint InstructForm::num_opnds() {
duke@435 797 int num_opnds = _components.num_operands();
duke@435 798
duke@435 799 // Need special handling for matching some ideal nodes
duke@435 800 // i.e. Matching a return node
duke@435 801 /*
duke@435 802 if( _matrule ) {
duke@435 803 if( strcmp(_matrule->_opType,"Return" )==0 ||
duke@435 804 strcmp(_matrule->_opType,"Halt" )==0 )
duke@435 805 return 3;
duke@435 806 }
duke@435 807 */
duke@435 808 return num_opnds;
duke@435 809 }
duke@435 810
twisti@5221 811 const char* InstructForm::opnd_ident(int idx) {
kvn@4161 812 return _components.at(idx)->_name;
kvn@4161 813 }
kvn@4161 814
twisti@5221 815 const char* InstructForm::unique_opnd_ident(uint idx) {
kvn@4161 816 uint i;
kvn@4161 817 for (i = 1; i < num_opnds(); ++i) {
kvn@4161 818 if (unique_opnds_idx(i) == idx) {
kvn@4161 819 break;
kvn@4161 820 }
kvn@4161 821 }
kvn@4161 822 return (_components.at(i) != NULL) ? _components.at(i)->_name : "";
kvn@4161 823 }
kvn@4161 824
duke@435 825 // Return count of unmatched operands.
duke@435 826 uint InstructForm::num_post_match_opnds() {
duke@435 827 uint num_post_match_opnds = _components.count();
duke@435 828 uint num_match_opnds = _components.match_count();
duke@435 829 num_post_match_opnds = num_post_match_opnds - num_match_opnds;
duke@435 830
duke@435 831 return num_post_match_opnds;
duke@435 832 }
duke@435 833
duke@435 834 // Return the number of leaves below this complex operand
duke@435 835 uint InstructForm::num_consts(FormDict &globals) const {
duke@435 836 if ( ! _matrule) return 0;
duke@435 837
duke@435 838 // This is a recursive invocation on all operands in the matchrule
duke@435 839 return _matrule->num_consts(globals);
duke@435 840 }
duke@435 841
duke@435 842 // Constants in match rule with specified type
duke@435 843 uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
duke@435 844 if ( ! _matrule) return 0;
duke@435 845
duke@435 846 // This is a recursive invocation on all operands in the matchrule
duke@435 847 return _matrule->num_consts(globals, type);
duke@435 848 }
duke@435 849
duke@435 850
duke@435 851 // Return the register class associated with 'leaf'.
duke@435 852 const char *InstructForm::out_reg_class(FormDict &globals) {
duke@435 853 assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");
duke@435 854
duke@435 855 return NULL;
duke@435 856 }
duke@435 857
duke@435 858
duke@435 859
duke@435 860 // Lookup the starting position of inputs we are interested in wrt. ideal nodes
duke@435 861 uint InstructForm::oper_input_base(FormDict &globals) {
duke@435 862 if( !_matrule ) return 1; // Skip control for most nodes
duke@435 863
duke@435 864 // Need special handling for matching some ideal nodes
duke@435 865 // i.e. Matching a return node
duke@435 866 if( strcmp(_matrule->_opType,"Return" )==0 ||
duke@435 867 strcmp(_matrule->_opType,"Rethrow" )==0 ||
duke@435 868 strcmp(_matrule->_opType,"TailCall" )==0 ||
duke@435 869 strcmp(_matrule->_opType,"TailJump" )==0 ||
duke@435 870 strcmp(_matrule->_opType,"SafePoint" )==0 ||
duke@435 871 strcmp(_matrule->_opType,"Halt" )==0 )
duke@435 872 return AdlcVMDeps::Parms; // Skip the machine-state edges
duke@435 873
duke@435 874 if( _matrule->_rChild &&
kvn@1421 875 ( strcmp(_matrule->_rChild->_opType,"AryEq" )==0 ||
kvn@1421 876 strcmp(_matrule->_rChild->_opType,"StrComp" )==0 ||
cfang@1116 877 strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 ||
kvn@4479 878 strcmp(_matrule->_rChild->_opType,"StrIndexOf")==0 ||
kvn@4479 879 strcmp(_matrule->_rChild->_opType,"EncodeISOArray")==0)) {
kvn@1421 880 // String.(compareTo/equals/indexOf) and Arrays.equals
kvn@4479 881 // and sun.nio.cs.iso8859_1$Encoder.EncodeISOArray
kvn@1421 882 // take 1 control and 1 memory edges.
kvn@1421 883 return 2;
duke@435 884 }
duke@435 885
duke@435 886 // Check for handling of 'Memory' input/edge in the ideal world.
duke@435 887 // The AD file writer is shielded from knowledge of these edges.
duke@435 888 int base = 1; // Skip control
duke@435 889 base += _matrule->needs_ideal_memory_edge(globals);
duke@435 890
duke@435 891 // Also skip the base-oop value for uses of derived oops.
duke@435 892 // The AD file writer is shielded from knowledge of these edges.
duke@435 893 base += needs_base_oop_edge(globals);
duke@435 894
duke@435 895 return base;
duke@435 896 }
duke@435 897
kvn@4161 898 // This function determines the order of the MachOper in _opnds[]
kvn@4161 899 // by writing the operand names into the _components list.
kvn@4161 900 //
duke@435 901 // Implementation does not modify state of internal structures
duke@435 902 void InstructForm::build_components() {
duke@435 903 // Add top-level operands to the components
duke@435 904 if (_matrule) _matrule->append_components(_localNames, _components);
duke@435 905
duke@435 906 // Add parameters that "do not appear in match rule".
duke@435 907 bool has_temp = false;
duke@435 908 const char *name;
duke@435 909 const char *kill_name = NULL;
duke@435 910 for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
duke@435 911 OperandForm *opForm = (OperandForm*)_localNames[name];
duke@435 912
twisti@1038 913 Effect* e = NULL;
twisti@1038 914 {
twisti@1038 915 const Form* form = _effects[name];
twisti@1038 916 e = form ? form->is_effect() : NULL;
twisti@1038 917 }
twisti@1038 918
duke@435 919 if (e != NULL) {
duke@435 920 has_temp |= e->is(Component::TEMP);
duke@435 921
duke@435 922 // KILLs must be declared after any TEMPs because TEMPs are real
duke@435 923 // uses so their operand numbering must directly follow the real
duke@435 924 // inputs from the match rule. Fixing the numbering seems
duke@435 925 // complex so simply enforce the restriction during parse.
duke@435 926 if (kill_name != NULL &&
duke@435 927 e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
duke@435 928 OperandForm* kill = (OperandForm*)_localNames[kill_name];
duke@435 929 globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
duke@435 930 _ident, kill->_ident, kill_name);
never@1037 931 } else if (e->isa(Component::KILL) && !e->isa(Component::USE)) {
duke@435 932 kill_name = name;
duke@435 933 }
duke@435 934 }
duke@435 935
duke@435 936 const Component *component = _components.search(name);
duke@435 937 if ( component == NULL ) {
duke@435 938 if (e) {
duke@435 939 _components.insert(name, opForm->_ident, e->_use_def, false);
duke@435 940 component = _components.search(name);
duke@435 941 if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
duke@435 942 const Form *form = globalAD->globalNames()[component->_type];
duke@435 943 assert( form, "component type must be a defined form");
duke@435 944 OperandForm *op = form->is_operand();
duke@435 945 if (op->_interface && op->_interface->is_RegInterface()) {
duke@435 946 globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
duke@435 947 _ident, opForm->_ident, name);
duke@435 948 }
duke@435 949 }
duke@435 950 } else {
duke@435 951 // This would be a nice warning but it triggers in a few places in a benign way
duke@435 952 // if (_matrule != NULL && !expands()) {
duke@435 953 // globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
duke@435 954 // _ident, opForm->_ident, name);
duke@435 955 // }
duke@435 956 _components.insert(name, opForm->_ident, Component::INVALID, false);
duke@435 957 }
duke@435 958 }
duke@435 959 else if (e) {
duke@435 960 // Component was found in the list
duke@435 961 // Check if there is a new effect that requires an extra component.
duke@435 962 // This happens when adding 'USE' to a component that is not yet one.
duke@435 963 if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
duke@435 964 if (component->isa(Component::USE) && _matrule) {
duke@435 965 const Form *form = globalAD->globalNames()[component->_type];
duke@435 966 assert( form, "component type must be a defined form");
duke@435 967 OperandForm *op = form->is_operand();
duke@435 968 if (op->_interface && op->_interface->is_RegInterface()) {
duke@435 969 globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
duke@435 970 _ident, opForm->_ident, name);
duke@435 971 }
duke@435 972 }
duke@435 973 _components.insert(name, opForm->_ident, e->_use_def, false);
duke@435 974 } else {
duke@435 975 Component *comp = (Component*)component;
duke@435 976 comp->promote_use_def_info(e->_use_def);
duke@435 977 }
duke@435 978 // Component positions are zero based.
duke@435 979 int pos = _components.operand_position(name);
duke@435 980 assert( ! (component->isa(Component::DEF) && (pos >= 1)),
duke@435 981 "Component::DEF can only occur in the first position");
duke@435 982 }
duke@435 983 }
duke@435 984
duke@435 985 // Resolving the interactions between expand rules and TEMPs would
duke@435 986 // be complex so simply disallow it.
duke@435 987 if (_matrule == NULL && has_temp) {
duke@435 988 globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
duke@435 989 }
duke@435 990
duke@435 991 return;
duke@435 992 }
duke@435 993
duke@435 994 // Return zero-based position in component list; -1 if not in list.
duke@435 995 int InstructForm::operand_position(const char *name, int usedef) {
kvn@4161 996 return unique_opnds_idx(_components.operand_position(name, usedef, this));
duke@435 997 }
duke@435 998
duke@435 999 int InstructForm::operand_position_format(const char *name) {
kvn@4161 1000 return unique_opnds_idx(_components.operand_position_format(name, this));
duke@435 1001 }
duke@435 1002
duke@435 1003 // Return zero-based position in component list; -1 if not in list.
duke@435 1004 int InstructForm::label_position() {
duke@435 1005 return unique_opnds_idx(_components.label_position());
duke@435 1006 }
duke@435 1007
duke@435 1008 int InstructForm::method_position() {
duke@435 1009 return unique_opnds_idx(_components.method_position());
duke@435 1010 }
duke@435 1011
duke@435 1012 // Return number of relocation entries needed for this instruction.
duke@435 1013 uint InstructForm::reloc(FormDict &globals) {
duke@435 1014 uint reloc_entries = 0;
duke@435 1015 // Check for "Call" nodes
duke@435 1016 if ( is_ideal_call() ) ++reloc_entries;
duke@435 1017 if ( is_ideal_return() ) ++reloc_entries;
duke@435 1018 if ( is_ideal_safepoint() ) ++reloc_entries;
duke@435 1019
duke@435 1020
duke@435 1021 // Check if operands MAYBE oop pointers, by checking for ConP elements
duke@435 1022 // Proceed through the leaves of the match-tree and check for ConPs
duke@435 1023 if ( _matrule != NULL ) {
duke@435 1024 uint position = 0;
duke@435 1025 const char *result = NULL;
duke@435 1026 const char *name = NULL;
duke@435 1027 const char *opType = NULL;
duke@435 1028 while (_matrule->base_operand(position, globals, result, name, opType)) {
duke@435 1029 if ( strcmp(opType,"ConP") == 0 ) {
duke@435 1030 #ifdef SPARC
duke@435 1031 reloc_entries += 2; // 1 for sethi + 1 for setlo
duke@435 1032 #else
duke@435 1033 ++reloc_entries;
duke@435 1034 #endif
duke@435 1035 }
duke@435 1036 ++position;
duke@435 1037 }
duke@435 1038 }
duke@435 1039
duke@435 1040 // Above is only a conservative estimate
duke@435 1041 // because it did not check contents of operand classes.
duke@435 1042 // !!!!! !!!!!
duke@435 1043 // Add 1 to reloc info for each operand class in the component list.
duke@435 1044 Component *comp;
duke@435 1045 _components.reset();
duke@435 1046 while ( (comp = _components.iter()) != NULL ) {
duke@435 1047 const Form *form = globals[comp->_type];
duke@435 1048 assert( form, "Did not find component's type in global names");
duke@435 1049 const OpClassForm *opc = form->is_opclass();
duke@435 1050 const OperandForm *oper = form->is_operand();
duke@435 1051 if ( opc && (oper == NULL) ) {
duke@435 1052 ++reloc_entries;
duke@435 1053 } else if ( oper ) {
duke@435 1054 // floats and doubles loaded out of method's constant pool require reloc info
duke@435 1055 Form::DataType type = oper->is_base_constant(globals);
duke@435 1056 if ( (type == Form::idealF) || (type == Form::idealD) ) {
duke@435 1057 ++reloc_entries;
duke@435 1058 }
duke@435 1059 }
duke@435 1060 }
duke@435 1061
duke@435 1062 // Float and Double constants may come from the CodeBuffer table
duke@435 1063 // and require relocatable addresses for access
duke@435 1064 // !!!!!
duke@435 1065 // Check for any component being an immediate float or double.
duke@435 1066 Form::DataType data_type = is_chain_of_constant(globals);
duke@435 1067 if( data_type==idealD || data_type==idealF ) {
duke@435 1068 #ifdef SPARC
duke@435 1069 // sparc required more relocation entries for floating constants
duke@435 1070 // (expires 9/98)
duke@435 1071 reloc_entries += 6;
duke@435 1072 #else
duke@435 1073 reloc_entries++;
duke@435 1074 #endif
duke@435 1075 }
duke@435 1076
duke@435 1077 return reloc_entries;
duke@435 1078 }
duke@435 1079
duke@435 1080 // Utility function defined in archDesc.cpp
duke@435 1081 extern bool is_def(int usedef);
duke@435 1082
duke@435 1083 // Return the result of reducing an instruction
duke@435 1084 const char *InstructForm::reduce_result() {
duke@435 1085 const char* result = "Universe"; // default
duke@435 1086 _components.reset();
duke@435 1087 Component *comp = _components.iter();
duke@435 1088 if (comp != NULL && comp->isa(Component::DEF)) {
duke@435 1089 result = comp->_type;
duke@435 1090 // Override this if the rule is a store operation:
duke@435 1091 if (_matrule && _matrule->_rChild &&
duke@435 1092 is_store_to_memory(_matrule->_rChild->_opType))
duke@435 1093 result = "Universe";
duke@435 1094 }
duke@435 1095 return result;
duke@435 1096 }
duke@435 1097
duke@435 1098 // Return the name of the operand on the right hand side of the binary match
duke@435 1099 // Return NULL if there is no right hand side
duke@435 1100 const char *InstructForm::reduce_right(FormDict &globals) const {
duke@435 1101 if( _matrule == NULL ) return NULL;
duke@435 1102 return _matrule->reduce_right(globals);
duke@435 1103 }
duke@435 1104
duke@435 1105 // Similar for left
duke@435 1106 const char *InstructForm::reduce_left(FormDict &globals) const {
duke@435 1107 if( _matrule == NULL ) return NULL;
duke@435 1108 return _matrule->reduce_left(globals);
duke@435 1109 }
duke@435 1110
duke@435 1111
duke@435 1112 // Base class for this instruction, MachNode except for calls
never@1896 1113 const char *InstructForm::mach_base_class(FormDict &globals) const {
duke@435 1114 if( is_ideal_call() == Form::JAVA_STATIC ) {
duke@435 1115 return "MachCallStaticJavaNode";
duke@435 1116 }
duke@435 1117 else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
duke@435 1118 return "MachCallDynamicJavaNode";
duke@435 1119 }
duke@435 1120 else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
duke@435 1121 return "MachCallRuntimeNode";
duke@435 1122 }
duke@435 1123 else if( is_ideal_call() == Form::JAVA_LEAF ) {
duke@435 1124 return "MachCallLeafNode";
duke@435 1125 }
duke@435 1126 else if (is_ideal_return()) {
duke@435 1127 return "MachReturnNode";
duke@435 1128 }
duke@435 1129 else if (is_ideal_halt()) {
duke@435 1130 return "MachHaltNode";
duke@435 1131 }
duke@435 1132 else if (is_ideal_safepoint()) {
duke@435 1133 return "MachSafePointNode";
duke@435 1134 }
duke@435 1135 else if (is_ideal_if()) {
duke@435 1136 return "MachIfNode";
duke@435 1137 }
kvn@3040 1138 else if (is_ideal_goto()) {
kvn@3040 1139 return "MachGotoNode";
kvn@3040 1140 }
duke@435 1141 else if (is_ideal_fastlock()) {
duke@435 1142 return "MachFastLockNode";
duke@435 1143 }
duke@435 1144 else if (is_ideal_nop()) {
duke@435 1145 return "MachNopNode";
duke@435 1146 }
twisti@2350 1147 else if (is_mach_constant()) {
twisti@2350 1148 return "MachConstantNode";
twisti@2350 1149 }
never@1896 1150 else if (captures_bottom_type(globals)) {
duke@435 1151 return "MachTypeNode";
duke@435 1152 } else {
duke@435 1153 return "MachNode";
duke@435 1154 }
duke@435 1155 assert( false, "ShouldNotReachHere()");
duke@435 1156 return NULL;
duke@435 1157 }
duke@435 1158
duke@435 1159 // Compare the instruction predicates for textual equality
duke@435 1160 bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
duke@435 1161 const Predicate *pred1 = instr1->_predicate;
duke@435 1162 const Predicate *pred2 = instr2->_predicate;
duke@435 1163 if( pred1 == NULL && pred2 == NULL ) {
duke@435 1164 // no predicates means they are identical
duke@435 1165 return true;
duke@435 1166 }
duke@435 1167 if( pred1 != NULL && pred2 != NULL ) {
duke@435 1168 // compare the predicates
jrose@910 1169 if (ADLParser::equivalent_expressions(pred1->_pred, pred2->_pred)) {
duke@435 1170 return true;
duke@435 1171 }
duke@435 1172 }
duke@435 1173
duke@435 1174 return false;
duke@435 1175 }
duke@435 1176
duke@435 1177 // Check if this instruction can cisc-spill to 'alternate'
duke@435 1178 bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
duke@435 1179 assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
duke@435 1180 // Do not replace if a cisc-version has been found.
duke@435 1181 if( cisc_spill_operand() != Not_cisc_spillable ) return false;
duke@435 1182
duke@435 1183 int cisc_spill_operand = Maybe_cisc_spillable;
duke@435 1184 char *result = NULL;
duke@435 1185 char *result2 = NULL;
duke@435 1186 const char *op_name = NULL;
duke@435 1187 const char *reg_type = NULL;
duke@435 1188 FormDict &globals = AD.globalNames();
twisti@1038 1189 cisc_spill_operand = _matrule->matchrule_cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
duke@435 1190 if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
duke@435 1191 cisc_spill_operand = operand_position(op_name, Component::USE);
duke@435 1192 int def_oper = operand_position(op_name, Component::DEF);
duke@435 1193 if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
duke@435 1194 // Do not support cisc-spilling for destination operands and
duke@435 1195 // make sure they have the same number of operands.
duke@435 1196 _cisc_spill_alternate = instr;
duke@435 1197 instr->set_cisc_alternate(true);
duke@435 1198 if( AD._cisc_spill_debug ) {
duke@435 1199 fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
duke@435 1200 fprintf(stderr, " using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
duke@435 1201 }
duke@435 1202 // Record that a stack-version of the reg_mask is needed
duke@435 1203 // !!!!!
duke@435 1204 OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
duke@435 1205 assert( oper != NULL, "cisc-spilling non operand");
duke@435 1206 const char *reg_class_name = oper->constrained_reg_class();
duke@435 1207 AD.set_stack_or_reg(reg_class_name);
duke@435 1208 const char *reg_mask_name = AD.reg_mask(*oper);
duke@435 1209 set_cisc_reg_mask_name(reg_mask_name);
duke@435 1210 const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
duke@435 1211 } else {
duke@435 1212 cisc_spill_operand = Not_cisc_spillable;
duke@435 1213 }
duke@435 1214 } else {
duke@435 1215 cisc_spill_operand = Not_cisc_spillable;
duke@435 1216 }
duke@435 1217
duke@435 1218 set_cisc_spill_operand(cisc_spill_operand);
duke@435 1219 return (cisc_spill_operand != Not_cisc_spillable);
duke@435 1220 }
duke@435 1221
duke@435 1222 // Check to see if this instruction can be replaced with the short branch
duke@435 1223 // instruction `short-branch'
duke@435 1224 bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
duke@435 1225 if (_matrule != NULL &&
duke@435 1226 this != short_branch && // Don't match myself
duke@435 1227 !is_short_branch() && // Don't match another short branch variant
duke@435 1228 reduce_result() != NULL &&
duke@435 1229 strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
duke@435 1230 _matrule->equivalent(AD.globalNames(), short_branch->_matrule)) {
duke@435 1231 // The instructions are equivalent.
kvn@3049 1232
kvn@3049 1233 // Now verify that both instructions have the same parameters and
kvn@3049 1234 // the same effects. Both branch forms should have the same inputs
kvn@3049 1235 // and resulting projections to correctly replace a long branch node
kvn@3049 1236 // with corresponding short branch node during code generation.
kvn@3049 1237
kvn@3049 1238 bool different = false;
kvn@3049 1239 if (short_branch->_components.count() != _components.count()) {
kvn@3049 1240 different = true;
kvn@3049 1241 } else if (_components.count() > 0) {
kvn@3049 1242 short_branch->_components.reset();
kvn@3049 1243 _components.reset();
kvn@3049 1244 Component *comp;
kvn@3049 1245 while ((comp = _components.iter()) != NULL) {
kvn@3049 1246 Component *short_comp = short_branch->_components.iter();
kvn@3049 1247 if (short_comp == NULL ||
kvn@3049 1248 short_comp->_type != comp->_type ||
kvn@3049 1249 short_comp->_usedef != comp->_usedef) {
kvn@3049 1250 different = true;
kvn@3049 1251 break;
kvn@3049 1252 }
kvn@3049 1253 }
kvn@3049 1254 if (short_branch->_components.iter() != NULL)
kvn@3049 1255 different = true;
kvn@3049 1256 }
kvn@3049 1257 if (different) {
kvn@3049 1258 globalAD->syntax_err(short_branch->_linenum, "Instruction %s and its short form %s have different parameters\n", _ident, short_branch->_ident);
kvn@3049 1259 }
kvn@4161 1260 if (AD._adl_debug > 1 || AD._short_branch_debug) {
duke@435 1261 fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
duke@435 1262 }
duke@435 1263 _short_branch_form = short_branch;
duke@435 1264 return true;
duke@435 1265 }
duke@435 1266 return false;
duke@435 1267 }
duke@435 1268
duke@435 1269
duke@435 1270 // --------------------------- FILE *output_routines
duke@435 1271 //
duke@435 1272 // Generate the format call for the replacement variable
duke@435 1273 void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
twisti@2350 1274 // Handle special constant table variables.
twisti@2350 1275 if (strcmp(rep_var, "constanttablebase") == 0) {
twisti@2350 1276 fprintf(fp, "char reg[128]; ra->dump_register(in(mach_constant_base_node_input()), reg);\n");
roland@3161 1277 fprintf(fp, " st->print(\"%%s\", reg);\n");
twisti@2350 1278 return;
twisti@2350 1279 }
twisti@2350 1280 if (strcmp(rep_var, "constantoffset") == 0) {
goetz@6481 1281 fprintf(fp, "st->print(\"#%%d\", constant_offset_unchecked());\n");
twisti@2350 1282 return;
twisti@2350 1283 }
twisti@2350 1284 if (strcmp(rep_var, "constantaddress") == 0) {
goetz@6481 1285 fprintf(fp, "st->print(\"constant table base + #%%d\", constant_offset_unchecked());\n");
twisti@2350 1286 return;
twisti@2350 1287 }
twisti@2350 1288
duke@435 1289 // Find replacement variable's type
duke@435 1290 const Form *form = _localNames[rep_var];
duke@435 1291 if (form == NULL) {
kvn@4161 1292 globalAD->syntax_err(_linenum, "Unknown replacement variable %s in format statement of %s.",
kvn@4161 1293 rep_var, _ident);
kvn@4161 1294 return;
duke@435 1295 }
duke@435 1296 OpClassForm *opc = form->is_opclass();
duke@435 1297 assert( opc, "replacement variable was not found in local names");
duke@435 1298 // Lookup the index position of the replacement variable
duke@435 1299 int idx = operand_position_format(rep_var);
duke@435 1300 if ( idx == -1 ) {
kvn@4161 1301 globalAD->syntax_err(_linenum, "Could not find replacement variable %s in format statement of %s.\n",
kvn@4161 1302 rep_var, _ident);
kvn@4161 1303 assert(strcmp(opc->_ident, "label") == 0, "Unimplemented");
kvn@4161 1304 return;
duke@435 1305 }
duke@435 1306
duke@435 1307 if (is_noninput_operand(idx)) {
duke@435 1308 // This component isn't in the input array. Print out the static
duke@435 1309 // name of the register.
duke@435 1310 OperandForm* oper = form->is_operand();
duke@435 1311 if (oper != NULL && oper->is_bound_register()) {
duke@435 1312 const RegDef* first = oper->get_RegClass()->find_first_elem();
kvn@4161 1313 fprintf(fp, " st->print(\"%s\");\n", first->_regname);
duke@435 1314 } else {
duke@435 1315 globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
duke@435 1316 }
duke@435 1317 } else {
duke@435 1318 // Output the format call for this operand
duke@435 1319 fprintf(fp,"opnd_array(%d)->",idx);
duke@435 1320 if (idx == 0)
duke@435 1321 fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
duke@435 1322 else
duke@435 1323 fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
duke@435 1324 }
duke@435 1325 }
duke@435 1326
duke@435 1327 // Seach through operands to determine parameters unique positions.
duke@435 1328 void InstructForm::set_unique_opnds() {
duke@435 1329 uint* uniq_idx = NULL;
twisti@5221 1330 uint nopnds = num_opnds();
duke@435 1331 uint num_uniq = nopnds;
twisti@5221 1332 uint i;
never@1034 1333 _uniq_idx_length = 0;
twisti@5221 1334 if (nopnds > 0) {
never@1034 1335 // Allocate index array. Worst case we're mapping from each
never@1034 1336 // component back to an index and any DEF always goes at 0 so the
never@1034 1337 // length of the array has to be the number of components + 1.
never@1034 1338 _uniq_idx_length = _components.count() + 1;
twisti@5221 1339 uniq_idx = (uint*) malloc(sizeof(uint) * _uniq_idx_length);
twisti@5221 1340 for (i = 0; i < _uniq_idx_length; i++) {
duke@435 1341 uniq_idx[i] = i;
duke@435 1342 }
duke@435 1343 }
duke@435 1344 // Do it only if there is a match rule and no expand rule. With an
duke@435 1345 // expand rule it is done by creating new mach node in Expand()
duke@435 1346 // method.
twisti@5221 1347 if (nopnds > 0 && _matrule != NULL && _exprule == NULL) {
duke@435 1348 const char *name;
duke@435 1349 uint count;
duke@435 1350 bool has_dupl_use = false;
duke@435 1351
duke@435 1352 _parameters.reset();
twisti@5221 1353 while ((name = _parameters.iter()) != NULL) {
duke@435 1354 count = 0;
twisti@5221 1355 uint position = 0;
twisti@5221 1356 uint uniq_position = 0;
duke@435 1357 _components.reset();
duke@435 1358 Component *comp = NULL;
twisti@5221 1359 if (sets_result()) {
duke@435 1360 comp = _components.iter();
duke@435 1361 position++;
duke@435 1362 }
duke@435 1363 // The next code is copied from the method operand_position().
duke@435 1364 for (; (comp = _components.iter()) != NULL; ++position) {
duke@435 1365 // When the first component is not a DEF,
duke@435 1366 // leave space for the result operand!
twisti@5221 1367 if (position==0 && (!comp->isa(Component::DEF))) {
duke@435 1368 ++position;
duke@435 1369 }
twisti@5221 1370 if (strcmp(name, comp->_name) == 0) {
twisti@5221 1371 if (++count > 1) {
never@1034 1372 assert(position < _uniq_idx_length, "out of bounds");
duke@435 1373 uniq_idx[position] = uniq_position;
duke@435 1374 has_dupl_use = true;
duke@435 1375 } else {
duke@435 1376 uniq_position = position;
duke@435 1377 }
duke@435 1378 }
twisti@5221 1379 if (comp->isa(Component::DEF) && comp->isa(Component::USE)) {
duke@435 1380 ++position;
twisti@5221 1381 if (position != 1)
duke@435 1382 --position; // only use two slots for the 1st USE_DEF
duke@435 1383 }
duke@435 1384 }
duke@435 1385 }
twisti@5221 1386 if (has_dupl_use) {
twisti@5221 1387 for (i = 1; i < nopnds; i++) {
twisti@5221 1388 if (i != uniq_idx[i]) {
duke@435 1389 break;
twisti@5221 1390 }
twisti@5221 1391 }
twisti@5221 1392 uint j = i;
twisti@5221 1393 for (; i < nopnds; i++) {
twisti@5221 1394 if (i == uniq_idx[i]) {
duke@435 1395 uniq_idx[i] = j++;
twisti@5221 1396 }
twisti@5221 1397 }
duke@435 1398 num_uniq = j;
duke@435 1399 }
duke@435 1400 }
duke@435 1401 _uniq_idx = uniq_idx;
duke@435 1402 _num_uniq = num_uniq;
duke@435 1403 }
duke@435 1404
twisti@1040 1405 // Generate index values needed for determining the operand position
duke@435 1406 void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
duke@435 1407 uint idx = 0; // position of operand in match rule
duke@435 1408 int cur_num_opnds = num_opnds();
duke@435 1409
duke@435 1410 // Compute the index into vector of operand pointers:
duke@435 1411 // idx0=0 is used to indicate that info comes from this same node, not from input edge.
duke@435 1412 // idx1 starts at oper_input_base()
duke@435 1413 if ( cur_num_opnds >= 1 ) {
kvn@4161 1414 fprintf(fp," // Start at oper_input_base() and count operands\n");
kvn@4161 1415 fprintf(fp," unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
kvn@4161 1416 fprintf(fp," unsigned %sidx1 = %d;", prefix, oper_input_base(globals));
kvn@4161 1417 fprintf(fp," \t// %s\n", unique_opnd_ident(1));
duke@435 1418
duke@435 1419 // Generate starting points for other unique operands if they exist
duke@435 1420 for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
duke@435 1421 if( *receiver == 0 ) {
kvn@4161 1422 fprintf(fp," unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();",
duke@435 1423 prefix, idx, prefix, idx-1, idx-1 );
duke@435 1424 } else {
kvn@4161 1425 fprintf(fp," unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();",
duke@435 1426 prefix, idx, prefix, idx-1, receiver, idx-1 );
duke@435 1427 }
kvn@4161 1428 fprintf(fp," \t// %s\n", unique_opnd_ident(idx));
duke@435 1429 }
duke@435 1430 }
duke@435 1431 if( *receiver != 0 ) {
duke@435 1432 // This value is used by generate_peepreplace when copying a node.
duke@435 1433 // Don't emit it in other cases since it can hide bugs with the
duke@435 1434 // use invalid idx's.
kvn@4161 1435 fprintf(fp," unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
duke@435 1436 }
duke@435 1437
duke@435 1438 }
duke@435 1439
duke@435 1440 // ---------------------------
duke@435 1441 bool InstructForm::verify() {
duke@435 1442 // !!!!! !!!!!
duke@435 1443 // Check that a "label" operand occurs last in the operand list, if present
duke@435 1444 return true;
duke@435 1445 }
duke@435 1446
duke@435 1447 void InstructForm::dump() {
duke@435 1448 output(stderr);
duke@435 1449 }
duke@435 1450
duke@435 1451 void InstructForm::output(FILE *fp) {
duke@435 1452 fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
duke@435 1453 if (_matrule) _matrule->output(fp);
duke@435 1454 if (_insencode) _insencode->output(fp);
twisti@2350 1455 if (_constant) _constant->output(fp);
duke@435 1456 if (_opcode) _opcode->output(fp);
duke@435 1457 if (_attribs) _attribs->output(fp);
duke@435 1458 if (_predicate) _predicate->output(fp);
duke@435 1459 if (_effects.Size()) {
duke@435 1460 fprintf(fp,"Effects\n");
duke@435 1461 _effects.dump();
duke@435 1462 }
duke@435 1463 if (_exprule) _exprule->output(fp);
duke@435 1464 if (_rewrule) _rewrule->output(fp);
duke@435 1465 if (_format) _format->output(fp);
duke@435 1466 if (_peephole) _peephole->output(fp);
duke@435 1467 }
duke@435 1468
duke@435 1469 void MachNodeForm::dump() {
duke@435 1470 output(stderr);
duke@435 1471 }
duke@435 1472
duke@435 1473 void MachNodeForm::output(FILE *fp) {
duke@435 1474 fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
duke@435 1475 }
duke@435 1476
duke@435 1477 //------------------------------build_predicate--------------------------------
duke@435 1478 // Build instruction predicates. If the user uses the same operand name
duke@435 1479 // twice, we need to check that the operands are pointer-eequivalent in
duke@435 1480 // the DFA during the labeling process.
duke@435 1481 Predicate *InstructForm::build_predicate() {
duke@435 1482 char buf[1024], *s=buf;
duke@435 1483 Dict names(cmpstr,hashstr,Form::arena); // Map Names to counts
duke@435 1484
duke@435 1485 MatchNode *mnode =
duke@435 1486 strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
duke@435 1487 mnode->count_instr_names(names);
duke@435 1488
duke@435 1489 uint first = 1;
duke@435 1490 // Start with the predicate supplied in the .ad file.
duke@435 1491 if( _predicate ) {
duke@435 1492 if( first ) first=0;
duke@435 1493 strcpy(s,"("); s += strlen(s);
duke@435 1494 strcpy(s,_predicate->_pred);
duke@435 1495 s += strlen(s);
duke@435 1496 strcpy(s,")"); s += strlen(s);
duke@435 1497 }
duke@435 1498 for( DictI i(&names); i.test(); ++i ) {
duke@435 1499 uintptr_t cnt = (uintptr_t)i._value;
duke@435 1500 if( cnt > 1 ) { // Need a predicate at all?
duke@435 1501 assert( cnt == 2, "Unimplemented" );
duke@435 1502 // Handle many pairs
duke@435 1503 if( first ) first=0;
duke@435 1504 else { // All tests must pass, so use '&&'
duke@435 1505 strcpy(s," && ");
duke@435 1506 s += strlen(s);
duke@435 1507 }
duke@435 1508 // Add predicate to working buffer
duke@435 1509 sprintf(s,"/*%s*/(",(char*)i._key);
duke@435 1510 s += strlen(s);
duke@435 1511 mnode->build_instr_pred(s,(char*)i._key,0);
duke@435 1512 s += strlen(s);
duke@435 1513 strcpy(s," == "); s += strlen(s);
duke@435 1514 mnode->build_instr_pred(s,(char*)i._key,1);
duke@435 1515 s += strlen(s);
duke@435 1516 strcpy(s,")"); s += strlen(s);
duke@435 1517 }
duke@435 1518 }
duke@435 1519 if( s == buf ) s = NULL;
duke@435 1520 else {
duke@435 1521 assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
duke@435 1522 s = strdup(buf);
duke@435 1523 }
duke@435 1524 return new Predicate(s);
duke@435 1525 }
duke@435 1526
duke@435 1527 //------------------------------EncodeForm-------------------------------------
duke@435 1528 // Constructor
duke@435 1529 EncodeForm::EncodeForm()
duke@435 1530 : _encClass(cmpstr,hashstr, Form::arena) {
duke@435 1531 }
duke@435 1532 EncodeForm::~EncodeForm() {
duke@435 1533 }
duke@435 1534
duke@435 1535 // record a new register class
duke@435 1536 EncClass *EncodeForm::add_EncClass(const char *className) {
duke@435 1537 EncClass *encClass = new EncClass(className);
duke@435 1538 _eclasses.addName(className);
duke@435 1539 _encClass.Insert(className,encClass);
duke@435 1540 return encClass;
duke@435 1541 }
duke@435 1542
duke@435 1543 // Lookup the function body for an encoding class
duke@435 1544 EncClass *EncodeForm::encClass(const char *className) {
duke@435 1545 assert( className != NULL, "Must provide a defined encoding name");
duke@435 1546
duke@435 1547 EncClass *encClass = (EncClass*)_encClass[className];
duke@435 1548 return encClass;
duke@435 1549 }
duke@435 1550
duke@435 1551 // Lookup the function body for an encoding class
duke@435 1552 const char *EncodeForm::encClassBody(const char *className) {
duke@435 1553 if( className == NULL ) return NULL;
duke@435 1554
duke@435 1555 EncClass *encClass = (EncClass*)_encClass[className];
duke@435 1556 assert( encClass != NULL, "Encode Class is missing.");
duke@435 1557 encClass->_code.reset();
duke@435 1558 const char *code = (const char*)encClass->_code.iter();
duke@435 1559 assert( code != NULL, "Found an empty encode class body.");
duke@435 1560
duke@435 1561 return code;
duke@435 1562 }
duke@435 1563
duke@435 1564 // Lookup the function body for an encoding class
duke@435 1565 const char *EncodeForm::encClassPrototype(const char *className) {
duke@435 1566 assert( className != NULL, "Encode class name must be non NULL.");
duke@435 1567
duke@435 1568 return className;
duke@435 1569 }
duke@435 1570
duke@435 1571 void EncodeForm::dump() { // Debug printer
duke@435 1572 output(stderr);
duke@435 1573 }
duke@435 1574
duke@435 1575 void EncodeForm::output(FILE *fp) { // Write info to output files
duke@435 1576 const char *name;
duke@435 1577 fprintf(fp,"\n");
duke@435 1578 fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
duke@435 1579 for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
duke@435 1580 ((EncClass*)_encClass[name])->output(fp);
duke@435 1581 }
duke@435 1582 fprintf(fp,"-------------------- end EncodeForm --------------------\n");
duke@435 1583 }
duke@435 1584 //------------------------------EncClass---------------------------------------
duke@435 1585 EncClass::EncClass(const char *name)
duke@435 1586 : _localNames(cmpstr,hashstr, Form::arena), _name(name) {
duke@435 1587 }
duke@435 1588 EncClass::~EncClass() {
duke@435 1589 }
duke@435 1590
duke@435 1591 // Add a parameter <type,name> pair
duke@435 1592 void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
duke@435 1593 _parameter_type.addName( parameter_type );
duke@435 1594 _parameter_name.addName( parameter_name );
duke@435 1595 }
duke@435 1596
duke@435 1597 // Verify operand types in parameter list
duke@435 1598 bool EncClass::check_parameter_types(FormDict &globals) {
duke@435 1599 // !!!!!
duke@435 1600 return false;
duke@435 1601 }
duke@435 1602
duke@435 1603 // Add the decomposed "code" sections of an encoding's code-block
duke@435 1604 void EncClass::add_code(const char *code) {
duke@435 1605 _code.addName(code);
duke@435 1606 }
duke@435 1607
duke@435 1608 // Add the decomposed "replacement variables" of an encoding's code-block
duke@435 1609 void EncClass::add_rep_var(char *replacement_var) {
duke@435 1610 _code.addName(NameList::_signal);
duke@435 1611 _rep_vars.addName(replacement_var);
duke@435 1612 }
duke@435 1613
duke@435 1614 // Lookup the function body for an encoding class
duke@435 1615 int EncClass::rep_var_index(const char *rep_var) {
duke@435 1616 uint position = 0;
duke@435 1617 const char *name = NULL;
duke@435 1618
duke@435 1619 _parameter_name.reset();
duke@435 1620 while ( (name = _parameter_name.iter()) != NULL ) {
duke@435 1621 if ( strcmp(rep_var,name) == 0 ) return position;
duke@435 1622 ++position;
duke@435 1623 }
duke@435 1624
duke@435 1625 return -1;
duke@435 1626 }
duke@435 1627
duke@435 1628 // Check after parsing
duke@435 1629 bool EncClass::verify() {
duke@435 1630 // 1!!!!
duke@435 1631 // Check that each replacement variable, '$name' in architecture description
duke@435 1632 // is actually a local variable for this encode class, or a reserved name
duke@435 1633 // "primary, secondary, tertiary"
duke@435 1634 return true;
duke@435 1635 }
duke@435 1636
duke@435 1637 void EncClass::dump() {
duke@435 1638 output(stderr);
duke@435 1639 }
duke@435 1640
duke@435 1641 // Write info to output files
duke@435 1642 void EncClass::output(FILE *fp) {
duke@435 1643 fprintf(fp,"EncClass: %s", (_name ? _name : ""));
duke@435 1644
duke@435 1645 // Output the parameter list
duke@435 1646 _parameter_type.reset();
duke@435 1647 _parameter_name.reset();
duke@435 1648 const char *type = _parameter_type.iter();
duke@435 1649 const char *name = _parameter_name.iter();
duke@435 1650 fprintf(fp, " ( ");
duke@435 1651 for ( ; (type != NULL) && (name != NULL);
duke@435 1652 (type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
duke@435 1653 fprintf(fp, " %s %s,", type, name);
duke@435 1654 }
duke@435 1655 fprintf(fp, " ) ");
duke@435 1656
duke@435 1657 // Output the code block
duke@435 1658 _code.reset();
duke@435 1659 _rep_vars.reset();
duke@435 1660 const char *code;
duke@435 1661 while ( (code = _code.iter()) != NULL ) {
duke@435 1662 if ( _code.is_signal(code) ) {
duke@435 1663 // A replacement variable
duke@435 1664 const char *rep_var = _rep_vars.iter();
duke@435 1665 fprintf(fp,"($%s)", rep_var);
duke@435 1666 } else {
duke@435 1667 // A section of code
duke@435 1668 fprintf(fp,"%s", code);
duke@435 1669 }
duke@435 1670 }
duke@435 1671
duke@435 1672 }
duke@435 1673
duke@435 1674 //------------------------------Opcode-----------------------------------------
duke@435 1675 Opcode::Opcode(char *primary, char *secondary, char *tertiary)
duke@435 1676 : _primary(primary), _secondary(secondary), _tertiary(tertiary) {
duke@435 1677 }
duke@435 1678
duke@435 1679 Opcode::~Opcode() {
duke@435 1680 }
duke@435 1681
duke@435 1682 Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
duke@435 1683 if( strcmp(param,"primary") == 0 ) {
duke@435 1684 return Opcode::PRIMARY;
duke@435 1685 }
duke@435 1686 else if( strcmp(param,"secondary") == 0 ) {
duke@435 1687 return Opcode::SECONDARY;
duke@435 1688 }
duke@435 1689 else if( strcmp(param,"tertiary") == 0 ) {
duke@435 1690 return Opcode::TERTIARY;
duke@435 1691 }
duke@435 1692 return Opcode::NOT_AN_OPCODE;
duke@435 1693 }
duke@435 1694
never@850 1695 bool Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
duke@435 1696 // Default values previously provided by MachNode::primary()...
never@850 1697 const char *description = NULL;
never@850 1698 const char *value = NULL;
duke@435 1699 // Check if user provided any opcode definitions
duke@435 1700 if( this != NULL ) {
duke@435 1701 // Update 'value' if user provided a definition in the instruction
duke@435 1702 switch (desired_opcode) {
duke@435 1703 case PRIMARY:
duke@435 1704 description = "primary()";
duke@435 1705 if( _primary != NULL) { value = _primary; }
duke@435 1706 break;
duke@435 1707 case SECONDARY:
duke@435 1708 description = "secondary()";
duke@435 1709 if( _secondary != NULL ) { value = _secondary; }
duke@435 1710 break;
duke@435 1711 case TERTIARY:
duke@435 1712 description = "tertiary()";
duke@435 1713 if( _tertiary != NULL ) { value = _tertiary; }
duke@435 1714 break;
duke@435 1715 default:
duke@435 1716 assert( false, "ShouldNotReachHere();");
duke@435 1717 break;
duke@435 1718 }
duke@435 1719 }
never@850 1720 if (value != NULL) {
never@850 1721 fprintf(fp, "(%s /*%s*/)", value, description);
never@850 1722 }
never@850 1723 return value != NULL;
duke@435 1724 }
duke@435 1725
duke@435 1726 void Opcode::dump() {
duke@435 1727 output(stderr);
duke@435 1728 }
duke@435 1729
duke@435 1730 // Write info to output files
duke@435 1731 void Opcode::output(FILE *fp) {
duke@435 1732 if (_primary != NULL) fprintf(fp,"Primary opcode: %s\n", _primary);
duke@435 1733 if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
duke@435 1734 if (_tertiary != NULL) fprintf(fp,"Tertiary opcode: %s\n", _tertiary);
duke@435 1735 }
duke@435 1736
duke@435 1737 //------------------------------InsEncode--------------------------------------
duke@435 1738 InsEncode::InsEncode() {
duke@435 1739 }
duke@435 1740 InsEncode::~InsEncode() {
duke@435 1741 }
duke@435 1742
duke@435 1743 // Add "encode class name" and its parameters
duke@435 1744 NameAndList *InsEncode::add_encode(char *encoding) {
duke@435 1745 assert( encoding != NULL, "Must provide name for encoding");
duke@435 1746
duke@435 1747 // add_parameter(NameList::_signal);
duke@435 1748 NameAndList *encode = new NameAndList(encoding);
duke@435 1749 _encoding.addName((char*)encode);
duke@435 1750
duke@435 1751 return encode;
duke@435 1752 }
duke@435 1753
duke@435 1754 // Access the list of encodings
duke@435 1755 void InsEncode::reset() {
duke@435 1756 _encoding.reset();
duke@435 1757 // _parameter.reset();
duke@435 1758 }
duke@435 1759 const char* InsEncode::encode_class_iter() {
duke@435 1760 NameAndList *encode_class = (NameAndList*)_encoding.iter();
duke@435 1761 return ( encode_class != NULL ? encode_class->name() : NULL );
duke@435 1762 }
duke@435 1763 // Obtain parameter name from zero based index
duke@435 1764 const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
duke@435 1765 NameAndList *params = (NameAndList*)_encoding.current();
duke@435 1766 assert( params != NULL, "Internal Error");
duke@435 1767 const char *param = (*params)[param_no];
duke@435 1768
duke@435 1769 // Remove '$' if parser placed it there.
duke@435 1770 return ( param != NULL && *param == '$') ? (param+1) : param;
duke@435 1771 }
duke@435 1772
duke@435 1773 void InsEncode::dump() {
duke@435 1774 output(stderr);
duke@435 1775 }
duke@435 1776
duke@435 1777 // Write info to output files
duke@435 1778 void InsEncode::output(FILE *fp) {
duke@435 1779 NameAndList *encoding = NULL;
duke@435 1780 const char *parameter = NULL;
duke@435 1781
duke@435 1782 fprintf(fp,"InsEncode: ");
duke@435 1783 _encoding.reset();
duke@435 1784
duke@435 1785 while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
duke@435 1786 // Output the encoding being used
duke@435 1787 fprintf(fp,"%s(", encoding->name() );
duke@435 1788
duke@435 1789 // Output its parameter list, if any
duke@435 1790 bool first_param = true;
duke@435 1791 encoding->reset();
duke@435 1792 while ( (parameter = encoding->iter()) != 0 ) {
duke@435 1793 // Output the ',' between parameters
duke@435 1794 if ( ! first_param ) fprintf(fp,", ");
duke@435 1795 first_param = false;
duke@435 1796 // Output the parameter
duke@435 1797 fprintf(fp,"%s", parameter);
duke@435 1798 } // done with parameters
duke@435 1799 fprintf(fp,") ");
duke@435 1800 } // done with encodings
duke@435 1801
duke@435 1802 fprintf(fp,"\n");
duke@435 1803 }
duke@435 1804
duke@435 1805 //------------------------------Effect-----------------------------------------
duke@435 1806 static int effect_lookup(const char *name) {
duke@435 1807 if(!strcmp(name, "USE")) return Component::USE;
duke@435 1808 if(!strcmp(name, "DEF")) return Component::DEF;
duke@435 1809 if(!strcmp(name, "USE_DEF")) return Component::USE_DEF;
duke@435 1810 if(!strcmp(name, "KILL")) return Component::KILL;
duke@435 1811 if(!strcmp(name, "USE_KILL")) return Component::USE_KILL;
duke@435 1812 if(!strcmp(name, "TEMP")) return Component::TEMP;
duke@435 1813 if(!strcmp(name, "INVALID")) return Component::INVALID;
roland@3316 1814 if(!strcmp(name, "CALL")) return Component::CALL;
duke@435 1815 assert( false,"Invalid effect name specified\n");
duke@435 1816 return Component::INVALID;
duke@435 1817 }
duke@435 1818
kvn@4161 1819 const char *Component::getUsedefName() {
kvn@4161 1820 switch (_usedef) {
kvn@4161 1821 case Component::INVALID: return "INVALID"; break;
kvn@4161 1822 case Component::USE: return "USE"; break;
kvn@4161 1823 case Component::USE_DEF: return "USE_DEF"; break;
kvn@4161 1824 case Component::USE_KILL: return "USE_KILL"; break;
kvn@4161 1825 case Component::KILL: return "KILL"; break;
kvn@4161 1826 case Component::TEMP: return "TEMP"; break;
kvn@4161 1827 case Component::DEF: return "DEF"; break;
kvn@4161 1828 case Component::CALL: return "CALL"; break;
kvn@4161 1829 default: assert(false, "unknown effect");
kvn@4161 1830 }
kvn@4161 1831 return "Undefined Use/Def info";
kvn@4161 1832 }
kvn@4161 1833
duke@435 1834 Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
duke@435 1835 _ftype = Form::EFF;
duke@435 1836 }
kvn@4161 1837
duke@435 1838 Effect::~Effect() {
duke@435 1839 }
duke@435 1840
duke@435 1841 // Dynamic type check
duke@435 1842 Effect *Effect::is_effect() const {
duke@435 1843 return (Effect*)this;
duke@435 1844 }
duke@435 1845
duke@435 1846
duke@435 1847 // True if this component is equal to the parameter.
duke@435 1848 bool Effect::is(int use_def_kill_enum) const {
duke@435 1849 return (_use_def == use_def_kill_enum ? true : false);
duke@435 1850 }
duke@435 1851 // True if this component is used/def'd/kill'd as the parameter suggests.
duke@435 1852 bool Effect::isa(int use_def_kill_enum) const {
duke@435 1853 return (_use_def & use_def_kill_enum) == use_def_kill_enum;
duke@435 1854 }
duke@435 1855
duke@435 1856 void Effect::dump() {
duke@435 1857 output(stderr);
duke@435 1858 }
duke@435 1859
duke@435 1860 void Effect::output(FILE *fp) { // Write info to output files
duke@435 1861 fprintf(fp,"Effect: %s\n", (_name?_name:""));
duke@435 1862 }
duke@435 1863
duke@435 1864 //------------------------------ExpandRule-------------------------------------
duke@435 1865 ExpandRule::ExpandRule() : _expand_instrs(),
duke@435 1866 _newopconst(cmpstr, hashstr, Form::arena) {
duke@435 1867 _ftype = Form::EXP;
duke@435 1868 }
duke@435 1869
duke@435 1870 ExpandRule::~ExpandRule() { // Destructor
duke@435 1871 }
duke@435 1872
duke@435 1873 void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
duke@435 1874 _expand_instrs.addName((char*)instruction_name_and_operand_list);
duke@435 1875 }
duke@435 1876
duke@435 1877 void ExpandRule::reset_instructions() {
duke@435 1878 _expand_instrs.reset();
duke@435 1879 }
duke@435 1880
duke@435 1881 NameAndList* ExpandRule::iter_instructions() {
duke@435 1882 return (NameAndList*)_expand_instrs.iter();
duke@435 1883 }
duke@435 1884
duke@435 1885
duke@435 1886 void ExpandRule::dump() {
duke@435 1887 output(stderr);
duke@435 1888 }
duke@435 1889
duke@435 1890 void ExpandRule::output(FILE *fp) { // Write info to output files
duke@435 1891 NameAndList *expand_instr = NULL;
duke@435 1892 const char *opid = NULL;
duke@435 1893
duke@435 1894 fprintf(fp,"\nExpand Rule:\n");
duke@435 1895
duke@435 1896 // Iterate over the instructions 'node' expands into
duke@435 1897 for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
duke@435 1898 fprintf(fp,"%s(", expand_instr->name());
duke@435 1899
duke@435 1900 // iterate over the operand list
duke@435 1901 for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
duke@435 1902 fprintf(fp,"%s ", opid);
duke@435 1903 }
duke@435 1904 fprintf(fp,");\n");
duke@435 1905 }
duke@435 1906 }
duke@435 1907
duke@435 1908 //------------------------------RewriteRule------------------------------------
duke@435 1909 RewriteRule::RewriteRule(char* params, char* block)
duke@435 1910 : _tempParams(params), _tempBlock(block) { }; // Constructor
duke@435 1911 RewriteRule::~RewriteRule() { // Destructor
duke@435 1912 }
duke@435 1913
duke@435 1914 void RewriteRule::dump() {
duke@435 1915 output(stderr);
duke@435 1916 }
duke@435 1917
duke@435 1918 void RewriteRule::output(FILE *fp) { // Write info to output files
duke@435 1919 fprintf(fp,"\nRewrite Rule:\n%s\n%s\n",
duke@435 1920 (_tempParams?_tempParams:""),
duke@435 1921 (_tempBlock?_tempBlock:""));
duke@435 1922 }
duke@435 1923
duke@435 1924
duke@435 1925 //==============================MachNodes======================================
duke@435 1926 //------------------------------MachNodeForm-----------------------------------
duke@435 1927 MachNodeForm::MachNodeForm(char *id)
duke@435 1928 : _ident(id) {
duke@435 1929 }
duke@435 1930
duke@435 1931 MachNodeForm::~MachNodeForm() {
duke@435 1932 }
duke@435 1933
duke@435 1934 MachNodeForm *MachNodeForm::is_machnode() const {
duke@435 1935 return (MachNodeForm*)this;
duke@435 1936 }
duke@435 1937
duke@435 1938 //==============================Operand Classes================================
duke@435 1939 //------------------------------OpClassForm------------------------------------
duke@435 1940 OpClassForm::OpClassForm(const char* id) : _ident(id) {
duke@435 1941 _ftype = Form::OPCLASS;
duke@435 1942 }
duke@435 1943
duke@435 1944 OpClassForm::~OpClassForm() {
duke@435 1945 }
duke@435 1946
duke@435 1947 bool OpClassForm::ideal_only() const { return 0; }
duke@435 1948
duke@435 1949 OpClassForm *OpClassForm::is_opclass() const {
duke@435 1950 return (OpClassForm*)this;
duke@435 1951 }
duke@435 1952
duke@435 1953 Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
duke@435 1954 if( _oplst.count() == 0 ) return Form::no_interface;
duke@435 1955
duke@435 1956 // Check that my operands have the same interface type
duke@435 1957 Form::InterfaceType interface;
duke@435 1958 bool first = true;
duke@435 1959 NameList &op_list = (NameList &)_oplst;
duke@435 1960 op_list.reset();
duke@435 1961 const char *op_name;
duke@435 1962 while( (op_name = op_list.iter()) != NULL ) {
duke@435 1963 const Form *form = globals[op_name];
duke@435 1964 OperandForm *operand = form->is_operand();
duke@435 1965 assert( operand, "Entry in operand class that is not an operand");
duke@435 1966 if( first ) {
duke@435 1967 first = false;
duke@435 1968 interface = operand->interface_type(globals);
duke@435 1969 } else {
duke@435 1970 interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
duke@435 1971 }
duke@435 1972 }
duke@435 1973 return interface;
duke@435 1974 }
duke@435 1975
duke@435 1976 bool OpClassForm::stack_slots_only(FormDict &globals) const {
duke@435 1977 if( _oplst.count() == 0 ) return false; // how?
duke@435 1978
duke@435 1979 NameList &op_list = (NameList &)_oplst;
duke@435 1980 op_list.reset();
duke@435 1981 const char *op_name;
duke@435 1982 while( (op_name = op_list.iter()) != NULL ) {
duke@435 1983 const Form *form = globals[op_name];
duke@435 1984 OperandForm *operand = form->is_operand();
duke@435 1985 assert( operand, "Entry in operand class that is not an operand");
duke@435 1986 if( !operand->stack_slots_only(globals) ) return false;
duke@435 1987 }
duke@435 1988 return true;
duke@435 1989 }
duke@435 1990
duke@435 1991
duke@435 1992 void OpClassForm::dump() {
duke@435 1993 output(stderr);
duke@435 1994 }
duke@435 1995
duke@435 1996 void OpClassForm::output(FILE *fp) {
duke@435 1997 const char *name;
duke@435 1998 fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
duke@435 1999 fprintf(fp,"\nCount = %d\n", _oplst.count());
duke@435 2000 for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
duke@435 2001 fprintf(fp,"%s, ",name);
duke@435 2002 }
duke@435 2003 fprintf(fp,"\n");
duke@435 2004 }
duke@435 2005
duke@435 2006
duke@435 2007 //==============================Operands=======================================
duke@435 2008 //------------------------------OperandForm------------------------------------
duke@435 2009 OperandForm::OperandForm(const char* id)
duke@435 2010 : OpClassForm(id), _ideal_only(false),
duke@435 2011 _localNames(cmpstr, hashstr, Form::arena) {
duke@435 2012 _ftype = Form::OPER;
duke@435 2013
duke@435 2014 _matrule = NULL;
duke@435 2015 _interface = NULL;
duke@435 2016 _attribs = NULL;
duke@435 2017 _predicate = NULL;
duke@435 2018 _constraint= NULL;
duke@435 2019 _construct = NULL;
duke@435 2020 _format = NULL;
duke@435 2021 }
duke@435 2022 OperandForm::OperandForm(const char* id, bool ideal_only)
duke@435 2023 : OpClassForm(id), _ideal_only(ideal_only),
duke@435 2024 _localNames(cmpstr, hashstr, Form::arena) {
duke@435 2025 _ftype = Form::OPER;
duke@435 2026
duke@435 2027 _matrule = NULL;
duke@435 2028 _interface = NULL;
duke@435 2029 _attribs = NULL;
duke@435 2030 _predicate = NULL;
duke@435 2031 _constraint= NULL;
duke@435 2032 _construct = NULL;
duke@435 2033 _format = NULL;
duke@435 2034 }
duke@435 2035 OperandForm::~OperandForm() {
duke@435 2036 }
duke@435 2037
duke@435 2038
duke@435 2039 OperandForm *OperandForm::is_operand() const {
duke@435 2040 return (OperandForm*)this;
duke@435 2041 }
duke@435 2042
duke@435 2043 bool OperandForm::ideal_only() const {
duke@435 2044 return _ideal_only;
duke@435 2045 }
duke@435 2046
duke@435 2047 Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
duke@435 2048 if( _interface == NULL ) return Form::no_interface;
duke@435 2049
duke@435 2050 return _interface->interface_type(globals);
duke@435 2051 }
duke@435 2052
duke@435 2053
duke@435 2054 bool OperandForm::stack_slots_only(FormDict &globals) const {
duke@435 2055 if( _constraint == NULL ) return false;
duke@435 2056 return _constraint->stack_slots_only();
duke@435 2057 }
duke@435 2058
duke@435 2059
duke@435 2060 // Access op_cost attribute or return NULL.
duke@435 2061 const char* OperandForm::cost() {
duke@435 2062 for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
duke@435 2063 if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
duke@435 2064 return cur->_val;
duke@435 2065 }
duke@435 2066 }
duke@435 2067 return NULL;
duke@435 2068 }
duke@435 2069
duke@435 2070 // Return the number of leaves below this complex operand
duke@435 2071 uint OperandForm::num_leaves() const {
duke@435 2072 if ( ! _matrule) return 0;
duke@435 2073
duke@435 2074 int num_leaves = _matrule->_numleaves;
duke@435 2075 return num_leaves;
duke@435 2076 }
duke@435 2077
duke@435 2078 // Return the number of constants contained within this complex operand
duke@435 2079 uint OperandForm::num_consts(FormDict &globals) const {
duke@435 2080 if ( ! _matrule) return 0;
duke@435 2081
duke@435 2082 // This is a recursive invocation on all operands in the matchrule
duke@435 2083 return _matrule->num_consts(globals);
duke@435 2084 }
duke@435 2085
duke@435 2086 // Return the number of constants in match rule with specified type
duke@435 2087 uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
duke@435 2088 if ( ! _matrule) return 0;
duke@435 2089
duke@435 2090 // This is a recursive invocation on all operands in the matchrule
duke@435 2091 return _matrule->num_consts(globals, type);
duke@435 2092 }
duke@435 2093
duke@435 2094 // Return the number of pointer constants contained within this complex operand
duke@435 2095 uint OperandForm::num_const_ptrs(FormDict &globals) const {
duke@435 2096 if ( ! _matrule) return 0;
duke@435 2097
duke@435 2098 // This is a recursive invocation on all operands in the matchrule
duke@435 2099 return _matrule->num_const_ptrs(globals);
duke@435 2100 }
duke@435 2101
duke@435 2102 uint OperandForm::num_edges(FormDict &globals) const {
duke@435 2103 uint edges = 0;
duke@435 2104 uint leaves = num_leaves();
duke@435 2105 uint consts = num_consts(globals);
duke@435 2106
duke@435 2107 // If we are matching a constant directly, there are no leaves.
duke@435 2108 edges = ( leaves > consts ) ? leaves - consts : 0;
duke@435 2109
duke@435 2110 // !!!!!
duke@435 2111 // Special case operands that do not have a corresponding ideal node.
duke@435 2112 if( (edges == 0) && (consts == 0) ) {
duke@435 2113 if( constrained_reg_class() != NULL ) {
duke@435 2114 edges = 1;
duke@435 2115 } else {
duke@435 2116 if( _matrule
duke@435 2117 && (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
duke@435 2118 const Form *form = globals[_matrule->_opType];
duke@435 2119 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 2120 if( oper ) {
duke@435 2121 return oper->num_edges(globals);
duke@435 2122 }
duke@435 2123 }
duke@435 2124 }
duke@435 2125 }
duke@435 2126
duke@435 2127 return edges;
duke@435 2128 }
duke@435 2129
duke@435 2130
duke@435 2131 // Check if this operand is usable for cisc-spilling
duke@435 2132 bool OperandForm::is_cisc_reg(FormDict &globals) const {
duke@435 2133 const char *ideal = ideal_type(globals);
duke@435 2134 bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
duke@435 2135 return is_cisc_reg;
duke@435 2136 }
duke@435 2137
duke@435 2138 bool OpClassForm::is_cisc_mem(FormDict &globals) const {
duke@435 2139 Form::InterfaceType my_interface = interface_type(globals);
duke@435 2140 return (my_interface == memory_interface);
duke@435 2141 }
duke@435 2142
duke@435 2143
duke@435 2144 // node matches ideal 'Bool'
duke@435 2145 bool OperandForm::is_ideal_bool() const {
duke@435 2146 if( _matrule == NULL ) return false;
duke@435 2147
duke@435 2148 return _matrule->is_ideal_bool();
duke@435 2149 }
duke@435 2150
duke@435 2151 // Require user's name for an sRegX to be stackSlotX
duke@435 2152 Form::DataType OperandForm::is_user_name_for_sReg() const {
duke@435 2153 DataType data_type = none;
duke@435 2154 if( _ident != NULL ) {
duke@435 2155 if( strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
duke@435 2156 else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
duke@435 2157 else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
duke@435 2158 else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
duke@435 2159 else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
duke@435 2160 }
duke@435 2161 assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");
duke@435 2162
duke@435 2163 return data_type;
duke@435 2164 }
duke@435 2165
duke@435 2166
duke@435 2167 // Return ideal type, if there is a single ideal type for this operand
duke@435 2168 const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
duke@435 2169 const char *type = NULL;
duke@435 2170 if (ideal_only()) type = _ident;
duke@435 2171 else if( _matrule == NULL ) {
duke@435 2172 // Check for condition code register
duke@435 2173 const char *rc_name = constrained_reg_class();
duke@435 2174 // !!!!!
duke@435 2175 if (rc_name == NULL) return NULL;
duke@435 2176 // !!!!! !!!!!
duke@435 2177 // Check constraints on result's register class
duke@435 2178 if( registers ) {
duke@435 2179 RegClass *reg_class = registers->getRegClass(rc_name);
duke@435 2180 assert( reg_class != NULL, "Register class is not defined");
duke@435 2181
duke@435 2182 // Check for ideal type of entries in register class, all are the same type
duke@435 2183 reg_class->reset();
duke@435 2184 RegDef *reg_def = reg_class->RegDef_iter();
duke@435 2185 assert( reg_def != NULL, "No entries in register class");
duke@435 2186 assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
duke@435 2187 // Return substring that names the register's ideal type
duke@435 2188 type = reg_def->_idealtype + 3;
duke@435 2189 assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
duke@435 2190 assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
duke@435 2191 assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
duke@435 2192 }
duke@435 2193 }
duke@435 2194 else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
duke@435 2195 // This operand matches a single type, at the top level.
duke@435 2196 // Check for ideal type
duke@435 2197 type = _matrule->_opType;
duke@435 2198 if( strcmp(type,"Bool") == 0 )
duke@435 2199 return "Bool";
duke@435 2200 // transitive lookup
duke@435 2201 const Form *frm = globals[type];
duke@435 2202 OperandForm *op = frm->is_operand();
duke@435 2203 type = op->ideal_type(globals, registers);
duke@435 2204 }
duke@435 2205 return type;
duke@435 2206 }
duke@435 2207
duke@435 2208
duke@435 2209 // If there is a single ideal type for this interface field, return it.
duke@435 2210 const char *OperandForm::interface_ideal_type(FormDict &globals,
duke@435 2211 const char *field) const {
duke@435 2212 const char *ideal_type = NULL;
duke@435 2213 const char *value = NULL;
duke@435 2214
duke@435 2215 // Check if "field" is valid for this operand's interface
duke@435 2216 if ( ! is_interface_field(field, value) ) return ideal_type;
duke@435 2217
duke@435 2218 // !!!!! !!!!! !!!!!
duke@435 2219 // If a valid field has a constant value, identify "ConI" or "ConP" or ...
duke@435 2220
duke@435 2221 // Else, lookup type of field's replacement variable
duke@435 2222
duke@435 2223 return ideal_type;
duke@435 2224 }
duke@435 2225
duke@435 2226
duke@435 2227 RegClass* OperandForm::get_RegClass() const {
duke@435 2228 if (_interface && !_interface->is_RegInterface()) return NULL;
duke@435 2229 return globalAD->get_registers()->getRegClass(constrained_reg_class());
duke@435 2230 }
duke@435 2231
duke@435 2232
duke@435 2233 bool OperandForm::is_bound_register() const {
twisti@5221 2234 RegClass* reg_class = get_RegClass();
twisti@5221 2235 if (reg_class == NULL) {
twisti@5221 2236 return false;
twisti@5221 2237 }
twisti@5221 2238
twisti@5221 2239 const char* name = ideal_type(globalAD->globalNames());
twisti@5221 2240 if (name == NULL) {
twisti@5221 2241 return false;
twisti@5221 2242 }
twisti@5221 2243
twisti@5221 2244 uint size = 0;
twisti@5221 2245 if (strcmp(name, "RegFlags") == 0) size = 1;
twisti@5221 2246 if (strcmp(name, "RegI") == 0) size = 1;
twisti@5221 2247 if (strcmp(name, "RegF") == 0) size = 1;
twisti@5221 2248 if (strcmp(name, "RegD") == 0) size = 2;
twisti@5221 2249 if (strcmp(name, "RegL") == 0) size = 2;
twisti@5221 2250 if (strcmp(name, "RegN") == 0) size = 1;
twisti@5221 2251 if (strcmp(name, "RegP") == 0) size = globalAD->get_preproc_def("_LP64") ? 2 : 1;
twisti@5221 2252 if (size == 0) {
twisti@5221 2253 return false;
twisti@5221 2254 }
duke@435 2255 return size == reg_class->size();
duke@435 2256 }
duke@435 2257
duke@435 2258
duke@435 2259 // Check if this is a valid field for this operand,
duke@435 2260 // Return 'true' if valid, and set the value to the string the user provided.
duke@435 2261 bool OperandForm::is_interface_field(const char *field,
duke@435 2262 const char * &value) const {
duke@435 2263 return false;
duke@435 2264 }
duke@435 2265
duke@435 2266
duke@435 2267 // Return register class name if a constraint specifies the register class.
duke@435 2268 const char *OperandForm::constrained_reg_class() const {
duke@435 2269 const char *reg_class = NULL;
duke@435 2270 if ( _constraint ) {
duke@435 2271 // !!!!!
duke@435 2272 Constraint *constraint = _constraint;
duke@435 2273 if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
duke@435 2274 reg_class = _constraint->_arg;
duke@435 2275 }
duke@435 2276 }
duke@435 2277
duke@435 2278 return reg_class;
duke@435 2279 }
duke@435 2280
duke@435 2281
duke@435 2282 // Return the register class associated with 'leaf'.
duke@435 2283 const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
duke@435 2284 const char *reg_class = NULL; // "RegMask::Empty";
duke@435 2285
duke@435 2286 if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
duke@435 2287 reg_class = constrained_reg_class();
duke@435 2288 return reg_class;
duke@435 2289 }
duke@435 2290 const char *result = NULL;
duke@435 2291 const char *name = NULL;
duke@435 2292 const char *type = NULL;
duke@435 2293 // iterate through all base operands
duke@435 2294 // until we reach the register that corresponds to "leaf"
duke@435 2295 // This function is not looking for an ideal type. It needs the first
duke@435 2296 // level user type associated with the leaf.
duke@435 2297 for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
duke@435 2298 const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
duke@435 2299 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 2300 if( oper ) {
duke@435 2301 reg_class = oper->constrained_reg_class();
duke@435 2302 if( reg_class ) {
duke@435 2303 reg_class = reg_class;
duke@435 2304 } else {
duke@435 2305 // ShouldNotReachHere();
duke@435 2306 }
duke@435 2307 } else {
duke@435 2308 // ShouldNotReachHere();
duke@435 2309 }
duke@435 2310
duke@435 2311 // Increment our target leaf position if current leaf is not a candidate.
duke@435 2312 if( reg_class == NULL) ++leaf;
duke@435 2313 // Exit the loop with the value of reg_class when at the correct index
duke@435 2314 if( idx == leaf ) break;
duke@435 2315 // May iterate through all base operands if reg_class for 'leaf' is NULL
duke@435 2316 }
duke@435 2317 return reg_class;
duke@435 2318 }
duke@435 2319
duke@435 2320
duke@435 2321 // Recursive call to construct list of top-level operands.
duke@435 2322 // Implementation does not modify state of internal structures
duke@435 2323 void OperandForm::build_components() {
duke@435 2324 if (_matrule) _matrule->append_components(_localNames, _components);
duke@435 2325
duke@435 2326 // Add parameters that "do not appear in match rule".
duke@435 2327 const char *name;
duke@435 2328 for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
duke@435 2329 OperandForm *opForm = (OperandForm*)_localNames[name];
duke@435 2330
duke@435 2331 if ( _components.operand_position(name) == -1 ) {
duke@435 2332 _components.insert(name, opForm->_ident, Component::INVALID, false);
duke@435 2333 }
duke@435 2334 }
duke@435 2335
duke@435 2336 return;
duke@435 2337 }
duke@435 2338
duke@435 2339 int OperandForm::operand_position(const char *name, int usedef) {
kvn@4161 2340 return _components.operand_position(name, usedef, this);
duke@435 2341 }
duke@435 2342
duke@435 2343
duke@435 2344 // Return zero-based position in component list, only counting constants;
duke@435 2345 // Return -1 if not in list.
duke@435 2346 int OperandForm::constant_position(FormDict &globals, const Component *last) {
twisti@1040 2347 // Iterate through components and count constants preceding 'constant'
twisti@1038 2348 int position = 0;
duke@435 2349 Component *comp;
duke@435 2350 _components.reset();
duke@435 2351 while( (comp = _components.iter()) != NULL && (comp != last) ) {
duke@435 2352 // Special case for operands that take a single user-defined operand
duke@435 2353 // Skip the initial definition in the component list.
duke@435 2354 if( strcmp(comp->_name,this->_ident) == 0 ) continue;
duke@435 2355
duke@435 2356 const char *type = comp->_type;
duke@435 2357 // Lookup operand form for replacement variable's type
duke@435 2358 const Form *form = globals[type];
duke@435 2359 assert( form != NULL, "Component's type not found");
duke@435 2360 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 2361 if( oper ) {
duke@435 2362 if( oper->_matrule->is_base_constant(globals) != Form::none ) {
duke@435 2363 ++position;
duke@435 2364 }
duke@435 2365 }
duke@435 2366 }
duke@435 2367
duke@435 2368 // Check for being passed a component that was not in the list
duke@435 2369 if( comp != last ) position = -1;
duke@435 2370
duke@435 2371 return position;
duke@435 2372 }
duke@435 2373 // Provide position of constant by "name"
duke@435 2374 int OperandForm::constant_position(FormDict &globals, const char *name) {
duke@435 2375 const Component *comp = _components.search(name);
duke@435 2376 int idx = constant_position( globals, comp );
duke@435 2377
duke@435 2378 return idx;
duke@435 2379 }
duke@435 2380
duke@435 2381
duke@435 2382 // Return zero-based position in component list, only counting constants;
duke@435 2383 // Return -1 if not in list.
duke@435 2384 int OperandForm::register_position(FormDict &globals, const char *reg_name) {
twisti@1040 2385 // Iterate through components and count registers preceding 'last'
duke@435 2386 uint position = 0;
duke@435 2387 Component *comp;
duke@435 2388 _components.reset();
duke@435 2389 while( (comp = _components.iter()) != NULL
duke@435 2390 && (strcmp(comp->_name,reg_name) != 0) ) {
duke@435 2391 // Special case for operands that take a single user-defined operand
duke@435 2392 // Skip the initial definition in the component list.
duke@435 2393 if( strcmp(comp->_name,this->_ident) == 0 ) continue;
duke@435 2394
duke@435 2395 const char *type = comp->_type;
duke@435 2396 // Lookup operand form for component's type
duke@435 2397 const Form *form = globals[type];
duke@435 2398 assert( form != NULL, "Component's type not found");
duke@435 2399 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 2400 if( oper ) {
duke@435 2401 if( oper->_matrule->is_base_register(globals) ) {
duke@435 2402 ++position;
duke@435 2403 }
duke@435 2404 }
duke@435 2405 }
duke@435 2406
duke@435 2407 return position;
duke@435 2408 }
duke@435 2409
duke@435 2410
duke@435 2411 const char *OperandForm::reduce_result() const {
duke@435 2412 return _ident;
duke@435 2413 }
duke@435 2414 // Return the name of the operand on the right hand side of the binary match
duke@435 2415 // Return NULL if there is no right hand side
duke@435 2416 const char *OperandForm::reduce_right(FormDict &globals) const {
duke@435 2417 return ( _matrule ? _matrule->reduce_right(globals) : NULL );
duke@435 2418 }
duke@435 2419
duke@435 2420 // Similar for left
duke@435 2421 const char *OperandForm::reduce_left(FormDict &globals) const {
duke@435 2422 return ( _matrule ? _matrule->reduce_left(globals) : NULL );
duke@435 2423 }
duke@435 2424
duke@435 2425
duke@435 2426 // --------------------------- FILE *output_routines
duke@435 2427 //
duke@435 2428 // Output code for disp_is_oop, if true.
duke@435 2429 void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
duke@435 2430 // Check it is a memory interface with a non-user-constant disp field
duke@435 2431 if ( this->_interface == NULL ) return;
duke@435 2432 MemInterface *mem_interface = this->_interface->is_MemInterface();
duke@435 2433 if ( mem_interface == NULL ) return;
duke@435 2434 const char *disp = mem_interface->_disp;
duke@435 2435 if ( *disp != '$' ) return;
duke@435 2436
duke@435 2437 // Lookup replacement variable in operand's component list
duke@435 2438 const char *rep_var = disp + 1;
duke@435 2439 const Component *comp = this->_components.search(rep_var);
duke@435 2440 assert( comp != NULL, "Replacement variable not found in components");
duke@435 2441 // Lookup operand form for replacement variable's type
duke@435 2442 const char *type = comp->_type;
duke@435 2443 Form *form = (Form*)globals[type];
duke@435 2444 assert( form != NULL, "Replacement variable's type not found");
duke@435 2445 OperandForm *op = form->is_operand();
duke@435 2446 assert( op, "Memory Interface 'disp' can only emit an operand form");
duke@435 2447 // Check if this is a ConP, which may require relocation
duke@435 2448 if ( op->is_base_constant(globals) == Form::idealP ) {
duke@435 2449 // Find the constant's index: _c0, _c1, _c2, ... , _cN
duke@435 2450 uint idx = op->constant_position( globals, rep_var);
coleenp@4037 2451 fprintf(fp," virtual relocInfo::relocType disp_reloc() const {");
coleenp@4037 2452 fprintf(fp, " return _c%d->reloc();", idx);
duke@435 2453 fprintf(fp, " }\n");
duke@435 2454 }
duke@435 2455 }
duke@435 2456
duke@435 2457 // Generate code for internal and external format methods
duke@435 2458 //
duke@435 2459 // internal access to reg# node->_idx
duke@435 2460 // access to subsumed constant _c0, _c1,
duke@435 2461 void OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
duke@435 2462 Form::DataType dtype;
duke@435 2463 if (_matrule && (_matrule->is_base_register(globals) ||
duke@435 2464 strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
duke@435 2465 // !!!!! !!!!!
kvn@4161 2466 fprintf(fp," { char reg_str[128];\n");
kvn@4161 2467 fprintf(fp," ra->dump_register(node,reg_str);\n");
kvn@4161 2468 fprintf(fp," st->print(\"%cs\",reg_str);\n",'%');
kvn@4161 2469 fprintf(fp," }\n");
duke@435 2470 } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
duke@435 2471 format_constant( fp, index, dtype );
duke@435 2472 } else if (ideal_to_sReg_type(_ident) != Form::none) {
duke@435 2473 // Special format for Stack Slot Register
kvn@4161 2474 fprintf(fp," { char reg_str[128];\n");
kvn@4161 2475 fprintf(fp," ra->dump_register(node,reg_str);\n");
kvn@4161 2476 fprintf(fp," st->print(\"%cs\",reg_str);\n",'%');
kvn@4161 2477 fprintf(fp," }\n");
duke@435 2478 } else {
kvn@4161 2479 fprintf(fp," st->print(\"No format defined for %s\n\");\n", _ident);
duke@435 2480 fflush(fp);
duke@435 2481 fprintf(stderr,"No format defined for %s\n", _ident);
duke@435 2482 dump();
duke@435 2483 assert( false,"Internal error:\n output_internal_operand() attempting to output other than a Register or Constant");
duke@435 2484 }
duke@435 2485 }
duke@435 2486
duke@435 2487 // Similar to "int_format" but for cases where data is external to operand
duke@435 2488 // external access to reg# node->in(idx)->_idx,
duke@435 2489 void OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
duke@435 2490 Form::DataType dtype;
duke@435 2491 if (_matrule && (_matrule->is_base_register(globals) ||
duke@435 2492 strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
kvn@4161 2493 fprintf(fp," { char reg_str[128];\n");
kvn@4161 2494 fprintf(fp," ra->dump_register(node->in(idx");
kvn@4161 2495 if ( index != 0 ) fprintf(fp, "+%d",index);
kvn@4161 2496 fprintf(fp, "),reg_str);\n");
kvn@4161 2497 fprintf(fp," st->print(\"%cs\",reg_str);\n",'%');
kvn@4161 2498 fprintf(fp," }\n");
duke@435 2499 } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
duke@435 2500 format_constant( fp, index, dtype );
duke@435 2501 } else if (ideal_to_sReg_type(_ident) != Form::none) {
duke@435 2502 // Special format for Stack Slot Register
kvn@4161 2503 fprintf(fp," { char reg_str[128];\n");
kvn@4161 2504 fprintf(fp," ra->dump_register(node->in(idx");
duke@435 2505 if ( index != 0 ) fprintf(fp, "+%d",index);
duke@435 2506 fprintf(fp, "),reg_str);\n");
kvn@4161 2507 fprintf(fp," st->print(\"%cs\",reg_str);\n",'%');
kvn@4161 2508 fprintf(fp," }\n");
duke@435 2509 } else {
kvn@4161 2510 fprintf(fp," st->print(\"No format defined for %s\n\");\n", _ident);
duke@435 2511 assert( false,"Internal error:\n output_external_operand() attempting to output other than a Register or Constant");
duke@435 2512 }
duke@435 2513 }
duke@435 2514
duke@435 2515 void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
duke@435 2516 switch(const_type) {
kvn@4161 2517 case Form::idealI: fprintf(fp," st->print(\"#%%d\", _c%d);\n", const_index); break;
kvn@4161 2518 case Form::idealP: fprintf(fp," if (_c%d) _c%d->dump_on(st);\n", const_index, const_index); break;
roland@4159 2519 case Form::idealNKlass:
kvn@4161 2520 case Form::idealN: fprintf(fp," if (_c%d) _c%d->dump_on(st);\n", const_index, const_index); break;
kvn@4161 2521 case Form::idealL: fprintf(fp," st->print(\"#%%lld\", _c%d);\n", const_index); break;
kvn@4161 2522 case Form::idealF: fprintf(fp," st->print(\"#%%f\", _c%d);\n", const_index); break;
kvn@4161 2523 case Form::idealD: fprintf(fp," st->print(\"#%%f\", _c%d);\n", const_index); break;
duke@435 2524 default:
duke@435 2525 assert( false, "ShouldNotReachHere()");
duke@435 2526 }
duke@435 2527 }
duke@435 2528
duke@435 2529 // Return the operand form corresponding to the given index, else NULL.
duke@435 2530 OperandForm *OperandForm::constant_operand(FormDict &globals,
duke@435 2531 uint index) {
duke@435 2532 // !!!!!
duke@435 2533 // Check behavior on complex operands
duke@435 2534 uint n_consts = num_consts(globals);
duke@435 2535 if( n_consts > 0 ) {
duke@435 2536 uint i = 0;
duke@435 2537 const char *type;
duke@435 2538 Component *comp;
duke@435 2539 _components.reset();
duke@435 2540 if ((comp = _components.iter()) == NULL) {
duke@435 2541 assert(n_consts == 1, "Bad component list detected.\n");
duke@435 2542 // Current operand is THE operand
duke@435 2543 if ( index == 0 ) {
duke@435 2544 return this;
duke@435 2545 }
duke@435 2546 } // end if NULL
duke@435 2547 else {
duke@435 2548 // Skip the first component, it can not be a DEF of a constant
duke@435 2549 do {
duke@435 2550 type = comp->base_type(globals);
duke@435 2551 // Check that "type" is a 'ConI', 'ConP', ...
duke@435 2552 if ( ideal_to_const_type(type) != Form::none ) {
duke@435 2553 // When at correct component, get corresponding Operand
duke@435 2554 if ( index == 0 ) {
duke@435 2555 return globals[comp->_type]->is_operand();
duke@435 2556 }
duke@435 2557 // Decrement number of constants to go
duke@435 2558 --index;
duke@435 2559 }
duke@435 2560 } while((comp = _components.iter()) != NULL);
duke@435 2561 }
duke@435 2562 }
duke@435 2563
duke@435 2564 // Did not find a constant for this index.
duke@435 2565 return NULL;
duke@435 2566 }
duke@435 2567
duke@435 2568 // If this operand has a single ideal type, return its type
duke@435 2569 Form::DataType OperandForm::simple_type(FormDict &globals) const {
duke@435 2570 const char *type_name = ideal_type(globals);
duke@435 2571 Form::DataType type = type_name ? ideal_to_const_type( type_name )
duke@435 2572 : Form::none;
duke@435 2573 return type;
duke@435 2574 }
duke@435 2575
duke@435 2576 Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
duke@435 2577 if ( _matrule == NULL ) return Form::none;
duke@435 2578
duke@435 2579 return _matrule->is_base_constant(globals);
duke@435 2580 }
duke@435 2581
duke@435 2582 // "true" if this operand is a simple type that is swallowed
duke@435 2583 bool OperandForm::swallowed(FormDict &globals) const {
duke@435 2584 Form::DataType type = simple_type(globals);
duke@435 2585 if( type != Form::none ) {
duke@435 2586 return true;
duke@435 2587 }
duke@435 2588
duke@435 2589 return false;
duke@435 2590 }
duke@435 2591
duke@435 2592 // Output code to access the value of the index'th constant
duke@435 2593 void OperandForm::access_constant(FILE *fp, FormDict &globals,
duke@435 2594 uint const_index) {
duke@435 2595 OperandForm *oper = constant_operand(globals, const_index);
duke@435 2596 assert( oper, "Index exceeds number of constants in operand");
duke@435 2597 Form::DataType dtype = oper->is_base_constant(globals);
duke@435 2598
duke@435 2599 switch(dtype) {
duke@435 2600 case idealI: fprintf(fp,"_c%d", const_index); break;
duke@435 2601 case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
duke@435 2602 case idealL: fprintf(fp,"_c%d", const_index); break;
duke@435 2603 case idealF: fprintf(fp,"_c%d", const_index); break;
duke@435 2604 case idealD: fprintf(fp,"_c%d", const_index); break;
duke@435 2605 default:
duke@435 2606 assert( false, "ShouldNotReachHere()");
duke@435 2607 }
duke@435 2608 }
duke@435 2609
duke@435 2610
duke@435 2611 void OperandForm::dump() {
duke@435 2612 output(stderr);
duke@435 2613 }
duke@435 2614
duke@435 2615 void OperandForm::output(FILE *fp) {
duke@435 2616 fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
duke@435 2617 if (_matrule) _matrule->dump();
duke@435 2618 if (_interface) _interface->dump();
duke@435 2619 if (_attribs) _attribs->dump();
duke@435 2620 if (_predicate) _predicate->dump();
duke@435 2621 if (_constraint) _constraint->dump();
duke@435 2622 if (_construct) _construct->dump();
duke@435 2623 if (_format) _format->dump();
duke@435 2624 }
duke@435 2625
duke@435 2626 //------------------------------Constraint-------------------------------------
duke@435 2627 Constraint::Constraint(const char *func, const char *arg)
duke@435 2628 : _func(func), _arg(arg) {
duke@435 2629 }
duke@435 2630 Constraint::~Constraint() { /* not owner of char* */
duke@435 2631 }
duke@435 2632
duke@435 2633 bool Constraint::stack_slots_only() const {
duke@435 2634 return strcmp(_func, "ALLOC_IN_RC") == 0
duke@435 2635 && strcmp(_arg, "stack_slots") == 0;
duke@435 2636 }
duke@435 2637
duke@435 2638 void Constraint::dump() {
duke@435 2639 output(stderr);
duke@435 2640 }
duke@435 2641
duke@435 2642 void Constraint::output(FILE *fp) { // Write info to output files
duke@435 2643 assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
duke@435 2644 fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg);
duke@435 2645 }
duke@435 2646
duke@435 2647 //------------------------------Predicate--------------------------------------
duke@435 2648 Predicate::Predicate(char *pr)
duke@435 2649 : _pred(pr) {
duke@435 2650 }
duke@435 2651 Predicate::~Predicate() {
duke@435 2652 }
duke@435 2653
duke@435 2654 void Predicate::dump() {
duke@435 2655 output(stderr);
duke@435 2656 }
duke@435 2657
duke@435 2658 void Predicate::output(FILE *fp) {
duke@435 2659 fprintf(fp,"Predicate"); // Write to output files
duke@435 2660 }
duke@435 2661 //------------------------------Interface--------------------------------------
duke@435 2662 Interface::Interface(const char *name) : _name(name) {
duke@435 2663 }
duke@435 2664 Interface::~Interface() {
duke@435 2665 }
duke@435 2666
duke@435 2667 Form::InterfaceType Interface::interface_type(FormDict &globals) const {
duke@435 2668 Interface *thsi = (Interface*)this;
duke@435 2669 if ( thsi->is_RegInterface() ) return Form::register_interface;
duke@435 2670 if ( thsi->is_MemInterface() ) return Form::memory_interface;
duke@435 2671 if ( thsi->is_ConstInterface() ) return Form::constant_interface;
duke@435 2672 if ( thsi->is_CondInterface() ) return Form::conditional_interface;
duke@435 2673
duke@435 2674 return Form::no_interface;
duke@435 2675 }
duke@435 2676
duke@435 2677 RegInterface *Interface::is_RegInterface() {
duke@435 2678 if ( strcmp(_name,"REG_INTER") != 0 )
duke@435 2679 return NULL;
duke@435 2680 return (RegInterface*)this;
duke@435 2681 }
duke@435 2682 MemInterface *Interface::is_MemInterface() {
duke@435 2683 if ( strcmp(_name,"MEMORY_INTER") != 0 ) return NULL;
duke@435 2684 return (MemInterface*)this;
duke@435 2685 }
duke@435 2686 ConstInterface *Interface::is_ConstInterface() {
duke@435 2687 if ( strcmp(_name,"CONST_INTER") != 0 ) return NULL;
duke@435 2688 return (ConstInterface*)this;
duke@435 2689 }
duke@435 2690 CondInterface *Interface::is_CondInterface() {
duke@435 2691 if ( strcmp(_name,"COND_INTER") != 0 ) return NULL;
duke@435 2692 return (CondInterface*)this;
duke@435 2693 }
duke@435 2694
duke@435 2695
duke@435 2696 void Interface::dump() {
duke@435 2697 output(stderr);
duke@435 2698 }
duke@435 2699
duke@435 2700 // Write info to output files
duke@435 2701 void Interface::output(FILE *fp) {
duke@435 2702 fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
duke@435 2703 }
duke@435 2704
duke@435 2705 //------------------------------RegInterface-----------------------------------
duke@435 2706 RegInterface::RegInterface() : Interface("REG_INTER") {
duke@435 2707 }
duke@435 2708 RegInterface::~RegInterface() {
duke@435 2709 }
duke@435 2710
duke@435 2711 void RegInterface::dump() {
duke@435 2712 output(stderr);
duke@435 2713 }
duke@435 2714
duke@435 2715 // Write info to output files
duke@435 2716 void RegInterface::output(FILE *fp) {
duke@435 2717 Interface::output(fp);
duke@435 2718 }
duke@435 2719
duke@435 2720 //------------------------------ConstInterface---------------------------------
duke@435 2721 ConstInterface::ConstInterface() : Interface("CONST_INTER") {
duke@435 2722 }
duke@435 2723 ConstInterface::~ConstInterface() {
duke@435 2724 }
duke@435 2725
duke@435 2726 void ConstInterface::dump() {
duke@435 2727 output(stderr);
duke@435 2728 }
duke@435 2729
duke@435 2730 // Write info to output files
duke@435 2731 void ConstInterface::output(FILE *fp) {
duke@435 2732 Interface::output(fp);
duke@435 2733 }
duke@435 2734
duke@435 2735 //------------------------------MemInterface-----------------------------------
duke@435 2736 MemInterface::MemInterface(char *base, char *index, char *scale, char *disp)
duke@435 2737 : Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
duke@435 2738 }
duke@435 2739 MemInterface::~MemInterface() {
duke@435 2740 // not owner of any character arrays
duke@435 2741 }
duke@435 2742
duke@435 2743 void MemInterface::dump() {
duke@435 2744 output(stderr);
duke@435 2745 }
duke@435 2746
duke@435 2747 // Write info to output files
duke@435 2748 void MemInterface::output(FILE *fp) {
duke@435 2749 Interface::output(fp);
duke@435 2750 if ( _base != NULL ) fprintf(fp," base == %s\n", _base);
duke@435 2751 if ( _index != NULL ) fprintf(fp," index == %s\n", _index);
duke@435 2752 if ( _scale != NULL ) fprintf(fp," scale == %s\n", _scale);
duke@435 2753 if ( _disp != NULL ) fprintf(fp," disp == %s\n", _disp);
duke@435 2754 // fprintf(fp,"\n");
duke@435 2755 }
duke@435 2756
duke@435 2757 //------------------------------CondInterface----------------------------------
never@850 2758 CondInterface::CondInterface(const char* equal, const char* equal_format,
never@850 2759 const char* not_equal, const char* not_equal_format,
never@850 2760 const char* less, const char* less_format,
never@850 2761 const char* greater_equal, const char* greater_equal_format,
never@850 2762 const char* less_equal, const char* less_equal_format,
rbackman@5791 2763 const char* greater, const char* greater_format,
rbackman@5791 2764 const char* overflow, const char* overflow_format,
rbackman@5791 2765 const char* no_overflow, const char* no_overflow_format)
duke@435 2766 : Interface("COND_INTER"),
never@850 2767 _equal(equal), _equal_format(equal_format),
never@850 2768 _not_equal(not_equal), _not_equal_format(not_equal_format),
never@850 2769 _less(less), _less_format(less_format),
never@850 2770 _greater_equal(greater_equal), _greater_equal_format(greater_equal_format),
never@850 2771 _less_equal(less_equal), _less_equal_format(less_equal_format),
rbackman@5791 2772 _greater(greater), _greater_format(greater_format),
rbackman@5791 2773 _overflow(overflow), _overflow_format(overflow_format),
rbackman@5791 2774 _no_overflow(no_overflow), _no_overflow_format(no_overflow_format) {
duke@435 2775 }
duke@435 2776 CondInterface::~CondInterface() {
duke@435 2777 // not owner of any character arrays
duke@435 2778 }
duke@435 2779
duke@435 2780 void CondInterface::dump() {
duke@435 2781 output(stderr);
duke@435 2782 }
duke@435 2783
duke@435 2784 // Write info to output files
duke@435 2785 void CondInterface::output(FILE *fp) {
duke@435 2786 Interface::output(fp);
rbackman@5791 2787 if ( _equal != NULL ) fprintf(fp," equal == %s\n", _equal);
rbackman@5791 2788 if ( _not_equal != NULL ) fprintf(fp," not_equal == %s\n", _not_equal);
rbackman@5791 2789 if ( _less != NULL ) fprintf(fp," less == %s\n", _less);
rbackman@5791 2790 if ( _greater_equal != NULL ) fprintf(fp," greater_equal == %s\n", _greater_equal);
rbackman@5791 2791 if ( _less_equal != NULL ) fprintf(fp," less_equal == %s\n", _less_equal);
rbackman@5791 2792 if ( _greater != NULL ) fprintf(fp," greater == %s\n", _greater);
rbackman@5791 2793 if ( _overflow != NULL ) fprintf(fp," overflow == %s\n", _overflow);
rbackman@5791 2794 if ( _no_overflow != NULL ) fprintf(fp," no_overflow == %s\n", _no_overflow);
duke@435 2795 // fprintf(fp,"\n");
duke@435 2796 }
duke@435 2797
duke@435 2798 //------------------------------ConstructRule----------------------------------
duke@435 2799 ConstructRule::ConstructRule(char *cnstr)
duke@435 2800 : _construct(cnstr) {
duke@435 2801 }
duke@435 2802 ConstructRule::~ConstructRule() {
duke@435 2803 }
duke@435 2804
duke@435 2805 void ConstructRule::dump() {
duke@435 2806 output(stderr);
duke@435 2807 }
duke@435 2808
duke@435 2809 void ConstructRule::output(FILE *fp) {
duke@435 2810 fprintf(fp,"\nConstruct Rule\n"); // Write to output files
duke@435 2811 }
duke@435 2812
duke@435 2813
duke@435 2814 //==============================Shared Forms===================================
duke@435 2815 //------------------------------AttributeForm----------------------------------
duke@435 2816 int AttributeForm::_insId = 0; // start counter at 0
duke@435 2817 int AttributeForm::_opId = 0; // start counter at 0
duke@435 2818 const char* AttributeForm::_ins_cost = "ins_cost"; // required name
duke@435 2819 const char* AttributeForm::_op_cost = "op_cost"; // required name
duke@435 2820
duke@435 2821 AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
duke@435 2822 : Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
duke@435 2823 if (type==OP_ATTR) {
duke@435 2824 id = ++_opId;
duke@435 2825 }
duke@435 2826 else if (type==INS_ATTR) {
duke@435 2827 id = ++_insId;
duke@435 2828 }
duke@435 2829 else assert( false,"");
duke@435 2830 }
duke@435 2831 AttributeForm::~AttributeForm() {
duke@435 2832 }
duke@435 2833
duke@435 2834 // Dynamic type check
duke@435 2835 AttributeForm *AttributeForm::is_attribute() const {
duke@435 2836 return (AttributeForm*)this;
duke@435 2837 }
duke@435 2838
duke@435 2839
duke@435 2840 // inlined // int AttributeForm::type() { return id;}
duke@435 2841
duke@435 2842 void AttributeForm::dump() {
duke@435 2843 output(stderr);
duke@435 2844 }
duke@435 2845
duke@435 2846 void AttributeForm::output(FILE *fp) {
duke@435 2847 if( _attrname && _attrdef ) {
duke@435 2848 fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
duke@435 2849 _attrname, _attrdef);
duke@435 2850 }
duke@435 2851 else {
duke@435 2852 fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
duke@435 2853 (_attrname?_attrname:""), (_attrdef?_attrdef:"") );
duke@435 2854 }
duke@435 2855 }
duke@435 2856
duke@435 2857 //------------------------------Component--------------------------------------
duke@435 2858 Component::Component(const char *name, const char *type, int usedef)
duke@435 2859 : _name(name), _type(type), _usedef(usedef) {
duke@435 2860 _ftype = Form::COMP;
duke@435 2861 }
duke@435 2862 Component::~Component() {
duke@435 2863 }
duke@435 2864
duke@435 2865 // True if this component is equal to the parameter.
duke@435 2866 bool Component::is(int use_def_kill_enum) const {
duke@435 2867 return (_usedef == use_def_kill_enum ? true : false);
duke@435 2868 }
duke@435 2869 // True if this component is used/def'd/kill'd as the parameter suggests.
duke@435 2870 bool Component::isa(int use_def_kill_enum) const {
duke@435 2871 return (_usedef & use_def_kill_enum) == use_def_kill_enum;
duke@435 2872 }
duke@435 2873
duke@435 2874 // Extend this component with additional use/def/kill behavior
duke@435 2875 int Component::promote_use_def_info(int new_use_def) {
duke@435 2876 _usedef |= new_use_def;
duke@435 2877
duke@435 2878 return _usedef;
duke@435 2879 }
duke@435 2880
duke@435 2881 // Check the base type of this component, if it has one
duke@435 2882 const char *Component::base_type(FormDict &globals) {
duke@435 2883 const Form *frm = globals[_type];
duke@435 2884 if (frm == NULL) return NULL;
duke@435 2885 OperandForm *op = frm->is_operand();
duke@435 2886 if (op == NULL) return NULL;
duke@435 2887 if (op->ideal_only()) return op->_ident;
duke@435 2888 return (char *)op->ideal_type(globals);
duke@435 2889 }
duke@435 2890
duke@435 2891 void Component::dump() {
duke@435 2892 output(stderr);
duke@435 2893 }
duke@435 2894
duke@435 2895 void Component::output(FILE *fp) {
duke@435 2896 fprintf(fp,"Component:"); // Write to output files
duke@435 2897 fprintf(fp, " name = %s", _name);
duke@435 2898 fprintf(fp, ", type = %s", _type);
kvn@4161 2899 assert(_usedef != 0, "unknown effect");
kvn@4161 2900 fprintf(fp, ", use/def = %s\n", getUsedefName());
duke@435 2901 }
duke@435 2902
duke@435 2903
duke@435 2904 //------------------------------ComponentList---------------------------------
duke@435 2905 ComponentList::ComponentList() : NameList(), _matchcnt(0) {
duke@435 2906 }
duke@435 2907 ComponentList::~ComponentList() {
duke@435 2908 // // This list may not own its elements if copied via assignment
duke@435 2909 // Component *component;
duke@435 2910 // for (reset(); (component = iter()) != NULL;) {
duke@435 2911 // delete component;
duke@435 2912 // }
duke@435 2913 }
duke@435 2914
duke@435 2915 void ComponentList::insert(Component *component, bool mflag) {
duke@435 2916 NameList::addName((char *)component);
duke@435 2917 if(mflag) _matchcnt++;
duke@435 2918 }
duke@435 2919 void ComponentList::insert(const char *name, const char *opType, int usedef,
duke@435 2920 bool mflag) {
duke@435 2921 Component * component = new Component(name, opType, usedef);
duke@435 2922 insert(component, mflag);
duke@435 2923 }
duke@435 2924 Component *ComponentList::current() { return (Component*)NameList::current(); }
duke@435 2925 Component *ComponentList::iter() { return (Component*)NameList::iter(); }
duke@435 2926 Component *ComponentList::match_iter() {
duke@435 2927 if(_iter < _matchcnt) return (Component*)NameList::iter();
duke@435 2928 return NULL;
duke@435 2929 }
duke@435 2930 Component *ComponentList::post_match_iter() {
duke@435 2931 Component *comp = iter();
duke@435 2932 // At end of list?
duke@435 2933 if ( comp == NULL ) {
duke@435 2934 return comp;
duke@435 2935 }
duke@435 2936 // In post-match components?
duke@435 2937 if (_iter > match_count()-1) {
duke@435 2938 return comp;
duke@435 2939 }
duke@435 2940
duke@435 2941 return post_match_iter();
duke@435 2942 }
duke@435 2943
duke@435 2944 void ComponentList::reset() { NameList::reset(); }
duke@435 2945 int ComponentList::count() { return NameList::count(); }
duke@435 2946
duke@435 2947 Component *ComponentList::operator[](int position) {
duke@435 2948 // Shortcut complete iteration if there are not enough entries
duke@435 2949 if (position >= count()) return NULL;
duke@435 2950
duke@435 2951 int index = 0;
duke@435 2952 Component *component = NULL;
duke@435 2953 for (reset(); (component = iter()) != NULL;) {
duke@435 2954 if (index == position) {
duke@435 2955 return component;
duke@435 2956 }
duke@435 2957 ++index;
duke@435 2958 }
duke@435 2959
duke@435 2960 return NULL;
duke@435 2961 }
duke@435 2962
duke@435 2963 const Component *ComponentList::search(const char *name) {
duke@435 2964 PreserveIter pi(this);
duke@435 2965 reset();
duke@435 2966 for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
duke@435 2967 if( strcmp(comp->_name,name) == 0 ) return comp;
duke@435 2968 }
duke@435 2969
duke@435 2970 return NULL;
duke@435 2971 }
duke@435 2972
duke@435 2973 // Return number of USEs + number of DEFs
duke@435 2974 // When there are no components, or the first component is a USE,
duke@435 2975 // then we add '1' to hold a space for the 'result' operand.
duke@435 2976 int ComponentList::num_operands() {
duke@435 2977 PreserveIter pi(this);
duke@435 2978 uint count = 1; // result operand
duke@435 2979 uint position = 0;
duke@435 2980
duke@435 2981 Component *component = NULL;
duke@435 2982 for( reset(); (component = iter()) != NULL; ++position ) {
duke@435 2983 if( component->isa(Component::USE) ||
duke@435 2984 ( position == 0 && (! component->isa(Component::DEF))) ) {
duke@435 2985 ++count;
duke@435 2986 }
duke@435 2987 }
duke@435 2988
duke@435 2989 return count;
duke@435 2990 }
duke@435 2991
kvn@4161 2992 // Return zero-based position of operand 'name' in list; -1 if not in list.
duke@435 2993 // if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
kvn@4161 2994 int ComponentList::operand_position(const char *name, int usedef, Form *fm) {
duke@435 2995 PreserveIter pi(this);
duke@435 2996 int position = 0;
duke@435 2997 int num_opnds = num_operands();
duke@435 2998 Component *component;
duke@435 2999 Component* preceding_non_use = NULL;
duke@435 3000 Component* first_def = NULL;
duke@435 3001 for (reset(); (component = iter()) != NULL; ++position) {
duke@435 3002 // When the first component is not a DEF,
duke@435 3003 // leave space for the result operand!
duke@435 3004 if ( position==0 && (! component->isa(Component::DEF)) ) {
duke@435 3005 ++position;
duke@435 3006 ++num_opnds;
duke@435 3007 }
duke@435 3008 if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
duke@435 3009 // When the first entry in the component list is a DEF and a USE
duke@435 3010 // Treat them as being separate, a DEF first, then a USE
duke@435 3011 if( position==0
duke@435 3012 && usedef==Component::USE && component->isa(Component::DEF) ) {
duke@435 3013 assert(position+1 < num_opnds, "advertised index in bounds");
duke@435 3014 return position+1;
duke@435 3015 } else {
duke@435 3016 if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
kvn@4161 3017 fprintf(stderr, "the name '%s(%s)' should not precede the name '%s(%s)'",
kvn@4161 3018 preceding_non_use->_name, preceding_non_use->getUsedefName(),
kvn@4161 3019 name, component->getUsedefName());
kvn@4161 3020 if (fm && fm->is_instruction()) fprintf(stderr, "in form '%s'", fm->is_instruction()->_ident);
kvn@4161 3021 if (fm && fm->is_operand()) fprintf(stderr, "in form '%s'", fm->is_operand()->_ident);
kvn@4161 3022 fprintf(stderr, "\n");
duke@435 3023 }
duke@435 3024 if( position >= num_opnds ) {
kvn@4161 3025 fprintf(stderr, "the name '%s' is too late in its name list", name);
kvn@4161 3026 if (fm && fm->is_instruction()) fprintf(stderr, "in form '%s'", fm->is_instruction()->_ident);
kvn@4161 3027 if (fm && fm->is_operand()) fprintf(stderr, "in form '%s'", fm->is_operand()->_ident);
kvn@4161 3028 fprintf(stderr, "\n");
duke@435 3029 }
duke@435 3030 assert(position < num_opnds, "advertised index in bounds");
duke@435 3031 return position;
duke@435 3032 }
duke@435 3033 }
duke@435 3034 if( component->isa(Component::DEF)
duke@435 3035 && component->isa(Component::USE) ) {
duke@435 3036 ++position;
duke@435 3037 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 3038 }
duke@435 3039 if( component->isa(Component::DEF) && !first_def ) {
duke@435 3040 first_def = component;
duke@435 3041 }
duke@435 3042 if( !component->isa(Component::USE) && component != first_def ) {
duke@435 3043 preceding_non_use = component;
duke@435 3044 } else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
duke@435 3045 preceding_non_use = NULL;
duke@435 3046 }
duke@435 3047 }
duke@435 3048 return Not_in_list;
duke@435 3049 }
duke@435 3050
duke@435 3051 // Find position for this name, regardless of use/def information
duke@435 3052 int ComponentList::operand_position(const char *name) {
duke@435 3053 PreserveIter pi(this);
duke@435 3054 int position = 0;
duke@435 3055 Component *component;
duke@435 3056 for (reset(); (component = iter()) != NULL; ++position) {
duke@435 3057 // When the first component is not a DEF,
duke@435 3058 // leave space for the result operand!
duke@435 3059 if ( position==0 && (! component->isa(Component::DEF)) ) {
duke@435 3060 ++position;
duke@435 3061 }
duke@435 3062 if (strcmp(name, component->_name)==0) {
duke@435 3063 return position;
duke@435 3064 }
duke@435 3065 if( component->isa(Component::DEF)
duke@435 3066 && component->isa(Component::USE) ) {
duke@435 3067 ++position;
duke@435 3068 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 3069 }
duke@435 3070 }
duke@435 3071 return Not_in_list;
duke@435 3072 }
duke@435 3073
kvn@4161 3074 int ComponentList::operand_position_format(const char *name, Form *fm) {
duke@435 3075 PreserveIter pi(this);
duke@435 3076 int first_position = operand_position(name);
kvn@4161 3077 int use_position = operand_position(name, Component::USE, fm);
duke@435 3078
duke@435 3079 return ((first_position < use_position) ? use_position : first_position);
duke@435 3080 }
duke@435 3081
duke@435 3082 int ComponentList::label_position() {
duke@435 3083 PreserveIter pi(this);
duke@435 3084 int position = 0;
duke@435 3085 reset();
duke@435 3086 for( Component *comp; (comp = iter()) != NULL; ++position) {
duke@435 3087 // When the first component is not a DEF,
duke@435 3088 // leave space for the result operand!
duke@435 3089 if ( position==0 && (! comp->isa(Component::DEF)) ) {
duke@435 3090 ++position;
duke@435 3091 }
duke@435 3092 if (strcmp(comp->_type, "label")==0) {
duke@435 3093 return position;
duke@435 3094 }
duke@435 3095 if( comp->isa(Component::DEF)
duke@435 3096 && comp->isa(Component::USE) ) {
duke@435 3097 ++position;
duke@435 3098 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 3099 }
duke@435 3100 }
duke@435 3101
duke@435 3102 return -1;
duke@435 3103 }
duke@435 3104
duke@435 3105 int ComponentList::method_position() {
duke@435 3106 PreserveIter pi(this);
duke@435 3107 int position = 0;
duke@435 3108 reset();
duke@435 3109 for( Component *comp; (comp = iter()) != NULL; ++position) {
duke@435 3110 // When the first component is not a DEF,
duke@435 3111 // leave space for the result operand!
duke@435 3112 if ( position==0 && (! comp->isa(Component::DEF)) ) {
duke@435 3113 ++position;
duke@435 3114 }
duke@435 3115 if (strcmp(comp->_type, "method")==0) {
duke@435 3116 return position;
duke@435 3117 }
duke@435 3118 if( comp->isa(Component::DEF)
duke@435 3119 && comp->isa(Component::USE) ) {
duke@435 3120 ++position;
duke@435 3121 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 3122 }
duke@435 3123 }
duke@435 3124
duke@435 3125 return -1;
duke@435 3126 }
duke@435 3127
duke@435 3128 void ComponentList::dump() { output(stderr); }
duke@435 3129
duke@435 3130 void ComponentList::output(FILE *fp) {
duke@435 3131 PreserveIter pi(this);
duke@435 3132 fprintf(fp, "\n");
duke@435 3133 Component *component;
duke@435 3134 for (reset(); (component = iter()) != NULL;) {
duke@435 3135 component->output(fp);
duke@435 3136 }
duke@435 3137 fprintf(fp, "\n");
duke@435 3138 }
duke@435 3139
duke@435 3140 //------------------------------MatchNode--------------------------------------
duke@435 3141 MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
duke@435 3142 const char *opType, MatchNode *lChild, MatchNode *rChild)
duke@435 3143 : _AD(ad), _result(result), _name(mexpr), _opType(opType),
duke@435 3144 _lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0),
duke@435 3145 _commutative_id(0) {
duke@435 3146 _numleaves = (lChild ? lChild->_numleaves : 0)
duke@435 3147 + (rChild ? rChild->_numleaves : 0);
duke@435 3148 }
duke@435 3149
duke@435 3150 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode)
duke@435 3151 : _AD(ad), _result(mnode._result), _name(mnode._name),
duke@435 3152 _opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild),
duke@435 3153 _internalop(0), _numleaves(mnode._numleaves),
duke@435 3154 _commutative_id(mnode._commutative_id) {
duke@435 3155 }
duke@435 3156
duke@435 3157 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone)
duke@435 3158 : _AD(ad), _result(mnode._result), _name(mnode._name),
duke@435 3159 _opType(mnode._opType),
duke@435 3160 _internalop(0), _numleaves(mnode._numleaves),
duke@435 3161 _commutative_id(mnode._commutative_id) {
duke@435 3162 if (mnode._lChild) {
duke@435 3163 _lChild = new MatchNode(ad, *mnode._lChild, clone);
duke@435 3164 } else {
duke@435 3165 _lChild = NULL;
duke@435 3166 }
duke@435 3167 if (mnode._rChild) {
duke@435 3168 _rChild = new MatchNode(ad, *mnode._rChild, clone);
duke@435 3169 } else {
duke@435 3170 _rChild = NULL;
duke@435 3171 }
duke@435 3172 }
duke@435 3173
duke@435 3174 MatchNode::~MatchNode() {
duke@435 3175 // // This node may not own its children if copied via assignment
duke@435 3176 // if( _lChild ) delete _lChild;
duke@435 3177 // if( _rChild ) delete _rChild;
duke@435 3178 }
duke@435 3179
duke@435 3180 bool MatchNode::find_type(const char *type, int &position) const {
duke@435 3181 if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
duke@435 3182 if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;
duke@435 3183
duke@435 3184 if (strcmp(type,_opType)==0) {
duke@435 3185 return true;
duke@435 3186 } else {
duke@435 3187 ++position;
duke@435 3188 }
duke@435 3189 return false;
duke@435 3190 }
duke@435 3191
duke@435 3192 // Recursive call collecting info on top-level operands, not transitive.
duke@435 3193 // Implementation does not modify state of internal structures.
twisti@1038 3194 void MatchNode::append_components(FormDict& locals, ComponentList& components,
twisti@1038 3195 bool def_flag) const {
twisti@1038 3196 int usedef = def_flag ? Component::DEF : Component::USE;
duke@435 3197 FormDict &globals = _AD.globalNames();
duke@435 3198
duke@435 3199 assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
duke@435 3200 // Base case
duke@435 3201 if (_lChild==NULL && _rChild==NULL) {
duke@435 3202 // If _opType is not an operation, do not build a component for it #####
duke@435 3203 const Form *f = globals[_opType];
duke@435 3204 if( f != NULL ) {
duke@435 3205 // Add non-ideals that are operands, operand-classes,
duke@435 3206 if( ! f->ideal_only()
duke@435 3207 && (f->is_opclass() || f->is_operand()) ) {
duke@435 3208 components.insert(_name, _opType, usedef, true);
duke@435 3209 }
duke@435 3210 }
duke@435 3211 return;
duke@435 3212 }
duke@435 3213 // Promote results of "Set" to DEF
twisti@1038 3214 bool tmpdef_flag = (!strcmp(_opType, "Set")) ? true : false;
twisti@1038 3215 if (_lChild) _lChild->append_components(locals, components, tmpdef_flag);
twisti@1038 3216 tmpdef_flag = false; // only applies to component immediately following 'Set'
twisti@1038 3217 if (_rChild) _rChild->append_components(locals, components, tmpdef_flag);
duke@435 3218 }
duke@435 3219
duke@435 3220 // Find the n'th base-operand in the match node,
duke@435 3221 // recursively investigates match rules of user-defined operands.
duke@435 3222 //
duke@435 3223 // Implementation does not modify state of internal structures since they
duke@435 3224 // can be shared.
duke@435 3225 bool MatchNode::base_operand(uint &position, FormDict &globals,
duke@435 3226 const char * &result, const char * &name,
duke@435 3227 const char * &opType) const {
duke@435 3228 assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
duke@435 3229 // Base case
duke@435 3230 if (_lChild==NULL && _rChild==NULL) {
duke@435 3231 // Check for special case: "Universe", "label"
duke@435 3232 if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
duke@435 3233 if (position == 0) {
duke@435 3234 result = _result;
duke@435 3235 name = _name;
duke@435 3236 opType = _opType;
duke@435 3237 return 1;
duke@435 3238 } else {
duke@435 3239 -- position;
duke@435 3240 return 0;
duke@435 3241 }
duke@435 3242 }
duke@435 3243
duke@435 3244 const Form *form = globals[_opType];
duke@435 3245 MatchNode *matchNode = NULL;
duke@435 3246 // Check for user-defined type
duke@435 3247 if (form) {
duke@435 3248 // User operand or instruction?
duke@435 3249 OperandForm *opForm = form->is_operand();
duke@435 3250 InstructForm *inForm = form->is_instruction();
duke@435 3251 if ( opForm ) {
duke@435 3252 matchNode = (MatchNode*)opForm->_matrule;
duke@435 3253 } else if ( inForm ) {
duke@435 3254 matchNode = (MatchNode*)inForm->_matrule;
duke@435 3255 }
duke@435 3256 }
duke@435 3257 // if this is user-defined, recurse on match rule
duke@435 3258 // User-defined operand and instruction forms have a match-rule.
duke@435 3259 if (matchNode) {
duke@435 3260 return (matchNode->base_operand(position,globals,result,name,opType));
duke@435 3261 } else {
duke@435 3262 // Either not a form, or a system-defined form (no match rule).
duke@435 3263 if (position==0) {
duke@435 3264 result = _result;
duke@435 3265 name = _name;
duke@435 3266 opType = _opType;
duke@435 3267 return 1;
duke@435 3268 } else {
duke@435 3269 --position;
duke@435 3270 return 0;
duke@435 3271 }
duke@435 3272 }
duke@435 3273
duke@435 3274 } else {
duke@435 3275 // Examine the left child and right child as well
duke@435 3276 if (_lChild) {
duke@435 3277 if (_lChild->base_operand(position, globals, result, name, opType))
duke@435 3278 return 1;
duke@435 3279 }
duke@435 3280
duke@435 3281 if (_rChild) {
duke@435 3282 if (_rChild->base_operand(position, globals, result, name, opType))
duke@435 3283 return 1;
duke@435 3284 }
duke@435 3285 }
duke@435 3286
duke@435 3287 return 0;
duke@435 3288 }
duke@435 3289
duke@435 3290 // Recursive call on all operands' match rules in my match rule.
duke@435 3291 uint MatchNode::num_consts(FormDict &globals) const {
duke@435 3292 uint index = 0;
duke@435 3293 uint num_consts = 0;
duke@435 3294 const char *result;
duke@435 3295 const char *name;
duke@435 3296 const char *opType;
duke@435 3297
duke@435 3298 for (uint position = index;
duke@435 3299 base_operand(position,globals,result,name,opType); position = index) {
duke@435 3300 ++index;
duke@435 3301 if( ideal_to_const_type(opType) ) num_consts++;
duke@435 3302 }
duke@435 3303
duke@435 3304 return num_consts;
duke@435 3305 }
duke@435 3306
duke@435 3307 // Recursive call on all operands' match rules in my match rule.
duke@435 3308 // Constants in match rule subtree with specified type
duke@435 3309 uint MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
duke@435 3310 uint index = 0;
duke@435 3311 uint num_consts = 0;
duke@435 3312 const char *result;
duke@435 3313 const char *name;
duke@435 3314 const char *opType;
duke@435 3315
duke@435 3316 for (uint position = index;
duke@435 3317 base_operand(position,globals,result,name,opType); position = index) {
duke@435 3318 ++index;
duke@435 3319 if( ideal_to_const_type(opType) == type ) num_consts++;
duke@435 3320 }
duke@435 3321
duke@435 3322 return num_consts;
duke@435 3323 }
duke@435 3324
duke@435 3325 // Recursive call on all operands' match rules in my match rule.
duke@435 3326 uint MatchNode::num_const_ptrs(FormDict &globals) const {
duke@435 3327 return num_consts( globals, Form::idealP );
duke@435 3328 }
duke@435 3329
duke@435 3330 bool MatchNode::sets_result() const {
duke@435 3331 return ( (strcmp(_name,"Set") == 0) ? true : false );
duke@435 3332 }
duke@435 3333
duke@435 3334 const char *MatchNode::reduce_right(FormDict &globals) const {
duke@435 3335 // If there is no right reduction, return NULL.
duke@435 3336 const char *rightStr = NULL;
duke@435 3337
duke@435 3338 // If we are a "Set", start from the right child.
duke@435 3339 const MatchNode *const mnode = sets_result() ?
kvn@4161 3340 (const MatchNode *)this->_rChild :
kvn@4161 3341 (const MatchNode *)this;
duke@435 3342
duke@435 3343 // If our right child exists, it is the right reduction
duke@435 3344 if ( mnode->_rChild ) {
duke@435 3345 rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
duke@435 3346 : mnode->_rChild->_opType;
duke@435 3347 }
duke@435 3348 // Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
duke@435 3349 return rightStr;
duke@435 3350 }
duke@435 3351
duke@435 3352 const char *MatchNode::reduce_left(FormDict &globals) const {
duke@435 3353 // If there is no left reduction, return NULL.
duke@435 3354 const char *leftStr = NULL;
duke@435 3355
duke@435 3356 // If we are a "Set", start from the right child.
duke@435 3357 const MatchNode *const mnode = sets_result() ?
kvn@4161 3358 (const MatchNode *)this->_rChild :
kvn@4161 3359 (const MatchNode *)this;
duke@435 3360
duke@435 3361 // If our left child exists, it is the left reduction
duke@435 3362 if ( mnode->_lChild ) {
duke@435 3363 leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
duke@435 3364 : mnode->_lChild->_opType;
duke@435 3365 } else {
duke@435 3366 // May be simple chain rule: (Set dst operand_form_source)
duke@435 3367 if ( sets_result() ) {
duke@435 3368 OperandForm *oper = globals[mnode->_opType]->is_operand();
duke@435 3369 if( oper ) {
duke@435 3370 leftStr = mnode->_opType;
duke@435 3371 }
duke@435 3372 }
duke@435 3373 }
duke@435 3374 return leftStr;
duke@435 3375 }
duke@435 3376
duke@435 3377 //------------------------------count_instr_names------------------------------
duke@435 3378 // Count occurrences of operands names in the leaves of the instruction
duke@435 3379 // match rule.
duke@435 3380 void MatchNode::count_instr_names( Dict &names ) {
duke@435 3381 if( !this ) return;
duke@435 3382 if( _lChild ) _lChild->count_instr_names(names);
duke@435 3383 if( _rChild ) _rChild->count_instr_names(names);
duke@435 3384 if( !_lChild && !_rChild ) {
duke@435 3385 uintptr_t cnt = (uintptr_t)names[_name];
duke@435 3386 cnt++; // One more name found
duke@435 3387 names.Insert(_name,(void*)cnt);
duke@435 3388 }
duke@435 3389 }
duke@435 3390
duke@435 3391 //------------------------------build_instr_pred-------------------------------
duke@435 3392 // Build a path to 'name' in buf. Actually only build if cnt is zero, so we
duke@435 3393 // can skip some leading instances of 'name'.
duke@435 3394 int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
duke@435 3395 if( _lChild ) {
duke@435 3396 if( !cnt ) strcpy( buf, "_kids[0]->" );
duke@435 3397 cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
duke@435 3398 if( cnt < 0 ) return cnt; // Found it, all done
duke@435 3399 }
duke@435 3400 if( _rChild ) {
duke@435 3401 if( !cnt ) strcpy( buf, "_kids[1]->" );
duke@435 3402 cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
duke@435 3403 if( cnt < 0 ) return cnt; // Found it, all done
duke@435 3404 }
duke@435 3405 if( !_lChild && !_rChild ) { // Found a leaf
duke@435 3406 // Wrong name? Give up...
duke@435 3407 if( strcmp(name,_name) ) return cnt;
duke@435 3408 if( !cnt ) strcpy(buf,"_leaf");
duke@435 3409 return cnt-1;
duke@435 3410 }
duke@435 3411 return cnt;
duke@435 3412 }
duke@435 3413
duke@435 3414
duke@435 3415 //------------------------------build_internalop-------------------------------
duke@435 3416 // Build string representation of subtree
duke@435 3417 void MatchNode::build_internalop( ) {
duke@435 3418 char *iop, *subtree;
duke@435 3419 const char *lstr, *rstr;
duke@435 3420 // Build string representation of subtree
duke@435 3421 // Operation lchildType rchildType
duke@435 3422 int len = (int)strlen(_opType) + 4;
duke@435 3423 lstr = (_lChild) ? ((_lChild->_internalop) ?
duke@435 3424 _lChild->_internalop : _lChild->_opType) : "";
duke@435 3425 rstr = (_rChild) ? ((_rChild->_internalop) ?
duke@435 3426 _rChild->_internalop : _rChild->_opType) : "";
duke@435 3427 len += (int)strlen(lstr) + (int)strlen(rstr);
duke@435 3428 subtree = (char *)malloc(len);
duke@435 3429 sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
duke@435 3430 // Hash the subtree string in _internalOps; if a name exists, use it
duke@435 3431 iop = (char *)_AD._internalOps[subtree];
duke@435 3432 // Else create a unique name, and add it to the hash table
duke@435 3433 if (iop == NULL) {
duke@435 3434 iop = subtree;
duke@435 3435 _AD._internalOps.Insert(subtree, iop);
duke@435 3436 _AD._internalOpNames.addName(iop);
duke@435 3437 _AD._internalMatch.Insert(iop, this);
duke@435 3438 }
duke@435 3439 // Add the internal operand name to the MatchNode
duke@435 3440 _internalop = iop;
duke@435 3441 _result = iop;
duke@435 3442 }
duke@435 3443
duke@435 3444
duke@435 3445 void MatchNode::dump() {
duke@435 3446 output(stderr);
duke@435 3447 }
duke@435 3448
duke@435 3449 void MatchNode::output(FILE *fp) {
duke@435 3450 if (_lChild==0 && _rChild==0) {
duke@435 3451 fprintf(fp," %s",_name); // operand
duke@435 3452 }
duke@435 3453 else {
duke@435 3454 fprintf(fp," (%s ",_name); // " (opcodeName "
duke@435 3455 if(_lChild) _lChild->output(fp); // left operand
duke@435 3456 if(_rChild) _rChild->output(fp); // right operand
duke@435 3457 fprintf(fp,")"); // ")"
duke@435 3458 }
duke@435 3459 }
duke@435 3460
duke@435 3461 int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
duke@435 3462 static const char *needs_ideal_memory_list[] = {
roland@4159 3463 "StoreI","StoreL","StoreP","StoreN","StoreNKlass","StoreD","StoreF" ,
duke@435 3464 "StoreB","StoreC","Store" ,"StoreFP",
vlivanov@4160 3465 "LoadI", "LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF" ,
kvn@3882 3466 "LoadB" , "LoadUB", "LoadUS" ,"LoadS" ,"Load" ,
kvn@3882 3467 "StoreVector", "LoadVector",
kvn@599 3468 "LoadRange", "LoadKlass", "LoadNKlass", "LoadL_unaligned", "LoadD_unaligned",
twisti@3846 3469 "LoadPLocked",
kvn@855 3470 "StorePConditional", "StoreIConditional", "StoreLConditional",
coleenp@548 3471 "CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN",
duke@435 3472 "StoreCM",
roland@4106 3473 "ClearArray",
roland@4106 3474 "GetAndAddI", "GetAndSetI", "GetAndSetP",
roland@4106 3475 "GetAndAddL", "GetAndSetL", "GetAndSetN",
duke@435 3476 };
duke@435 3477 int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
kvn@3052 3478 if( strcmp(_opType,"PrefetchRead")==0 ||
kvn@3052 3479 strcmp(_opType,"PrefetchWrite")==0 ||
kvn@3052 3480 strcmp(_opType,"PrefetchAllocation")==0 )
duke@435 3481 return 1;
duke@435 3482 if( _lChild ) {
duke@435 3483 const char *opType = _lChild->_opType;
duke@435 3484 for( int i=0; i<cnt; i++ )
duke@435 3485 if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
duke@435 3486 return 1;
duke@435 3487 if( _lChild->needs_ideal_memory_edge(globals) )
duke@435 3488 return 1;
duke@435 3489 }
duke@435 3490 if( _rChild ) {
duke@435 3491 const char *opType = _rChild->_opType;
duke@435 3492 for( int i=0; i<cnt; i++ )
duke@435 3493 if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
duke@435 3494 return 1;
duke@435 3495 if( _rChild->needs_ideal_memory_edge(globals) )
duke@435 3496 return 1;
duke@435 3497 }
duke@435 3498
duke@435 3499 return 0;
duke@435 3500 }
duke@435 3501
duke@435 3502 // TRUE if defines a derived oop, and so needs a base oop edge present
duke@435 3503 // post-matching.
duke@435 3504 int MatchNode::needs_base_oop_edge() const {
duke@435 3505 if( !strcmp(_opType,"AddP") ) return 1;
duke@435 3506 if( strcmp(_opType,"Set") ) return 0;
duke@435 3507 return !strcmp(_rChild->_opType,"AddP");
duke@435 3508 }
duke@435 3509
duke@435 3510 int InstructForm::needs_base_oop_edge(FormDict &globals) const {
duke@435 3511 if( is_simple_chain_rule(globals) ) {
duke@435 3512 const char *src = _matrule->_rChild->_opType;
duke@435 3513 OperandForm *src_op = globals[src]->is_operand();
duke@435 3514 assert( src_op, "Not operand class of chain rule" );
duke@435 3515 return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
duke@435 3516 } // Else check instruction
duke@435 3517
duke@435 3518 return _matrule ? _matrule->needs_base_oop_edge() : 0;
duke@435 3519 }
duke@435 3520
duke@435 3521
duke@435 3522 //-------------------------cisc spilling methods-------------------------------
duke@435 3523 // helper routines and methods for detecting cisc-spilling instructions
duke@435 3524 //-------------------------cisc_spill_merge------------------------------------
duke@435 3525 int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
duke@435 3526 int cisc_spillable = Maybe_cisc_spillable;
duke@435 3527
duke@435 3528 // Combine results of left and right checks
duke@435 3529 if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
duke@435 3530 // neither side is spillable, nor prevents cisc spilling
duke@435 3531 cisc_spillable = Maybe_cisc_spillable;
duke@435 3532 }
duke@435 3533 else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
duke@435 3534 // right side is spillable
duke@435 3535 cisc_spillable = right_spillable;
duke@435 3536 }
duke@435 3537 else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
duke@435 3538 // left side is spillable
duke@435 3539 cisc_spillable = left_spillable;
duke@435 3540 }
duke@435 3541 else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
duke@435 3542 // left or right prevents cisc spilling this instruction
duke@435 3543 cisc_spillable = Not_cisc_spillable;
duke@435 3544 }
duke@435 3545 else {
duke@435 3546 // Only allow one to spill
duke@435 3547 cisc_spillable = Not_cisc_spillable;
duke@435 3548 }
duke@435 3549
duke@435 3550 return cisc_spillable;
duke@435 3551 }
duke@435 3552
duke@435 3553 //-------------------------root_ops_match--------------------------------------
duke@435 3554 bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
duke@435 3555 // Base Case: check that the current operands/operations match
duke@435 3556 assert( op1, "Must have op's name");
duke@435 3557 assert( op2, "Must have op's name");
duke@435 3558 const Form *form1 = globals[op1];
duke@435 3559 const Form *form2 = globals[op2];
duke@435 3560
duke@435 3561 return (form1 == form2);
duke@435 3562 }
duke@435 3563
twisti@1038 3564 //-------------------------cisc_spill_match_node-------------------------------
duke@435 3565 // Recursively check two MatchRules for legal conversion via cisc-spilling
twisti@1038 3566 int MatchNode::cisc_spill_match(FormDict& globals, RegisterForm* registers, MatchNode* mRule2, const char* &operand, const char* &reg_type) {
duke@435 3567 int cisc_spillable = Maybe_cisc_spillable;
duke@435 3568 int left_spillable = Maybe_cisc_spillable;
duke@435 3569 int right_spillable = Maybe_cisc_spillable;
duke@435 3570
duke@435 3571 // Check that each has same number of operands at this level
duke@435 3572 if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) )
duke@435 3573 return Not_cisc_spillable;
duke@435 3574
duke@435 3575 // Base Case: check that the current operands/operations match
duke@435 3576 // or are CISC spillable
duke@435 3577 assert( _opType, "Must have _opType");
duke@435 3578 assert( mRule2->_opType, "Must have _opType");
duke@435 3579 const Form *form = globals[_opType];
duke@435 3580 const Form *form2 = globals[mRule2->_opType];
duke@435 3581 if( form == form2 ) {
duke@435 3582 cisc_spillable = Maybe_cisc_spillable;
duke@435 3583 } else {
duke@435 3584 const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
duke@435 3585 const char *name_left = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
duke@435 3586 const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
twisti@1059 3587 DataType data_type = Form::none;
twisti@1059 3588 if (form->is_operand()) {
twisti@1059 3589 // Make sure the loadX matches the type of the reg
twisti@1059 3590 data_type = form->ideal_to_Reg_type(form->is_operand()->ideal_type(globals));
twisti@1059 3591 }
duke@435 3592 // Detect reg vs (loadX memory)
duke@435 3593 if( form->is_cisc_reg(globals)
duke@435 3594 && form2_inst
twisti@1059 3595 && data_type != Form::none
twisti@1059 3596 && (is_load_from_memory(mRule2->_opType) == data_type) // reg vs. (load memory)
duke@435 3597 && (name_left != NULL) // NOT (load)
duke@435 3598 && (name_right == NULL) ) { // NOT (load memory foo)
duke@435 3599 const Form *form2_left = name_left ? globals[name_left] : NULL;
duke@435 3600 if( form2_left && form2_left->is_cisc_mem(globals) ) {
duke@435 3601 cisc_spillable = Is_cisc_spillable;
duke@435 3602 operand = _name;
duke@435 3603 reg_type = _result;
duke@435 3604 return Is_cisc_spillable;
duke@435 3605 } else {
duke@435 3606 cisc_spillable = Not_cisc_spillable;
duke@435 3607 }
duke@435 3608 }
duke@435 3609 // Detect reg vs memory
duke@435 3610 else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) {
duke@435 3611 cisc_spillable = Is_cisc_spillable;
duke@435 3612 operand = _name;
duke@435 3613 reg_type = _result;
duke@435 3614 return Is_cisc_spillable;
duke@435 3615 } else {
duke@435 3616 cisc_spillable = Not_cisc_spillable;
duke@435 3617 }
duke@435 3618 }
duke@435 3619
duke@435 3620 // If cisc is still possible, check rest of tree
duke@435 3621 if( cisc_spillable == Maybe_cisc_spillable ) {
duke@435 3622 // Check that each has same number of operands at this level
duke@435 3623 if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
duke@435 3624
duke@435 3625 // Check left operands
duke@435 3626 if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
duke@435 3627 left_spillable = Maybe_cisc_spillable;
duke@435 3628 } else {
duke@435 3629 left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
duke@435 3630 }
duke@435 3631
duke@435 3632 // Check right operands
duke@435 3633 if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
duke@435 3634 right_spillable = Maybe_cisc_spillable;
duke@435 3635 } else {
duke@435 3636 right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
duke@435 3637 }
duke@435 3638
duke@435 3639 // Combine results of left and right checks
duke@435 3640 cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
duke@435 3641 }
duke@435 3642
duke@435 3643 return cisc_spillable;
duke@435 3644 }
duke@435 3645
twisti@1038 3646 //---------------------------cisc_spill_match_rule------------------------------
duke@435 3647 // Recursively check two MatchRules for legal conversion via cisc-spilling
duke@435 3648 // This method handles the root of Match tree,
duke@435 3649 // general recursive checks done in MatchNode
twisti@1038 3650 int MatchRule::matchrule_cisc_spill_match(FormDict& globals, RegisterForm* registers,
twisti@1038 3651 MatchRule* mRule2, const char* &operand,
twisti@1038 3652 const char* &reg_type) {
duke@435 3653 int cisc_spillable = Maybe_cisc_spillable;
duke@435 3654 int left_spillable = Maybe_cisc_spillable;
duke@435 3655 int right_spillable = Maybe_cisc_spillable;
duke@435 3656
duke@435 3657 // Check that each sets a result
duke@435 3658 if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
duke@435 3659 // Check that each has same number of operands at this level
duke@435 3660 if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
duke@435 3661
duke@435 3662 // Check left operands: at root, must be target of 'Set'
duke@435 3663 if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
duke@435 3664 left_spillable = Not_cisc_spillable;
duke@435 3665 } else {
duke@435 3666 // Do not support cisc-spilling instruction's target location
duke@435 3667 if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
duke@435 3668 left_spillable = Maybe_cisc_spillable;
duke@435 3669 } else {
duke@435 3670 left_spillable = Not_cisc_spillable;
duke@435 3671 }
duke@435 3672 }
duke@435 3673
duke@435 3674 // Check right operands: recursive walk to identify reg->mem operand
duke@435 3675 if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
duke@435 3676 right_spillable = Maybe_cisc_spillable;
duke@435 3677 } else {
duke@435 3678 right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
duke@435 3679 }
duke@435 3680
duke@435 3681 // Combine results of left and right checks
duke@435 3682 cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
duke@435 3683
duke@435 3684 return cisc_spillable;
duke@435 3685 }
duke@435 3686
duke@435 3687 //----------------------------- equivalent ------------------------------------
duke@435 3688 // Recursively check to see if two match rules are equivalent.
duke@435 3689 // This rule handles the root.
twisti@1038 3690 bool MatchRule::equivalent(FormDict &globals, MatchNode *mRule2) {
duke@435 3691 // Check that each sets a result
duke@435 3692 if (sets_result() != mRule2->sets_result()) {
duke@435 3693 return false;
duke@435 3694 }
duke@435 3695
duke@435 3696 // Check that the current operands/operations match
duke@435 3697 assert( _opType, "Must have _opType");
duke@435 3698 assert( mRule2->_opType, "Must have _opType");
duke@435 3699 const Form *form = globals[_opType];
duke@435 3700 const Form *form2 = globals[mRule2->_opType];
duke@435 3701 if( form != form2 ) {
duke@435 3702 return false;
duke@435 3703 }
duke@435 3704
duke@435 3705 if (_lChild ) {
duke@435 3706 if( !_lChild->equivalent(globals, mRule2->_lChild) )
duke@435 3707 return false;
duke@435 3708 } else if (mRule2->_lChild) {
duke@435 3709 return false; // I have NULL left child, mRule2 has non-NULL left child.
duke@435 3710 }
duke@435 3711
duke@435 3712 if (_rChild ) {
duke@435 3713 if( !_rChild->equivalent(globals, mRule2->_rChild) )
duke@435 3714 return false;
duke@435 3715 } else if (mRule2->_rChild) {
duke@435 3716 return false; // I have NULL right child, mRule2 has non-NULL right child.
duke@435 3717 }
duke@435 3718
duke@435 3719 // We've made it through the gauntlet.
duke@435 3720 return true;
duke@435 3721 }
duke@435 3722
duke@435 3723 //----------------------------- equivalent ------------------------------------
duke@435 3724 // Recursively check to see if two match rules are equivalent.
duke@435 3725 // This rule handles the operands.
duke@435 3726 bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
duke@435 3727 if( !mNode2 )
duke@435 3728 return false;
duke@435 3729
duke@435 3730 // Check that the current operands/operations match
duke@435 3731 assert( _opType, "Must have _opType");
duke@435 3732 assert( mNode2->_opType, "Must have _opType");
duke@435 3733 const Form *form = globals[_opType];
duke@435 3734 const Form *form2 = globals[mNode2->_opType];
kvn@3037 3735 if( form != form2 ) {
kvn@3037 3736 return false;
kvn@3037 3737 }
kvn@3037 3738
kvn@3037 3739 // Check that their children also match
kvn@3037 3740 if (_lChild ) {
kvn@3037 3741 if( !_lChild->equivalent(globals, mNode2->_lChild) )
kvn@3037 3742 return false;
kvn@3037 3743 } else if (mNode2->_lChild) {
kvn@3037 3744 return false; // I have NULL left child, mNode2 has non-NULL left child.
kvn@3037 3745 }
kvn@3037 3746
kvn@3037 3747 if (_rChild ) {
kvn@3037 3748 if( !_rChild->equivalent(globals, mNode2->_rChild) )
kvn@3037 3749 return false;
kvn@3037 3750 } else if (mNode2->_rChild) {
kvn@3037 3751 return false; // I have NULL right child, mNode2 has non-NULL right child.
kvn@3037 3752 }
kvn@3037 3753
kvn@3037 3754 // We've made it through the gauntlet.
kvn@3037 3755 return true;
duke@435 3756 }
duke@435 3757
duke@435 3758 //-------------------------- has_commutative_op -------------------------------
duke@435 3759 // Recursively check for commutative operations with subtree operands
duke@435 3760 // which could be swapped.
duke@435 3761 void MatchNode::count_commutative_op(int& count) {
duke@435 3762 static const char *commut_op_list[] = {
duke@435 3763 "AddI","AddL","AddF","AddD",
duke@435 3764 "AndI","AndL",
duke@435 3765 "MaxI","MinI",
duke@435 3766 "MulI","MulL","MulF","MulD",
duke@435 3767 "OrI" ,"OrL" ,
duke@435 3768 "XorI","XorL"
duke@435 3769 };
duke@435 3770 int cnt = sizeof(commut_op_list)/sizeof(char*);
duke@435 3771
duke@435 3772 if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
duke@435 3773 // Don't swap if right operand is an immediate constant.
duke@435 3774 bool is_const = false;
duke@435 3775 if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
duke@435 3776 FormDict &globals = _AD.globalNames();
duke@435 3777 const Form *form = globals[_rChild->_opType];
duke@435 3778 if ( form ) {
duke@435 3779 OperandForm *oper = form->is_operand();
duke@435 3780 if( oper && oper->interface_type(globals) == Form::constant_interface )
duke@435 3781 is_const = true;
duke@435 3782 }
duke@435 3783 }
duke@435 3784 if( !is_const ) {
duke@435 3785 for( int i=0; i<cnt; i++ ) {
duke@435 3786 if( strcmp(_opType, commut_op_list[i]) == 0 ) {
duke@435 3787 count++;
duke@435 3788 _commutative_id = count; // id should be > 0
duke@435 3789 break;
duke@435 3790 }
duke@435 3791 }
duke@435 3792 }
duke@435 3793 }
duke@435 3794 if( _lChild )
duke@435 3795 _lChild->count_commutative_op(count);
duke@435 3796 if( _rChild )
duke@435 3797 _rChild->count_commutative_op(count);
duke@435 3798 }
duke@435 3799
duke@435 3800 //-------------------------- swap_commutative_op ------------------------------
duke@435 3801 // Recursively swap specified commutative operation with subtree operands.
duke@435 3802 void MatchNode::swap_commutative_op(bool atroot, int id) {
duke@435 3803 if( _commutative_id == id ) { // id should be > 0
duke@435 3804 assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ),
duke@435 3805 "not swappable operation");
duke@435 3806 MatchNode* tmp = _lChild;
duke@435 3807 _lChild = _rChild;
duke@435 3808 _rChild = tmp;
duke@435 3809 // Don't exit here since we need to build internalop.
duke@435 3810 }
duke@435 3811
duke@435 3812 bool is_set = ( strcmp(_opType, "Set") == 0 );
duke@435 3813 if( _lChild )
duke@435 3814 _lChild->swap_commutative_op(is_set, id);
duke@435 3815 if( _rChild )
duke@435 3816 _rChild->swap_commutative_op(is_set, id);
duke@435 3817
duke@435 3818 // If not the root, reduce this subtree to an internal operand
duke@435 3819 if( !atroot && (_lChild || _rChild) ) {
duke@435 3820 build_internalop();
duke@435 3821 }
duke@435 3822 }
duke@435 3823
duke@435 3824 //-------------------------- swap_commutative_op ------------------------------
duke@435 3825 // Recursively swap specified commutative operation with subtree operands.
twisti@1038 3826 void MatchRule::matchrule_swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
duke@435 3827 assert(match_rules_cnt < 100," too many match rule clones");
duke@435 3828 // Clone
duke@435 3829 MatchRule* clone = new MatchRule(_AD, this);
duke@435 3830 // Swap operands of commutative operation
duke@435 3831 ((MatchNode*)clone)->swap_commutative_op(true, count);
duke@435 3832 char* buf = (char*) malloc(strlen(instr_ident) + 4);
duke@435 3833 sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
duke@435 3834 clone->_result = buf;
duke@435 3835
duke@435 3836 clone->_next = this->_next;
duke@435 3837 this-> _next = clone;
duke@435 3838 if( (--count) > 0 ) {
twisti@1038 3839 this-> matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
twisti@1038 3840 clone->matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
duke@435 3841 }
duke@435 3842 }
duke@435 3843
duke@435 3844 //------------------------------MatchRule--------------------------------------
duke@435 3845 MatchRule::MatchRule(ArchDesc &ad)
duke@435 3846 : MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
duke@435 3847 _next = NULL;
duke@435 3848 }
duke@435 3849
duke@435 3850 MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
duke@435 3851 : MatchNode(ad, *mRule, 0), _depth(mRule->_depth),
duke@435 3852 _construct(mRule->_construct), _numchilds(mRule->_numchilds) {
duke@435 3853 _next = NULL;
duke@435 3854 }
duke@435 3855
duke@435 3856 MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
duke@435 3857 int numleaves)
duke@435 3858 : MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
duke@435 3859 _numchilds(0) {
duke@435 3860 _next = NULL;
duke@435 3861 mroot->_lChild = NULL;
duke@435 3862 mroot->_rChild = NULL;
duke@435 3863 delete mroot;
duke@435 3864 _numleaves = numleaves;
duke@435 3865 _numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
duke@435 3866 }
duke@435 3867 MatchRule::~MatchRule() {
duke@435 3868 }
duke@435 3869
duke@435 3870 // Recursive call collecting info on top-level operands, not transitive.
duke@435 3871 // Implementation does not modify state of internal structures.
twisti@1038 3872 void MatchRule::append_components(FormDict& locals, ComponentList& components, bool def_flag) const {
duke@435 3873 assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
duke@435 3874
duke@435 3875 MatchNode::append_components(locals, components,
duke@435 3876 false /* not necessarily a def */);
duke@435 3877 }
duke@435 3878
duke@435 3879 // Recursive call on all operands' match rules in my match rule.
duke@435 3880 // Implementation does not modify state of internal structures since they
duke@435 3881 // can be shared.
duke@435 3882 // The MatchNode that is called first treats its
duke@435 3883 bool MatchRule::base_operand(uint &position0, FormDict &globals,
duke@435 3884 const char *&result, const char * &name,
duke@435 3885 const char * &opType)const{
duke@435 3886 uint position = position0;
duke@435 3887
duke@435 3888 return (MatchNode::base_operand( position, globals, result, name, opType));
duke@435 3889 }
duke@435 3890
duke@435 3891
duke@435 3892 bool MatchRule::is_base_register(FormDict &globals) const {
duke@435 3893 uint position = 1;
duke@435 3894 const char *result = NULL;
duke@435 3895 const char *name = NULL;
duke@435 3896 const char *opType = NULL;
duke@435 3897 if (!base_operand(position, globals, result, name, opType)) {
duke@435 3898 position = 0;
duke@435 3899 if( base_operand(position, globals, result, name, opType) &&
duke@435 3900 (strcmp(opType,"RegI")==0 ||
duke@435 3901 strcmp(opType,"RegP")==0 ||
coleenp@548 3902 strcmp(opType,"RegN")==0 ||
duke@435 3903 strcmp(opType,"RegL")==0 ||
duke@435 3904 strcmp(opType,"RegF")==0 ||
duke@435 3905 strcmp(opType,"RegD")==0 ||
kvn@3882 3906 strcmp(opType,"VecS")==0 ||
kvn@3882 3907 strcmp(opType,"VecD")==0 ||
kvn@3882 3908 strcmp(opType,"VecX")==0 ||
kvn@3882 3909 strcmp(opType,"VecY")==0 ||
duke@435 3910 strcmp(opType,"Reg" )==0) ) {
duke@435 3911 return 1;
duke@435 3912 }
duke@435 3913 }
duke@435 3914 return 0;
duke@435 3915 }
duke@435 3916
duke@435 3917 Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
duke@435 3918 uint position = 1;
duke@435 3919 const char *result = NULL;
duke@435 3920 const char *name = NULL;
duke@435 3921 const char *opType = NULL;
duke@435 3922 if (!base_operand(position, globals, result, name, opType)) {
duke@435 3923 position = 0;
duke@435 3924 if (base_operand(position, globals, result, name, opType)) {
duke@435 3925 return ideal_to_const_type(opType);
duke@435 3926 }
duke@435 3927 }
duke@435 3928 return Form::none;
duke@435 3929 }
duke@435 3930
duke@435 3931 bool MatchRule::is_chain_rule(FormDict &globals) const {
duke@435 3932
duke@435 3933 // Check for chain rule, and do not generate a match list for it
duke@435 3934 if ((_lChild == NULL) && (_rChild == NULL) ) {
duke@435 3935 const Form *form = globals[_opType];
duke@435 3936 // If this is ideal, then it is a base match, not a chain rule.
duke@435 3937 if ( form && form->is_operand() && (!form->ideal_only())) {
duke@435 3938 return true;
duke@435 3939 }
duke@435 3940 }
duke@435 3941 // Check for "Set" form of chain rule, and do not generate a match list
duke@435 3942 if (_rChild) {
duke@435 3943 const char *rch = _rChild->_opType;
duke@435 3944 const Form *form = globals[rch];
duke@435 3945 if ((!strcmp(_opType,"Set") &&
duke@435 3946 ((form) && form->is_operand()))) {
duke@435 3947 return true;
duke@435 3948 }
duke@435 3949 }
duke@435 3950 return false;
duke@435 3951 }
duke@435 3952
duke@435 3953 int MatchRule::is_ideal_copy() const {
duke@435 3954 if( _rChild ) {
duke@435 3955 const char *opType = _rChild->_opType;
ysr@777 3956 #if 1
ysr@777 3957 if( strcmp(opType,"CastIP")==0 )
ysr@777 3958 return 1;
ysr@777 3959 #else
duke@435 3960 if( strcmp(opType,"CastII")==0 )
duke@435 3961 return 1;
duke@435 3962 // Do not treat *CastPP this way, because it
duke@435 3963 // may transfer a raw pointer to an oop.
duke@435 3964 // If the register allocator were to coalesce this
duke@435 3965 // into a single LRG, the GC maps would be incorrect.
duke@435 3966 //if( strcmp(opType,"CastPP")==0 )
duke@435 3967 // return 1;
duke@435 3968 //if( strcmp(opType,"CheckCastPP")==0 )
duke@435 3969 // return 1;
duke@435 3970 //
duke@435 3971 // Do not treat CastX2P or CastP2X this way, because
duke@435 3972 // raw pointers and int types are treated differently
duke@435 3973 // when saving local & stack info for safepoints in
duke@435 3974 // Output().
duke@435 3975 //if( strcmp(opType,"CastX2P")==0 )
duke@435 3976 // return 1;
duke@435 3977 //if( strcmp(opType,"CastP2X")==0 )
duke@435 3978 // return 1;
ysr@777 3979 #endif
duke@435 3980 }
duke@435 3981 if( is_chain_rule(_AD.globalNames()) &&
duke@435 3982 _lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 )
duke@435 3983 return 1;
duke@435 3984 return 0;
duke@435 3985 }
duke@435 3986
duke@435 3987
duke@435 3988 int MatchRule::is_expensive() const {
duke@435 3989 if( _rChild ) {
duke@435 3990 const char *opType = _rChild->_opType;
duke@435 3991 if( strcmp(opType,"AtanD")==0 ||
duke@435 3992 strcmp(opType,"CosD")==0 ||
duke@435 3993 strcmp(opType,"DivD")==0 ||
duke@435 3994 strcmp(opType,"DivF")==0 ||
duke@435 3995 strcmp(opType,"DivI")==0 ||
duke@435 3996 strcmp(opType,"ExpD")==0 ||
duke@435 3997 strcmp(opType,"LogD")==0 ||
duke@435 3998 strcmp(opType,"Log10D")==0 ||
duke@435 3999 strcmp(opType,"ModD")==0 ||
duke@435 4000 strcmp(opType,"ModF")==0 ||
duke@435 4001 strcmp(opType,"ModI")==0 ||
duke@435 4002 strcmp(opType,"PowD")==0 ||
duke@435 4003 strcmp(opType,"SinD")==0 ||
duke@435 4004 strcmp(opType,"SqrtD")==0 ||
duke@435 4005 strcmp(opType,"TanD")==0 ||
duke@435 4006 strcmp(opType,"ConvD2F")==0 ||
duke@435 4007 strcmp(opType,"ConvD2I")==0 ||
duke@435 4008 strcmp(opType,"ConvD2L")==0 ||
duke@435 4009 strcmp(opType,"ConvF2D")==0 ||
duke@435 4010 strcmp(opType,"ConvF2I")==0 ||
duke@435 4011 strcmp(opType,"ConvF2L")==0 ||
duke@435 4012 strcmp(opType,"ConvI2D")==0 ||
duke@435 4013 strcmp(opType,"ConvI2F")==0 ||
duke@435 4014 strcmp(opType,"ConvI2L")==0 ||
duke@435 4015 strcmp(opType,"ConvL2D")==0 ||
duke@435 4016 strcmp(opType,"ConvL2F")==0 ||
duke@435 4017 strcmp(opType,"ConvL2I")==0 ||
kvn@682 4018 strcmp(opType,"DecodeN")==0 ||
kvn@682 4019 strcmp(opType,"EncodeP")==0 ||
roland@4159 4020 strcmp(opType,"EncodePKlass")==0 ||
roland@4159 4021 strcmp(opType,"DecodeNKlass")==0 ||
duke@435 4022 strcmp(opType,"RoundDouble")==0 ||
duke@435 4023 strcmp(opType,"RoundFloat")==0 ||
duke@435 4024 strcmp(opType,"ReverseBytesI")==0 ||
duke@435 4025 strcmp(opType,"ReverseBytesL")==0 ||
never@1831 4026 strcmp(opType,"ReverseBytesUS")==0 ||
never@1831 4027 strcmp(opType,"ReverseBytesS")==0 ||
kvn@3882 4028 strcmp(opType,"ReplicateB")==0 ||
kvn@3882 4029 strcmp(opType,"ReplicateS")==0 ||
kvn@3882 4030 strcmp(opType,"ReplicateI")==0 ||
kvn@3882 4031 strcmp(opType,"ReplicateL")==0 ||
kvn@3882 4032 strcmp(opType,"ReplicateF")==0 ||
kvn@3882 4033 strcmp(opType,"ReplicateD")==0 ||
duke@435 4034 0 /* 0 to line up columns nicely */ )
duke@435 4035 return 1;
duke@435 4036 }
duke@435 4037 return 0;
duke@435 4038 }
duke@435 4039
duke@435 4040 bool MatchRule::is_ideal_if() const {
duke@435 4041 if( !_opType ) return false;
duke@435 4042 return
duke@435 4043 !strcmp(_opType,"If" ) ||
duke@435 4044 !strcmp(_opType,"CountedLoopEnd");
duke@435 4045 }
duke@435 4046
duke@435 4047 bool MatchRule::is_ideal_fastlock() const {
duke@435 4048 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 4049 return (strcmp(_rChild->_opType,"FastLock") == 0);
duke@435 4050 }
duke@435 4051 return false;
duke@435 4052 }
duke@435 4053
duke@435 4054 bool MatchRule::is_ideal_membar() const {
duke@435 4055 if( !_opType ) return false;
duke@435 4056 return
duke@435 4057 !strcmp(_opType,"MemBarAcquire" ) ||
duke@435 4058 !strcmp(_opType,"MemBarRelease" ) ||
roland@3047 4059 !strcmp(_opType,"MemBarAcquireLock") ||
roland@3047 4060 !strcmp(_opType,"MemBarReleaseLock") ||
duke@435 4061 !strcmp(_opType,"MemBarVolatile" ) ||
roland@3392 4062 !strcmp(_opType,"MemBarCPUOrder" ) ||
roland@3392 4063 !strcmp(_opType,"MemBarStoreStore" );
duke@435 4064 }
duke@435 4065
duke@435 4066 bool MatchRule::is_ideal_loadPC() const {
duke@435 4067 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 4068 return (strcmp(_rChild->_opType,"LoadPC") == 0);
duke@435 4069 }
duke@435 4070 return false;
duke@435 4071 }
duke@435 4072
duke@435 4073 bool MatchRule::is_ideal_box() const {
duke@435 4074 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 4075 return (strcmp(_rChild->_opType,"Box") == 0);
duke@435 4076 }
duke@435 4077 return false;
duke@435 4078 }
duke@435 4079
duke@435 4080 bool MatchRule::is_ideal_goto() const {
duke@435 4081 bool ideal_goto = false;
duke@435 4082
duke@435 4083 if( _opType && (strcmp(_opType,"Goto") == 0) ) {
duke@435 4084 ideal_goto = true;
duke@435 4085 }
duke@435 4086 return ideal_goto;
duke@435 4087 }
duke@435 4088
duke@435 4089 bool MatchRule::is_ideal_jump() const {
duke@435 4090 if( _opType ) {
duke@435 4091 if( !strcmp(_opType,"Jump") )
duke@435 4092 return true;
duke@435 4093 }
duke@435 4094 return false;
duke@435 4095 }
duke@435 4096
duke@435 4097 bool MatchRule::is_ideal_bool() const {
duke@435 4098 if( _opType ) {
duke@435 4099 if( !strcmp(_opType,"Bool") )
duke@435 4100 return true;
duke@435 4101 }
duke@435 4102 return false;
duke@435 4103 }
duke@435 4104
duke@435 4105
duke@435 4106 Form::DataType MatchRule::is_ideal_load() const {
duke@435 4107 Form::DataType ideal_load = Form::none;
duke@435 4108
duke@435 4109 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 4110 const char *opType = _rChild->_opType;
duke@435 4111 ideal_load = is_load_from_memory(opType);
duke@435 4112 }
duke@435 4113
duke@435 4114 return ideal_load;
duke@435 4115 }
duke@435 4116
kvn@3882 4117 bool MatchRule::is_vector() const {
kvn@4113 4118 static const char *vector_list[] = {
kvn@4113 4119 "AddVB","AddVS","AddVI","AddVL","AddVF","AddVD",
kvn@4113 4120 "SubVB","SubVS","SubVI","SubVL","SubVF","SubVD",
kvn@4113 4121 "MulVS","MulVI","MulVF","MulVD",
kvn@4113 4122 "DivVF","DivVD",
kvn@4113 4123 "AndV" ,"XorV" ,"OrV",
kvn@4134 4124 "LShiftCntV","RShiftCntV",
kvn@4113 4125 "LShiftVB","LShiftVS","LShiftVI","LShiftVL",
kvn@4113 4126 "RShiftVB","RShiftVS","RShiftVI","RShiftVL",
kvn@4113 4127 "URShiftVB","URShiftVS","URShiftVI","URShiftVL",
kvn@4113 4128 "ReplicateB","ReplicateS","ReplicateI","ReplicateL","ReplicateF","ReplicateD",
kvn@4113 4129 "LoadVector","StoreVector",
kvn@4113 4130 // Next are not supported currently.
kvn@4113 4131 "PackB","PackS","PackI","PackL","PackF","PackD","Pack2L","Pack2D",
kvn@4113 4132 "ExtractB","ExtractUB","ExtractC","ExtractS","ExtractI","ExtractL","ExtractF","ExtractD"
kvn@4113 4133 };
kvn@4113 4134 int cnt = sizeof(vector_list)/sizeof(char*);
kvn@4113 4135 if (_rChild) {
kvn@3882 4136 const char *opType = _rChild->_opType;
kvn@4113 4137 for (int i=0; i<cnt; i++)
kvn@4113 4138 if (strcmp(opType,vector_list[i]) == 0)
kvn@4113 4139 return true;
kvn@3882 4140 }
kvn@3882 4141 return false;
kvn@3882 4142 }
kvn@3882 4143
duke@435 4144
never@1290 4145 bool MatchRule::skip_antidep_check() const {
never@1290 4146 // Some loads operate on what is effectively immutable memory so we
never@1290 4147 // should skip the anti dep computations. For some of these nodes
never@1290 4148 // the rewritable field keeps the anti dep logic from triggering but
never@1290 4149 // for certain kinds of LoadKlass it does not since they are
never@1290 4150 // actually reading memory which could be rewritten by the runtime,
never@1290 4151 // though never by generated code. This disables it uniformly for
never@1290 4152 // the nodes that behave like this: LoadKlass, LoadNKlass and
never@1290 4153 // LoadRange.
never@1290 4154 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
never@1290 4155 const char *opType = _rChild->_opType;
never@1290 4156 if (strcmp("LoadKlass", opType) == 0 ||
never@1290 4157 strcmp("LoadNKlass", opType) == 0 ||
never@1290 4158 strcmp("LoadRange", opType) == 0) {
never@1290 4159 return true;
never@1290 4160 }
never@1290 4161 }
never@1290 4162
never@1290 4163 return false;
never@1290 4164 }
never@1290 4165
never@1290 4166
duke@435 4167 Form::DataType MatchRule::is_ideal_store() const {
duke@435 4168 Form::DataType ideal_store = Form::none;
duke@435 4169
duke@435 4170 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 4171 const char *opType = _rChild->_opType;
duke@435 4172 ideal_store = is_store_to_memory(opType);
duke@435 4173 }
duke@435 4174
duke@435 4175 return ideal_store;
duke@435 4176 }
duke@435 4177
duke@435 4178
duke@435 4179 void MatchRule::dump() {
duke@435 4180 output(stderr);
duke@435 4181 }
duke@435 4182
kvn@4161 4183 // Write just one line.
kvn@4161 4184 void MatchRule::output_short(FILE *fp) {
duke@435 4185 fprintf(fp,"MatchRule: ( %s",_name);
duke@435 4186 if (_lChild) _lChild->output(fp);
duke@435 4187 if (_rChild) _rChild->output(fp);
kvn@4161 4188 fprintf(fp," )");
kvn@4161 4189 }
kvn@4161 4190
kvn@4161 4191 void MatchRule::output(FILE *fp) {
kvn@4161 4192 output_short(fp);
kvn@4161 4193 fprintf(fp,"\n nesting depth = %d\n", _depth);
duke@435 4194 if (_result) fprintf(fp," Result Type = %s", _result);
duke@435 4195 fprintf(fp,"\n");
duke@435 4196 }
duke@435 4197
duke@435 4198 //------------------------------Attribute--------------------------------------
duke@435 4199 Attribute::Attribute(char *id, char* val, int type)
duke@435 4200 : _ident(id), _val(val), _atype(type) {
duke@435 4201 }
duke@435 4202 Attribute::~Attribute() {
duke@435 4203 }
duke@435 4204
duke@435 4205 int Attribute::int_val(ArchDesc &ad) {
duke@435 4206 // Make sure it is an integer constant:
duke@435 4207 int result = 0;
duke@435 4208 if (!_val || !ADLParser::is_int_token(_val, result)) {
duke@435 4209 ad.syntax_err(0, "Attribute %s must have an integer value: %s",
duke@435 4210 _ident, _val ? _val : "");
duke@435 4211 }
duke@435 4212 return result;
duke@435 4213 }
duke@435 4214
duke@435 4215 void Attribute::dump() {
duke@435 4216 output(stderr);
duke@435 4217 } // Debug printer
duke@435 4218
duke@435 4219 // Write to output files
duke@435 4220 void Attribute::output(FILE *fp) {
duke@435 4221 fprintf(fp,"Attribute: %s %s\n", (_ident?_ident:""), (_val?_val:""));
duke@435 4222 }
duke@435 4223
duke@435 4224 //------------------------------FormatRule----------------------------------
duke@435 4225 FormatRule::FormatRule(char *temp)
duke@435 4226 : _temp(temp) {
duke@435 4227 }
duke@435 4228 FormatRule::~FormatRule() {
duke@435 4229 }
duke@435 4230
duke@435 4231 void FormatRule::dump() {
duke@435 4232 output(stderr);
duke@435 4233 }
duke@435 4234
duke@435 4235 // Write to output files
duke@435 4236 void FormatRule::output(FILE *fp) {
duke@435 4237 fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
duke@435 4238 fprintf(fp,"\n");
duke@435 4239 }

mercurial