src/share/vm/adlc/formssel.cpp

Tue, 26 Nov 2013 18:38:19 -0800

author
goetz
date
Tue, 26 Nov 2013 18:38:19 -0800
changeset 6489
50fdb38839eb
parent 6484
318d0622a6d7
child 6503
a9becfeecd1b
permissions
-rw-r--r--

8028515: PPPC64 (part 113.2): opto: Introduce LoadFence/StoreFence.
Summary: Use new nodes for loadFence/storeFence intrinsics in C2.
Reviewed-by: kvn, dholmes

duke@435 1 /*
kvn@3882 2 * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // FORMS.CPP - Definitions for ADL Parser Forms Classes
duke@435 26 #include "adlc.hpp"
duke@435 27
duke@435 28 //==============================Instructions===================================
duke@435 29 //------------------------------InstructForm-----------------------------------
duke@435 30 InstructForm::InstructForm(const char *id, bool ideal_only)
duke@435 31 : _ident(id), _ideal_only(ideal_only),
duke@435 32 _localNames(cmpstr, hashstr, Form::arena),
twisti@2350 33 _effects(cmpstr, hashstr, Form::arena),
roland@3316 34 _is_mach_constant(false),
goetz@6484 35 _needs_constant_base(false),
roland@3316 36 _has_call(false)
twisti@2350 37 {
duke@435 38 _ftype = Form::INS;
duke@435 39
goetz@6478 40 _matrule = NULL;
goetz@6478 41 _insencode = NULL;
goetz@6478 42 _constant = NULL;
goetz@6478 43 _is_postalloc_expand = false;
goetz@6478 44 _opcode = NULL;
goetz@6478 45 _size = NULL;
goetz@6478 46 _attribs = NULL;
goetz@6478 47 _predicate = NULL;
goetz@6478 48 _exprule = NULL;
goetz@6478 49 _rewrule = NULL;
goetz@6478 50 _format = NULL;
goetz@6478 51 _peephole = NULL;
goetz@6478 52 _ins_pipe = NULL;
goetz@6478 53 _uniq_idx = NULL;
goetz@6478 54 _num_uniq = 0;
goetz@6478 55 _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
duke@435 56 _cisc_spill_alternate = NULL; // possible cisc replacement
goetz@6478 57 _cisc_reg_mask_name = NULL;
goetz@6478 58 _is_cisc_alternate = false;
goetz@6478 59 _is_short_branch = false;
goetz@6478 60 _short_branch_form = NULL;
goetz@6478 61 _alignment = 1;
duke@435 62 }
duke@435 63
duke@435 64 InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
duke@435 65 : _ident(id), _ideal_only(false),
duke@435 66 _localNames(instr->_localNames),
twisti@2350 67 _effects(instr->_effects),
roland@3316 68 _is_mach_constant(false),
goetz@6484 69 _needs_constant_base(false),
roland@3316 70 _has_call(false)
twisti@2350 71 {
duke@435 72 _ftype = Form::INS;
duke@435 73
goetz@6478 74 _matrule = rule;
goetz@6478 75 _insencode = instr->_insencode;
goetz@6478 76 _constant = instr->_constant;
goetz@6478 77 _is_postalloc_expand = instr->_is_postalloc_expand;
goetz@6478 78 _opcode = instr->_opcode;
goetz@6478 79 _size = instr->_size;
goetz@6478 80 _attribs = instr->_attribs;
goetz@6478 81 _predicate = instr->_predicate;
goetz@6478 82 _exprule = instr->_exprule;
goetz@6478 83 _rewrule = instr->_rewrule;
goetz@6478 84 _format = instr->_format;
goetz@6478 85 _peephole = instr->_peephole;
goetz@6478 86 _ins_pipe = instr->_ins_pipe;
goetz@6478 87 _uniq_idx = instr->_uniq_idx;
goetz@6478 88 _num_uniq = instr->_num_uniq;
goetz@6478 89 _cisc_spill_operand = Not_cisc_spillable; // Which operand may cisc-spill
goetz@6478 90 _cisc_spill_alternate = NULL; // possible cisc replacement
goetz@6478 91 _cisc_reg_mask_name = NULL;
goetz@6478 92 _is_cisc_alternate = false;
goetz@6478 93 _is_short_branch = false;
goetz@6478 94 _short_branch_form = NULL;
goetz@6478 95 _alignment = 1;
duke@435 96 // Copy parameters
duke@435 97 const char *name;
duke@435 98 instr->_parameters.reset();
duke@435 99 for (; (name = instr->_parameters.iter()) != NULL;)
duke@435 100 _parameters.addName(name);
duke@435 101 }
duke@435 102
duke@435 103 InstructForm::~InstructForm() {
duke@435 104 }
duke@435 105
duke@435 106 InstructForm *InstructForm::is_instruction() const {
duke@435 107 return (InstructForm*)this;
duke@435 108 }
duke@435 109
duke@435 110 bool InstructForm::ideal_only() const {
duke@435 111 return _ideal_only;
duke@435 112 }
duke@435 113
duke@435 114 bool InstructForm::sets_result() const {
duke@435 115 return (_matrule != NULL && _matrule->sets_result());
duke@435 116 }
duke@435 117
duke@435 118 bool InstructForm::needs_projections() {
duke@435 119 _components.reset();
duke@435 120 for( Component *comp; (comp = _components.iter()) != NULL; ) {
duke@435 121 if (comp->isa(Component::KILL)) {
duke@435 122 return true;
duke@435 123 }
duke@435 124 }
duke@435 125 return false;
duke@435 126 }
duke@435 127
duke@435 128
duke@435 129 bool InstructForm::has_temps() {
duke@435 130 if (_matrule) {
duke@435 131 // Examine each component to see if it is a TEMP
duke@435 132 _components.reset();
duke@435 133 // Skip the first component, if already handled as (SET dst (...))
duke@435 134 Component *comp = NULL;
duke@435 135 if (sets_result()) comp = _components.iter();
duke@435 136 while ((comp = _components.iter()) != NULL) {
duke@435 137 if (comp->isa(Component::TEMP)) {
duke@435 138 return true;
duke@435 139 }
duke@435 140 }
duke@435 141 }
duke@435 142
duke@435 143 return false;
duke@435 144 }
duke@435 145
duke@435 146 uint InstructForm::num_defs_or_kills() {
duke@435 147 uint defs_or_kills = 0;
duke@435 148
duke@435 149 _components.reset();
duke@435 150 for( Component *comp; (comp = _components.iter()) != NULL; ) {
duke@435 151 if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
duke@435 152 ++defs_or_kills;
duke@435 153 }
duke@435 154 }
duke@435 155
duke@435 156 return defs_or_kills;
duke@435 157 }
duke@435 158
duke@435 159 // This instruction has an expand rule?
duke@435 160 bool InstructForm::expands() const {
duke@435 161 return ( _exprule != NULL );
duke@435 162 }
duke@435 163
goetz@6478 164 // This instruction has a late expand rule?
goetz@6478 165 bool InstructForm::postalloc_expands() const {
goetz@6478 166 return _is_postalloc_expand;
goetz@6478 167 }
goetz@6478 168
duke@435 169 // This instruction has a peephole rule?
duke@435 170 Peephole *InstructForm::peepholes() const {
duke@435 171 return _peephole;
duke@435 172 }
duke@435 173
duke@435 174 // This instruction has a peephole rule?
duke@435 175 void InstructForm::append_peephole(Peephole *peephole) {
duke@435 176 if( _peephole == NULL ) {
duke@435 177 _peephole = peephole;
duke@435 178 } else {
duke@435 179 _peephole->append_peephole(peephole);
duke@435 180 }
duke@435 181 }
duke@435 182
duke@435 183
duke@435 184 // ideal opcode enumeration
duke@435 185 const char *InstructForm::ideal_Opcode( FormDict &globalNames ) const {
duke@435 186 if( !_matrule ) return "Node"; // Something weird
duke@435 187 // Chain rules do not really have ideal Opcodes; use their source
duke@435 188 // operand ideal Opcode instead.
duke@435 189 if( is_simple_chain_rule(globalNames) ) {
duke@435 190 const char *src = _matrule->_rChild->_opType;
duke@435 191 OperandForm *src_op = globalNames[src]->is_operand();
duke@435 192 assert( src_op, "Not operand class of chain rule" );
duke@435 193 if( !src_op->_matrule ) return "Node";
duke@435 194 return src_op->_matrule->_opType;
duke@435 195 }
duke@435 196 // Operand chain rules do not really have ideal Opcodes
duke@435 197 if( _matrule->is_chain_rule(globalNames) )
duke@435 198 return "Node";
duke@435 199 return strcmp(_matrule->_opType,"Set")
duke@435 200 ? _matrule->_opType
duke@435 201 : _matrule->_rChild->_opType;
duke@435 202 }
duke@435 203
duke@435 204 // Recursive check on all operands' match rules in my match rule
duke@435 205 bool InstructForm::is_pinned(FormDict &globals) {
duke@435 206 if ( ! _matrule) return false;
duke@435 207
duke@435 208 int index = 0;
duke@435 209 if (_matrule->find_type("Goto", index)) return true;
duke@435 210 if (_matrule->find_type("If", index)) return true;
duke@435 211 if (_matrule->find_type("CountedLoopEnd",index)) return true;
duke@435 212 if (_matrule->find_type("Return", index)) return true;
duke@435 213 if (_matrule->find_type("Rethrow", index)) return true;
duke@435 214 if (_matrule->find_type("TailCall", index)) return true;
duke@435 215 if (_matrule->find_type("TailJump", index)) return true;
duke@435 216 if (_matrule->find_type("Halt", index)) return true;
duke@435 217 if (_matrule->find_type("Jump", index)) return true;
duke@435 218
duke@435 219 return is_parm(globals);
duke@435 220 }
duke@435 221
duke@435 222 // Recursive check on all operands' match rules in my match rule
duke@435 223 bool InstructForm::is_projection(FormDict &globals) {
duke@435 224 if ( ! _matrule) return false;
duke@435 225
duke@435 226 int index = 0;
duke@435 227 if (_matrule->find_type("Goto", index)) return true;
duke@435 228 if (_matrule->find_type("Return", index)) return true;
duke@435 229 if (_matrule->find_type("Rethrow", index)) return true;
duke@435 230 if (_matrule->find_type("TailCall",index)) return true;
duke@435 231 if (_matrule->find_type("TailJump",index)) return true;
duke@435 232 if (_matrule->find_type("Halt", index)) return true;
duke@435 233
duke@435 234 return false;
duke@435 235 }
duke@435 236
duke@435 237 // Recursive check on all operands' match rules in my match rule
duke@435 238 bool InstructForm::is_parm(FormDict &globals) {
duke@435 239 if ( ! _matrule) return false;
duke@435 240
duke@435 241 int index = 0;
duke@435 242 if (_matrule->find_type("Parm",index)) return true;
duke@435 243
duke@435 244 return false;
duke@435 245 }
duke@435 246
adlertz@5288 247 bool InstructForm::is_ideal_negD() const {
adlertz@5288 248 return (_matrule && _matrule->_rChild && strcmp(_matrule->_rChild->_opType, "NegD") == 0);
adlertz@5288 249 }
duke@435 250
duke@435 251 // Return 'true' if this instruction matches an ideal 'Copy*' node
duke@435 252 int InstructForm::is_ideal_copy() const {
duke@435 253 return _matrule ? _matrule->is_ideal_copy() : 0;
duke@435 254 }
duke@435 255
duke@435 256 // Return 'true' if this instruction is too complex to rematerialize.
duke@435 257 int InstructForm::is_expensive() const {
duke@435 258 // We can prove it is cheap if it has an empty encoding.
duke@435 259 // This helps with platform-specific nops like ThreadLocal and RoundFloat.
duke@435 260 if (is_empty_encoding())
duke@435 261 return 0;
duke@435 262
duke@435 263 if (is_tls_instruction())
duke@435 264 return 1;
duke@435 265
duke@435 266 if (_matrule == NULL) return 0;
duke@435 267
duke@435 268 return _matrule->is_expensive();
duke@435 269 }
duke@435 270
duke@435 271 // Has an empty encoding if _size is a constant zero or there
duke@435 272 // are no ins_encode tokens.
duke@435 273 int InstructForm::is_empty_encoding() const {
duke@435 274 if (_insencode != NULL) {
duke@435 275 _insencode->reset();
duke@435 276 if (_insencode->encode_class_iter() == NULL) {
duke@435 277 return 1;
duke@435 278 }
duke@435 279 }
duke@435 280 if (_size != NULL && strcmp(_size, "0") == 0) {
duke@435 281 return 1;
duke@435 282 }
duke@435 283 return 0;
duke@435 284 }
duke@435 285
duke@435 286 int InstructForm::is_tls_instruction() const {
duke@435 287 if (_ident != NULL &&
duke@435 288 ( ! strcmp( _ident,"tlsLoadP") ||
duke@435 289 ! strncmp(_ident,"tlsLoadP_",9)) ) {
duke@435 290 return 1;
duke@435 291 }
duke@435 292
duke@435 293 if (_matrule != NULL && _insencode != NULL) {
duke@435 294 const char* opType = _matrule->_opType;
duke@435 295 if (strcmp(opType, "Set")==0)
duke@435 296 opType = _matrule->_rChild->_opType;
duke@435 297 if (strcmp(opType,"ThreadLocal")==0) {
duke@435 298 fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
duke@435 299 (_ident == NULL ? "NULL" : _ident));
duke@435 300 return 1;
duke@435 301 }
duke@435 302 }
duke@435 303
duke@435 304 return 0;
duke@435 305 }
duke@435 306
duke@435 307
duke@435 308 // Return 'true' if this instruction matches an ideal 'If' node
duke@435 309 bool InstructForm::is_ideal_if() const {
duke@435 310 if( _matrule == NULL ) return false;
duke@435 311
duke@435 312 return _matrule->is_ideal_if();
duke@435 313 }
duke@435 314
duke@435 315 // Return 'true' if this instruction matches an ideal 'FastLock' node
duke@435 316 bool InstructForm::is_ideal_fastlock() const {
duke@435 317 if( _matrule == NULL ) return false;
duke@435 318
duke@435 319 return _matrule->is_ideal_fastlock();
duke@435 320 }
duke@435 321
duke@435 322 // Return 'true' if this instruction matches an ideal 'MemBarXXX' node
duke@435 323 bool InstructForm::is_ideal_membar() const {
duke@435 324 if( _matrule == NULL ) return false;
duke@435 325
duke@435 326 return _matrule->is_ideal_membar();
duke@435 327 }
duke@435 328
duke@435 329 // Return 'true' if this instruction matches an ideal 'LoadPC' node
duke@435 330 bool InstructForm::is_ideal_loadPC() const {
duke@435 331 if( _matrule == NULL ) return false;
duke@435 332
duke@435 333 return _matrule->is_ideal_loadPC();
duke@435 334 }
duke@435 335
duke@435 336 // Return 'true' if this instruction matches an ideal 'Box' node
duke@435 337 bool InstructForm::is_ideal_box() const {
duke@435 338 if( _matrule == NULL ) return false;
duke@435 339
duke@435 340 return _matrule->is_ideal_box();
duke@435 341 }
duke@435 342
duke@435 343 // Return 'true' if this instruction matches an ideal 'Goto' node
duke@435 344 bool InstructForm::is_ideal_goto() const {
duke@435 345 if( _matrule == NULL ) return false;
duke@435 346
duke@435 347 return _matrule->is_ideal_goto();
duke@435 348 }
duke@435 349
duke@435 350 // Return 'true' if this instruction matches an ideal 'Jump' node
duke@435 351 bool InstructForm::is_ideal_jump() const {
duke@435 352 if( _matrule == NULL ) return false;
duke@435 353
duke@435 354 return _matrule->is_ideal_jump();
duke@435 355 }
duke@435 356
kvn@3051 357 // Return 'true' if instruction matches ideal 'If' | 'Goto' | 'CountedLoopEnd'
duke@435 358 bool InstructForm::is_ideal_branch() const {
duke@435 359 if( _matrule == NULL ) return false;
duke@435 360
kvn@3051 361 return _matrule->is_ideal_if() || _matrule->is_ideal_goto();
duke@435 362 }
duke@435 363
duke@435 364
duke@435 365 // Return 'true' if this instruction matches an ideal 'Return' node
duke@435 366 bool InstructForm::is_ideal_return() const {
duke@435 367 if( _matrule == NULL ) return false;
duke@435 368
duke@435 369 // Check MatchRule to see if the first entry is the ideal "Return" node
duke@435 370 int index = 0;
duke@435 371 if (_matrule->find_type("Return",index)) return true;
duke@435 372 if (_matrule->find_type("Rethrow",index)) return true;
duke@435 373 if (_matrule->find_type("TailCall",index)) return true;
duke@435 374 if (_matrule->find_type("TailJump",index)) return true;
duke@435 375
duke@435 376 return false;
duke@435 377 }
duke@435 378
duke@435 379 // Return 'true' if this instruction matches an ideal 'Halt' node
duke@435 380 bool InstructForm::is_ideal_halt() const {
duke@435 381 int index = 0;
duke@435 382 return _matrule && _matrule->find_type("Halt",index);
duke@435 383 }
duke@435 384
duke@435 385 // Return 'true' if this instruction matches an ideal 'SafePoint' node
duke@435 386 bool InstructForm::is_ideal_safepoint() const {
duke@435 387 int index = 0;
duke@435 388 return _matrule && _matrule->find_type("SafePoint",index);
duke@435 389 }
duke@435 390
duke@435 391 // Return 'true' if this instruction matches an ideal 'Nop' node
duke@435 392 bool InstructForm::is_ideal_nop() const {
duke@435 393 return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
duke@435 394 }
duke@435 395
duke@435 396 bool InstructForm::is_ideal_control() const {
duke@435 397 if ( ! _matrule) return false;
duke@435 398
kvn@3051 399 return is_ideal_return() || is_ideal_branch() || _matrule->is_ideal_jump() || is_ideal_halt();
duke@435 400 }
duke@435 401
duke@435 402 // Return 'true' if this instruction matches an ideal 'Call' node
duke@435 403 Form::CallType InstructForm::is_ideal_call() const {
duke@435 404 if( _matrule == NULL ) return Form::invalid_type;
duke@435 405
duke@435 406 // Check MatchRule to see if the first entry is the ideal "Call" node
duke@435 407 int idx = 0;
duke@435 408 if(_matrule->find_type("CallStaticJava",idx)) return Form::JAVA_STATIC;
duke@435 409 idx = 0;
duke@435 410 if(_matrule->find_type("Lock",idx)) return Form::JAVA_STATIC;
duke@435 411 idx = 0;
duke@435 412 if(_matrule->find_type("Unlock",idx)) return Form::JAVA_STATIC;
duke@435 413 idx = 0;
duke@435 414 if(_matrule->find_type("CallDynamicJava",idx)) return Form::JAVA_DYNAMIC;
duke@435 415 idx = 0;
duke@435 416 if(_matrule->find_type("CallRuntime",idx)) return Form::JAVA_RUNTIME;
duke@435 417 idx = 0;
duke@435 418 if(_matrule->find_type("CallLeaf",idx)) return Form::JAVA_LEAF;
duke@435 419 idx = 0;
duke@435 420 if(_matrule->find_type("CallLeafNoFP",idx)) return Form::JAVA_LEAF;
duke@435 421 idx = 0;
duke@435 422
duke@435 423 return Form::invalid_type;
duke@435 424 }
duke@435 425
duke@435 426 // Return 'true' if this instruction matches an ideal 'Load?' node
duke@435 427 Form::DataType InstructForm::is_ideal_load() const {
duke@435 428 if( _matrule == NULL ) return Form::none;
duke@435 429
duke@435 430 return _matrule->is_ideal_load();
duke@435 431 }
duke@435 432
never@1290 433 // Return 'true' if this instruction matches an ideal 'LoadKlass' node
never@1290 434 bool InstructForm::skip_antidep_check() const {
never@1290 435 if( _matrule == NULL ) return false;
never@1290 436
never@1290 437 return _matrule->skip_antidep_check();
never@1290 438 }
never@1290 439
duke@435 440 // Return 'true' if this instruction matches an ideal 'Load?' node
duke@435 441 Form::DataType InstructForm::is_ideal_store() const {
duke@435 442 if( _matrule == NULL ) return Form::none;
duke@435 443
duke@435 444 return _matrule->is_ideal_store();
duke@435 445 }
duke@435 446
kvn@3882 447 // Return 'true' if this instruction matches an ideal vector node
kvn@3882 448 bool InstructForm::is_vector() const {
kvn@3882 449 if( _matrule == NULL ) return false;
kvn@3882 450
kvn@3882 451 return _matrule->is_vector();
kvn@3882 452 }
kvn@3882 453
kvn@3882 454
duke@435 455 // Return the input register that must match the output register
duke@435 456 // If this is not required, return 0
duke@435 457 uint InstructForm::two_address(FormDict &globals) {
duke@435 458 uint matching_input = 0;
duke@435 459 if(_components.count() == 0) return 0;
duke@435 460
duke@435 461 _components.reset();
duke@435 462 Component *comp = _components.iter();
duke@435 463 // Check if there is a DEF
duke@435 464 if( comp->isa(Component::DEF) ) {
duke@435 465 // Check that this is a register
duke@435 466 const char *def_type = comp->_type;
duke@435 467 const Form *form = globals[def_type];
duke@435 468 OperandForm *op = form->is_operand();
duke@435 469 if( op ) {
duke@435 470 if( op->constrained_reg_class() != NULL &&
duke@435 471 op->interface_type(globals) == Form::register_interface ) {
duke@435 472 // Remember the local name for equality test later
duke@435 473 const char *def_name = comp->_name;
duke@435 474 // Check if a component has the same name and is a USE
duke@435 475 do {
duke@435 476 if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
duke@435 477 return operand_position_format(def_name);
duke@435 478 }
duke@435 479 } while( (comp = _components.iter()) != NULL);
duke@435 480 }
duke@435 481 }
duke@435 482 }
duke@435 483
duke@435 484 return 0;
duke@435 485 }
duke@435 486
duke@435 487
duke@435 488 // when chaining a constant to an instruction, returns 'true' and sets opType
duke@435 489 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
duke@435 490 const char *dummy = NULL;
duke@435 491 const char *dummy2 = NULL;
duke@435 492 return is_chain_of_constant(globals, dummy, dummy2);
duke@435 493 }
duke@435 494 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
duke@435 495 const char * &opTypeParam) {
duke@435 496 const char *result = NULL;
duke@435 497
duke@435 498 return is_chain_of_constant(globals, opTypeParam, result);
duke@435 499 }
duke@435 500
duke@435 501 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
duke@435 502 const char * &opTypeParam, const char * &resultParam) {
duke@435 503 Form::DataType data_type = Form::none;
duke@435 504 if ( ! _matrule) return data_type;
duke@435 505
duke@435 506 // !!!!!
duke@435 507 // The source of the chain rule is 'position = 1'
duke@435 508 uint position = 1;
duke@435 509 const char *result = NULL;
duke@435 510 const char *name = NULL;
duke@435 511 const char *opType = NULL;
duke@435 512 // Here base_operand is looking for an ideal type to be returned (opType).
duke@435 513 if ( _matrule->is_chain_rule(globals)
duke@435 514 && _matrule->base_operand(position, globals, result, name, opType) ) {
duke@435 515 data_type = ideal_to_const_type(opType);
duke@435 516
duke@435 517 // if it isn't an ideal constant type, just return
duke@435 518 if ( data_type == Form::none ) return data_type;
duke@435 519
duke@435 520 // Ideal constant types also adjust the opType parameter.
duke@435 521 resultParam = result;
duke@435 522 opTypeParam = opType;
duke@435 523 return data_type;
duke@435 524 }
duke@435 525
duke@435 526 return data_type;
duke@435 527 }
duke@435 528
duke@435 529 // Check if a simple chain rule
duke@435 530 bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
duke@435 531 if( _matrule && _matrule->sets_result()
duke@435 532 && _matrule->_rChild->_lChild == NULL
duke@435 533 && globals[_matrule->_rChild->_opType]
duke@435 534 && globals[_matrule->_rChild->_opType]->is_opclass() ) {
duke@435 535 return true;
duke@435 536 }
duke@435 537 return false;
duke@435 538 }
duke@435 539
duke@435 540 // check for structural rematerialization
duke@435 541 bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
duke@435 542 bool rematerialize = false;
duke@435 543
duke@435 544 Form::DataType data_type = is_chain_of_constant(globals);
duke@435 545 if( data_type != Form::none )
duke@435 546 rematerialize = true;
duke@435 547
duke@435 548 // Constants
duke@435 549 if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) )
duke@435 550 rematerialize = true;
duke@435 551
duke@435 552 // Pseudo-constants (values easily available to the runtime)
duke@435 553 if (is_empty_encoding() && is_tls_instruction())
duke@435 554 rematerialize = true;
duke@435 555
duke@435 556 // 1-input, 1-output, such as copies or increments.
duke@435 557 if( _components.count() == 2 &&
duke@435 558 _components[0]->is(Component::DEF) &&
duke@435 559 _components[1]->isa(Component::USE) )
duke@435 560 rematerialize = true;
duke@435 561
duke@435 562 // Check for an ideal 'Load?' and eliminate rematerialize option
duke@435 563 if ( is_ideal_load() != Form::none || // Ideal load? Do not rematerialize
duke@435 564 is_ideal_copy() != Form::none || // Ideal copy? Do not rematerialize
duke@435 565 is_expensive() != Form::none) { // Expensive? Do not rematerialize
duke@435 566 rematerialize = false;
duke@435 567 }
duke@435 568
duke@435 569 // Always rematerialize the flags. They are more expensive to save &
duke@435 570 // restore than to recompute (and possibly spill the compare's inputs).
duke@435 571 if( _components.count() >= 1 ) {
duke@435 572 Component *c = _components[0];
duke@435 573 const Form *form = globals[c->_type];
duke@435 574 OperandForm *opform = form->is_operand();
duke@435 575 if( opform ) {
duke@435 576 // Avoid the special stack_slots register classes
duke@435 577 const char *rc_name = opform->constrained_reg_class();
duke@435 578 if( rc_name ) {
duke@435 579 if( strcmp(rc_name,"stack_slots") ) {
duke@435 580 // Check for ideal_type of RegFlags
duke@435 581 const char *type = opform->ideal_type( globals, registers );
kvn@4161 582 if( (type != NULL) && !strcmp(type, "RegFlags") )
duke@435 583 rematerialize = true;
duke@435 584 } else
duke@435 585 rematerialize = false; // Do not rematerialize things target stk
duke@435 586 }
duke@435 587 }
duke@435 588 }
duke@435 589
duke@435 590 return rematerialize;
duke@435 591 }
duke@435 592
duke@435 593 // loads from memory, so must check for anti-dependence
duke@435 594 bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
never@1290 595 if ( skip_antidep_check() ) return false;
never@1290 596
duke@435 597 // Machine independent loads must be checked for anti-dependences
duke@435 598 if( is_ideal_load() != Form::none ) return true;
duke@435 599
duke@435 600 // !!!!! !!!!! !!!!!
duke@435 601 // TEMPORARY
duke@435 602 // if( is_simple_chain_rule(globals) ) return false;
duke@435 603
cfang@1116 604 // String.(compareTo/equals/indexOf) and Arrays.equals use many memorys edges,
cfang@1116 605 // but writes none
duke@435 606 if( _matrule && _matrule->_rChild &&
cfang@1116 607 ( strcmp(_matrule->_rChild->_opType,"StrComp" )==0 ||
cfang@1116 608 strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 ||
cfang@1116 609 strcmp(_matrule->_rChild->_opType,"StrIndexOf" )==0 ||
cfang@1116 610 strcmp(_matrule->_rChild->_opType,"AryEq" )==0 ))
duke@435 611 return true;
duke@435 612
duke@435 613 // Check if instruction has a USE of a memory operand class, but no defs
duke@435 614 bool USE_of_memory = false;
duke@435 615 bool DEF_of_memory = false;
duke@435 616 Component *comp = NULL;
duke@435 617 ComponentList &components = (ComponentList &)_components;
duke@435 618
duke@435 619 components.reset();
duke@435 620 while( (comp = components.iter()) != NULL ) {
duke@435 621 const Form *form = globals[comp->_type];
duke@435 622 if( !form ) continue;
duke@435 623 OpClassForm *op = form->is_opclass();
duke@435 624 if( !op ) continue;
duke@435 625 if( form->interface_type(globals) == Form::memory_interface ) {
duke@435 626 if( comp->isa(Component::USE) ) USE_of_memory = true;
duke@435 627 if( comp->isa(Component::DEF) ) {
duke@435 628 OperandForm *oper = form->is_operand();
duke@435 629 if( oper && oper->is_user_name_for_sReg() ) {
duke@435 630 // Stack slots are unaliased memory handled by allocator
duke@435 631 oper = oper; // debug stopping point !!!!!
duke@435 632 } else {
duke@435 633 DEF_of_memory = true;
duke@435 634 }
duke@435 635 }
duke@435 636 }
duke@435 637 }
duke@435 638 return (USE_of_memory && !DEF_of_memory);
duke@435 639 }
duke@435 640
duke@435 641
duke@435 642 bool InstructForm::is_wide_memory_kill(FormDict &globals) const {
duke@435 643 if( _matrule == NULL ) return false;
duke@435 644 if( !_matrule->_opType ) return false;
duke@435 645
duke@435 646 if( strcmp(_matrule->_opType,"MemBarRelease") == 0 ) return true;
duke@435 647 if( strcmp(_matrule->_opType,"MemBarAcquire") == 0 ) return true;
roland@3047 648 if( strcmp(_matrule->_opType,"MemBarReleaseLock") == 0 ) return true;
roland@3047 649 if( strcmp(_matrule->_opType,"MemBarAcquireLock") == 0 ) return true;
roland@3392 650 if( strcmp(_matrule->_opType,"MemBarStoreStore") == 0 ) return true;
goetz@6489 651 if( strcmp(_matrule->_opType,"StoreFence") == 0 ) return true;
goetz@6489 652 if( strcmp(_matrule->_opType,"LoadFence") == 0 ) return true;
duke@435 653
duke@435 654 return false;
duke@435 655 }
duke@435 656
duke@435 657 int InstructForm::memory_operand(FormDict &globals) const {
duke@435 658 // Machine independent loads must be checked for anti-dependences
duke@435 659 // Check if instruction has a USE of a memory operand class, or a def.
duke@435 660 int USE_of_memory = 0;
duke@435 661 int DEF_of_memory = 0;
duke@435 662 const char* last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
duke@435 663 Component *unique = NULL;
duke@435 664 Component *comp = NULL;
duke@435 665 ComponentList &components = (ComponentList &)_components;
duke@435 666
duke@435 667 components.reset();
duke@435 668 while( (comp = components.iter()) != NULL ) {
duke@435 669 const Form *form = globals[comp->_type];
duke@435 670 if( !form ) continue;
duke@435 671 OpClassForm *op = form->is_opclass();
duke@435 672 if( !op ) continue;
duke@435 673 if( op->stack_slots_only(globals) ) continue;
duke@435 674 if( form->interface_type(globals) == Form::memory_interface ) {
duke@435 675 if( comp->isa(Component::DEF) ) {
duke@435 676 last_memory_DEF = comp->_name;
duke@435 677 DEF_of_memory++;
duke@435 678 unique = comp;
duke@435 679 } else if( comp->isa(Component::USE) ) {
duke@435 680 if( last_memory_DEF != NULL ) {
duke@435 681 assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
duke@435 682 last_memory_DEF = NULL;
duke@435 683 }
duke@435 684 USE_of_memory++;
duke@435 685 if (DEF_of_memory == 0) // defs take precedence
duke@435 686 unique = comp;
duke@435 687 } else {
duke@435 688 assert(last_memory_DEF == NULL, "unpaired memory DEF");
duke@435 689 }
duke@435 690 }
duke@435 691 }
duke@435 692 assert(last_memory_DEF == NULL, "unpaired memory DEF");
duke@435 693 assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
duke@435 694 USE_of_memory -= DEF_of_memory; // treat paired DEF/USE as one occurrence
duke@435 695 if( (USE_of_memory + DEF_of_memory) > 0 ) {
duke@435 696 if( is_simple_chain_rule(globals) ) {
duke@435 697 //fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
duke@435 698 //((InstructForm*)this)->dump();
duke@435 699 // Preceding code prints nothing on sparc and these insns on intel:
duke@435 700 // leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
duke@435 701 // leaPIdxOff leaPIdxScale leaPIdxScaleOff
duke@435 702 return NO_MEMORY_OPERAND;
duke@435 703 }
duke@435 704
duke@435 705 if( DEF_of_memory == 1 ) {
duke@435 706 assert(unique != NULL, "");
duke@435 707 if( USE_of_memory == 0 ) {
duke@435 708 // unique def, no uses
duke@435 709 } else {
duke@435 710 // // unique def, some uses
duke@435 711 // // must return bottom unless all uses match def
duke@435 712 // unique = NULL;
duke@435 713 }
duke@435 714 } else if( DEF_of_memory > 0 ) {
duke@435 715 // multiple defs, don't care about uses
duke@435 716 unique = NULL;
duke@435 717 } else if( USE_of_memory == 1) {
duke@435 718 // unique use, no defs
duke@435 719 assert(unique != NULL, "");
duke@435 720 } else if( USE_of_memory > 0 ) {
duke@435 721 // multiple uses, no defs
duke@435 722 unique = NULL;
duke@435 723 } else {
duke@435 724 assert(false, "bad case analysis");
duke@435 725 }
duke@435 726 // process the unique DEF or USE, if there is one
duke@435 727 if( unique == NULL ) {
duke@435 728 return MANY_MEMORY_OPERANDS;
duke@435 729 } else {
duke@435 730 int pos = components.operand_position(unique->_name);
duke@435 731 if( unique->isa(Component::DEF) ) {
duke@435 732 pos += 1; // get corresponding USE from DEF
duke@435 733 }
duke@435 734 assert(pos >= 1, "I was just looking at it!");
duke@435 735 return pos;
duke@435 736 }
duke@435 737 }
duke@435 738
duke@435 739 // missed the memory op??
duke@435 740 if( true ) { // %%% should not be necessary
duke@435 741 if( is_ideal_store() != Form::none ) {
duke@435 742 fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
duke@435 743 ((InstructForm*)this)->dump();
duke@435 744 // pretend it has multiple defs and uses
duke@435 745 return MANY_MEMORY_OPERANDS;
duke@435 746 }
duke@435 747 if( is_ideal_load() != Form::none ) {
duke@435 748 fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
duke@435 749 ((InstructForm*)this)->dump();
duke@435 750 // pretend it has multiple uses and no defs
duke@435 751 return MANY_MEMORY_OPERANDS;
duke@435 752 }
duke@435 753 }
duke@435 754
duke@435 755 return NO_MEMORY_OPERAND;
duke@435 756 }
duke@435 757
duke@435 758
duke@435 759 // This instruction captures the machine-independent bottom_type
duke@435 760 // Expected use is for pointer vs oop determination for LoadP
never@1896 761 bool InstructForm::captures_bottom_type(FormDict &globals) const {
duke@435 762 if( _matrule && _matrule->_rChild &&
roland@4159 763 (!strcmp(_matrule->_rChild->_opType,"CastPP") || // new result type
roland@4159 764 !strcmp(_matrule->_rChild->_opType,"CastX2P") || // new result type
roland@4159 765 !strcmp(_matrule->_rChild->_opType,"DecodeN") ||
roland@4159 766 !strcmp(_matrule->_rChild->_opType,"EncodeP") ||
roland@4159 767 !strcmp(_matrule->_rChild->_opType,"DecodeNKlass") ||
roland@4159 768 !strcmp(_matrule->_rChild->_opType,"EncodePKlass") ||
roland@4159 769 !strcmp(_matrule->_rChild->_opType,"LoadN") ||
roland@4159 770 !strcmp(_matrule->_rChild->_opType,"LoadNKlass") ||
roland@4159 771 !strcmp(_matrule->_rChild->_opType,"CreateEx") || // type of exception
roland@4658 772 !strcmp(_matrule->_rChild->_opType,"CheckCastPP") ||
roland@4658 773 !strcmp(_matrule->_rChild->_opType,"GetAndSetP") ||
roland@4658 774 !strcmp(_matrule->_rChild->_opType,"GetAndSetN")) ) return true;
duke@435 775 else if ( is_ideal_load() == Form::idealP ) return true;
duke@435 776 else if ( is_ideal_store() != Form::none ) return true;
duke@435 777
never@1896 778 if (needs_base_oop_edge(globals)) return true;
never@1896 779
kvn@3882 780 if (is_vector()) return true;
kvn@3882 781 if (is_mach_constant()) return true;
kvn@3882 782
duke@435 783 return false;
duke@435 784 }
duke@435 785
duke@435 786
duke@435 787 // Access instr_cost attribute or return NULL.
duke@435 788 const char* InstructForm::cost() {
duke@435 789 for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
duke@435 790 if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
duke@435 791 return cur->_val;
duke@435 792 }
duke@435 793 }
duke@435 794 return NULL;
duke@435 795 }
duke@435 796
duke@435 797 // Return count of top-level operands.
duke@435 798 uint InstructForm::num_opnds() {
duke@435 799 int num_opnds = _components.num_operands();
duke@435 800
duke@435 801 // Need special handling for matching some ideal nodes
duke@435 802 // i.e. Matching a return node
duke@435 803 /*
duke@435 804 if( _matrule ) {
duke@435 805 if( strcmp(_matrule->_opType,"Return" )==0 ||
duke@435 806 strcmp(_matrule->_opType,"Halt" )==0 )
duke@435 807 return 3;
duke@435 808 }
duke@435 809 */
duke@435 810 return num_opnds;
duke@435 811 }
duke@435 812
twisti@5221 813 const char* InstructForm::opnd_ident(int idx) {
kvn@4161 814 return _components.at(idx)->_name;
kvn@4161 815 }
kvn@4161 816
twisti@5221 817 const char* InstructForm::unique_opnd_ident(uint idx) {
kvn@4161 818 uint i;
kvn@4161 819 for (i = 1; i < num_opnds(); ++i) {
kvn@4161 820 if (unique_opnds_idx(i) == idx) {
kvn@4161 821 break;
kvn@4161 822 }
kvn@4161 823 }
kvn@4161 824 return (_components.at(i) != NULL) ? _components.at(i)->_name : "";
kvn@4161 825 }
kvn@4161 826
duke@435 827 // Return count of unmatched operands.
duke@435 828 uint InstructForm::num_post_match_opnds() {
duke@435 829 uint num_post_match_opnds = _components.count();
duke@435 830 uint num_match_opnds = _components.match_count();
duke@435 831 num_post_match_opnds = num_post_match_opnds - num_match_opnds;
duke@435 832
duke@435 833 return num_post_match_opnds;
duke@435 834 }
duke@435 835
duke@435 836 // Return the number of leaves below this complex operand
duke@435 837 uint InstructForm::num_consts(FormDict &globals) const {
duke@435 838 if ( ! _matrule) return 0;
duke@435 839
duke@435 840 // This is a recursive invocation on all operands in the matchrule
duke@435 841 return _matrule->num_consts(globals);
duke@435 842 }
duke@435 843
duke@435 844 // Constants in match rule with specified type
duke@435 845 uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
duke@435 846 if ( ! _matrule) return 0;
duke@435 847
duke@435 848 // This is a recursive invocation on all operands in the matchrule
duke@435 849 return _matrule->num_consts(globals, type);
duke@435 850 }
duke@435 851
duke@435 852
duke@435 853 // Return the register class associated with 'leaf'.
duke@435 854 const char *InstructForm::out_reg_class(FormDict &globals) {
duke@435 855 assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");
duke@435 856
duke@435 857 return NULL;
duke@435 858 }
duke@435 859
duke@435 860
duke@435 861
duke@435 862 // Lookup the starting position of inputs we are interested in wrt. ideal nodes
duke@435 863 uint InstructForm::oper_input_base(FormDict &globals) {
duke@435 864 if( !_matrule ) return 1; // Skip control for most nodes
duke@435 865
duke@435 866 // Need special handling for matching some ideal nodes
duke@435 867 // i.e. Matching a return node
duke@435 868 if( strcmp(_matrule->_opType,"Return" )==0 ||
duke@435 869 strcmp(_matrule->_opType,"Rethrow" )==0 ||
duke@435 870 strcmp(_matrule->_opType,"TailCall" )==0 ||
duke@435 871 strcmp(_matrule->_opType,"TailJump" )==0 ||
duke@435 872 strcmp(_matrule->_opType,"SafePoint" )==0 ||
duke@435 873 strcmp(_matrule->_opType,"Halt" )==0 )
duke@435 874 return AdlcVMDeps::Parms; // Skip the machine-state edges
duke@435 875
duke@435 876 if( _matrule->_rChild &&
kvn@1421 877 ( strcmp(_matrule->_rChild->_opType,"AryEq" )==0 ||
kvn@1421 878 strcmp(_matrule->_rChild->_opType,"StrComp" )==0 ||
cfang@1116 879 strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 ||
kvn@4479 880 strcmp(_matrule->_rChild->_opType,"StrIndexOf")==0 ||
kvn@4479 881 strcmp(_matrule->_rChild->_opType,"EncodeISOArray")==0)) {
kvn@1421 882 // String.(compareTo/equals/indexOf) and Arrays.equals
kvn@4479 883 // and sun.nio.cs.iso8859_1$Encoder.EncodeISOArray
kvn@1421 884 // take 1 control and 1 memory edges.
kvn@1421 885 return 2;
duke@435 886 }
duke@435 887
duke@435 888 // Check for handling of 'Memory' input/edge in the ideal world.
duke@435 889 // The AD file writer is shielded from knowledge of these edges.
duke@435 890 int base = 1; // Skip control
duke@435 891 base += _matrule->needs_ideal_memory_edge(globals);
duke@435 892
duke@435 893 // Also skip the base-oop value for uses of derived oops.
duke@435 894 // The AD file writer is shielded from knowledge of these edges.
duke@435 895 base += needs_base_oop_edge(globals);
duke@435 896
duke@435 897 return base;
duke@435 898 }
duke@435 899
kvn@4161 900 // This function determines the order of the MachOper in _opnds[]
kvn@4161 901 // by writing the operand names into the _components list.
kvn@4161 902 //
duke@435 903 // Implementation does not modify state of internal structures
duke@435 904 void InstructForm::build_components() {
duke@435 905 // Add top-level operands to the components
duke@435 906 if (_matrule) _matrule->append_components(_localNames, _components);
duke@435 907
duke@435 908 // Add parameters that "do not appear in match rule".
duke@435 909 bool has_temp = false;
duke@435 910 const char *name;
duke@435 911 const char *kill_name = NULL;
duke@435 912 for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
duke@435 913 OperandForm *opForm = (OperandForm*)_localNames[name];
duke@435 914
twisti@1038 915 Effect* e = NULL;
twisti@1038 916 {
twisti@1038 917 const Form* form = _effects[name];
twisti@1038 918 e = form ? form->is_effect() : NULL;
twisti@1038 919 }
twisti@1038 920
duke@435 921 if (e != NULL) {
duke@435 922 has_temp |= e->is(Component::TEMP);
duke@435 923
duke@435 924 // KILLs must be declared after any TEMPs because TEMPs are real
duke@435 925 // uses so their operand numbering must directly follow the real
duke@435 926 // inputs from the match rule. Fixing the numbering seems
duke@435 927 // complex so simply enforce the restriction during parse.
duke@435 928 if (kill_name != NULL &&
duke@435 929 e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
duke@435 930 OperandForm* kill = (OperandForm*)_localNames[kill_name];
duke@435 931 globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
duke@435 932 _ident, kill->_ident, kill_name);
never@1037 933 } else if (e->isa(Component::KILL) && !e->isa(Component::USE)) {
duke@435 934 kill_name = name;
duke@435 935 }
duke@435 936 }
duke@435 937
duke@435 938 const Component *component = _components.search(name);
duke@435 939 if ( component == NULL ) {
duke@435 940 if (e) {
duke@435 941 _components.insert(name, opForm->_ident, e->_use_def, false);
duke@435 942 component = _components.search(name);
duke@435 943 if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
duke@435 944 const Form *form = globalAD->globalNames()[component->_type];
duke@435 945 assert( form, "component type must be a defined form");
duke@435 946 OperandForm *op = form->is_operand();
duke@435 947 if (op->_interface && op->_interface->is_RegInterface()) {
duke@435 948 globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
duke@435 949 _ident, opForm->_ident, name);
duke@435 950 }
duke@435 951 }
duke@435 952 } else {
duke@435 953 // This would be a nice warning but it triggers in a few places in a benign way
duke@435 954 // if (_matrule != NULL && !expands()) {
duke@435 955 // globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
duke@435 956 // _ident, opForm->_ident, name);
duke@435 957 // }
duke@435 958 _components.insert(name, opForm->_ident, Component::INVALID, false);
duke@435 959 }
duke@435 960 }
duke@435 961 else if (e) {
duke@435 962 // Component was found in the list
duke@435 963 // Check if there is a new effect that requires an extra component.
duke@435 964 // This happens when adding 'USE' to a component that is not yet one.
duke@435 965 if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
duke@435 966 if (component->isa(Component::USE) && _matrule) {
duke@435 967 const Form *form = globalAD->globalNames()[component->_type];
duke@435 968 assert( form, "component type must be a defined form");
duke@435 969 OperandForm *op = form->is_operand();
duke@435 970 if (op->_interface && op->_interface->is_RegInterface()) {
duke@435 971 globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
duke@435 972 _ident, opForm->_ident, name);
duke@435 973 }
duke@435 974 }
duke@435 975 _components.insert(name, opForm->_ident, e->_use_def, false);
duke@435 976 } else {
duke@435 977 Component *comp = (Component*)component;
duke@435 978 comp->promote_use_def_info(e->_use_def);
duke@435 979 }
duke@435 980 // Component positions are zero based.
duke@435 981 int pos = _components.operand_position(name);
duke@435 982 assert( ! (component->isa(Component::DEF) && (pos >= 1)),
duke@435 983 "Component::DEF can only occur in the first position");
duke@435 984 }
duke@435 985 }
duke@435 986
duke@435 987 // Resolving the interactions between expand rules and TEMPs would
duke@435 988 // be complex so simply disallow it.
duke@435 989 if (_matrule == NULL && has_temp) {
duke@435 990 globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
duke@435 991 }
duke@435 992
duke@435 993 return;
duke@435 994 }
duke@435 995
duke@435 996 // Return zero-based position in component list; -1 if not in list.
duke@435 997 int InstructForm::operand_position(const char *name, int usedef) {
kvn@4161 998 return unique_opnds_idx(_components.operand_position(name, usedef, this));
duke@435 999 }
duke@435 1000
duke@435 1001 int InstructForm::operand_position_format(const char *name) {
kvn@4161 1002 return unique_opnds_idx(_components.operand_position_format(name, this));
duke@435 1003 }
duke@435 1004
duke@435 1005 // Return zero-based position in component list; -1 if not in list.
duke@435 1006 int InstructForm::label_position() {
duke@435 1007 return unique_opnds_idx(_components.label_position());
duke@435 1008 }
duke@435 1009
duke@435 1010 int InstructForm::method_position() {
duke@435 1011 return unique_opnds_idx(_components.method_position());
duke@435 1012 }
duke@435 1013
duke@435 1014 // Return number of relocation entries needed for this instruction.
duke@435 1015 uint InstructForm::reloc(FormDict &globals) {
duke@435 1016 uint reloc_entries = 0;
duke@435 1017 // Check for "Call" nodes
duke@435 1018 if ( is_ideal_call() ) ++reloc_entries;
duke@435 1019 if ( is_ideal_return() ) ++reloc_entries;
duke@435 1020 if ( is_ideal_safepoint() ) ++reloc_entries;
duke@435 1021
duke@435 1022
duke@435 1023 // Check if operands MAYBE oop pointers, by checking for ConP elements
duke@435 1024 // Proceed through the leaves of the match-tree and check for ConPs
duke@435 1025 if ( _matrule != NULL ) {
duke@435 1026 uint position = 0;
duke@435 1027 const char *result = NULL;
duke@435 1028 const char *name = NULL;
duke@435 1029 const char *opType = NULL;
duke@435 1030 while (_matrule->base_operand(position, globals, result, name, opType)) {
duke@435 1031 if ( strcmp(opType,"ConP") == 0 ) {
duke@435 1032 #ifdef SPARC
duke@435 1033 reloc_entries += 2; // 1 for sethi + 1 for setlo
duke@435 1034 #else
duke@435 1035 ++reloc_entries;
duke@435 1036 #endif
duke@435 1037 }
duke@435 1038 ++position;
duke@435 1039 }
duke@435 1040 }
duke@435 1041
duke@435 1042 // Above is only a conservative estimate
duke@435 1043 // because it did not check contents of operand classes.
duke@435 1044 // !!!!! !!!!!
duke@435 1045 // Add 1 to reloc info for each operand class in the component list.
duke@435 1046 Component *comp;
duke@435 1047 _components.reset();
duke@435 1048 while ( (comp = _components.iter()) != NULL ) {
duke@435 1049 const Form *form = globals[comp->_type];
duke@435 1050 assert( form, "Did not find component's type in global names");
duke@435 1051 const OpClassForm *opc = form->is_opclass();
duke@435 1052 const OperandForm *oper = form->is_operand();
duke@435 1053 if ( opc && (oper == NULL) ) {
duke@435 1054 ++reloc_entries;
duke@435 1055 } else if ( oper ) {
duke@435 1056 // floats and doubles loaded out of method's constant pool require reloc info
duke@435 1057 Form::DataType type = oper->is_base_constant(globals);
duke@435 1058 if ( (type == Form::idealF) || (type == Form::idealD) ) {
duke@435 1059 ++reloc_entries;
duke@435 1060 }
duke@435 1061 }
duke@435 1062 }
duke@435 1063
duke@435 1064 // Float and Double constants may come from the CodeBuffer table
duke@435 1065 // and require relocatable addresses for access
duke@435 1066 // !!!!!
duke@435 1067 // Check for any component being an immediate float or double.
duke@435 1068 Form::DataType data_type = is_chain_of_constant(globals);
duke@435 1069 if( data_type==idealD || data_type==idealF ) {
duke@435 1070 #ifdef SPARC
duke@435 1071 // sparc required more relocation entries for floating constants
duke@435 1072 // (expires 9/98)
duke@435 1073 reloc_entries += 6;
duke@435 1074 #else
duke@435 1075 reloc_entries++;
duke@435 1076 #endif
duke@435 1077 }
duke@435 1078
duke@435 1079 return reloc_entries;
duke@435 1080 }
duke@435 1081
duke@435 1082 // Utility function defined in archDesc.cpp
duke@435 1083 extern bool is_def(int usedef);
duke@435 1084
duke@435 1085 // Return the result of reducing an instruction
duke@435 1086 const char *InstructForm::reduce_result() {
duke@435 1087 const char* result = "Universe"; // default
duke@435 1088 _components.reset();
duke@435 1089 Component *comp = _components.iter();
duke@435 1090 if (comp != NULL && comp->isa(Component::DEF)) {
duke@435 1091 result = comp->_type;
duke@435 1092 // Override this if the rule is a store operation:
duke@435 1093 if (_matrule && _matrule->_rChild &&
duke@435 1094 is_store_to_memory(_matrule->_rChild->_opType))
duke@435 1095 result = "Universe";
duke@435 1096 }
duke@435 1097 return result;
duke@435 1098 }
duke@435 1099
duke@435 1100 // Return the name of the operand on the right hand side of the binary match
duke@435 1101 // Return NULL if there is no right hand side
duke@435 1102 const char *InstructForm::reduce_right(FormDict &globals) const {
duke@435 1103 if( _matrule == NULL ) return NULL;
duke@435 1104 return _matrule->reduce_right(globals);
duke@435 1105 }
duke@435 1106
duke@435 1107 // Similar for left
duke@435 1108 const char *InstructForm::reduce_left(FormDict &globals) const {
duke@435 1109 if( _matrule == NULL ) return NULL;
duke@435 1110 return _matrule->reduce_left(globals);
duke@435 1111 }
duke@435 1112
duke@435 1113
duke@435 1114 // Base class for this instruction, MachNode except for calls
never@1896 1115 const char *InstructForm::mach_base_class(FormDict &globals) const {
duke@435 1116 if( is_ideal_call() == Form::JAVA_STATIC ) {
duke@435 1117 return "MachCallStaticJavaNode";
duke@435 1118 }
duke@435 1119 else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
duke@435 1120 return "MachCallDynamicJavaNode";
duke@435 1121 }
duke@435 1122 else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
duke@435 1123 return "MachCallRuntimeNode";
duke@435 1124 }
duke@435 1125 else if( is_ideal_call() == Form::JAVA_LEAF ) {
duke@435 1126 return "MachCallLeafNode";
duke@435 1127 }
duke@435 1128 else if (is_ideal_return()) {
duke@435 1129 return "MachReturnNode";
duke@435 1130 }
duke@435 1131 else if (is_ideal_halt()) {
duke@435 1132 return "MachHaltNode";
duke@435 1133 }
duke@435 1134 else if (is_ideal_safepoint()) {
duke@435 1135 return "MachSafePointNode";
duke@435 1136 }
duke@435 1137 else if (is_ideal_if()) {
duke@435 1138 return "MachIfNode";
duke@435 1139 }
kvn@3040 1140 else if (is_ideal_goto()) {
kvn@3040 1141 return "MachGotoNode";
kvn@3040 1142 }
duke@435 1143 else if (is_ideal_fastlock()) {
duke@435 1144 return "MachFastLockNode";
duke@435 1145 }
duke@435 1146 else if (is_ideal_nop()) {
duke@435 1147 return "MachNopNode";
duke@435 1148 }
twisti@2350 1149 else if (is_mach_constant()) {
twisti@2350 1150 return "MachConstantNode";
twisti@2350 1151 }
never@1896 1152 else if (captures_bottom_type(globals)) {
duke@435 1153 return "MachTypeNode";
duke@435 1154 } else {
duke@435 1155 return "MachNode";
duke@435 1156 }
duke@435 1157 assert( false, "ShouldNotReachHere()");
duke@435 1158 return NULL;
duke@435 1159 }
duke@435 1160
duke@435 1161 // Compare the instruction predicates for textual equality
duke@435 1162 bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
duke@435 1163 const Predicate *pred1 = instr1->_predicate;
duke@435 1164 const Predicate *pred2 = instr2->_predicate;
duke@435 1165 if( pred1 == NULL && pred2 == NULL ) {
duke@435 1166 // no predicates means they are identical
duke@435 1167 return true;
duke@435 1168 }
duke@435 1169 if( pred1 != NULL && pred2 != NULL ) {
duke@435 1170 // compare the predicates
jrose@910 1171 if (ADLParser::equivalent_expressions(pred1->_pred, pred2->_pred)) {
duke@435 1172 return true;
duke@435 1173 }
duke@435 1174 }
duke@435 1175
duke@435 1176 return false;
duke@435 1177 }
duke@435 1178
duke@435 1179 // Check if this instruction can cisc-spill to 'alternate'
duke@435 1180 bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
duke@435 1181 assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
duke@435 1182 // Do not replace if a cisc-version has been found.
duke@435 1183 if( cisc_spill_operand() != Not_cisc_spillable ) return false;
duke@435 1184
duke@435 1185 int cisc_spill_operand = Maybe_cisc_spillable;
duke@435 1186 char *result = NULL;
duke@435 1187 char *result2 = NULL;
duke@435 1188 const char *op_name = NULL;
duke@435 1189 const char *reg_type = NULL;
duke@435 1190 FormDict &globals = AD.globalNames();
twisti@1038 1191 cisc_spill_operand = _matrule->matchrule_cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
duke@435 1192 if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
duke@435 1193 cisc_spill_operand = operand_position(op_name, Component::USE);
duke@435 1194 int def_oper = operand_position(op_name, Component::DEF);
duke@435 1195 if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
duke@435 1196 // Do not support cisc-spilling for destination operands and
duke@435 1197 // make sure they have the same number of operands.
duke@435 1198 _cisc_spill_alternate = instr;
duke@435 1199 instr->set_cisc_alternate(true);
duke@435 1200 if( AD._cisc_spill_debug ) {
duke@435 1201 fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
duke@435 1202 fprintf(stderr, " using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
duke@435 1203 }
duke@435 1204 // Record that a stack-version of the reg_mask is needed
duke@435 1205 // !!!!!
duke@435 1206 OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
duke@435 1207 assert( oper != NULL, "cisc-spilling non operand");
duke@435 1208 const char *reg_class_name = oper->constrained_reg_class();
duke@435 1209 AD.set_stack_or_reg(reg_class_name);
duke@435 1210 const char *reg_mask_name = AD.reg_mask(*oper);
duke@435 1211 set_cisc_reg_mask_name(reg_mask_name);
duke@435 1212 const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
duke@435 1213 } else {
duke@435 1214 cisc_spill_operand = Not_cisc_spillable;
duke@435 1215 }
duke@435 1216 } else {
duke@435 1217 cisc_spill_operand = Not_cisc_spillable;
duke@435 1218 }
duke@435 1219
duke@435 1220 set_cisc_spill_operand(cisc_spill_operand);
duke@435 1221 return (cisc_spill_operand != Not_cisc_spillable);
duke@435 1222 }
duke@435 1223
duke@435 1224 // Check to see if this instruction can be replaced with the short branch
duke@435 1225 // instruction `short-branch'
duke@435 1226 bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
duke@435 1227 if (_matrule != NULL &&
duke@435 1228 this != short_branch && // Don't match myself
duke@435 1229 !is_short_branch() && // Don't match another short branch variant
duke@435 1230 reduce_result() != NULL &&
duke@435 1231 strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
duke@435 1232 _matrule->equivalent(AD.globalNames(), short_branch->_matrule)) {
duke@435 1233 // The instructions are equivalent.
kvn@3049 1234
kvn@3049 1235 // Now verify that both instructions have the same parameters and
kvn@3049 1236 // the same effects. Both branch forms should have the same inputs
kvn@3049 1237 // and resulting projections to correctly replace a long branch node
kvn@3049 1238 // with corresponding short branch node during code generation.
kvn@3049 1239
kvn@3049 1240 bool different = false;
kvn@3049 1241 if (short_branch->_components.count() != _components.count()) {
kvn@3049 1242 different = true;
kvn@3049 1243 } else if (_components.count() > 0) {
kvn@3049 1244 short_branch->_components.reset();
kvn@3049 1245 _components.reset();
kvn@3049 1246 Component *comp;
kvn@3049 1247 while ((comp = _components.iter()) != NULL) {
kvn@3049 1248 Component *short_comp = short_branch->_components.iter();
kvn@3049 1249 if (short_comp == NULL ||
kvn@3049 1250 short_comp->_type != comp->_type ||
kvn@3049 1251 short_comp->_usedef != comp->_usedef) {
kvn@3049 1252 different = true;
kvn@3049 1253 break;
kvn@3049 1254 }
kvn@3049 1255 }
kvn@3049 1256 if (short_branch->_components.iter() != NULL)
kvn@3049 1257 different = true;
kvn@3049 1258 }
kvn@3049 1259 if (different) {
kvn@3049 1260 globalAD->syntax_err(short_branch->_linenum, "Instruction %s and its short form %s have different parameters\n", _ident, short_branch->_ident);
kvn@3049 1261 }
kvn@4161 1262 if (AD._adl_debug > 1 || AD._short_branch_debug) {
duke@435 1263 fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
duke@435 1264 }
duke@435 1265 _short_branch_form = short_branch;
duke@435 1266 return true;
duke@435 1267 }
duke@435 1268 return false;
duke@435 1269 }
duke@435 1270
duke@435 1271
duke@435 1272 // --------------------------- FILE *output_routines
duke@435 1273 //
duke@435 1274 // Generate the format call for the replacement variable
duke@435 1275 void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
twisti@2350 1276 // Handle special constant table variables.
twisti@2350 1277 if (strcmp(rep_var, "constanttablebase") == 0) {
twisti@2350 1278 fprintf(fp, "char reg[128]; ra->dump_register(in(mach_constant_base_node_input()), reg);\n");
roland@3161 1279 fprintf(fp, " st->print(\"%%s\", reg);\n");
twisti@2350 1280 return;
twisti@2350 1281 }
twisti@2350 1282 if (strcmp(rep_var, "constantoffset") == 0) {
goetz@6481 1283 fprintf(fp, "st->print(\"#%%d\", constant_offset_unchecked());\n");
twisti@2350 1284 return;
twisti@2350 1285 }
twisti@2350 1286 if (strcmp(rep_var, "constantaddress") == 0) {
goetz@6481 1287 fprintf(fp, "st->print(\"constant table base + #%%d\", constant_offset_unchecked());\n");
twisti@2350 1288 return;
twisti@2350 1289 }
twisti@2350 1290
duke@435 1291 // Find replacement variable's type
duke@435 1292 const Form *form = _localNames[rep_var];
duke@435 1293 if (form == NULL) {
kvn@4161 1294 globalAD->syntax_err(_linenum, "Unknown replacement variable %s in format statement of %s.",
kvn@4161 1295 rep_var, _ident);
kvn@4161 1296 return;
duke@435 1297 }
duke@435 1298 OpClassForm *opc = form->is_opclass();
duke@435 1299 assert( opc, "replacement variable was not found in local names");
duke@435 1300 // Lookup the index position of the replacement variable
duke@435 1301 int idx = operand_position_format(rep_var);
duke@435 1302 if ( idx == -1 ) {
kvn@4161 1303 globalAD->syntax_err(_linenum, "Could not find replacement variable %s in format statement of %s.\n",
kvn@4161 1304 rep_var, _ident);
kvn@4161 1305 assert(strcmp(opc->_ident, "label") == 0, "Unimplemented");
kvn@4161 1306 return;
duke@435 1307 }
duke@435 1308
duke@435 1309 if (is_noninput_operand(idx)) {
duke@435 1310 // This component isn't in the input array. Print out the static
duke@435 1311 // name of the register.
duke@435 1312 OperandForm* oper = form->is_operand();
duke@435 1313 if (oper != NULL && oper->is_bound_register()) {
duke@435 1314 const RegDef* first = oper->get_RegClass()->find_first_elem();
kvn@4161 1315 fprintf(fp, " st->print(\"%s\");\n", first->_regname);
duke@435 1316 } else {
duke@435 1317 globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
duke@435 1318 }
duke@435 1319 } else {
duke@435 1320 // Output the format call for this operand
duke@435 1321 fprintf(fp,"opnd_array(%d)->",idx);
duke@435 1322 if (idx == 0)
duke@435 1323 fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
duke@435 1324 else
duke@435 1325 fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
duke@435 1326 }
duke@435 1327 }
duke@435 1328
duke@435 1329 // Seach through operands to determine parameters unique positions.
duke@435 1330 void InstructForm::set_unique_opnds() {
duke@435 1331 uint* uniq_idx = NULL;
twisti@5221 1332 uint nopnds = num_opnds();
duke@435 1333 uint num_uniq = nopnds;
twisti@5221 1334 uint i;
never@1034 1335 _uniq_idx_length = 0;
twisti@5221 1336 if (nopnds > 0) {
never@1034 1337 // Allocate index array. Worst case we're mapping from each
never@1034 1338 // component back to an index and any DEF always goes at 0 so the
never@1034 1339 // length of the array has to be the number of components + 1.
never@1034 1340 _uniq_idx_length = _components.count() + 1;
twisti@5221 1341 uniq_idx = (uint*) malloc(sizeof(uint) * _uniq_idx_length);
twisti@5221 1342 for (i = 0; i < _uniq_idx_length; i++) {
duke@435 1343 uniq_idx[i] = i;
duke@435 1344 }
duke@435 1345 }
duke@435 1346 // Do it only if there is a match rule and no expand rule. With an
duke@435 1347 // expand rule it is done by creating new mach node in Expand()
duke@435 1348 // method.
twisti@5221 1349 if (nopnds > 0 && _matrule != NULL && _exprule == NULL) {
duke@435 1350 const char *name;
duke@435 1351 uint count;
duke@435 1352 bool has_dupl_use = false;
duke@435 1353
duke@435 1354 _parameters.reset();
twisti@5221 1355 while ((name = _parameters.iter()) != NULL) {
duke@435 1356 count = 0;
twisti@5221 1357 uint position = 0;
twisti@5221 1358 uint uniq_position = 0;
duke@435 1359 _components.reset();
duke@435 1360 Component *comp = NULL;
twisti@5221 1361 if (sets_result()) {
duke@435 1362 comp = _components.iter();
duke@435 1363 position++;
duke@435 1364 }
duke@435 1365 // The next code is copied from the method operand_position().
duke@435 1366 for (; (comp = _components.iter()) != NULL; ++position) {
duke@435 1367 // When the first component is not a DEF,
duke@435 1368 // leave space for the result operand!
twisti@5221 1369 if (position==0 && (!comp->isa(Component::DEF))) {
duke@435 1370 ++position;
duke@435 1371 }
twisti@5221 1372 if (strcmp(name, comp->_name) == 0) {
twisti@5221 1373 if (++count > 1) {
never@1034 1374 assert(position < _uniq_idx_length, "out of bounds");
duke@435 1375 uniq_idx[position] = uniq_position;
duke@435 1376 has_dupl_use = true;
duke@435 1377 } else {
duke@435 1378 uniq_position = position;
duke@435 1379 }
duke@435 1380 }
twisti@5221 1381 if (comp->isa(Component::DEF) && comp->isa(Component::USE)) {
duke@435 1382 ++position;
twisti@5221 1383 if (position != 1)
duke@435 1384 --position; // only use two slots for the 1st USE_DEF
duke@435 1385 }
duke@435 1386 }
duke@435 1387 }
twisti@5221 1388 if (has_dupl_use) {
twisti@5221 1389 for (i = 1; i < nopnds; i++) {
twisti@5221 1390 if (i != uniq_idx[i]) {
duke@435 1391 break;
twisti@5221 1392 }
twisti@5221 1393 }
twisti@5221 1394 uint j = i;
twisti@5221 1395 for (; i < nopnds; i++) {
twisti@5221 1396 if (i == uniq_idx[i]) {
duke@435 1397 uniq_idx[i] = j++;
twisti@5221 1398 }
twisti@5221 1399 }
duke@435 1400 num_uniq = j;
duke@435 1401 }
duke@435 1402 }
duke@435 1403 _uniq_idx = uniq_idx;
duke@435 1404 _num_uniq = num_uniq;
duke@435 1405 }
duke@435 1406
twisti@1040 1407 // Generate index values needed for determining the operand position
duke@435 1408 void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
duke@435 1409 uint idx = 0; // position of operand in match rule
duke@435 1410 int cur_num_opnds = num_opnds();
duke@435 1411
duke@435 1412 // Compute the index into vector of operand pointers:
duke@435 1413 // idx0=0 is used to indicate that info comes from this same node, not from input edge.
duke@435 1414 // idx1 starts at oper_input_base()
duke@435 1415 if ( cur_num_opnds >= 1 ) {
kvn@4161 1416 fprintf(fp," // Start at oper_input_base() and count operands\n");
kvn@4161 1417 fprintf(fp," unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
kvn@4161 1418 fprintf(fp," unsigned %sidx1 = %d;", prefix, oper_input_base(globals));
kvn@4161 1419 fprintf(fp," \t// %s\n", unique_opnd_ident(1));
duke@435 1420
duke@435 1421 // Generate starting points for other unique operands if they exist
duke@435 1422 for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
duke@435 1423 if( *receiver == 0 ) {
kvn@4161 1424 fprintf(fp," unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();",
duke@435 1425 prefix, idx, prefix, idx-1, idx-1 );
duke@435 1426 } else {
kvn@4161 1427 fprintf(fp," unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();",
duke@435 1428 prefix, idx, prefix, idx-1, receiver, idx-1 );
duke@435 1429 }
kvn@4161 1430 fprintf(fp," \t// %s\n", unique_opnd_ident(idx));
duke@435 1431 }
duke@435 1432 }
duke@435 1433 if( *receiver != 0 ) {
duke@435 1434 // This value is used by generate_peepreplace when copying a node.
duke@435 1435 // Don't emit it in other cases since it can hide bugs with the
duke@435 1436 // use invalid idx's.
kvn@4161 1437 fprintf(fp," unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
duke@435 1438 }
duke@435 1439
duke@435 1440 }
duke@435 1441
duke@435 1442 // ---------------------------
duke@435 1443 bool InstructForm::verify() {
duke@435 1444 // !!!!! !!!!!
duke@435 1445 // Check that a "label" operand occurs last in the operand list, if present
duke@435 1446 return true;
duke@435 1447 }
duke@435 1448
duke@435 1449 void InstructForm::dump() {
duke@435 1450 output(stderr);
duke@435 1451 }
duke@435 1452
duke@435 1453 void InstructForm::output(FILE *fp) {
duke@435 1454 fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
duke@435 1455 if (_matrule) _matrule->output(fp);
duke@435 1456 if (_insencode) _insencode->output(fp);
twisti@2350 1457 if (_constant) _constant->output(fp);
duke@435 1458 if (_opcode) _opcode->output(fp);
duke@435 1459 if (_attribs) _attribs->output(fp);
duke@435 1460 if (_predicate) _predicate->output(fp);
duke@435 1461 if (_effects.Size()) {
duke@435 1462 fprintf(fp,"Effects\n");
duke@435 1463 _effects.dump();
duke@435 1464 }
duke@435 1465 if (_exprule) _exprule->output(fp);
duke@435 1466 if (_rewrule) _rewrule->output(fp);
duke@435 1467 if (_format) _format->output(fp);
duke@435 1468 if (_peephole) _peephole->output(fp);
duke@435 1469 }
duke@435 1470
duke@435 1471 void MachNodeForm::dump() {
duke@435 1472 output(stderr);
duke@435 1473 }
duke@435 1474
duke@435 1475 void MachNodeForm::output(FILE *fp) {
duke@435 1476 fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
duke@435 1477 }
duke@435 1478
duke@435 1479 //------------------------------build_predicate--------------------------------
duke@435 1480 // Build instruction predicates. If the user uses the same operand name
duke@435 1481 // twice, we need to check that the operands are pointer-eequivalent in
duke@435 1482 // the DFA during the labeling process.
duke@435 1483 Predicate *InstructForm::build_predicate() {
duke@435 1484 char buf[1024], *s=buf;
duke@435 1485 Dict names(cmpstr,hashstr,Form::arena); // Map Names to counts
duke@435 1486
duke@435 1487 MatchNode *mnode =
duke@435 1488 strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
duke@435 1489 mnode->count_instr_names(names);
duke@435 1490
duke@435 1491 uint first = 1;
duke@435 1492 // Start with the predicate supplied in the .ad file.
duke@435 1493 if( _predicate ) {
duke@435 1494 if( first ) first=0;
duke@435 1495 strcpy(s,"("); s += strlen(s);
duke@435 1496 strcpy(s,_predicate->_pred);
duke@435 1497 s += strlen(s);
duke@435 1498 strcpy(s,")"); s += strlen(s);
duke@435 1499 }
duke@435 1500 for( DictI i(&names); i.test(); ++i ) {
duke@435 1501 uintptr_t cnt = (uintptr_t)i._value;
duke@435 1502 if( cnt > 1 ) { // Need a predicate at all?
duke@435 1503 assert( cnt == 2, "Unimplemented" );
duke@435 1504 // Handle many pairs
duke@435 1505 if( first ) first=0;
duke@435 1506 else { // All tests must pass, so use '&&'
duke@435 1507 strcpy(s," && ");
duke@435 1508 s += strlen(s);
duke@435 1509 }
duke@435 1510 // Add predicate to working buffer
duke@435 1511 sprintf(s,"/*%s*/(",(char*)i._key);
duke@435 1512 s += strlen(s);
duke@435 1513 mnode->build_instr_pred(s,(char*)i._key,0);
duke@435 1514 s += strlen(s);
duke@435 1515 strcpy(s," == "); s += strlen(s);
duke@435 1516 mnode->build_instr_pred(s,(char*)i._key,1);
duke@435 1517 s += strlen(s);
duke@435 1518 strcpy(s,")"); s += strlen(s);
duke@435 1519 }
duke@435 1520 }
duke@435 1521 if( s == buf ) s = NULL;
duke@435 1522 else {
duke@435 1523 assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
duke@435 1524 s = strdup(buf);
duke@435 1525 }
duke@435 1526 return new Predicate(s);
duke@435 1527 }
duke@435 1528
duke@435 1529 //------------------------------EncodeForm-------------------------------------
duke@435 1530 // Constructor
duke@435 1531 EncodeForm::EncodeForm()
duke@435 1532 : _encClass(cmpstr,hashstr, Form::arena) {
duke@435 1533 }
duke@435 1534 EncodeForm::~EncodeForm() {
duke@435 1535 }
duke@435 1536
duke@435 1537 // record a new register class
duke@435 1538 EncClass *EncodeForm::add_EncClass(const char *className) {
duke@435 1539 EncClass *encClass = new EncClass(className);
duke@435 1540 _eclasses.addName(className);
duke@435 1541 _encClass.Insert(className,encClass);
duke@435 1542 return encClass;
duke@435 1543 }
duke@435 1544
duke@435 1545 // Lookup the function body for an encoding class
duke@435 1546 EncClass *EncodeForm::encClass(const char *className) {
duke@435 1547 assert( className != NULL, "Must provide a defined encoding name");
duke@435 1548
duke@435 1549 EncClass *encClass = (EncClass*)_encClass[className];
duke@435 1550 return encClass;
duke@435 1551 }
duke@435 1552
duke@435 1553 // Lookup the function body for an encoding class
duke@435 1554 const char *EncodeForm::encClassBody(const char *className) {
duke@435 1555 if( className == NULL ) return NULL;
duke@435 1556
duke@435 1557 EncClass *encClass = (EncClass*)_encClass[className];
duke@435 1558 assert( encClass != NULL, "Encode Class is missing.");
duke@435 1559 encClass->_code.reset();
duke@435 1560 const char *code = (const char*)encClass->_code.iter();
duke@435 1561 assert( code != NULL, "Found an empty encode class body.");
duke@435 1562
duke@435 1563 return code;
duke@435 1564 }
duke@435 1565
duke@435 1566 // Lookup the function body for an encoding class
duke@435 1567 const char *EncodeForm::encClassPrototype(const char *className) {
duke@435 1568 assert( className != NULL, "Encode class name must be non NULL.");
duke@435 1569
duke@435 1570 return className;
duke@435 1571 }
duke@435 1572
duke@435 1573 void EncodeForm::dump() { // Debug printer
duke@435 1574 output(stderr);
duke@435 1575 }
duke@435 1576
duke@435 1577 void EncodeForm::output(FILE *fp) { // Write info to output files
duke@435 1578 const char *name;
duke@435 1579 fprintf(fp,"\n");
duke@435 1580 fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
duke@435 1581 for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
duke@435 1582 ((EncClass*)_encClass[name])->output(fp);
duke@435 1583 }
duke@435 1584 fprintf(fp,"-------------------- end EncodeForm --------------------\n");
duke@435 1585 }
duke@435 1586 //------------------------------EncClass---------------------------------------
duke@435 1587 EncClass::EncClass(const char *name)
duke@435 1588 : _localNames(cmpstr,hashstr, Form::arena), _name(name) {
duke@435 1589 }
duke@435 1590 EncClass::~EncClass() {
duke@435 1591 }
duke@435 1592
duke@435 1593 // Add a parameter <type,name> pair
duke@435 1594 void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
duke@435 1595 _parameter_type.addName( parameter_type );
duke@435 1596 _parameter_name.addName( parameter_name );
duke@435 1597 }
duke@435 1598
duke@435 1599 // Verify operand types in parameter list
duke@435 1600 bool EncClass::check_parameter_types(FormDict &globals) {
duke@435 1601 // !!!!!
duke@435 1602 return false;
duke@435 1603 }
duke@435 1604
duke@435 1605 // Add the decomposed "code" sections of an encoding's code-block
duke@435 1606 void EncClass::add_code(const char *code) {
duke@435 1607 _code.addName(code);
duke@435 1608 }
duke@435 1609
duke@435 1610 // Add the decomposed "replacement variables" of an encoding's code-block
duke@435 1611 void EncClass::add_rep_var(char *replacement_var) {
duke@435 1612 _code.addName(NameList::_signal);
duke@435 1613 _rep_vars.addName(replacement_var);
duke@435 1614 }
duke@435 1615
duke@435 1616 // Lookup the function body for an encoding class
duke@435 1617 int EncClass::rep_var_index(const char *rep_var) {
duke@435 1618 uint position = 0;
duke@435 1619 const char *name = NULL;
duke@435 1620
duke@435 1621 _parameter_name.reset();
duke@435 1622 while ( (name = _parameter_name.iter()) != NULL ) {
duke@435 1623 if ( strcmp(rep_var,name) == 0 ) return position;
duke@435 1624 ++position;
duke@435 1625 }
duke@435 1626
duke@435 1627 return -1;
duke@435 1628 }
duke@435 1629
duke@435 1630 // Check after parsing
duke@435 1631 bool EncClass::verify() {
duke@435 1632 // 1!!!!
duke@435 1633 // Check that each replacement variable, '$name' in architecture description
duke@435 1634 // is actually a local variable for this encode class, or a reserved name
duke@435 1635 // "primary, secondary, tertiary"
duke@435 1636 return true;
duke@435 1637 }
duke@435 1638
duke@435 1639 void EncClass::dump() {
duke@435 1640 output(stderr);
duke@435 1641 }
duke@435 1642
duke@435 1643 // Write info to output files
duke@435 1644 void EncClass::output(FILE *fp) {
duke@435 1645 fprintf(fp,"EncClass: %s", (_name ? _name : ""));
duke@435 1646
duke@435 1647 // Output the parameter list
duke@435 1648 _parameter_type.reset();
duke@435 1649 _parameter_name.reset();
duke@435 1650 const char *type = _parameter_type.iter();
duke@435 1651 const char *name = _parameter_name.iter();
duke@435 1652 fprintf(fp, " ( ");
duke@435 1653 for ( ; (type != NULL) && (name != NULL);
duke@435 1654 (type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
duke@435 1655 fprintf(fp, " %s %s,", type, name);
duke@435 1656 }
duke@435 1657 fprintf(fp, " ) ");
duke@435 1658
duke@435 1659 // Output the code block
duke@435 1660 _code.reset();
duke@435 1661 _rep_vars.reset();
duke@435 1662 const char *code;
duke@435 1663 while ( (code = _code.iter()) != NULL ) {
duke@435 1664 if ( _code.is_signal(code) ) {
duke@435 1665 // A replacement variable
duke@435 1666 const char *rep_var = _rep_vars.iter();
duke@435 1667 fprintf(fp,"($%s)", rep_var);
duke@435 1668 } else {
duke@435 1669 // A section of code
duke@435 1670 fprintf(fp,"%s", code);
duke@435 1671 }
duke@435 1672 }
duke@435 1673
duke@435 1674 }
duke@435 1675
duke@435 1676 //------------------------------Opcode-----------------------------------------
duke@435 1677 Opcode::Opcode(char *primary, char *secondary, char *tertiary)
duke@435 1678 : _primary(primary), _secondary(secondary), _tertiary(tertiary) {
duke@435 1679 }
duke@435 1680
duke@435 1681 Opcode::~Opcode() {
duke@435 1682 }
duke@435 1683
duke@435 1684 Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
duke@435 1685 if( strcmp(param,"primary") == 0 ) {
duke@435 1686 return Opcode::PRIMARY;
duke@435 1687 }
duke@435 1688 else if( strcmp(param,"secondary") == 0 ) {
duke@435 1689 return Opcode::SECONDARY;
duke@435 1690 }
duke@435 1691 else if( strcmp(param,"tertiary") == 0 ) {
duke@435 1692 return Opcode::TERTIARY;
duke@435 1693 }
duke@435 1694 return Opcode::NOT_AN_OPCODE;
duke@435 1695 }
duke@435 1696
never@850 1697 bool Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
duke@435 1698 // Default values previously provided by MachNode::primary()...
never@850 1699 const char *description = NULL;
never@850 1700 const char *value = NULL;
duke@435 1701 // Check if user provided any opcode definitions
duke@435 1702 if( this != NULL ) {
duke@435 1703 // Update 'value' if user provided a definition in the instruction
duke@435 1704 switch (desired_opcode) {
duke@435 1705 case PRIMARY:
duke@435 1706 description = "primary()";
duke@435 1707 if( _primary != NULL) { value = _primary; }
duke@435 1708 break;
duke@435 1709 case SECONDARY:
duke@435 1710 description = "secondary()";
duke@435 1711 if( _secondary != NULL ) { value = _secondary; }
duke@435 1712 break;
duke@435 1713 case TERTIARY:
duke@435 1714 description = "tertiary()";
duke@435 1715 if( _tertiary != NULL ) { value = _tertiary; }
duke@435 1716 break;
duke@435 1717 default:
duke@435 1718 assert( false, "ShouldNotReachHere();");
duke@435 1719 break;
duke@435 1720 }
duke@435 1721 }
never@850 1722 if (value != NULL) {
never@850 1723 fprintf(fp, "(%s /*%s*/)", value, description);
never@850 1724 }
never@850 1725 return value != NULL;
duke@435 1726 }
duke@435 1727
duke@435 1728 void Opcode::dump() {
duke@435 1729 output(stderr);
duke@435 1730 }
duke@435 1731
duke@435 1732 // Write info to output files
duke@435 1733 void Opcode::output(FILE *fp) {
duke@435 1734 if (_primary != NULL) fprintf(fp,"Primary opcode: %s\n", _primary);
duke@435 1735 if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
duke@435 1736 if (_tertiary != NULL) fprintf(fp,"Tertiary opcode: %s\n", _tertiary);
duke@435 1737 }
duke@435 1738
duke@435 1739 //------------------------------InsEncode--------------------------------------
duke@435 1740 InsEncode::InsEncode() {
duke@435 1741 }
duke@435 1742 InsEncode::~InsEncode() {
duke@435 1743 }
duke@435 1744
duke@435 1745 // Add "encode class name" and its parameters
duke@435 1746 NameAndList *InsEncode::add_encode(char *encoding) {
duke@435 1747 assert( encoding != NULL, "Must provide name for encoding");
duke@435 1748
duke@435 1749 // add_parameter(NameList::_signal);
duke@435 1750 NameAndList *encode = new NameAndList(encoding);
duke@435 1751 _encoding.addName((char*)encode);
duke@435 1752
duke@435 1753 return encode;
duke@435 1754 }
duke@435 1755
duke@435 1756 // Access the list of encodings
duke@435 1757 void InsEncode::reset() {
duke@435 1758 _encoding.reset();
duke@435 1759 // _parameter.reset();
duke@435 1760 }
duke@435 1761 const char* InsEncode::encode_class_iter() {
duke@435 1762 NameAndList *encode_class = (NameAndList*)_encoding.iter();
duke@435 1763 return ( encode_class != NULL ? encode_class->name() : NULL );
duke@435 1764 }
duke@435 1765 // Obtain parameter name from zero based index
duke@435 1766 const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
duke@435 1767 NameAndList *params = (NameAndList*)_encoding.current();
duke@435 1768 assert( params != NULL, "Internal Error");
duke@435 1769 const char *param = (*params)[param_no];
duke@435 1770
duke@435 1771 // Remove '$' if parser placed it there.
duke@435 1772 return ( param != NULL && *param == '$') ? (param+1) : param;
duke@435 1773 }
duke@435 1774
duke@435 1775 void InsEncode::dump() {
duke@435 1776 output(stderr);
duke@435 1777 }
duke@435 1778
duke@435 1779 // Write info to output files
duke@435 1780 void InsEncode::output(FILE *fp) {
duke@435 1781 NameAndList *encoding = NULL;
duke@435 1782 const char *parameter = NULL;
duke@435 1783
duke@435 1784 fprintf(fp,"InsEncode: ");
duke@435 1785 _encoding.reset();
duke@435 1786
duke@435 1787 while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
duke@435 1788 // Output the encoding being used
duke@435 1789 fprintf(fp,"%s(", encoding->name() );
duke@435 1790
duke@435 1791 // Output its parameter list, if any
duke@435 1792 bool first_param = true;
duke@435 1793 encoding->reset();
duke@435 1794 while ( (parameter = encoding->iter()) != 0 ) {
duke@435 1795 // Output the ',' between parameters
duke@435 1796 if ( ! first_param ) fprintf(fp,", ");
duke@435 1797 first_param = false;
duke@435 1798 // Output the parameter
duke@435 1799 fprintf(fp,"%s", parameter);
duke@435 1800 } // done with parameters
duke@435 1801 fprintf(fp,") ");
duke@435 1802 } // done with encodings
duke@435 1803
duke@435 1804 fprintf(fp,"\n");
duke@435 1805 }
duke@435 1806
duke@435 1807 //------------------------------Effect-----------------------------------------
duke@435 1808 static int effect_lookup(const char *name) {
duke@435 1809 if(!strcmp(name, "USE")) return Component::USE;
duke@435 1810 if(!strcmp(name, "DEF")) return Component::DEF;
duke@435 1811 if(!strcmp(name, "USE_DEF")) return Component::USE_DEF;
duke@435 1812 if(!strcmp(name, "KILL")) return Component::KILL;
duke@435 1813 if(!strcmp(name, "USE_KILL")) return Component::USE_KILL;
duke@435 1814 if(!strcmp(name, "TEMP")) return Component::TEMP;
duke@435 1815 if(!strcmp(name, "INVALID")) return Component::INVALID;
roland@3316 1816 if(!strcmp(name, "CALL")) return Component::CALL;
duke@435 1817 assert( false,"Invalid effect name specified\n");
duke@435 1818 return Component::INVALID;
duke@435 1819 }
duke@435 1820
kvn@4161 1821 const char *Component::getUsedefName() {
kvn@4161 1822 switch (_usedef) {
kvn@4161 1823 case Component::INVALID: return "INVALID"; break;
kvn@4161 1824 case Component::USE: return "USE"; break;
kvn@4161 1825 case Component::USE_DEF: return "USE_DEF"; break;
kvn@4161 1826 case Component::USE_KILL: return "USE_KILL"; break;
kvn@4161 1827 case Component::KILL: return "KILL"; break;
kvn@4161 1828 case Component::TEMP: return "TEMP"; break;
kvn@4161 1829 case Component::DEF: return "DEF"; break;
kvn@4161 1830 case Component::CALL: return "CALL"; break;
kvn@4161 1831 default: assert(false, "unknown effect");
kvn@4161 1832 }
kvn@4161 1833 return "Undefined Use/Def info";
kvn@4161 1834 }
kvn@4161 1835
duke@435 1836 Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
duke@435 1837 _ftype = Form::EFF;
duke@435 1838 }
kvn@4161 1839
duke@435 1840 Effect::~Effect() {
duke@435 1841 }
duke@435 1842
duke@435 1843 // Dynamic type check
duke@435 1844 Effect *Effect::is_effect() const {
duke@435 1845 return (Effect*)this;
duke@435 1846 }
duke@435 1847
duke@435 1848
duke@435 1849 // True if this component is equal to the parameter.
duke@435 1850 bool Effect::is(int use_def_kill_enum) const {
duke@435 1851 return (_use_def == use_def_kill_enum ? true : false);
duke@435 1852 }
duke@435 1853 // True if this component is used/def'd/kill'd as the parameter suggests.
duke@435 1854 bool Effect::isa(int use_def_kill_enum) const {
duke@435 1855 return (_use_def & use_def_kill_enum) == use_def_kill_enum;
duke@435 1856 }
duke@435 1857
duke@435 1858 void Effect::dump() {
duke@435 1859 output(stderr);
duke@435 1860 }
duke@435 1861
duke@435 1862 void Effect::output(FILE *fp) { // Write info to output files
duke@435 1863 fprintf(fp,"Effect: %s\n", (_name?_name:""));
duke@435 1864 }
duke@435 1865
duke@435 1866 //------------------------------ExpandRule-------------------------------------
duke@435 1867 ExpandRule::ExpandRule() : _expand_instrs(),
duke@435 1868 _newopconst(cmpstr, hashstr, Form::arena) {
duke@435 1869 _ftype = Form::EXP;
duke@435 1870 }
duke@435 1871
duke@435 1872 ExpandRule::~ExpandRule() { // Destructor
duke@435 1873 }
duke@435 1874
duke@435 1875 void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
duke@435 1876 _expand_instrs.addName((char*)instruction_name_and_operand_list);
duke@435 1877 }
duke@435 1878
duke@435 1879 void ExpandRule::reset_instructions() {
duke@435 1880 _expand_instrs.reset();
duke@435 1881 }
duke@435 1882
duke@435 1883 NameAndList* ExpandRule::iter_instructions() {
duke@435 1884 return (NameAndList*)_expand_instrs.iter();
duke@435 1885 }
duke@435 1886
duke@435 1887
duke@435 1888 void ExpandRule::dump() {
duke@435 1889 output(stderr);
duke@435 1890 }
duke@435 1891
duke@435 1892 void ExpandRule::output(FILE *fp) { // Write info to output files
duke@435 1893 NameAndList *expand_instr = NULL;
duke@435 1894 const char *opid = NULL;
duke@435 1895
duke@435 1896 fprintf(fp,"\nExpand Rule:\n");
duke@435 1897
duke@435 1898 // Iterate over the instructions 'node' expands into
duke@435 1899 for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
duke@435 1900 fprintf(fp,"%s(", expand_instr->name());
duke@435 1901
duke@435 1902 // iterate over the operand list
duke@435 1903 for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
duke@435 1904 fprintf(fp,"%s ", opid);
duke@435 1905 }
duke@435 1906 fprintf(fp,");\n");
duke@435 1907 }
duke@435 1908 }
duke@435 1909
duke@435 1910 //------------------------------RewriteRule------------------------------------
duke@435 1911 RewriteRule::RewriteRule(char* params, char* block)
duke@435 1912 : _tempParams(params), _tempBlock(block) { }; // Constructor
duke@435 1913 RewriteRule::~RewriteRule() { // Destructor
duke@435 1914 }
duke@435 1915
duke@435 1916 void RewriteRule::dump() {
duke@435 1917 output(stderr);
duke@435 1918 }
duke@435 1919
duke@435 1920 void RewriteRule::output(FILE *fp) { // Write info to output files
duke@435 1921 fprintf(fp,"\nRewrite Rule:\n%s\n%s\n",
duke@435 1922 (_tempParams?_tempParams:""),
duke@435 1923 (_tempBlock?_tempBlock:""));
duke@435 1924 }
duke@435 1925
duke@435 1926
duke@435 1927 //==============================MachNodes======================================
duke@435 1928 //------------------------------MachNodeForm-----------------------------------
duke@435 1929 MachNodeForm::MachNodeForm(char *id)
duke@435 1930 : _ident(id) {
duke@435 1931 }
duke@435 1932
duke@435 1933 MachNodeForm::~MachNodeForm() {
duke@435 1934 }
duke@435 1935
duke@435 1936 MachNodeForm *MachNodeForm::is_machnode() const {
duke@435 1937 return (MachNodeForm*)this;
duke@435 1938 }
duke@435 1939
duke@435 1940 //==============================Operand Classes================================
duke@435 1941 //------------------------------OpClassForm------------------------------------
duke@435 1942 OpClassForm::OpClassForm(const char* id) : _ident(id) {
duke@435 1943 _ftype = Form::OPCLASS;
duke@435 1944 }
duke@435 1945
duke@435 1946 OpClassForm::~OpClassForm() {
duke@435 1947 }
duke@435 1948
duke@435 1949 bool OpClassForm::ideal_only() const { return 0; }
duke@435 1950
duke@435 1951 OpClassForm *OpClassForm::is_opclass() const {
duke@435 1952 return (OpClassForm*)this;
duke@435 1953 }
duke@435 1954
duke@435 1955 Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
duke@435 1956 if( _oplst.count() == 0 ) return Form::no_interface;
duke@435 1957
duke@435 1958 // Check that my operands have the same interface type
duke@435 1959 Form::InterfaceType interface;
duke@435 1960 bool first = true;
duke@435 1961 NameList &op_list = (NameList &)_oplst;
duke@435 1962 op_list.reset();
duke@435 1963 const char *op_name;
duke@435 1964 while( (op_name = op_list.iter()) != NULL ) {
duke@435 1965 const Form *form = globals[op_name];
duke@435 1966 OperandForm *operand = form->is_operand();
duke@435 1967 assert( operand, "Entry in operand class that is not an operand");
duke@435 1968 if( first ) {
duke@435 1969 first = false;
duke@435 1970 interface = operand->interface_type(globals);
duke@435 1971 } else {
duke@435 1972 interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
duke@435 1973 }
duke@435 1974 }
duke@435 1975 return interface;
duke@435 1976 }
duke@435 1977
duke@435 1978 bool OpClassForm::stack_slots_only(FormDict &globals) const {
duke@435 1979 if( _oplst.count() == 0 ) return false; // how?
duke@435 1980
duke@435 1981 NameList &op_list = (NameList &)_oplst;
duke@435 1982 op_list.reset();
duke@435 1983 const char *op_name;
duke@435 1984 while( (op_name = op_list.iter()) != NULL ) {
duke@435 1985 const Form *form = globals[op_name];
duke@435 1986 OperandForm *operand = form->is_operand();
duke@435 1987 assert( operand, "Entry in operand class that is not an operand");
duke@435 1988 if( !operand->stack_slots_only(globals) ) return false;
duke@435 1989 }
duke@435 1990 return true;
duke@435 1991 }
duke@435 1992
duke@435 1993
duke@435 1994 void OpClassForm::dump() {
duke@435 1995 output(stderr);
duke@435 1996 }
duke@435 1997
duke@435 1998 void OpClassForm::output(FILE *fp) {
duke@435 1999 const char *name;
duke@435 2000 fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
duke@435 2001 fprintf(fp,"\nCount = %d\n", _oplst.count());
duke@435 2002 for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
duke@435 2003 fprintf(fp,"%s, ",name);
duke@435 2004 }
duke@435 2005 fprintf(fp,"\n");
duke@435 2006 }
duke@435 2007
duke@435 2008
duke@435 2009 //==============================Operands=======================================
duke@435 2010 //------------------------------OperandForm------------------------------------
duke@435 2011 OperandForm::OperandForm(const char* id)
duke@435 2012 : OpClassForm(id), _ideal_only(false),
duke@435 2013 _localNames(cmpstr, hashstr, Form::arena) {
duke@435 2014 _ftype = Form::OPER;
duke@435 2015
duke@435 2016 _matrule = NULL;
duke@435 2017 _interface = NULL;
duke@435 2018 _attribs = NULL;
duke@435 2019 _predicate = NULL;
duke@435 2020 _constraint= NULL;
duke@435 2021 _construct = NULL;
duke@435 2022 _format = NULL;
duke@435 2023 }
duke@435 2024 OperandForm::OperandForm(const char* id, bool ideal_only)
duke@435 2025 : OpClassForm(id), _ideal_only(ideal_only),
duke@435 2026 _localNames(cmpstr, hashstr, Form::arena) {
duke@435 2027 _ftype = Form::OPER;
duke@435 2028
duke@435 2029 _matrule = NULL;
duke@435 2030 _interface = NULL;
duke@435 2031 _attribs = NULL;
duke@435 2032 _predicate = NULL;
duke@435 2033 _constraint= NULL;
duke@435 2034 _construct = NULL;
duke@435 2035 _format = NULL;
duke@435 2036 }
duke@435 2037 OperandForm::~OperandForm() {
duke@435 2038 }
duke@435 2039
duke@435 2040
duke@435 2041 OperandForm *OperandForm::is_operand() const {
duke@435 2042 return (OperandForm*)this;
duke@435 2043 }
duke@435 2044
duke@435 2045 bool OperandForm::ideal_only() const {
duke@435 2046 return _ideal_only;
duke@435 2047 }
duke@435 2048
duke@435 2049 Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
duke@435 2050 if( _interface == NULL ) return Form::no_interface;
duke@435 2051
duke@435 2052 return _interface->interface_type(globals);
duke@435 2053 }
duke@435 2054
duke@435 2055
duke@435 2056 bool OperandForm::stack_slots_only(FormDict &globals) const {
duke@435 2057 if( _constraint == NULL ) return false;
duke@435 2058 return _constraint->stack_slots_only();
duke@435 2059 }
duke@435 2060
duke@435 2061
duke@435 2062 // Access op_cost attribute or return NULL.
duke@435 2063 const char* OperandForm::cost() {
duke@435 2064 for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
duke@435 2065 if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
duke@435 2066 return cur->_val;
duke@435 2067 }
duke@435 2068 }
duke@435 2069 return NULL;
duke@435 2070 }
duke@435 2071
duke@435 2072 // Return the number of leaves below this complex operand
duke@435 2073 uint OperandForm::num_leaves() const {
duke@435 2074 if ( ! _matrule) return 0;
duke@435 2075
duke@435 2076 int num_leaves = _matrule->_numleaves;
duke@435 2077 return num_leaves;
duke@435 2078 }
duke@435 2079
duke@435 2080 // Return the number of constants contained within this complex operand
duke@435 2081 uint OperandForm::num_consts(FormDict &globals) const {
duke@435 2082 if ( ! _matrule) return 0;
duke@435 2083
duke@435 2084 // This is a recursive invocation on all operands in the matchrule
duke@435 2085 return _matrule->num_consts(globals);
duke@435 2086 }
duke@435 2087
duke@435 2088 // Return the number of constants in match rule with specified type
duke@435 2089 uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
duke@435 2090 if ( ! _matrule) return 0;
duke@435 2091
duke@435 2092 // This is a recursive invocation on all operands in the matchrule
duke@435 2093 return _matrule->num_consts(globals, type);
duke@435 2094 }
duke@435 2095
duke@435 2096 // Return the number of pointer constants contained within this complex operand
duke@435 2097 uint OperandForm::num_const_ptrs(FormDict &globals) const {
duke@435 2098 if ( ! _matrule) return 0;
duke@435 2099
duke@435 2100 // This is a recursive invocation on all operands in the matchrule
duke@435 2101 return _matrule->num_const_ptrs(globals);
duke@435 2102 }
duke@435 2103
duke@435 2104 uint OperandForm::num_edges(FormDict &globals) const {
duke@435 2105 uint edges = 0;
duke@435 2106 uint leaves = num_leaves();
duke@435 2107 uint consts = num_consts(globals);
duke@435 2108
duke@435 2109 // If we are matching a constant directly, there are no leaves.
duke@435 2110 edges = ( leaves > consts ) ? leaves - consts : 0;
duke@435 2111
duke@435 2112 // !!!!!
duke@435 2113 // Special case operands that do not have a corresponding ideal node.
duke@435 2114 if( (edges == 0) && (consts == 0) ) {
duke@435 2115 if( constrained_reg_class() != NULL ) {
duke@435 2116 edges = 1;
duke@435 2117 } else {
duke@435 2118 if( _matrule
duke@435 2119 && (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
duke@435 2120 const Form *form = globals[_matrule->_opType];
duke@435 2121 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 2122 if( oper ) {
duke@435 2123 return oper->num_edges(globals);
duke@435 2124 }
duke@435 2125 }
duke@435 2126 }
duke@435 2127 }
duke@435 2128
duke@435 2129 return edges;
duke@435 2130 }
duke@435 2131
duke@435 2132
duke@435 2133 // Check if this operand is usable for cisc-spilling
duke@435 2134 bool OperandForm::is_cisc_reg(FormDict &globals) const {
duke@435 2135 const char *ideal = ideal_type(globals);
duke@435 2136 bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
duke@435 2137 return is_cisc_reg;
duke@435 2138 }
duke@435 2139
duke@435 2140 bool OpClassForm::is_cisc_mem(FormDict &globals) const {
duke@435 2141 Form::InterfaceType my_interface = interface_type(globals);
duke@435 2142 return (my_interface == memory_interface);
duke@435 2143 }
duke@435 2144
duke@435 2145
duke@435 2146 // node matches ideal 'Bool'
duke@435 2147 bool OperandForm::is_ideal_bool() const {
duke@435 2148 if( _matrule == NULL ) return false;
duke@435 2149
duke@435 2150 return _matrule->is_ideal_bool();
duke@435 2151 }
duke@435 2152
duke@435 2153 // Require user's name for an sRegX to be stackSlotX
duke@435 2154 Form::DataType OperandForm::is_user_name_for_sReg() const {
duke@435 2155 DataType data_type = none;
duke@435 2156 if( _ident != NULL ) {
duke@435 2157 if( strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
duke@435 2158 else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
duke@435 2159 else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
duke@435 2160 else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
duke@435 2161 else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
duke@435 2162 }
duke@435 2163 assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");
duke@435 2164
duke@435 2165 return data_type;
duke@435 2166 }
duke@435 2167
duke@435 2168
duke@435 2169 // Return ideal type, if there is a single ideal type for this operand
duke@435 2170 const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
duke@435 2171 const char *type = NULL;
duke@435 2172 if (ideal_only()) type = _ident;
duke@435 2173 else if( _matrule == NULL ) {
duke@435 2174 // Check for condition code register
duke@435 2175 const char *rc_name = constrained_reg_class();
duke@435 2176 // !!!!!
duke@435 2177 if (rc_name == NULL) return NULL;
duke@435 2178 // !!!!! !!!!!
duke@435 2179 // Check constraints on result's register class
duke@435 2180 if( registers ) {
duke@435 2181 RegClass *reg_class = registers->getRegClass(rc_name);
duke@435 2182 assert( reg_class != NULL, "Register class is not defined");
duke@435 2183
duke@435 2184 // Check for ideal type of entries in register class, all are the same type
duke@435 2185 reg_class->reset();
duke@435 2186 RegDef *reg_def = reg_class->RegDef_iter();
duke@435 2187 assert( reg_def != NULL, "No entries in register class");
duke@435 2188 assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
duke@435 2189 // Return substring that names the register's ideal type
duke@435 2190 type = reg_def->_idealtype + 3;
duke@435 2191 assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
duke@435 2192 assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
duke@435 2193 assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
duke@435 2194 }
duke@435 2195 }
duke@435 2196 else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
duke@435 2197 // This operand matches a single type, at the top level.
duke@435 2198 // Check for ideal type
duke@435 2199 type = _matrule->_opType;
duke@435 2200 if( strcmp(type,"Bool") == 0 )
duke@435 2201 return "Bool";
duke@435 2202 // transitive lookup
duke@435 2203 const Form *frm = globals[type];
duke@435 2204 OperandForm *op = frm->is_operand();
duke@435 2205 type = op->ideal_type(globals, registers);
duke@435 2206 }
duke@435 2207 return type;
duke@435 2208 }
duke@435 2209
duke@435 2210
duke@435 2211 // If there is a single ideal type for this interface field, return it.
duke@435 2212 const char *OperandForm::interface_ideal_type(FormDict &globals,
duke@435 2213 const char *field) const {
duke@435 2214 const char *ideal_type = NULL;
duke@435 2215 const char *value = NULL;
duke@435 2216
duke@435 2217 // Check if "field" is valid for this operand's interface
duke@435 2218 if ( ! is_interface_field(field, value) ) return ideal_type;
duke@435 2219
duke@435 2220 // !!!!! !!!!! !!!!!
duke@435 2221 // If a valid field has a constant value, identify "ConI" or "ConP" or ...
duke@435 2222
duke@435 2223 // Else, lookup type of field's replacement variable
duke@435 2224
duke@435 2225 return ideal_type;
duke@435 2226 }
duke@435 2227
duke@435 2228
duke@435 2229 RegClass* OperandForm::get_RegClass() const {
duke@435 2230 if (_interface && !_interface->is_RegInterface()) return NULL;
duke@435 2231 return globalAD->get_registers()->getRegClass(constrained_reg_class());
duke@435 2232 }
duke@435 2233
duke@435 2234
duke@435 2235 bool OperandForm::is_bound_register() const {
twisti@5221 2236 RegClass* reg_class = get_RegClass();
twisti@5221 2237 if (reg_class == NULL) {
twisti@5221 2238 return false;
twisti@5221 2239 }
twisti@5221 2240
twisti@5221 2241 const char* name = ideal_type(globalAD->globalNames());
twisti@5221 2242 if (name == NULL) {
twisti@5221 2243 return false;
twisti@5221 2244 }
twisti@5221 2245
twisti@5221 2246 uint size = 0;
twisti@5221 2247 if (strcmp(name, "RegFlags") == 0) size = 1;
twisti@5221 2248 if (strcmp(name, "RegI") == 0) size = 1;
twisti@5221 2249 if (strcmp(name, "RegF") == 0) size = 1;
twisti@5221 2250 if (strcmp(name, "RegD") == 0) size = 2;
twisti@5221 2251 if (strcmp(name, "RegL") == 0) size = 2;
twisti@5221 2252 if (strcmp(name, "RegN") == 0) size = 1;
twisti@5221 2253 if (strcmp(name, "RegP") == 0) size = globalAD->get_preproc_def("_LP64") ? 2 : 1;
twisti@5221 2254 if (size == 0) {
twisti@5221 2255 return false;
twisti@5221 2256 }
duke@435 2257 return size == reg_class->size();
duke@435 2258 }
duke@435 2259
duke@435 2260
duke@435 2261 // Check if this is a valid field for this operand,
duke@435 2262 // Return 'true' if valid, and set the value to the string the user provided.
duke@435 2263 bool OperandForm::is_interface_field(const char *field,
duke@435 2264 const char * &value) const {
duke@435 2265 return false;
duke@435 2266 }
duke@435 2267
duke@435 2268
duke@435 2269 // Return register class name if a constraint specifies the register class.
duke@435 2270 const char *OperandForm::constrained_reg_class() const {
duke@435 2271 const char *reg_class = NULL;
duke@435 2272 if ( _constraint ) {
duke@435 2273 // !!!!!
duke@435 2274 Constraint *constraint = _constraint;
duke@435 2275 if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
duke@435 2276 reg_class = _constraint->_arg;
duke@435 2277 }
duke@435 2278 }
duke@435 2279
duke@435 2280 return reg_class;
duke@435 2281 }
duke@435 2282
duke@435 2283
duke@435 2284 // Return the register class associated with 'leaf'.
duke@435 2285 const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
duke@435 2286 const char *reg_class = NULL; // "RegMask::Empty";
duke@435 2287
duke@435 2288 if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
duke@435 2289 reg_class = constrained_reg_class();
duke@435 2290 return reg_class;
duke@435 2291 }
duke@435 2292 const char *result = NULL;
duke@435 2293 const char *name = NULL;
duke@435 2294 const char *type = NULL;
duke@435 2295 // iterate through all base operands
duke@435 2296 // until we reach the register that corresponds to "leaf"
duke@435 2297 // This function is not looking for an ideal type. It needs the first
duke@435 2298 // level user type associated with the leaf.
duke@435 2299 for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
duke@435 2300 const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
duke@435 2301 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 2302 if( oper ) {
duke@435 2303 reg_class = oper->constrained_reg_class();
duke@435 2304 if( reg_class ) {
duke@435 2305 reg_class = reg_class;
duke@435 2306 } else {
duke@435 2307 // ShouldNotReachHere();
duke@435 2308 }
duke@435 2309 } else {
duke@435 2310 // ShouldNotReachHere();
duke@435 2311 }
duke@435 2312
duke@435 2313 // Increment our target leaf position if current leaf is not a candidate.
duke@435 2314 if( reg_class == NULL) ++leaf;
duke@435 2315 // Exit the loop with the value of reg_class when at the correct index
duke@435 2316 if( idx == leaf ) break;
duke@435 2317 // May iterate through all base operands if reg_class for 'leaf' is NULL
duke@435 2318 }
duke@435 2319 return reg_class;
duke@435 2320 }
duke@435 2321
duke@435 2322
duke@435 2323 // Recursive call to construct list of top-level operands.
duke@435 2324 // Implementation does not modify state of internal structures
duke@435 2325 void OperandForm::build_components() {
duke@435 2326 if (_matrule) _matrule->append_components(_localNames, _components);
duke@435 2327
duke@435 2328 // Add parameters that "do not appear in match rule".
duke@435 2329 const char *name;
duke@435 2330 for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
duke@435 2331 OperandForm *opForm = (OperandForm*)_localNames[name];
duke@435 2332
duke@435 2333 if ( _components.operand_position(name) == -1 ) {
duke@435 2334 _components.insert(name, opForm->_ident, Component::INVALID, false);
duke@435 2335 }
duke@435 2336 }
duke@435 2337
duke@435 2338 return;
duke@435 2339 }
duke@435 2340
duke@435 2341 int OperandForm::operand_position(const char *name, int usedef) {
kvn@4161 2342 return _components.operand_position(name, usedef, this);
duke@435 2343 }
duke@435 2344
duke@435 2345
duke@435 2346 // Return zero-based position in component list, only counting constants;
duke@435 2347 // Return -1 if not in list.
duke@435 2348 int OperandForm::constant_position(FormDict &globals, const Component *last) {
twisti@1040 2349 // Iterate through components and count constants preceding 'constant'
twisti@1038 2350 int position = 0;
duke@435 2351 Component *comp;
duke@435 2352 _components.reset();
duke@435 2353 while( (comp = _components.iter()) != NULL && (comp != last) ) {
duke@435 2354 // Special case for operands that take a single user-defined operand
duke@435 2355 // Skip the initial definition in the component list.
duke@435 2356 if( strcmp(comp->_name,this->_ident) == 0 ) continue;
duke@435 2357
duke@435 2358 const char *type = comp->_type;
duke@435 2359 // Lookup operand form for replacement variable's type
duke@435 2360 const Form *form = globals[type];
duke@435 2361 assert( form != NULL, "Component's type not found");
duke@435 2362 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 2363 if( oper ) {
duke@435 2364 if( oper->_matrule->is_base_constant(globals) != Form::none ) {
duke@435 2365 ++position;
duke@435 2366 }
duke@435 2367 }
duke@435 2368 }
duke@435 2369
duke@435 2370 // Check for being passed a component that was not in the list
duke@435 2371 if( comp != last ) position = -1;
duke@435 2372
duke@435 2373 return position;
duke@435 2374 }
duke@435 2375 // Provide position of constant by "name"
duke@435 2376 int OperandForm::constant_position(FormDict &globals, const char *name) {
duke@435 2377 const Component *comp = _components.search(name);
duke@435 2378 int idx = constant_position( globals, comp );
duke@435 2379
duke@435 2380 return idx;
duke@435 2381 }
duke@435 2382
duke@435 2383
duke@435 2384 // Return zero-based position in component list, only counting constants;
duke@435 2385 // Return -1 if not in list.
duke@435 2386 int OperandForm::register_position(FormDict &globals, const char *reg_name) {
twisti@1040 2387 // Iterate through components and count registers preceding 'last'
duke@435 2388 uint position = 0;
duke@435 2389 Component *comp;
duke@435 2390 _components.reset();
duke@435 2391 while( (comp = _components.iter()) != NULL
duke@435 2392 && (strcmp(comp->_name,reg_name) != 0) ) {
duke@435 2393 // Special case for operands that take a single user-defined operand
duke@435 2394 // Skip the initial definition in the component list.
duke@435 2395 if( strcmp(comp->_name,this->_ident) == 0 ) continue;
duke@435 2396
duke@435 2397 const char *type = comp->_type;
duke@435 2398 // Lookup operand form for component's type
duke@435 2399 const Form *form = globals[type];
duke@435 2400 assert( form != NULL, "Component's type not found");
duke@435 2401 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 2402 if( oper ) {
duke@435 2403 if( oper->_matrule->is_base_register(globals) ) {
duke@435 2404 ++position;
duke@435 2405 }
duke@435 2406 }
duke@435 2407 }
duke@435 2408
duke@435 2409 return position;
duke@435 2410 }
duke@435 2411
duke@435 2412
duke@435 2413 const char *OperandForm::reduce_result() const {
duke@435 2414 return _ident;
duke@435 2415 }
duke@435 2416 // Return the name of the operand on the right hand side of the binary match
duke@435 2417 // Return NULL if there is no right hand side
duke@435 2418 const char *OperandForm::reduce_right(FormDict &globals) const {
duke@435 2419 return ( _matrule ? _matrule->reduce_right(globals) : NULL );
duke@435 2420 }
duke@435 2421
duke@435 2422 // Similar for left
duke@435 2423 const char *OperandForm::reduce_left(FormDict &globals) const {
duke@435 2424 return ( _matrule ? _matrule->reduce_left(globals) : NULL );
duke@435 2425 }
duke@435 2426
duke@435 2427
duke@435 2428 // --------------------------- FILE *output_routines
duke@435 2429 //
duke@435 2430 // Output code for disp_is_oop, if true.
duke@435 2431 void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
duke@435 2432 // Check it is a memory interface with a non-user-constant disp field
duke@435 2433 if ( this->_interface == NULL ) return;
duke@435 2434 MemInterface *mem_interface = this->_interface->is_MemInterface();
duke@435 2435 if ( mem_interface == NULL ) return;
duke@435 2436 const char *disp = mem_interface->_disp;
duke@435 2437 if ( *disp != '$' ) return;
duke@435 2438
duke@435 2439 // Lookup replacement variable in operand's component list
duke@435 2440 const char *rep_var = disp + 1;
duke@435 2441 const Component *comp = this->_components.search(rep_var);
duke@435 2442 assert( comp != NULL, "Replacement variable not found in components");
duke@435 2443 // Lookup operand form for replacement variable's type
duke@435 2444 const char *type = comp->_type;
duke@435 2445 Form *form = (Form*)globals[type];
duke@435 2446 assert( form != NULL, "Replacement variable's type not found");
duke@435 2447 OperandForm *op = form->is_operand();
duke@435 2448 assert( op, "Memory Interface 'disp' can only emit an operand form");
duke@435 2449 // Check if this is a ConP, which may require relocation
duke@435 2450 if ( op->is_base_constant(globals) == Form::idealP ) {
duke@435 2451 // Find the constant's index: _c0, _c1, _c2, ... , _cN
duke@435 2452 uint idx = op->constant_position( globals, rep_var);
coleenp@4037 2453 fprintf(fp," virtual relocInfo::relocType disp_reloc() const {");
coleenp@4037 2454 fprintf(fp, " return _c%d->reloc();", idx);
duke@435 2455 fprintf(fp, " }\n");
duke@435 2456 }
duke@435 2457 }
duke@435 2458
duke@435 2459 // Generate code for internal and external format methods
duke@435 2460 //
duke@435 2461 // internal access to reg# node->_idx
duke@435 2462 // access to subsumed constant _c0, _c1,
duke@435 2463 void OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
duke@435 2464 Form::DataType dtype;
duke@435 2465 if (_matrule && (_matrule->is_base_register(globals) ||
duke@435 2466 strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
duke@435 2467 // !!!!! !!!!!
kvn@4161 2468 fprintf(fp," { char reg_str[128];\n");
kvn@4161 2469 fprintf(fp," ra->dump_register(node,reg_str);\n");
kvn@4161 2470 fprintf(fp," st->print(\"%cs\",reg_str);\n",'%');
kvn@4161 2471 fprintf(fp," }\n");
duke@435 2472 } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
duke@435 2473 format_constant( fp, index, dtype );
duke@435 2474 } else if (ideal_to_sReg_type(_ident) != Form::none) {
duke@435 2475 // Special format for Stack Slot Register
kvn@4161 2476 fprintf(fp," { char reg_str[128];\n");
kvn@4161 2477 fprintf(fp," ra->dump_register(node,reg_str);\n");
kvn@4161 2478 fprintf(fp," st->print(\"%cs\",reg_str);\n",'%');
kvn@4161 2479 fprintf(fp," }\n");
duke@435 2480 } else {
kvn@4161 2481 fprintf(fp," st->print(\"No format defined for %s\n\");\n", _ident);
duke@435 2482 fflush(fp);
duke@435 2483 fprintf(stderr,"No format defined for %s\n", _ident);
duke@435 2484 dump();
duke@435 2485 assert( false,"Internal error:\n output_internal_operand() attempting to output other than a Register or Constant");
duke@435 2486 }
duke@435 2487 }
duke@435 2488
duke@435 2489 // Similar to "int_format" but for cases where data is external to operand
duke@435 2490 // external access to reg# node->in(idx)->_idx,
duke@435 2491 void OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
duke@435 2492 Form::DataType dtype;
duke@435 2493 if (_matrule && (_matrule->is_base_register(globals) ||
duke@435 2494 strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
kvn@4161 2495 fprintf(fp," { char reg_str[128];\n");
kvn@4161 2496 fprintf(fp," ra->dump_register(node->in(idx");
kvn@4161 2497 if ( index != 0 ) fprintf(fp, "+%d",index);
kvn@4161 2498 fprintf(fp, "),reg_str);\n");
kvn@4161 2499 fprintf(fp," st->print(\"%cs\",reg_str);\n",'%');
kvn@4161 2500 fprintf(fp," }\n");
duke@435 2501 } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
duke@435 2502 format_constant( fp, index, dtype );
duke@435 2503 } else if (ideal_to_sReg_type(_ident) != Form::none) {
duke@435 2504 // Special format for Stack Slot Register
kvn@4161 2505 fprintf(fp," { char reg_str[128];\n");
kvn@4161 2506 fprintf(fp," ra->dump_register(node->in(idx");
duke@435 2507 if ( index != 0 ) fprintf(fp, "+%d",index);
duke@435 2508 fprintf(fp, "),reg_str);\n");
kvn@4161 2509 fprintf(fp," st->print(\"%cs\",reg_str);\n",'%');
kvn@4161 2510 fprintf(fp," }\n");
duke@435 2511 } else {
kvn@4161 2512 fprintf(fp," st->print(\"No format defined for %s\n\");\n", _ident);
duke@435 2513 assert( false,"Internal error:\n output_external_operand() attempting to output other than a Register or Constant");
duke@435 2514 }
duke@435 2515 }
duke@435 2516
duke@435 2517 void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
duke@435 2518 switch(const_type) {
kvn@4161 2519 case Form::idealI: fprintf(fp," st->print(\"#%%d\", _c%d);\n", const_index); break;
kvn@4161 2520 case Form::idealP: fprintf(fp," if (_c%d) _c%d->dump_on(st);\n", const_index, const_index); break;
roland@4159 2521 case Form::idealNKlass:
kvn@4161 2522 case Form::idealN: fprintf(fp," if (_c%d) _c%d->dump_on(st);\n", const_index, const_index); break;
kvn@4161 2523 case Form::idealL: fprintf(fp," st->print(\"#%%lld\", _c%d);\n", const_index); break;
kvn@4161 2524 case Form::idealF: fprintf(fp," st->print(\"#%%f\", _c%d);\n", const_index); break;
kvn@4161 2525 case Form::idealD: fprintf(fp," st->print(\"#%%f\", _c%d);\n", const_index); break;
duke@435 2526 default:
duke@435 2527 assert( false, "ShouldNotReachHere()");
duke@435 2528 }
duke@435 2529 }
duke@435 2530
duke@435 2531 // Return the operand form corresponding to the given index, else NULL.
duke@435 2532 OperandForm *OperandForm::constant_operand(FormDict &globals,
duke@435 2533 uint index) {
duke@435 2534 // !!!!!
duke@435 2535 // Check behavior on complex operands
duke@435 2536 uint n_consts = num_consts(globals);
duke@435 2537 if( n_consts > 0 ) {
duke@435 2538 uint i = 0;
duke@435 2539 const char *type;
duke@435 2540 Component *comp;
duke@435 2541 _components.reset();
duke@435 2542 if ((comp = _components.iter()) == NULL) {
duke@435 2543 assert(n_consts == 1, "Bad component list detected.\n");
duke@435 2544 // Current operand is THE operand
duke@435 2545 if ( index == 0 ) {
duke@435 2546 return this;
duke@435 2547 }
duke@435 2548 } // end if NULL
duke@435 2549 else {
duke@435 2550 // Skip the first component, it can not be a DEF of a constant
duke@435 2551 do {
duke@435 2552 type = comp->base_type(globals);
duke@435 2553 // Check that "type" is a 'ConI', 'ConP', ...
duke@435 2554 if ( ideal_to_const_type(type) != Form::none ) {
duke@435 2555 // When at correct component, get corresponding Operand
duke@435 2556 if ( index == 0 ) {
duke@435 2557 return globals[comp->_type]->is_operand();
duke@435 2558 }
duke@435 2559 // Decrement number of constants to go
duke@435 2560 --index;
duke@435 2561 }
duke@435 2562 } while((comp = _components.iter()) != NULL);
duke@435 2563 }
duke@435 2564 }
duke@435 2565
duke@435 2566 // Did not find a constant for this index.
duke@435 2567 return NULL;
duke@435 2568 }
duke@435 2569
duke@435 2570 // If this operand has a single ideal type, return its type
duke@435 2571 Form::DataType OperandForm::simple_type(FormDict &globals) const {
duke@435 2572 const char *type_name = ideal_type(globals);
duke@435 2573 Form::DataType type = type_name ? ideal_to_const_type( type_name )
duke@435 2574 : Form::none;
duke@435 2575 return type;
duke@435 2576 }
duke@435 2577
duke@435 2578 Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
duke@435 2579 if ( _matrule == NULL ) return Form::none;
duke@435 2580
duke@435 2581 return _matrule->is_base_constant(globals);
duke@435 2582 }
duke@435 2583
duke@435 2584 // "true" if this operand is a simple type that is swallowed
duke@435 2585 bool OperandForm::swallowed(FormDict &globals) const {
duke@435 2586 Form::DataType type = simple_type(globals);
duke@435 2587 if( type != Form::none ) {
duke@435 2588 return true;
duke@435 2589 }
duke@435 2590
duke@435 2591 return false;
duke@435 2592 }
duke@435 2593
duke@435 2594 // Output code to access the value of the index'th constant
duke@435 2595 void OperandForm::access_constant(FILE *fp, FormDict &globals,
duke@435 2596 uint const_index) {
duke@435 2597 OperandForm *oper = constant_operand(globals, const_index);
duke@435 2598 assert( oper, "Index exceeds number of constants in operand");
duke@435 2599 Form::DataType dtype = oper->is_base_constant(globals);
duke@435 2600
duke@435 2601 switch(dtype) {
duke@435 2602 case idealI: fprintf(fp,"_c%d", const_index); break;
duke@435 2603 case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
duke@435 2604 case idealL: fprintf(fp,"_c%d", const_index); break;
duke@435 2605 case idealF: fprintf(fp,"_c%d", const_index); break;
duke@435 2606 case idealD: fprintf(fp,"_c%d", const_index); break;
duke@435 2607 default:
duke@435 2608 assert( false, "ShouldNotReachHere()");
duke@435 2609 }
duke@435 2610 }
duke@435 2611
duke@435 2612
duke@435 2613 void OperandForm::dump() {
duke@435 2614 output(stderr);
duke@435 2615 }
duke@435 2616
duke@435 2617 void OperandForm::output(FILE *fp) {
duke@435 2618 fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
duke@435 2619 if (_matrule) _matrule->dump();
duke@435 2620 if (_interface) _interface->dump();
duke@435 2621 if (_attribs) _attribs->dump();
duke@435 2622 if (_predicate) _predicate->dump();
duke@435 2623 if (_constraint) _constraint->dump();
duke@435 2624 if (_construct) _construct->dump();
duke@435 2625 if (_format) _format->dump();
duke@435 2626 }
duke@435 2627
duke@435 2628 //------------------------------Constraint-------------------------------------
duke@435 2629 Constraint::Constraint(const char *func, const char *arg)
duke@435 2630 : _func(func), _arg(arg) {
duke@435 2631 }
duke@435 2632 Constraint::~Constraint() { /* not owner of char* */
duke@435 2633 }
duke@435 2634
duke@435 2635 bool Constraint::stack_slots_only() const {
duke@435 2636 return strcmp(_func, "ALLOC_IN_RC") == 0
duke@435 2637 && strcmp(_arg, "stack_slots") == 0;
duke@435 2638 }
duke@435 2639
duke@435 2640 void Constraint::dump() {
duke@435 2641 output(stderr);
duke@435 2642 }
duke@435 2643
duke@435 2644 void Constraint::output(FILE *fp) { // Write info to output files
duke@435 2645 assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
duke@435 2646 fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg);
duke@435 2647 }
duke@435 2648
duke@435 2649 //------------------------------Predicate--------------------------------------
duke@435 2650 Predicate::Predicate(char *pr)
duke@435 2651 : _pred(pr) {
duke@435 2652 }
duke@435 2653 Predicate::~Predicate() {
duke@435 2654 }
duke@435 2655
duke@435 2656 void Predicate::dump() {
duke@435 2657 output(stderr);
duke@435 2658 }
duke@435 2659
duke@435 2660 void Predicate::output(FILE *fp) {
duke@435 2661 fprintf(fp,"Predicate"); // Write to output files
duke@435 2662 }
duke@435 2663 //------------------------------Interface--------------------------------------
duke@435 2664 Interface::Interface(const char *name) : _name(name) {
duke@435 2665 }
duke@435 2666 Interface::~Interface() {
duke@435 2667 }
duke@435 2668
duke@435 2669 Form::InterfaceType Interface::interface_type(FormDict &globals) const {
duke@435 2670 Interface *thsi = (Interface*)this;
duke@435 2671 if ( thsi->is_RegInterface() ) return Form::register_interface;
duke@435 2672 if ( thsi->is_MemInterface() ) return Form::memory_interface;
duke@435 2673 if ( thsi->is_ConstInterface() ) return Form::constant_interface;
duke@435 2674 if ( thsi->is_CondInterface() ) return Form::conditional_interface;
duke@435 2675
duke@435 2676 return Form::no_interface;
duke@435 2677 }
duke@435 2678
duke@435 2679 RegInterface *Interface::is_RegInterface() {
duke@435 2680 if ( strcmp(_name,"REG_INTER") != 0 )
duke@435 2681 return NULL;
duke@435 2682 return (RegInterface*)this;
duke@435 2683 }
duke@435 2684 MemInterface *Interface::is_MemInterface() {
duke@435 2685 if ( strcmp(_name,"MEMORY_INTER") != 0 ) return NULL;
duke@435 2686 return (MemInterface*)this;
duke@435 2687 }
duke@435 2688 ConstInterface *Interface::is_ConstInterface() {
duke@435 2689 if ( strcmp(_name,"CONST_INTER") != 0 ) return NULL;
duke@435 2690 return (ConstInterface*)this;
duke@435 2691 }
duke@435 2692 CondInterface *Interface::is_CondInterface() {
duke@435 2693 if ( strcmp(_name,"COND_INTER") != 0 ) return NULL;
duke@435 2694 return (CondInterface*)this;
duke@435 2695 }
duke@435 2696
duke@435 2697
duke@435 2698 void Interface::dump() {
duke@435 2699 output(stderr);
duke@435 2700 }
duke@435 2701
duke@435 2702 // Write info to output files
duke@435 2703 void Interface::output(FILE *fp) {
duke@435 2704 fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
duke@435 2705 }
duke@435 2706
duke@435 2707 //------------------------------RegInterface-----------------------------------
duke@435 2708 RegInterface::RegInterface() : Interface("REG_INTER") {
duke@435 2709 }
duke@435 2710 RegInterface::~RegInterface() {
duke@435 2711 }
duke@435 2712
duke@435 2713 void RegInterface::dump() {
duke@435 2714 output(stderr);
duke@435 2715 }
duke@435 2716
duke@435 2717 // Write info to output files
duke@435 2718 void RegInterface::output(FILE *fp) {
duke@435 2719 Interface::output(fp);
duke@435 2720 }
duke@435 2721
duke@435 2722 //------------------------------ConstInterface---------------------------------
duke@435 2723 ConstInterface::ConstInterface() : Interface("CONST_INTER") {
duke@435 2724 }
duke@435 2725 ConstInterface::~ConstInterface() {
duke@435 2726 }
duke@435 2727
duke@435 2728 void ConstInterface::dump() {
duke@435 2729 output(stderr);
duke@435 2730 }
duke@435 2731
duke@435 2732 // Write info to output files
duke@435 2733 void ConstInterface::output(FILE *fp) {
duke@435 2734 Interface::output(fp);
duke@435 2735 }
duke@435 2736
duke@435 2737 //------------------------------MemInterface-----------------------------------
duke@435 2738 MemInterface::MemInterface(char *base, char *index, char *scale, char *disp)
duke@435 2739 : Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
duke@435 2740 }
duke@435 2741 MemInterface::~MemInterface() {
duke@435 2742 // not owner of any character arrays
duke@435 2743 }
duke@435 2744
duke@435 2745 void MemInterface::dump() {
duke@435 2746 output(stderr);
duke@435 2747 }
duke@435 2748
duke@435 2749 // Write info to output files
duke@435 2750 void MemInterface::output(FILE *fp) {
duke@435 2751 Interface::output(fp);
duke@435 2752 if ( _base != NULL ) fprintf(fp," base == %s\n", _base);
duke@435 2753 if ( _index != NULL ) fprintf(fp," index == %s\n", _index);
duke@435 2754 if ( _scale != NULL ) fprintf(fp," scale == %s\n", _scale);
duke@435 2755 if ( _disp != NULL ) fprintf(fp," disp == %s\n", _disp);
duke@435 2756 // fprintf(fp,"\n");
duke@435 2757 }
duke@435 2758
duke@435 2759 //------------------------------CondInterface----------------------------------
never@850 2760 CondInterface::CondInterface(const char* equal, const char* equal_format,
never@850 2761 const char* not_equal, const char* not_equal_format,
never@850 2762 const char* less, const char* less_format,
never@850 2763 const char* greater_equal, const char* greater_equal_format,
never@850 2764 const char* less_equal, const char* less_equal_format,
rbackman@5791 2765 const char* greater, const char* greater_format,
rbackman@5791 2766 const char* overflow, const char* overflow_format,
rbackman@5791 2767 const char* no_overflow, const char* no_overflow_format)
duke@435 2768 : Interface("COND_INTER"),
never@850 2769 _equal(equal), _equal_format(equal_format),
never@850 2770 _not_equal(not_equal), _not_equal_format(not_equal_format),
never@850 2771 _less(less), _less_format(less_format),
never@850 2772 _greater_equal(greater_equal), _greater_equal_format(greater_equal_format),
never@850 2773 _less_equal(less_equal), _less_equal_format(less_equal_format),
rbackman@5791 2774 _greater(greater), _greater_format(greater_format),
rbackman@5791 2775 _overflow(overflow), _overflow_format(overflow_format),
rbackman@5791 2776 _no_overflow(no_overflow), _no_overflow_format(no_overflow_format) {
duke@435 2777 }
duke@435 2778 CondInterface::~CondInterface() {
duke@435 2779 // not owner of any character arrays
duke@435 2780 }
duke@435 2781
duke@435 2782 void CondInterface::dump() {
duke@435 2783 output(stderr);
duke@435 2784 }
duke@435 2785
duke@435 2786 // Write info to output files
duke@435 2787 void CondInterface::output(FILE *fp) {
duke@435 2788 Interface::output(fp);
rbackman@5791 2789 if ( _equal != NULL ) fprintf(fp," equal == %s\n", _equal);
rbackman@5791 2790 if ( _not_equal != NULL ) fprintf(fp," not_equal == %s\n", _not_equal);
rbackman@5791 2791 if ( _less != NULL ) fprintf(fp," less == %s\n", _less);
rbackman@5791 2792 if ( _greater_equal != NULL ) fprintf(fp," greater_equal == %s\n", _greater_equal);
rbackman@5791 2793 if ( _less_equal != NULL ) fprintf(fp," less_equal == %s\n", _less_equal);
rbackman@5791 2794 if ( _greater != NULL ) fprintf(fp," greater == %s\n", _greater);
rbackman@5791 2795 if ( _overflow != NULL ) fprintf(fp," overflow == %s\n", _overflow);
rbackman@5791 2796 if ( _no_overflow != NULL ) fprintf(fp," no_overflow == %s\n", _no_overflow);
duke@435 2797 // fprintf(fp,"\n");
duke@435 2798 }
duke@435 2799
duke@435 2800 //------------------------------ConstructRule----------------------------------
duke@435 2801 ConstructRule::ConstructRule(char *cnstr)
duke@435 2802 : _construct(cnstr) {
duke@435 2803 }
duke@435 2804 ConstructRule::~ConstructRule() {
duke@435 2805 }
duke@435 2806
duke@435 2807 void ConstructRule::dump() {
duke@435 2808 output(stderr);
duke@435 2809 }
duke@435 2810
duke@435 2811 void ConstructRule::output(FILE *fp) {
duke@435 2812 fprintf(fp,"\nConstruct Rule\n"); // Write to output files
duke@435 2813 }
duke@435 2814
duke@435 2815
duke@435 2816 //==============================Shared Forms===================================
duke@435 2817 //------------------------------AttributeForm----------------------------------
duke@435 2818 int AttributeForm::_insId = 0; // start counter at 0
duke@435 2819 int AttributeForm::_opId = 0; // start counter at 0
duke@435 2820 const char* AttributeForm::_ins_cost = "ins_cost"; // required name
duke@435 2821 const char* AttributeForm::_op_cost = "op_cost"; // required name
duke@435 2822
duke@435 2823 AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
duke@435 2824 : Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
duke@435 2825 if (type==OP_ATTR) {
duke@435 2826 id = ++_opId;
duke@435 2827 }
duke@435 2828 else if (type==INS_ATTR) {
duke@435 2829 id = ++_insId;
duke@435 2830 }
duke@435 2831 else assert( false,"");
duke@435 2832 }
duke@435 2833 AttributeForm::~AttributeForm() {
duke@435 2834 }
duke@435 2835
duke@435 2836 // Dynamic type check
duke@435 2837 AttributeForm *AttributeForm::is_attribute() const {
duke@435 2838 return (AttributeForm*)this;
duke@435 2839 }
duke@435 2840
duke@435 2841
duke@435 2842 // inlined // int AttributeForm::type() { return id;}
duke@435 2843
duke@435 2844 void AttributeForm::dump() {
duke@435 2845 output(stderr);
duke@435 2846 }
duke@435 2847
duke@435 2848 void AttributeForm::output(FILE *fp) {
duke@435 2849 if( _attrname && _attrdef ) {
duke@435 2850 fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
duke@435 2851 _attrname, _attrdef);
duke@435 2852 }
duke@435 2853 else {
duke@435 2854 fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
duke@435 2855 (_attrname?_attrname:""), (_attrdef?_attrdef:"") );
duke@435 2856 }
duke@435 2857 }
duke@435 2858
duke@435 2859 //------------------------------Component--------------------------------------
duke@435 2860 Component::Component(const char *name, const char *type, int usedef)
duke@435 2861 : _name(name), _type(type), _usedef(usedef) {
duke@435 2862 _ftype = Form::COMP;
duke@435 2863 }
duke@435 2864 Component::~Component() {
duke@435 2865 }
duke@435 2866
duke@435 2867 // True if this component is equal to the parameter.
duke@435 2868 bool Component::is(int use_def_kill_enum) const {
duke@435 2869 return (_usedef == use_def_kill_enum ? true : false);
duke@435 2870 }
duke@435 2871 // True if this component is used/def'd/kill'd as the parameter suggests.
duke@435 2872 bool Component::isa(int use_def_kill_enum) const {
duke@435 2873 return (_usedef & use_def_kill_enum) == use_def_kill_enum;
duke@435 2874 }
duke@435 2875
duke@435 2876 // Extend this component with additional use/def/kill behavior
duke@435 2877 int Component::promote_use_def_info(int new_use_def) {
duke@435 2878 _usedef |= new_use_def;
duke@435 2879
duke@435 2880 return _usedef;
duke@435 2881 }
duke@435 2882
duke@435 2883 // Check the base type of this component, if it has one
duke@435 2884 const char *Component::base_type(FormDict &globals) {
duke@435 2885 const Form *frm = globals[_type];
duke@435 2886 if (frm == NULL) return NULL;
duke@435 2887 OperandForm *op = frm->is_operand();
duke@435 2888 if (op == NULL) return NULL;
duke@435 2889 if (op->ideal_only()) return op->_ident;
duke@435 2890 return (char *)op->ideal_type(globals);
duke@435 2891 }
duke@435 2892
duke@435 2893 void Component::dump() {
duke@435 2894 output(stderr);
duke@435 2895 }
duke@435 2896
duke@435 2897 void Component::output(FILE *fp) {
duke@435 2898 fprintf(fp,"Component:"); // Write to output files
duke@435 2899 fprintf(fp, " name = %s", _name);
duke@435 2900 fprintf(fp, ", type = %s", _type);
kvn@4161 2901 assert(_usedef != 0, "unknown effect");
kvn@4161 2902 fprintf(fp, ", use/def = %s\n", getUsedefName());
duke@435 2903 }
duke@435 2904
duke@435 2905
duke@435 2906 //------------------------------ComponentList---------------------------------
duke@435 2907 ComponentList::ComponentList() : NameList(), _matchcnt(0) {
duke@435 2908 }
duke@435 2909 ComponentList::~ComponentList() {
duke@435 2910 // // This list may not own its elements if copied via assignment
duke@435 2911 // Component *component;
duke@435 2912 // for (reset(); (component = iter()) != NULL;) {
duke@435 2913 // delete component;
duke@435 2914 // }
duke@435 2915 }
duke@435 2916
duke@435 2917 void ComponentList::insert(Component *component, bool mflag) {
duke@435 2918 NameList::addName((char *)component);
duke@435 2919 if(mflag) _matchcnt++;
duke@435 2920 }
duke@435 2921 void ComponentList::insert(const char *name, const char *opType, int usedef,
duke@435 2922 bool mflag) {
duke@435 2923 Component * component = new Component(name, opType, usedef);
duke@435 2924 insert(component, mflag);
duke@435 2925 }
duke@435 2926 Component *ComponentList::current() { return (Component*)NameList::current(); }
duke@435 2927 Component *ComponentList::iter() { return (Component*)NameList::iter(); }
duke@435 2928 Component *ComponentList::match_iter() {
duke@435 2929 if(_iter < _matchcnt) return (Component*)NameList::iter();
duke@435 2930 return NULL;
duke@435 2931 }
duke@435 2932 Component *ComponentList::post_match_iter() {
duke@435 2933 Component *comp = iter();
duke@435 2934 // At end of list?
duke@435 2935 if ( comp == NULL ) {
duke@435 2936 return comp;
duke@435 2937 }
duke@435 2938 // In post-match components?
duke@435 2939 if (_iter > match_count()-1) {
duke@435 2940 return comp;
duke@435 2941 }
duke@435 2942
duke@435 2943 return post_match_iter();
duke@435 2944 }
duke@435 2945
duke@435 2946 void ComponentList::reset() { NameList::reset(); }
duke@435 2947 int ComponentList::count() { return NameList::count(); }
duke@435 2948
duke@435 2949 Component *ComponentList::operator[](int position) {
duke@435 2950 // Shortcut complete iteration if there are not enough entries
duke@435 2951 if (position >= count()) return NULL;
duke@435 2952
duke@435 2953 int index = 0;
duke@435 2954 Component *component = NULL;
duke@435 2955 for (reset(); (component = iter()) != NULL;) {
duke@435 2956 if (index == position) {
duke@435 2957 return component;
duke@435 2958 }
duke@435 2959 ++index;
duke@435 2960 }
duke@435 2961
duke@435 2962 return NULL;
duke@435 2963 }
duke@435 2964
duke@435 2965 const Component *ComponentList::search(const char *name) {
duke@435 2966 PreserveIter pi(this);
duke@435 2967 reset();
duke@435 2968 for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
duke@435 2969 if( strcmp(comp->_name,name) == 0 ) return comp;
duke@435 2970 }
duke@435 2971
duke@435 2972 return NULL;
duke@435 2973 }
duke@435 2974
duke@435 2975 // Return number of USEs + number of DEFs
duke@435 2976 // When there are no components, or the first component is a USE,
duke@435 2977 // then we add '1' to hold a space for the 'result' operand.
duke@435 2978 int ComponentList::num_operands() {
duke@435 2979 PreserveIter pi(this);
duke@435 2980 uint count = 1; // result operand
duke@435 2981 uint position = 0;
duke@435 2982
duke@435 2983 Component *component = NULL;
duke@435 2984 for( reset(); (component = iter()) != NULL; ++position ) {
duke@435 2985 if( component->isa(Component::USE) ||
duke@435 2986 ( position == 0 && (! component->isa(Component::DEF))) ) {
duke@435 2987 ++count;
duke@435 2988 }
duke@435 2989 }
duke@435 2990
duke@435 2991 return count;
duke@435 2992 }
duke@435 2993
kvn@4161 2994 // Return zero-based position of operand 'name' in list; -1 if not in list.
duke@435 2995 // if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
kvn@4161 2996 int ComponentList::operand_position(const char *name, int usedef, Form *fm) {
duke@435 2997 PreserveIter pi(this);
duke@435 2998 int position = 0;
duke@435 2999 int num_opnds = num_operands();
duke@435 3000 Component *component;
duke@435 3001 Component* preceding_non_use = NULL;
duke@435 3002 Component* first_def = NULL;
duke@435 3003 for (reset(); (component = iter()) != NULL; ++position) {
duke@435 3004 // When the first component is not a DEF,
duke@435 3005 // leave space for the result operand!
duke@435 3006 if ( position==0 && (! component->isa(Component::DEF)) ) {
duke@435 3007 ++position;
duke@435 3008 ++num_opnds;
duke@435 3009 }
duke@435 3010 if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
duke@435 3011 // When the first entry in the component list is a DEF and a USE
duke@435 3012 // Treat them as being separate, a DEF first, then a USE
duke@435 3013 if( position==0
duke@435 3014 && usedef==Component::USE && component->isa(Component::DEF) ) {
duke@435 3015 assert(position+1 < num_opnds, "advertised index in bounds");
duke@435 3016 return position+1;
duke@435 3017 } else {
duke@435 3018 if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
kvn@4161 3019 fprintf(stderr, "the name '%s(%s)' should not precede the name '%s(%s)'",
kvn@4161 3020 preceding_non_use->_name, preceding_non_use->getUsedefName(),
kvn@4161 3021 name, component->getUsedefName());
kvn@4161 3022 if (fm && fm->is_instruction()) fprintf(stderr, "in form '%s'", fm->is_instruction()->_ident);
kvn@4161 3023 if (fm && fm->is_operand()) fprintf(stderr, "in form '%s'", fm->is_operand()->_ident);
kvn@4161 3024 fprintf(stderr, "\n");
duke@435 3025 }
duke@435 3026 if( position >= num_opnds ) {
kvn@4161 3027 fprintf(stderr, "the name '%s' is too late in its name list", name);
kvn@4161 3028 if (fm && fm->is_instruction()) fprintf(stderr, "in form '%s'", fm->is_instruction()->_ident);
kvn@4161 3029 if (fm && fm->is_operand()) fprintf(stderr, "in form '%s'", fm->is_operand()->_ident);
kvn@4161 3030 fprintf(stderr, "\n");
duke@435 3031 }
duke@435 3032 assert(position < num_opnds, "advertised index in bounds");
duke@435 3033 return position;
duke@435 3034 }
duke@435 3035 }
duke@435 3036 if( component->isa(Component::DEF)
duke@435 3037 && component->isa(Component::USE) ) {
duke@435 3038 ++position;
duke@435 3039 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 3040 }
duke@435 3041 if( component->isa(Component::DEF) && !first_def ) {
duke@435 3042 first_def = component;
duke@435 3043 }
duke@435 3044 if( !component->isa(Component::USE) && component != first_def ) {
duke@435 3045 preceding_non_use = component;
duke@435 3046 } else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
duke@435 3047 preceding_non_use = NULL;
duke@435 3048 }
duke@435 3049 }
duke@435 3050 return Not_in_list;
duke@435 3051 }
duke@435 3052
duke@435 3053 // Find position for this name, regardless of use/def information
duke@435 3054 int ComponentList::operand_position(const char *name) {
duke@435 3055 PreserveIter pi(this);
duke@435 3056 int position = 0;
duke@435 3057 Component *component;
duke@435 3058 for (reset(); (component = iter()) != NULL; ++position) {
duke@435 3059 // When the first component is not a DEF,
duke@435 3060 // leave space for the result operand!
duke@435 3061 if ( position==0 && (! component->isa(Component::DEF)) ) {
duke@435 3062 ++position;
duke@435 3063 }
duke@435 3064 if (strcmp(name, component->_name)==0) {
duke@435 3065 return position;
duke@435 3066 }
duke@435 3067 if( component->isa(Component::DEF)
duke@435 3068 && component->isa(Component::USE) ) {
duke@435 3069 ++position;
duke@435 3070 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 3071 }
duke@435 3072 }
duke@435 3073 return Not_in_list;
duke@435 3074 }
duke@435 3075
kvn@4161 3076 int ComponentList::operand_position_format(const char *name, Form *fm) {
duke@435 3077 PreserveIter pi(this);
duke@435 3078 int first_position = operand_position(name);
kvn@4161 3079 int use_position = operand_position(name, Component::USE, fm);
duke@435 3080
duke@435 3081 return ((first_position < use_position) ? use_position : first_position);
duke@435 3082 }
duke@435 3083
duke@435 3084 int ComponentList::label_position() {
duke@435 3085 PreserveIter pi(this);
duke@435 3086 int position = 0;
duke@435 3087 reset();
duke@435 3088 for( Component *comp; (comp = iter()) != NULL; ++position) {
duke@435 3089 // When the first component is not a DEF,
duke@435 3090 // leave space for the result operand!
duke@435 3091 if ( position==0 && (! comp->isa(Component::DEF)) ) {
duke@435 3092 ++position;
duke@435 3093 }
duke@435 3094 if (strcmp(comp->_type, "label")==0) {
duke@435 3095 return position;
duke@435 3096 }
duke@435 3097 if( comp->isa(Component::DEF)
duke@435 3098 && comp->isa(Component::USE) ) {
duke@435 3099 ++position;
duke@435 3100 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 3101 }
duke@435 3102 }
duke@435 3103
duke@435 3104 return -1;
duke@435 3105 }
duke@435 3106
duke@435 3107 int ComponentList::method_position() {
duke@435 3108 PreserveIter pi(this);
duke@435 3109 int position = 0;
duke@435 3110 reset();
duke@435 3111 for( Component *comp; (comp = iter()) != NULL; ++position) {
duke@435 3112 // When the first component is not a DEF,
duke@435 3113 // leave space for the result operand!
duke@435 3114 if ( position==0 && (! comp->isa(Component::DEF)) ) {
duke@435 3115 ++position;
duke@435 3116 }
duke@435 3117 if (strcmp(comp->_type, "method")==0) {
duke@435 3118 return position;
duke@435 3119 }
duke@435 3120 if( comp->isa(Component::DEF)
duke@435 3121 && comp->isa(Component::USE) ) {
duke@435 3122 ++position;
duke@435 3123 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 3124 }
duke@435 3125 }
duke@435 3126
duke@435 3127 return -1;
duke@435 3128 }
duke@435 3129
duke@435 3130 void ComponentList::dump() { output(stderr); }
duke@435 3131
duke@435 3132 void ComponentList::output(FILE *fp) {
duke@435 3133 PreserveIter pi(this);
duke@435 3134 fprintf(fp, "\n");
duke@435 3135 Component *component;
duke@435 3136 for (reset(); (component = iter()) != NULL;) {
duke@435 3137 component->output(fp);
duke@435 3138 }
duke@435 3139 fprintf(fp, "\n");
duke@435 3140 }
duke@435 3141
duke@435 3142 //------------------------------MatchNode--------------------------------------
duke@435 3143 MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
duke@435 3144 const char *opType, MatchNode *lChild, MatchNode *rChild)
duke@435 3145 : _AD(ad), _result(result), _name(mexpr), _opType(opType),
duke@435 3146 _lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0),
duke@435 3147 _commutative_id(0) {
duke@435 3148 _numleaves = (lChild ? lChild->_numleaves : 0)
duke@435 3149 + (rChild ? rChild->_numleaves : 0);
duke@435 3150 }
duke@435 3151
duke@435 3152 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode)
duke@435 3153 : _AD(ad), _result(mnode._result), _name(mnode._name),
duke@435 3154 _opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild),
duke@435 3155 _internalop(0), _numleaves(mnode._numleaves),
duke@435 3156 _commutative_id(mnode._commutative_id) {
duke@435 3157 }
duke@435 3158
duke@435 3159 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone)
duke@435 3160 : _AD(ad), _result(mnode._result), _name(mnode._name),
duke@435 3161 _opType(mnode._opType),
duke@435 3162 _internalop(0), _numleaves(mnode._numleaves),
duke@435 3163 _commutative_id(mnode._commutative_id) {
duke@435 3164 if (mnode._lChild) {
duke@435 3165 _lChild = new MatchNode(ad, *mnode._lChild, clone);
duke@435 3166 } else {
duke@435 3167 _lChild = NULL;
duke@435 3168 }
duke@435 3169 if (mnode._rChild) {
duke@435 3170 _rChild = new MatchNode(ad, *mnode._rChild, clone);
duke@435 3171 } else {
duke@435 3172 _rChild = NULL;
duke@435 3173 }
duke@435 3174 }
duke@435 3175
duke@435 3176 MatchNode::~MatchNode() {
duke@435 3177 // // This node may not own its children if copied via assignment
duke@435 3178 // if( _lChild ) delete _lChild;
duke@435 3179 // if( _rChild ) delete _rChild;
duke@435 3180 }
duke@435 3181
duke@435 3182 bool MatchNode::find_type(const char *type, int &position) const {
duke@435 3183 if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
duke@435 3184 if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;
duke@435 3185
duke@435 3186 if (strcmp(type,_opType)==0) {
duke@435 3187 return true;
duke@435 3188 } else {
duke@435 3189 ++position;
duke@435 3190 }
duke@435 3191 return false;
duke@435 3192 }
duke@435 3193
duke@435 3194 // Recursive call collecting info on top-level operands, not transitive.
duke@435 3195 // Implementation does not modify state of internal structures.
twisti@1038 3196 void MatchNode::append_components(FormDict& locals, ComponentList& components,
twisti@1038 3197 bool def_flag) const {
twisti@1038 3198 int usedef = def_flag ? Component::DEF : Component::USE;
duke@435 3199 FormDict &globals = _AD.globalNames();
duke@435 3200
duke@435 3201 assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
duke@435 3202 // Base case
duke@435 3203 if (_lChild==NULL && _rChild==NULL) {
duke@435 3204 // If _opType is not an operation, do not build a component for it #####
duke@435 3205 const Form *f = globals[_opType];
duke@435 3206 if( f != NULL ) {
duke@435 3207 // Add non-ideals that are operands, operand-classes,
duke@435 3208 if( ! f->ideal_only()
duke@435 3209 && (f->is_opclass() || f->is_operand()) ) {
duke@435 3210 components.insert(_name, _opType, usedef, true);
duke@435 3211 }
duke@435 3212 }
duke@435 3213 return;
duke@435 3214 }
duke@435 3215 // Promote results of "Set" to DEF
twisti@1038 3216 bool tmpdef_flag = (!strcmp(_opType, "Set")) ? true : false;
twisti@1038 3217 if (_lChild) _lChild->append_components(locals, components, tmpdef_flag);
twisti@1038 3218 tmpdef_flag = false; // only applies to component immediately following 'Set'
twisti@1038 3219 if (_rChild) _rChild->append_components(locals, components, tmpdef_flag);
duke@435 3220 }
duke@435 3221
duke@435 3222 // Find the n'th base-operand in the match node,
duke@435 3223 // recursively investigates match rules of user-defined operands.
duke@435 3224 //
duke@435 3225 // Implementation does not modify state of internal structures since they
duke@435 3226 // can be shared.
duke@435 3227 bool MatchNode::base_operand(uint &position, FormDict &globals,
duke@435 3228 const char * &result, const char * &name,
duke@435 3229 const char * &opType) const {
duke@435 3230 assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
duke@435 3231 // Base case
duke@435 3232 if (_lChild==NULL && _rChild==NULL) {
duke@435 3233 // Check for special case: "Universe", "label"
duke@435 3234 if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
duke@435 3235 if (position == 0) {
duke@435 3236 result = _result;
duke@435 3237 name = _name;
duke@435 3238 opType = _opType;
duke@435 3239 return 1;
duke@435 3240 } else {
duke@435 3241 -- position;
duke@435 3242 return 0;
duke@435 3243 }
duke@435 3244 }
duke@435 3245
duke@435 3246 const Form *form = globals[_opType];
duke@435 3247 MatchNode *matchNode = NULL;
duke@435 3248 // Check for user-defined type
duke@435 3249 if (form) {
duke@435 3250 // User operand or instruction?
duke@435 3251 OperandForm *opForm = form->is_operand();
duke@435 3252 InstructForm *inForm = form->is_instruction();
duke@435 3253 if ( opForm ) {
duke@435 3254 matchNode = (MatchNode*)opForm->_matrule;
duke@435 3255 } else if ( inForm ) {
duke@435 3256 matchNode = (MatchNode*)inForm->_matrule;
duke@435 3257 }
duke@435 3258 }
duke@435 3259 // if this is user-defined, recurse on match rule
duke@435 3260 // User-defined operand and instruction forms have a match-rule.
duke@435 3261 if (matchNode) {
duke@435 3262 return (matchNode->base_operand(position,globals,result,name,opType));
duke@435 3263 } else {
duke@435 3264 // Either not a form, or a system-defined form (no match rule).
duke@435 3265 if (position==0) {
duke@435 3266 result = _result;
duke@435 3267 name = _name;
duke@435 3268 opType = _opType;
duke@435 3269 return 1;
duke@435 3270 } else {
duke@435 3271 --position;
duke@435 3272 return 0;
duke@435 3273 }
duke@435 3274 }
duke@435 3275
duke@435 3276 } else {
duke@435 3277 // Examine the left child and right child as well
duke@435 3278 if (_lChild) {
duke@435 3279 if (_lChild->base_operand(position, globals, result, name, opType))
duke@435 3280 return 1;
duke@435 3281 }
duke@435 3282
duke@435 3283 if (_rChild) {
duke@435 3284 if (_rChild->base_operand(position, globals, result, name, opType))
duke@435 3285 return 1;
duke@435 3286 }
duke@435 3287 }
duke@435 3288
duke@435 3289 return 0;
duke@435 3290 }
duke@435 3291
duke@435 3292 // Recursive call on all operands' match rules in my match rule.
duke@435 3293 uint MatchNode::num_consts(FormDict &globals) const {
duke@435 3294 uint index = 0;
duke@435 3295 uint num_consts = 0;
duke@435 3296 const char *result;
duke@435 3297 const char *name;
duke@435 3298 const char *opType;
duke@435 3299
duke@435 3300 for (uint position = index;
duke@435 3301 base_operand(position,globals,result,name,opType); position = index) {
duke@435 3302 ++index;
duke@435 3303 if( ideal_to_const_type(opType) ) num_consts++;
duke@435 3304 }
duke@435 3305
duke@435 3306 return num_consts;
duke@435 3307 }
duke@435 3308
duke@435 3309 // Recursive call on all operands' match rules in my match rule.
duke@435 3310 // Constants in match rule subtree with specified type
duke@435 3311 uint MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
duke@435 3312 uint index = 0;
duke@435 3313 uint num_consts = 0;
duke@435 3314 const char *result;
duke@435 3315 const char *name;
duke@435 3316 const char *opType;
duke@435 3317
duke@435 3318 for (uint position = index;
duke@435 3319 base_operand(position,globals,result,name,opType); position = index) {
duke@435 3320 ++index;
duke@435 3321 if( ideal_to_const_type(opType) == type ) num_consts++;
duke@435 3322 }
duke@435 3323
duke@435 3324 return num_consts;
duke@435 3325 }
duke@435 3326
duke@435 3327 // Recursive call on all operands' match rules in my match rule.
duke@435 3328 uint MatchNode::num_const_ptrs(FormDict &globals) const {
duke@435 3329 return num_consts( globals, Form::idealP );
duke@435 3330 }
duke@435 3331
duke@435 3332 bool MatchNode::sets_result() const {
duke@435 3333 return ( (strcmp(_name,"Set") == 0) ? true : false );
duke@435 3334 }
duke@435 3335
duke@435 3336 const char *MatchNode::reduce_right(FormDict &globals) const {
duke@435 3337 // If there is no right reduction, return NULL.
duke@435 3338 const char *rightStr = NULL;
duke@435 3339
duke@435 3340 // If we are a "Set", start from the right child.
duke@435 3341 const MatchNode *const mnode = sets_result() ?
kvn@4161 3342 (const MatchNode *)this->_rChild :
kvn@4161 3343 (const MatchNode *)this;
duke@435 3344
duke@435 3345 // If our right child exists, it is the right reduction
duke@435 3346 if ( mnode->_rChild ) {
duke@435 3347 rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
duke@435 3348 : mnode->_rChild->_opType;
duke@435 3349 }
duke@435 3350 // Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
duke@435 3351 return rightStr;
duke@435 3352 }
duke@435 3353
duke@435 3354 const char *MatchNode::reduce_left(FormDict &globals) const {
duke@435 3355 // If there is no left reduction, return NULL.
duke@435 3356 const char *leftStr = NULL;
duke@435 3357
duke@435 3358 // If we are a "Set", start from the right child.
duke@435 3359 const MatchNode *const mnode = sets_result() ?
kvn@4161 3360 (const MatchNode *)this->_rChild :
kvn@4161 3361 (const MatchNode *)this;
duke@435 3362
duke@435 3363 // If our left child exists, it is the left reduction
duke@435 3364 if ( mnode->_lChild ) {
duke@435 3365 leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
duke@435 3366 : mnode->_lChild->_opType;
duke@435 3367 } else {
duke@435 3368 // May be simple chain rule: (Set dst operand_form_source)
duke@435 3369 if ( sets_result() ) {
duke@435 3370 OperandForm *oper = globals[mnode->_opType]->is_operand();
duke@435 3371 if( oper ) {
duke@435 3372 leftStr = mnode->_opType;
duke@435 3373 }
duke@435 3374 }
duke@435 3375 }
duke@435 3376 return leftStr;
duke@435 3377 }
duke@435 3378
duke@435 3379 //------------------------------count_instr_names------------------------------
duke@435 3380 // Count occurrences of operands names in the leaves of the instruction
duke@435 3381 // match rule.
duke@435 3382 void MatchNode::count_instr_names( Dict &names ) {
duke@435 3383 if( !this ) return;
duke@435 3384 if( _lChild ) _lChild->count_instr_names(names);
duke@435 3385 if( _rChild ) _rChild->count_instr_names(names);
duke@435 3386 if( !_lChild && !_rChild ) {
duke@435 3387 uintptr_t cnt = (uintptr_t)names[_name];
duke@435 3388 cnt++; // One more name found
duke@435 3389 names.Insert(_name,(void*)cnt);
duke@435 3390 }
duke@435 3391 }
duke@435 3392
duke@435 3393 //------------------------------build_instr_pred-------------------------------
duke@435 3394 // Build a path to 'name' in buf. Actually only build if cnt is zero, so we
duke@435 3395 // can skip some leading instances of 'name'.
duke@435 3396 int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
duke@435 3397 if( _lChild ) {
duke@435 3398 if( !cnt ) strcpy( buf, "_kids[0]->" );
duke@435 3399 cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
duke@435 3400 if( cnt < 0 ) return cnt; // Found it, all done
duke@435 3401 }
duke@435 3402 if( _rChild ) {
duke@435 3403 if( !cnt ) strcpy( buf, "_kids[1]->" );
duke@435 3404 cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
duke@435 3405 if( cnt < 0 ) return cnt; // Found it, all done
duke@435 3406 }
duke@435 3407 if( !_lChild && !_rChild ) { // Found a leaf
duke@435 3408 // Wrong name? Give up...
duke@435 3409 if( strcmp(name,_name) ) return cnt;
duke@435 3410 if( !cnt ) strcpy(buf,"_leaf");
duke@435 3411 return cnt-1;
duke@435 3412 }
duke@435 3413 return cnt;
duke@435 3414 }
duke@435 3415
duke@435 3416
duke@435 3417 //------------------------------build_internalop-------------------------------
duke@435 3418 // Build string representation of subtree
duke@435 3419 void MatchNode::build_internalop( ) {
duke@435 3420 char *iop, *subtree;
duke@435 3421 const char *lstr, *rstr;
duke@435 3422 // Build string representation of subtree
duke@435 3423 // Operation lchildType rchildType
duke@435 3424 int len = (int)strlen(_opType) + 4;
duke@435 3425 lstr = (_lChild) ? ((_lChild->_internalop) ?
duke@435 3426 _lChild->_internalop : _lChild->_opType) : "";
duke@435 3427 rstr = (_rChild) ? ((_rChild->_internalop) ?
duke@435 3428 _rChild->_internalop : _rChild->_opType) : "";
duke@435 3429 len += (int)strlen(lstr) + (int)strlen(rstr);
duke@435 3430 subtree = (char *)malloc(len);
duke@435 3431 sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
duke@435 3432 // Hash the subtree string in _internalOps; if a name exists, use it
duke@435 3433 iop = (char *)_AD._internalOps[subtree];
duke@435 3434 // Else create a unique name, and add it to the hash table
duke@435 3435 if (iop == NULL) {
duke@435 3436 iop = subtree;
duke@435 3437 _AD._internalOps.Insert(subtree, iop);
duke@435 3438 _AD._internalOpNames.addName(iop);
duke@435 3439 _AD._internalMatch.Insert(iop, this);
duke@435 3440 }
duke@435 3441 // Add the internal operand name to the MatchNode
duke@435 3442 _internalop = iop;
duke@435 3443 _result = iop;
duke@435 3444 }
duke@435 3445
duke@435 3446
duke@435 3447 void MatchNode::dump() {
duke@435 3448 output(stderr);
duke@435 3449 }
duke@435 3450
duke@435 3451 void MatchNode::output(FILE *fp) {
duke@435 3452 if (_lChild==0 && _rChild==0) {
duke@435 3453 fprintf(fp," %s",_name); // operand
duke@435 3454 }
duke@435 3455 else {
duke@435 3456 fprintf(fp," (%s ",_name); // " (opcodeName "
duke@435 3457 if(_lChild) _lChild->output(fp); // left operand
duke@435 3458 if(_rChild) _rChild->output(fp); // right operand
duke@435 3459 fprintf(fp,")"); // ")"
duke@435 3460 }
duke@435 3461 }
duke@435 3462
duke@435 3463 int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
duke@435 3464 static const char *needs_ideal_memory_list[] = {
roland@4159 3465 "StoreI","StoreL","StoreP","StoreN","StoreNKlass","StoreD","StoreF" ,
duke@435 3466 "StoreB","StoreC","Store" ,"StoreFP",
vlivanov@4160 3467 "LoadI", "LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF" ,
kvn@3882 3468 "LoadB" , "LoadUB", "LoadUS" ,"LoadS" ,"Load" ,
kvn@3882 3469 "StoreVector", "LoadVector",
kvn@599 3470 "LoadRange", "LoadKlass", "LoadNKlass", "LoadL_unaligned", "LoadD_unaligned",
twisti@3846 3471 "LoadPLocked",
kvn@855 3472 "StorePConditional", "StoreIConditional", "StoreLConditional",
coleenp@548 3473 "CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN",
duke@435 3474 "StoreCM",
roland@4106 3475 "ClearArray",
roland@4106 3476 "GetAndAddI", "GetAndSetI", "GetAndSetP",
roland@4106 3477 "GetAndAddL", "GetAndSetL", "GetAndSetN",
duke@435 3478 };
duke@435 3479 int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
kvn@3052 3480 if( strcmp(_opType,"PrefetchRead")==0 ||
kvn@3052 3481 strcmp(_opType,"PrefetchWrite")==0 ||
kvn@3052 3482 strcmp(_opType,"PrefetchAllocation")==0 )
duke@435 3483 return 1;
duke@435 3484 if( _lChild ) {
duke@435 3485 const char *opType = _lChild->_opType;
duke@435 3486 for( int i=0; i<cnt; i++ )
duke@435 3487 if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
duke@435 3488 return 1;
duke@435 3489 if( _lChild->needs_ideal_memory_edge(globals) )
duke@435 3490 return 1;
duke@435 3491 }
duke@435 3492 if( _rChild ) {
duke@435 3493 const char *opType = _rChild->_opType;
duke@435 3494 for( int i=0; i<cnt; i++ )
duke@435 3495 if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
duke@435 3496 return 1;
duke@435 3497 if( _rChild->needs_ideal_memory_edge(globals) )
duke@435 3498 return 1;
duke@435 3499 }
duke@435 3500
duke@435 3501 return 0;
duke@435 3502 }
duke@435 3503
duke@435 3504 // TRUE if defines a derived oop, and so needs a base oop edge present
duke@435 3505 // post-matching.
duke@435 3506 int MatchNode::needs_base_oop_edge() const {
duke@435 3507 if( !strcmp(_opType,"AddP") ) return 1;
duke@435 3508 if( strcmp(_opType,"Set") ) return 0;
duke@435 3509 return !strcmp(_rChild->_opType,"AddP");
duke@435 3510 }
duke@435 3511
duke@435 3512 int InstructForm::needs_base_oop_edge(FormDict &globals) const {
duke@435 3513 if( is_simple_chain_rule(globals) ) {
duke@435 3514 const char *src = _matrule->_rChild->_opType;
duke@435 3515 OperandForm *src_op = globals[src]->is_operand();
duke@435 3516 assert( src_op, "Not operand class of chain rule" );
duke@435 3517 return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
duke@435 3518 } // Else check instruction
duke@435 3519
duke@435 3520 return _matrule ? _matrule->needs_base_oop_edge() : 0;
duke@435 3521 }
duke@435 3522
duke@435 3523
duke@435 3524 //-------------------------cisc spilling methods-------------------------------
duke@435 3525 // helper routines and methods for detecting cisc-spilling instructions
duke@435 3526 //-------------------------cisc_spill_merge------------------------------------
duke@435 3527 int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
duke@435 3528 int cisc_spillable = Maybe_cisc_spillable;
duke@435 3529
duke@435 3530 // Combine results of left and right checks
duke@435 3531 if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
duke@435 3532 // neither side is spillable, nor prevents cisc spilling
duke@435 3533 cisc_spillable = Maybe_cisc_spillable;
duke@435 3534 }
duke@435 3535 else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
duke@435 3536 // right side is spillable
duke@435 3537 cisc_spillable = right_spillable;
duke@435 3538 }
duke@435 3539 else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
duke@435 3540 // left side is spillable
duke@435 3541 cisc_spillable = left_spillable;
duke@435 3542 }
duke@435 3543 else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
duke@435 3544 // left or right prevents cisc spilling this instruction
duke@435 3545 cisc_spillable = Not_cisc_spillable;
duke@435 3546 }
duke@435 3547 else {
duke@435 3548 // Only allow one to spill
duke@435 3549 cisc_spillable = Not_cisc_spillable;
duke@435 3550 }
duke@435 3551
duke@435 3552 return cisc_spillable;
duke@435 3553 }
duke@435 3554
duke@435 3555 //-------------------------root_ops_match--------------------------------------
duke@435 3556 bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
duke@435 3557 // Base Case: check that the current operands/operations match
duke@435 3558 assert( op1, "Must have op's name");
duke@435 3559 assert( op2, "Must have op's name");
duke@435 3560 const Form *form1 = globals[op1];
duke@435 3561 const Form *form2 = globals[op2];
duke@435 3562
duke@435 3563 return (form1 == form2);
duke@435 3564 }
duke@435 3565
twisti@1038 3566 //-------------------------cisc_spill_match_node-------------------------------
duke@435 3567 // Recursively check two MatchRules for legal conversion via cisc-spilling
twisti@1038 3568 int MatchNode::cisc_spill_match(FormDict& globals, RegisterForm* registers, MatchNode* mRule2, const char* &operand, const char* &reg_type) {
duke@435 3569 int cisc_spillable = Maybe_cisc_spillable;
duke@435 3570 int left_spillable = Maybe_cisc_spillable;
duke@435 3571 int right_spillable = Maybe_cisc_spillable;
duke@435 3572
duke@435 3573 // Check that each has same number of operands at this level
duke@435 3574 if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) )
duke@435 3575 return Not_cisc_spillable;
duke@435 3576
duke@435 3577 // Base Case: check that the current operands/operations match
duke@435 3578 // or are CISC spillable
duke@435 3579 assert( _opType, "Must have _opType");
duke@435 3580 assert( mRule2->_opType, "Must have _opType");
duke@435 3581 const Form *form = globals[_opType];
duke@435 3582 const Form *form2 = globals[mRule2->_opType];
duke@435 3583 if( form == form2 ) {
duke@435 3584 cisc_spillable = Maybe_cisc_spillable;
duke@435 3585 } else {
duke@435 3586 const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
duke@435 3587 const char *name_left = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
duke@435 3588 const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
twisti@1059 3589 DataType data_type = Form::none;
twisti@1059 3590 if (form->is_operand()) {
twisti@1059 3591 // Make sure the loadX matches the type of the reg
twisti@1059 3592 data_type = form->ideal_to_Reg_type(form->is_operand()->ideal_type(globals));
twisti@1059 3593 }
duke@435 3594 // Detect reg vs (loadX memory)
duke@435 3595 if( form->is_cisc_reg(globals)
duke@435 3596 && form2_inst
twisti@1059 3597 && data_type != Form::none
twisti@1059 3598 && (is_load_from_memory(mRule2->_opType) == data_type) // reg vs. (load memory)
duke@435 3599 && (name_left != NULL) // NOT (load)
duke@435 3600 && (name_right == NULL) ) { // NOT (load memory foo)
duke@435 3601 const Form *form2_left = name_left ? globals[name_left] : NULL;
duke@435 3602 if( form2_left && form2_left->is_cisc_mem(globals) ) {
duke@435 3603 cisc_spillable = Is_cisc_spillable;
duke@435 3604 operand = _name;
duke@435 3605 reg_type = _result;
duke@435 3606 return Is_cisc_spillable;
duke@435 3607 } else {
duke@435 3608 cisc_spillable = Not_cisc_spillable;
duke@435 3609 }
duke@435 3610 }
duke@435 3611 // Detect reg vs memory
duke@435 3612 else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) {
duke@435 3613 cisc_spillable = Is_cisc_spillable;
duke@435 3614 operand = _name;
duke@435 3615 reg_type = _result;
duke@435 3616 return Is_cisc_spillable;
duke@435 3617 } else {
duke@435 3618 cisc_spillable = Not_cisc_spillable;
duke@435 3619 }
duke@435 3620 }
duke@435 3621
duke@435 3622 // If cisc is still possible, check rest of tree
duke@435 3623 if( cisc_spillable == Maybe_cisc_spillable ) {
duke@435 3624 // Check that each has same number of operands at this level
duke@435 3625 if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
duke@435 3626
duke@435 3627 // Check left operands
duke@435 3628 if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
duke@435 3629 left_spillable = Maybe_cisc_spillable;
duke@435 3630 } else {
duke@435 3631 left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
duke@435 3632 }
duke@435 3633
duke@435 3634 // Check right operands
duke@435 3635 if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
duke@435 3636 right_spillable = Maybe_cisc_spillable;
duke@435 3637 } else {
duke@435 3638 right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
duke@435 3639 }
duke@435 3640
duke@435 3641 // Combine results of left and right checks
duke@435 3642 cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
duke@435 3643 }
duke@435 3644
duke@435 3645 return cisc_spillable;
duke@435 3646 }
duke@435 3647
twisti@1038 3648 //---------------------------cisc_spill_match_rule------------------------------
duke@435 3649 // Recursively check two MatchRules for legal conversion via cisc-spilling
duke@435 3650 // This method handles the root of Match tree,
duke@435 3651 // general recursive checks done in MatchNode
twisti@1038 3652 int MatchRule::matchrule_cisc_spill_match(FormDict& globals, RegisterForm* registers,
twisti@1038 3653 MatchRule* mRule2, const char* &operand,
twisti@1038 3654 const char* &reg_type) {
duke@435 3655 int cisc_spillable = Maybe_cisc_spillable;
duke@435 3656 int left_spillable = Maybe_cisc_spillable;
duke@435 3657 int right_spillable = Maybe_cisc_spillable;
duke@435 3658
duke@435 3659 // Check that each sets a result
duke@435 3660 if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
duke@435 3661 // Check that each has same number of operands at this level
duke@435 3662 if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
duke@435 3663
duke@435 3664 // Check left operands: at root, must be target of 'Set'
duke@435 3665 if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
duke@435 3666 left_spillable = Not_cisc_spillable;
duke@435 3667 } else {
duke@435 3668 // Do not support cisc-spilling instruction's target location
duke@435 3669 if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
duke@435 3670 left_spillable = Maybe_cisc_spillable;
duke@435 3671 } else {
duke@435 3672 left_spillable = Not_cisc_spillable;
duke@435 3673 }
duke@435 3674 }
duke@435 3675
duke@435 3676 // Check right operands: recursive walk to identify reg->mem operand
duke@435 3677 if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
duke@435 3678 right_spillable = Maybe_cisc_spillable;
duke@435 3679 } else {
duke@435 3680 right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
duke@435 3681 }
duke@435 3682
duke@435 3683 // Combine results of left and right checks
duke@435 3684 cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
duke@435 3685
duke@435 3686 return cisc_spillable;
duke@435 3687 }
duke@435 3688
duke@435 3689 //----------------------------- equivalent ------------------------------------
duke@435 3690 // Recursively check to see if two match rules are equivalent.
duke@435 3691 // This rule handles the root.
twisti@1038 3692 bool MatchRule::equivalent(FormDict &globals, MatchNode *mRule2) {
duke@435 3693 // Check that each sets a result
duke@435 3694 if (sets_result() != mRule2->sets_result()) {
duke@435 3695 return false;
duke@435 3696 }
duke@435 3697
duke@435 3698 // Check that the current operands/operations match
duke@435 3699 assert( _opType, "Must have _opType");
duke@435 3700 assert( mRule2->_opType, "Must have _opType");
duke@435 3701 const Form *form = globals[_opType];
duke@435 3702 const Form *form2 = globals[mRule2->_opType];
duke@435 3703 if( form != form2 ) {
duke@435 3704 return false;
duke@435 3705 }
duke@435 3706
duke@435 3707 if (_lChild ) {
duke@435 3708 if( !_lChild->equivalent(globals, mRule2->_lChild) )
duke@435 3709 return false;
duke@435 3710 } else if (mRule2->_lChild) {
duke@435 3711 return false; // I have NULL left child, mRule2 has non-NULL left child.
duke@435 3712 }
duke@435 3713
duke@435 3714 if (_rChild ) {
duke@435 3715 if( !_rChild->equivalent(globals, mRule2->_rChild) )
duke@435 3716 return false;
duke@435 3717 } else if (mRule2->_rChild) {
duke@435 3718 return false; // I have NULL right child, mRule2 has non-NULL right child.
duke@435 3719 }
duke@435 3720
duke@435 3721 // We've made it through the gauntlet.
duke@435 3722 return true;
duke@435 3723 }
duke@435 3724
duke@435 3725 //----------------------------- equivalent ------------------------------------
duke@435 3726 // Recursively check to see if two match rules are equivalent.
duke@435 3727 // This rule handles the operands.
duke@435 3728 bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
duke@435 3729 if( !mNode2 )
duke@435 3730 return false;
duke@435 3731
duke@435 3732 // Check that the current operands/operations match
duke@435 3733 assert( _opType, "Must have _opType");
duke@435 3734 assert( mNode2->_opType, "Must have _opType");
duke@435 3735 const Form *form = globals[_opType];
duke@435 3736 const Form *form2 = globals[mNode2->_opType];
kvn@3037 3737 if( form != form2 ) {
kvn@3037 3738 return false;
kvn@3037 3739 }
kvn@3037 3740
kvn@3037 3741 // Check that their children also match
kvn@3037 3742 if (_lChild ) {
kvn@3037 3743 if( !_lChild->equivalent(globals, mNode2->_lChild) )
kvn@3037 3744 return false;
kvn@3037 3745 } else if (mNode2->_lChild) {
kvn@3037 3746 return false; // I have NULL left child, mNode2 has non-NULL left child.
kvn@3037 3747 }
kvn@3037 3748
kvn@3037 3749 if (_rChild ) {
kvn@3037 3750 if( !_rChild->equivalent(globals, mNode2->_rChild) )
kvn@3037 3751 return false;
kvn@3037 3752 } else if (mNode2->_rChild) {
kvn@3037 3753 return false; // I have NULL right child, mNode2 has non-NULL right child.
kvn@3037 3754 }
kvn@3037 3755
kvn@3037 3756 // We've made it through the gauntlet.
kvn@3037 3757 return true;
duke@435 3758 }
duke@435 3759
duke@435 3760 //-------------------------- has_commutative_op -------------------------------
duke@435 3761 // Recursively check for commutative operations with subtree operands
duke@435 3762 // which could be swapped.
duke@435 3763 void MatchNode::count_commutative_op(int& count) {
duke@435 3764 static const char *commut_op_list[] = {
duke@435 3765 "AddI","AddL","AddF","AddD",
duke@435 3766 "AndI","AndL",
duke@435 3767 "MaxI","MinI",
duke@435 3768 "MulI","MulL","MulF","MulD",
duke@435 3769 "OrI" ,"OrL" ,
duke@435 3770 "XorI","XorL"
duke@435 3771 };
duke@435 3772 int cnt = sizeof(commut_op_list)/sizeof(char*);
duke@435 3773
duke@435 3774 if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
duke@435 3775 // Don't swap if right operand is an immediate constant.
duke@435 3776 bool is_const = false;
duke@435 3777 if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
duke@435 3778 FormDict &globals = _AD.globalNames();
duke@435 3779 const Form *form = globals[_rChild->_opType];
duke@435 3780 if ( form ) {
duke@435 3781 OperandForm *oper = form->is_operand();
duke@435 3782 if( oper && oper->interface_type(globals) == Form::constant_interface )
duke@435 3783 is_const = true;
duke@435 3784 }
duke@435 3785 }
duke@435 3786 if( !is_const ) {
duke@435 3787 for( int i=0; i<cnt; i++ ) {
duke@435 3788 if( strcmp(_opType, commut_op_list[i]) == 0 ) {
duke@435 3789 count++;
duke@435 3790 _commutative_id = count; // id should be > 0
duke@435 3791 break;
duke@435 3792 }
duke@435 3793 }
duke@435 3794 }
duke@435 3795 }
duke@435 3796 if( _lChild )
duke@435 3797 _lChild->count_commutative_op(count);
duke@435 3798 if( _rChild )
duke@435 3799 _rChild->count_commutative_op(count);
duke@435 3800 }
duke@435 3801
duke@435 3802 //-------------------------- swap_commutative_op ------------------------------
duke@435 3803 // Recursively swap specified commutative operation with subtree operands.
duke@435 3804 void MatchNode::swap_commutative_op(bool atroot, int id) {
duke@435 3805 if( _commutative_id == id ) { // id should be > 0
duke@435 3806 assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ),
duke@435 3807 "not swappable operation");
duke@435 3808 MatchNode* tmp = _lChild;
duke@435 3809 _lChild = _rChild;
duke@435 3810 _rChild = tmp;
duke@435 3811 // Don't exit here since we need to build internalop.
duke@435 3812 }
duke@435 3813
duke@435 3814 bool is_set = ( strcmp(_opType, "Set") == 0 );
duke@435 3815 if( _lChild )
duke@435 3816 _lChild->swap_commutative_op(is_set, id);
duke@435 3817 if( _rChild )
duke@435 3818 _rChild->swap_commutative_op(is_set, id);
duke@435 3819
duke@435 3820 // If not the root, reduce this subtree to an internal operand
duke@435 3821 if( !atroot && (_lChild || _rChild) ) {
duke@435 3822 build_internalop();
duke@435 3823 }
duke@435 3824 }
duke@435 3825
duke@435 3826 //-------------------------- swap_commutative_op ------------------------------
duke@435 3827 // Recursively swap specified commutative operation with subtree operands.
twisti@1038 3828 void MatchRule::matchrule_swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
duke@435 3829 assert(match_rules_cnt < 100," too many match rule clones");
duke@435 3830 // Clone
duke@435 3831 MatchRule* clone = new MatchRule(_AD, this);
duke@435 3832 // Swap operands of commutative operation
duke@435 3833 ((MatchNode*)clone)->swap_commutative_op(true, count);
duke@435 3834 char* buf = (char*) malloc(strlen(instr_ident) + 4);
duke@435 3835 sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
duke@435 3836 clone->_result = buf;
duke@435 3837
duke@435 3838 clone->_next = this->_next;
duke@435 3839 this-> _next = clone;
duke@435 3840 if( (--count) > 0 ) {
twisti@1038 3841 this-> matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
twisti@1038 3842 clone->matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
duke@435 3843 }
duke@435 3844 }
duke@435 3845
duke@435 3846 //------------------------------MatchRule--------------------------------------
duke@435 3847 MatchRule::MatchRule(ArchDesc &ad)
duke@435 3848 : MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
duke@435 3849 _next = NULL;
duke@435 3850 }
duke@435 3851
duke@435 3852 MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
duke@435 3853 : MatchNode(ad, *mRule, 0), _depth(mRule->_depth),
duke@435 3854 _construct(mRule->_construct), _numchilds(mRule->_numchilds) {
duke@435 3855 _next = NULL;
duke@435 3856 }
duke@435 3857
duke@435 3858 MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
duke@435 3859 int numleaves)
duke@435 3860 : MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
duke@435 3861 _numchilds(0) {
duke@435 3862 _next = NULL;
duke@435 3863 mroot->_lChild = NULL;
duke@435 3864 mroot->_rChild = NULL;
duke@435 3865 delete mroot;
duke@435 3866 _numleaves = numleaves;
duke@435 3867 _numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
duke@435 3868 }
duke@435 3869 MatchRule::~MatchRule() {
duke@435 3870 }
duke@435 3871
duke@435 3872 // Recursive call collecting info on top-level operands, not transitive.
duke@435 3873 // Implementation does not modify state of internal structures.
twisti@1038 3874 void MatchRule::append_components(FormDict& locals, ComponentList& components, bool def_flag) const {
duke@435 3875 assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
duke@435 3876
duke@435 3877 MatchNode::append_components(locals, components,
duke@435 3878 false /* not necessarily a def */);
duke@435 3879 }
duke@435 3880
duke@435 3881 // Recursive call on all operands' match rules in my match rule.
duke@435 3882 // Implementation does not modify state of internal structures since they
duke@435 3883 // can be shared.
duke@435 3884 // The MatchNode that is called first treats its
duke@435 3885 bool MatchRule::base_operand(uint &position0, FormDict &globals,
duke@435 3886 const char *&result, const char * &name,
duke@435 3887 const char * &opType)const{
duke@435 3888 uint position = position0;
duke@435 3889
duke@435 3890 return (MatchNode::base_operand( position, globals, result, name, opType));
duke@435 3891 }
duke@435 3892
duke@435 3893
duke@435 3894 bool MatchRule::is_base_register(FormDict &globals) const {
duke@435 3895 uint position = 1;
duke@435 3896 const char *result = NULL;
duke@435 3897 const char *name = NULL;
duke@435 3898 const char *opType = NULL;
duke@435 3899 if (!base_operand(position, globals, result, name, opType)) {
duke@435 3900 position = 0;
duke@435 3901 if( base_operand(position, globals, result, name, opType) &&
duke@435 3902 (strcmp(opType,"RegI")==0 ||
duke@435 3903 strcmp(opType,"RegP")==0 ||
coleenp@548 3904 strcmp(opType,"RegN")==0 ||
duke@435 3905 strcmp(opType,"RegL")==0 ||
duke@435 3906 strcmp(opType,"RegF")==0 ||
duke@435 3907 strcmp(opType,"RegD")==0 ||
kvn@3882 3908 strcmp(opType,"VecS")==0 ||
kvn@3882 3909 strcmp(opType,"VecD")==0 ||
kvn@3882 3910 strcmp(opType,"VecX")==0 ||
kvn@3882 3911 strcmp(opType,"VecY")==0 ||
duke@435 3912 strcmp(opType,"Reg" )==0) ) {
duke@435 3913 return 1;
duke@435 3914 }
duke@435 3915 }
duke@435 3916 return 0;
duke@435 3917 }
duke@435 3918
duke@435 3919 Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
duke@435 3920 uint position = 1;
duke@435 3921 const char *result = NULL;
duke@435 3922 const char *name = NULL;
duke@435 3923 const char *opType = NULL;
duke@435 3924 if (!base_operand(position, globals, result, name, opType)) {
duke@435 3925 position = 0;
duke@435 3926 if (base_operand(position, globals, result, name, opType)) {
duke@435 3927 return ideal_to_const_type(opType);
duke@435 3928 }
duke@435 3929 }
duke@435 3930 return Form::none;
duke@435 3931 }
duke@435 3932
duke@435 3933 bool MatchRule::is_chain_rule(FormDict &globals) const {
duke@435 3934
duke@435 3935 // Check for chain rule, and do not generate a match list for it
duke@435 3936 if ((_lChild == NULL) && (_rChild == NULL) ) {
duke@435 3937 const Form *form = globals[_opType];
duke@435 3938 // If this is ideal, then it is a base match, not a chain rule.
duke@435 3939 if ( form && form->is_operand() && (!form->ideal_only())) {
duke@435 3940 return true;
duke@435 3941 }
duke@435 3942 }
duke@435 3943 // Check for "Set" form of chain rule, and do not generate a match list
duke@435 3944 if (_rChild) {
duke@435 3945 const char *rch = _rChild->_opType;
duke@435 3946 const Form *form = globals[rch];
duke@435 3947 if ((!strcmp(_opType,"Set") &&
duke@435 3948 ((form) && form->is_operand()))) {
duke@435 3949 return true;
duke@435 3950 }
duke@435 3951 }
duke@435 3952 return false;
duke@435 3953 }
duke@435 3954
duke@435 3955 int MatchRule::is_ideal_copy() const {
duke@435 3956 if( _rChild ) {
duke@435 3957 const char *opType = _rChild->_opType;
ysr@777 3958 #if 1
ysr@777 3959 if( strcmp(opType,"CastIP")==0 )
ysr@777 3960 return 1;
ysr@777 3961 #else
duke@435 3962 if( strcmp(opType,"CastII")==0 )
duke@435 3963 return 1;
duke@435 3964 // Do not treat *CastPP this way, because it
duke@435 3965 // may transfer a raw pointer to an oop.
duke@435 3966 // If the register allocator were to coalesce this
duke@435 3967 // into a single LRG, the GC maps would be incorrect.
duke@435 3968 //if( strcmp(opType,"CastPP")==0 )
duke@435 3969 // return 1;
duke@435 3970 //if( strcmp(opType,"CheckCastPP")==0 )
duke@435 3971 // return 1;
duke@435 3972 //
duke@435 3973 // Do not treat CastX2P or CastP2X this way, because
duke@435 3974 // raw pointers and int types are treated differently
duke@435 3975 // when saving local & stack info for safepoints in
duke@435 3976 // Output().
duke@435 3977 //if( strcmp(opType,"CastX2P")==0 )
duke@435 3978 // return 1;
duke@435 3979 //if( strcmp(opType,"CastP2X")==0 )
duke@435 3980 // return 1;
ysr@777 3981 #endif
duke@435 3982 }
duke@435 3983 if( is_chain_rule(_AD.globalNames()) &&
duke@435 3984 _lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 )
duke@435 3985 return 1;
duke@435 3986 return 0;
duke@435 3987 }
duke@435 3988
duke@435 3989
duke@435 3990 int MatchRule::is_expensive() const {
duke@435 3991 if( _rChild ) {
duke@435 3992 const char *opType = _rChild->_opType;
duke@435 3993 if( strcmp(opType,"AtanD")==0 ||
duke@435 3994 strcmp(opType,"CosD")==0 ||
duke@435 3995 strcmp(opType,"DivD")==0 ||
duke@435 3996 strcmp(opType,"DivF")==0 ||
duke@435 3997 strcmp(opType,"DivI")==0 ||
duke@435 3998 strcmp(opType,"ExpD")==0 ||
duke@435 3999 strcmp(opType,"LogD")==0 ||
duke@435 4000 strcmp(opType,"Log10D")==0 ||
duke@435 4001 strcmp(opType,"ModD")==0 ||
duke@435 4002 strcmp(opType,"ModF")==0 ||
duke@435 4003 strcmp(opType,"ModI")==0 ||
duke@435 4004 strcmp(opType,"PowD")==0 ||
duke@435 4005 strcmp(opType,"SinD")==0 ||
duke@435 4006 strcmp(opType,"SqrtD")==0 ||
duke@435 4007 strcmp(opType,"TanD")==0 ||
duke@435 4008 strcmp(opType,"ConvD2F")==0 ||
duke@435 4009 strcmp(opType,"ConvD2I")==0 ||
duke@435 4010 strcmp(opType,"ConvD2L")==0 ||
duke@435 4011 strcmp(opType,"ConvF2D")==0 ||
duke@435 4012 strcmp(opType,"ConvF2I")==0 ||
duke@435 4013 strcmp(opType,"ConvF2L")==0 ||
duke@435 4014 strcmp(opType,"ConvI2D")==0 ||
duke@435 4015 strcmp(opType,"ConvI2F")==0 ||
duke@435 4016 strcmp(opType,"ConvI2L")==0 ||
duke@435 4017 strcmp(opType,"ConvL2D")==0 ||
duke@435 4018 strcmp(opType,"ConvL2F")==0 ||
duke@435 4019 strcmp(opType,"ConvL2I")==0 ||
kvn@682 4020 strcmp(opType,"DecodeN")==0 ||
kvn@682 4021 strcmp(opType,"EncodeP")==0 ||
roland@4159 4022 strcmp(opType,"EncodePKlass")==0 ||
roland@4159 4023 strcmp(opType,"DecodeNKlass")==0 ||
duke@435 4024 strcmp(opType,"RoundDouble")==0 ||
duke@435 4025 strcmp(opType,"RoundFloat")==0 ||
duke@435 4026 strcmp(opType,"ReverseBytesI")==0 ||
duke@435 4027 strcmp(opType,"ReverseBytesL")==0 ||
never@1831 4028 strcmp(opType,"ReverseBytesUS")==0 ||
never@1831 4029 strcmp(opType,"ReverseBytesS")==0 ||
kvn@3882 4030 strcmp(opType,"ReplicateB")==0 ||
kvn@3882 4031 strcmp(opType,"ReplicateS")==0 ||
kvn@3882 4032 strcmp(opType,"ReplicateI")==0 ||
kvn@3882 4033 strcmp(opType,"ReplicateL")==0 ||
kvn@3882 4034 strcmp(opType,"ReplicateF")==0 ||
kvn@3882 4035 strcmp(opType,"ReplicateD")==0 ||
duke@435 4036 0 /* 0 to line up columns nicely */ )
duke@435 4037 return 1;
duke@435 4038 }
duke@435 4039 return 0;
duke@435 4040 }
duke@435 4041
duke@435 4042 bool MatchRule::is_ideal_if() const {
duke@435 4043 if( !_opType ) return false;
duke@435 4044 return
duke@435 4045 !strcmp(_opType,"If" ) ||
duke@435 4046 !strcmp(_opType,"CountedLoopEnd");
duke@435 4047 }
duke@435 4048
duke@435 4049 bool MatchRule::is_ideal_fastlock() const {
duke@435 4050 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 4051 return (strcmp(_rChild->_opType,"FastLock") == 0);
duke@435 4052 }
duke@435 4053 return false;
duke@435 4054 }
duke@435 4055
duke@435 4056 bool MatchRule::is_ideal_membar() const {
duke@435 4057 if( !_opType ) return false;
duke@435 4058 return
goetz@6489 4059 !strcmp(_opType,"MemBarAcquire") ||
goetz@6489 4060 !strcmp(_opType,"MemBarRelease") ||
roland@3047 4061 !strcmp(_opType,"MemBarAcquireLock") ||
roland@3047 4062 !strcmp(_opType,"MemBarReleaseLock") ||
goetz@6489 4063 !strcmp(_opType,"LoadFence" ) ||
goetz@6489 4064 !strcmp(_opType,"StoreFence") ||
goetz@6489 4065 !strcmp(_opType,"MemBarVolatile") ||
goetz@6489 4066 !strcmp(_opType,"MemBarCPUOrder") ||
goetz@6489 4067 !strcmp(_opType,"MemBarStoreStore");
duke@435 4068 }
duke@435 4069
duke@435 4070 bool MatchRule::is_ideal_loadPC() const {
duke@435 4071 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 4072 return (strcmp(_rChild->_opType,"LoadPC") == 0);
duke@435 4073 }
duke@435 4074 return false;
duke@435 4075 }
duke@435 4076
duke@435 4077 bool MatchRule::is_ideal_box() const {
duke@435 4078 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 4079 return (strcmp(_rChild->_opType,"Box") == 0);
duke@435 4080 }
duke@435 4081 return false;
duke@435 4082 }
duke@435 4083
duke@435 4084 bool MatchRule::is_ideal_goto() const {
duke@435 4085 bool ideal_goto = false;
duke@435 4086
duke@435 4087 if( _opType && (strcmp(_opType,"Goto") == 0) ) {
duke@435 4088 ideal_goto = true;
duke@435 4089 }
duke@435 4090 return ideal_goto;
duke@435 4091 }
duke@435 4092
duke@435 4093 bool MatchRule::is_ideal_jump() const {
duke@435 4094 if( _opType ) {
duke@435 4095 if( !strcmp(_opType,"Jump") )
duke@435 4096 return true;
duke@435 4097 }
duke@435 4098 return false;
duke@435 4099 }
duke@435 4100
duke@435 4101 bool MatchRule::is_ideal_bool() const {
duke@435 4102 if( _opType ) {
duke@435 4103 if( !strcmp(_opType,"Bool") )
duke@435 4104 return true;
duke@435 4105 }
duke@435 4106 return false;
duke@435 4107 }
duke@435 4108
duke@435 4109
duke@435 4110 Form::DataType MatchRule::is_ideal_load() const {
duke@435 4111 Form::DataType ideal_load = Form::none;
duke@435 4112
duke@435 4113 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 4114 const char *opType = _rChild->_opType;
duke@435 4115 ideal_load = is_load_from_memory(opType);
duke@435 4116 }
duke@435 4117
duke@435 4118 return ideal_load;
duke@435 4119 }
duke@435 4120
kvn@3882 4121 bool MatchRule::is_vector() const {
kvn@4113 4122 static const char *vector_list[] = {
kvn@4113 4123 "AddVB","AddVS","AddVI","AddVL","AddVF","AddVD",
kvn@4113 4124 "SubVB","SubVS","SubVI","SubVL","SubVF","SubVD",
kvn@4113 4125 "MulVS","MulVI","MulVF","MulVD",
kvn@4113 4126 "DivVF","DivVD",
kvn@4113 4127 "AndV" ,"XorV" ,"OrV",
kvn@4134 4128 "LShiftCntV","RShiftCntV",
kvn@4113 4129 "LShiftVB","LShiftVS","LShiftVI","LShiftVL",
kvn@4113 4130 "RShiftVB","RShiftVS","RShiftVI","RShiftVL",
kvn@4113 4131 "URShiftVB","URShiftVS","URShiftVI","URShiftVL",
kvn@4113 4132 "ReplicateB","ReplicateS","ReplicateI","ReplicateL","ReplicateF","ReplicateD",
kvn@4113 4133 "LoadVector","StoreVector",
kvn@4113 4134 // Next are not supported currently.
kvn@4113 4135 "PackB","PackS","PackI","PackL","PackF","PackD","Pack2L","Pack2D",
kvn@4113 4136 "ExtractB","ExtractUB","ExtractC","ExtractS","ExtractI","ExtractL","ExtractF","ExtractD"
kvn@4113 4137 };
kvn@4113 4138 int cnt = sizeof(vector_list)/sizeof(char*);
kvn@4113 4139 if (_rChild) {
kvn@3882 4140 const char *opType = _rChild->_opType;
kvn@4113 4141 for (int i=0; i<cnt; i++)
kvn@4113 4142 if (strcmp(opType,vector_list[i]) == 0)
kvn@4113 4143 return true;
kvn@3882 4144 }
kvn@3882 4145 return false;
kvn@3882 4146 }
kvn@3882 4147
duke@435 4148
never@1290 4149 bool MatchRule::skip_antidep_check() const {
never@1290 4150 // Some loads operate on what is effectively immutable memory so we
never@1290 4151 // should skip the anti dep computations. For some of these nodes
never@1290 4152 // the rewritable field keeps the anti dep logic from triggering but
never@1290 4153 // for certain kinds of LoadKlass it does not since they are
never@1290 4154 // actually reading memory which could be rewritten by the runtime,
never@1290 4155 // though never by generated code. This disables it uniformly for
never@1290 4156 // the nodes that behave like this: LoadKlass, LoadNKlass and
never@1290 4157 // LoadRange.
never@1290 4158 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
never@1290 4159 const char *opType = _rChild->_opType;
never@1290 4160 if (strcmp("LoadKlass", opType) == 0 ||
never@1290 4161 strcmp("LoadNKlass", opType) == 0 ||
never@1290 4162 strcmp("LoadRange", opType) == 0) {
never@1290 4163 return true;
never@1290 4164 }
never@1290 4165 }
never@1290 4166
never@1290 4167 return false;
never@1290 4168 }
never@1290 4169
never@1290 4170
duke@435 4171 Form::DataType MatchRule::is_ideal_store() const {
duke@435 4172 Form::DataType ideal_store = Form::none;
duke@435 4173
duke@435 4174 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 4175 const char *opType = _rChild->_opType;
duke@435 4176 ideal_store = is_store_to_memory(opType);
duke@435 4177 }
duke@435 4178
duke@435 4179 return ideal_store;
duke@435 4180 }
duke@435 4181
duke@435 4182
duke@435 4183 void MatchRule::dump() {
duke@435 4184 output(stderr);
duke@435 4185 }
duke@435 4186
kvn@4161 4187 // Write just one line.
kvn@4161 4188 void MatchRule::output_short(FILE *fp) {
duke@435 4189 fprintf(fp,"MatchRule: ( %s",_name);
duke@435 4190 if (_lChild) _lChild->output(fp);
duke@435 4191 if (_rChild) _rChild->output(fp);
kvn@4161 4192 fprintf(fp," )");
kvn@4161 4193 }
kvn@4161 4194
kvn@4161 4195 void MatchRule::output(FILE *fp) {
kvn@4161 4196 output_short(fp);
kvn@4161 4197 fprintf(fp,"\n nesting depth = %d\n", _depth);
duke@435 4198 if (_result) fprintf(fp," Result Type = %s", _result);
duke@435 4199 fprintf(fp,"\n");
duke@435 4200 }
duke@435 4201
duke@435 4202 //------------------------------Attribute--------------------------------------
duke@435 4203 Attribute::Attribute(char *id, char* val, int type)
duke@435 4204 : _ident(id), _val(val), _atype(type) {
duke@435 4205 }
duke@435 4206 Attribute::~Attribute() {
duke@435 4207 }
duke@435 4208
duke@435 4209 int Attribute::int_val(ArchDesc &ad) {
duke@435 4210 // Make sure it is an integer constant:
duke@435 4211 int result = 0;
duke@435 4212 if (!_val || !ADLParser::is_int_token(_val, result)) {
duke@435 4213 ad.syntax_err(0, "Attribute %s must have an integer value: %s",
duke@435 4214 _ident, _val ? _val : "");
duke@435 4215 }
duke@435 4216 return result;
duke@435 4217 }
duke@435 4218
duke@435 4219 void Attribute::dump() {
duke@435 4220 output(stderr);
duke@435 4221 } // Debug printer
duke@435 4222
duke@435 4223 // Write to output files
duke@435 4224 void Attribute::output(FILE *fp) {
duke@435 4225 fprintf(fp,"Attribute: %s %s\n", (_ident?_ident:""), (_val?_val:""));
duke@435 4226 }
duke@435 4227
duke@435 4228 //------------------------------FormatRule----------------------------------
duke@435 4229 FormatRule::FormatRule(char *temp)
duke@435 4230 : _temp(temp) {
duke@435 4231 }
duke@435 4232 FormatRule::~FormatRule() {
duke@435 4233 }
duke@435 4234
duke@435 4235 void FormatRule::dump() {
duke@435 4236 output(stderr);
duke@435 4237 }
duke@435 4238
duke@435 4239 // Write to output files
duke@435 4240 void FormatRule::output(FILE *fp) {
duke@435 4241 fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
duke@435 4242 fprintf(fp,"\n");
duke@435 4243 }

mercurial