src/share/vm/adlc/formssel.cpp

Wed, 25 Feb 2009 10:53:14 -0800

author
never
date
Wed, 25 Feb 2009 10:53:14 -0800
changeset 1034
0ad1cb407fa1
parent 993
3b5ac9e7e6ea
child 1037
ed6404fac86b
permissions
-rw-r--r--

6805427: adlc compiler may generate incorrect machnode emission code
Reviewed-by: kvn, twisti

duke@435 1 /*
xdono@631 2 * Copyright 1998-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // FORMS.CPP - Definitions for ADL Parser Forms Classes
duke@435 26 #include "adlc.hpp"
duke@435 27
duke@435 28 //==============================Instructions===================================
duke@435 29 //------------------------------InstructForm-----------------------------------
duke@435 30 InstructForm::InstructForm(const char *id, bool ideal_only)
duke@435 31 : _ident(id), _ideal_only(ideal_only),
duke@435 32 _localNames(cmpstr, hashstr, Form::arena),
duke@435 33 _effects(cmpstr, hashstr, Form::arena) {
duke@435 34 _ftype = Form::INS;
duke@435 35
duke@435 36 _matrule = NULL;
duke@435 37 _insencode = NULL;
duke@435 38 _opcode = NULL;
duke@435 39 _size = NULL;
duke@435 40 _attribs = NULL;
duke@435 41 _predicate = NULL;
duke@435 42 _exprule = NULL;
duke@435 43 _rewrule = NULL;
duke@435 44 _format = NULL;
duke@435 45 _peephole = NULL;
duke@435 46 _ins_pipe = NULL;
duke@435 47 _uniq_idx = NULL;
duke@435 48 _num_uniq = 0;
duke@435 49 _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
duke@435 50 _cisc_spill_alternate = NULL; // possible cisc replacement
duke@435 51 _cisc_reg_mask_name = NULL;
duke@435 52 _is_cisc_alternate = false;
duke@435 53 _is_short_branch = false;
duke@435 54 _short_branch_form = NULL;
duke@435 55 _alignment = 1;
duke@435 56 }
duke@435 57
duke@435 58 InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
duke@435 59 : _ident(id), _ideal_only(false),
duke@435 60 _localNames(instr->_localNames),
duke@435 61 _effects(instr->_effects) {
duke@435 62 _ftype = Form::INS;
duke@435 63
duke@435 64 _matrule = rule;
duke@435 65 _insencode = instr->_insencode;
duke@435 66 _opcode = instr->_opcode;
duke@435 67 _size = instr->_size;
duke@435 68 _attribs = instr->_attribs;
duke@435 69 _predicate = instr->_predicate;
duke@435 70 _exprule = instr->_exprule;
duke@435 71 _rewrule = instr->_rewrule;
duke@435 72 _format = instr->_format;
duke@435 73 _peephole = instr->_peephole;
duke@435 74 _ins_pipe = instr->_ins_pipe;
duke@435 75 _uniq_idx = instr->_uniq_idx;
duke@435 76 _num_uniq = instr->_num_uniq;
duke@435 77 _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
duke@435 78 _cisc_spill_alternate = NULL; // possible cisc replacement
duke@435 79 _cisc_reg_mask_name = NULL;
duke@435 80 _is_cisc_alternate = false;
duke@435 81 _is_short_branch = false;
duke@435 82 _short_branch_form = NULL;
duke@435 83 _alignment = 1;
duke@435 84 // Copy parameters
duke@435 85 const char *name;
duke@435 86 instr->_parameters.reset();
duke@435 87 for (; (name = instr->_parameters.iter()) != NULL;)
duke@435 88 _parameters.addName(name);
duke@435 89 }
duke@435 90
duke@435 91 InstructForm::~InstructForm() {
duke@435 92 }
duke@435 93
duke@435 94 InstructForm *InstructForm::is_instruction() const {
duke@435 95 return (InstructForm*)this;
duke@435 96 }
duke@435 97
duke@435 98 bool InstructForm::ideal_only() const {
duke@435 99 return _ideal_only;
duke@435 100 }
duke@435 101
duke@435 102 bool InstructForm::sets_result() const {
duke@435 103 return (_matrule != NULL && _matrule->sets_result());
duke@435 104 }
duke@435 105
duke@435 106 bool InstructForm::needs_projections() {
duke@435 107 _components.reset();
duke@435 108 for( Component *comp; (comp = _components.iter()) != NULL; ) {
duke@435 109 if (comp->isa(Component::KILL)) {
duke@435 110 return true;
duke@435 111 }
duke@435 112 }
duke@435 113 return false;
duke@435 114 }
duke@435 115
duke@435 116
duke@435 117 bool InstructForm::has_temps() {
duke@435 118 if (_matrule) {
duke@435 119 // Examine each component to see if it is a TEMP
duke@435 120 _components.reset();
duke@435 121 // Skip the first component, if already handled as (SET dst (...))
duke@435 122 Component *comp = NULL;
duke@435 123 if (sets_result()) comp = _components.iter();
duke@435 124 while ((comp = _components.iter()) != NULL) {
duke@435 125 if (comp->isa(Component::TEMP)) {
duke@435 126 return true;
duke@435 127 }
duke@435 128 }
duke@435 129 }
duke@435 130
duke@435 131 return false;
duke@435 132 }
duke@435 133
duke@435 134 uint InstructForm::num_defs_or_kills() {
duke@435 135 uint defs_or_kills = 0;
duke@435 136
duke@435 137 _components.reset();
duke@435 138 for( Component *comp; (comp = _components.iter()) != NULL; ) {
duke@435 139 if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
duke@435 140 ++defs_or_kills;
duke@435 141 }
duke@435 142 }
duke@435 143
duke@435 144 return defs_or_kills;
duke@435 145 }
duke@435 146
duke@435 147 // This instruction has an expand rule?
duke@435 148 bool InstructForm::expands() const {
duke@435 149 return ( _exprule != NULL );
duke@435 150 }
duke@435 151
duke@435 152 // This instruction has a peephole rule?
duke@435 153 Peephole *InstructForm::peepholes() const {
duke@435 154 return _peephole;
duke@435 155 }
duke@435 156
duke@435 157 // This instruction has a peephole rule?
duke@435 158 void InstructForm::append_peephole(Peephole *peephole) {
duke@435 159 if( _peephole == NULL ) {
duke@435 160 _peephole = peephole;
duke@435 161 } else {
duke@435 162 _peephole->append_peephole(peephole);
duke@435 163 }
duke@435 164 }
duke@435 165
duke@435 166
duke@435 167 // ideal opcode enumeration
duke@435 168 const char *InstructForm::ideal_Opcode( FormDict &globalNames ) const {
duke@435 169 if( !_matrule ) return "Node"; // Something weird
duke@435 170 // Chain rules do not really have ideal Opcodes; use their source
duke@435 171 // operand ideal Opcode instead.
duke@435 172 if( is_simple_chain_rule(globalNames) ) {
duke@435 173 const char *src = _matrule->_rChild->_opType;
duke@435 174 OperandForm *src_op = globalNames[src]->is_operand();
duke@435 175 assert( src_op, "Not operand class of chain rule" );
duke@435 176 if( !src_op->_matrule ) return "Node";
duke@435 177 return src_op->_matrule->_opType;
duke@435 178 }
duke@435 179 // Operand chain rules do not really have ideal Opcodes
duke@435 180 if( _matrule->is_chain_rule(globalNames) )
duke@435 181 return "Node";
duke@435 182 return strcmp(_matrule->_opType,"Set")
duke@435 183 ? _matrule->_opType
duke@435 184 : _matrule->_rChild->_opType;
duke@435 185 }
duke@435 186
duke@435 187 // Recursive check on all operands' match rules in my match rule
duke@435 188 bool InstructForm::is_pinned(FormDict &globals) {
duke@435 189 if ( ! _matrule) return false;
duke@435 190
duke@435 191 int index = 0;
duke@435 192 if (_matrule->find_type("Goto", index)) return true;
duke@435 193 if (_matrule->find_type("If", index)) return true;
duke@435 194 if (_matrule->find_type("CountedLoopEnd",index)) return true;
duke@435 195 if (_matrule->find_type("Return", index)) return true;
duke@435 196 if (_matrule->find_type("Rethrow", index)) return true;
duke@435 197 if (_matrule->find_type("TailCall", index)) return true;
duke@435 198 if (_matrule->find_type("TailJump", index)) return true;
duke@435 199 if (_matrule->find_type("Halt", index)) return true;
duke@435 200 if (_matrule->find_type("Jump", index)) return true;
duke@435 201
duke@435 202 return is_parm(globals);
duke@435 203 }
duke@435 204
duke@435 205 // Recursive check on all operands' match rules in my match rule
duke@435 206 bool InstructForm::is_projection(FormDict &globals) {
duke@435 207 if ( ! _matrule) return false;
duke@435 208
duke@435 209 int index = 0;
duke@435 210 if (_matrule->find_type("Goto", index)) return true;
duke@435 211 if (_matrule->find_type("Return", index)) return true;
duke@435 212 if (_matrule->find_type("Rethrow", index)) return true;
duke@435 213 if (_matrule->find_type("TailCall",index)) return true;
duke@435 214 if (_matrule->find_type("TailJump",index)) return true;
duke@435 215 if (_matrule->find_type("Halt", index)) return true;
duke@435 216
duke@435 217 return false;
duke@435 218 }
duke@435 219
duke@435 220 // Recursive check on all operands' match rules in my match rule
duke@435 221 bool InstructForm::is_parm(FormDict &globals) {
duke@435 222 if ( ! _matrule) return false;
duke@435 223
duke@435 224 int index = 0;
duke@435 225 if (_matrule->find_type("Parm",index)) return true;
duke@435 226
duke@435 227 return false;
duke@435 228 }
duke@435 229
duke@435 230
duke@435 231 // Return 'true' if this instruction matches an ideal 'Copy*' node
duke@435 232 int InstructForm::is_ideal_copy() const {
duke@435 233 return _matrule ? _matrule->is_ideal_copy() : 0;
duke@435 234 }
duke@435 235
duke@435 236 // Return 'true' if this instruction is too complex to rematerialize.
duke@435 237 int InstructForm::is_expensive() const {
duke@435 238 // We can prove it is cheap if it has an empty encoding.
duke@435 239 // This helps with platform-specific nops like ThreadLocal and RoundFloat.
duke@435 240 if (is_empty_encoding())
duke@435 241 return 0;
duke@435 242
duke@435 243 if (is_tls_instruction())
duke@435 244 return 1;
duke@435 245
duke@435 246 if (_matrule == NULL) return 0;
duke@435 247
duke@435 248 return _matrule->is_expensive();
duke@435 249 }
duke@435 250
duke@435 251 // Has an empty encoding if _size is a constant zero or there
duke@435 252 // are no ins_encode tokens.
duke@435 253 int InstructForm::is_empty_encoding() const {
duke@435 254 if (_insencode != NULL) {
duke@435 255 _insencode->reset();
duke@435 256 if (_insencode->encode_class_iter() == NULL) {
duke@435 257 return 1;
duke@435 258 }
duke@435 259 }
duke@435 260 if (_size != NULL && strcmp(_size, "0") == 0) {
duke@435 261 return 1;
duke@435 262 }
duke@435 263 return 0;
duke@435 264 }
duke@435 265
duke@435 266 int InstructForm::is_tls_instruction() const {
duke@435 267 if (_ident != NULL &&
duke@435 268 ( ! strcmp( _ident,"tlsLoadP") ||
duke@435 269 ! strncmp(_ident,"tlsLoadP_",9)) ) {
duke@435 270 return 1;
duke@435 271 }
duke@435 272
duke@435 273 if (_matrule != NULL && _insencode != NULL) {
duke@435 274 const char* opType = _matrule->_opType;
duke@435 275 if (strcmp(opType, "Set")==0)
duke@435 276 opType = _matrule->_rChild->_opType;
duke@435 277 if (strcmp(opType,"ThreadLocal")==0) {
duke@435 278 fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
duke@435 279 (_ident == NULL ? "NULL" : _ident));
duke@435 280 return 1;
duke@435 281 }
duke@435 282 }
duke@435 283
duke@435 284 return 0;
duke@435 285 }
duke@435 286
duke@435 287
duke@435 288 // Return 'true' if this instruction matches an ideal 'Copy*' node
duke@435 289 bool InstructForm::is_ideal_unlock() const {
duke@435 290 return _matrule ? _matrule->is_ideal_unlock() : false;
duke@435 291 }
duke@435 292
duke@435 293 bool InstructForm::is_ideal_call_leaf() const {
duke@435 294 return _matrule ? _matrule->is_ideal_call_leaf() : false;
duke@435 295 }
duke@435 296
duke@435 297 // Return 'true' if this instruction matches an ideal 'If' node
duke@435 298 bool InstructForm::is_ideal_if() const {
duke@435 299 if( _matrule == NULL ) return false;
duke@435 300
duke@435 301 return _matrule->is_ideal_if();
duke@435 302 }
duke@435 303
duke@435 304 // Return 'true' if this instruction matches an ideal 'FastLock' node
duke@435 305 bool InstructForm::is_ideal_fastlock() const {
duke@435 306 if( _matrule == NULL ) return false;
duke@435 307
duke@435 308 return _matrule->is_ideal_fastlock();
duke@435 309 }
duke@435 310
duke@435 311 // Return 'true' if this instruction matches an ideal 'MemBarXXX' node
duke@435 312 bool InstructForm::is_ideal_membar() const {
duke@435 313 if( _matrule == NULL ) return false;
duke@435 314
duke@435 315 return _matrule->is_ideal_membar();
duke@435 316 }
duke@435 317
duke@435 318 // Return 'true' if this instruction matches an ideal 'LoadPC' node
duke@435 319 bool InstructForm::is_ideal_loadPC() const {
duke@435 320 if( _matrule == NULL ) return false;
duke@435 321
duke@435 322 return _matrule->is_ideal_loadPC();
duke@435 323 }
duke@435 324
duke@435 325 // Return 'true' if this instruction matches an ideal 'Box' node
duke@435 326 bool InstructForm::is_ideal_box() const {
duke@435 327 if( _matrule == NULL ) return false;
duke@435 328
duke@435 329 return _matrule->is_ideal_box();
duke@435 330 }
duke@435 331
duke@435 332 // Return 'true' if this instruction matches an ideal 'Goto' node
duke@435 333 bool InstructForm::is_ideal_goto() const {
duke@435 334 if( _matrule == NULL ) return false;
duke@435 335
duke@435 336 return _matrule->is_ideal_goto();
duke@435 337 }
duke@435 338
duke@435 339 // Return 'true' if this instruction matches an ideal 'Jump' node
duke@435 340 bool InstructForm::is_ideal_jump() const {
duke@435 341 if( _matrule == NULL ) return false;
duke@435 342
duke@435 343 return _matrule->is_ideal_jump();
duke@435 344 }
duke@435 345
duke@435 346 // Return 'true' if instruction matches ideal 'If' | 'Goto' |
duke@435 347 // 'CountedLoopEnd' | 'Jump'
duke@435 348 bool InstructForm::is_ideal_branch() const {
duke@435 349 if( _matrule == NULL ) return false;
duke@435 350
duke@435 351 return _matrule->is_ideal_if() || _matrule->is_ideal_goto() || _matrule->is_ideal_jump();
duke@435 352 }
duke@435 353
duke@435 354
duke@435 355 // Return 'true' if this instruction matches an ideal 'Return' node
duke@435 356 bool InstructForm::is_ideal_return() const {
duke@435 357 if( _matrule == NULL ) return false;
duke@435 358
duke@435 359 // Check MatchRule to see if the first entry is the ideal "Return" node
duke@435 360 int index = 0;
duke@435 361 if (_matrule->find_type("Return",index)) return true;
duke@435 362 if (_matrule->find_type("Rethrow",index)) return true;
duke@435 363 if (_matrule->find_type("TailCall",index)) return true;
duke@435 364 if (_matrule->find_type("TailJump",index)) return true;
duke@435 365
duke@435 366 return false;
duke@435 367 }
duke@435 368
duke@435 369 // Return 'true' if this instruction matches an ideal 'Halt' node
duke@435 370 bool InstructForm::is_ideal_halt() const {
duke@435 371 int index = 0;
duke@435 372 return _matrule && _matrule->find_type("Halt",index);
duke@435 373 }
duke@435 374
duke@435 375 // Return 'true' if this instruction matches an ideal 'SafePoint' node
duke@435 376 bool InstructForm::is_ideal_safepoint() const {
duke@435 377 int index = 0;
duke@435 378 return _matrule && _matrule->find_type("SafePoint",index);
duke@435 379 }
duke@435 380
duke@435 381 // Return 'true' if this instruction matches an ideal 'Nop' node
duke@435 382 bool InstructForm::is_ideal_nop() const {
duke@435 383 return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
duke@435 384 }
duke@435 385
duke@435 386 bool InstructForm::is_ideal_control() const {
duke@435 387 if ( ! _matrule) return false;
duke@435 388
duke@435 389 return is_ideal_return() || is_ideal_branch() || is_ideal_halt();
duke@435 390 }
duke@435 391
duke@435 392 // Return 'true' if this instruction matches an ideal 'Call' node
duke@435 393 Form::CallType InstructForm::is_ideal_call() const {
duke@435 394 if( _matrule == NULL ) return Form::invalid_type;
duke@435 395
duke@435 396 // Check MatchRule to see if the first entry is the ideal "Call" node
duke@435 397 int idx = 0;
duke@435 398 if(_matrule->find_type("CallStaticJava",idx)) return Form::JAVA_STATIC;
duke@435 399 idx = 0;
duke@435 400 if(_matrule->find_type("Lock",idx)) return Form::JAVA_STATIC;
duke@435 401 idx = 0;
duke@435 402 if(_matrule->find_type("Unlock",idx)) return Form::JAVA_STATIC;
duke@435 403 idx = 0;
duke@435 404 if(_matrule->find_type("CallDynamicJava",idx)) return Form::JAVA_DYNAMIC;
duke@435 405 idx = 0;
duke@435 406 if(_matrule->find_type("CallRuntime",idx)) return Form::JAVA_RUNTIME;
duke@435 407 idx = 0;
duke@435 408 if(_matrule->find_type("CallLeaf",idx)) return Form::JAVA_LEAF;
duke@435 409 idx = 0;
duke@435 410 if(_matrule->find_type("CallLeafNoFP",idx)) return Form::JAVA_LEAF;
duke@435 411 idx = 0;
duke@435 412
duke@435 413 return Form::invalid_type;
duke@435 414 }
duke@435 415
duke@435 416 // Return 'true' if this instruction matches an ideal 'Load?' node
duke@435 417 Form::DataType InstructForm::is_ideal_load() const {
duke@435 418 if( _matrule == NULL ) return Form::none;
duke@435 419
duke@435 420 return _matrule->is_ideal_load();
duke@435 421 }
duke@435 422
duke@435 423 // Return 'true' if this instruction matches an ideal 'Load?' node
duke@435 424 Form::DataType InstructForm::is_ideal_store() const {
duke@435 425 if( _matrule == NULL ) return Form::none;
duke@435 426
duke@435 427 return _matrule->is_ideal_store();
duke@435 428 }
duke@435 429
duke@435 430 // Return the input register that must match the output register
duke@435 431 // If this is not required, return 0
duke@435 432 uint InstructForm::two_address(FormDict &globals) {
duke@435 433 uint matching_input = 0;
duke@435 434 if(_components.count() == 0) return 0;
duke@435 435
duke@435 436 _components.reset();
duke@435 437 Component *comp = _components.iter();
duke@435 438 // Check if there is a DEF
duke@435 439 if( comp->isa(Component::DEF) ) {
duke@435 440 // Check that this is a register
duke@435 441 const char *def_type = comp->_type;
duke@435 442 const Form *form = globals[def_type];
duke@435 443 OperandForm *op = form->is_operand();
duke@435 444 if( op ) {
duke@435 445 if( op->constrained_reg_class() != NULL &&
duke@435 446 op->interface_type(globals) == Form::register_interface ) {
duke@435 447 // Remember the local name for equality test later
duke@435 448 const char *def_name = comp->_name;
duke@435 449 // Check if a component has the same name and is a USE
duke@435 450 do {
duke@435 451 if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
duke@435 452 return operand_position_format(def_name);
duke@435 453 }
duke@435 454 } while( (comp = _components.iter()) != NULL);
duke@435 455 }
duke@435 456 }
duke@435 457 }
duke@435 458
duke@435 459 return 0;
duke@435 460 }
duke@435 461
duke@435 462
duke@435 463 // when chaining a constant to an instruction, returns 'true' and sets opType
duke@435 464 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
duke@435 465 const char *dummy = NULL;
duke@435 466 const char *dummy2 = NULL;
duke@435 467 return is_chain_of_constant(globals, dummy, dummy2);
duke@435 468 }
duke@435 469 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
duke@435 470 const char * &opTypeParam) {
duke@435 471 const char *result = NULL;
duke@435 472
duke@435 473 return is_chain_of_constant(globals, opTypeParam, result);
duke@435 474 }
duke@435 475
duke@435 476 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
duke@435 477 const char * &opTypeParam, const char * &resultParam) {
duke@435 478 Form::DataType data_type = Form::none;
duke@435 479 if ( ! _matrule) return data_type;
duke@435 480
duke@435 481 // !!!!!
duke@435 482 // The source of the chain rule is 'position = 1'
duke@435 483 uint position = 1;
duke@435 484 const char *result = NULL;
duke@435 485 const char *name = NULL;
duke@435 486 const char *opType = NULL;
duke@435 487 // Here base_operand is looking for an ideal type to be returned (opType).
duke@435 488 if ( _matrule->is_chain_rule(globals)
duke@435 489 && _matrule->base_operand(position, globals, result, name, opType) ) {
duke@435 490 data_type = ideal_to_const_type(opType);
duke@435 491
duke@435 492 // if it isn't an ideal constant type, just return
duke@435 493 if ( data_type == Form::none ) return data_type;
duke@435 494
duke@435 495 // Ideal constant types also adjust the opType parameter.
duke@435 496 resultParam = result;
duke@435 497 opTypeParam = opType;
duke@435 498 return data_type;
duke@435 499 }
duke@435 500
duke@435 501 return data_type;
duke@435 502 }
duke@435 503
duke@435 504 // Check if a simple chain rule
duke@435 505 bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
duke@435 506 if( _matrule && _matrule->sets_result()
duke@435 507 && _matrule->_rChild->_lChild == NULL
duke@435 508 && globals[_matrule->_rChild->_opType]
duke@435 509 && globals[_matrule->_rChild->_opType]->is_opclass() ) {
duke@435 510 return true;
duke@435 511 }
duke@435 512 return false;
duke@435 513 }
duke@435 514
duke@435 515 // check for structural rematerialization
duke@435 516 bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
duke@435 517 bool rematerialize = false;
duke@435 518
duke@435 519 Form::DataType data_type = is_chain_of_constant(globals);
duke@435 520 if( data_type != Form::none )
duke@435 521 rematerialize = true;
duke@435 522
duke@435 523 // Constants
duke@435 524 if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) )
duke@435 525 rematerialize = true;
duke@435 526
duke@435 527 // Pseudo-constants (values easily available to the runtime)
duke@435 528 if (is_empty_encoding() && is_tls_instruction())
duke@435 529 rematerialize = true;
duke@435 530
duke@435 531 // 1-input, 1-output, such as copies or increments.
duke@435 532 if( _components.count() == 2 &&
duke@435 533 _components[0]->is(Component::DEF) &&
duke@435 534 _components[1]->isa(Component::USE) )
duke@435 535 rematerialize = true;
duke@435 536
duke@435 537 // Check for an ideal 'Load?' and eliminate rematerialize option
duke@435 538 if ( is_ideal_load() != Form::none || // Ideal load? Do not rematerialize
duke@435 539 is_ideal_copy() != Form::none || // Ideal copy? Do not rematerialize
duke@435 540 is_expensive() != Form::none) { // Expensive? Do not rematerialize
duke@435 541 rematerialize = false;
duke@435 542 }
duke@435 543
duke@435 544 // Always rematerialize the flags. They are more expensive to save &
duke@435 545 // restore than to recompute (and possibly spill the compare's inputs).
duke@435 546 if( _components.count() >= 1 ) {
duke@435 547 Component *c = _components[0];
duke@435 548 const Form *form = globals[c->_type];
duke@435 549 OperandForm *opform = form->is_operand();
duke@435 550 if( opform ) {
duke@435 551 // Avoid the special stack_slots register classes
duke@435 552 const char *rc_name = opform->constrained_reg_class();
duke@435 553 if( rc_name ) {
duke@435 554 if( strcmp(rc_name,"stack_slots") ) {
duke@435 555 // Check for ideal_type of RegFlags
duke@435 556 const char *type = opform->ideal_type( globals, registers );
duke@435 557 if( !strcmp(type,"RegFlags") )
duke@435 558 rematerialize = true;
duke@435 559 } else
duke@435 560 rematerialize = false; // Do not rematerialize things target stk
duke@435 561 }
duke@435 562 }
duke@435 563 }
duke@435 564
duke@435 565 return rematerialize;
duke@435 566 }
duke@435 567
duke@435 568 // loads from memory, so must check for anti-dependence
duke@435 569 bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
duke@435 570 // Machine independent loads must be checked for anti-dependences
duke@435 571 if( is_ideal_load() != Form::none ) return true;
duke@435 572
duke@435 573 // !!!!! !!!!! !!!!!
duke@435 574 // TEMPORARY
duke@435 575 // if( is_simple_chain_rule(globals) ) return false;
duke@435 576
duke@435 577 // String-compare uses many memorys edges, but writes none
duke@435 578 if( _matrule && _matrule->_rChild &&
duke@435 579 strcmp(_matrule->_rChild->_opType,"StrComp")==0 )
duke@435 580 return true;
duke@435 581
duke@435 582 // Check if instruction has a USE of a memory operand class, but no defs
duke@435 583 bool USE_of_memory = false;
duke@435 584 bool DEF_of_memory = false;
duke@435 585 Component *comp = NULL;
duke@435 586 ComponentList &components = (ComponentList &)_components;
duke@435 587
duke@435 588 components.reset();
duke@435 589 while( (comp = components.iter()) != NULL ) {
duke@435 590 const Form *form = globals[comp->_type];
duke@435 591 if( !form ) continue;
duke@435 592 OpClassForm *op = form->is_opclass();
duke@435 593 if( !op ) continue;
duke@435 594 if( form->interface_type(globals) == Form::memory_interface ) {
duke@435 595 if( comp->isa(Component::USE) ) USE_of_memory = true;
duke@435 596 if( comp->isa(Component::DEF) ) {
duke@435 597 OperandForm *oper = form->is_operand();
duke@435 598 if( oper && oper->is_user_name_for_sReg() ) {
duke@435 599 // Stack slots are unaliased memory handled by allocator
duke@435 600 oper = oper; // debug stopping point !!!!!
duke@435 601 } else {
duke@435 602 DEF_of_memory = true;
duke@435 603 }
duke@435 604 }
duke@435 605 }
duke@435 606 }
duke@435 607 return (USE_of_memory && !DEF_of_memory);
duke@435 608 }
duke@435 609
duke@435 610
duke@435 611 bool InstructForm::is_wide_memory_kill(FormDict &globals) const {
duke@435 612 if( _matrule == NULL ) return false;
duke@435 613 if( !_matrule->_opType ) return false;
duke@435 614
duke@435 615 if( strcmp(_matrule->_opType,"MemBarRelease") == 0 ) return true;
duke@435 616 if( strcmp(_matrule->_opType,"MemBarAcquire") == 0 ) return true;
duke@435 617
duke@435 618 return false;
duke@435 619 }
duke@435 620
duke@435 621 int InstructForm::memory_operand(FormDict &globals) const {
duke@435 622 // Machine independent loads must be checked for anti-dependences
duke@435 623 // Check if instruction has a USE of a memory operand class, or a def.
duke@435 624 int USE_of_memory = 0;
duke@435 625 int DEF_of_memory = 0;
duke@435 626 const char* last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
duke@435 627 Component *unique = NULL;
duke@435 628 Component *comp = NULL;
duke@435 629 ComponentList &components = (ComponentList &)_components;
duke@435 630
duke@435 631 components.reset();
duke@435 632 while( (comp = components.iter()) != NULL ) {
duke@435 633 const Form *form = globals[comp->_type];
duke@435 634 if( !form ) continue;
duke@435 635 OpClassForm *op = form->is_opclass();
duke@435 636 if( !op ) continue;
duke@435 637 if( op->stack_slots_only(globals) ) continue;
duke@435 638 if( form->interface_type(globals) == Form::memory_interface ) {
duke@435 639 if( comp->isa(Component::DEF) ) {
duke@435 640 last_memory_DEF = comp->_name;
duke@435 641 DEF_of_memory++;
duke@435 642 unique = comp;
duke@435 643 } else if( comp->isa(Component::USE) ) {
duke@435 644 if( last_memory_DEF != NULL ) {
duke@435 645 assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
duke@435 646 last_memory_DEF = NULL;
duke@435 647 }
duke@435 648 USE_of_memory++;
duke@435 649 if (DEF_of_memory == 0) // defs take precedence
duke@435 650 unique = comp;
duke@435 651 } else {
duke@435 652 assert(last_memory_DEF == NULL, "unpaired memory DEF");
duke@435 653 }
duke@435 654 }
duke@435 655 }
duke@435 656 assert(last_memory_DEF == NULL, "unpaired memory DEF");
duke@435 657 assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
duke@435 658 USE_of_memory -= DEF_of_memory; // treat paired DEF/USE as one occurrence
duke@435 659 if( (USE_of_memory + DEF_of_memory) > 0 ) {
duke@435 660 if( is_simple_chain_rule(globals) ) {
duke@435 661 //fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
duke@435 662 //((InstructForm*)this)->dump();
duke@435 663 // Preceding code prints nothing on sparc and these insns on intel:
duke@435 664 // leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
duke@435 665 // leaPIdxOff leaPIdxScale leaPIdxScaleOff
duke@435 666 return NO_MEMORY_OPERAND;
duke@435 667 }
duke@435 668
duke@435 669 if( DEF_of_memory == 1 ) {
duke@435 670 assert(unique != NULL, "");
duke@435 671 if( USE_of_memory == 0 ) {
duke@435 672 // unique def, no uses
duke@435 673 } else {
duke@435 674 // // unique def, some uses
duke@435 675 // // must return bottom unless all uses match def
duke@435 676 // unique = NULL;
duke@435 677 }
duke@435 678 } else if( DEF_of_memory > 0 ) {
duke@435 679 // multiple defs, don't care about uses
duke@435 680 unique = NULL;
duke@435 681 } else if( USE_of_memory == 1) {
duke@435 682 // unique use, no defs
duke@435 683 assert(unique != NULL, "");
duke@435 684 } else if( USE_of_memory > 0 ) {
duke@435 685 // multiple uses, no defs
duke@435 686 unique = NULL;
duke@435 687 } else {
duke@435 688 assert(false, "bad case analysis");
duke@435 689 }
duke@435 690 // process the unique DEF or USE, if there is one
duke@435 691 if( unique == NULL ) {
duke@435 692 return MANY_MEMORY_OPERANDS;
duke@435 693 } else {
duke@435 694 int pos = components.operand_position(unique->_name);
duke@435 695 if( unique->isa(Component::DEF) ) {
duke@435 696 pos += 1; // get corresponding USE from DEF
duke@435 697 }
duke@435 698 assert(pos >= 1, "I was just looking at it!");
duke@435 699 return pos;
duke@435 700 }
duke@435 701 }
duke@435 702
duke@435 703 // missed the memory op??
duke@435 704 if( true ) { // %%% should not be necessary
duke@435 705 if( is_ideal_store() != Form::none ) {
duke@435 706 fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
duke@435 707 ((InstructForm*)this)->dump();
duke@435 708 // pretend it has multiple defs and uses
duke@435 709 return MANY_MEMORY_OPERANDS;
duke@435 710 }
duke@435 711 if( is_ideal_load() != Form::none ) {
duke@435 712 fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
duke@435 713 ((InstructForm*)this)->dump();
duke@435 714 // pretend it has multiple uses and no defs
duke@435 715 return MANY_MEMORY_OPERANDS;
duke@435 716 }
duke@435 717 }
duke@435 718
duke@435 719 return NO_MEMORY_OPERAND;
duke@435 720 }
duke@435 721
duke@435 722
duke@435 723 // This instruction captures the machine-independent bottom_type
duke@435 724 // Expected use is for pointer vs oop determination for LoadP
duke@435 725 bool InstructForm::captures_bottom_type() const {
duke@435 726 if( _matrule && _matrule->_rChild &&
duke@435 727 (!strcmp(_matrule->_rChild->_opType,"CastPP") || // new result type
duke@435 728 !strcmp(_matrule->_rChild->_opType,"CastX2P") || // new result type
coleenp@548 729 !strcmp(_matrule->_rChild->_opType,"DecodeN") ||
coleenp@548 730 !strcmp(_matrule->_rChild->_opType,"EncodeP") ||
coleenp@548 731 !strcmp(_matrule->_rChild->_opType,"LoadN") ||
kvn@651 732 !strcmp(_matrule->_rChild->_opType,"LoadNKlass") ||
duke@435 733 !strcmp(_matrule->_rChild->_opType,"CreateEx") || // type of exception
duke@435 734 !strcmp(_matrule->_rChild->_opType,"CheckCastPP")) ) return true;
duke@435 735 else if ( is_ideal_load() == Form::idealP ) return true;
duke@435 736 else if ( is_ideal_store() != Form::none ) return true;
duke@435 737
duke@435 738 return false;
duke@435 739 }
duke@435 740
duke@435 741
duke@435 742 // Access instr_cost attribute or return NULL.
duke@435 743 const char* InstructForm::cost() {
duke@435 744 for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
duke@435 745 if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
duke@435 746 return cur->_val;
duke@435 747 }
duke@435 748 }
duke@435 749 return NULL;
duke@435 750 }
duke@435 751
duke@435 752 // Return count of top-level operands.
duke@435 753 uint InstructForm::num_opnds() {
duke@435 754 int num_opnds = _components.num_operands();
duke@435 755
duke@435 756 // Need special handling for matching some ideal nodes
duke@435 757 // i.e. Matching a return node
duke@435 758 /*
duke@435 759 if( _matrule ) {
duke@435 760 if( strcmp(_matrule->_opType,"Return" )==0 ||
duke@435 761 strcmp(_matrule->_opType,"Halt" )==0 )
duke@435 762 return 3;
duke@435 763 }
duke@435 764 */
duke@435 765 return num_opnds;
duke@435 766 }
duke@435 767
duke@435 768 // Return count of unmatched operands.
duke@435 769 uint InstructForm::num_post_match_opnds() {
duke@435 770 uint num_post_match_opnds = _components.count();
duke@435 771 uint num_match_opnds = _components.match_count();
duke@435 772 num_post_match_opnds = num_post_match_opnds - num_match_opnds;
duke@435 773
duke@435 774 return num_post_match_opnds;
duke@435 775 }
duke@435 776
duke@435 777 // Return the number of leaves below this complex operand
duke@435 778 uint InstructForm::num_consts(FormDict &globals) const {
duke@435 779 if ( ! _matrule) return 0;
duke@435 780
duke@435 781 // This is a recursive invocation on all operands in the matchrule
duke@435 782 return _matrule->num_consts(globals);
duke@435 783 }
duke@435 784
duke@435 785 // Constants in match rule with specified type
duke@435 786 uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
duke@435 787 if ( ! _matrule) return 0;
duke@435 788
duke@435 789 // This is a recursive invocation on all operands in the matchrule
duke@435 790 return _matrule->num_consts(globals, type);
duke@435 791 }
duke@435 792
duke@435 793
duke@435 794 // Return the register class associated with 'leaf'.
duke@435 795 const char *InstructForm::out_reg_class(FormDict &globals) {
duke@435 796 assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");
duke@435 797
duke@435 798 return NULL;
duke@435 799 }
duke@435 800
duke@435 801
duke@435 802
duke@435 803 // Lookup the starting position of inputs we are interested in wrt. ideal nodes
duke@435 804 uint InstructForm::oper_input_base(FormDict &globals) {
duke@435 805 if( !_matrule ) return 1; // Skip control for most nodes
duke@435 806
duke@435 807 // Need special handling for matching some ideal nodes
duke@435 808 // i.e. Matching a return node
duke@435 809 if( strcmp(_matrule->_opType,"Return" )==0 ||
duke@435 810 strcmp(_matrule->_opType,"Rethrow" )==0 ||
duke@435 811 strcmp(_matrule->_opType,"TailCall" )==0 ||
duke@435 812 strcmp(_matrule->_opType,"TailJump" )==0 ||
duke@435 813 strcmp(_matrule->_opType,"SafePoint" )==0 ||
duke@435 814 strcmp(_matrule->_opType,"Halt" )==0 )
duke@435 815 return AdlcVMDeps::Parms; // Skip the machine-state edges
duke@435 816
duke@435 817 if( _matrule->_rChild &&
duke@435 818 strcmp(_matrule->_rChild->_opType,"StrComp")==0 ) {
duke@435 819 // String compare takes 1 control and 4 memory edges.
duke@435 820 return 5;
duke@435 821 }
duke@435 822
duke@435 823 // Check for handling of 'Memory' input/edge in the ideal world.
duke@435 824 // The AD file writer is shielded from knowledge of these edges.
duke@435 825 int base = 1; // Skip control
duke@435 826 base += _matrule->needs_ideal_memory_edge(globals);
duke@435 827
duke@435 828 // Also skip the base-oop value for uses of derived oops.
duke@435 829 // The AD file writer is shielded from knowledge of these edges.
duke@435 830 base += needs_base_oop_edge(globals);
duke@435 831
duke@435 832 return base;
duke@435 833 }
duke@435 834
duke@435 835 // Implementation does not modify state of internal structures
duke@435 836 void InstructForm::build_components() {
duke@435 837 // Add top-level operands to the components
duke@435 838 if (_matrule) _matrule->append_components(_localNames, _components);
duke@435 839
duke@435 840 // Add parameters that "do not appear in match rule".
duke@435 841 bool has_temp = false;
duke@435 842 const char *name;
duke@435 843 const char *kill_name = NULL;
duke@435 844 for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
duke@435 845 OperandForm *opForm = (OperandForm*)_localNames[name];
duke@435 846
duke@435 847 const Form *form = _effects[name];
duke@435 848 Effect *e = form ? form->is_effect() : NULL;
duke@435 849 if (e != NULL) {
duke@435 850 has_temp |= e->is(Component::TEMP);
duke@435 851
duke@435 852 // KILLs must be declared after any TEMPs because TEMPs are real
duke@435 853 // uses so their operand numbering must directly follow the real
duke@435 854 // inputs from the match rule. Fixing the numbering seems
duke@435 855 // complex so simply enforce the restriction during parse.
duke@435 856 if (kill_name != NULL &&
duke@435 857 e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
duke@435 858 OperandForm* kill = (OperandForm*)_localNames[kill_name];
duke@435 859 globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
duke@435 860 _ident, kill->_ident, kill_name);
duke@435 861 } else if (e->isa(Component::KILL)) {
duke@435 862 kill_name = name;
duke@435 863 }
duke@435 864
duke@435 865 // TEMPs are real uses and need to be among the first parameters
duke@435 866 // listed, otherwise the numbering of operands and inputs gets
duke@435 867 // screwy, so enforce this restriction during parse.
duke@435 868 if (kill_name != NULL &&
duke@435 869 e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
duke@435 870 OperandForm* kill = (OperandForm*)_localNames[kill_name];
duke@435 871 globalAD->syntax_err(_linenum, "%s: %s %s must follow %s %s in the argument list\n",
duke@435 872 _ident, kill->_ident, kill_name, opForm->_ident, name);
duke@435 873 } else if (e->isa(Component::KILL)) {
duke@435 874 kill_name = name;
duke@435 875 }
duke@435 876 }
duke@435 877
duke@435 878 const Component *component = _components.search(name);
duke@435 879 if ( component == NULL ) {
duke@435 880 if (e) {
duke@435 881 _components.insert(name, opForm->_ident, e->_use_def, false);
duke@435 882 component = _components.search(name);
duke@435 883 if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
duke@435 884 const Form *form = globalAD->globalNames()[component->_type];
duke@435 885 assert( form, "component type must be a defined form");
duke@435 886 OperandForm *op = form->is_operand();
duke@435 887 if (op->_interface && op->_interface->is_RegInterface()) {
duke@435 888 globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
duke@435 889 _ident, opForm->_ident, name);
duke@435 890 }
duke@435 891 }
duke@435 892 } else {
duke@435 893 // This would be a nice warning but it triggers in a few places in a benign way
duke@435 894 // if (_matrule != NULL && !expands()) {
duke@435 895 // globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
duke@435 896 // _ident, opForm->_ident, name);
duke@435 897 // }
duke@435 898 _components.insert(name, opForm->_ident, Component::INVALID, false);
duke@435 899 }
duke@435 900 }
duke@435 901 else if (e) {
duke@435 902 // Component was found in the list
duke@435 903 // Check if there is a new effect that requires an extra component.
duke@435 904 // This happens when adding 'USE' to a component that is not yet one.
duke@435 905 if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
duke@435 906 if (component->isa(Component::USE) && _matrule) {
duke@435 907 const Form *form = globalAD->globalNames()[component->_type];
duke@435 908 assert( form, "component type must be a defined form");
duke@435 909 OperandForm *op = form->is_operand();
duke@435 910 if (op->_interface && op->_interface->is_RegInterface()) {
duke@435 911 globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
duke@435 912 _ident, opForm->_ident, name);
duke@435 913 }
duke@435 914 }
duke@435 915 _components.insert(name, opForm->_ident, e->_use_def, false);
duke@435 916 } else {
duke@435 917 Component *comp = (Component*)component;
duke@435 918 comp->promote_use_def_info(e->_use_def);
duke@435 919 }
duke@435 920 // Component positions are zero based.
duke@435 921 int pos = _components.operand_position(name);
duke@435 922 assert( ! (component->isa(Component::DEF) && (pos >= 1)),
duke@435 923 "Component::DEF can only occur in the first position");
duke@435 924 }
duke@435 925 }
duke@435 926
duke@435 927 // Resolving the interactions between expand rules and TEMPs would
duke@435 928 // be complex so simply disallow it.
duke@435 929 if (_matrule == NULL && has_temp) {
duke@435 930 globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
duke@435 931 }
duke@435 932
duke@435 933 return;
duke@435 934 }
duke@435 935
duke@435 936 // Return zero-based position in component list; -1 if not in list.
duke@435 937 int InstructForm::operand_position(const char *name, int usedef) {
duke@435 938 return unique_opnds_idx(_components.operand_position(name, usedef));
duke@435 939 }
duke@435 940
duke@435 941 int InstructForm::operand_position_format(const char *name) {
duke@435 942 return unique_opnds_idx(_components.operand_position_format(name));
duke@435 943 }
duke@435 944
duke@435 945 // Return zero-based position in component list; -1 if not in list.
duke@435 946 int InstructForm::label_position() {
duke@435 947 return unique_opnds_idx(_components.label_position());
duke@435 948 }
duke@435 949
duke@435 950 int InstructForm::method_position() {
duke@435 951 return unique_opnds_idx(_components.method_position());
duke@435 952 }
duke@435 953
duke@435 954 // Return number of relocation entries needed for this instruction.
duke@435 955 uint InstructForm::reloc(FormDict &globals) {
duke@435 956 uint reloc_entries = 0;
duke@435 957 // Check for "Call" nodes
duke@435 958 if ( is_ideal_call() ) ++reloc_entries;
duke@435 959 if ( is_ideal_return() ) ++reloc_entries;
duke@435 960 if ( is_ideal_safepoint() ) ++reloc_entries;
duke@435 961
duke@435 962
duke@435 963 // Check if operands MAYBE oop pointers, by checking for ConP elements
duke@435 964 // Proceed through the leaves of the match-tree and check for ConPs
duke@435 965 if ( _matrule != NULL ) {
duke@435 966 uint position = 0;
duke@435 967 const char *result = NULL;
duke@435 968 const char *name = NULL;
duke@435 969 const char *opType = NULL;
duke@435 970 while (_matrule->base_operand(position, globals, result, name, opType)) {
duke@435 971 if ( strcmp(opType,"ConP") == 0 ) {
duke@435 972 #ifdef SPARC
duke@435 973 reloc_entries += 2; // 1 for sethi + 1 for setlo
duke@435 974 #else
duke@435 975 ++reloc_entries;
duke@435 976 #endif
duke@435 977 }
duke@435 978 ++position;
duke@435 979 }
duke@435 980 }
duke@435 981
duke@435 982 // Above is only a conservative estimate
duke@435 983 // because it did not check contents of operand classes.
duke@435 984 // !!!!! !!!!!
duke@435 985 // Add 1 to reloc info for each operand class in the component list.
duke@435 986 Component *comp;
duke@435 987 _components.reset();
duke@435 988 while ( (comp = _components.iter()) != NULL ) {
duke@435 989 const Form *form = globals[comp->_type];
duke@435 990 assert( form, "Did not find component's type in global names");
duke@435 991 const OpClassForm *opc = form->is_opclass();
duke@435 992 const OperandForm *oper = form->is_operand();
duke@435 993 if ( opc && (oper == NULL) ) {
duke@435 994 ++reloc_entries;
duke@435 995 } else if ( oper ) {
duke@435 996 // floats and doubles loaded out of method's constant pool require reloc info
duke@435 997 Form::DataType type = oper->is_base_constant(globals);
duke@435 998 if ( (type == Form::idealF) || (type == Form::idealD) ) {
duke@435 999 ++reloc_entries;
duke@435 1000 }
duke@435 1001 }
duke@435 1002 }
duke@435 1003
duke@435 1004 // Float and Double constants may come from the CodeBuffer table
duke@435 1005 // and require relocatable addresses for access
duke@435 1006 // !!!!!
duke@435 1007 // Check for any component being an immediate float or double.
duke@435 1008 Form::DataType data_type = is_chain_of_constant(globals);
duke@435 1009 if( data_type==idealD || data_type==idealF ) {
duke@435 1010 #ifdef SPARC
duke@435 1011 // sparc required more relocation entries for floating constants
duke@435 1012 // (expires 9/98)
duke@435 1013 reloc_entries += 6;
duke@435 1014 #else
duke@435 1015 reloc_entries++;
duke@435 1016 #endif
duke@435 1017 }
duke@435 1018
duke@435 1019 return reloc_entries;
duke@435 1020 }
duke@435 1021
duke@435 1022 // Utility function defined in archDesc.cpp
duke@435 1023 extern bool is_def(int usedef);
duke@435 1024
duke@435 1025 // Return the result of reducing an instruction
duke@435 1026 const char *InstructForm::reduce_result() {
duke@435 1027 const char* result = "Universe"; // default
duke@435 1028 _components.reset();
duke@435 1029 Component *comp = _components.iter();
duke@435 1030 if (comp != NULL && comp->isa(Component::DEF)) {
duke@435 1031 result = comp->_type;
duke@435 1032 // Override this if the rule is a store operation:
duke@435 1033 if (_matrule && _matrule->_rChild &&
duke@435 1034 is_store_to_memory(_matrule->_rChild->_opType))
duke@435 1035 result = "Universe";
duke@435 1036 }
duke@435 1037 return result;
duke@435 1038 }
duke@435 1039
duke@435 1040 // Return the name of the operand on the right hand side of the binary match
duke@435 1041 // Return NULL if there is no right hand side
duke@435 1042 const char *InstructForm::reduce_right(FormDict &globals) const {
duke@435 1043 if( _matrule == NULL ) return NULL;
duke@435 1044 return _matrule->reduce_right(globals);
duke@435 1045 }
duke@435 1046
duke@435 1047 // Similar for left
duke@435 1048 const char *InstructForm::reduce_left(FormDict &globals) const {
duke@435 1049 if( _matrule == NULL ) return NULL;
duke@435 1050 return _matrule->reduce_left(globals);
duke@435 1051 }
duke@435 1052
duke@435 1053
duke@435 1054 // Base class for this instruction, MachNode except for calls
duke@435 1055 const char *InstructForm::mach_base_class() const {
duke@435 1056 if( is_ideal_call() == Form::JAVA_STATIC ) {
duke@435 1057 return "MachCallStaticJavaNode";
duke@435 1058 }
duke@435 1059 else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
duke@435 1060 return "MachCallDynamicJavaNode";
duke@435 1061 }
duke@435 1062 else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
duke@435 1063 return "MachCallRuntimeNode";
duke@435 1064 }
duke@435 1065 else if( is_ideal_call() == Form::JAVA_LEAF ) {
duke@435 1066 return "MachCallLeafNode";
duke@435 1067 }
duke@435 1068 else if (is_ideal_return()) {
duke@435 1069 return "MachReturnNode";
duke@435 1070 }
duke@435 1071 else if (is_ideal_halt()) {
duke@435 1072 return "MachHaltNode";
duke@435 1073 }
duke@435 1074 else if (is_ideal_safepoint()) {
duke@435 1075 return "MachSafePointNode";
duke@435 1076 }
duke@435 1077 else if (is_ideal_if()) {
duke@435 1078 return "MachIfNode";
duke@435 1079 }
duke@435 1080 else if (is_ideal_fastlock()) {
duke@435 1081 return "MachFastLockNode";
duke@435 1082 }
duke@435 1083 else if (is_ideal_nop()) {
duke@435 1084 return "MachNopNode";
duke@435 1085 }
duke@435 1086 else if (captures_bottom_type()) {
duke@435 1087 return "MachTypeNode";
duke@435 1088 } else {
duke@435 1089 return "MachNode";
duke@435 1090 }
duke@435 1091 assert( false, "ShouldNotReachHere()");
duke@435 1092 return NULL;
duke@435 1093 }
duke@435 1094
duke@435 1095 // Compare the instruction predicates for textual equality
duke@435 1096 bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
duke@435 1097 const Predicate *pred1 = instr1->_predicate;
duke@435 1098 const Predicate *pred2 = instr2->_predicate;
duke@435 1099 if( pred1 == NULL && pred2 == NULL ) {
duke@435 1100 // no predicates means they are identical
duke@435 1101 return true;
duke@435 1102 }
duke@435 1103 if( pred1 != NULL && pred2 != NULL ) {
duke@435 1104 // compare the predicates
jrose@910 1105 if (ADLParser::equivalent_expressions(pred1->_pred, pred2->_pred)) {
duke@435 1106 return true;
duke@435 1107 }
duke@435 1108 }
duke@435 1109
duke@435 1110 return false;
duke@435 1111 }
duke@435 1112
duke@435 1113 // Check if this instruction can cisc-spill to 'alternate'
duke@435 1114 bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
duke@435 1115 assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
duke@435 1116 // Do not replace if a cisc-version has been found.
duke@435 1117 if( cisc_spill_operand() != Not_cisc_spillable ) return false;
duke@435 1118
duke@435 1119 int cisc_spill_operand = Maybe_cisc_spillable;
duke@435 1120 char *result = NULL;
duke@435 1121 char *result2 = NULL;
duke@435 1122 const char *op_name = NULL;
duke@435 1123 const char *reg_type = NULL;
duke@435 1124 FormDict &globals = AD.globalNames();
duke@435 1125 cisc_spill_operand = _matrule->cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
duke@435 1126 if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
duke@435 1127 cisc_spill_operand = operand_position(op_name, Component::USE);
duke@435 1128 int def_oper = operand_position(op_name, Component::DEF);
duke@435 1129 if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
duke@435 1130 // Do not support cisc-spilling for destination operands and
duke@435 1131 // make sure they have the same number of operands.
duke@435 1132 _cisc_spill_alternate = instr;
duke@435 1133 instr->set_cisc_alternate(true);
duke@435 1134 if( AD._cisc_spill_debug ) {
duke@435 1135 fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
duke@435 1136 fprintf(stderr, " using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
duke@435 1137 }
duke@435 1138 // Record that a stack-version of the reg_mask is needed
duke@435 1139 // !!!!!
duke@435 1140 OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
duke@435 1141 assert( oper != NULL, "cisc-spilling non operand");
duke@435 1142 const char *reg_class_name = oper->constrained_reg_class();
duke@435 1143 AD.set_stack_or_reg(reg_class_name);
duke@435 1144 const char *reg_mask_name = AD.reg_mask(*oper);
duke@435 1145 set_cisc_reg_mask_name(reg_mask_name);
duke@435 1146 const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
duke@435 1147 } else {
duke@435 1148 cisc_spill_operand = Not_cisc_spillable;
duke@435 1149 }
duke@435 1150 } else {
duke@435 1151 cisc_spill_operand = Not_cisc_spillable;
duke@435 1152 }
duke@435 1153
duke@435 1154 set_cisc_spill_operand(cisc_spill_operand);
duke@435 1155 return (cisc_spill_operand != Not_cisc_spillable);
duke@435 1156 }
duke@435 1157
duke@435 1158 // Check to see if this instruction can be replaced with the short branch
duke@435 1159 // instruction `short-branch'
duke@435 1160 bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
duke@435 1161 if (_matrule != NULL &&
duke@435 1162 this != short_branch && // Don't match myself
duke@435 1163 !is_short_branch() && // Don't match another short branch variant
duke@435 1164 reduce_result() != NULL &&
duke@435 1165 strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
duke@435 1166 _matrule->equivalent(AD.globalNames(), short_branch->_matrule)) {
duke@435 1167 // The instructions are equivalent.
duke@435 1168 if (AD._short_branch_debug) {
duke@435 1169 fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
duke@435 1170 }
duke@435 1171 _short_branch_form = short_branch;
duke@435 1172 return true;
duke@435 1173 }
duke@435 1174 return false;
duke@435 1175 }
duke@435 1176
duke@435 1177
duke@435 1178 // --------------------------- FILE *output_routines
duke@435 1179 //
duke@435 1180 // Generate the format call for the replacement variable
duke@435 1181 void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
duke@435 1182 // Find replacement variable's type
duke@435 1183 const Form *form = _localNames[rep_var];
duke@435 1184 if (form == NULL) {
duke@435 1185 fprintf(stderr, "unknown replacement variable in format statement: '%s'\n", rep_var);
duke@435 1186 assert(false, "ShouldNotReachHere()");
duke@435 1187 }
duke@435 1188 OpClassForm *opc = form->is_opclass();
duke@435 1189 assert( opc, "replacement variable was not found in local names");
duke@435 1190 // Lookup the index position of the replacement variable
duke@435 1191 int idx = operand_position_format(rep_var);
duke@435 1192 if ( idx == -1 ) {
duke@435 1193 assert( strcmp(opc->_ident,"label")==0, "Unimplemented");
duke@435 1194 assert( false, "ShouldNotReachHere()");
duke@435 1195 }
duke@435 1196
duke@435 1197 if (is_noninput_operand(idx)) {
duke@435 1198 // This component isn't in the input array. Print out the static
duke@435 1199 // name of the register.
duke@435 1200 OperandForm* oper = form->is_operand();
duke@435 1201 if (oper != NULL && oper->is_bound_register()) {
duke@435 1202 const RegDef* first = oper->get_RegClass()->find_first_elem();
duke@435 1203 fprintf(fp, " tty->print(\"%s\");\n", first->_regname);
duke@435 1204 } else {
duke@435 1205 globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
duke@435 1206 }
duke@435 1207 } else {
duke@435 1208 // Output the format call for this operand
duke@435 1209 fprintf(fp,"opnd_array(%d)->",idx);
duke@435 1210 if (idx == 0)
duke@435 1211 fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
duke@435 1212 else
duke@435 1213 fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
duke@435 1214 }
duke@435 1215 }
duke@435 1216
duke@435 1217 // Seach through operands to determine parameters unique positions.
duke@435 1218 void InstructForm::set_unique_opnds() {
duke@435 1219 uint* uniq_idx = NULL;
never@1034 1220 int nopnds = num_opnds();
duke@435 1221 uint num_uniq = nopnds;
never@1034 1222 int i;
never@1034 1223 _uniq_idx_length = 0;
duke@435 1224 if ( nopnds > 0 ) {
never@1034 1225 // Allocate index array. Worst case we're mapping from each
never@1034 1226 // component back to an index and any DEF always goes at 0 so the
never@1034 1227 // length of the array has to be the number of components + 1.
never@1034 1228 _uniq_idx_length = _components.count() + 1;
never@1034 1229 uniq_idx = (uint*) malloc(sizeof(uint)*(_uniq_idx_length));
never@1034 1230 for( i = 0; i < _uniq_idx_length; i++ ) {
duke@435 1231 uniq_idx[i] = i;
duke@435 1232 }
duke@435 1233 }
duke@435 1234 // Do it only if there is a match rule and no expand rule. With an
duke@435 1235 // expand rule it is done by creating new mach node in Expand()
duke@435 1236 // method.
duke@435 1237 if ( nopnds > 0 && _matrule != NULL && _exprule == NULL ) {
duke@435 1238 const char *name;
duke@435 1239 uint count;
duke@435 1240 bool has_dupl_use = false;
duke@435 1241
duke@435 1242 _parameters.reset();
duke@435 1243 while( (name = _parameters.iter()) != NULL ) {
duke@435 1244 count = 0;
never@1034 1245 int position = 0;
never@1034 1246 int uniq_position = 0;
duke@435 1247 _components.reset();
duke@435 1248 Component *comp = NULL;
duke@435 1249 if( sets_result() ) {
duke@435 1250 comp = _components.iter();
duke@435 1251 position++;
duke@435 1252 }
duke@435 1253 // The next code is copied from the method operand_position().
duke@435 1254 for (; (comp = _components.iter()) != NULL; ++position) {
duke@435 1255 // When the first component is not a DEF,
duke@435 1256 // leave space for the result operand!
duke@435 1257 if ( position==0 && (! comp->isa(Component::DEF)) ) {
duke@435 1258 ++position;
duke@435 1259 }
duke@435 1260 if( strcmp(name, comp->_name)==0 ) {
duke@435 1261 if( ++count > 1 ) {
never@1034 1262 assert(position < _uniq_idx_length, "out of bounds");
duke@435 1263 uniq_idx[position] = uniq_position;
duke@435 1264 has_dupl_use = true;
duke@435 1265 } else {
duke@435 1266 uniq_position = position;
duke@435 1267 }
duke@435 1268 }
duke@435 1269 if( comp->isa(Component::DEF)
duke@435 1270 && comp->isa(Component::USE) ) {
duke@435 1271 ++position;
duke@435 1272 if( position != 1 )
duke@435 1273 --position; // only use two slots for the 1st USE_DEF
duke@435 1274 }
duke@435 1275 }
duke@435 1276 }
duke@435 1277 if( has_dupl_use ) {
duke@435 1278 for( i = 1; i < nopnds; i++ )
duke@435 1279 if( i != uniq_idx[i] )
duke@435 1280 break;
duke@435 1281 int j = i;
duke@435 1282 for( ; i < nopnds; i++ )
duke@435 1283 if( i == uniq_idx[i] )
duke@435 1284 uniq_idx[i] = j++;
duke@435 1285 num_uniq = j;
duke@435 1286 }
duke@435 1287 }
duke@435 1288 _uniq_idx = uniq_idx;
duke@435 1289 _num_uniq = num_uniq;
duke@435 1290 }
duke@435 1291
duke@435 1292 // Generate index values needed for determing the operand position
duke@435 1293 void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
duke@435 1294 uint idx = 0; // position of operand in match rule
duke@435 1295 int cur_num_opnds = num_opnds();
duke@435 1296
duke@435 1297 // Compute the index into vector of operand pointers:
duke@435 1298 // idx0=0 is used to indicate that info comes from this same node, not from input edge.
duke@435 1299 // idx1 starts at oper_input_base()
duke@435 1300 if ( cur_num_opnds >= 1 ) {
duke@435 1301 fprintf(fp," // Start at oper_input_base() and count operands\n");
duke@435 1302 fprintf(fp," unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
duke@435 1303 fprintf(fp," unsigned %sidx1 = %d;\n", prefix, oper_input_base(globals));
duke@435 1304
duke@435 1305 // Generate starting points for other unique operands if they exist
duke@435 1306 for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
duke@435 1307 if( *receiver == 0 ) {
duke@435 1308 fprintf(fp," unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();\n",
duke@435 1309 prefix, idx, prefix, idx-1, idx-1 );
duke@435 1310 } else {
duke@435 1311 fprintf(fp," unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();\n",
duke@435 1312 prefix, idx, prefix, idx-1, receiver, idx-1 );
duke@435 1313 }
duke@435 1314 }
duke@435 1315 }
duke@435 1316 if( *receiver != 0 ) {
duke@435 1317 // This value is used by generate_peepreplace when copying a node.
duke@435 1318 // Don't emit it in other cases since it can hide bugs with the
duke@435 1319 // use invalid idx's.
duke@435 1320 fprintf(fp," unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
duke@435 1321 }
duke@435 1322
duke@435 1323 }
duke@435 1324
duke@435 1325 // ---------------------------
duke@435 1326 bool InstructForm::verify() {
duke@435 1327 // !!!!! !!!!!
duke@435 1328 // Check that a "label" operand occurs last in the operand list, if present
duke@435 1329 return true;
duke@435 1330 }
duke@435 1331
duke@435 1332 void InstructForm::dump() {
duke@435 1333 output(stderr);
duke@435 1334 }
duke@435 1335
duke@435 1336 void InstructForm::output(FILE *fp) {
duke@435 1337 fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
duke@435 1338 if (_matrule) _matrule->output(fp);
duke@435 1339 if (_insencode) _insencode->output(fp);
duke@435 1340 if (_opcode) _opcode->output(fp);
duke@435 1341 if (_attribs) _attribs->output(fp);
duke@435 1342 if (_predicate) _predicate->output(fp);
duke@435 1343 if (_effects.Size()) {
duke@435 1344 fprintf(fp,"Effects\n");
duke@435 1345 _effects.dump();
duke@435 1346 }
duke@435 1347 if (_exprule) _exprule->output(fp);
duke@435 1348 if (_rewrule) _rewrule->output(fp);
duke@435 1349 if (_format) _format->output(fp);
duke@435 1350 if (_peephole) _peephole->output(fp);
duke@435 1351 }
duke@435 1352
duke@435 1353 void MachNodeForm::dump() {
duke@435 1354 output(stderr);
duke@435 1355 }
duke@435 1356
duke@435 1357 void MachNodeForm::output(FILE *fp) {
duke@435 1358 fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
duke@435 1359 }
duke@435 1360
duke@435 1361 //------------------------------build_predicate--------------------------------
duke@435 1362 // Build instruction predicates. If the user uses the same operand name
duke@435 1363 // twice, we need to check that the operands are pointer-eequivalent in
duke@435 1364 // the DFA during the labeling process.
duke@435 1365 Predicate *InstructForm::build_predicate() {
duke@435 1366 char buf[1024], *s=buf;
duke@435 1367 Dict names(cmpstr,hashstr,Form::arena); // Map Names to counts
duke@435 1368
duke@435 1369 MatchNode *mnode =
duke@435 1370 strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
duke@435 1371 mnode->count_instr_names(names);
duke@435 1372
duke@435 1373 uint first = 1;
duke@435 1374 // Start with the predicate supplied in the .ad file.
duke@435 1375 if( _predicate ) {
duke@435 1376 if( first ) first=0;
duke@435 1377 strcpy(s,"("); s += strlen(s);
duke@435 1378 strcpy(s,_predicate->_pred);
duke@435 1379 s += strlen(s);
duke@435 1380 strcpy(s,")"); s += strlen(s);
duke@435 1381 }
duke@435 1382 for( DictI i(&names); i.test(); ++i ) {
duke@435 1383 uintptr_t cnt = (uintptr_t)i._value;
duke@435 1384 if( cnt > 1 ) { // Need a predicate at all?
duke@435 1385 assert( cnt == 2, "Unimplemented" );
duke@435 1386 // Handle many pairs
duke@435 1387 if( first ) first=0;
duke@435 1388 else { // All tests must pass, so use '&&'
duke@435 1389 strcpy(s," && ");
duke@435 1390 s += strlen(s);
duke@435 1391 }
duke@435 1392 // Add predicate to working buffer
duke@435 1393 sprintf(s,"/*%s*/(",(char*)i._key);
duke@435 1394 s += strlen(s);
duke@435 1395 mnode->build_instr_pred(s,(char*)i._key,0);
duke@435 1396 s += strlen(s);
duke@435 1397 strcpy(s," == "); s += strlen(s);
duke@435 1398 mnode->build_instr_pred(s,(char*)i._key,1);
duke@435 1399 s += strlen(s);
duke@435 1400 strcpy(s,")"); s += strlen(s);
duke@435 1401 }
duke@435 1402 }
duke@435 1403 if( s == buf ) s = NULL;
duke@435 1404 else {
duke@435 1405 assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
duke@435 1406 s = strdup(buf);
duke@435 1407 }
duke@435 1408 return new Predicate(s);
duke@435 1409 }
duke@435 1410
duke@435 1411 //------------------------------EncodeForm-------------------------------------
duke@435 1412 // Constructor
duke@435 1413 EncodeForm::EncodeForm()
duke@435 1414 : _encClass(cmpstr,hashstr, Form::arena) {
duke@435 1415 }
duke@435 1416 EncodeForm::~EncodeForm() {
duke@435 1417 }
duke@435 1418
duke@435 1419 // record a new register class
duke@435 1420 EncClass *EncodeForm::add_EncClass(const char *className) {
duke@435 1421 EncClass *encClass = new EncClass(className);
duke@435 1422 _eclasses.addName(className);
duke@435 1423 _encClass.Insert(className,encClass);
duke@435 1424 return encClass;
duke@435 1425 }
duke@435 1426
duke@435 1427 // Lookup the function body for an encoding class
duke@435 1428 EncClass *EncodeForm::encClass(const char *className) {
duke@435 1429 assert( className != NULL, "Must provide a defined encoding name");
duke@435 1430
duke@435 1431 EncClass *encClass = (EncClass*)_encClass[className];
duke@435 1432 return encClass;
duke@435 1433 }
duke@435 1434
duke@435 1435 // Lookup the function body for an encoding class
duke@435 1436 const char *EncodeForm::encClassBody(const char *className) {
duke@435 1437 if( className == NULL ) return NULL;
duke@435 1438
duke@435 1439 EncClass *encClass = (EncClass*)_encClass[className];
duke@435 1440 assert( encClass != NULL, "Encode Class is missing.");
duke@435 1441 encClass->_code.reset();
duke@435 1442 const char *code = (const char*)encClass->_code.iter();
duke@435 1443 assert( code != NULL, "Found an empty encode class body.");
duke@435 1444
duke@435 1445 return code;
duke@435 1446 }
duke@435 1447
duke@435 1448 // Lookup the function body for an encoding class
duke@435 1449 const char *EncodeForm::encClassPrototype(const char *className) {
duke@435 1450 assert( className != NULL, "Encode class name must be non NULL.");
duke@435 1451
duke@435 1452 return className;
duke@435 1453 }
duke@435 1454
duke@435 1455 void EncodeForm::dump() { // Debug printer
duke@435 1456 output(stderr);
duke@435 1457 }
duke@435 1458
duke@435 1459 void EncodeForm::output(FILE *fp) { // Write info to output files
duke@435 1460 const char *name;
duke@435 1461 fprintf(fp,"\n");
duke@435 1462 fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
duke@435 1463 for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
duke@435 1464 ((EncClass*)_encClass[name])->output(fp);
duke@435 1465 }
duke@435 1466 fprintf(fp,"-------------------- end EncodeForm --------------------\n");
duke@435 1467 }
duke@435 1468 //------------------------------EncClass---------------------------------------
duke@435 1469 EncClass::EncClass(const char *name)
duke@435 1470 : _localNames(cmpstr,hashstr, Form::arena), _name(name) {
duke@435 1471 }
duke@435 1472 EncClass::~EncClass() {
duke@435 1473 }
duke@435 1474
duke@435 1475 // Add a parameter <type,name> pair
duke@435 1476 void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
duke@435 1477 _parameter_type.addName( parameter_type );
duke@435 1478 _parameter_name.addName( parameter_name );
duke@435 1479 }
duke@435 1480
duke@435 1481 // Verify operand types in parameter list
duke@435 1482 bool EncClass::check_parameter_types(FormDict &globals) {
duke@435 1483 // !!!!!
duke@435 1484 return false;
duke@435 1485 }
duke@435 1486
duke@435 1487 // Add the decomposed "code" sections of an encoding's code-block
duke@435 1488 void EncClass::add_code(const char *code) {
duke@435 1489 _code.addName(code);
duke@435 1490 }
duke@435 1491
duke@435 1492 // Add the decomposed "replacement variables" of an encoding's code-block
duke@435 1493 void EncClass::add_rep_var(char *replacement_var) {
duke@435 1494 _code.addName(NameList::_signal);
duke@435 1495 _rep_vars.addName(replacement_var);
duke@435 1496 }
duke@435 1497
duke@435 1498 // Lookup the function body for an encoding class
duke@435 1499 int EncClass::rep_var_index(const char *rep_var) {
duke@435 1500 uint position = 0;
duke@435 1501 const char *name = NULL;
duke@435 1502
duke@435 1503 _parameter_name.reset();
duke@435 1504 while ( (name = _parameter_name.iter()) != NULL ) {
duke@435 1505 if ( strcmp(rep_var,name) == 0 ) return position;
duke@435 1506 ++position;
duke@435 1507 }
duke@435 1508
duke@435 1509 return -1;
duke@435 1510 }
duke@435 1511
duke@435 1512 // Check after parsing
duke@435 1513 bool EncClass::verify() {
duke@435 1514 // 1!!!!
duke@435 1515 // Check that each replacement variable, '$name' in architecture description
duke@435 1516 // is actually a local variable for this encode class, or a reserved name
duke@435 1517 // "primary, secondary, tertiary"
duke@435 1518 return true;
duke@435 1519 }
duke@435 1520
duke@435 1521 void EncClass::dump() {
duke@435 1522 output(stderr);
duke@435 1523 }
duke@435 1524
duke@435 1525 // Write info to output files
duke@435 1526 void EncClass::output(FILE *fp) {
duke@435 1527 fprintf(fp,"EncClass: %s", (_name ? _name : ""));
duke@435 1528
duke@435 1529 // Output the parameter list
duke@435 1530 _parameter_type.reset();
duke@435 1531 _parameter_name.reset();
duke@435 1532 const char *type = _parameter_type.iter();
duke@435 1533 const char *name = _parameter_name.iter();
duke@435 1534 fprintf(fp, " ( ");
duke@435 1535 for ( ; (type != NULL) && (name != NULL);
duke@435 1536 (type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
duke@435 1537 fprintf(fp, " %s %s,", type, name);
duke@435 1538 }
duke@435 1539 fprintf(fp, " ) ");
duke@435 1540
duke@435 1541 // Output the code block
duke@435 1542 _code.reset();
duke@435 1543 _rep_vars.reset();
duke@435 1544 const char *code;
duke@435 1545 while ( (code = _code.iter()) != NULL ) {
duke@435 1546 if ( _code.is_signal(code) ) {
duke@435 1547 // A replacement variable
duke@435 1548 const char *rep_var = _rep_vars.iter();
duke@435 1549 fprintf(fp,"($%s)", rep_var);
duke@435 1550 } else {
duke@435 1551 // A section of code
duke@435 1552 fprintf(fp,"%s", code);
duke@435 1553 }
duke@435 1554 }
duke@435 1555
duke@435 1556 }
duke@435 1557
duke@435 1558 //------------------------------Opcode-----------------------------------------
duke@435 1559 Opcode::Opcode(char *primary, char *secondary, char *tertiary)
duke@435 1560 : _primary(primary), _secondary(secondary), _tertiary(tertiary) {
duke@435 1561 }
duke@435 1562
duke@435 1563 Opcode::~Opcode() {
duke@435 1564 }
duke@435 1565
duke@435 1566 Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
duke@435 1567 if( strcmp(param,"primary") == 0 ) {
duke@435 1568 return Opcode::PRIMARY;
duke@435 1569 }
duke@435 1570 else if( strcmp(param,"secondary") == 0 ) {
duke@435 1571 return Opcode::SECONDARY;
duke@435 1572 }
duke@435 1573 else if( strcmp(param,"tertiary") == 0 ) {
duke@435 1574 return Opcode::TERTIARY;
duke@435 1575 }
duke@435 1576 return Opcode::NOT_AN_OPCODE;
duke@435 1577 }
duke@435 1578
never@850 1579 bool Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
duke@435 1580 // Default values previously provided by MachNode::primary()...
never@850 1581 const char *description = NULL;
never@850 1582 const char *value = NULL;
duke@435 1583 // Check if user provided any opcode definitions
duke@435 1584 if( this != NULL ) {
duke@435 1585 // Update 'value' if user provided a definition in the instruction
duke@435 1586 switch (desired_opcode) {
duke@435 1587 case PRIMARY:
duke@435 1588 description = "primary()";
duke@435 1589 if( _primary != NULL) { value = _primary; }
duke@435 1590 break;
duke@435 1591 case SECONDARY:
duke@435 1592 description = "secondary()";
duke@435 1593 if( _secondary != NULL ) { value = _secondary; }
duke@435 1594 break;
duke@435 1595 case TERTIARY:
duke@435 1596 description = "tertiary()";
duke@435 1597 if( _tertiary != NULL ) { value = _tertiary; }
duke@435 1598 break;
duke@435 1599 default:
duke@435 1600 assert( false, "ShouldNotReachHere();");
duke@435 1601 break;
duke@435 1602 }
duke@435 1603 }
never@850 1604 if (value != NULL) {
never@850 1605 fprintf(fp, "(%s /*%s*/)", value, description);
never@850 1606 }
never@850 1607 return value != NULL;
duke@435 1608 }
duke@435 1609
duke@435 1610 void Opcode::dump() {
duke@435 1611 output(stderr);
duke@435 1612 }
duke@435 1613
duke@435 1614 // Write info to output files
duke@435 1615 void Opcode::output(FILE *fp) {
duke@435 1616 if (_primary != NULL) fprintf(fp,"Primary opcode: %s\n", _primary);
duke@435 1617 if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
duke@435 1618 if (_tertiary != NULL) fprintf(fp,"Tertiary opcode: %s\n", _tertiary);
duke@435 1619 }
duke@435 1620
duke@435 1621 //------------------------------InsEncode--------------------------------------
duke@435 1622 InsEncode::InsEncode() {
duke@435 1623 }
duke@435 1624 InsEncode::~InsEncode() {
duke@435 1625 }
duke@435 1626
duke@435 1627 // Add "encode class name" and its parameters
duke@435 1628 NameAndList *InsEncode::add_encode(char *encoding) {
duke@435 1629 assert( encoding != NULL, "Must provide name for encoding");
duke@435 1630
duke@435 1631 // add_parameter(NameList::_signal);
duke@435 1632 NameAndList *encode = new NameAndList(encoding);
duke@435 1633 _encoding.addName((char*)encode);
duke@435 1634
duke@435 1635 return encode;
duke@435 1636 }
duke@435 1637
duke@435 1638 // Access the list of encodings
duke@435 1639 void InsEncode::reset() {
duke@435 1640 _encoding.reset();
duke@435 1641 // _parameter.reset();
duke@435 1642 }
duke@435 1643 const char* InsEncode::encode_class_iter() {
duke@435 1644 NameAndList *encode_class = (NameAndList*)_encoding.iter();
duke@435 1645 return ( encode_class != NULL ? encode_class->name() : NULL );
duke@435 1646 }
duke@435 1647 // Obtain parameter name from zero based index
duke@435 1648 const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
duke@435 1649 NameAndList *params = (NameAndList*)_encoding.current();
duke@435 1650 assert( params != NULL, "Internal Error");
duke@435 1651 const char *param = (*params)[param_no];
duke@435 1652
duke@435 1653 // Remove '$' if parser placed it there.
duke@435 1654 return ( param != NULL && *param == '$') ? (param+1) : param;
duke@435 1655 }
duke@435 1656
duke@435 1657 void InsEncode::dump() {
duke@435 1658 output(stderr);
duke@435 1659 }
duke@435 1660
duke@435 1661 // Write info to output files
duke@435 1662 void InsEncode::output(FILE *fp) {
duke@435 1663 NameAndList *encoding = NULL;
duke@435 1664 const char *parameter = NULL;
duke@435 1665
duke@435 1666 fprintf(fp,"InsEncode: ");
duke@435 1667 _encoding.reset();
duke@435 1668
duke@435 1669 while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
duke@435 1670 // Output the encoding being used
duke@435 1671 fprintf(fp,"%s(", encoding->name() );
duke@435 1672
duke@435 1673 // Output its parameter list, if any
duke@435 1674 bool first_param = true;
duke@435 1675 encoding->reset();
duke@435 1676 while ( (parameter = encoding->iter()) != 0 ) {
duke@435 1677 // Output the ',' between parameters
duke@435 1678 if ( ! first_param ) fprintf(fp,", ");
duke@435 1679 first_param = false;
duke@435 1680 // Output the parameter
duke@435 1681 fprintf(fp,"%s", parameter);
duke@435 1682 } // done with parameters
duke@435 1683 fprintf(fp,") ");
duke@435 1684 } // done with encodings
duke@435 1685
duke@435 1686 fprintf(fp,"\n");
duke@435 1687 }
duke@435 1688
duke@435 1689 //------------------------------Effect-----------------------------------------
duke@435 1690 static int effect_lookup(const char *name) {
duke@435 1691 if(!strcmp(name, "USE")) return Component::USE;
duke@435 1692 if(!strcmp(name, "DEF")) return Component::DEF;
duke@435 1693 if(!strcmp(name, "USE_DEF")) return Component::USE_DEF;
duke@435 1694 if(!strcmp(name, "KILL")) return Component::KILL;
duke@435 1695 if(!strcmp(name, "USE_KILL")) return Component::USE_KILL;
duke@435 1696 if(!strcmp(name, "TEMP")) return Component::TEMP;
duke@435 1697 if(!strcmp(name, "INVALID")) return Component::INVALID;
duke@435 1698 assert( false,"Invalid effect name specified\n");
duke@435 1699 return Component::INVALID;
duke@435 1700 }
duke@435 1701
duke@435 1702 Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
duke@435 1703 _ftype = Form::EFF;
duke@435 1704 }
duke@435 1705 Effect::~Effect() {
duke@435 1706 }
duke@435 1707
duke@435 1708 // Dynamic type check
duke@435 1709 Effect *Effect::is_effect() const {
duke@435 1710 return (Effect*)this;
duke@435 1711 }
duke@435 1712
duke@435 1713
duke@435 1714 // True if this component is equal to the parameter.
duke@435 1715 bool Effect::is(int use_def_kill_enum) const {
duke@435 1716 return (_use_def == use_def_kill_enum ? true : false);
duke@435 1717 }
duke@435 1718 // True if this component is used/def'd/kill'd as the parameter suggests.
duke@435 1719 bool Effect::isa(int use_def_kill_enum) const {
duke@435 1720 return (_use_def & use_def_kill_enum) == use_def_kill_enum;
duke@435 1721 }
duke@435 1722
duke@435 1723 void Effect::dump() {
duke@435 1724 output(stderr);
duke@435 1725 }
duke@435 1726
duke@435 1727 void Effect::output(FILE *fp) { // Write info to output files
duke@435 1728 fprintf(fp,"Effect: %s\n", (_name?_name:""));
duke@435 1729 }
duke@435 1730
duke@435 1731 //------------------------------ExpandRule-------------------------------------
duke@435 1732 ExpandRule::ExpandRule() : _expand_instrs(),
duke@435 1733 _newopconst(cmpstr, hashstr, Form::arena) {
duke@435 1734 _ftype = Form::EXP;
duke@435 1735 }
duke@435 1736
duke@435 1737 ExpandRule::~ExpandRule() { // Destructor
duke@435 1738 }
duke@435 1739
duke@435 1740 void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
duke@435 1741 _expand_instrs.addName((char*)instruction_name_and_operand_list);
duke@435 1742 }
duke@435 1743
duke@435 1744 void ExpandRule::reset_instructions() {
duke@435 1745 _expand_instrs.reset();
duke@435 1746 }
duke@435 1747
duke@435 1748 NameAndList* ExpandRule::iter_instructions() {
duke@435 1749 return (NameAndList*)_expand_instrs.iter();
duke@435 1750 }
duke@435 1751
duke@435 1752
duke@435 1753 void ExpandRule::dump() {
duke@435 1754 output(stderr);
duke@435 1755 }
duke@435 1756
duke@435 1757 void ExpandRule::output(FILE *fp) { // Write info to output files
duke@435 1758 NameAndList *expand_instr = NULL;
duke@435 1759 const char *opid = NULL;
duke@435 1760
duke@435 1761 fprintf(fp,"\nExpand Rule:\n");
duke@435 1762
duke@435 1763 // Iterate over the instructions 'node' expands into
duke@435 1764 for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
duke@435 1765 fprintf(fp,"%s(", expand_instr->name());
duke@435 1766
duke@435 1767 // iterate over the operand list
duke@435 1768 for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
duke@435 1769 fprintf(fp,"%s ", opid);
duke@435 1770 }
duke@435 1771 fprintf(fp,");\n");
duke@435 1772 }
duke@435 1773 }
duke@435 1774
duke@435 1775 //------------------------------RewriteRule------------------------------------
duke@435 1776 RewriteRule::RewriteRule(char* params, char* block)
duke@435 1777 : _tempParams(params), _tempBlock(block) { }; // Constructor
duke@435 1778 RewriteRule::~RewriteRule() { // Destructor
duke@435 1779 }
duke@435 1780
duke@435 1781 void RewriteRule::dump() {
duke@435 1782 output(stderr);
duke@435 1783 }
duke@435 1784
duke@435 1785 void RewriteRule::output(FILE *fp) { // Write info to output files
duke@435 1786 fprintf(fp,"\nRewrite Rule:\n%s\n%s\n",
duke@435 1787 (_tempParams?_tempParams:""),
duke@435 1788 (_tempBlock?_tempBlock:""));
duke@435 1789 }
duke@435 1790
duke@435 1791
duke@435 1792 //==============================MachNodes======================================
duke@435 1793 //------------------------------MachNodeForm-----------------------------------
duke@435 1794 MachNodeForm::MachNodeForm(char *id)
duke@435 1795 : _ident(id) {
duke@435 1796 }
duke@435 1797
duke@435 1798 MachNodeForm::~MachNodeForm() {
duke@435 1799 }
duke@435 1800
duke@435 1801 MachNodeForm *MachNodeForm::is_machnode() const {
duke@435 1802 return (MachNodeForm*)this;
duke@435 1803 }
duke@435 1804
duke@435 1805 //==============================Operand Classes================================
duke@435 1806 //------------------------------OpClassForm------------------------------------
duke@435 1807 OpClassForm::OpClassForm(const char* id) : _ident(id) {
duke@435 1808 _ftype = Form::OPCLASS;
duke@435 1809 }
duke@435 1810
duke@435 1811 OpClassForm::~OpClassForm() {
duke@435 1812 }
duke@435 1813
duke@435 1814 bool OpClassForm::ideal_only() const { return 0; }
duke@435 1815
duke@435 1816 OpClassForm *OpClassForm::is_opclass() const {
duke@435 1817 return (OpClassForm*)this;
duke@435 1818 }
duke@435 1819
duke@435 1820 Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
duke@435 1821 if( _oplst.count() == 0 ) return Form::no_interface;
duke@435 1822
duke@435 1823 // Check that my operands have the same interface type
duke@435 1824 Form::InterfaceType interface;
duke@435 1825 bool first = true;
duke@435 1826 NameList &op_list = (NameList &)_oplst;
duke@435 1827 op_list.reset();
duke@435 1828 const char *op_name;
duke@435 1829 while( (op_name = op_list.iter()) != NULL ) {
duke@435 1830 const Form *form = globals[op_name];
duke@435 1831 OperandForm *operand = form->is_operand();
duke@435 1832 assert( operand, "Entry in operand class that is not an operand");
duke@435 1833 if( first ) {
duke@435 1834 first = false;
duke@435 1835 interface = operand->interface_type(globals);
duke@435 1836 } else {
duke@435 1837 interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
duke@435 1838 }
duke@435 1839 }
duke@435 1840 return interface;
duke@435 1841 }
duke@435 1842
duke@435 1843 bool OpClassForm::stack_slots_only(FormDict &globals) const {
duke@435 1844 if( _oplst.count() == 0 ) return false; // how?
duke@435 1845
duke@435 1846 NameList &op_list = (NameList &)_oplst;
duke@435 1847 op_list.reset();
duke@435 1848 const char *op_name;
duke@435 1849 while( (op_name = op_list.iter()) != NULL ) {
duke@435 1850 const Form *form = globals[op_name];
duke@435 1851 OperandForm *operand = form->is_operand();
duke@435 1852 assert( operand, "Entry in operand class that is not an operand");
duke@435 1853 if( !operand->stack_slots_only(globals) ) return false;
duke@435 1854 }
duke@435 1855 return true;
duke@435 1856 }
duke@435 1857
duke@435 1858
duke@435 1859 void OpClassForm::dump() {
duke@435 1860 output(stderr);
duke@435 1861 }
duke@435 1862
duke@435 1863 void OpClassForm::output(FILE *fp) {
duke@435 1864 const char *name;
duke@435 1865 fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
duke@435 1866 fprintf(fp,"\nCount = %d\n", _oplst.count());
duke@435 1867 for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
duke@435 1868 fprintf(fp,"%s, ",name);
duke@435 1869 }
duke@435 1870 fprintf(fp,"\n");
duke@435 1871 }
duke@435 1872
duke@435 1873
duke@435 1874 //==============================Operands=======================================
duke@435 1875 //------------------------------OperandForm------------------------------------
duke@435 1876 OperandForm::OperandForm(const char* id)
duke@435 1877 : OpClassForm(id), _ideal_only(false),
duke@435 1878 _localNames(cmpstr, hashstr, Form::arena) {
duke@435 1879 _ftype = Form::OPER;
duke@435 1880
duke@435 1881 _matrule = NULL;
duke@435 1882 _interface = NULL;
duke@435 1883 _attribs = NULL;
duke@435 1884 _predicate = NULL;
duke@435 1885 _constraint= NULL;
duke@435 1886 _construct = NULL;
duke@435 1887 _format = NULL;
duke@435 1888 }
duke@435 1889 OperandForm::OperandForm(const char* id, bool ideal_only)
duke@435 1890 : OpClassForm(id), _ideal_only(ideal_only),
duke@435 1891 _localNames(cmpstr, hashstr, Form::arena) {
duke@435 1892 _ftype = Form::OPER;
duke@435 1893
duke@435 1894 _matrule = NULL;
duke@435 1895 _interface = NULL;
duke@435 1896 _attribs = NULL;
duke@435 1897 _predicate = NULL;
duke@435 1898 _constraint= NULL;
duke@435 1899 _construct = NULL;
duke@435 1900 _format = NULL;
duke@435 1901 }
duke@435 1902 OperandForm::~OperandForm() {
duke@435 1903 }
duke@435 1904
duke@435 1905
duke@435 1906 OperandForm *OperandForm::is_operand() const {
duke@435 1907 return (OperandForm*)this;
duke@435 1908 }
duke@435 1909
duke@435 1910 bool OperandForm::ideal_only() const {
duke@435 1911 return _ideal_only;
duke@435 1912 }
duke@435 1913
duke@435 1914 Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
duke@435 1915 if( _interface == NULL ) return Form::no_interface;
duke@435 1916
duke@435 1917 return _interface->interface_type(globals);
duke@435 1918 }
duke@435 1919
duke@435 1920
duke@435 1921 bool OperandForm::stack_slots_only(FormDict &globals) const {
duke@435 1922 if( _constraint == NULL ) return false;
duke@435 1923 return _constraint->stack_slots_only();
duke@435 1924 }
duke@435 1925
duke@435 1926
duke@435 1927 // Access op_cost attribute or return NULL.
duke@435 1928 const char* OperandForm::cost() {
duke@435 1929 for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
duke@435 1930 if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
duke@435 1931 return cur->_val;
duke@435 1932 }
duke@435 1933 }
duke@435 1934 return NULL;
duke@435 1935 }
duke@435 1936
duke@435 1937 // Return the number of leaves below this complex operand
duke@435 1938 uint OperandForm::num_leaves() const {
duke@435 1939 if ( ! _matrule) return 0;
duke@435 1940
duke@435 1941 int num_leaves = _matrule->_numleaves;
duke@435 1942 return num_leaves;
duke@435 1943 }
duke@435 1944
duke@435 1945 // Return the number of constants contained within this complex operand
duke@435 1946 uint OperandForm::num_consts(FormDict &globals) const {
duke@435 1947 if ( ! _matrule) return 0;
duke@435 1948
duke@435 1949 // This is a recursive invocation on all operands in the matchrule
duke@435 1950 return _matrule->num_consts(globals);
duke@435 1951 }
duke@435 1952
duke@435 1953 // Return the number of constants in match rule with specified type
duke@435 1954 uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
duke@435 1955 if ( ! _matrule) return 0;
duke@435 1956
duke@435 1957 // This is a recursive invocation on all operands in the matchrule
duke@435 1958 return _matrule->num_consts(globals, type);
duke@435 1959 }
duke@435 1960
duke@435 1961 // Return the number of pointer constants contained within this complex operand
duke@435 1962 uint OperandForm::num_const_ptrs(FormDict &globals) const {
duke@435 1963 if ( ! _matrule) return 0;
duke@435 1964
duke@435 1965 // This is a recursive invocation on all operands in the matchrule
duke@435 1966 return _matrule->num_const_ptrs(globals);
duke@435 1967 }
duke@435 1968
duke@435 1969 uint OperandForm::num_edges(FormDict &globals) const {
duke@435 1970 uint edges = 0;
duke@435 1971 uint leaves = num_leaves();
duke@435 1972 uint consts = num_consts(globals);
duke@435 1973
duke@435 1974 // If we are matching a constant directly, there are no leaves.
duke@435 1975 edges = ( leaves > consts ) ? leaves - consts : 0;
duke@435 1976
duke@435 1977 // !!!!!
duke@435 1978 // Special case operands that do not have a corresponding ideal node.
duke@435 1979 if( (edges == 0) && (consts == 0) ) {
duke@435 1980 if( constrained_reg_class() != NULL ) {
duke@435 1981 edges = 1;
duke@435 1982 } else {
duke@435 1983 if( _matrule
duke@435 1984 && (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
duke@435 1985 const Form *form = globals[_matrule->_opType];
duke@435 1986 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 1987 if( oper ) {
duke@435 1988 return oper->num_edges(globals);
duke@435 1989 }
duke@435 1990 }
duke@435 1991 }
duke@435 1992 }
duke@435 1993
duke@435 1994 return edges;
duke@435 1995 }
duke@435 1996
duke@435 1997
duke@435 1998 // Check if this operand is usable for cisc-spilling
duke@435 1999 bool OperandForm::is_cisc_reg(FormDict &globals) const {
duke@435 2000 const char *ideal = ideal_type(globals);
duke@435 2001 bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
duke@435 2002 return is_cisc_reg;
duke@435 2003 }
duke@435 2004
duke@435 2005 bool OpClassForm::is_cisc_mem(FormDict &globals) const {
duke@435 2006 Form::InterfaceType my_interface = interface_type(globals);
duke@435 2007 return (my_interface == memory_interface);
duke@435 2008 }
duke@435 2009
duke@435 2010
duke@435 2011 // node matches ideal 'Bool'
duke@435 2012 bool OperandForm::is_ideal_bool() const {
duke@435 2013 if( _matrule == NULL ) return false;
duke@435 2014
duke@435 2015 return _matrule->is_ideal_bool();
duke@435 2016 }
duke@435 2017
duke@435 2018 // Require user's name for an sRegX to be stackSlotX
duke@435 2019 Form::DataType OperandForm::is_user_name_for_sReg() const {
duke@435 2020 DataType data_type = none;
duke@435 2021 if( _ident != NULL ) {
duke@435 2022 if( strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
duke@435 2023 else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
duke@435 2024 else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
duke@435 2025 else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
duke@435 2026 else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
duke@435 2027 }
duke@435 2028 assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");
duke@435 2029
duke@435 2030 return data_type;
duke@435 2031 }
duke@435 2032
duke@435 2033
duke@435 2034 // Return ideal type, if there is a single ideal type for this operand
duke@435 2035 const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
duke@435 2036 const char *type = NULL;
duke@435 2037 if (ideal_only()) type = _ident;
duke@435 2038 else if( _matrule == NULL ) {
duke@435 2039 // Check for condition code register
duke@435 2040 const char *rc_name = constrained_reg_class();
duke@435 2041 // !!!!!
duke@435 2042 if (rc_name == NULL) return NULL;
duke@435 2043 // !!!!! !!!!!
duke@435 2044 // Check constraints on result's register class
duke@435 2045 if( registers ) {
duke@435 2046 RegClass *reg_class = registers->getRegClass(rc_name);
duke@435 2047 assert( reg_class != NULL, "Register class is not defined");
duke@435 2048
duke@435 2049 // Check for ideal type of entries in register class, all are the same type
duke@435 2050 reg_class->reset();
duke@435 2051 RegDef *reg_def = reg_class->RegDef_iter();
duke@435 2052 assert( reg_def != NULL, "No entries in register class");
duke@435 2053 assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
duke@435 2054 // Return substring that names the register's ideal type
duke@435 2055 type = reg_def->_idealtype + 3;
duke@435 2056 assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
duke@435 2057 assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
duke@435 2058 assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
duke@435 2059 }
duke@435 2060 }
duke@435 2061 else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
duke@435 2062 // This operand matches a single type, at the top level.
duke@435 2063 // Check for ideal type
duke@435 2064 type = _matrule->_opType;
duke@435 2065 if( strcmp(type,"Bool") == 0 )
duke@435 2066 return "Bool";
duke@435 2067 // transitive lookup
duke@435 2068 const Form *frm = globals[type];
duke@435 2069 OperandForm *op = frm->is_operand();
duke@435 2070 type = op->ideal_type(globals, registers);
duke@435 2071 }
duke@435 2072 return type;
duke@435 2073 }
duke@435 2074
duke@435 2075
duke@435 2076 // If there is a single ideal type for this interface field, return it.
duke@435 2077 const char *OperandForm::interface_ideal_type(FormDict &globals,
duke@435 2078 const char *field) const {
duke@435 2079 const char *ideal_type = NULL;
duke@435 2080 const char *value = NULL;
duke@435 2081
duke@435 2082 // Check if "field" is valid for this operand's interface
duke@435 2083 if ( ! is_interface_field(field, value) ) return ideal_type;
duke@435 2084
duke@435 2085 // !!!!! !!!!! !!!!!
duke@435 2086 // If a valid field has a constant value, identify "ConI" or "ConP" or ...
duke@435 2087
duke@435 2088 // Else, lookup type of field's replacement variable
duke@435 2089
duke@435 2090 return ideal_type;
duke@435 2091 }
duke@435 2092
duke@435 2093
duke@435 2094 RegClass* OperandForm::get_RegClass() const {
duke@435 2095 if (_interface && !_interface->is_RegInterface()) return NULL;
duke@435 2096 return globalAD->get_registers()->getRegClass(constrained_reg_class());
duke@435 2097 }
duke@435 2098
duke@435 2099
duke@435 2100 bool OperandForm::is_bound_register() const {
duke@435 2101 RegClass *reg_class = get_RegClass();
duke@435 2102 if (reg_class == NULL) return false;
duke@435 2103
duke@435 2104 const char * name = ideal_type(globalAD->globalNames());
duke@435 2105 if (name == NULL) return false;
duke@435 2106
duke@435 2107 int size = 0;
duke@435 2108 if (strcmp(name,"RegFlags")==0) size = 1;
duke@435 2109 if (strcmp(name,"RegI")==0) size = 1;
duke@435 2110 if (strcmp(name,"RegF")==0) size = 1;
duke@435 2111 if (strcmp(name,"RegD")==0) size = 2;
duke@435 2112 if (strcmp(name,"RegL")==0) size = 2;
coleenp@548 2113 if (strcmp(name,"RegN")==0) size = 1;
duke@435 2114 if (strcmp(name,"RegP")==0) size = globalAD->get_preproc_def("_LP64") ? 2 : 1;
duke@435 2115 if (size == 0) return false;
duke@435 2116 return size == reg_class->size();
duke@435 2117 }
duke@435 2118
duke@435 2119
duke@435 2120 // Check if this is a valid field for this operand,
duke@435 2121 // Return 'true' if valid, and set the value to the string the user provided.
duke@435 2122 bool OperandForm::is_interface_field(const char *field,
duke@435 2123 const char * &value) const {
duke@435 2124 return false;
duke@435 2125 }
duke@435 2126
duke@435 2127
duke@435 2128 // Return register class name if a constraint specifies the register class.
duke@435 2129 const char *OperandForm::constrained_reg_class() const {
duke@435 2130 const char *reg_class = NULL;
duke@435 2131 if ( _constraint ) {
duke@435 2132 // !!!!!
duke@435 2133 Constraint *constraint = _constraint;
duke@435 2134 if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
duke@435 2135 reg_class = _constraint->_arg;
duke@435 2136 }
duke@435 2137 }
duke@435 2138
duke@435 2139 return reg_class;
duke@435 2140 }
duke@435 2141
duke@435 2142
duke@435 2143 // Return the register class associated with 'leaf'.
duke@435 2144 const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
duke@435 2145 const char *reg_class = NULL; // "RegMask::Empty";
duke@435 2146
duke@435 2147 if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
duke@435 2148 reg_class = constrained_reg_class();
duke@435 2149 return reg_class;
duke@435 2150 }
duke@435 2151 const char *result = NULL;
duke@435 2152 const char *name = NULL;
duke@435 2153 const char *type = NULL;
duke@435 2154 // iterate through all base operands
duke@435 2155 // until we reach the register that corresponds to "leaf"
duke@435 2156 // This function is not looking for an ideal type. It needs the first
duke@435 2157 // level user type associated with the leaf.
duke@435 2158 for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
duke@435 2159 const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
duke@435 2160 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 2161 if( oper ) {
duke@435 2162 reg_class = oper->constrained_reg_class();
duke@435 2163 if( reg_class ) {
duke@435 2164 reg_class = reg_class;
duke@435 2165 } else {
duke@435 2166 // ShouldNotReachHere();
duke@435 2167 }
duke@435 2168 } else {
duke@435 2169 // ShouldNotReachHere();
duke@435 2170 }
duke@435 2171
duke@435 2172 // Increment our target leaf position if current leaf is not a candidate.
duke@435 2173 if( reg_class == NULL) ++leaf;
duke@435 2174 // Exit the loop with the value of reg_class when at the correct index
duke@435 2175 if( idx == leaf ) break;
duke@435 2176 // May iterate through all base operands if reg_class for 'leaf' is NULL
duke@435 2177 }
duke@435 2178 return reg_class;
duke@435 2179 }
duke@435 2180
duke@435 2181
duke@435 2182 // Recursive call to construct list of top-level operands.
duke@435 2183 // Implementation does not modify state of internal structures
duke@435 2184 void OperandForm::build_components() {
duke@435 2185 if (_matrule) _matrule->append_components(_localNames, _components);
duke@435 2186
duke@435 2187 // Add parameters that "do not appear in match rule".
duke@435 2188 const char *name;
duke@435 2189 for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
duke@435 2190 OperandForm *opForm = (OperandForm*)_localNames[name];
duke@435 2191
duke@435 2192 if ( _components.operand_position(name) == -1 ) {
duke@435 2193 _components.insert(name, opForm->_ident, Component::INVALID, false);
duke@435 2194 }
duke@435 2195 }
duke@435 2196
duke@435 2197 return;
duke@435 2198 }
duke@435 2199
duke@435 2200 int OperandForm::operand_position(const char *name, int usedef) {
duke@435 2201 return _components.operand_position(name, usedef);
duke@435 2202 }
duke@435 2203
duke@435 2204
duke@435 2205 // Return zero-based position in component list, only counting constants;
duke@435 2206 // Return -1 if not in list.
duke@435 2207 int OperandForm::constant_position(FormDict &globals, const Component *last) {
duke@435 2208 // Iterate through components and count constants preceeding 'constant'
duke@435 2209 uint position = 0;
duke@435 2210 Component *comp;
duke@435 2211 _components.reset();
duke@435 2212 while( (comp = _components.iter()) != NULL && (comp != last) ) {
duke@435 2213 // Special case for operands that take a single user-defined operand
duke@435 2214 // Skip the initial definition in the component list.
duke@435 2215 if( strcmp(comp->_name,this->_ident) == 0 ) continue;
duke@435 2216
duke@435 2217 const char *type = comp->_type;
duke@435 2218 // Lookup operand form for replacement variable's type
duke@435 2219 const Form *form = globals[type];
duke@435 2220 assert( form != NULL, "Component's type not found");
duke@435 2221 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 2222 if( oper ) {
duke@435 2223 if( oper->_matrule->is_base_constant(globals) != Form::none ) {
duke@435 2224 ++position;
duke@435 2225 }
duke@435 2226 }
duke@435 2227 }
duke@435 2228
duke@435 2229 // Check for being passed a component that was not in the list
duke@435 2230 if( comp != last ) position = -1;
duke@435 2231
duke@435 2232 return position;
duke@435 2233 }
duke@435 2234 // Provide position of constant by "name"
duke@435 2235 int OperandForm::constant_position(FormDict &globals, const char *name) {
duke@435 2236 const Component *comp = _components.search(name);
duke@435 2237 int idx = constant_position( globals, comp );
duke@435 2238
duke@435 2239 return idx;
duke@435 2240 }
duke@435 2241
duke@435 2242
duke@435 2243 // Return zero-based position in component list, only counting constants;
duke@435 2244 // Return -1 if not in list.
duke@435 2245 int OperandForm::register_position(FormDict &globals, const char *reg_name) {
duke@435 2246 // Iterate through components and count registers preceeding 'last'
duke@435 2247 uint position = 0;
duke@435 2248 Component *comp;
duke@435 2249 _components.reset();
duke@435 2250 while( (comp = _components.iter()) != NULL
duke@435 2251 && (strcmp(comp->_name,reg_name) != 0) ) {
duke@435 2252 // Special case for operands that take a single user-defined operand
duke@435 2253 // Skip the initial definition in the component list.
duke@435 2254 if( strcmp(comp->_name,this->_ident) == 0 ) continue;
duke@435 2255
duke@435 2256 const char *type = comp->_type;
duke@435 2257 // Lookup operand form for component's type
duke@435 2258 const Form *form = globals[type];
duke@435 2259 assert( form != NULL, "Component's type not found");
duke@435 2260 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 2261 if( oper ) {
duke@435 2262 if( oper->_matrule->is_base_register(globals) ) {
duke@435 2263 ++position;
duke@435 2264 }
duke@435 2265 }
duke@435 2266 }
duke@435 2267
duke@435 2268 return position;
duke@435 2269 }
duke@435 2270
duke@435 2271
duke@435 2272 const char *OperandForm::reduce_result() const {
duke@435 2273 return _ident;
duke@435 2274 }
duke@435 2275 // Return the name of the operand on the right hand side of the binary match
duke@435 2276 // Return NULL if there is no right hand side
duke@435 2277 const char *OperandForm::reduce_right(FormDict &globals) const {
duke@435 2278 return ( _matrule ? _matrule->reduce_right(globals) : NULL );
duke@435 2279 }
duke@435 2280
duke@435 2281 // Similar for left
duke@435 2282 const char *OperandForm::reduce_left(FormDict &globals) const {
duke@435 2283 return ( _matrule ? _matrule->reduce_left(globals) : NULL );
duke@435 2284 }
duke@435 2285
duke@435 2286
duke@435 2287 // --------------------------- FILE *output_routines
duke@435 2288 //
duke@435 2289 // Output code for disp_is_oop, if true.
duke@435 2290 void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
duke@435 2291 // Check it is a memory interface with a non-user-constant disp field
duke@435 2292 if ( this->_interface == NULL ) return;
duke@435 2293 MemInterface *mem_interface = this->_interface->is_MemInterface();
duke@435 2294 if ( mem_interface == NULL ) return;
duke@435 2295 const char *disp = mem_interface->_disp;
duke@435 2296 if ( *disp != '$' ) return;
duke@435 2297
duke@435 2298 // Lookup replacement variable in operand's component list
duke@435 2299 const char *rep_var = disp + 1;
duke@435 2300 const Component *comp = this->_components.search(rep_var);
duke@435 2301 assert( comp != NULL, "Replacement variable not found in components");
duke@435 2302 // Lookup operand form for replacement variable's type
duke@435 2303 const char *type = comp->_type;
duke@435 2304 Form *form = (Form*)globals[type];
duke@435 2305 assert( form != NULL, "Replacement variable's type not found");
duke@435 2306 OperandForm *op = form->is_operand();
duke@435 2307 assert( op, "Memory Interface 'disp' can only emit an operand form");
duke@435 2308 // Check if this is a ConP, which may require relocation
duke@435 2309 if ( op->is_base_constant(globals) == Form::idealP ) {
duke@435 2310 // Find the constant's index: _c0, _c1, _c2, ... , _cN
duke@435 2311 uint idx = op->constant_position( globals, rep_var);
duke@435 2312 fprintf(fp," virtual bool disp_is_oop() const {", _ident);
duke@435 2313 fprintf(fp, " return _c%d->isa_oop_ptr();", idx);
duke@435 2314 fprintf(fp, " }\n");
duke@435 2315 }
duke@435 2316 }
duke@435 2317
duke@435 2318 // Generate code for internal and external format methods
duke@435 2319 //
duke@435 2320 // internal access to reg# node->_idx
duke@435 2321 // access to subsumed constant _c0, _c1,
duke@435 2322 void OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
duke@435 2323 Form::DataType dtype;
duke@435 2324 if (_matrule && (_matrule->is_base_register(globals) ||
duke@435 2325 strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
duke@435 2326 // !!!!! !!!!!
duke@435 2327 fprintf(fp, "{ char reg_str[128];\n");
duke@435 2328 fprintf(fp," ra->dump_register(node,reg_str);\n");
duke@435 2329 fprintf(fp," tty->print(\"%cs\",reg_str);\n",'%');
duke@435 2330 fprintf(fp," }\n");
duke@435 2331 } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
duke@435 2332 format_constant( fp, index, dtype );
duke@435 2333 } else if (ideal_to_sReg_type(_ident) != Form::none) {
duke@435 2334 // Special format for Stack Slot Register
duke@435 2335 fprintf(fp, "{ char reg_str[128];\n");
duke@435 2336 fprintf(fp," ra->dump_register(node,reg_str);\n");
duke@435 2337 fprintf(fp," tty->print(\"%cs\",reg_str);\n",'%');
duke@435 2338 fprintf(fp," }\n");
duke@435 2339 } else {
duke@435 2340 fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
duke@435 2341 fflush(fp);
duke@435 2342 fprintf(stderr,"No format defined for %s\n", _ident);
duke@435 2343 dump();
duke@435 2344 assert( false,"Internal error:\n output_internal_operand() attempting to output other than a Register or Constant");
duke@435 2345 }
duke@435 2346 }
duke@435 2347
duke@435 2348 // Similar to "int_format" but for cases where data is external to operand
duke@435 2349 // external access to reg# node->in(idx)->_idx,
duke@435 2350 void OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
duke@435 2351 Form::DataType dtype;
duke@435 2352 if (_matrule && (_matrule->is_base_register(globals) ||
duke@435 2353 strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
duke@435 2354 fprintf(fp, "{ char reg_str[128];\n");
duke@435 2355 fprintf(fp," ra->dump_register(node->in(idx");
duke@435 2356 if ( index != 0 ) fprintf(fp, "+%d",index);
duke@435 2357 fprintf(fp, "),reg_str);\n");
duke@435 2358 fprintf(fp," tty->print(\"%cs\",reg_str);\n",'%');
duke@435 2359 fprintf(fp," }\n");
duke@435 2360 } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
duke@435 2361 format_constant( fp, index, dtype );
duke@435 2362 } else if (ideal_to_sReg_type(_ident) != Form::none) {
duke@435 2363 // Special format for Stack Slot Register
duke@435 2364 fprintf(fp, "{ char reg_str[128];\n");
duke@435 2365 fprintf(fp," ra->dump_register(node->in(idx");
duke@435 2366 if ( index != 0 ) fprintf(fp, "+%d",index);
duke@435 2367 fprintf(fp, "),reg_str);\n");
duke@435 2368 fprintf(fp," tty->print(\"%cs\",reg_str);\n",'%');
duke@435 2369 fprintf(fp," }\n");
duke@435 2370 } else {
duke@435 2371 fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
duke@435 2372 assert( false,"Internal error:\n output_external_operand() attempting to output other than a Register or Constant");
duke@435 2373 }
duke@435 2374 }
duke@435 2375
duke@435 2376 void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
duke@435 2377 switch(const_type) {
coleenp@548 2378 case Form::idealI: fprintf(fp,"st->print(\"#%%d\", _c%d);\n", const_index); break;
coleenp@548 2379 case Form::idealP: fprintf(fp,"_c%d->dump_on(st);\n", const_index); break;
coleenp@548 2380 case Form::idealN: fprintf(fp,"_c%d->dump_on(st);\n", const_index); break;
coleenp@548 2381 case Form::idealL: fprintf(fp,"st->print(\"#%%lld\", _c%d);\n", const_index); break;
coleenp@548 2382 case Form::idealF: fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
coleenp@548 2383 case Form::idealD: fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
duke@435 2384 default:
duke@435 2385 assert( false, "ShouldNotReachHere()");
duke@435 2386 }
duke@435 2387 }
duke@435 2388
duke@435 2389 // Return the operand form corresponding to the given index, else NULL.
duke@435 2390 OperandForm *OperandForm::constant_operand(FormDict &globals,
duke@435 2391 uint index) {
duke@435 2392 // !!!!!
duke@435 2393 // Check behavior on complex operands
duke@435 2394 uint n_consts = num_consts(globals);
duke@435 2395 if( n_consts > 0 ) {
duke@435 2396 uint i = 0;
duke@435 2397 const char *type;
duke@435 2398 Component *comp;
duke@435 2399 _components.reset();
duke@435 2400 if ((comp = _components.iter()) == NULL) {
duke@435 2401 assert(n_consts == 1, "Bad component list detected.\n");
duke@435 2402 // Current operand is THE operand
duke@435 2403 if ( index == 0 ) {
duke@435 2404 return this;
duke@435 2405 }
duke@435 2406 } // end if NULL
duke@435 2407 else {
duke@435 2408 // Skip the first component, it can not be a DEF of a constant
duke@435 2409 do {
duke@435 2410 type = comp->base_type(globals);
duke@435 2411 // Check that "type" is a 'ConI', 'ConP', ...
duke@435 2412 if ( ideal_to_const_type(type) != Form::none ) {
duke@435 2413 // When at correct component, get corresponding Operand
duke@435 2414 if ( index == 0 ) {
duke@435 2415 return globals[comp->_type]->is_operand();
duke@435 2416 }
duke@435 2417 // Decrement number of constants to go
duke@435 2418 --index;
duke@435 2419 }
duke@435 2420 } while((comp = _components.iter()) != NULL);
duke@435 2421 }
duke@435 2422 }
duke@435 2423
duke@435 2424 // Did not find a constant for this index.
duke@435 2425 return NULL;
duke@435 2426 }
duke@435 2427
duke@435 2428 // If this operand has a single ideal type, return its type
duke@435 2429 Form::DataType OperandForm::simple_type(FormDict &globals) const {
duke@435 2430 const char *type_name = ideal_type(globals);
duke@435 2431 Form::DataType type = type_name ? ideal_to_const_type( type_name )
duke@435 2432 : Form::none;
duke@435 2433 return type;
duke@435 2434 }
duke@435 2435
duke@435 2436 Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
duke@435 2437 if ( _matrule == NULL ) return Form::none;
duke@435 2438
duke@435 2439 return _matrule->is_base_constant(globals);
duke@435 2440 }
duke@435 2441
duke@435 2442 // "true" if this operand is a simple type that is swallowed
duke@435 2443 bool OperandForm::swallowed(FormDict &globals) const {
duke@435 2444 Form::DataType type = simple_type(globals);
duke@435 2445 if( type != Form::none ) {
duke@435 2446 return true;
duke@435 2447 }
duke@435 2448
duke@435 2449 return false;
duke@435 2450 }
duke@435 2451
duke@435 2452 // Output code to access the value of the index'th constant
duke@435 2453 void OperandForm::access_constant(FILE *fp, FormDict &globals,
duke@435 2454 uint const_index) {
duke@435 2455 OperandForm *oper = constant_operand(globals, const_index);
duke@435 2456 assert( oper, "Index exceeds number of constants in operand");
duke@435 2457 Form::DataType dtype = oper->is_base_constant(globals);
duke@435 2458
duke@435 2459 switch(dtype) {
duke@435 2460 case idealI: fprintf(fp,"_c%d", const_index); break;
duke@435 2461 case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
duke@435 2462 case idealL: fprintf(fp,"_c%d", const_index); break;
duke@435 2463 case idealF: fprintf(fp,"_c%d", const_index); break;
duke@435 2464 case idealD: fprintf(fp,"_c%d", const_index); break;
duke@435 2465 default:
duke@435 2466 assert( false, "ShouldNotReachHere()");
duke@435 2467 }
duke@435 2468 }
duke@435 2469
duke@435 2470
duke@435 2471 void OperandForm::dump() {
duke@435 2472 output(stderr);
duke@435 2473 }
duke@435 2474
duke@435 2475 void OperandForm::output(FILE *fp) {
duke@435 2476 fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
duke@435 2477 if (_matrule) _matrule->dump();
duke@435 2478 if (_interface) _interface->dump();
duke@435 2479 if (_attribs) _attribs->dump();
duke@435 2480 if (_predicate) _predicate->dump();
duke@435 2481 if (_constraint) _constraint->dump();
duke@435 2482 if (_construct) _construct->dump();
duke@435 2483 if (_format) _format->dump();
duke@435 2484 }
duke@435 2485
duke@435 2486 //------------------------------Constraint-------------------------------------
duke@435 2487 Constraint::Constraint(const char *func, const char *arg)
duke@435 2488 : _func(func), _arg(arg) {
duke@435 2489 }
duke@435 2490 Constraint::~Constraint() { /* not owner of char* */
duke@435 2491 }
duke@435 2492
duke@435 2493 bool Constraint::stack_slots_only() const {
duke@435 2494 return strcmp(_func, "ALLOC_IN_RC") == 0
duke@435 2495 && strcmp(_arg, "stack_slots") == 0;
duke@435 2496 }
duke@435 2497
duke@435 2498 void Constraint::dump() {
duke@435 2499 output(stderr);
duke@435 2500 }
duke@435 2501
duke@435 2502 void Constraint::output(FILE *fp) { // Write info to output files
duke@435 2503 assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
duke@435 2504 fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg);
duke@435 2505 }
duke@435 2506
duke@435 2507 //------------------------------Predicate--------------------------------------
duke@435 2508 Predicate::Predicate(char *pr)
duke@435 2509 : _pred(pr) {
duke@435 2510 }
duke@435 2511 Predicate::~Predicate() {
duke@435 2512 }
duke@435 2513
duke@435 2514 void Predicate::dump() {
duke@435 2515 output(stderr);
duke@435 2516 }
duke@435 2517
duke@435 2518 void Predicate::output(FILE *fp) {
duke@435 2519 fprintf(fp,"Predicate"); // Write to output files
duke@435 2520 }
duke@435 2521 //------------------------------Interface--------------------------------------
duke@435 2522 Interface::Interface(const char *name) : _name(name) {
duke@435 2523 }
duke@435 2524 Interface::~Interface() {
duke@435 2525 }
duke@435 2526
duke@435 2527 Form::InterfaceType Interface::interface_type(FormDict &globals) const {
duke@435 2528 Interface *thsi = (Interface*)this;
duke@435 2529 if ( thsi->is_RegInterface() ) return Form::register_interface;
duke@435 2530 if ( thsi->is_MemInterface() ) return Form::memory_interface;
duke@435 2531 if ( thsi->is_ConstInterface() ) return Form::constant_interface;
duke@435 2532 if ( thsi->is_CondInterface() ) return Form::conditional_interface;
duke@435 2533
duke@435 2534 return Form::no_interface;
duke@435 2535 }
duke@435 2536
duke@435 2537 RegInterface *Interface::is_RegInterface() {
duke@435 2538 if ( strcmp(_name,"REG_INTER") != 0 )
duke@435 2539 return NULL;
duke@435 2540 return (RegInterface*)this;
duke@435 2541 }
duke@435 2542 MemInterface *Interface::is_MemInterface() {
duke@435 2543 if ( strcmp(_name,"MEMORY_INTER") != 0 ) return NULL;
duke@435 2544 return (MemInterface*)this;
duke@435 2545 }
duke@435 2546 ConstInterface *Interface::is_ConstInterface() {
duke@435 2547 if ( strcmp(_name,"CONST_INTER") != 0 ) return NULL;
duke@435 2548 return (ConstInterface*)this;
duke@435 2549 }
duke@435 2550 CondInterface *Interface::is_CondInterface() {
duke@435 2551 if ( strcmp(_name,"COND_INTER") != 0 ) return NULL;
duke@435 2552 return (CondInterface*)this;
duke@435 2553 }
duke@435 2554
duke@435 2555
duke@435 2556 void Interface::dump() {
duke@435 2557 output(stderr);
duke@435 2558 }
duke@435 2559
duke@435 2560 // Write info to output files
duke@435 2561 void Interface::output(FILE *fp) {
duke@435 2562 fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
duke@435 2563 }
duke@435 2564
duke@435 2565 //------------------------------RegInterface-----------------------------------
duke@435 2566 RegInterface::RegInterface() : Interface("REG_INTER") {
duke@435 2567 }
duke@435 2568 RegInterface::~RegInterface() {
duke@435 2569 }
duke@435 2570
duke@435 2571 void RegInterface::dump() {
duke@435 2572 output(stderr);
duke@435 2573 }
duke@435 2574
duke@435 2575 // Write info to output files
duke@435 2576 void RegInterface::output(FILE *fp) {
duke@435 2577 Interface::output(fp);
duke@435 2578 }
duke@435 2579
duke@435 2580 //------------------------------ConstInterface---------------------------------
duke@435 2581 ConstInterface::ConstInterface() : Interface("CONST_INTER") {
duke@435 2582 }
duke@435 2583 ConstInterface::~ConstInterface() {
duke@435 2584 }
duke@435 2585
duke@435 2586 void ConstInterface::dump() {
duke@435 2587 output(stderr);
duke@435 2588 }
duke@435 2589
duke@435 2590 // Write info to output files
duke@435 2591 void ConstInterface::output(FILE *fp) {
duke@435 2592 Interface::output(fp);
duke@435 2593 }
duke@435 2594
duke@435 2595 //------------------------------MemInterface-----------------------------------
duke@435 2596 MemInterface::MemInterface(char *base, char *index, char *scale, char *disp)
duke@435 2597 : Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
duke@435 2598 }
duke@435 2599 MemInterface::~MemInterface() {
duke@435 2600 // not owner of any character arrays
duke@435 2601 }
duke@435 2602
duke@435 2603 void MemInterface::dump() {
duke@435 2604 output(stderr);
duke@435 2605 }
duke@435 2606
duke@435 2607 // Write info to output files
duke@435 2608 void MemInterface::output(FILE *fp) {
duke@435 2609 Interface::output(fp);
duke@435 2610 if ( _base != NULL ) fprintf(fp," base == %s\n", _base);
duke@435 2611 if ( _index != NULL ) fprintf(fp," index == %s\n", _index);
duke@435 2612 if ( _scale != NULL ) fprintf(fp," scale == %s\n", _scale);
duke@435 2613 if ( _disp != NULL ) fprintf(fp," disp == %s\n", _disp);
duke@435 2614 // fprintf(fp,"\n");
duke@435 2615 }
duke@435 2616
duke@435 2617 //------------------------------CondInterface----------------------------------
never@850 2618 CondInterface::CondInterface(const char* equal, const char* equal_format,
never@850 2619 const char* not_equal, const char* not_equal_format,
never@850 2620 const char* less, const char* less_format,
never@850 2621 const char* greater_equal, const char* greater_equal_format,
never@850 2622 const char* less_equal, const char* less_equal_format,
never@850 2623 const char* greater, const char* greater_format)
duke@435 2624 : Interface("COND_INTER"),
never@850 2625 _equal(equal), _equal_format(equal_format),
never@850 2626 _not_equal(not_equal), _not_equal_format(not_equal_format),
never@850 2627 _less(less), _less_format(less_format),
never@850 2628 _greater_equal(greater_equal), _greater_equal_format(greater_equal_format),
never@850 2629 _less_equal(less_equal), _less_equal_format(less_equal_format),
never@850 2630 _greater(greater), _greater_format(greater_format) {
duke@435 2631 }
duke@435 2632 CondInterface::~CondInterface() {
duke@435 2633 // not owner of any character arrays
duke@435 2634 }
duke@435 2635
duke@435 2636 void CondInterface::dump() {
duke@435 2637 output(stderr);
duke@435 2638 }
duke@435 2639
duke@435 2640 // Write info to output files
duke@435 2641 void CondInterface::output(FILE *fp) {
duke@435 2642 Interface::output(fp);
duke@435 2643 if ( _equal != NULL ) fprintf(fp," equal == %s\n", _equal);
duke@435 2644 if ( _not_equal != NULL ) fprintf(fp," not_equal == %s\n", _not_equal);
duke@435 2645 if ( _less != NULL ) fprintf(fp," less == %s\n", _less);
duke@435 2646 if ( _greater_equal != NULL ) fprintf(fp," greater_equal == %s\n", _greater_equal);
duke@435 2647 if ( _less_equal != NULL ) fprintf(fp," less_equal == %s\n", _less_equal);
duke@435 2648 if ( _greater != NULL ) fprintf(fp," greater == %s\n", _greater);
duke@435 2649 // fprintf(fp,"\n");
duke@435 2650 }
duke@435 2651
duke@435 2652 //------------------------------ConstructRule----------------------------------
duke@435 2653 ConstructRule::ConstructRule(char *cnstr)
duke@435 2654 : _construct(cnstr) {
duke@435 2655 }
duke@435 2656 ConstructRule::~ConstructRule() {
duke@435 2657 }
duke@435 2658
duke@435 2659 void ConstructRule::dump() {
duke@435 2660 output(stderr);
duke@435 2661 }
duke@435 2662
duke@435 2663 void ConstructRule::output(FILE *fp) {
duke@435 2664 fprintf(fp,"\nConstruct Rule\n"); // Write to output files
duke@435 2665 }
duke@435 2666
duke@435 2667
duke@435 2668 //==============================Shared Forms===================================
duke@435 2669 //------------------------------AttributeForm----------------------------------
duke@435 2670 int AttributeForm::_insId = 0; // start counter at 0
duke@435 2671 int AttributeForm::_opId = 0; // start counter at 0
duke@435 2672 const char* AttributeForm::_ins_cost = "ins_cost"; // required name
duke@435 2673 const char* AttributeForm::_ins_pc_relative = "ins_pc_relative";
duke@435 2674 const char* AttributeForm::_op_cost = "op_cost"; // required name
duke@435 2675
duke@435 2676 AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
duke@435 2677 : Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
duke@435 2678 if (type==OP_ATTR) {
duke@435 2679 id = ++_opId;
duke@435 2680 }
duke@435 2681 else if (type==INS_ATTR) {
duke@435 2682 id = ++_insId;
duke@435 2683 }
duke@435 2684 else assert( false,"");
duke@435 2685 }
duke@435 2686 AttributeForm::~AttributeForm() {
duke@435 2687 }
duke@435 2688
duke@435 2689 // Dynamic type check
duke@435 2690 AttributeForm *AttributeForm::is_attribute() const {
duke@435 2691 return (AttributeForm*)this;
duke@435 2692 }
duke@435 2693
duke@435 2694
duke@435 2695 // inlined // int AttributeForm::type() { return id;}
duke@435 2696
duke@435 2697 void AttributeForm::dump() {
duke@435 2698 output(stderr);
duke@435 2699 }
duke@435 2700
duke@435 2701 void AttributeForm::output(FILE *fp) {
duke@435 2702 if( _attrname && _attrdef ) {
duke@435 2703 fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
duke@435 2704 _attrname, _attrdef);
duke@435 2705 }
duke@435 2706 else {
duke@435 2707 fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
duke@435 2708 (_attrname?_attrname:""), (_attrdef?_attrdef:"") );
duke@435 2709 }
duke@435 2710 }
duke@435 2711
duke@435 2712 //------------------------------Component--------------------------------------
duke@435 2713 Component::Component(const char *name, const char *type, int usedef)
duke@435 2714 : _name(name), _type(type), _usedef(usedef) {
duke@435 2715 _ftype = Form::COMP;
duke@435 2716 }
duke@435 2717 Component::~Component() {
duke@435 2718 }
duke@435 2719
duke@435 2720 // True if this component is equal to the parameter.
duke@435 2721 bool Component::is(int use_def_kill_enum) const {
duke@435 2722 return (_usedef == use_def_kill_enum ? true : false);
duke@435 2723 }
duke@435 2724 // True if this component is used/def'd/kill'd as the parameter suggests.
duke@435 2725 bool Component::isa(int use_def_kill_enum) const {
duke@435 2726 return (_usedef & use_def_kill_enum) == use_def_kill_enum;
duke@435 2727 }
duke@435 2728
duke@435 2729 // Extend this component with additional use/def/kill behavior
duke@435 2730 int Component::promote_use_def_info(int new_use_def) {
duke@435 2731 _usedef |= new_use_def;
duke@435 2732
duke@435 2733 return _usedef;
duke@435 2734 }
duke@435 2735
duke@435 2736 // Check the base type of this component, if it has one
duke@435 2737 const char *Component::base_type(FormDict &globals) {
duke@435 2738 const Form *frm = globals[_type];
duke@435 2739 if (frm == NULL) return NULL;
duke@435 2740 OperandForm *op = frm->is_operand();
duke@435 2741 if (op == NULL) return NULL;
duke@435 2742 if (op->ideal_only()) return op->_ident;
duke@435 2743 return (char *)op->ideal_type(globals);
duke@435 2744 }
duke@435 2745
duke@435 2746 void Component::dump() {
duke@435 2747 output(stderr);
duke@435 2748 }
duke@435 2749
duke@435 2750 void Component::output(FILE *fp) {
duke@435 2751 fprintf(fp,"Component:"); // Write to output files
duke@435 2752 fprintf(fp, " name = %s", _name);
duke@435 2753 fprintf(fp, ", type = %s", _type);
duke@435 2754 const char * usedef = "Undefined Use/Def info";
duke@435 2755 switch (_usedef) {
duke@435 2756 case USE: usedef = "USE"; break;
duke@435 2757 case USE_DEF: usedef = "USE_DEF"; break;
duke@435 2758 case USE_KILL: usedef = "USE_KILL"; break;
duke@435 2759 case KILL: usedef = "KILL"; break;
duke@435 2760 case TEMP: usedef = "TEMP"; break;
duke@435 2761 case DEF: usedef = "DEF"; break;
duke@435 2762 default: assert(false, "unknown effect");
duke@435 2763 }
duke@435 2764 fprintf(fp, ", use/def = %s\n", usedef);
duke@435 2765 }
duke@435 2766
duke@435 2767
duke@435 2768 //------------------------------ComponentList---------------------------------
duke@435 2769 ComponentList::ComponentList() : NameList(), _matchcnt(0) {
duke@435 2770 }
duke@435 2771 ComponentList::~ComponentList() {
duke@435 2772 // // This list may not own its elements if copied via assignment
duke@435 2773 // Component *component;
duke@435 2774 // for (reset(); (component = iter()) != NULL;) {
duke@435 2775 // delete component;
duke@435 2776 // }
duke@435 2777 }
duke@435 2778
duke@435 2779 void ComponentList::insert(Component *component, bool mflag) {
duke@435 2780 NameList::addName((char *)component);
duke@435 2781 if(mflag) _matchcnt++;
duke@435 2782 }
duke@435 2783 void ComponentList::insert(const char *name, const char *opType, int usedef,
duke@435 2784 bool mflag) {
duke@435 2785 Component * component = new Component(name, opType, usedef);
duke@435 2786 insert(component, mflag);
duke@435 2787 }
duke@435 2788 Component *ComponentList::current() { return (Component*)NameList::current(); }
duke@435 2789 Component *ComponentList::iter() { return (Component*)NameList::iter(); }
duke@435 2790 Component *ComponentList::match_iter() {
duke@435 2791 if(_iter < _matchcnt) return (Component*)NameList::iter();
duke@435 2792 return NULL;
duke@435 2793 }
duke@435 2794 Component *ComponentList::post_match_iter() {
duke@435 2795 Component *comp = iter();
duke@435 2796 // At end of list?
duke@435 2797 if ( comp == NULL ) {
duke@435 2798 return comp;
duke@435 2799 }
duke@435 2800 // In post-match components?
duke@435 2801 if (_iter > match_count()-1) {
duke@435 2802 return comp;
duke@435 2803 }
duke@435 2804
duke@435 2805 return post_match_iter();
duke@435 2806 }
duke@435 2807
duke@435 2808 void ComponentList::reset() { NameList::reset(); }
duke@435 2809 int ComponentList::count() { return NameList::count(); }
duke@435 2810
duke@435 2811 Component *ComponentList::operator[](int position) {
duke@435 2812 // Shortcut complete iteration if there are not enough entries
duke@435 2813 if (position >= count()) return NULL;
duke@435 2814
duke@435 2815 int index = 0;
duke@435 2816 Component *component = NULL;
duke@435 2817 for (reset(); (component = iter()) != NULL;) {
duke@435 2818 if (index == position) {
duke@435 2819 return component;
duke@435 2820 }
duke@435 2821 ++index;
duke@435 2822 }
duke@435 2823
duke@435 2824 return NULL;
duke@435 2825 }
duke@435 2826
duke@435 2827 const Component *ComponentList::search(const char *name) {
duke@435 2828 PreserveIter pi(this);
duke@435 2829 reset();
duke@435 2830 for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
duke@435 2831 if( strcmp(comp->_name,name) == 0 ) return comp;
duke@435 2832 }
duke@435 2833
duke@435 2834 return NULL;
duke@435 2835 }
duke@435 2836
duke@435 2837 // Return number of USEs + number of DEFs
duke@435 2838 // When there are no components, or the first component is a USE,
duke@435 2839 // then we add '1' to hold a space for the 'result' operand.
duke@435 2840 int ComponentList::num_operands() {
duke@435 2841 PreserveIter pi(this);
duke@435 2842 uint count = 1; // result operand
duke@435 2843 uint position = 0;
duke@435 2844
duke@435 2845 Component *component = NULL;
duke@435 2846 for( reset(); (component = iter()) != NULL; ++position ) {
duke@435 2847 if( component->isa(Component::USE) ||
duke@435 2848 ( position == 0 && (! component->isa(Component::DEF))) ) {
duke@435 2849 ++count;
duke@435 2850 }
duke@435 2851 }
duke@435 2852
duke@435 2853 return count;
duke@435 2854 }
duke@435 2855
duke@435 2856 // Return zero-based position in list; -1 if not in list.
duke@435 2857 // if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
duke@435 2858 int ComponentList::operand_position(const char *name, int usedef) {
duke@435 2859 PreserveIter pi(this);
duke@435 2860 int position = 0;
duke@435 2861 int num_opnds = num_operands();
duke@435 2862 Component *component;
duke@435 2863 Component* preceding_non_use = NULL;
duke@435 2864 Component* first_def = NULL;
duke@435 2865 for (reset(); (component = iter()) != NULL; ++position) {
duke@435 2866 // When the first component is not a DEF,
duke@435 2867 // leave space for the result operand!
duke@435 2868 if ( position==0 && (! component->isa(Component::DEF)) ) {
duke@435 2869 ++position;
duke@435 2870 ++num_opnds;
duke@435 2871 }
duke@435 2872 if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
duke@435 2873 // When the first entry in the component list is a DEF and a USE
duke@435 2874 // Treat them as being separate, a DEF first, then a USE
duke@435 2875 if( position==0
duke@435 2876 && usedef==Component::USE && component->isa(Component::DEF) ) {
duke@435 2877 assert(position+1 < num_opnds, "advertised index in bounds");
duke@435 2878 return position+1;
duke@435 2879 } else {
duke@435 2880 if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
duke@435 2881 fprintf(stderr, "the name '%s' should not precede the name '%s'\n", preceding_non_use->_name, name);
duke@435 2882 }
duke@435 2883 if( position >= num_opnds ) {
duke@435 2884 fprintf(stderr, "the name '%s' is too late in its name list\n", name);
duke@435 2885 }
duke@435 2886 assert(position < num_opnds, "advertised index in bounds");
duke@435 2887 return position;
duke@435 2888 }
duke@435 2889 }
duke@435 2890 if( component->isa(Component::DEF)
duke@435 2891 && component->isa(Component::USE) ) {
duke@435 2892 ++position;
duke@435 2893 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 2894 }
duke@435 2895 if( component->isa(Component::DEF) && !first_def ) {
duke@435 2896 first_def = component;
duke@435 2897 }
duke@435 2898 if( !component->isa(Component::USE) && component != first_def ) {
duke@435 2899 preceding_non_use = component;
duke@435 2900 } else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
duke@435 2901 preceding_non_use = NULL;
duke@435 2902 }
duke@435 2903 }
duke@435 2904 return Not_in_list;
duke@435 2905 }
duke@435 2906
duke@435 2907 // Find position for this name, regardless of use/def information
duke@435 2908 int ComponentList::operand_position(const char *name) {
duke@435 2909 PreserveIter pi(this);
duke@435 2910 int position = 0;
duke@435 2911 Component *component;
duke@435 2912 for (reset(); (component = iter()) != NULL; ++position) {
duke@435 2913 // When the first component is not a DEF,
duke@435 2914 // leave space for the result operand!
duke@435 2915 if ( position==0 && (! component->isa(Component::DEF)) ) {
duke@435 2916 ++position;
duke@435 2917 }
duke@435 2918 if (strcmp(name, component->_name)==0) {
duke@435 2919 return position;
duke@435 2920 }
duke@435 2921 if( component->isa(Component::DEF)
duke@435 2922 && component->isa(Component::USE) ) {
duke@435 2923 ++position;
duke@435 2924 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 2925 }
duke@435 2926 }
duke@435 2927 return Not_in_list;
duke@435 2928 }
duke@435 2929
duke@435 2930 int ComponentList::operand_position_format(const char *name) {
duke@435 2931 PreserveIter pi(this);
duke@435 2932 int first_position = operand_position(name);
duke@435 2933 int use_position = operand_position(name, Component::USE);
duke@435 2934
duke@435 2935 return ((first_position < use_position) ? use_position : first_position);
duke@435 2936 }
duke@435 2937
duke@435 2938 int ComponentList::label_position() {
duke@435 2939 PreserveIter pi(this);
duke@435 2940 int position = 0;
duke@435 2941 reset();
duke@435 2942 for( Component *comp; (comp = iter()) != NULL; ++position) {
duke@435 2943 // When the first component is not a DEF,
duke@435 2944 // leave space for the result operand!
duke@435 2945 if ( position==0 && (! comp->isa(Component::DEF)) ) {
duke@435 2946 ++position;
duke@435 2947 }
duke@435 2948 if (strcmp(comp->_type, "label")==0) {
duke@435 2949 return position;
duke@435 2950 }
duke@435 2951 if( comp->isa(Component::DEF)
duke@435 2952 && comp->isa(Component::USE) ) {
duke@435 2953 ++position;
duke@435 2954 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 2955 }
duke@435 2956 }
duke@435 2957
duke@435 2958 return -1;
duke@435 2959 }
duke@435 2960
duke@435 2961 int ComponentList::method_position() {
duke@435 2962 PreserveIter pi(this);
duke@435 2963 int position = 0;
duke@435 2964 reset();
duke@435 2965 for( Component *comp; (comp = iter()) != NULL; ++position) {
duke@435 2966 // When the first component is not a DEF,
duke@435 2967 // leave space for the result operand!
duke@435 2968 if ( position==0 && (! comp->isa(Component::DEF)) ) {
duke@435 2969 ++position;
duke@435 2970 }
duke@435 2971 if (strcmp(comp->_type, "method")==0) {
duke@435 2972 return position;
duke@435 2973 }
duke@435 2974 if( comp->isa(Component::DEF)
duke@435 2975 && comp->isa(Component::USE) ) {
duke@435 2976 ++position;
duke@435 2977 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 2978 }
duke@435 2979 }
duke@435 2980
duke@435 2981 return -1;
duke@435 2982 }
duke@435 2983
duke@435 2984 void ComponentList::dump() { output(stderr); }
duke@435 2985
duke@435 2986 void ComponentList::output(FILE *fp) {
duke@435 2987 PreserveIter pi(this);
duke@435 2988 fprintf(fp, "\n");
duke@435 2989 Component *component;
duke@435 2990 for (reset(); (component = iter()) != NULL;) {
duke@435 2991 component->output(fp);
duke@435 2992 }
duke@435 2993 fprintf(fp, "\n");
duke@435 2994 }
duke@435 2995
duke@435 2996 //------------------------------MatchNode--------------------------------------
duke@435 2997 MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
duke@435 2998 const char *opType, MatchNode *lChild, MatchNode *rChild)
duke@435 2999 : _AD(ad), _result(result), _name(mexpr), _opType(opType),
duke@435 3000 _lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0),
duke@435 3001 _commutative_id(0) {
duke@435 3002 _numleaves = (lChild ? lChild->_numleaves : 0)
duke@435 3003 + (rChild ? rChild->_numleaves : 0);
duke@435 3004 }
duke@435 3005
duke@435 3006 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode)
duke@435 3007 : _AD(ad), _result(mnode._result), _name(mnode._name),
duke@435 3008 _opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild),
duke@435 3009 _internalop(0), _numleaves(mnode._numleaves),
duke@435 3010 _commutative_id(mnode._commutative_id) {
duke@435 3011 }
duke@435 3012
duke@435 3013 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone)
duke@435 3014 : _AD(ad), _result(mnode._result), _name(mnode._name),
duke@435 3015 _opType(mnode._opType),
duke@435 3016 _internalop(0), _numleaves(mnode._numleaves),
duke@435 3017 _commutative_id(mnode._commutative_id) {
duke@435 3018 if (mnode._lChild) {
duke@435 3019 _lChild = new MatchNode(ad, *mnode._lChild, clone);
duke@435 3020 } else {
duke@435 3021 _lChild = NULL;
duke@435 3022 }
duke@435 3023 if (mnode._rChild) {
duke@435 3024 _rChild = new MatchNode(ad, *mnode._rChild, clone);
duke@435 3025 } else {
duke@435 3026 _rChild = NULL;
duke@435 3027 }
duke@435 3028 }
duke@435 3029
duke@435 3030 MatchNode::~MatchNode() {
duke@435 3031 // // This node may not own its children if copied via assignment
duke@435 3032 // if( _lChild ) delete _lChild;
duke@435 3033 // if( _rChild ) delete _rChild;
duke@435 3034 }
duke@435 3035
duke@435 3036 bool MatchNode::find_type(const char *type, int &position) const {
duke@435 3037 if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
duke@435 3038 if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;
duke@435 3039
duke@435 3040 if (strcmp(type,_opType)==0) {
duke@435 3041 return true;
duke@435 3042 } else {
duke@435 3043 ++position;
duke@435 3044 }
duke@435 3045 return false;
duke@435 3046 }
duke@435 3047
duke@435 3048 // Recursive call collecting info on top-level operands, not transitive.
duke@435 3049 // Implementation does not modify state of internal structures.
duke@435 3050 void MatchNode::append_components(FormDict &locals, ComponentList &components,
duke@435 3051 bool deflag) const {
duke@435 3052 int usedef = deflag ? Component::DEF : Component::USE;
duke@435 3053 FormDict &globals = _AD.globalNames();
duke@435 3054
duke@435 3055 assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
duke@435 3056 // Base case
duke@435 3057 if (_lChild==NULL && _rChild==NULL) {
duke@435 3058 // If _opType is not an operation, do not build a component for it #####
duke@435 3059 const Form *f = globals[_opType];
duke@435 3060 if( f != NULL ) {
duke@435 3061 // Add non-ideals that are operands, operand-classes,
duke@435 3062 if( ! f->ideal_only()
duke@435 3063 && (f->is_opclass() || f->is_operand()) ) {
duke@435 3064 components.insert(_name, _opType, usedef, true);
duke@435 3065 }
duke@435 3066 }
duke@435 3067 return;
duke@435 3068 }
duke@435 3069 // Promote results of "Set" to DEF
duke@435 3070 bool def_flag = (!strcmp(_opType, "Set")) ? true : false;
duke@435 3071 if (_lChild) _lChild->append_components(locals, components, def_flag);
duke@435 3072 def_flag = false; // only applies to component immediately following 'Set'
duke@435 3073 if (_rChild) _rChild->append_components(locals, components, def_flag);
duke@435 3074 }
duke@435 3075
duke@435 3076 // Find the n'th base-operand in the match node,
duke@435 3077 // recursively investigates match rules of user-defined operands.
duke@435 3078 //
duke@435 3079 // Implementation does not modify state of internal structures since they
duke@435 3080 // can be shared.
duke@435 3081 bool MatchNode::base_operand(uint &position, FormDict &globals,
duke@435 3082 const char * &result, const char * &name,
duke@435 3083 const char * &opType) const {
duke@435 3084 assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
duke@435 3085 // Base case
duke@435 3086 if (_lChild==NULL && _rChild==NULL) {
duke@435 3087 // Check for special case: "Universe", "label"
duke@435 3088 if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
duke@435 3089 if (position == 0) {
duke@435 3090 result = _result;
duke@435 3091 name = _name;
duke@435 3092 opType = _opType;
duke@435 3093 return 1;
duke@435 3094 } else {
duke@435 3095 -- position;
duke@435 3096 return 0;
duke@435 3097 }
duke@435 3098 }
duke@435 3099
duke@435 3100 const Form *form = globals[_opType];
duke@435 3101 MatchNode *matchNode = NULL;
duke@435 3102 // Check for user-defined type
duke@435 3103 if (form) {
duke@435 3104 // User operand or instruction?
duke@435 3105 OperandForm *opForm = form->is_operand();
duke@435 3106 InstructForm *inForm = form->is_instruction();
duke@435 3107 if ( opForm ) {
duke@435 3108 matchNode = (MatchNode*)opForm->_matrule;
duke@435 3109 } else if ( inForm ) {
duke@435 3110 matchNode = (MatchNode*)inForm->_matrule;
duke@435 3111 }
duke@435 3112 }
duke@435 3113 // if this is user-defined, recurse on match rule
duke@435 3114 // User-defined operand and instruction forms have a match-rule.
duke@435 3115 if (matchNode) {
duke@435 3116 return (matchNode->base_operand(position,globals,result,name,opType));
duke@435 3117 } else {
duke@435 3118 // Either not a form, or a system-defined form (no match rule).
duke@435 3119 if (position==0) {
duke@435 3120 result = _result;
duke@435 3121 name = _name;
duke@435 3122 opType = _opType;
duke@435 3123 return 1;
duke@435 3124 } else {
duke@435 3125 --position;
duke@435 3126 return 0;
duke@435 3127 }
duke@435 3128 }
duke@435 3129
duke@435 3130 } else {
duke@435 3131 // Examine the left child and right child as well
duke@435 3132 if (_lChild) {
duke@435 3133 if (_lChild->base_operand(position, globals, result, name, opType))
duke@435 3134 return 1;
duke@435 3135 }
duke@435 3136
duke@435 3137 if (_rChild) {
duke@435 3138 if (_rChild->base_operand(position, globals, result, name, opType))
duke@435 3139 return 1;
duke@435 3140 }
duke@435 3141 }
duke@435 3142
duke@435 3143 return 0;
duke@435 3144 }
duke@435 3145
duke@435 3146 // Recursive call on all operands' match rules in my match rule.
duke@435 3147 uint MatchNode::num_consts(FormDict &globals) const {
duke@435 3148 uint index = 0;
duke@435 3149 uint num_consts = 0;
duke@435 3150 const char *result;
duke@435 3151 const char *name;
duke@435 3152 const char *opType;
duke@435 3153
duke@435 3154 for (uint position = index;
duke@435 3155 base_operand(position,globals,result,name,opType); position = index) {
duke@435 3156 ++index;
duke@435 3157 if( ideal_to_const_type(opType) ) num_consts++;
duke@435 3158 }
duke@435 3159
duke@435 3160 return num_consts;
duke@435 3161 }
duke@435 3162
duke@435 3163 // Recursive call on all operands' match rules in my match rule.
duke@435 3164 // Constants in match rule subtree with specified type
duke@435 3165 uint MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
duke@435 3166 uint index = 0;
duke@435 3167 uint num_consts = 0;
duke@435 3168 const char *result;
duke@435 3169 const char *name;
duke@435 3170 const char *opType;
duke@435 3171
duke@435 3172 for (uint position = index;
duke@435 3173 base_operand(position,globals,result,name,opType); position = index) {
duke@435 3174 ++index;
duke@435 3175 if( ideal_to_const_type(opType) == type ) num_consts++;
duke@435 3176 }
duke@435 3177
duke@435 3178 return num_consts;
duke@435 3179 }
duke@435 3180
duke@435 3181 // Recursive call on all operands' match rules in my match rule.
duke@435 3182 uint MatchNode::num_const_ptrs(FormDict &globals) const {
duke@435 3183 return num_consts( globals, Form::idealP );
duke@435 3184 }
duke@435 3185
duke@435 3186 bool MatchNode::sets_result() const {
duke@435 3187 return ( (strcmp(_name,"Set") == 0) ? true : false );
duke@435 3188 }
duke@435 3189
duke@435 3190 const char *MatchNode::reduce_right(FormDict &globals) const {
duke@435 3191 // If there is no right reduction, return NULL.
duke@435 3192 const char *rightStr = NULL;
duke@435 3193
duke@435 3194 // If we are a "Set", start from the right child.
duke@435 3195 const MatchNode *const mnode = sets_result() ?
duke@435 3196 (const MatchNode *const)this->_rChild :
duke@435 3197 (const MatchNode *const)this;
duke@435 3198
duke@435 3199 // If our right child exists, it is the right reduction
duke@435 3200 if ( mnode->_rChild ) {
duke@435 3201 rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
duke@435 3202 : mnode->_rChild->_opType;
duke@435 3203 }
duke@435 3204 // Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
duke@435 3205 return rightStr;
duke@435 3206 }
duke@435 3207
duke@435 3208 const char *MatchNode::reduce_left(FormDict &globals) const {
duke@435 3209 // If there is no left reduction, return NULL.
duke@435 3210 const char *leftStr = NULL;
duke@435 3211
duke@435 3212 // If we are a "Set", start from the right child.
duke@435 3213 const MatchNode *const mnode = sets_result() ?
duke@435 3214 (const MatchNode *const)this->_rChild :
duke@435 3215 (const MatchNode *const)this;
duke@435 3216
duke@435 3217 // If our left child exists, it is the left reduction
duke@435 3218 if ( mnode->_lChild ) {
duke@435 3219 leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
duke@435 3220 : mnode->_lChild->_opType;
duke@435 3221 } else {
duke@435 3222 // May be simple chain rule: (Set dst operand_form_source)
duke@435 3223 if ( sets_result() ) {
duke@435 3224 OperandForm *oper = globals[mnode->_opType]->is_operand();
duke@435 3225 if( oper ) {
duke@435 3226 leftStr = mnode->_opType;
duke@435 3227 }
duke@435 3228 }
duke@435 3229 }
duke@435 3230 return leftStr;
duke@435 3231 }
duke@435 3232
duke@435 3233 //------------------------------count_instr_names------------------------------
duke@435 3234 // Count occurrences of operands names in the leaves of the instruction
duke@435 3235 // match rule.
duke@435 3236 void MatchNode::count_instr_names( Dict &names ) {
duke@435 3237 if( !this ) return;
duke@435 3238 if( _lChild ) _lChild->count_instr_names(names);
duke@435 3239 if( _rChild ) _rChild->count_instr_names(names);
duke@435 3240 if( !_lChild && !_rChild ) {
duke@435 3241 uintptr_t cnt = (uintptr_t)names[_name];
duke@435 3242 cnt++; // One more name found
duke@435 3243 names.Insert(_name,(void*)cnt);
duke@435 3244 }
duke@435 3245 }
duke@435 3246
duke@435 3247 //------------------------------build_instr_pred-------------------------------
duke@435 3248 // Build a path to 'name' in buf. Actually only build if cnt is zero, so we
duke@435 3249 // can skip some leading instances of 'name'.
duke@435 3250 int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
duke@435 3251 if( _lChild ) {
duke@435 3252 if( !cnt ) strcpy( buf, "_kids[0]->" );
duke@435 3253 cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
duke@435 3254 if( cnt < 0 ) return cnt; // Found it, all done
duke@435 3255 }
duke@435 3256 if( _rChild ) {
duke@435 3257 if( !cnt ) strcpy( buf, "_kids[1]->" );
duke@435 3258 cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
duke@435 3259 if( cnt < 0 ) return cnt; // Found it, all done
duke@435 3260 }
duke@435 3261 if( !_lChild && !_rChild ) { // Found a leaf
duke@435 3262 // Wrong name? Give up...
duke@435 3263 if( strcmp(name,_name) ) return cnt;
duke@435 3264 if( !cnt ) strcpy(buf,"_leaf");
duke@435 3265 return cnt-1;
duke@435 3266 }
duke@435 3267 return cnt;
duke@435 3268 }
duke@435 3269
duke@435 3270
duke@435 3271 //------------------------------build_internalop-------------------------------
duke@435 3272 // Build string representation of subtree
duke@435 3273 void MatchNode::build_internalop( ) {
duke@435 3274 char *iop, *subtree;
duke@435 3275 const char *lstr, *rstr;
duke@435 3276 // Build string representation of subtree
duke@435 3277 // Operation lchildType rchildType
duke@435 3278 int len = (int)strlen(_opType) + 4;
duke@435 3279 lstr = (_lChild) ? ((_lChild->_internalop) ?
duke@435 3280 _lChild->_internalop : _lChild->_opType) : "";
duke@435 3281 rstr = (_rChild) ? ((_rChild->_internalop) ?
duke@435 3282 _rChild->_internalop : _rChild->_opType) : "";
duke@435 3283 len += (int)strlen(lstr) + (int)strlen(rstr);
duke@435 3284 subtree = (char *)malloc(len);
duke@435 3285 sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
duke@435 3286 // Hash the subtree string in _internalOps; if a name exists, use it
duke@435 3287 iop = (char *)_AD._internalOps[subtree];
duke@435 3288 // Else create a unique name, and add it to the hash table
duke@435 3289 if (iop == NULL) {
duke@435 3290 iop = subtree;
duke@435 3291 _AD._internalOps.Insert(subtree, iop);
duke@435 3292 _AD._internalOpNames.addName(iop);
duke@435 3293 _AD._internalMatch.Insert(iop, this);
duke@435 3294 }
duke@435 3295 // Add the internal operand name to the MatchNode
duke@435 3296 _internalop = iop;
duke@435 3297 _result = iop;
duke@435 3298 }
duke@435 3299
duke@435 3300
duke@435 3301 void MatchNode::dump() {
duke@435 3302 output(stderr);
duke@435 3303 }
duke@435 3304
duke@435 3305 void MatchNode::output(FILE *fp) {
duke@435 3306 if (_lChild==0 && _rChild==0) {
duke@435 3307 fprintf(fp," %s",_name); // operand
duke@435 3308 }
duke@435 3309 else {
duke@435 3310 fprintf(fp," (%s ",_name); // " (opcodeName "
duke@435 3311 if(_lChild) _lChild->output(fp); // left operand
duke@435 3312 if(_rChild) _rChild->output(fp); // right operand
duke@435 3313 fprintf(fp,")"); // ")"
duke@435 3314 }
duke@435 3315 }
duke@435 3316
duke@435 3317 int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
duke@435 3318 static const char *needs_ideal_memory_list[] = {
coleenp@548 3319 "StoreI","StoreL","StoreP","StoreN","StoreD","StoreF" ,
duke@435 3320 "StoreB","StoreC","Store" ,"StoreFP",
coleenp@548 3321 "LoadI" ,"LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF" ,
twisti@993 3322 "LoadB" ,"LoadUS" ,"LoadS" ,"Load" ,
duke@435 3323 "Store4I","Store2I","Store2L","Store2D","Store4F","Store2F","Store16B",
duke@435 3324 "Store8B","Store4B","Store8C","Store4C","Store2C",
duke@435 3325 "Load4I" ,"Load2I" ,"Load2L" ,"Load2D" ,"Load4F" ,"Load2F" ,"Load16B" ,
duke@435 3326 "Load8B" ,"Load4B" ,"Load8C" ,"Load4C" ,"Load2C" ,"Load8S", "Load4S","Load2S",
kvn@599 3327 "LoadRange", "LoadKlass", "LoadNKlass", "LoadL_unaligned", "LoadD_unaligned",
duke@435 3328 "LoadPLocked", "LoadLLocked",
kvn@855 3329 "StorePConditional", "StoreIConditional", "StoreLConditional",
coleenp@548 3330 "CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN",
duke@435 3331 "StoreCM",
duke@435 3332 "ClearArray"
duke@435 3333 };
duke@435 3334 int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
duke@435 3335 if( strcmp(_opType,"PrefetchRead")==0 || strcmp(_opType,"PrefetchWrite")==0 )
duke@435 3336 return 1;
duke@435 3337 if( _lChild ) {
duke@435 3338 const char *opType = _lChild->_opType;
duke@435 3339 for( int i=0; i<cnt; i++ )
duke@435 3340 if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
duke@435 3341 return 1;
duke@435 3342 if( _lChild->needs_ideal_memory_edge(globals) )
duke@435 3343 return 1;
duke@435 3344 }
duke@435 3345 if( _rChild ) {
duke@435 3346 const char *opType = _rChild->_opType;
duke@435 3347 for( int i=0; i<cnt; i++ )
duke@435 3348 if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
duke@435 3349 return 1;
duke@435 3350 if( _rChild->needs_ideal_memory_edge(globals) )
duke@435 3351 return 1;
duke@435 3352 }
duke@435 3353
duke@435 3354 return 0;
duke@435 3355 }
duke@435 3356
duke@435 3357 // TRUE if defines a derived oop, and so needs a base oop edge present
duke@435 3358 // post-matching.
duke@435 3359 int MatchNode::needs_base_oop_edge() const {
duke@435 3360 if( !strcmp(_opType,"AddP") ) return 1;
duke@435 3361 if( strcmp(_opType,"Set") ) return 0;
duke@435 3362 return !strcmp(_rChild->_opType,"AddP");
duke@435 3363 }
duke@435 3364
duke@435 3365 int InstructForm::needs_base_oop_edge(FormDict &globals) const {
duke@435 3366 if( is_simple_chain_rule(globals) ) {
duke@435 3367 const char *src = _matrule->_rChild->_opType;
duke@435 3368 OperandForm *src_op = globals[src]->is_operand();
duke@435 3369 assert( src_op, "Not operand class of chain rule" );
duke@435 3370 return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
duke@435 3371 } // Else check instruction
duke@435 3372
duke@435 3373 return _matrule ? _matrule->needs_base_oop_edge() : 0;
duke@435 3374 }
duke@435 3375
duke@435 3376
duke@435 3377 //-------------------------cisc spilling methods-------------------------------
duke@435 3378 // helper routines and methods for detecting cisc-spilling instructions
duke@435 3379 //-------------------------cisc_spill_merge------------------------------------
duke@435 3380 int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
duke@435 3381 int cisc_spillable = Maybe_cisc_spillable;
duke@435 3382
duke@435 3383 // Combine results of left and right checks
duke@435 3384 if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
duke@435 3385 // neither side is spillable, nor prevents cisc spilling
duke@435 3386 cisc_spillable = Maybe_cisc_spillable;
duke@435 3387 }
duke@435 3388 else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
duke@435 3389 // right side is spillable
duke@435 3390 cisc_spillable = right_spillable;
duke@435 3391 }
duke@435 3392 else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
duke@435 3393 // left side is spillable
duke@435 3394 cisc_spillable = left_spillable;
duke@435 3395 }
duke@435 3396 else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
duke@435 3397 // left or right prevents cisc spilling this instruction
duke@435 3398 cisc_spillable = Not_cisc_spillable;
duke@435 3399 }
duke@435 3400 else {
duke@435 3401 // Only allow one to spill
duke@435 3402 cisc_spillable = Not_cisc_spillable;
duke@435 3403 }
duke@435 3404
duke@435 3405 return cisc_spillable;
duke@435 3406 }
duke@435 3407
duke@435 3408 //-------------------------root_ops_match--------------------------------------
duke@435 3409 bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
duke@435 3410 // Base Case: check that the current operands/operations match
duke@435 3411 assert( op1, "Must have op's name");
duke@435 3412 assert( op2, "Must have op's name");
duke@435 3413 const Form *form1 = globals[op1];
duke@435 3414 const Form *form2 = globals[op2];
duke@435 3415
duke@435 3416 return (form1 == form2);
duke@435 3417 }
duke@435 3418
duke@435 3419 //-------------------------cisc_spill_match------------------------------------
duke@435 3420 // Recursively check two MatchRules for legal conversion via cisc-spilling
duke@435 3421 int MatchNode::cisc_spill_match(FormDict &globals, RegisterForm *registers, MatchNode *mRule2, const char * &operand, const char * &reg_type) {
duke@435 3422 int cisc_spillable = Maybe_cisc_spillable;
duke@435 3423 int left_spillable = Maybe_cisc_spillable;
duke@435 3424 int right_spillable = Maybe_cisc_spillable;
duke@435 3425
duke@435 3426 // Check that each has same number of operands at this level
duke@435 3427 if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) )
duke@435 3428 return Not_cisc_spillable;
duke@435 3429
duke@435 3430 // Base Case: check that the current operands/operations match
duke@435 3431 // or are CISC spillable
duke@435 3432 assert( _opType, "Must have _opType");
duke@435 3433 assert( mRule2->_opType, "Must have _opType");
duke@435 3434 const Form *form = globals[_opType];
duke@435 3435 const Form *form2 = globals[mRule2->_opType];
duke@435 3436 if( form == form2 ) {
duke@435 3437 cisc_spillable = Maybe_cisc_spillable;
duke@435 3438 } else {
duke@435 3439 const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
duke@435 3440 const char *name_left = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
duke@435 3441 const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
duke@435 3442 // Detect reg vs (loadX memory)
duke@435 3443 if( form->is_cisc_reg(globals)
duke@435 3444 && form2_inst
duke@435 3445 && (is_load_from_memory(mRule2->_opType) != Form::none) // reg vs. (load memory)
duke@435 3446 && (name_left != NULL) // NOT (load)
duke@435 3447 && (name_right == NULL) ) { // NOT (load memory foo)
duke@435 3448 const Form *form2_left = name_left ? globals[name_left] : NULL;
duke@435 3449 if( form2_left && form2_left->is_cisc_mem(globals) ) {
duke@435 3450 cisc_spillable = Is_cisc_spillable;
duke@435 3451 operand = _name;
duke@435 3452 reg_type = _result;
duke@435 3453 return Is_cisc_spillable;
duke@435 3454 } else {
duke@435 3455 cisc_spillable = Not_cisc_spillable;
duke@435 3456 }
duke@435 3457 }
duke@435 3458 // Detect reg vs memory
duke@435 3459 else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) {
duke@435 3460 cisc_spillable = Is_cisc_spillable;
duke@435 3461 operand = _name;
duke@435 3462 reg_type = _result;
duke@435 3463 return Is_cisc_spillable;
duke@435 3464 } else {
duke@435 3465 cisc_spillable = Not_cisc_spillable;
duke@435 3466 }
duke@435 3467 }
duke@435 3468
duke@435 3469 // If cisc is still possible, check rest of tree
duke@435 3470 if( cisc_spillable == Maybe_cisc_spillable ) {
duke@435 3471 // Check that each has same number of operands at this level
duke@435 3472 if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
duke@435 3473
duke@435 3474 // Check left operands
duke@435 3475 if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
duke@435 3476 left_spillable = Maybe_cisc_spillable;
duke@435 3477 } else {
duke@435 3478 left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
duke@435 3479 }
duke@435 3480
duke@435 3481 // Check right operands
duke@435 3482 if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
duke@435 3483 right_spillable = Maybe_cisc_spillable;
duke@435 3484 } else {
duke@435 3485 right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
duke@435 3486 }
duke@435 3487
duke@435 3488 // Combine results of left and right checks
duke@435 3489 cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
duke@435 3490 }
duke@435 3491
duke@435 3492 return cisc_spillable;
duke@435 3493 }
duke@435 3494
duke@435 3495 //---------------------------cisc_spill_match----------------------------------
duke@435 3496 // Recursively check two MatchRules for legal conversion via cisc-spilling
duke@435 3497 // This method handles the root of Match tree,
duke@435 3498 // general recursive checks done in MatchNode
duke@435 3499 int MatchRule::cisc_spill_match(FormDict &globals, RegisterForm *registers,
duke@435 3500 MatchRule *mRule2, const char * &operand,
duke@435 3501 const char * &reg_type) {
duke@435 3502 int cisc_spillable = Maybe_cisc_spillable;
duke@435 3503 int left_spillable = Maybe_cisc_spillable;
duke@435 3504 int right_spillable = Maybe_cisc_spillable;
duke@435 3505
duke@435 3506 // Check that each sets a result
duke@435 3507 if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
duke@435 3508 // Check that each has same number of operands at this level
duke@435 3509 if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
duke@435 3510
duke@435 3511 // Check left operands: at root, must be target of 'Set'
duke@435 3512 if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
duke@435 3513 left_spillable = Not_cisc_spillable;
duke@435 3514 } else {
duke@435 3515 // Do not support cisc-spilling instruction's target location
duke@435 3516 if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
duke@435 3517 left_spillable = Maybe_cisc_spillable;
duke@435 3518 } else {
duke@435 3519 left_spillable = Not_cisc_spillable;
duke@435 3520 }
duke@435 3521 }
duke@435 3522
duke@435 3523 // Check right operands: recursive walk to identify reg->mem operand
duke@435 3524 if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
duke@435 3525 right_spillable = Maybe_cisc_spillable;
duke@435 3526 } else {
duke@435 3527 right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
duke@435 3528 }
duke@435 3529
duke@435 3530 // Combine results of left and right checks
duke@435 3531 cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
duke@435 3532
duke@435 3533 return cisc_spillable;
duke@435 3534 }
duke@435 3535
duke@435 3536 //----------------------------- equivalent ------------------------------------
duke@435 3537 // Recursively check to see if two match rules are equivalent.
duke@435 3538 // This rule handles the root.
duke@435 3539 bool MatchRule::equivalent(FormDict &globals, MatchRule *mRule2) {
duke@435 3540 // Check that each sets a result
duke@435 3541 if (sets_result() != mRule2->sets_result()) {
duke@435 3542 return false;
duke@435 3543 }
duke@435 3544
duke@435 3545 // Check that the current operands/operations match
duke@435 3546 assert( _opType, "Must have _opType");
duke@435 3547 assert( mRule2->_opType, "Must have _opType");
duke@435 3548 const Form *form = globals[_opType];
duke@435 3549 const Form *form2 = globals[mRule2->_opType];
duke@435 3550 if( form != form2 ) {
duke@435 3551 return false;
duke@435 3552 }
duke@435 3553
duke@435 3554 if (_lChild ) {
duke@435 3555 if( !_lChild->equivalent(globals, mRule2->_lChild) )
duke@435 3556 return false;
duke@435 3557 } else if (mRule2->_lChild) {
duke@435 3558 return false; // I have NULL left child, mRule2 has non-NULL left child.
duke@435 3559 }
duke@435 3560
duke@435 3561 if (_rChild ) {
duke@435 3562 if( !_rChild->equivalent(globals, mRule2->_rChild) )
duke@435 3563 return false;
duke@435 3564 } else if (mRule2->_rChild) {
duke@435 3565 return false; // I have NULL right child, mRule2 has non-NULL right child.
duke@435 3566 }
duke@435 3567
duke@435 3568 // We've made it through the gauntlet.
duke@435 3569 return true;
duke@435 3570 }
duke@435 3571
duke@435 3572 //----------------------------- equivalent ------------------------------------
duke@435 3573 // Recursively check to see if two match rules are equivalent.
duke@435 3574 // This rule handles the operands.
duke@435 3575 bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
duke@435 3576 if( !mNode2 )
duke@435 3577 return false;
duke@435 3578
duke@435 3579 // Check that the current operands/operations match
duke@435 3580 assert( _opType, "Must have _opType");
duke@435 3581 assert( mNode2->_opType, "Must have _opType");
duke@435 3582 const Form *form = globals[_opType];
duke@435 3583 const Form *form2 = globals[mNode2->_opType];
duke@435 3584 return (form == form2);
duke@435 3585 }
duke@435 3586
duke@435 3587 //-------------------------- has_commutative_op -------------------------------
duke@435 3588 // Recursively check for commutative operations with subtree operands
duke@435 3589 // which could be swapped.
duke@435 3590 void MatchNode::count_commutative_op(int& count) {
duke@435 3591 static const char *commut_op_list[] = {
duke@435 3592 "AddI","AddL","AddF","AddD",
duke@435 3593 "AndI","AndL",
duke@435 3594 "MaxI","MinI",
duke@435 3595 "MulI","MulL","MulF","MulD",
duke@435 3596 "OrI" ,"OrL" ,
duke@435 3597 "XorI","XorL"
duke@435 3598 };
duke@435 3599 int cnt = sizeof(commut_op_list)/sizeof(char*);
duke@435 3600
duke@435 3601 if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
duke@435 3602 // Don't swap if right operand is an immediate constant.
duke@435 3603 bool is_const = false;
duke@435 3604 if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
duke@435 3605 FormDict &globals = _AD.globalNames();
duke@435 3606 const Form *form = globals[_rChild->_opType];
duke@435 3607 if ( form ) {
duke@435 3608 OperandForm *oper = form->is_operand();
duke@435 3609 if( oper && oper->interface_type(globals) == Form::constant_interface )
duke@435 3610 is_const = true;
duke@435 3611 }
duke@435 3612 }
duke@435 3613 if( !is_const ) {
duke@435 3614 for( int i=0; i<cnt; i++ ) {
duke@435 3615 if( strcmp(_opType, commut_op_list[i]) == 0 ) {
duke@435 3616 count++;
duke@435 3617 _commutative_id = count; // id should be > 0
duke@435 3618 break;
duke@435 3619 }
duke@435 3620 }
duke@435 3621 }
duke@435 3622 }
duke@435 3623 if( _lChild )
duke@435 3624 _lChild->count_commutative_op(count);
duke@435 3625 if( _rChild )
duke@435 3626 _rChild->count_commutative_op(count);
duke@435 3627 }
duke@435 3628
duke@435 3629 //-------------------------- swap_commutative_op ------------------------------
duke@435 3630 // Recursively swap specified commutative operation with subtree operands.
duke@435 3631 void MatchNode::swap_commutative_op(bool atroot, int id) {
duke@435 3632 if( _commutative_id == id ) { // id should be > 0
duke@435 3633 assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ),
duke@435 3634 "not swappable operation");
duke@435 3635 MatchNode* tmp = _lChild;
duke@435 3636 _lChild = _rChild;
duke@435 3637 _rChild = tmp;
duke@435 3638 // Don't exit here since we need to build internalop.
duke@435 3639 }
duke@435 3640
duke@435 3641 bool is_set = ( strcmp(_opType, "Set") == 0 );
duke@435 3642 if( _lChild )
duke@435 3643 _lChild->swap_commutative_op(is_set, id);
duke@435 3644 if( _rChild )
duke@435 3645 _rChild->swap_commutative_op(is_set, id);
duke@435 3646
duke@435 3647 // If not the root, reduce this subtree to an internal operand
duke@435 3648 if( !atroot && (_lChild || _rChild) ) {
duke@435 3649 build_internalop();
duke@435 3650 }
duke@435 3651 }
duke@435 3652
duke@435 3653 //-------------------------- swap_commutative_op ------------------------------
duke@435 3654 // Recursively swap specified commutative operation with subtree operands.
duke@435 3655 void MatchRule::swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
duke@435 3656 assert(match_rules_cnt < 100," too many match rule clones");
duke@435 3657 // Clone
duke@435 3658 MatchRule* clone = new MatchRule(_AD, this);
duke@435 3659 // Swap operands of commutative operation
duke@435 3660 ((MatchNode*)clone)->swap_commutative_op(true, count);
duke@435 3661 char* buf = (char*) malloc(strlen(instr_ident) + 4);
duke@435 3662 sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
duke@435 3663 clone->_result = buf;
duke@435 3664
duke@435 3665 clone->_next = this->_next;
duke@435 3666 this-> _next = clone;
duke@435 3667 if( (--count) > 0 ) {
duke@435 3668 this-> swap_commutative_op(instr_ident, count, match_rules_cnt);
duke@435 3669 clone->swap_commutative_op(instr_ident, count, match_rules_cnt);
duke@435 3670 }
duke@435 3671 }
duke@435 3672
duke@435 3673 //------------------------------MatchRule--------------------------------------
duke@435 3674 MatchRule::MatchRule(ArchDesc &ad)
duke@435 3675 : MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
duke@435 3676 _next = NULL;
duke@435 3677 }
duke@435 3678
duke@435 3679 MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
duke@435 3680 : MatchNode(ad, *mRule, 0), _depth(mRule->_depth),
duke@435 3681 _construct(mRule->_construct), _numchilds(mRule->_numchilds) {
duke@435 3682 _next = NULL;
duke@435 3683 }
duke@435 3684
duke@435 3685 MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
duke@435 3686 int numleaves)
duke@435 3687 : MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
duke@435 3688 _numchilds(0) {
duke@435 3689 _next = NULL;
duke@435 3690 mroot->_lChild = NULL;
duke@435 3691 mroot->_rChild = NULL;
duke@435 3692 delete mroot;
duke@435 3693 _numleaves = numleaves;
duke@435 3694 _numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
duke@435 3695 }
duke@435 3696 MatchRule::~MatchRule() {
duke@435 3697 }
duke@435 3698
duke@435 3699 // Recursive call collecting info on top-level operands, not transitive.
duke@435 3700 // Implementation does not modify state of internal structures.
duke@435 3701 void MatchRule::append_components(FormDict &locals, ComponentList &components) const {
duke@435 3702 assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
duke@435 3703
duke@435 3704 MatchNode::append_components(locals, components,
duke@435 3705 false /* not necessarily a def */);
duke@435 3706 }
duke@435 3707
duke@435 3708 // Recursive call on all operands' match rules in my match rule.
duke@435 3709 // Implementation does not modify state of internal structures since they
duke@435 3710 // can be shared.
duke@435 3711 // The MatchNode that is called first treats its
duke@435 3712 bool MatchRule::base_operand(uint &position0, FormDict &globals,
duke@435 3713 const char *&result, const char * &name,
duke@435 3714 const char * &opType)const{
duke@435 3715 uint position = position0;
duke@435 3716
duke@435 3717 return (MatchNode::base_operand( position, globals, result, name, opType));
duke@435 3718 }
duke@435 3719
duke@435 3720
duke@435 3721 bool MatchRule::is_base_register(FormDict &globals) const {
duke@435 3722 uint position = 1;
duke@435 3723 const char *result = NULL;
duke@435 3724 const char *name = NULL;
duke@435 3725 const char *opType = NULL;
duke@435 3726 if (!base_operand(position, globals, result, name, opType)) {
duke@435 3727 position = 0;
duke@435 3728 if( base_operand(position, globals, result, name, opType) &&
duke@435 3729 (strcmp(opType,"RegI")==0 ||
duke@435 3730 strcmp(opType,"RegP")==0 ||
coleenp@548 3731 strcmp(opType,"RegN")==0 ||
duke@435 3732 strcmp(opType,"RegL")==0 ||
duke@435 3733 strcmp(opType,"RegF")==0 ||
duke@435 3734 strcmp(opType,"RegD")==0 ||
duke@435 3735 strcmp(opType,"Reg" )==0) ) {
duke@435 3736 return 1;
duke@435 3737 }
duke@435 3738 }
duke@435 3739 return 0;
duke@435 3740 }
duke@435 3741
duke@435 3742 Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
duke@435 3743 uint position = 1;
duke@435 3744 const char *result = NULL;
duke@435 3745 const char *name = NULL;
duke@435 3746 const char *opType = NULL;
duke@435 3747 if (!base_operand(position, globals, result, name, opType)) {
duke@435 3748 position = 0;
duke@435 3749 if (base_operand(position, globals, result, name, opType)) {
duke@435 3750 return ideal_to_const_type(opType);
duke@435 3751 }
duke@435 3752 }
duke@435 3753 return Form::none;
duke@435 3754 }
duke@435 3755
duke@435 3756 bool MatchRule::is_chain_rule(FormDict &globals) const {
duke@435 3757
duke@435 3758 // Check for chain rule, and do not generate a match list for it
duke@435 3759 if ((_lChild == NULL) && (_rChild == NULL) ) {
duke@435 3760 const Form *form = globals[_opType];
duke@435 3761 // If this is ideal, then it is a base match, not a chain rule.
duke@435 3762 if ( form && form->is_operand() && (!form->ideal_only())) {
duke@435 3763 return true;
duke@435 3764 }
duke@435 3765 }
duke@435 3766 // Check for "Set" form of chain rule, and do not generate a match list
duke@435 3767 if (_rChild) {
duke@435 3768 const char *rch = _rChild->_opType;
duke@435 3769 const Form *form = globals[rch];
duke@435 3770 if ((!strcmp(_opType,"Set") &&
duke@435 3771 ((form) && form->is_operand()))) {
duke@435 3772 return true;
duke@435 3773 }
duke@435 3774 }
duke@435 3775 return false;
duke@435 3776 }
duke@435 3777
duke@435 3778 int MatchRule::is_ideal_copy() const {
duke@435 3779 if( _rChild ) {
duke@435 3780 const char *opType = _rChild->_opType;
ysr@777 3781 #if 1
ysr@777 3782 if( strcmp(opType,"CastIP")==0 )
ysr@777 3783 return 1;
ysr@777 3784 #else
duke@435 3785 if( strcmp(opType,"CastII")==0 )
duke@435 3786 return 1;
duke@435 3787 // Do not treat *CastPP this way, because it
duke@435 3788 // may transfer a raw pointer to an oop.
duke@435 3789 // If the register allocator were to coalesce this
duke@435 3790 // into a single LRG, the GC maps would be incorrect.
duke@435 3791 //if( strcmp(opType,"CastPP")==0 )
duke@435 3792 // return 1;
duke@435 3793 //if( strcmp(opType,"CheckCastPP")==0 )
duke@435 3794 // return 1;
duke@435 3795 //
duke@435 3796 // Do not treat CastX2P or CastP2X this way, because
duke@435 3797 // raw pointers and int types are treated differently
duke@435 3798 // when saving local & stack info for safepoints in
duke@435 3799 // Output().
duke@435 3800 //if( strcmp(opType,"CastX2P")==0 )
duke@435 3801 // return 1;
duke@435 3802 //if( strcmp(opType,"CastP2X")==0 )
duke@435 3803 // return 1;
ysr@777 3804 #endif
duke@435 3805 }
duke@435 3806 if( is_chain_rule(_AD.globalNames()) &&
duke@435 3807 _lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 )
duke@435 3808 return 1;
duke@435 3809 return 0;
duke@435 3810 }
duke@435 3811
duke@435 3812
duke@435 3813 int MatchRule::is_expensive() const {
duke@435 3814 if( _rChild ) {
duke@435 3815 const char *opType = _rChild->_opType;
duke@435 3816 if( strcmp(opType,"AtanD")==0 ||
duke@435 3817 strcmp(opType,"CosD")==0 ||
duke@435 3818 strcmp(opType,"DivD")==0 ||
duke@435 3819 strcmp(opType,"DivF")==0 ||
duke@435 3820 strcmp(opType,"DivI")==0 ||
duke@435 3821 strcmp(opType,"ExpD")==0 ||
duke@435 3822 strcmp(opType,"LogD")==0 ||
duke@435 3823 strcmp(opType,"Log10D")==0 ||
duke@435 3824 strcmp(opType,"ModD")==0 ||
duke@435 3825 strcmp(opType,"ModF")==0 ||
duke@435 3826 strcmp(opType,"ModI")==0 ||
duke@435 3827 strcmp(opType,"PowD")==0 ||
duke@435 3828 strcmp(opType,"SinD")==0 ||
duke@435 3829 strcmp(opType,"SqrtD")==0 ||
duke@435 3830 strcmp(opType,"TanD")==0 ||
duke@435 3831 strcmp(opType,"ConvD2F")==0 ||
duke@435 3832 strcmp(opType,"ConvD2I")==0 ||
duke@435 3833 strcmp(opType,"ConvD2L")==0 ||
duke@435 3834 strcmp(opType,"ConvF2D")==0 ||
duke@435 3835 strcmp(opType,"ConvF2I")==0 ||
duke@435 3836 strcmp(opType,"ConvF2L")==0 ||
duke@435 3837 strcmp(opType,"ConvI2D")==0 ||
duke@435 3838 strcmp(opType,"ConvI2F")==0 ||
duke@435 3839 strcmp(opType,"ConvI2L")==0 ||
duke@435 3840 strcmp(opType,"ConvL2D")==0 ||
duke@435 3841 strcmp(opType,"ConvL2F")==0 ||
duke@435 3842 strcmp(opType,"ConvL2I")==0 ||
kvn@682 3843 strcmp(opType,"DecodeN")==0 ||
kvn@682 3844 strcmp(opType,"EncodeP")==0 ||
duke@435 3845 strcmp(opType,"RoundDouble")==0 ||
duke@435 3846 strcmp(opType,"RoundFloat")==0 ||
duke@435 3847 strcmp(opType,"ReverseBytesI")==0 ||
duke@435 3848 strcmp(opType,"ReverseBytesL")==0 ||
duke@435 3849 strcmp(opType,"Replicate16B")==0 ||
duke@435 3850 strcmp(opType,"Replicate8B")==0 ||
duke@435 3851 strcmp(opType,"Replicate4B")==0 ||
duke@435 3852 strcmp(opType,"Replicate8C")==0 ||
duke@435 3853 strcmp(opType,"Replicate4C")==0 ||
duke@435 3854 strcmp(opType,"Replicate8S")==0 ||
duke@435 3855 strcmp(opType,"Replicate4S")==0 ||
duke@435 3856 strcmp(opType,"Replicate4I")==0 ||
duke@435 3857 strcmp(opType,"Replicate2I")==0 ||
duke@435 3858 strcmp(opType,"Replicate2L")==0 ||
duke@435 3859 strcmp(opType,"Replicate4F")==0 ||
duke@435 3860 strcmp(opType,"Replicate2F")==0 ||
duke@435 3861 strcmp(opType,"Replicate2D")==0 ||
duke@435 3862 0 /* 0 to line up columns nicely */ )
duke@435 3863 return 1;
duke@435 3864 }
duke@435 3865 return 0;
duke@435 3866 }
duke@435 3867
duke@435 3868 bool MatchRule::is_ideal_unlock() const {
duke@435 3869 if( !_opType ) return false;
duke@435 3870 return !strcmp(_opType,"Unlock") || !strcmp(_opType,"FastUnlock");
duke@435 3871 }
duke@435 3872
duke@435 3873
duke@435 3874 bool MatchRule::is_ideal_call_leaf() const {
duke@435 3875 if( !_opType ) return false;
duke@435 3876 return !strcmp(_opType,"CallLeaf") ||
duke@435 3877 !strcmp(_opType,"CallLeafNoFP");
duke@435 3878 }
duke@435 3879
duke@435 3880
duke@435 3881 bool MatchRule::is_ideal_if() const {
duke@435 3882 if( !_opType ) return false;
duke@435 3883 return
duke@435 3884 !strcmp(_opType,"If" ) ||
duke@435 3885 !strcmp(_opType,"CountedLoopEnd");
duke@435 3886 }
duke@435 3887
duke@435 3888 bool MatchRule::is_ideal_fastlock() const {
duke@435 3889 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 3890 return (strcmp(_rChild->_opType,"FastLock") == 0);
duke@435 3891 }
duke@435 3892 return false;
duke@435 3893 }
duke@435 3894
duke@435 3895 bool MatchRule::is_ideal_membar() const {
duke@435 3896 if( !_opType ) return false;
duke@435 3897 return
duke@435 3898 !strcmp(_opType,"MemBarAcquire" ) ||
duke@435 3899 !strcmp(_opType,"MemBarRelease" ) ||
duke@435 3900 !strcmp(_opType,"MemBarVolatile" ) ||
duke@435 3901 !strcmp(_opType,"MemBarCPUOrder" ) ;
duke@435 3902 }
duke@435 3903
duke@435 3904 bool MatchRule::is_ideal_loadPC() const {
duke@435 3905 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 3906 return (strcmp(_rChild->_opType,"LoadPC") == 0);
duke@435 3907 }
duke@435 3908 return false;
duke@435 3909 }
duke@435 3910
duke@435 3911 bool MatchRule::is_ideal_box() const {
duke@435 3912 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 3913 return (strcmp(_rChild->_opType,"Box") == 0);
duke@435 3914 }
duke@435 3915 return false;
duke@435 3916 }
duke@435 3917
duke@435 3918 bool MatchRule::is_ideal_goto() const {
duke@435 3919 bool ideal_goto = false;
duke@435 3920
duke@435 3921 if( _opType && (strcmp(_opType,"Goto") == 0) ) {
duke@435 3922 ideal_goto = true;
duke@435 3923 }
duke@435 3924 return ideal_goto;
duke@435 3925 }
duke@435 3926
duke@435 3927 bool MatchRule::is_ideal_jump() const {
duke@435 3928 if( _opType ) {
duke@435 3929 if( !strcmp(_opType,"Jump") )
duke@435 3930 return true;
duke@435 3931 }
duke@435 3932 return false;
duke@435 3933 }
duke@435 3934
duke@435 3935 bool MatchRule::is_ideal_bool() const {
duke@435 3936 if( _opType ) {
duke@435 3937 if( !strcmp(_opType,"Bool") )
duke@435 3938 return true;
duke@435 3939 }
duke@435 3940 return false;
duke@435 3941 }
duke@435 3942
duke@435 3943
duke@435 3944 Form::DataType MatchRule::is_ideal_load() const {
duke@435 3945 Form::DataType ideal_load = Form::none;
duke@435 3946
duke@435 3947 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 3948 const char *opType = _rChild->_opType;
duke@435 3949 ideal_load = is_load_from_memory(opType);
duke@435 3950 }
duke@435 3951
duke@435 3952 return ideal_load;
duke@435 3953 }
duke@435 3954
duke@435 3955
duke@435 3956 Form::DataType MatchRule::is_ideal_store() const {
duke@435 3957 Form::DataType ideal_store = Form::none;
duke@435 3958
duke@435 3959 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 3960 const char *opType = _rChild->_opType;
duke@435 3961 ideal_store = is_store_to_memory(opType);
duke@435 3962 }
duke@435 3963
duke@435 3964 return ideal_store;
duke@435 3965 }
duke@435 3966
duke@435 3967
duke@435 3968 void MatchRule::dump() {
duke@435 3969 output(stderr);
duke@435 3970 }
duke@435 3971
duke@435 3972 void MatchRule::output(FILE *fp) {
duke@435 3973 fprintf(fp,"MatchRule: ( %s",_name);
duke@435 3974 if (_lChild) _lChild->output(fp);
duke@435 3975 if (_rChild) _rChild->output(fp);
duke@435 3976 fprintf(fp," )\n");
duke@435 3977 fprintf(fp," nesting depth = %d\n", _depth);
duke@435 3978 if (_result) fprintf(fp," Result Type = %s", _result);
duke@435 3979 fprintf(fp,"\n");
duke@435 3980 }
duke@435 3981
duke@435 3982 //------------------------------Attribute--------------------------------------
duke@435 3983 Attribute::Attribute(char *id, char* val, int type)
duke@435 3984 : _ident(id), _val(val), _atype(type) {
duke@435 3985 }
duke@435 3986 Attribute::~Attribute() {
duke@435 3987 }
duke@435 3988
duke@435 3989 int Attribute::int_val(ArchDesc &ad) {
duke@435 3990 // Make sure it is an integer constant:
duke@435 3991 int result = 0;
duke@435 3992 if (!_val || !ADLParser::is_int_token(_val, result)) {
duke@435 3993 ad.syntax_err(0, "Attribute %s must have an integer value: %s",
duke@435 3994 _ident, _val ? _val : "");
duke@435 3995 }
duke@435 3996 return result;
duke@435 3997 }
duke@435 3998
duke@435 3999 void Attribute::dump() {
duke@435 4000 output(stderr);
duke@435 4001 } // Debug printer
duke@435 4002
duke@435 4003 // Write to output files
duke@435 4004 void Attribute::output(FILE *fp) {
duke@435 4005 fprintf(fp,"Attribute: %s %s\n", (_ident?_ident:""), (_val?_val:""));
duke@435 4006 }
duke@435 4007
duke@435 4008 //------------------------------FormatRule----------------------------------
duke@435 4009 FormatRule::FormatRule(char *temp)
duke@435 4010 : _temp(temp) {
duke@435 4011 }
duke@435 4012 FormatRule::~FormatRule() {
duke@435 4013 }
duke@435 4014
duke@435 4015 void FormatRule::dump() {
duke@435 4016 output(stderr);
duke@435 4017 }
duke@435 4018
duke@435 4019 // Write to output files
duke@435 4020 void FormatRule::output(FILE *fp) {
duke@435 4021 fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
duke@435 4022 fprintf(fp,"\n");
duke@435 4023 }

mercurial