src/share/vm/adlc/formssel.cpp

Tue, 09 Oct 2012 10:11:38 +0200

author
roland
date
Tue, 09 Oct 2012 10:11:38 +0200
changeset 4159
8e47bac5643a
parent 4134
859c45fb8cea
child 4160
f6badecb7ea7
permissions
-rw-r--r--

7054512: Compress class pointers after perm gen removal
Summary: support of compress class pointers in the compilers.
Reviewed-by: kvn, twisti

duke@435 1 /*
kvn@3882 2 * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // FORMS.CPP - Definitions for ADL Parser Forms Classes
duke@435 26 #include "adlc.hpp"
duke@435 27
duke@435 28 //==============================Instructions===================================
duke@435 29 //------------------------------InstructForm-----------------------------------
duke@435 30 InstructForm::InstructForm(const char *id, bool ideal_only)
duke@435 31 : _ident(id), _ideal_only(ideal_only),
duke@435 32 _localNames(cmpstr, hashstr, Form::arena),
twisti@2350 33 _effects(cmpstr, hashstr, Form::arena),
roland@3316 34 _is_mach_constant(false),
roland@3316 35 _has_call(false)
twisti@2350 36 {
duke@435 37 _ftype = Form::INS;
duke@435 38
duke@435 39 _matrule = NULL;
duke@435 40 _insencode = NULL;
twisti@2350 41 _constant = NULL;
duke@435 42 _opcode = NULL;
duke@435 43 _size = NULL;
duke@435 44 _attribs = NULL;
duke@435 45 _predicate = NULL;
duke@435 46 _exprule = NULL;
duke@435 47 _rewrule = NULL;
duke@435 48 _format = NULL;
duke@435 49 _peephole = NULL;
duke@435 50 _ins_pipe = NULL;
duke@435 51 _uniq_idx = NULL;
duke@435 52 _num_uniq = 0;
duke@435 53 _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
duke@435 54 _cisc_spill_alternate = NULL; // possible cisc replacement
duke@435 55 _cisc_reg_mask_name = NULL;
duke@435 56 _is_cisc_alternate = false;
duke@435 57 _is_short_branch = false;
duke@435 58 _short_branch_form = NULL;
duke@435 59 _alignment = 1;
duke@435 60 }
duke@435 61
duke@435 62 InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
duke@435 63 : _ident(id), _ideal_only(false),
duke@435 64 _localNames(instr->_localNames),
twisti@2350 65 _effects(instr->_effects),
roland@3316 66 _is_mach_constant(false),
roland@3316 67 _has_call(false)
twisti@2350 68 {
duke@435 69 _ftype = Form::INS;
duke@435 70
duke@435 71 _matrule = rule;
duke@435 72 _insencode = instr->_insencode;
twisti@2350 73 _constant = instr->_constant;
duke@435 74 _opcode = instr->_opcode;
duke@435 75 _size = instr->_size;
duke@435 76 _attribs = instr->_attribs;
duke@435 77 _predicate = instr->_predicate;
duke@435 78 _exprule = instr->_exprule;
duke@435 79 _rewrule = instr->_rewrule;
duke@435 80 _format = instr->_format;
duke@435 81 _peephole = instr->_peephole;
duke@435 82 _ins_pipe = instr->_ins_pipe;
duke@435 83 _uniq_idx = instr->_uniq_idx;
duke@435 84 _num_uniq = instr->_num_uniq;
duke@435 85 _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
duke@435 86 _cisc_spill_alternate = NULL; // possible cisc replacement
duke@435 87 _cisc_reg_mask_name = NULL;
duke@435 88 _is_cisc_alternate = false;
duke@435 89 _is_short_branch = false;
duke@435 90 _short_branch_form = NULL;
duke@435 91 _alignment = 1;
duke@435 92 // Copy parameters
duke@435 93 const char *name;
duke@435 94 instr->_parameters.reset();
duke@435 95 for (; (name = instr->_parameters.iter()) != NULL;)
duke@435 96 _parameters.addName(name);
duke@435 97 }
duke@435 98
duke@435 99 InstructForm::~InstructForm() {
duke@435 100 }
duke@435 101
duke@435 102 InstructForm *InstructForm::is_instruction() const {
duke@435 103 return (InstructForm*)this;
duke@435 104 }
duke@435 105
duke@435 106 bool InstructForm::ideal_only() const {
duke@435 107 return _ideal_only;
duke@435 108 }
duke@435 109
duke@435 110 bool InstructForm::sets_result() const {
duke@435 111 return (_matrule != NULL && _matrule->sets_result());
duke@435 112 }
duke@435 113
duke@435 114 bool InstructForm::needs_projections() {
duke@435 115 _components.reset();
duke@435 116 for( Component *comp; (comp = _components.iter()) != NULL; ) {
duke@435 117 if (comp->isa(Component::KILL)) {
duke@435 118 return true;
duke@435 119 }
duke@435 120 }
duke@435 121 return false;
duke@435 122 }
duke@435 123
duke@435 124
duke@435 125 bool InstructForm::has_temps() {
duke@435 126 if (_matrule) {
duke@435 127 // Examine each component to see if it is a TEMP
duke@435 128 _components.reset();
duke@435 129 // Skip the first component, if already handled as (SET dst (...))
duke@435 130 Component *comp = NULL;
duke@435 131 if (sets_result()) comp = _components.iter();
duke@435 132 while ((comp = _components.iter()) != NULL) {
duke@435 133 if (comp->isa(Component::TEMP)) {
duke@435 134 return true;
duke@435 135 }
duke@435 136 }
duke@435 137 }
duke@435 138
duke@435 139 return false;
duke@435 140 }
duke@435 141
duke@435 142 uint InstructForm::num_defs_or_kills() {
duke@435 143 uint defs_or_kills = 0;
duke@435 144
duke@435 145 _components.reset();
duke@435 146 for( Component *comp; (comp = _components.iter()) != NULL; ) {
duke@435 147 if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
duke@435 148 ++defs_or_kills;
duke@435 149 }
duke@435 150 }
duke@435 151
duke@435 152 return defs_or_kills;
duke@435 153 }
duke@435 154
duke@435 155 // This instruction has an expand rule?
duke@435 156 bool InstructForm::expands() const {
duke@435 157 return ( _exprule != NULL );
duke@435 158 }
duke@435 159
duke@435 160 // This instruction has a peephole rule?
duke@435 161 Peephole *InstructForm::peepholes() const {
duke@435 162 return _peephole;
duke@435 163 }
duke@435 164
duke@435 165 // This instruction has a peephole rule?
duke@435 166 void InstructForm::append_peephole(Peephole *peephole) {
duke@435 167 if( _peephole == NULL ) {
duke@435 168 _peephole = peephole;
duke@435 169 } else {
duke@435 170 _peephole->append_peephole(peephole);
duke@435 171 }
duke@435 172 }
duke@435 173
duke@435 174
duke@435 175 // ideal opcode enumeration
duke@435 176 const char *InstructForm::ideal_Opcode( FormDict &globalNames ) const {
duke@435 177 if( !_matrule ) return "Node"; // Something weird
duke@435 178 // Chain rules do not really have ideal Opcodes; use their source
duke@435 179 // operand ideal Opcode instead.
duke@435 180 if( is_simple_chain_rule(globalNames) ) {
duke@435 181 const char *src = _matrule->_rChild->_opType;
duke@435 182 OperandForm *src_op = globalNames[src]->is_operand();
duke@435 183 assert( src_op, "Not operand class of chain rule" );
duke@435 184 if( !src_op->_matrule ) return "Node";
duke@435 185 return src_op->_matrule->_opType;
duke@435 186 }
duke@435 187 // Operand chain rules do not really have ideal Opcodes
duke@435 188 if( _matrule->is_chain_rule(globalNames) )
duke@435 189 return "Node";
duke@435 190 return strcmp(_matrule->_opType,"Set")
duke@435 191 ? _matrule->_opType
duke@435 192 : _matrule->_rChild->_opType;
duke@435 193 }
duke@435 194
duke@435 195 // Recursive check on all operands' match rules in my match rule
duke@435 196 bool InstructForm::is_pinned(FormDict &globals) {
duke@435 197 if ( ! _matrule) return false;
duke@435 198
duke@435 199 int index = 0;
duke@435 200 if (_matrule->find_type("Goto", index)) return true;
duke@435 201 if (_matrule->find_type("If", index)) return true;
duke@435 202 if (_matrule->find_type("CountedLoopEnd",index)) return true;
duke@435 203 if (_matrule->find_type("Return", index)) return true;
duke@435 204 if (_matrule->find_type("Rethrow", index)) return true;
duke@435 205 if (_matrule->find_type("TailCall", index)) return true;
duke@435 206 if (_matrule->find_type("TailJump", index)) return true;
duke@435 207 if (_matrule->find_type("Halt", index)) return true;
duke@435 208 if (_matrule->find_type("Jump", index)) return true;
duke@435 209
duke@435 210 return is_parm(globals);
duke@435 211 }
duke@435 212
duke@435 213 // Recursive check on all operands' match rules in my match rule
duke@435 214 bool InstructForm::is_projection(FormDict &globals) {
duke@435 215 if ( ! _matrule) return false;
duke@435 216
duke@435 217 int index = 0;
duke@435 218 if (_matrule->find_type("Goto", index)) return true;
duke@435 219 if (_matrule->find_type("Return", index)) return true;
duke@435 220 if (_matrule->find_type("Rethrow", index)) return true;
duke@435 221 if (_matrule->find_type("TailCall",index)) return true;
duke@435 222 if (_matrule->find_type("TailJump",index)) return true;
duke@435 223 if (_matrule->find_type("Halt", index)) return true;
duke@435 224
duke@435 225 return false;
duke@435 226 }
duke@435 227
duke@435 228 // Recursive check on all operands' match rules in my match rule
duke@435 229 bool InstructForm::is_parm(FormDict &globals) {
duke@435 230 if ( ! _matrule) return false;
duke@435 231
duke@435 232 int index = 0;
duke@435 233 if (_matrule->find_type("Parm",index)) return true;
duke@435 234
duke@435 235 return false;
duke@435 236 }
duke@435 237
duke@435 238
duke@435 239 // Return 'true' if this instruction matches an ideal 'Copy*' node
duke@435 240 int InstructForm::is_ideal_copy() const {
duke@435 241 return _matrule ? _matrule->is_ideal_copy() : 0;
duke@435 242 }
duke@435 243
duke@435 244 // Return 'true' if this instruction is too complex to rematerialize.
duke@435 245 int InstructForm::is_expensive() const {
duke@435 246 // We can prove it is cheap if it has an empty encoding.
duke@435 247 // This helps with platform-specific nops like ThreadLocal and RoundFloat.
duke@435 248 if (is_empty_encoding())
duke@435 249 return 0;
duke@435 250
duke@435 251 if (is_tls_instruction())
duke@435 252 return 1;
duke@435 253
duke@435 254 if (_matrule == NULL) return 0;
duke@435 255
duke@435 256 return _matrule->is_expensive();
duke@435 257 }
duke@435 258
duke@435 259 // Has an empty encoding if _size is a constant zero or there
duke@435 260 // are no ins_encode tokens.
duke@435 261 int InstructForm::is_empty_encoding() const {
duke@435 262 if (_insencode != NULL) {
duke@435 263 _insencode->reset();
duke@435 264 if (_insencode->encode_class_iter() == NULL) {
duke@435 265 return 1;
duke@435 266 }
duke@435 267 }
duke@435 268 if (_size != NULL && strcmp(_size, "0") == 0) {
duke@435 269 return 1;
duke@435 270 }
duke@435 271 return 0;
duke@435 272 }
duke@435 273
duke@435 274 int InstructForm::is_tls_instruction() const {
duke@435 275 if (_ident != NULL &&
duke@435 276 ( ! strcmp( _ident,"tlsLoadP") ||
duke@435 277 ! strncmp(_ident,"tlsLoadP_",9)) ) {
duke@435 278 return 1;
duke@435 279 }
duke@435 280
duke@435 281 if (_matrule != NULL && _insencode != NULL) {
duke@435 282 const char* opType = _matrule->_opType;
duke@435 283 if (strcmp(opType, "Set")==0)
duke@435 284 opType = _matrule->_rChild->_opType;
duke@435 285 if (strcmp(opType,"ThreadLocal")==0) {
duke@435 286 fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
duke@435 287 (_ident == NULL ? "NULL" : _ident));
duke@435 288 return 1;
duke@435 289 }
duke@435 290 }
duke@435 291
duke@435 292 return 0;
duke@435 293 }
duke@435 294
duke@435 295
duke@435 296 // Return 'true' if this instruction matches an ideal 'If' node
duke@435 297 bool InstructForm::is_ideal_if() const {
duke@435 298 if( _matrule == NULL ) return false;
duke@435 299
duke@435 300 return _matrule->is_ideal_if();
duke@435 301 }
duke@435 302
duke@435 303 // Return 'true' if this instruction matches an ideal 'FastLock' node
duke@435 304 bool InstructForm::is_ideal_fastlock() const {
duke@435 305 if( _matrule == NULL ) return false;
duke@435 306
duke@435 307 return _matrule->is_ideal_fastlock();
duke@435 308 }
duke@435 309
duke@435 310 // Return 'true' if this instruction matches an ideal 'MemBarXXX' node
duke@435 311 bool InstructForm::is_ideal_membar() const {
duke@435 312 if( _matrule == NULL ) return false;
duke@435 313
duke@435 314 return _matrule->is_ideal_membar();
duke@435 315 }
duke@435 316
duke@435 317 // Return 'true' if this instruction matches an ideal 'LoadPC' node
duke@435 318 bool InstructForm::is_ideal_loadPC() const {
duke@435 319 if( _matrule == NULL ) return false;
duke@435 320
duke@435 321 return _matrule->is_ideal_loadPC();
duke@435 322 }
duke@435 323
duke@435 324 // Return 'true' if this instruction matches an ideal 'Box' node
duke@435 325 bool InstructForm::is_ideal_box() const {
duke@435 326 if( _matrule == NULL ) return false;
duke@435 327
duke@435 328 return _matrule->is_ideal_box();
duke@435 329 }
duke@435 330
duke@435 331 // Return 'true' if this instruction matches an ideal 'Goto' node
duke@435 332 bool InstructForm::is_ideal_goto() const {
duke@435 333 if( _matrule == NULL ) return false;
duke@435 334
duke@435 335 return _matrule->is_ideal_goto();
duke@435 336 }
duke@435 337
duke@435 338 // Return 'true' if this instruction matches an ideal 'Jump' node
duke@435 339 bool InstructForm::is_ideal_jump() const {
duke@435 340 if( _matrule == NULL ) return false;
duke@435 341
duke@435 342 return _matrule->is_ideal_jump();
duke@435 343 }
duke@435 344
kvn@3051 345 // Return 'true' if instruction matches ideal 'If' | 'Goto' | 'CountedLoopEnd'
duke@435 346 bool InstructForm::is_ideal_branch() const {
duke@435 347 if( _matrule == NULL ) return false;
duke@435 348
kvn@3051 349 return _matrule->is_ideal_if() || _matrule->is_ideal_goto();
duke@435 350 }
duke@435 351
duke@435 352
duke@435 353 // Return 'true' if this instruction matches an ideal 'Return' node
duke@435 354 bool InstructForm::is_ideal_return() const {
duke@435 355 if( _matrule == NULL ) return false;
duke@435 356
duke@435 357 // Check MatchRule to see if the first entry is the ideal "Return" node
duke@435 358 int index = 0;
duke@435 359 if (_matrule->find_type("Return",index)) return true;
duke@435 360 if (_matrule->find_type("Rethrow",index)) return true;
duke@435 361 if (_matrule->find_type("TailCall",index)) return true;
duke@435 362 if (_matrule->find_type("TailJump",index)) return true;
duke@435 363
duke@435 364 return false;
duke@435 365 }
duke@435 366
duke@435 367 // Return 'true' if this instruction matches an ideal 'Halt' node
duke@435 368 bool InstructForm::is_ideal_halt() const {
duke@435 369 int index = 0;
duke@435 370 return _matrule && _matrule->find_type("Halt",index);
duke@435 371 }
duke@435 372
duke@435 373 // Return 'true' if this instruction matches an ideal 'SafePoint' node
duke@435 374 bool InstructForm::is_ideal_safepoint() const {
duke@435 375 int index = 0;
duke@435 376 return _matrule && _matrule->find_type("SafePoint",index);
duke@435 377 }
duke@435 378
duke@435 379 // Return 'true' if this instruction matches an ideal 'Nop' node
duke@435 380 bool InstructForm::is_ideal_nop() const {
duke@435 381 return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
duke@435 382 }
duke@435 383
duke@435 384 bool InstructForm::is_ideal_control() const {
duke@435 385 if ( ! _matrule) return false;
duke@435 386
kvn@3051 387 return is_ideal_return() || is_ideal_branch() || _matrule->is_ideal_jump() || is_ideal_halt();
duke@435 388 }
duke@435 389
duke@435 390 // Return 'true' if this instruction matches an ideal 'Call' node
duke@435 391 Form::CallType InstructForm::is_ideal_call() const {
duke@435 392 if( _matrule == NULL ) return Form::invalid_type;
duke@435 393
duke@435 394 // Check MatchRule to see if the first entry is the ideal "Call" node
duke@435 395 int idx = 0;
duke@435 396 if(_matrule->find_type("CallStaticJava",idx)) return Form::JAVA_STATIC;
duke@435 397 idx = 0;
duke@435 398 if(_matrule->find_type("Lock",idx)) return Form::JAVA_STATIC;
duke@435 399 idx = 0;
duke@435 400 if(_matrule->find_type("Unlock",idx)) return Form::JAVA_STATIC;
duke@435 401 idx = 0;
duke@435 402 if(_matrule->find_type("CallDynamicJava",idx)) return Form::JAVA_DYNAMIC;
duke@435 403 idx = 0;
duke@435 404 if(_matrule->find_type("CallRuntime",idx)) return Form::JAVA_RUNTIME;
duke@435 405 idx = 0;
duke@435 406 if(_matrule->find_type("CallLeaf",idx)) return Form::JAVA_LEAF;
duke@435 407 idx = 0;
duke@435 408 if(_matrule->find_type("CallLeafNoFP",idx)) return Form::JAVA_LEAF;
duke@435 409 idx = 0;
duke@435 410
duke@435 411 return Form::invalid_type;
duke@435 412 }
duke@435 413
duke@435 414 // Return 'true' if this instruction matches an ideal 'Load?' node
duke@435 415 Form::DataType InstructForm::is_ideal_load() const {
duke@435 416 if( _matrule == NULL ) return Form::none;
duke@435 417
duke@435 418 return _matrule->is_ideal_load();
duke@435 419 }
duke@435 420
never@1290 421 // Return 'true' if this instruction matches an ideal 'LoadKlass' node
never@1290 422 bool InstructForm::skip_antidep_check() const {
never@1290 423 if( _matrule == NULL ) return false;
never@1290 424
never@1290 425 return _matrule->skip_antidep_check();
never@1290 426 }
never@1290 427
duke@435 428 // Return 'true' if this instruction matches an ideal 'Load?' node
duke@435 429 Form::DataType InstructForm::is_ideal_store() const {
duke@435 430 if( _matrule == NULL ) return Form::none;
duke@435 431
duke@435 432 return _matrule->is_ideal_store();
duke@435 433 }
duke@435 434
kvn@3882 435 // Return 'true' if this instruction matches an ideal vector node
kvn@3882 436 bool InstructForm::is_vector() const {
kvn@3882 437 if( _matrule == NULL ) return false;
kvn@3882 438
kvn@3882 439 return _matrule->is_vector();
kvn@3882 440 }
kvn@3882 441
kvn@3882 442
duke@435 443 // Return the input register that must match the output register
duke@435 444 // If this is not required, return 0
duke@435 445 uint InstructForm::two_address(FormDict &globals) {
duke@435 446 uint matching_input = 0;
duke@435 447 if(_components.count() == 0) return 0;
duke@435 448
duke@435 449 _components.reset();
duke@435 450 Component *comp = _components.iter();
duke@435 451 // Check if there is a DEF
duke@435 452 if( comp->isa(Component::DEF) ) {
duke@435 453 // Check that this is a register
duke@435 454 const char *def_type = comp->_type;
duke@435 455 const Form *form = globals[def_type];
duke@435 456 OperandForm *op = form->is_operand();
duke@435 457 if( op ) {
duke@435 458 if( op->constrained_reg_class() != NULL &&
duke@435 459 op->interface_type(globals) == Form::register_interface ) {
duke@435 460 // Remember the local name for equality test later
duke@435 461 const char *def_name = comp->_name;
duke@435 462 // Check if a component has the same name and is a USE
duke@435 463 do {
duke@435 464 if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
duke@435 465 return operand_position_format(def_name);
duke@435 466 }
duke@435 467 } while( (comp = _components.iter()) != NULL);
duke@435 468 }
duke@435 469 }
duke@435 470 }
duke@435 471
duke@435 472 return 0;
duke@435 473 }
duke@435 474
duke@435 475
duke@435 476 // when chaining a constant to an instruction, returns 'true' and sets opType
duke@435 477 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
duke@435 478 const char *dummy = NULL;
duke@435 479 const char *dummy2 = NULL;
duke@435 480 return is_chain_of_constant(globals, dummy, dummy2);
duke@435 481 }
duke@435 482 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
duke@435 483 const char * &opTypeParam) {
duke@435 484 const char *result = NULL;
duke@435 485
duke@435 486 return is_chain_of_constant(globals, opTypeParam, result);
duke@435 487 }
duke@435 488
duke@435 489 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
duke@435 490 const char * &opTypeParam, const char * &resultParam) {
duke@435 491 Form::DataType data_type = Form::none;
duke@435 492 if ( ! _matrule) return data_type;
duke@435 493
duke@435 494 // !!!!!
duke@435 495 // The source of the chain rule is 'position = 1'
duke@435 496 uint position = 1;
duke@435 497 const char *result = NULL;
duke@435 498 const char *name = NULL;
duke@435 499 const char *opType = NULL;
duke@435 500 // Here base_operand is looking for an ideal type to be returned (opType).
duke@435 501 if ( _matrule->is_chain_rule(globals)
duke@435 502 && _matrule->base_operand(position, globals, result, name, opType) ) {
duke@435 503 data_type = ideal_to_const_type(opType);
duke@435 504
duke@435 505 // if it isn't an ideal constant type, just return
duke@435 506 if ( data_type == Form::none ) return data_type;
duke@435 507
duke@435 508 // Ideal constant types also adjust the opType parameter.
duke@435 509 resultParam = result;
duke@435 510 opTypeParam = opType;
duke@435 511 return data_type;
duke@435 512 }
duke@435 513
duke@435 514 return data_type;
duke@435 515 }
duke@435 516
duke@435 517 // Check if a simple chain rule
duke@435 518 bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
duke@435 519 if( _matrule && _matrule->sets_result()
duke@435 520 && _matrule->_rChild->_lChild == NULL
duke@435 521 && globals[_matrule->_rChild->_opType]
duke@435 522 && globals[_matrule->_rChild->_opType]->is_opclass() ) {
duke@435 523 return true;
duke@435 524 }
duke@435 525 return false;
duke@435 526 }
duke@435 527
duke@435 528 // check for structural rematerialization
duke@435 529 bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
duke@435 530 bool rematerialize = false;
duke@435 531
duke@435 532 Form::DataType data_type = is_chain_of_constant(globals);
duke@435 533 if( data_type != Form::none )
duke@435 534 rematerialize = true;
duke@435 535
duke@435 536 // Constants
duke@435 537 if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) )
duke@435 538 rematerialize = true;
duke@435 539
duke@435 540 // Pseudo-constants (values easily available to the runtime)
duke@435 541 if (is_empty_encoding() && is_tls_instruction())
duke@435 542 rematerialize = true;
duke@435 543
duke@435 544 // 1-input, 1-output, such as copies or increments.
duke@435 545 if( _components.count() == 2 &&
duke@435 546 _components[0]->is(Component::DEF) &&
duke@435 547 _components[1]->isa(Component::USE) )
duke@435 548 rematerialize = true;
duke@435 549
duke@435 550 // Check for an ideal 'Load?' and eliminate rematerialize option
duke@435 551 if ( is_ideal_load() != Form::none || // Ideal load? Do not rematerialize
duke@435 552 is_ideal_copy() != Form::none || // Ideal copy? Do not rematerialize
duke@435 553 is_expensive() != Form::none) { // Expensive? Do not rematerialize
duke@435 554 rematerialize = false;
duke@435 555 }
duke@435 556
duke@435 557 // Always rematerialize the flags. They are more expensive to save &
duke@435 558 // restore than to recompute (and possibly spill the compare's inputs).
duke@435 559 if( _components.count() >= 1 ) {
duke@435 560 Component *c = _components[0];
duke@435 561 const Form *form = globals[c->_type];
duke@435 562 OperandForm *opform = form->is_operand();
duke@435 563 if( opform ) {
duke@435 564 // Avoid the special stack_slots register classes
duke@435 565 const char *rc_name = opform->constrained_reg_class();
duke@435 566 if( rc_name ) {
duke@435 567 if( strcmp(rc_name,"stack_slots") ) {
duke@435 568 // Check for ideal_type of RegFlags
duke@435 569 const char *type = opform->ideal_type( globals, registers );
duke@435 570 if( !strcmp(type,"RegFlags") )
duke@435 571 rematerialize = true;
duke@435 572 } else
duke@435 573 rematerialize = false; // Do not rematerialize things target stk
duke@435 574 }
duke@435 575 }
duke@435 576 }
duke@435 577
duke@435 578 return rematerialize;
duke@435 579 }
duke@435 580
duke@435 581 // loads from memory, so must check for anti-dependence
duke@435 582 bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
never@1290 583 if ( skip_antidep_check() ) return false;
never@1290 584
duke@435 585 // Machine independent loads must be checked for anti-dependences
duke@435 586 if( is_ideal_load() != Form::none ) return true;
duke@435 587
duke@435 588 // !!!!! !!!!! !!!!!
duke@435 589 // TEMPORARY
duke@435 590 // if( is_simple_chain_rule(globals) ) return false;
duke@435 591
cfang@1116 592 // String.(compareTo/equals/indexOf) and Arrays.equals use many memorys edges,
cfang@1116 593 // but writes none
duke@435 594 if( _matrule && _matrule->_rChild &&
cfang@1116 595 ( strcmp(_matrule->_rChild->_opType,"StrComp" )==0 ||
cfang@1116 596 strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 ||
cfang@1116 597 strcmp(_matrule->_rChild->_opType,"StrIndexOf" )==0 ||
cfang@1116 598 strcmp(_matrule->_rChild->_opType,"AryEq" )==0 ))
duke@435 599 return true;
duke@435 600
duke@435 601 // Check if instruction has a USE of a memory operand class, but no defs
duke@435 602 bool USE_of_memory = false;
duke@435 603 bool DEF_of_memory = false;
duke@435 604 Component *comp = NULL;
duke@435 605 ComponentList &components = (ComponentList &)_components;
duke@435 606
duke@435 607 components.reset();
duke@435 608 while( (comp = components.iter()) != NULL ) {
duke@435 609 const Form *form = globals[comp->_type];
duke@435 610 if( !form ) continue;
duke@435 611 OpClassForm *op = form->is_opclass();
duke@435 612 if( !op ) continue;
duke@435 613 if( form->interface_type(globals) == Form::memory_interface ) {
duke@435 614 if( comp->isa(Component::USE) ) USE_of_memory = true;
duke@435 615 if( comp->isa(Component::DEF) ) {
duke@435 616 OperandForm *oper = form->is_operand();
duke@435 617 if( oper && oper->is_user_name_for_sReg() ) {
duke@435 618 // Stack slots are unaliased memory handled by allocator
duke@435 619 oper = oper; // debug stopping point !!!!!
duke@435 620 } else {
duke@435 621 DEF_of_memory = true;
duke@435 622 }
duke@435 623 }
duke@435 624 }
duke@435 625 }
duke@435 626 return (USE_of_memory && !DEF_of_memory);
duke@435 627 }
duke@435 628
duke@435 629
duke@435 630 bool InstructForm::is_wide_memory_kill(FormDict &globals) const {
duke@435 631 if( _matrule == NULL ) return false;
duke@435 632 if( !_matrule->_opType ) return false;
duke@435 633
duke@435 634 if( strcmp(_matrule->_opType,"MemBarRelease") == 0 ) return true;
duke@435 635 if( strcmp(_matrule->_opType,"MemBarAcquire") == 0 ) return true;
roland@3047 636 if( strcmp(_matrule->_opType,"MemBarReleaseLock") == 0 ) return true;
roland@3047 637 if( strcmp(_matrule->_opType,"MemBarAcquireLock") == 0 ) return true;
roland@3392 638 if( strcmp(_matrule->_opType,"MemBarStoreStore") == 0 ) return true;
duke@435 639
duke@435 640 return false;
duke@435 641 }
duke@435 642
duke@435 643 int InstructForm::memory_operand(FormDict &globals) const {
duke@435 644 // Machine independent loads must be checked for anti-dependences
duke@435 645 // Check if instruction has a USE of a memory operand class, or a def.
duke@435 646 int USE_of_memory = 0;
duke@435 647 int DEF_of_memory = 0;
duke@435 648 const char* last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
duke@435 649 Component *unique = NULL;
duke@435 650 Component *comp = NULL;
duke@435 651 ComponentList &components = (ComponentList &)_components;
duke@435 652
duke@435 653 components.reset();
duke@435 654 while( (comp = components.iter()) != NULL ) {
duke@435 655 const Form *form = globals[comp->_type];
duke@435 656 if( !form ) continue;
duke@435 657 OpClassForm *op = form->is_opclass();
duke@435 658 if( !op ) continue;
duke@435 659 if( op->stack_slots_only(globals) ) continue;
duke@435 660 if( form->interface_type(globals) == Form::memory_interface ) {
duke@435 661 if( comp->isa(Component::DEF) ) {
duke@435 662 last_memory_DEF = comp->_name;
duke@435 663 DEF_of_memory++;
duke@435 664 unique = comp;
duke@435 665 } else if( comp->isa(Component::USE) ) {
duke@435 666 if( last_memory_DEF != NULL ) {
duke@435 667 assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
duke@435 668 last_memory_DEF = NULL;
duke@435 669 }
duke@435 670 USE_of_memory++;
duke@435 671 if (DEF_of_memory == 0) // defs take precedence
duke@435 672 unique = comp;
duke@435 673 } else {
duke@435 674 assert(last_memory_DEF == NULL, "unpaired memory DEF");
duke@435 675 }
duke@435 676 }
duke@435 677 }
duke@435 678 assert(last_memory_DEF == NULL, "unpaired memory DEF");
duke@435 679 assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
duke@435 680 USE_of_memory -= DEF_of_memory; // treat paired DEF/USE as one occurrence
duke@435 681 if( (USE_of_memory + DEF_of_memory) > 0 ) {
duke@435 682 if( is_simple_chain_rule(globals) ) {
duke@435 683 //fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
duke@435 684 //((InstructForm*)this)->dump();
duke@435 685 // Preceding code prints nothing on sparc and these insns on intel:
duke@435 686 // leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
duke@435 687 // leaPIdxOff leaPIdxScale leaPIdxScaleOff
duke@435 688 return NO_MEMORY_OPERAND;
duke@435 689 }
duke@435 690
duke@435 691 if( DEF_of_memory == 1 ) {
duke@435 692 assert(unique != NULL, "");
duke@435 693 if( USE_of_memory == 0 ) {
duke@435 694 // unique def, no uses
duke@435 695 } else {
duke@435 696 // // unique def, some uses
duke@435 697 // // must return bottom unless all uses match def
duke@435 698 // unique = NULL;
duke@435 699 }
duke@435 700 } else if( DEF_of_memory > 0 ) {
duke@435 701 // multiple defs, don't care about uses
duke@435 702 unique = NULL;
duke@435 703 } else if( USE_of_memory == 1) {
duke@435 704 // unique use, no defs
duke@435 705 assert(unique != NULL, "");
duke@435 706 } else if( USE_of_memory > 0 ) {
duke@435 707 // multiple uses, no defs
duke@435 708 unique = NULL;
duke@435 709 } else {
duke@435 710 assert(false, "bad case analysis");
duke@435 711 }
duke@435 712 // process the unique DEF or USE, if there is one
duke@435 713 if( unique == NULL ) {
duke@435 714 return MANY_MEMORY_OPERANDS;
duke@435 715 } else {
duke@435 716 int pos = components.operand_position(unique->_name);
duke@435 717 if( unique->isa(Component::DEF) ) {
duke@435 718 pos += 1; // get corresponding USE from DEF
duke@435 719 }
duke@435 720 assert(pos >= 1, "I was just looking at it!");
duke@435 721 return pos;
duke@435 722 }
duke@435 723 }
duke@435 724
duke@435 725 // missed the memory op??
duke@435 726 if( true ) { // %%% should not be necessary
duke@435 727 if( is_ideal_store() != Form::none ) {
duke@435 728 fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
duke@435 729 ((InstructForm*)this)->dump();
duke@435 730 // pretend it has multiple defs and uses
duke@435 731 return MANY_MEMORY_OPERANDS;
duke@435 732 }
duke@435 733 if( is_ideal_load() != Form::none ) {
duke@435 734 fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
duke@435 735 ((InstructForm*)this)->dump();
duke@435 736 // pretend it has multiple uses and no defs
duke@435 737 return MANY_MEMORY_OPERANDS;
duke@435 738 }
duke@435 739 }
duke@435 740
duke@435 741 return NO_MEMORY_OPERAND;
duke@435 742 }
duke@435 743
duke@435 744
duke@435 745 // This instruction captures the machine-independent bottom_type
duke@435 746 // Expected use is for pointer vs oop determination for LoadP
never@1896 747 bool InstructForm::captures_bottom_type(FormDict &globals) const {
duke@435 748 if( _matrule && _matrule->_rChild &&
roland@4159 749 (!strcmp(_matrule->_rChild->_opType,"CastPP") || // new result type
roland@4159 750 !strcmp(_matrule->_rChild->_opType,"CastX2P") || // new result type
roland@4159 751 !strcmp(_matrule->_rChild->_opType,"DecodeN") ||
roland@4159 752 !strcmp(_matrule->_rChild->_opType,"EncodeP") ||
roland@4159 753 !strcmp(_matrule->_rChild->_opType,"DecodeNKlass") ||
roland@4159 754 !strcmp(_matrule->_rChild->_opType,"EncodePKlass") ||
roland@4159 755 !strcmp(_matrule->_rChild->_opType,"LoadN") ||
roland@4159 756 !strcmp(_matrule->_rChild->_opType,"GetAndSetN") ||
roland@4159 757 !strcmp(_matrule->_rChild->_opType,"LoadNKlass") ||
roland@4159 758 !strcmp(_matrule->_rChild->_opType,"CreateEx") || // type of exception
duke@435 759 !strcmp(_matrule->_rChild->_opType,"CheckCastPP")) ) return true;
duke@435 760 else if ( is_ideal_load() == Form::idealP ) return true;
duke@435 761 else if ( is_ideal_store() != Form::none ) return true;
duke@435 762
never@1896 763 if (needs_base_oop_edge(globals)) return true;
never@1896 764
kvn@3882 765 if (is_vector()) return true;
kvn@3882 766 if (is_mach_constant()) return true;
kvn@3882 767
duke@435 768 return false;
duke@435 769 }
duke@435 770
duke@435 771
duke@435 772 // Access instr_cost attribute or return NULL.
duke@435 773 const char* InstructForm::cost() {
duke@435 774 for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
duke@435 775 if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
duke@435 776 return cur->_val;
duke@435 777 }
duke@435 778 }
duke@435 779 return NULL;
duke@435 780 }
duke@435 781
duke@435 782 // Return count of top-level operands.
duke@435 783 uint InstructForm::num_opnds() {
duke@435 784 int num_opnds = _components.num_operands();
duke@435 785
duke@435 786 // Need special handling for matching some ideal nodes
duke@435 787 // i.e. Matching a return node
duke@435 788 /*
duke@435 789 if( _matrule ) {
duke@435 790 if( strcmp(_matrule->_opType,"Return" )==0 ||
duke@435 791 strcmp(_matrule->_opType,"Halt" )==0 )
duke@435 792 return 3;
duke@435 793 }
duke@435 794 */
duke@435 795 return num_opnds;
duke@435 796 }
duke@435 797
duke@435 798 // Return count of unmatched operands.
duke@435 799 uint InstructForm::num_post_match_opnds() {
duke@435 800 uint num_post_match_opnds = _components.count();
duke@435 801 uint num_match_opnds = _components.match_count();
duke@435 802 num_post_match_opnds = num_post_match_opnds - num_match_opnds;
duke@435 803
duke@435 804 return num_post_match_opnds;
duke@435 805 }
duke@435 806
duke@435 807 // Return the number of leaves below this complex operand
duke@435 808 uint InstructForm::num_consts(FormDict &globals) const {
duke@435 809 if ( ! _matrule) return 0;
duke@435 810
duke@435 811 // This is a recursive invocation on all operands in the matchrule
duke@435 812 return _matrule->num_consts(globals);
duke@435 813 }
duke@435 814
duke@435 815 // Constants in match rule with specified type
duke@435 816 uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
duke@435 817 if ( ! _matrule) return 0;
duke@435 818
duke@435 819 // This is a recursive invocation on all operands in the matchrule
duke@435 820 return _matrule->num_consts(globals, type);
duke@435 821 }
duke@435 822
duke@435 823
duke@435 824 // Return the register class associated with 'leaf'.
duke@435 825 const char *InstructForm::out_reg_class(FormDict &globals) {
duke@435 826 assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");
duke@435 827
duke@435 828 return NULL;
duke@435 829 }
duke@435 830
duke@435 831
duke@435 832
duke@435 833 // Lookup the starting position of inputs we are interested in wrt. ideal nodes
duke@435 834 uint InstructForm::oper_input_base(FormDict &globals) {
duke@435 835 if( !_matrule ) return 1; // Skip control for most nodes
duke@435 836
duke@435 837 // Need special handling for matching some ideal nodes
duke@435 838 // i.e. Matching a return node
duke@435 839 if( strcmp(_matrule->_opType,"Return" )==0 ||
duke@435 840 strcmp(_matrule->_opType,"Rethrow" )==0 ||
duke@435 841 strcmp(_matrule->_opType,"TailCall" )==0 ||
duke@435 842 strcmp(_matrule->_opType,"TailJump" )==0 ||
duke@435 843 strcmp(_matrule->_opType,"SafePoint" )==0 ||
duke@435 844 strcmp(_matrule->_opType,"Halt" )==0 )
duke@435 845 return AdlcVMDeps::Parms; // Skip the machine-state edges
duke@435 846
duke@435 847 if( _matrule->_rChild &&
kvn@1421 848 ( strcmp(_matrule->_rChild->_opType,"AryEq" )==0 ||
kvn@1421 849 strcmp(_matrule->_rChild->_opType,"StrComp" )==0 ||
cfang@1116 850 strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 ||
cfang@1116 851 strcmp(_matrule->_rChild->_opType,"StrIndexOf")==0 )) {
kvn@1421 852 // String.(compareTo/equals/indexOf) and Arrays.equals
kvn@1421 853 // take 1 control and 1 memory edges.
kvn@1421 854 return 2;
duke@435 855 }
duke@435 856
duke@435 857 // Check for handling of 'Memory' input/edge in the ideal world.
duke@435 858 // The AD file writer is shielded from knowledge of these edges.
duke@435 859 int base = 1; // Skip control
duke@435 860 base += _matrule->needs_ideal_memory_edge(globals);
duke@435 861
duke@435 862 // Also skip the base-oop value for uses of derived oops.
duke@435 863 // The AD file writer is shielded from knowledge of these edges.
duke@435 864 base += needs_base_oop_edge(globals);
duke@435 865
duke@435 866 return base;
duke@435 867 }
duke@435 868
duke@435 869 // Implementation does not modify state of internal structures
duke@435 870 void InstructForm::build_components() {
duke@435 871 // Add top-level operands to the components
duke@435 872 if (_matrule) _matrule->append_components(_localNames, _components);
duke@435 873
duke@435 874 // Add parameters that "do not appear in match rule".
duke@435 875 bool has_temp = false;
duke@435 876 const char *name;
duke@435 877 const char *kill_name = NULL;
duke@435 878 for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
duke@435 879 OperandForm *opForm = (OperandForm*)_localNames[name];
duke@435 880
twisti@1038 881 Effect* e = NULL;
twisti@1038 882 {
twisti@1038 883 const Form* form = _effects[name];
twisti@1038 884 e = form ? form->is_effect() : NULL;
twisti@1038 885 }
twisti@1038 886
duke@435 887 if (e != NULL) {
duke@435 888 has_temp |= e->is(Component::TEMP);
duke@435 889
duke@435 890 // KILLs must be declared after any TEMPs because TEMPs are real
duke@435 891 // uses so their operand numbering must directly follow the real
duke@435 892 // inputs from the match rule. Fixing the numbering seems
duke@435 893 // complex so simply enforce the restriction during parse.
duke@435 894 if (kill_name != NULL &&
duke@435 895 e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
duke@435 896 OperandForm* kill = (OperandForm*)_localNames[kill_name];
duke@435 897 globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
duke@435 898 _ident, kill->_ident, kill_name);
never@1037 899 } else if (e->isa(Component::KILL) && !e->isa(Component::USE)) {
duke@435 900 kill_name = name;
duke@435 901 }
duke@435 902 }
duke@435 903
duke@435 904 const Component *component = _components.search(name);
duke@435 905 if ( component == NULL ) {
duke@435 906 if (e) {
duke@435 907 _components.insert(name, opForm->_ident, e->_use_def, false);
duke@435 908 component = _components.search(name);
duke@435 909 if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
duke@435 910 const Form *form = globalAD->globalNames()[component->_type];
duke@435 911 assert( form, "component type must be a defined form");
duke@435 912 OperandForm *op = form->is_operand();
duke@435 913 if (op->_interface && op->_interface->is_RegInterface()) {
duke@435 914 globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
duke@435 915 _ident, opForm->_ident, name);
duke@435 916 }
duke@435 917 }
duke@435 918 } else {
duke@435 919 // This would be a nice warning but it triggers in a few places in a benign way
duke@435 920 // if (_matrule != NULL && !expands()) {
duke@435 921 // globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
duke@435 922 // _ident, opForm->_ident, name);
duke@435 923 // }
duke@435 924 _components.insert(name, opForm->_ident, Component::INVALID, false);
duke@435 925 }
duke@435 926 }
duke@435 927 else if (e) {
duke@435 928 // Component was found in the list
duke@435 929 // Check if there is a new effect that requires an extra component.
duke@435 930 // This happens when adding 'USE' to a component that is not yet one.
duke@435 931 if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
duke@435 932 if (component->isa(Component::USE) && _matrule) {
duke@435 933 const Form *form = globalAD->globalNames()[component->_type];
duke@435 934 assert( form, "component type must be a defined form");
duke@435 935 OperandForm *op = form->is_operand();
duke@435 936 if (op->_interface && op->_interface->is_RegInterface()) {
duke@435 937 globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
duke@435 938 _ident, opForm->_ident, name);
duke@435 939 }
duke@435 940 }
duke@435 941 _components.insert(name, opForm->_ident, e->_use_def, false);
duke@435 942 } else {
duke@435 943 Component *comp = (Component*)component;
duke@435 944 comp->promote_use_def_info(e->_use_def);
duke@435 945 }
duke@435 946 // Component positions are zero based.
duke@435 947 int pos = _components.operand_position(name);
duke@435 948 assert( ! (component->isa(Component::DEF) && (pos >= 1)),
duke@435 949 "Component::DEF can only occur in the first position");
duke@435 950 }
duke@435 951 }
duke@435 952
duke@435 953 // Resolving the interactions between expand rules and TEMPs would
duke@435 954 // be complex so simply disallow it.
duke@435 955 if (_matrule == NULL && has_temp) {
duke@435 956 globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
duke@435 957 }
duke@435 958
duke@435 959 return;
duke@435 960 }
duke@435 961
duke@435 962 // Return zero-based position in component list; -1 if not in list.
duke@435 963 int InstructForm::operand_position(const char *name, int usedef) {
duke@435 964 return unique_opnds_idx(_components.operand_position(name, usedef));
duke@435 965 }
duke@435 966
duke@435 967 int InstructForm::operand_position_format(const char *name) {
duke@435 968 return unique_opnds_idx(_components.operand_position_format(name));
duke@435 969 }
duke@435 970
duke@435 971 // Return zero-based position in component list; -1 if not in list.
duke@435 972 int InstructForm::label_position() {
duke@435 973 return unique_opnds_idx(_components.label_position());
duke@435 974 }
duke@435 975
duke@435 976 int InstructForm::method_position() {
duke@435 977 return unique_opnds_idx(_components.method_position());
duke@435 978 }
duke@435 979
duke@435 980 // Return number of relocation entries needed for this instruction.
duke@435 981 uint InstructForm::reloc(FormDict &globals) {
duke@435 982 uint reloc_entries = 0;
duke@435 983 // Check for "Call" nodes
duke@435 984 if ( is_ideal_call() ) ++reloc_entries;
duke@435 985 if ( is_ideal_return() ) ++reloc_entries;
duke@435 986 if ( is_ideal_safepoint() ) ++reloc_entries;
duke@435 987
duke@435 988
duke@435 989 // Check if operands MAYBE oop pointers, by checking for ConP elements
duke@435 990 // Proceed through the leaves of the match-tree and check for ConPs
duke@435 991 if ( _matrule != NULL ) {
duke@435 992 uint position = 0;
duke@435 993 const char *result = NULL;
duke@435 994 const char *name = NULL;
duke@435 995 const char *opType = NULL;
duke@435 996 while (_matrule->base_operand(position, globals, result, name, opType)) {
duke@435 997 if ( strcmp(opType,"ConP") == 0 ) {
duke@435 998 #ifdef SPARC
duke@435 999 reloc_entries += 2; // 1 for sethi + 1 for setlo
duke@435 1000 #else
duke@435 1001 ++reloc_entries;
duke@435 1002 #endif
duke@435 1003 }
duke@435 1004 ++position;
duke@435 1005 }
duke@435 1006 }
duke@435 1007
duke@435 1008 // Above is only a conservative estimate
duke@435 1009 // because it did not check contents of operand classes.
duke@435 1010 // !!!!! !!!!!
duke@435 1011 // Add 1 to reloc info for each operand class in the component list.
duke@435 1012 Component *comp;
duke@435 1013 _components.reset();
duke@435 1014 while ( (comp = _components.iter()) != NULL ) {
duke@435 1015 const Form *form = globals[comp->_type];
duke@435 1016 assert( form, "Did not find component's type in global names");
duke@435 1017 const OpClassForm *opc = form->is_opclass();
duke@435 1018 const OperandForm *oper = form->is_operand();
duke@435 1019 if ( opc && (oper == NULL) ) {
duke@435 1020 ++reloc_entries;
duke@435 1021 } else if ( oper ) {
duke@435 1022 // floats and doubles loaded out of method's constant pool require reloc info
duke@435 1023 Form::DataType type = oper->is_base_constant(globals);
duke@435 1024 if ( (type == Form::idealF) || (type == Form::idealD) ) {
duke@435 1025 ++reloc_entries;
duke@435 1026 }
duke@435 1027 }
duke@435 1028 }
duke@435 1029
duke@435 1030 // Float and Double constants may come from the CodeBuffer table
duke@435 1031 // and require relocatable addresses for access
duke@435 1032 // !!!!!
duke@435 1033 // Check for any component being an immediate float or double.
duke@435 1034 Form::DataType data_type = is_chain_of_constant(globals);
duke@435 1035 if( data_type==idealD || data_type==idealF ) {
duke@435 1036 #ifdef SPARC
duke@435 1037 // sparc required more relocation entries for floating constants
duke@435 1038 // (expires 9/98)
duke@435 1039 reloc_entries += 6;
duke@435 1040 #else
duke@435 1041 reloc_entries++;
duke@435 1042 #endif
duke@435 1043 }
duke@435 1044
duke@435 1045 return reloc_entries;
duke@435 1046 }
duke@435 1047
duke@435 1048 // Utility function defined in archDesc.cpp
duke@435 1049 extern bool is_def(int usedef);
duke@435 1050
duke@435 1051 // Return the result of reducing an instruction
duke@435 1052 const char *InstructForm::reduce_result() {
duke@435 1053 const char* result = "Universe"; // default
duke@435 1054 _components.reset();
duke@435 1055 Component *comp = _components.iter();
duke@435 1056 if (comp != NULL && comp->isa(Component::DEF)) {
duke@435 1057 result = comp->_type;
duke@435 1058 // Override this if the rule is a store operation:
duke@435 1059 if (_matrule && _matrule->_rChild &&
duke@435 1060 is_store_to_memory(_matrule->_rChild->_opType))
duke@435 1061 result = "Universe";
duke@435 1062 }
duke@435 1063 return result;
duke@435 1064 }
duke@435 1065
duke@435 1066 // Return the name of the operand on the right hand side of the binary match
duke@435 1067 // Return NULL if there is no right hand side
duke@435 1068 const char *InstructForm::reduce_right(FormDict &globals) const {
duke@435 1069 if( _matrule == NULL ) return NULL;
duke@435 1070 return _matrule->reduce_right(globals);
duke@435 1071 }
duke@435 1072
duke@435 1073 // Similar for left
duke@435 1074 const char *InstructForm::reduce_left(FormDict &globals) const {
duke@435 1075 if( _matrule == NULL ) return NULL;
duke@435 1076 return _matrule->reduce_left(globals);
duke@435 1077 }
duke@435 1078
duke@435 1079
duke@435 1080 // Base class for this instruction, MachNode except for calls
never@1896 1081 const char *InstructForm::mach_base_class(FormDict &globals) const {
duke@435 1082 if( is_ideal_call() == Form::JAVA_STATIC ) {
duke@435 1083 return "MachCallStaticJavaNode";
duke@435 1084 }
duke@435 1085 else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
duke@435 1086 return "MachCallDynamicJavaNode";
duke@435 1087 }
duke@435 1088 else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
duke@435 1089 return "MachCallRuntimeNode";
duke@435 1090 }
duke@435 1091 else if( is_ideal_call() == Form::JAVA_LEAF ) {
duke@435 1092 return "MachCallLeafNode";
duke@435 1093 }
duke@435 1094 else if (is_ideal_return()) {
duke@435 1095 return "MachReturnNode";
duke@435 1096 }
duke@435 1097 else if (is_ideal_halt()) {
duke@435 1098 return "MachHaltNode";
duke@435 1099 }
duke@435 1100 else if (is_ideal_safepoint()) {
duke@435 1101 return "MachSafePointNode";
duke@435 1102 }
duke@435 1103 else if (is_ideal_if()) {
duke@435 1104 return "MachIfNode";
duke@435 1105 }
kvn@3040 1106 else if (is_ideal_goto()) {
kvn@3040 1107 return "MachGotoNode";
kvn@3040 1108 }
duke@435 1109 else if (is_ideal_fastlock()) {
duke@435 1110 return "MachFastLockNode";
duke@435 1111 }
duke@435 1112 else if (is_ideal_nop()) {
duke@435 1113 return "MachNopNode";
duke@435 1114 }
twisti@2350 1115 else if (is_mach_constant()) {
twisti@2350 1116 return "MachConstantNode";
twisti@2350 1117 }
never@1896 1118 else if (captures_bottom_type(globals)) {
duke@435 1119 return "MachTypeNode";
duke@435 1120 } else {
duke@435 1121 return "MachNode";
duke@435 1122 }
duke@435 1123 assert( false, "ShouldNotReachHere()");
duke@435 1124 return NULL;
duke@435 1125 }
duke@435 1126
duke@435 1127 // Compare the instruction predicates for textual equality
duke@435 1128 bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
duke@435 1129 const Predicate *pred1 = instr1->_predicate;
duke@435 1130 const Predicate *pred2 = instr2->_predicate;
duke@435 1131 if( pred1 == NULL && pred2 == NULL ) {
duke@435 1132 // no predicates means they are identical
duke@435 1133 return true;
duke@435 1134 }
duke@435 1135 if( pred1 != NULL && pred2 != NULL ) {
duke@435 1136 // compare the predicates
jrose@910 1137 if (ADLParser::equivalent_expressions(pred1->_pred, pred2->_pred)) {
duke@435 1138 return true;
duke@435 1139 }
duke@435 1140 }
duke@435 1141
duke@435 1142 return false;
duke@435 1143 }
duke@435 1144
duke@435 1145 // Check if this instruction can cisc-spill to 'alternate'
duke@435 1146 bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
duke@435 1147 assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
duke@435 1148 // Do not replace if a cisc-version has been found.
duke@435 1149 if( cisc_spill_operand() != Not_cisc_spillable ) return false;
duke@435 1150
duke@435 1151 int cisc_spill_operand = Maybe_cisc_spillable;
duke@435 1152 char *result = NULL;
duke@435 1153 char *result2 = NULL;
duke@435 1154 const char *op_name = NULL;
duke@435 1155 const char *reg_type = NULL;
duke@435 1156 FormDict &globals = AD.globalNames();
twisti@1038 1157 cisc_spill_operand = _matrule->matchrule_cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
duke@435 1158 if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
duke@435 1159 cisc_spill_operand = operand_position(op_name, Component::USE);
duke@435 1160 int def_oper = operand_position(op_name, Component::DEF);
duke@435 1161 if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
duke@435 1162 // Do not support cisc-spilling for destination operands and
duke@435 1163 // make sure they have the same number of operands.
duke@435 1164 _cisc_spill_alternate = instr;
duke@435 1165 instr->set_cisc_alternate(true);
duke@435 1166 if( AD._cisc_spill_debug ) {
duke@435 1167 fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
duke@435 1168 fprintf(stderr, " using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
duke@435 1169 }
duke@435 1170 // Record that a stack-version of the reg_mask is needed
duke@435 1171 // !!!!!
duke@435 1172 OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
duke@435 1173 assert( oper != NULL, "cisc-spilling non operand");
duke@435 1174 const char *reg_class_name = oper->constrained_reg_class();
duke@435 1175 AD.set_stack_or_reg(reg_class_name);
duke@435 1176 const char *reg_mask_name = AD.reg_mask(*oper);
duke@435 1177 set_cisc_reg_mask_name(reg_mask_name);
duke@435 1178 const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
duke@435 1179 } else {
duke@435 1180 cisc_spill_operand = Not_cisc_spillable;
duke@435 1181 }
duke@435 1182 } else {
duke@435 1183 cisc_spill_operand = Not_cisc_spillable;
duke@435 1184 }
duke@435 1185
duke@435 1186 set_cisc_spill_operand(cisc_spill_operand);
duke@435 1187 return (cisc_spill_operand != Not_cisc_spillable);
duke@435 1188 }
duke@435 1189
duke@435 1190 // Check to see if this instruction can be replaced with the short branch
duke@435 1191 // instruction `short-branch'
duke@435 1192 bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
duke@435 1193 if (_matrule != NULL &&
duke@435 1194 this != short_branch && // Don't match myself
duke@435 1195 !is_short_branch() && // Don't match another short branch variant
duke@435 1196 reduce_result() != NULL &&
duke@435 1197 strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
duke@435 1198 _matrule->equivalent(AD.globalNames(), short_branch->_matrule)) {
duke@435 1199 // The instructions are equivalent.
kvn@3049 1200
kvn@3049 1201 // Now verify that both instructions have the same parameters and
kvn@3049 1202 // the same effects. Both branch forms should have the same inputs
kvn@3049 1203 // and resulting projections to correctly replace a long branch node
kvn@3049 1204 // with corresponding short branch node during code generation.
kvn@3049 1205
kvn@3049 1206 bool different = false;
kvn@3049 1207 if (short_branch->_components.count() != _components.count()) {
kvn@3049 1208 different = true;
kvn@3049 1209 } else if (_components.count() > 0) {
kvn@3049 1210 short_branch->_components.reset();
kvn@3049 1211 _components.reset();
kvn@3049 1212 Component *comp;
kvn@3049 1213 while ((comp = _components.iter()) != NULL) {
kvn@3049 1214 Component *short_comp = short_branch->_components.iter();
kvn@3049 1215 if (short_comp == NULL ||
kvn@3049 1216 short_comp->_type != comp->_type ||
kvn@3049 1217 short_comp->_usedef != comp->_usedef) {
kvn@3049 1218 different = true;
kvn@3049 1219 break;
kvn@3049 1220 }
kvn@3049 1221 }
kvn@3049 1222 if (short_branch->_components.iter() != NULL)
kvn@3049 1223 different = true;
kvn@3049 1224 }
kvn@3049 1225 if (different) {
kvn@3049 1226 globalAD->syntax_err(short_branch->_linenum, "Instruction %s and its short form %s have different parameters\n", _ident, short_branch->_ident);
kvn@3049 1227 }
duke@435 1228 if (AD._short_branch_debug) {
duke@435 1229 fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
duke@435 1230 }
duke@435 1231 _short_branch_form = short_branch;
duke@435 1232 return true;
duke@435 1233 }
duke@435 1234 return false;
duke@435 1235 }
duke@435 1236
duke@435 1237
duke@435 1238 // --------------------------- FILE *output_routines
duke@435 1239 //
duke@435 1240 // Generate the format call for the replacement variable
duke@435 1241 void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
twisti@2350 1242 // Handle special constant table variables.
twisti@2350 1243 if (strcmp(rep_var, "constanttablebase") == 0) {
twisti@2350 1244 fprintf(fp, "char reg[128]; ra->dump_register(in(mach_constant_base_node_input()), reg);\n");
roland@3161 1245 fprintf(fp, " st->print(\"%%s\", reg);\n");
twisti@2350 1246 return;
twisti@2350 1247 }
twisti@2350 1248 if (strcmp(rep_var, "constantoffset") == 0) {
twisti@2350 1249 fprintf(fp, "st->print(\"#%%d\", constant_offset());\n");
twisti@2350 1250 return;
twisti@2350 1251 }
twisti@2350 1252 if (strcmp(rep_var, "constantaddress") == 0) {
twisti@2350 1253 fprintf(fp, "st->print(\"constant table base + #%%d\", constant_offset());\n");
twisti@2350 1254 return;
twisti@2350 1255 }
twisti@2350 1256
duke@435 1257 // Find replacement variable's type
duke@435 1258 const Form *form = _localNames[rep_var];
duke@435 1259 if (form == NULL) {
duke@435 1260 fprintf(stderr, "unknown replacement variable in format statement: '%s'\n", rep_var);
duke@435 1261 assert(false, "ShouldNotReachHere()");
duke@435 1262 }
duke@435 1263 OpClassForm *opc = form->is_opclass();
duke@435 1264 assert( opc, "replacement variable was not found in local names");
duke@435 1265 // Lookup the index position of the replacement variable
duke@435 1266 int idx = operand_position_format(rep_var);
duke@435 1267 if ( idx == -1 ) {
duke@435 1268 assert( strcmp(opc->_ident,"label")==0, "Unimplemented");
duke@435 1269 assert( false, "ShouldNotReachHere()");
duke@435 1270 }
duke@435 1271
duke@435 1272 if (is_noninput_operand(idx)) {
duke@435 1273 // This component isn't in the input array. Print out the static
duke@435 1274 // name of the register.
duke@435 1275 OperandForm* oper = form->is_operand();
duke@435 1276 if (oper != NULL && oper->is_bound_register()) {
duke@435 1277 const RegDef* first = oper->get_RegClass()->find_first_elem();
duke@435 1278 fprintf(fp, " tty->print(\"%s\");\n", first->_regname);
duke@435 1279 } else {
duke@435 1280 globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
duke@435 1281 }
duke@435 1282 } else {
duke@435 1283 // Output the format call for this operand
duke@435 1284 fprintf(fp,"opnd_array(%d)->",idx);
duke@435 1285 if (idx == 0)
duke@435 1286 fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
duke@435 1287 else
duke@435 1288 fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
duke@435 1289 }
duke@435 1290 }
duke@435 1291
duke@435 1292 // Seach through operands to determine parameters unique positions.
duke@435 1293 void InstructForm::set_unique_opnds() {
duke@435 1294 uint* uniq_idx = NULL;
never@1034 1295 int nopnds = num_opnds();
duke@435 1296 uint num_uniq = nopnds;
never@1034 1297 int i;
never@1034 1298 _uniq_idx_length = 0;
duke@435 1299 if ( nopnds > 0 ) {
never@1034 1300 // Allocate index array. Worst case we're mapping from each
never@1034 1301 // component back to an index and any DEF always goes at 0 so the
never@1034 1302 // length of the array has to be the number of components + 1.
never@1034 1303 _uniq_idx_length = _components.count() + 1;
never@1034 1304 uniq_idx = (uint*) malloc(sizeof(uint)*(_uniq_idx_length));
never@1034 1305 for( i = 0; i < _uniq_idx_length; i++ ) {
duke@435 1306 uniq_idx[i] = i;
duke@435 1307 }
duke@435 1308 }
duke@435 1309 // Do it only if there is a match rule and no expand rule. With an
duke@435 1310 // expand rule it is done by creating new mach node in Expand()
duke@435 1311 // method.
duke@435 1312 if ( nopnds > 0 && _matrule != NULL && _exprule == NULL ) {
duke@435 1313 const char *name;
duke@435 1314 uint count;
duke@435 1315 bool has_dupl_use = false;
duke@435 1316
duke@435 1317 _parameters.reset();
duke@435 1318 while( (name = _parameters.iter()) != NULL ) {
duke@435 1319 count = 0;
never@1034 1320 int position = 0;
never@1034 1321 int uniq_position = 0;
duke@435 1322 _components.reset();
duke@435 1323 Component *comp = NULL;
duke@435 1324 if( sets_result() ) {
duke@435 1325 comp = _components.iter();
duke@435 1326 position++;
duke@435 1327 }
duke@435 1328 // The next code is copied from the method operand_position().
duke@435 1329 for (; (comp = _components.iter()) != NULL; ++position) {
duke@435 1330 // When the first component is not a DEF,
duke@435 1331 // leave space for the result operand!
duke@435 1332 if ( position==0 && (! comp->isa(Component::DEF)) ) {
duke@435 1333 ++position;
duke@435 1334 }
duke@435 1335 if( strcmp(name, comp->_name)==0 ) {
duke@435 1336 if( ++count > 1 ) {
never@1034 1337 assert(position < _uniq_idx_length, "out of bounds");
duke@435 1338 uniq_idx[position] = uniq_position;
duke@435 1339 has_dupl_use = true;
duke@435 1340 } else {
duke@435 1341 uniq_position = position;
duke@435 1342 }
duke@435 1343 }
duke@435 1344 if( comp->isa(Component::DEF)
duke@435 1345 && comp->isa(Component::USE) ) {
duke@435 1346 ++position;
duke@435 1347 if( position != 1 )
duke@435 1348 --position; // only use two slots for the 1st USE_DEF
duke@435 1349 }
duke@435 1350 }
duke@435 1351 }
duke@435 1352 if( has_dupl_use ) {
duke@435 1353 for( i = 1; i < nopnds; i++ )
duke@435 1354 if( i != uniq_idx[i] )
duke@435 1355 break;
duke@435 1356 int j = i;
duke@435 1357 for( ; i < nopnds; i++ )
duke@435 1358 if( i == uniq_idx[i] )
duke@435 1359 uniq_idx[i] = j++;
duke@435 1360 num_uniq = j;
duke@435 1361 }
duke@435 1362 }
duke@435 1363 _uniq_idx = uniq_idx;
duke@435 1364 _num_uniq = num_uniq;
duke@435 1365 }
duke@435 1366
twisti@1040 1367 // Generate index values needed for determining the operand position
duke@435 1368 void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
duke@435 1369 uint idx = 0; // position of operand in match rule
duke@435 1370 int cur_num_opnds = num_opnds();
duke@435 1371
duke@435 1372 // Compute the index into vector of operand pointers:
duke@435 1373 // idx0=0 is used to indicate that info comes from this same node, not from input edge.
duke@435 1374 // idx1 starts at oper_input_base()
duke@435 1375 if ( cur_num_opnds >= 1 ) {
duke@435 1376 fprintf(fp," // Start at oper_input_base() and count operands\n");
duke@435 1377 fprintf(fp," unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
duke@435 1378 fprintf(fp," unsigned %sidx1 = %d;\n", prefix, oper_input_base(globals));
duke@435 1379
duke@435 1380 // Generate starting points for other unique operands if they exist
duke@435 1381 for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
duke@435 1382 if( *receiver == 0 ) {
duke@435 1383 fprintf(fp," unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();\n",
duke@435 1384 prefix, idx, prefix, idx-1, idx-1 );
duke@435 1385 } else {
duke@435 1386 fprintf(fp," unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();\n",
duke@435 1387 prefix, idx, prefix, idx-1, receiver, idx-1 );
duke@435 1388 }
duke@435 1389 }
duke@435 1390 }
duke@435 1391 if( *receiver != 0 ) {
duke@435 1392 // This value is used by generate_peepreplace when copying a node.
duke@435 1393 // Don't emit it in other cases since it can hide bugs with the
duke@435 1394 // use invalid idx's.
duke@435 1395 fprintf(fp," unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
duke@435 1396 }
duke@435 1397
duke@435 1398 }
duke@435 1399
duke@435 1400 // ---------------------------
duke@435 1401 bool InstructForm::verify() {
duke@435 1402 // !!!!! !!!!!
duke@435 1403 // Check that a "label" operand occurs last in the operand list, if present
duke@435 1404 return true;
duke@435 1405 }
duke@435 1406
duke@435 1407 void InstructForm::dump() {
duke@435 1408 output(stderr);
duke@435 1409 }
duke@435 1410
duke@435 1411 void InstructForm::output(FILE *fp) {
duke@435 1412 fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
duke@435 1413 if (_matrule) _matrule->output(fp);
duke@435 1414 if (_insencode) _insencode->output(fp);
twisti@2350 1415 if (_constant) _constant->output(fp);
duke@435 1416 if (_opcode) _opcode->output(fp);
duke@435 1417 if (_attribs) _attribs->output(fp);
duke@435 1418 if (_predicate) _predicate->output(fp);
duke@435 1419 if (_effects.Size()) {
duke@435 1420 fprintf(fp,"Effects\n");
duke@435 1421 _effects.dump();
duke@435 1422 }
duke@435 1423 if (_exprule) _exprule->output(fp);
duke@435 1424 if (_rewrule) _rewrule->output(fp);
duke@435 1425 if (_format) _format->output(fp);
duke@435 1426 if (_peephole) _peephole->output(fp);
duke@435 1427 }
duke@435 1428
duke@435 1429 void MachNodeForm::dump() {
duke@435 1430 output(stderr);
duke@435 1431 }
duke@435 1432
duke@435 1433 void MachNodeForm::output(FILE *fp) {
duke@435 1434 fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
duke@435 1435 }
duke@435 1436
duke@435 1437 //------------------------------build_predicate--------------------------------
duke@435 1438 // Build instruction predicates. If the user uses the same operand name
duke@435 1439 // twice, we need to check that the operands are pointer-eequivalent in
duke@435 1440 // the DFA during the labeling process.
duke@435 1441 Predicate *InstructForm::build_predicate() {
duke@435 1442 char buf[1024], *s=buf;
duke@435 1443 Dict names(cmpstr,hashstr,Form::arena); // Map Names to counts
duke@435 1444
duke@435 1445 MatchNode *mnode =
duke@435 1446 strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
duke@435 1447 mnode->count_instr_names(names);
duke@435 1448
duke@435 1449 uint first = 1;
duke@435 1450 // Start with the predicate supplied in the .ad file.
duke@435 1451 if( _predicate ) {
duke@435 1452 if( first ) first=0;
duke@435 1453 strcpy(s,"("); s += strlen(s);
duke@435 1454 strcpy(s,_predicate->_pred);
duke@435 1455 s += strlen(s);
duke@435 1456 strcpy(s,")"); s += strlen(s);
duke@435 1457 }
duke@435 1458 for( DictI i(&names); i.test(); ++i ) {
duke@435 1459 uintptr_t cnt = (uintptr_t)i._value;
duke@435 1460 if( cnt > 1 ) { // Need a predicate at all?
duke@435 1461 assert( cnt == 2, "Unimplemented" );
duke@435 1462 // Handle many pairs
duke@435 1463 if( first ) first=0;
duke@435 1464 else { // All tests must pass, so use '&&'
duke@435 1465 strcpy(s," && ");
duke@435 1466 s += strlen(s);
duke@435 1467 }
duke@435 1468 // Add predicate to working buffer
duke@435 1469 sprintf(s,"/*%s*/(",(char*)i._key);
duke@435 1470 s += strlen(s);
duke@435 1471 mnode->build_instr_pred(s,(char*)i._key,0);
duke@435 1472 s += strlen(s);
duke@435 1473 strcpy(s," == "); s += strlen(s);
duke@435 1474 mnode->build_instr_pred(s,(char*)i._key,1);
duke@435 1475 s += strlen(s);
duke@435 1476 strcpy(s,")"); s += strlen(s);
duke@435 1477 }
duke@435 1478 }
duke@435 1479 if( s == buf ) s = NULL;
duke@435 1480 else {
duke@435 1481 assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
duke@435 1482 s = strdup(buf);
duke@435 1483 }
duke@435 1484 return new Predicate(s);
duke@435 1485 }
duke@435 1486
duke@435 1487 //------------------------------EncodeForm-------------------------------------
duke@435 1488 // Constructor
duke@435 1489 EncodeForm::EncodeForm()
duke@435 1490 : _encClass(cmpstr,hashstr, Form::arena) {
duke@435 1491 }
duke@435 1492 EncodeForm::~EncodeForm() {
duke@435 1493 }
duke@435 1494
duke@435 1495 // record a new register class
duke@435 1496 EncClass *EncodeForm::add_EncClass(const char *className) {
duke@435 1497 EncClass *encClass = new EncClass(className);
duke@435 1498 _eclasses.addName(className);
duke@435 1499 _encClass.Insert(className,encClass);
duke@435 1500 return encClass;
duke@435 1501 }
duke@435 1502
duke@435 1503 // Lookup the function body for an encoding class
duke@435 1504 EncClass *EncodeForm::encClass(const char *className) {
duke@435 1505 assert( className != NULL, "Must provide a defined encoding name");
duke@435 1506
duke@435 1507 EncClass *encClass = (EncClass*)_encClass[className];
duke@435 1508 return encClass;
duke@435 1509 }
duke@435 1510
duke@435 1511 // Lookup the function body for an encoding class
duke@435 1512 const char *EncodeForm::encClassBody(const char *className) {
duke@435 1513 if( className == NULL ) return NULL;
duke@435 1514
duke@435 1515 EncClass *encClass = (EncClass*)_encClass[className];
duke@435 1516 assert( encClass != NULL, "Encode Class is missing.");
duke@435 1517 encClass->_code.reset();
duke@435 1518 const char *code = (const char*)encClass->_code.iter();
duke@435 1519 assert( code != NULL, "Found an empty encode class body.");
duke@435 1520
duke@435 1521 return code;
duke@435 1522 }
duke@435 1523
duke@435 1524 // Lookup the function body for an encoding class
duke@435 1525 const char *EncodeForm::encClassPrototype(const char *className) {
duke@435 1526 assert( className != NULL, "Encode class name must be non NULL.");
duke@435 1527
duke@435 1528 return className;
duke@435 1529 }
duke@435 1530
duke@435 1531 void EncodeForm::dump() { // Debug printer
duke@435 1532 output(stderr);
duke@435 1533 }
duke@435 1534
duke@435 1535 void EncodeForm::output(FILE *fp) { // Write info to output files
duke@435 1536 const char *name;
duke@435 1537 fprintf(fp,"\n");
duke@435 1538 fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
duke@435 1539 for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
duke@435 1540 ((EncClass*)_encClass[name])->output(fp);
duke@435 1541 }
duke@435 1542 fprintf(fp,"-------------------- end EncodeForm --------------------\n");
duke@435 1543 }
duke@435 1544 //------------------------------EncClass---------------------------------------
duke@435 1545 EncClass::EncClass(const char *name)
duke@435 1546 : _localNames(cmpstr,hashstr, Form::arena), _name(name) {
duke@435 1547 }
duke@435 1548 EncClass::~EncClass() {
duke@435 1549 }
duke@435 1550
duke@435 1551 // Add a parameter <type,name> pair
duke@435 1552 void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
duke@435 1553 _parameter_type.addName( parameter_type );
duke@435 1554 _parameter_name.addName( parameter_name );
duke@435 1555 }
duke@435 1556
duke@435 1557 // Verify operand types in parameter list
duke@435 1558 bool EncClass::check_parameter_types(FormDict &globals) {
duke@435 1559 // !!!!!
duke@435 1560 return false;
duke@435 1561 }
duke@435 1562
duke@435 1563 // Add the decomposed "code" sections of an encoding's code-block
duke@435 1564 void EncClass::add_code(const char *code) {
duke@435 1565 _code.addName(code);
duke@435 1566 }
duke@435 1567
duke@435 1568 // Add the decomposed "replacement variables" of an encoding's code-block
duke@435 1569 void EncClass::add_rep_var(char *replacement_var) {
duke@435 1570 _code.addName(NameList::_signal);
duke@435 1571 _rep_vars.addName(replacement_var);
duke@435 1572 }
duke@435 1573
duke@435 1574 // Lookup the function body for an encoding class
duke@435 1575 int EncClass::rep_var_index(const char *rep_var) {
duke@435 1576 uint position = 0;
duke@435 1577 const char *name = NULL;
duke@435 1578
duke@435 1579 _parameter_name.reset();
duke@435 1580 while ( (name = _parameter_name.iter()) != NULL ) {
duke@435 1581 if ( strcmp(rep_var,name) == 0 ) return position;
duke@435 1582 ++position;
duke@435 1583 }
duke@435 1584
duke@435 1585 return -1;
duke@435 1586 }
duke@435 1587
duke@435 1588 // Check after parsing
duke@435 1589 bool EncClass::verify() {
duke@435 1590 // 1!!!!
duke@435 1591 // Check that each replacement variable, '$name' in architecture description
duke@435 1592 // is actually a local variable for this encode class, or a reserved name
duke@435 1593 // "primary, secondary, tertiary"
duke@435 1594 return true;
duke@435 1595 }
duke@435 1596
duke@435 1597 void EncClass::dump() {
duke@435 1598 output(stderr);
duke@435 1599 }
duke@435 1600
duke@435 1601 // Write info to output files
duke@435 1602 void EncClass::output(FILE *fp) {
duke@435 1603 fprintf(fp,"EncClass: %s", (_name ? _name : ""));
duke@435 1604
duke@435 1605 // Output the parameter list
duke@435 1606 _parameter_type.reset();
duke@435 1607 _parameter_name.reset();
duke@435 1608 const char *type = _parameter_type.iter();
duke@435 1609 const char *name = _parameter_name.iter();
duke@435 1610 fprintf(fp, " ( ");
duke@435 1611 for ( ; (type != NULL) && (name != NULL);
duke@435 1612 (type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
duke@435 1613 fprintf(fp, " %s %s,", type, name);
duke@435 1614 }
duke@435 1615 fprintf(fp, " ) ");
duke@435 1616
duke@435 1617 // Output the code block
duke@435 1618 _code.reset();
duke@435 1619 _rep_vars.reset();
duke@435 1620 const char *code;
duke@435 1621 while ( (code = _code.iter()) != NULL ) {
duke@435 1622 if ( _code.is_signal(code) ) {
duke@435 1623 // A replacement variable
duke@435 1624 const char *rep_var = _rep_vars.iter();
duke@435 1625 fprintf(fp,"($%s)", rep_var);
duke@435 1626 } else {
duke@435 1627 // A section of code
duke@435 1628 fprintf(fp,"%s", code);
duke@435 1629 }
duke@435 1630 }
duke@435 1631
duke@435 1632 }
duke@435 1633
duke@435 1634 //------------------------------Opcode-----------------------------------------
duke@435 1635 Opcode::Opcode(char *primary, char *secondary, char *tertiary)
duke@435 1636 : _primary(primary), _secondary(secondary), _tertiary(tertiary) {
duke@435 1637 }
duke@435 1638
duke@435 1639 Opcode::~Opcode() {
duke@435 1640 }
duke@435 1641
duke@435 1642 Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
duke@435 1643 if( strcmp(param,"primary") == 0 ) {
duke@435 1644 return Opcode::PRIMARY;
duke@435 1645 }
duke@435 1646 else if( strcmp(param,"secondary") == 0 ) {
duke@435 1647 return Opcode::SECONDARY;
duke@435 1648 }
duke@435 1649 else if( strcmp(param,"tertiary") == 0 ) {
duke@435 1650 return Opcode::TERTIARY;
duke@435 1651 }
duke@435 1652 return Opcode::NOT_AN_OPCODE;
duke@435 1653 }
duke@435 1654
never@850 1655 bool Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
duke@435 1656 // Default values previously provided by MachNode::primary()...
never@850 1657 const char *description = NULL;
never@850 1658 const char *value = NULL;
duke@435 1659 // Check if user provided any opcode definitions
duke@435 1660 if( this != NULL ) {
duke@435 1661 // Update 'value' if user provided a definition in the instruction
duke@435 1662 switch (desired_opcode) {
duke@435 1663 case PRIMARY:
duke@435 1664 description = "primary()";
duke@435 1665 if( _primary != NULL) { value = _primary; }
duke@435 1666 break;
duke@435 1667 case SECONDARY:
duke@435 1668 description = "secondary()";
duke@435 1669 if( _secondary != NULL ) { value = _secondary; }
duke@435 1670 break;
duke@435 1671 case TERTIARY:
duke@435 1672 description = "tertiary()";
duke@435 1673 if( _tertiary != NULL ) { value = _tertiary; }
duke@435 1674 break;
duke@435 1675 default:
duke@435 1676 assert( false, "ShouldNotReachHere();");
duke@435 1677 break;
duke@435 1678 }
duke@435 1679 }
never@850 1680 if (value != NULL) {
never@850 1681 fprintf(fp, "(%s /*%s*/)", value, description);
never@850 1682 }
never@850 1683 return value != NULL;
duke@435 1684 }
duke@435 1685
duke@435 1686 void Opcode::dump() {
duke@435 1687 output(stderr);
duke@435 1688 }
duke@435 1689
duke@435 1690 // Write info to output files
duke@435 1691 void Opcode::output(FILE *fp) {
duke@435 1692 if (_primary != NULL) fprintf(fp,"Primary opcode: %s\n", _primary);
duke@435 1693 if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
duke@435 1694 if (_tertiary != NULL) fprintf(fp,"Tertiary opcode: %s\n", _tertiary);
duke@435 1695 }
duke@435 1696
duke@435 1697 //------------------------------InsEncode--------------------------------------
duke@435 1698 InsEncode::InsEncode() {
duke@435 1699 }
duke@435 1700 InsEncode::~InsEncode() {
duke@435 1701 }
duke@435 1702
duke@435 1703 // Add "encode class name" and its parameters
duke@435 1704 NameAndList *InsEncode::add_encode(char *encoding) {
duke@435 1705 assert( encoding != NULL, "Must provide name for encoding");
duke@435 1706
duke@435 1707 // add_parameter(NameList::_signal);
duke@435 1708 NameAndList *encode = new NameAndList(encoding);
duke@435 1709 _encoding.addName((char*)encode);
duke@435 1710
duke@435 1711 return encode;
duke@435 1712 }
duke@435 1713
duke@435 1714 // Access the list of encodings
duke@435 1715 void InsEncode::reset() {
duke@435 1716 _encoding.reset();
duke@435 1717 // _parameter.reset();
duke@435 1718 }
duke@435 1719 const char* InsEncode::encode_class_iter() {
duke@435 1720 NameAndList *encode_class = (NameAndList*)_encoding.iter();
duke@435 1721 return ( encode_class != NULL ? encode_class->name() : NULL );
duke@435 1722 }
duke@435 1723 // Obtain parameter name from zero based index
duke@435 1724 const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
duke@435 1725 NameAndList *params = (NameAndList*)_encoding.current();
duke@435 1726 assert( params != NULL, "Internal Error");
duke@435 1727 const char *param = (*params)[param_no];
duke@435 1728
duke@435 1729 // Remove '$' if parser placed it there.
duke@435 1730 return ( param != NULL && *param == '$') ? (param+1) : param;
duke@435 1731 }
duke@435 1732
duke@435 1733 void InsEncode::dump() {
duke@435 1734 output(stderr);
duke@435 1735 }
duke@435 1736
duke@435 1737 // Write info to output files
duke@435 1738 void InsEncode::output(FILE *fp) {
duke@435 1739 NameAndList *encoding = NULL;
duke@435 1740 const char *parameter = NULL;
duke@435 1741
duke@435 1742 fprintf(fp,"InsEncode: ");
duke@435 1743 _encoding.reset();
duke@435 1744
duke@435 1745 while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
duke@435 1746 // Output the encoding being used
duke@435 1747 fprintf(fp,"%s(", encoding->name() );
duke@435 1748
duke@435 1749 // Output its parameter list, if any
duke@435 1750 bool first_param = true;
duke@435 1751 encoding->reset();
duke@435 1752 while ( (parameter = encoding->iter()) != 0 ) {
duke@435 1753 // Output the ',' between parameters
duke@435 1754 if ( ! first_param ) fprintf(fp,", ");
duke@435 1755 first_param = false;
duke@435 1756 // Output the parameter
duke@435 1757 fprintf(fp,"%s", parameter);
duke@435 1758 } // done with parameters
duke@435 1759 fprintf(fp,") ");
duke@435 1760 } // done with encodings
duke@435 1761
duke@435 1762 fprintf(fp,"\n");
duke@435 1763 }
duke@435 1764
duke@435 1765 //------------------------------Effect-----------------------------------------
duke@435 1766 static int effect_lookup(const char *name) {
duke@435 1767 if(!strcmp(name, "USE")) return Component::USE;
duke@435 1768 if(!strcmp(name, "DEF")) return Component::DEF;
duke@435 1769 if(!strcmp(name, "USE_DEF")) return Component::USE_DEF;
duke@435 1770 if(!strcmp(name, "KILL")) return Component::KILL;
duke@435 1771 if(!strcmp(name, "USE_KILL")) return Component::USE_KILL;
duke@435 1772 if(!strcmp(name, "TEMP")) return Component::TEMP;
duke@435 1773 if(!strcmp(name, "INVALID")) return Component::INVALID;
roland@3316 1774 if(!strcmp(name, "CALL")) return Component::CALL;
duke@435 1775 assert( false,"Invalid effect name specified\n");
duke@435 1776 return Component::INVALID;
duke@435 1777 }
duke@435 1778
duke@435 1779 Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
duke@435 1780 _ftype = Form::EFF;
duke@435 1781 }
duke@435 1782 Effect::~Effect() {
duke@435 1783 }
duke@435 1784
duke@435 1785 // Dynamic type check
duke@435 1786 Effect *Effect::is_effect() const {
duke@435 1787 return (Effect*)this;
duke@435 1788 }
duke@435 1789
duke@435 1790
duke@435 1791 // True if this component is equal to the parameter.
duke@435 1792 bool Effect::is(int use_def_kill_enum) const {
duke@435 1793 return (_use_def == use_def_kill_enum ? true : false);
duke@435 1794 }
duke@435 1795 // True if this component is used/def'd/kill'd as the parameter suggests.
duke@435 1796 bool Effect::isa(int use_def_kill_enum) const {
duke@435 1797 return (_use_def & use_def_kill_enum) == use_def_kill_enum;
duke@435 1798 }
duke@435 1799
duke@435 1800 void Effect::dump() {
duke@435 1801 output(stderr);
duke@435 1802 }
duke@435 1803
duke@435 1804 void Effect::output(FILE *fp) { // Write info to output files
duke@435 1805 fprintf(fp,"Effect: %s\n", (_name?_name:""));
duke@435 1806 }
duke@435 1807
duke@435 1808 //------------------------------ExpandRule-------------------------------------
duke@435 1809 ExpandRule::ExpandRule() : _expand_instrs(),
duke@435 1810 _newopconst(cmpstr, hashstr, Form::arena) {
duke@435 1811 _ftype = Form::EXP;
duke@435 1812 }
duke@435 1813
duke@435 1814 ExpandRule::~ExpandRule() { // Destructor
duke@435 1815 }
duke@435 1816
duke@435 1817 void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
duke@435 1818 _expand_instrs.addName((char*)instruction_name_and_operand_list);
duke@435 1819 }
duke@435 1820
duke@435 1821 void ExpandRule::reset_instructions() {
duke@435 1822 _expand_instrs.reset();
duke@435 1823 }
duke@435 1824
duke@435 1825 NameAndList* ExpandRule::iter_instructions() {
duke@435 1826 return (NameAndList*)_expand_instrs.iter();
duke@435 1827 }
duke@435 1828
duke@435 1829
duke@435 1830 void ExpandRule::dump() {
duke@435 1831 output(stderr);
duke@435 1832 }
duke@435 1833
duke@435 1834 void ExpandRule::output(FILE *fp) { // Write info to output files
duke@435 1835 NameAndList *expand_instr = NULL;
duke@435 1836 const char *opid = NULL;
duke@435 1837
duke@435 1838 fprintf(fp,"\nExpand Rule:\n");
duke@435 1839
duke@435 1840 // Iterate over the instructions 'node' expands into
duke@435 1841 for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
duke@435 1842 fprintf(fp,"%s(", expand_instr->name());
duke@435 1843
duke@435 1844 // iterate over the operand list
duke@435 1845 for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
duke@435 1846 fprintf(fp,"%s ", opid);
duke@435 1847 }
duke@435 1848 fprintf(fp,");\n");
duke@435 1849 }
duke@435 1850 }
duke@435 1851
duke@435 1852 //------------------------------RewriteRule------------------------------------
duke@435 1853 RewriteRule::RewriteRule(char* params, char* block)
duke@435 1854 : _tempParams(params), _tempBlock(block) { }; // Constructor
duke@435 1855 RewriteRule::~RewriteRule() { // Destructor
duke@435 1856 }
duke@435 1857
duke@435 1858 void RewriteRule::dump() {
duke@435 1859 output(stderr);
duke@435 1860 }
duke@435 1861
duke@435 1862 void RewriteRule::output(FILE *fp) { // Write info to output files
duke@435 1863 fprintf(fp,"\nRewrite Rule:\n%s\n%s\n",
duke@435 1864 (_tempParams?_tempParams:""),
duke@435 1865 (_tempBlock?_tempBlock:""));
duke@435 1866 }
duke@435 1867
duke@435 1868
duke@435 1869 //==============================MachNodes======================================
duke@435 1870 //------------------------------MachNodeForm-----------------------------------
duke@435 1871 MachNodeForm::MachNodeForm(char *id)
duke@435 1872 : _ident(id) {
duke@435 1873 }
duke@435 1874
duke@435 1875 MachNodeForm::~MachNodeForm() {
duke@435 1876 }
duke@435 1877
duke@435 1878 MachNodeForm *MachNodeForm::is_machnode() const {
duke@435 1879 return (MachNodeForm*)this;
duke@435 1880 }
duke@435 1881
duke@435 1882 //==============================Operand Classes================================
duke@435 1883 //------------------------------OpClassForm------------------------------------
duke@435 1884 OpClassForm::OpClassForm(const char* id) : _ident(id) {
duke@435 1885 _ftype = Form::OPCLASS;
duke@435 1886 }
duke@435 1887
duke@435 1888 OpClassForm::~OpClassForm() {
duke@435 1889 }
duke@435 1890
duke@435 1891 bool OpClassForm::ideal_only() const { return 0; }
duke@435 1892
duke@435 1893 OpClassForm *OpClassForm::is_opclass() const {
duke@435 1894 return (OpClassForm*)this;
duke@435 1895 }
duke@435 1896
duke@435 1897 Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
duke@435 1898 if( _oplst.count() == 0 ) return Form::no_interface;
duke@435 1899
duke@435 1900 // Check that my operands have the same interface type
duke@435 1901 Form::InterfaceType interface;
duke@435 1902 bool first = true;
duke@435 1903 NameList &op_list = (NameList &)_oplst;
duke@435 1904 op_list.reset();
duke@435 1905 const char *op_name;
duke@435 1906 while( (op_name = op_list.iter()) != NULL ) {
duke@435 1907 const Form *form = globals[op_name];
duke@435 1908 OperandForm *operand = form->is_operand();
duke@435 1909 assert( operand, "Entry in operand class that is not an operand");
duke@435 1910 if( first ) {
duke@435 1911 first = false;
duke@435 1912 interface = operand->interface_type(globals);
duke@435 1913 } else {
duke@435 1914 interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
duke@435 1915 }
duke@435 1916 }
duke@435 1917 return interface;
duke@435 1918 }
duke@435 1919
duke@435 1920 bool OpClassForm::stack_slots_only(FormDict &globals) const {
duke@435 1921 if( _oplst.count() == 0 ) return false; // how?
duke@435 1922
duke@435 1923 NameList &op_list = (NameList &)_oplst;
duke@435 1924 op_list.reset();
duke@435 1925 const char *op_name;
duke@435 1926 while( (op_name = op_list.iter()) != NULL ) {
duke@435 1927 const Form *form = globals[op_name];
duke@435 1928 OperandForm *operand = form->is_operand();
duke@435 1929 assert( operand, "Entry in operand class that is not an operand");
duke@435 1930 if( !operand->stack_slots_only(globals) ) return false;
duke@435 1931 }
duke@435 1932 return true;
duke@435 1933 }
duke@435 1934
duke@435 1935
duke@435 1936 void OpClassForm::dump() {
duke@435 1937 output(stderr);
duke@435 1938 }
duke@435 1939
duke@435 1940 void OpClassForm::output(FILE *fp) {
duke@435 1941 const char *name;
duke@435 1942 fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
duke@435 1943 fprintf(fp,"\nCount = %d\n", _oplst.count());
duke@435 1944 for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
duke@435 1945 fprintf(fp,"%s, ",name);
duke@435 1946 }
duke@435 1947 fprintf(fp,"\n");
duke@435 1948 }
duke@435 1949
duke@435 1950
duke@435 1951 //==============================Operands=======================================
duke@435 1952 //------------------------------OperandForm------------------------------------
duke@435 1953 OperandForm::OperandForm(const char* id)
duke@435 1954 : OpClassForm(id), _ideal_only(false),
duke@435 1955 _localNames(cmpstr, hashstr, Form::arena) {
duke@435 1956 _ftype = Form::OPER;
duke@435 1957
duke@435 1958 _matrule = NULL;
duke@435 1959 _interface = NULL;
duke@435 1960 _attribs = NULL;
duke@435 1961 _predicate = NULL;
duke@435 1962 _constraint= NULL;
duke@435 1963 _construct = NULL;
duke@435 1964 _format = NULL;
duke@435 1965 }
duke@435 1966 OperandForm::OperandForm(const char* id, bool ideal_only)
duke@435 1967 : OpClassForm(id), _ideal_only(ideal_only),
duke@435 1968 _localNames(cmpstr, hashstr, Form::arena) {
duke@435 1969 _ftype = Form::OPER;
duke@435 1970
duke@435 1971 _matrule = NULL;
duke@435 1972 _interface = NULL;
duke@435 1973 _attribs = NULL;
duke@435 1974 _predicate = NULL;
duke@435 1975 _constraint= NULL;
duke@435 1976 _construct = NULL;
duke@435 1977 _format = NULL;
duke@435 1978 }
duke@435 1979 OperandForm::~OperandForm() {
duke@435 1980 }
duke@435 1981
duke@435 1982
duke@435 1983 OperandForm *OperandForm::is_operand() const {
duke@435 1984 return (OperandForm*)this;
duke@435 1985 }
duke@435 1986
duke@435 1987 bool OperandForm::ideal_only() const {
duke@435 1988 return _ideal_only;
duke@435 1989 }
duke@435 1990
duke@435 1991 Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
duke@435 1992 if( _interface == NULL ) return Form::no_interface;
duke@435 1993
duke@435 1994 return _interface->interface_type(globals);
duke@435 1995 }
duke@435 1996
duke@435 1997
duke@435 1998 bool OperandForm::stack_slots_only(FormDict &globals) const {
duke@435 1999 if( _constraint == NULL ) return false;
duke@435 2000 return _constraint->stack_slots_only();
duke@435 2001 }
duke@435 2002
duke@435 2003
duke@435 2004 // Access op_cost attribute or return NULL.
duke@435 2005 const char* OperandForm::cost() {
duke@435 2006 for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
duke@435 2007 if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
duke@435 2008 return cur->_val;
duke@435 2009 }
duke@435 2010 }
duke@435 2011 return NULL;
duke@435 2012 }
duke@435 2013
duke@435 2014 // Return the number of leaves below this complex operand
duke@435 2015 uint OperandForm::num_leaves() const {
duke@435 2016 if ( ! _matrule) return 0;
duke@435 2017
duke@435 2018 int num_leaves = _matrule->_numleaves;
duke@435 2019 return num_leaves;
duke@435 2020 }
duke@435 2021
duke@435 2022 // Return the number of constants contained within this complex operand
duke@435 2023 uint OperandForm::num_consts(FormDict &globals) const {
duke@435 2024 if ( ! _matrule) return 0;
duke@435 2025
duke@435 2026 // This is a recursive invocation on all operands in the matchrule
duke@435 2027 return _matrule->num_consts(globals);
duke@435 2028 }
duke@435 2029
duke@435 2030 // Return the number of constants in match rule with specified type
duke@435 2031 uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
duke@435 2032 if ( ! _matrule) return 0;
duke@435 2033
duke@435 2034 // This is a recursive invocation on all operands in the matchrule
duke@435 2035 return _matrule->num_consts(globals, type);
duke@435 2036 }
duke@435 2037
duke@435 2038 // Return the number of pointer constants contained within this complex operand
duke@435 2039 uint OperandForm::num_const_ptrs(FormDict &globals) const {
duke@435 2040 if ( ! _matrule) return 0;
duke@435 2041
duke@435 2042 // This is a recursive invocation on all operands in the matchrule
duke@435 2043 return _matrule->num_const_ptrs(globals);
duke@435 2044 }
duke@435 2045
duke@435 2046 uint OperandForm::num_edges(FormDict &globals) const {
duke@435 2047 uint edges = 0;
duke@435 2048 uint leaves = num_leaves();
duke@435 2049 uint consts = num_consts(globals);
duke@435 2050
duke@435 2051 // If we are matching a constant directly, there are no leaves.
duke@435 2052 edges = ( leaves > consts ) ? leaves - consts : 0;
duke@435 2053
duke@435 2054 // !!!!!
duke@435 2055 // Special case operands that do not have a corresponding ideal node.
duke@435 2056 if( (edges == 0) && (consts == 0) ) {
duke@435 2057 if( constrained_reg_class() != NULL ) {
duke@435 2058 edges = 1;
duke@435 2059 } else {
duke@435 2060 if( _matrule
duke@435 2061 && (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
duke@435 2062 const Form *form = globals[_matrule->_opType];
duke@435 2063 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 2064 if( oper ) {
duke@435 2065 return oper->num_edges(globals);
duke@435 2066 }
duke@435 2067 }
duke@435 2068 }
duke@435 2069 }
duke@435 2070
duke@435 2071 return edges;
duke@435 2072 }
duke@435 2073
duke@435 2074
duke@435 2075 // Check if this operand is usable for cisc-spilling
duke@435 2076 bool OperandForm::is_cisc_reg(FormDict &globals) const {
duke@435 2077 const char *ideal = ideal_type(globals);
duke@435 2078 bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
duke@435 2079 return is_cisc_reg;
duke@435 2080 }
duke@435 2081
duke@435 2082 bool OpClassForm::is_cisc_mem(FormDict &globals) const {
duke@435 2083 Form::InterfaceType my_interface = interface_type(globals);
duke@435 2084 return (my_interface == memory_interface);
duke@435 2085 }
duke@435 2086
duke@435 2087
duke@435 2088 // node matches ideal 'Bool'
duke@435 2089 bool OperandForm::is_ideal_bool() const {
duke@435 2090 if( _matrule == NULL ) return false;
duke@435 2091
duke@435 2092 return _matrule->is_ideal_bool();
duke@435 2093 }
duke@435 2094
duke@435 2095 // Require user's name for an sRegX to be stackSlotX
duke@435 2096 Form::DataType OperandForm::is_user_name_for_sReg() const {
duke@435 2097 DataType data_type = none;
duke@435 2098 if( _ident != NULL ) {
duke@435 2099 if( strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
duke@435 2100 else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
duke@435 2101 else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
duke@435 2102 else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
duke@435 2103 else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
duke@435 2104 }
duke@435 2105 assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");
duke@435 2106
duke@435 2107 return data_type;
duke@435 2108 }
duke@435 2109
duke@435 2110
duke@435 2111 // Return ideal type, if there is a single ideal type for this operand
duke@435 2112 const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
duke@435 2113 const char *type = NULL;
duke@435 2114 if (ideal_only()) type = _ident;
duke@435 2115 else if( _matrule == NULL ) {
duke@435 2116 // Check for condition code register
duke@435 2117 const char *rc_name = constrained_reg_class();
duke@435 2118 // !!!!!
duke@435 2119 if (rc_name == NULL) return NULL;
duke@435 2120 // !!!!! !!!!!
duke@435 2121 // Check constraints on result's register class
duke@435 2122 if( registers ) {
duke@435 2123 RegClass *reg_class = registers->getRegClass(rc_name);
duke@435 2124 assert( reg_class != NULL, "Register class is not defined");
duke@435 2125
duke@435 2126 // Check for ideal type of entries in register class, all are the same type
duke@435 2127 reg_class->reset();
duke@435 2128 RegDef *reg_def = reg_class->RegDef_iter();
duke@435 2129 assert( reg_def != NULL, "No entries in register class");
duke@435 2130 assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
duke@435 2131 // Return substring that names the register's ideal type
duke@435 2132 type = reg_def->_idealtype + 3;
duke@435 2133 assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
duke@435 2134 assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
duke@435 2135 assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
duke@435 2136 }
duke@435 2137 }
duke@435 2138 else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
duke@435 2139 // This operand matches a single type, at the top level.
duke@435 2140 // Check for ideal type
duke@435 2141 type = _matrule->_opType;
duke@435 2142 if( strcmp(type,"Bool") == 0 )
duke@435 2143 return "Bool";
duke@435 2144 // transitive lookup
duke@435 2145 const Form *frm = globals[type];
duke@435 2146 OperandForm *op = frm->is_operand();
duke@435 2147 type = op->ideal_type(globals, registers);
duke@435 2148 }
duke@435 2149 return type;
duke@435 2150 }
duke@435 2151
duke@435 2152
duke@435 2153 // If there is a single ideal type for this interface field, return it.
duke@435 2154 const char *OperandForm::interface_ideal_type(FormDict &globals,
duke@435 2155 const char *field) const {
duke@435 2156 const char *ideal_type = NULL;
duke@435 2157 const char *value = NULL;
duke@435 2158
duke@435 2159 // Check if "field" is valid for this operand's interface
duke@435 2160 if ( ! is_interface_field(field, value) ) return ideal_type;
duke@435 2161
duke@435 2162 // !!!!! !!!!! !!!!!
duke@435 2163 // If a valid field has a constant value, identify "ConI" or "ConP" or ...
duke@435 2164
duke@435 2165 // Else, lookup type of field's replacement variable
duke@435 2166
duke@435 2167 return ideal_type;
duke@435 2168 }
duke@435 2169
duke@435 2170
duke@435 2171 RegClass* OperandForm::get_RegClass() const {
duke@435 2172 if (_interface && !_interface->is_RegInterface()) return NULL;
duke@435 2173 return globalAD->get_registers()->getRegClass(constrained_reg_class());
duke@435 2174 }
duke@435 2175
duke@435 2176
duke@435 2177 bool OperandForm::is_bound_register() const {
duke@435 2178 RegClass *reg_class = get_RegClass();
duke@435 2179 if (reg_class == NULL) return false;
duke@435 2180
duke@435 2181 const char * name = ideal_type(globalAD->globalNames());
duke@435 2182 if (name == NULL) return false;
duke@435 2183
duke@435 2184 int size = 0;
duke@435 2185 if (strcmp(name,"RegFlags")==0) size = 1;
duke@435 2186 if (strcmp(name,"RegI")==0) size = 1;
duke@435 2187 if (strcmp(name,"RegF")==0) size = 1;
duke@435 2188 if (strcmp(name,"RegD")==0) size = 2;
duke@435 2189 if (strcmp(name,"RegL")==0) size = 2;
coleenp@548 2190 if (strcmp(name,"RegN")==0) size = 1;
duke@435 2191 if (strcmp(name,"RegP")==0) size = globalAD->get_preproc_def("_LP64") ? 2 : 1;
duke@435 2192 if (size == 0) return false;
duke@435 2193 return size == reg_class->size();
duke@435 2194 }
duke@435 2195
duke@435 2196
duke@435 2197 // Check if this is a valid field for this operand,
duke@435 2198 // Return 'true' if valid, and set the value to the string the user provided.
duke@435 2199 bool OperandForm::is_interface_field(const char *field,
duke@435 2200 const char * &value) const {
duke@435 2201 return false;
duke@435 2202 }
duke@435 2203
duke@435 2204
duke@435 2205 // Return register class name if a constraint specifies the register class.
duke@435 2206 const char *OperandForm::constrained_reg_class() const {
duke@435 2207 const char *reg_class = NULL;
duke@435 2208 if ( _constraint ) {
duke@435 2209 // !!!!!
duke@435 2210 Constraint *constraint = _constraint;
duke@435 2211 if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
duke@435 2212 reg_class = _constraint->_arg;
duke@435 2213 }
duke@435 2214 }
duke@435 2215
duke@435 2216 return reg_class;
duke@435 2217 }
duke@435 2218
duke@435 2219
duke@435 2220 // Return the register class associated with 'leaf'.
duke@435 2221 const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
duke@435 2222 const char *reg_class = NULL; // "RegMask::Empty";
duke@435 2223
duke@435 2224 if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
duke@435 2225 reg_class = constrained_reg_class();
duke@435 2226 return reg_class;
duke@435 2227 }
duke@435 2228 const char *result = NULL;
duke@435 2229 const char *name = NULL;
duke@435 2230 const char *type = NULL;
duke@435 2231 // iterate through all base operands
duke@435 2232 // until we reach the register that corresponds to "leaf"
duke@435 2233 // This function is not looking for an ideal type. It needs the first
duke@435 2234 // level user type associated with the leaf.
duke@435 2235 for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
duke@435 2236 const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
duke@435 2237 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 2238 if( oper ) {
duke@435 2239 reg_class = oper->constrained_reg_class();
duke@435 2240 if( reg_class ) {
duke@435 2241 reg_class = reg_class;
duke@435 2242 } else {
duke@435 2243 // ShouldNotReachHere();
duke@435 2244 }
duke@435 2245 } else {
duke@435 2246 // ShouldNotReachHere();
duke@435 2247 }
duke@435 2248
duke@435 2249 // Increment our target leaf position if current leaf is not a candidate.
duke@435 2250 if( reg_class == NULL) ++leaf;
duke@435 2251 // Exit the loop with the value of reg_class when at the correct index
duke@435 2252 if( idx == leaf ) break;
duke@435 2253 // May iterate through all base operands if reg_class for 'leaf' is NULL
duke@435 2254 }
duke@435 2255 return reg_class;
duke@435 2256 }
duke@435 2257
duke@435 2258
duke@435 2259 // Recursive call to construct list of top-level operands.
duke@435 2260 // Implementation does not modify state of internal structures
duke@435 2261 void OperandForm::build_components() {
duke@435 2262 if (_matrule) _matrule->append_components(_localNames, _components);
duke@435 2263
duke@435 2264 // Add parameters that "do not appear in match rule".
duke@435 2265 const char *name;
duke@435 2266 for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
duke@435 2267 OperandForm *opForm = (OperandForm*)_localNames[name];
duke@435 2268
duke@435 2269 if ( _components.operand_position(name) == -1 ) {
duke@435 2270 _components.insert(name, opForm->_ident, Component::INVALID, false);
duke@435 2271 }
duke@435 2272 }
duke@435 2273
duke@435 2274 return;
duke@435 2275 }
duke@435 2276
duke@435 2277 int OperandForm::operand_position(const char *name, int usedef) {
duke@435 2278 return _components.operand_position(name, usedef);
duke@435 2279 }
duke@435 2280
duke@435 2281
duke@435 2282 // Return zero-based position in component list, only counting constants;
duke@435 2283 // Return -1 if not in list.
duke@435 2284 int OperandForm::constant_position(FormDict &globals, const Component *last) {
twisti@1040 2285 // Iterate through components and count constants preceding 'constant'
twisti@1038 2286 int position = 0;
duke@435 2287 Component *comp;
duke@435 2288 _components.reset();
duke@435 2289 while( (comp = _components.iter()) != NULL && (comp != last) ) {
duke@435 2290 // Special case for operands that take a single user-defined operand
duke@435 2291 // Skip the initial definition in the component list.
duke@435 2292 if( strcmp(comp->_name,this->_ident) == 0 ) continue;
duke@435 2293
duke@435 2294 const char *type = comp->_type;
duke@435 2295 // Lookup operand form for replacement variable's type
duke@435 2296 const Form *form = globals[type];
duke@435 2297 assert( form != NULL, "Component's type not found");
duke@435 2298 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 2299 if( oper ) {
duke@435 2300 if( oper->_matrule->is_base_constant(globals) != Form::none ) {
duke@435 2301 ++position;
duke@435 2302 }
duke@435 2303 }
duke@435 2304 }
duke@435 2305
duke@435 2306 // Check for being passed a component that was not in the list
duke@435 2307 if( comp != last ) position = -1;
duke@435 2308
duke@435 2309 return position;
duke@435 2310 }
duke@435 2311 // Provide position of constant by "name"
duke@435 2312 int OperandForm::constant_position(FormDict &globals, const char *name) {
duke@435 2313 const Component *comp = _components.search(name);
duke@435 2314 int idx = constant_position( globals, comp );
duke@435 2315
duke@435 2316 return idx;
duke@435 2317 }
duke@435 2318
duke@435 2319
duke@435 2320 // Return zero-based position in component list, only counting constants;
duke@435 2321 // Return -1 if not in list.
duke@435 2322 int OperandForm::register_position(FormDict &globals, const char *reg_name) {
twisti@1040 2323 // Iterate through components and count registers preceding 'last'
duke@435 2324 uint position = 0;
duke@435 2325 Component *comp;
duke@435 2326 _components.reset();
duke@435 2327 while( (comp = _components.iter()) != NULL
duke@435 2328 && (strcmp(comp->_name,reg_name) != 0) ) {
duke@435 2329 // Special case for operands that take a single user-defined operand
duke@435 2330 // Skip the initial definition in the component list.
duke@435 2331 if( strcmp(comp->_name,this->_ident) == 0 ) continue;
duke@435 2332
duke@435 2333 const char *type = comp->_type;
duke@435 2334 // Lookup operand form for component's type
duke@435 2335 const Form *form = globals[type];
duke@435 2336 assert( form != NULL, "Component's type not found");
duke@435 2337 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 2338 if( oper ) {
duke@435 2339 if( oper->_matrule->is_base_register(globals) ) {
duke@435 2340 ++position;
duke@435 2341 }
duke@435 2342 }
duke@435 2343 }
duke@435 2344
duke@435 2345 return position;
duke@435 2346 }
duke@435 2347
duke@435 2348
duke@435 2349 const char *OperandForm::reduce_result() const {
duke@435 2350 return _ident;
duke@435 2351 }
duke@435 2352 // Return the name of the operand on the right hand side of the binary match
duke@435 2353 // Return NULL if there is no right hand side
duke@435 2354 const char *OperandForm::reduce_right(FormDict &globals) const {
duke@435 2355 return ( _matrule ? _matrule->reduce_right(globals) : NULL );
duke@435 2356 }
duke@435 2357
duke@435 2358 // Similar for left
duke@435 2359 const char *OperandForm::reduce_left(FormDict &globals) const {
duke@435 2360 return ( _matrule ? _matrule->reduce_left(globals) : NULL );
duke@435 2361 }
duke@435 2362
duke@435 2363
duke@435 2364 // --------------------------- FILE *output_routines
duke@435 2365 //
duke@435 2366 // Output code for disp_is_oop, if true.
duke@435 2367 void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
duke@435 2368 // Check it is a memory interface with a non-user-constant disp field
duke@435 2369 if ( this->_interface == NULL ) return;
duke@435 2370 MemInterface *mem_interface = this->_interface->is_MemInterface();
duke@435 2371 if ( mem_interface == NULL ) return;
duke@435 2372 const char *disp = mem_interface->_disp;
duke@435 2373 if ( *disp != '$' ) return;
duke@435 2374
duke@435 2375 // Lookup replacement variable in operand's component list
duke@435 2376 const char *rep_var = disp + 1;
duke@435 2377 const Component *comp = this->_components.search(rep_var);
duke@435 2378 assert( comp != NULL, "Replacement variable not found in components");
duke@435 2379 // Lookup operand form for replacement variable's type
duke@435 2380 const char *type = comp->_type;
duke@435 2381 Form *form = (Form*)globals[type];
duke@435 2382 assert( form != NULL, "Replacement variable's type not found");
duke@435 2383 OperandForm *op = form->is_operand();
duke@435 2384 assert( op, "Memory Interface 'disp' can only emit an operand form");
duke@435 2385 // Check if this is a ConP, which may require relocation
duke@435 2386 if ( op->is_base_constant(globals) == Form::idealP ) {
duke@435 2387 // Find the constant's index: _c0, _c1, _c2, ... , _cN
duke@435 2388 uint idx = op->constant_position( globals, rep_var);
coleenp@4037 2389 fprintf(fp," virtual relocInfo::relocType disp_reloc() const {");
coleenp@4037 2390 fprintf(fp, " return _c%d->reloc();", idx);
duke@435 2391 fprintf(fp, " }\n");
duke@435 2392 }
duke@435 2393 }
duke@435 2394
duke@435 2395 // Generate code for internal and external format methods
duke@435 2396 //
duke@435 2397 // internal access to reg# node->_idx
duke@435 2398 // access to subsumed constant _c0, _c1,
duke@435 2399 void OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
duke@435 2400 Form::DataType dtype;
duke@435 2401 if (_matrule && (_matrule->is_base_register(globals) ||
duke@435 2402 strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
duke@435 2403 // !!!!! !!!!!
duke@435 2404 fprintf(fp, "{ char reg_str[128];\n");
duke@435 2405 fprintf(fp," ra->dump_register(node,reg_str);\n");
duke@435 2406 fprintf(fp," tty->print(\"%cs\",reg_str);\n",'%');
duke@435 2407 fprintf(fp," }\n");
duke@435 2408 } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
duke@435 2409 format_constant( fp, index, dtype );
duke@435 2410 } else if (ideal_to_sReg_type(_ident) != Form::none) {
duke@435 2411 // Special format for Stack Slot Register
duke@435 2412 fprintf(fp, "{ char reg_str[128];\n");
duke@435 2413 fprintf(fp," ra->dump_register(node,reg_str);\n");
duke@435 2414 fprintf(fp," tty->print(\"%cs\",reg_str);\n",'%');
duke@435 2415 fprintf(fp," }\n");
duke@435 2416 } else {
duke@435 2417 fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
duke@435 2418 fflush(fp);
duke@435 2419 fprintf(stderr,"No format defined for %s\n", _ident);
duke@435 2420 dump();
duke@435 2421 assert( false,"Internal error:\n output_internal_operand() attempting to output other than a Register or Constant");
duke@435 2422 }
duke@435 2423 }
duke@435 2424
duke@435 2425 // Similar to "int_format" but for cases where data is external to operand
duke@435 2426 // external access to reg# node->in(idx)->_idx,
duke@435 2427 void OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
duke@435 2428 Form::DataType dtype;
duke@435 2429 if (_matrule && (_matrule->is_base_register(globals) ||
duke@435 2430 strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
duke@435 2431 fprintf(fp, "{ char reg_str[128];\n");
duke@435 2432 fprintf(fp," ra->dump_register(node->in(idx");
duke@435 2433 if ( index != 0 ) fprintf(fp, "+%d",index);
duke@435 2434 fprintf(fp, "),reg_str);\n");
duke@435 2435 fprintf(fp," tty->print(\"%cs\",reg_str);\n",'%');
duke@435 2436 fprintf(fp," }\n");
duke@435 2437 } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
duke@435 2438 format_constant( fp, index, dtype );
duke@435 2439 } else if (ideal_to_sReg_type(_ident) != Form::none) {
duke@435 2440 // Special format for Stack Slot Register
duke@435 2441 fprintf(fp, "{ char reg_str[128];\n");
duke@435 2442 fprintf(fp," ra->dump_register(node->in(idx");
duke@435 2443 if ( index != 0 ) fprintf(fp, "+%d",index);
duke@435 2444 fprintf(fp, "),reg_str);\n");
duke@435 2445 fprintf(fp," tty->print(\"%cs\",reg_str);\n",'%');
duke@435 2446 fprintf(fp," }\n");
duke@435 2447 } else {
duke@435 2448 fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
duke@435 2449 assert( false,"Internal error:\n output_external_operand() attempting to output other than a Register or Constant");
duke@435 2450 }
duke@435 2451 }
duke@435 2452
duke@435 2453 void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
duke@435 2454 switch(const_type) {
coleenp@548 2455 case Form::idealI: fprintf(fp,"st->print(\"#%%d\", _c%d);\n", const_index); break;
coleenp@548 2456 case Form::idealP: fprintf(fp,"_c%d->dump_on(st);\n", const_index); break;
roland@4159 2457 case Form::idealNKlass:
coleenp@548 2458 case Form::idealN: fprintf(fp,"_c%d->dump_on(st);\n", const_index); break;
coleenp@548 2459 case Form::idealL: fprintf(fp,"st->print(\"#%%lld\", _c%d);\n", const_index); break;
coleenp@548 2460 case Form::idealF: fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
coleenp@548 2461 case Form::idealD: fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
duke@435 2462 default:
duke@435 2463 assert( false, "ShouldNotReachHere()");
duke@435 2464 }
duke@435 2465 }
duke@435 2466
duke@435 2467 // Return the operand form corresponding to the given index, else NULL.
duke@435 2468 OperandForm *OperandForm::constant_operand(FormDict &globals,
duke@435 2469 uint index) {
duke@435 2470 // !!!!!
duke@435 2471 // Check behavior on complex operands
duke@435 2472 uint n_consts = num_consts(globals);
duke@435 2473 if( n_consts > 0 ) {
duke@435 2474 uint i = 0;
duke@435 2475 const char *type;
duke@435 2476 Component *comp;
duke@435 2477 _components.reset();
duke@435 2478 if ((comp = _components.iter()) == NULL) {
duke@435 2479 assert(n_consts == 1, "Bad component list detected.\n");
duke@435 2480 // Current operand is THE operand
duke@435 2481 if ( index == 0 ) {
duke@435 2482 return this;
duke@435 2483 }
duke@435 2484 } // end if NULL
duke@435 2485 else {
duke@435 2486 // Skip the first component, it can not be a DEF of a constant
duke@435 2487 do {
duke@435 2488 type = comp->base_type(globals);
duke@435 2489 // Check that "type" is a 'ConI', 'ConP', ...
duke@435 2490 if ( ideal_to_const_type(type) != Form::none ) {
duke@435 2491 // When at correct component, get corresponding Operand
duke@435 2492 if ( index == 0 ) {
duke@435 2493 return globals[comp->_type]->is_operand();
duke@435 2494 }
duke@435 2495 // Decrement number of constants to go
duke@435 2496 --index;
duke@435 2497 }
duke@435 2498 } while((comp = _components.iter()) != NULL);
duke@435 2499 }
duke@435 2500 }
duke@435 2501
duke@435 2502 // Did not find a constant for this index.
duke@435 2503 return NULL;
duke@435 2504 }
duke@435 2505
duke@435 2506 // If this operand has a single ideal type, return its type
duke@435 2507 Form::DataType OperandForm::simple_type(FormDict &globals) const {
duke@435 2508 const char *type_name = ideal_type(globals);
duke@435 2509 Form::DataType type = type_name ? ideal_to_const_type( type_name )
duke@435 2510 : Form::none;
duke@435 2511 return type;
duke@435 2512 }
duke@435 2513
duke@435 2514 Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
duke@435 2515 if ( _matrule == NULL ) return Form::none;
duke@435 2516
duke@435 2517 return _matrule->is_base_constant(globals);
duke@435 2518 }
duke@435 2519
duke@435 2520 // "true" if this operand is a simple type that is swallowed
duke@435 2521 bool OperandForm::swallowed(FormDict &globals) const {
duke@435 2522 Form::DataType type = simple_type(globals);
duke@435 2523 if( type != Form::none ) {
duke@435 2524 return true;
duke@435 2525 }
duke@435 2526
duke@435 2527 return false;
duke@435 2528 }
duke@435 2529
duke@435 2530 // Output code to access the value of the index'th constant
duke@435 2531 void OperandForm::access_constant(FILE *fp, FormDict &globals,
duke@435 2532 uint const_index) {
duke@435 2533 OperandForm *oper = constant_operand(globals, const_index);
duke@435 2534 assert( oper, "Index exceeds number of constants in operand");
duke@435 2535 Form::DataType dtype = oper->is_base_constant(globals);
duke@435 2536
duke@435 2537 switch(dtype) {
duke@435 2538 case idealI: fprintf(fp,"_c%d", const_index); break;
duke@435 2539 case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
duke@435 2540 case idealL: fprintf(fp,"_c%d", const_index); break;
duke@435 2541 case idealF: fprintf(fp,"_c%d", const_index); break;
duke@435 2542 case idealD: fprintf(fp,"_c%d", const_index); break;
duke@435 2543 default:
duke@435 2544 assert( false, "ShouldNotReachHere()");
duke@435 2545 }
duke@435 2546 }
duke@435 2547
duke@435 2548
duke@435 2549 void OperandForm::dump() {
duke@435 2550 output(stderr);
duke@435 2551 }
duke@435 2552
duke@435 2553 void OperandForm::output(FILE *fp) {
duke@435 2554 fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
duke@435 2555 if (_matrule) _matrule->dump();
duke@435 2556 if (_interface) _interface->dump();
duke@435 2557 if (_attribs) _attribs->dump();
duke@435 2558 if (_predicate) _predicate->dump();
duke@435 2559 if (_constraint) _constraint->dump();
duke@435 2560 if (_construct) _construct->dump();
duke@435 2561 if (_format) _format->dump();
duke@435 2562 }
duke@435 2563
duke@435 2564 //------------------------------Constraint-------------------------------------
duke@435 2565 Constraint::Constraint(const char *func, const char *arg)
duke@435 2566 : _func(func), _arg(arg) {
duke@435 2567 }
duke@435 2568 Constraint::~Constraint() { /* not owner of char* */
duke@435 2569 }
duke@435 2570
duke@435 2571 bool Constraint::stack_slots_only() const {
duke@435 2572 return strcmp(_func, "ALLOC_IN_RC") == 0
duke@435 2573 && strcmp(_arg, "stack_slots") == 0;
duke@435 2574 }
duke@435 2575
duke@435 2576 void Constraint::dump() {
duke@435 2577 output(stderr);
duke@435 2578 }
duke@435 2579
duke@435 2580 void Constraint::output(FILE *fp) { // Write info to output files
duke@435 2581 assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
duke@435 2582 fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg);
duke@435 2583 }
duke@435 2584
duke@435 2585 //------------------------------Predicate--------------------------------------
duke@435 2586 Predicate::Predicate(char *pr)
duke@435 2587 : _pred(pr) {
duke@435 2588 }
duke@435 2589 Predicate::~Predicate() {
duke@435 2590 }
duke@435 2591
duke@435 2592 void Predicate::dump() {
duke@435 2593 output(stderr);
duke@435 2594 }
duke@435 2595
duke@435 2596 void Predicate::output(FILE *fp) {
duke@435 2597 fprintf(fp,"Predicate"); // Write to output files
duke@435 2598 }
duke@435 2599 //------------------------------Interface--------------------------------------
duke@435 2600 Interface::Interface(const char *name) : _name(name) {
duke@435 2601 }
duke@435 2602 Interface::~Interface() {
duke@435 2603 }
duke@435 2604
duke@435 2605 Form::InterfaceType Interface::interface_type(FormDict &globals) const {
duke@435 2606 Interface *thsi = (Interface*)this;
duke@435 2607 if ( thsi->is_RegInterface() ) return Form::register_interface;
duke@435 2608 if ( thsi->is_MemInterface() ) return Form::memory_interface;
duke@435 2609 if ( thsi->is_ConstInterface() ) return Form::constant_interface;
duke@435 2610 if ( thsi->is_CondInterface() ) return Form::conditional_interface;
duke@435 2611
duke@435 2612 return Form::no_interface;
duke@435 2613 }
duke@435 2614
duke@435 2615 RegInterface *Interface::is_RegInterface() {
duke@435 2616 if ( strcmp(_name,"REG_INTER") != 0 )
duke@435 2617 return NULL;
duke@435 2618 return (RegInterface*)this;
duke@435 2619 }
duke@435 2620 MemInterface *Interface::is_MemInterface() {
duke@435 2621 if ( strcmp(_name,"MEMORY_INTER") != 0 ) return NULL;
duke@435 2622 return (MemInterface*)this;
duke@435 2623 }
duke@435 2624 ConstInterface *Interface::is_ConstInterface() {
duke@435 2625 if ( strcmp(_name,"CONST_INTER") != 0 ) return NULL;
duke@435 2626 return (ConstInterface*)this;
duke@435 2627 }
duke@435 2628 CondInterface *Interface::is_CondInterface() {
duke@435 2629 if ( strcmp(_name,"COND_INTER") != 0 ) return NULL;
duke@435 2630 return (CondInterface*)this;
duke@435 2631 }
duke@435 2632
duke@435 2633
duke@435 2634 void Interface::dump() {
duke@435 2635 output(stderr);
duke@435 2636 }
duke@435 2637
duke@435 2638 // Write info to output files
duke@435 2639 void Interface::output(FILE *fp) {
duke@435 2640 fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
duke@435 2641 }
duke@435 2642
duke@435 2643 //------------------------------RegInterface-----------------------------------
duke@435 2644 RegInterface::RegInterface() : Interface("REG_INTER") {
duke@435 2645 }
duke@435 2646 RegInterface::~RegInterface() {
duke@435 2647 }
duke@435 2648
duke@435 2649 void RegInterface::dump() {
duke@435 2650 output(stderr);
duke@435 2651 }
duke@435 2652
duke@435 2653 // Write info to output files
duke@435 2654 void RegInterface::output(FILE *fp) {
duke@435 2655 Interface::output(fp);
duke@435 2656 }
duke@435 2657
duke@435 2658 //------------------------------ConstInterface---------------------------------
duke@435 2659 ConstInterface::ConstInterface() : Interface("CONST_INTER") {
duke@435 2660 }
duke@435 2661 ConstInterface::~ConstInterface() {
duke@435 2662 }
duke@435 2663
duke@435 2664 void ConstInterface::dump() {
duke@435 2665 output(stderr);
duke@435 2666 }
duke@435 2667
duke@435 2668 // Write info to output files
duke@435 2669 void ConstInterface::output(FILE *fp) {
duke@435 2670 Interface::output(fp);
duke@435 2671 }
duke@435 2672
duke@435 2673 //------------------------------MemInterface-----------------------------------
duke@435 2674 MemInterface::MemInterface(char *base, char *index, char *scale, char *disp)
duke@435 2675 : Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
duke@435 2676 }
duke@435 2677 MemInterface::~MemInterface() {
duke@435 2678 // not owner of any character arrays
duke@435 2679 }
duke@435 2680
duke@435 2681 void MemInterface::dump() {
duke@435 2682 output(stderr);
duke@435 2683 }
duke@435 2684
duke@435 2685 // Write info to output files
duke@435 2686 void MemInterface::output(FILE *fp) {
duke@435 2687 Interface::output(fp);
duke@435 2688 if ( _base != NULL ) fprintf(fp," base == %s\n", _base);
duke@435 2689 if ( _index != NULL ) fprintf(fp," index == %s\n", _index);
duke@435 2690 if ( _scale != NULL ) fprintf(fp," scale == %s\n", _scale);
duke@435 2691 if ( _disp != NULL ) fprintf(fp," disp == %s\n", _disp);
duke@435 2692 // fprintf(fp,"\n");
duke@435 2693 }
duke@435 2694
duke@435 2695 //------------------------------CondInterface----------------------------------
never@850 2696 CondInterface::CondInterface(const char* equal, const char* equal_format,
never@850 2697 const char* not_equal, const char* not_equal_format,
never@850 2698 const char* less, const char* less_format,
never@850 2699 const char* greater_equal, const char* greater_equal_format,
never@850 2700 const char* less_equal, const char* less_equal_format,
never@850 2701 const char* greater, const char* greater_format)
duke@435 2702 : Interface("COND_INTER"),
never@850 2703 _equal(equal), _equal_format(equal_format),
never@850 2704 _not_equal(not_equal), _not_equal_format(not_equal_format),
never@850 2705 _less(less), _less_format(less_format),
never@850 2706 _greater_equal(greater_equal), _greater_equal_format(greater_equal_format),
never@850 2707 _less_equal(less_equal), _less_equal_format(less_equal_format),
never@850 2708 _greater(greater), _greater_format(greater_format) {
duke@435 2709 }
duke@435 2710 CondInterface::~CondInterface() {
duke@435 2711 // not owner of any character arrays
duke@435 2712 }
duke@435 2713
duke@435 2714 void CondInterface::dump() {
duke@435 2715 output(stderr);
duke@435 2716 }
duke@435 2717
duke@435 2718 // Write info to output files
duke@435 2719 void CondInterface::output(FILE *fp) {
duke@435 2720 Interface::output(fp);
duke@435 2721 if ( _equal != NULL ) fprintf(fp," equal == %s\n", _equal);
duke@435 2722 if ( _not_equal != NULL ) fprintf(fp," not_equal == %s\n", _not_equal);
duke@435 2723 if ( _less != NULL ) fprintf(fp," less == %s\n", _less);
duke@435 2724 if ( _greater_equal != NULL ) fprintf(fp," greater_equal == %s\n", _greater_equal);
duke@435 2725 if ( _less_equal != NULL ) fprintf(fp," less_equal == %s\n", _less_equal);
duke@435 2726 if ( _greater != NULL ) fprintf(fp," greater == %s\n", _greater);
duke@435 2727 // fprintf(fp,"\n");
duke@435 2728 }
duke@435 2729
duke@435 2730 //------------------------------ConstructRule----------------------------------
duke@435 2731 ConstructRule::ConstructRule(char *cnstr)
duke@435 2732 : _construct(cnstr) {
duke@435 2733 }
duke@435 2734 ConstructRule::~ConstructRule() {
duke@435 2735 }
duke@435 2736
duke@435 2737 void ConstructRule::dump() {
duke@435 2738 output(stderr);
duke@435 2739 }
duke@435 2740
duke@435 2741 void ConstructRule::output(FILE *fp) {
duke@435 2742 fprintf(fp,"\nConstruct Rule\n"); // Write to output files
duke@435 2743 }
duke@435 2744
duke@435 2745
duke@435 2746 //==============================Shared Forms===================================
duke@435 2747 //------------------------------AttributeForm----------------------------------
duke@435 2748 int AttributeForm::_insId = 0; // start counter at 0
duke@435 2749 int AttributeForm::_opId = 0; // start counter at 0
duke@435 2750 const char* AttributeForm::_ins_cost = "ins_cost"; // required name
duke@435 2751 const char* AttributeForm::_op_cost = "op_cost"; // required name
duke@435 2752
duke@435 2753 AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
duke@435 2754 : Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
duke@435 2755 if (type==OP_ATTR) {
duke@435 2756 id = ++_opId;
duke@435 2757 }
duke@435 2758 else if (type==INS_ATTR) {
duke@435 2759 id = ++_insId;
duke@435 2760 }
duke@435 2761 else assert( false,"");
duke@435 2762 }
duke@435 2763 AttributeForm::~AttributeForm() {
duke@435 2764 }
duke@435 2765
duke@435 2766 // Dynamic type check
duke@435 2767 AttributeForm *AttributeForm::is_attribute() const {
duke@435 2768 return (AttributeForm*)this;
duke@435 2769 }
duke@435 2770
duke@435 2771
duke@435 2772 // inlined // int AttributeForm::type() { return id;}
duke@435 2773
duke@435 2774 void AttributeForm::dump() {
duke@435 2775 output(stderr);
duke@435 2776 }
duke@435 2777
duke@435 2778 void AttributeForm::output(FILE *fp) {
duke@435 2779 if( _attrname && _attrdef ) {
duke@435 2780 fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
duke@435 2781 _attrname, _attrdef);
duke@435 2782 }
duke@435 2783 else {
duke@435 2784 fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
duke@435 2785 (_attrname?_attrname:""), (_attrdef?_attrdef:"") );
duke@435 2786 }
duke@435 2787 }
duke@435 2788
duke@435 2789 //------------------------------Component--------------------------------------
duke@435 2790 Component::Component(const char *name, const char *type, int usedef)
duke@435 2791 : _name(name), _type(type), _usedef(usedef) {
duke@435 2792 _ftype = Form::COMP;
duke@435 2793 }
duke@435 2794 Component::~Component() {
duke@435 2795 }
duke@435 2796
duke@435 2797 // True if this component is equal to the parameter.
duke@435 2798 bool Component::is(int use_def_kill_enum) const {
duke@435 2799 return (_usedef == use_def_kill_enum ? true : false);
duke@435 2800 }
duke@435 2801 // True if this component is used/def'd/kill'd as the parameter suggests.
duke@435 2802 bool Component::isa(int use_def_kill_enum) const {
duke@435 2803 return (_usedef & use_def_kill_enum) == use_def_kill_enum;
duke@435 2804 }
duke@435 2805
duke@435 2806 // Extend this component with additional use/def/kill behavior
duke@435 2807 int Component::promote_use_def_info(int new_use_def) {
duke@435 2808 _usedef |= new_use_def;
duke@435 2809
duke@435 2810 return _usedef;
duke@435 2811 }
duke@435 2812
duke@435 2813 // Check the base type of this component, if it has one
duke@435 2814 const char *Component::base_type(FormDict &globals) {
duke@435 2815 const Form *frm = globals[_type];
duke@435 2816 if (frm == NULL) return NULL;
duke@435 2817 OperandForm *op = frm->is_operand();
duke@435 2818 if (op == NULL) return NULL;
duke@435 2819 if (op->ideal_only()) return op->_ident;
duke@435 2820 return (char *)op->ideal_type(globals);
duke@435 2821 }
duke@435 2822
duke@435 2823 void Component::dump() {
duke@435 2824 output(stderr);
duke@435 2825 }
duke@435 2826
duke@435 2827 void Component::output(FILE *fp) {
duke@435 2828 fprintf(fp,"Component:"); // Write to output files
duke@435 2829 fprintf(fp, " name = %s", _name);
duke@435 2830 fprintf(fp, ", type = %s", _type);
duke@435 2831 const char * usedef = "Undefined Use/Def info";
duke@435 2832 switch (_usedef) {
duke@435 2833 case USE: usedef = "USE"; break;
duke@435 2834 case USE_DEF: usedef = "USE_DEF"; break;
duke@435 2835 case USE_KILL: usedef = "USE_KILL"; break;
duke@435 2836 case KILL: usedef = "KILL"; break;
duke@435 2837 case TEMP: usedef = "TEMP"; break;
duke@435 2838 case DEF: usedef = "DEF"; break;
duke@435 2839 default: assert(false, "unknown effect");
duke@435 2840 }
duke@435 2841 fprintf(fp, ", use/def = %s\n", usedef);
duke@435 2842 }
duke@435 2843
duke@435 2844
duke@435 2845 //------------------------------ComponentList---------------------------------
duke@435 2846 ComponentList::ComponentList() : NameList(), _matchcnt(0) {
duke@435 2847 }
duke@435 2848 ComponentList::~ComponentList() {
duke@435 2849 // // This list may not own its elements if copied via assignment
duke@435 2850 // Component *component;
duke@435 2851 // for (reset(); (component = iter()) != NULL;) {
duke@435 2852 // delete component;
duke@435 2853 // }
duke@435 2854 }
duke@435 2855
duke@435 2856 void ComponentList::insert(Component *component, bool mflag) {
duke@435 2857 NameList::addName((char *)component);
duke@435 2858 if(mflag) _matchcnt++;
duke@435 2859 }
duke@435 2860 void ComponentList::insert(const char *name, const char *opType, int usedef,
duke@435 2861 bool mflag) {
duke@435 2862 Component * component = new Component(name, opType, usedef);
duke@435 2863 insert(component, mflag);
duke@435 2864 }
duke@435 2865 Component *ComponentList::current() { return (Component*)NameList::current(); }
duke@435 2866 Component *ComponentList::iter() { return (Component*)NameList::iter(); }
duke@435 2867 Component *ComponentList::match_iter() {
duke@435 2868 if(_iter < _matchcnt) return (Component*)NameList::iter();
duke@435 2869 return NULL;
duke@435 2870 }
duke@435 2871 Component *ComponentList::post_match_iter() {
duke@435 2872 Component *comp = iter();
duke@435 2873 // At end of list?
duke@435 2874 if ( comp == NULL ) {
duke@435 2875 return comp;
duke@435 2876 }
duke@435 2877 // In post-match components?
duke@435 2878 if (_iter > match_count()-1) {
duke@435 2879 return comp;
duke@435 2880 }
duke@435 2881
duke@435 2882 return post_match_iter();
duke@435 2883 }
duke@435 2884
duke@435 2885 void ComponentList::reset() { NameList::reset(); }
duke@435 2886 int ComponentList::count() { return NameList::count(); }
duke@435 2887
duke@435 2888 Component *ComponentList::operator[](int position) {
duke@435 2889 // Shortcut complete iteration if there are not enough entries
duke@435 2890 if (position >= count()) return NULL;
duke@435 2891
duke@435 2892 int index = 0;
duke@435 2893 Component *component = NULL;
duke@435 2894 for (reset(); (component = iter()) != NULL;) {
duke@435 2895 if (index == position) {
duke@435 2896 return component;
duke@435 2897 }
duke@435 2898 ++index;
duke@435 2899 }
duke@435 2900
duke@435 2901 return NULL;
duke@435 2902 }
duke@435 2903
duke@435 2904 const Component *ComponentList::search(const char *name) {
duke@435 2905 PreserveIter pi(this);
duke@435 2906 reset();
duke@435 2907 for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
duke@435 2908 if( strcmp(comp->_name,name) == 0 ) return comp;
duke@435 2909 }
duke@435 2910
duke@435 2911 return NULL;
duke@435 2912 }
duke@435 2913
duke@435 2914 // Return number of USEs + number of DEFs
duke@435 2915 // When there are no components, or the first component is a USE,
duke@435 2916 // then we add '1' to hold a space for the 'result' operand.
duke@435 2917 int ComponentList::num_operands() {
duke@435 2918 PreserveIter pi(this);
duke@435 2919 uint count = 1; // result operand
duke@435 2920 uint position = 0;
duke@435 2921
duke@435 2922 Component *component = NULL;
duke@435 2923 for( reset(); (component = iter()) != NULL; ++position ) {
duke@435 2924 if( component->isa(Component::USE) ||
duke@435 2925 ( position == 0 && (! component->isa(Component::DEF))) ) {
duke@435 2926 ++count;
duke@435 2927 }
duke@435 2928 }
duke@435 2929
duke@435 2930 return count;
duke@435 2931 }
duke@435 2932
duke@435 2933 // Return zero-based position in list; -1 if not in list.
duke@435 2934 // if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
duke@435 2935 int ComponentList::operand_position(const char *name, int usedef) {
duke@435 2936 PreserveIter pi(this);
duke@435 2937 int position = 0;
duke@435 2938 int num_opnds = num_operands();
duke@435 2939 Component *component;
duke@435 2940 Component* preceding_non_use = NULL;
duke@435 2941 Component* first_def = NULL;
duke@435 2942 for (reset(); (component = iter()) != NULL; ++position) {
duke@435 2943 // When the first component is not a DEF,
duke@435 2944 // leave space for the result operand!
duke@435 2945 if ( position==0 && (! component->isa(Component::DEF)) ) {
duke@435 2946 ++position;
duke@435 2947 ++num_opnds;
duke@435 2948 }
duke@435 2949 if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
duke@435 2950 // When the first entry in the component list is a DEF and a USE
duke@435 2951 // Treat them as being separate, a DEF first, then a USE
duke@435 2952 if( position==0
duke@435 2953 && usedef==Component::USE && component->isa(Component::DEF) ) {
duke@435 2954 assert(position+1 < num_opnds, "advertised index in bounds");
duke@435 2955 return position+1;
duke@435 2956 } else {
duke@435 2957 if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
duke@435 2958 fprintf(stderr, "the name '%s' should not precede the name '%s'\n", preceding_non_use->_name, name);
duke@435 2959 }
duke@435 2960 if( position >= num_opnds ) {
duke@435 2961 fprintf(stderr, "the name '%s' is too late in its name list\n", name);
duke@435 2962 }
duke@435 2963 assert(position < num_opnds, "advertised index in bounds");
duke@435 2964 return position;
duke@435 2965 }
duke@435 2966 }
duke@435 2967 if( component->isa(Component::DEF)
duke@435 2968 && component->isa(Component::USE) ) {
duke@435 2969 ++position;
duke@435 2970 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 2971 }
duke@435 2972 if( component->isa(Component::DEF) && !first_def ) {
duke@435 2973 first_def = component;
duke@435 2974 }
duke@435 2975 if( !component->isa(Component::USE) && component != first_def ) {
duke@435 2976 preceding_non_use = component;
duke@435 2977 } else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
duke@435 2978 preceding_non_use = NULL;
duke@435 2979 }
duke@435 2980 }
duke@435 2981 return Not_in_list;
duke@435 2982 }
duke@435 2983
duke@435 2984 // Find position for this name, regardless of use/def information
duke@435 2985 int ComponentList::operand_position(const char *name) {
duke@435 2986 PreserveIter pi(this);
duke@435 2987 int position = 0;
duke@435 2988 Component *component;
duke@435 2989 for (reset(); (component = iter()) != NULL; ++position) {
duke@435 2990 // When the first component is not a DEF,
duke@435 2991 // leave space for the result operand!
duke@435 2992 if ( position==0 && (! component->isa(Component::DEF)) ) {
duke@435 2993 ++position;
duke@435 2994 }
duke@435 2995 if (strcmp(name, component->_name)==0) {
duke@435 2996 return position;
duke@435 2997 }
duke@435 2998 if( component->isa(Component::DEF)
duke@435 2999 && component->isa(Component::USE) ) {
duke@435 3000 ++position;
duke@435 3001 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 3002 }
duke@435 3003 }
duke@435 3004 return Not_in_list;
duke@435 3005 }
duke@435 3006
duke@435 3007 int ComponentList::operand_position_format(const char *name) {
duke@435 3008 PreserveIter pi(this);
duke@435 3009 int first_position = operand_position(name);
duke@435 3010 int use_position = operand_position(name, Component::USE);
duke@435 3011
duke@435 3012 return ((first_position < use_position) ? use_position : first_position);
duke@435 3013 }
duke@435 3014
duke@435 3015 int ComponentList::label_position() {
duke@435 3016 PreserveIter pi(this);
duke@435 3017 int position = 0;
duke@435 3018 reset();
duke@435 3019 for( Component *comp; (comp = iter()) != NULL; ++position) {
duke@435 3020 // When the first component is not a DEF,
duke@435 3021 // leave space for the result operand!
duke@435 3022 if ( position==0 && (! comp->isa(Component::DEF)) ) {
duke@435 3023 ++position;
duke@435 3024 }
duke@435 3025 if (strcmp(comp->_type, "label")==0) {
duke@435 3026 return position;
duke@435 3027 }
duke@435 3028 if( comp->isa(Component::DEF)
duke@435 3029 && comp->isa(Component::USE) ) {
duke@435 3030 ++position;
duke@435 3031 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 3032 }
duke@435 3033 }
duke@435 3034
duke@435 3035 return -1;
duke@435 3036 }
duke@435 3037
duke@435 3038 int ComponentList::method_position() {
duke@435 3039 PreserveIter pi(this);
duke@435 3040 int position = 0;
duke@435 3041 reset();
duke@435 3042 for( Component *comp; (comp = iter()) != NULL; ++position) {
duke@435 3043 // When the first component is not a DEF,
duke@435 3044 // leave space for the result operand!
duke@435 3045 if ( position==0 && (! comp->isa(Component::DEF)) ) {
duke@435 3046 ++position;
duke@435 3047 }
duke@435 3048 if (strcmp(comp->_type, "method")==0) {
duke@435 3049 return position;
duke@435 3050 }
duke@435 3051 if( comp->isa(Component::DEF)
duke@435 3052 && comp->isa(Component::USE) ) {
duke@435 3053 ++position;
duke@435 3054 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 3055 }
duke@435 3056 }
duke@435 3057
duke@435 3058 return -1;
duke@435 3059 }
duke@435 3060
duke@435 3061 void ComponentList::dump() { output(stderr); }
duke@435 3062
duke@435 3063 void ComponentList::output(FILE *fp) {
duke@435 3064 PreserveIter pi(this);
duke@435 3065 fprintf(fp, "\n");
duke@435 3066 Component *component;
duke@435 3067 for (reset(); (component = iter()) != NULL;) {
duke@435 3068 component->output(fp);
duke@435 3069 }
duke@435 3070 fprintf(fp, "\n");
duke@435 3071 }
duke@435 3072
duke@435 3073 //------------------------------MatchNode--------------------------------------
duke@435 3074 MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
duke@435 3075 const char *opType, MatchNode *lChild, MatchNode *rChild)
duke@435 3076 : _AD(ad), _result(result), _name(mexpr), _opType(opType),
duke@435 3077 _lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0),
duke@435 3078 _commutative_id(0) {
duke@435 3079 _numleaves = (lChild ? lChild->_numleaves : 0)
duke@435 3080 + (rChild ? rChild->_numleaves : 0);
duke@435 3081 }
duke@435 3082
duke@435 3083 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode)
duke@435 3084 : _AD(ad), _result(mnode._result), _name(mnode._name),
duke@435 3085 _opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild),
duke@435 3086 _internalop(0), _numleaves(mnode._numleaves),
duke@435 3087 _commutative_id(mnode._commutative_id) {
duke@435 3088 }
duke@435 3089
duke@435 3090 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone)
duke@435 3091 : _AD(ad), _result(mnode._result), _name(mnode._name),
duke@435 3092 _opType(mnode._opType),
duke@435 3093 _internalop(0), _numleaves(mnode._numleaves),
duke@435 3094 _commutative_id(mnode._commutative_id) {
duke@435 3095 if (mnode._lChild) {
duke@435 3096 _lChild = new MatchNode(ad, *mnode._lChild, clone);
duke@435 3097 } else {
duke@435 3098 _lChild = NULL;
duke@435 3099 }
duke@435 3100 if (mnode._rChild) {
duke@435 3101 _rChild = new MatchNode(ad, *mnode._rChild, clone);
duke@435 3102 } else {
duke@435 3103 _rChild = NULL;
duke@435 3104 }
duke@435 3105 }
duke@435 3106
duke@435 3107 MatchNode::~MatchNode() {
duke@435 3108 // // This node may not own its children if copied via assignment
duke@435 3109 // if( _lChild ) delete _lChild;
duke@435 3110 // if( _rChild ) delete _rChild;
duke@435 3111 }
duke@435 3112
duke@435 3113 bool MatchNode::find_type(const char *type, int &position) const {
duke@435 3114 if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
duke@435 3115 if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;
duke@435 3116
duke@435 3117 if (strcmp(type,_opType)==0) {
duke@435 3118 return true;
duke@435 3119 } else {
duke@435 3120 ++position;
duke@435 3121 }
duke@435 3122 return false;
duke@435 3123 }
duke@435 3124
duke@435 3125 // Recursive call collecting info on top-level operands, not transitive.
duke@435 3126 // Implementation does not modify state of internal structures.
twisti@1038 3127 void MatchNode::append_components(FormDict& locals, ComponentList& components,
twisti@1038 3128 bool def_flag) const {
twisti@1038 3129 int usedef = def_flag ? Component::DEF : Component::USE;
duke@435 3130 FormDict &globals = _AD.globalNames();
duke@435 3131
duke@435 3132 assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
duke@435 3133 // Base case
duke@435 3134 if (_lChild==NULL && _rChild==NULL) {
duke@435 3135 // If _opType is not an operation, do not build a component for it #####
duke@435 3136 const Form *f = globals[_opType];
duke@435 3137 if( f != NULL ) {
duke@435 3138 // Add non-ideals that are operands, operand-classes,
duke@435 3139 if( ! f->ideal_only()
duke@435 3140 && (f->is_opclass() || f->is_operand()) ) {
duke@435 3141 components.insert(_name, _opType, usedef, true);
duke@435 3142 }
duke@435 3143 }
duke@435 3144 return;
duke@435 3145 }
duke@435 3146 // Promote results of "Set" to DEF
twisti@1038 3147 bool tmpdef_flag = (!strcmp(_opType, "Set")) ? true : false;
twisti@1038 3148 if (_lChild) _lChild->append_components(locals, components, tmpdef_flag);
twisti@1038 3149 tmpdef_flag = false; // only applies to component immediately following 'Set'
twisti@1038 3150 if (_rChild) _rChild->append_components(locals, components, tmpdef_flag);
duke@435 3151 }
duke@435 3152
duke@435 3153 // Find the n'th base-operand in the match node,
duke@435 3154 // recursively investigates match rules of user-defined operands.
duke@435 3155 //
duke@435 3156 // Implementation does not modify state of internal structures since they
duke@435 3157 // can be shared.
duke@435 3158 bool MatchNode::base_operand(uint &position, FormDict &globals,
duke@435 3159 const char * &result, const char * &name,
duke@435 3160 const char * &opType) const {
duke@435 3161 assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
duke@435 3162 // Base case
duke@435 3163 if (_lChild==NULL && _rChild==NULL) {
duke@435 3164 // Check for special case: "Universe", "label"
duke@435 3165 if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
duke@435 3166 if (position == 0) {
duke@435 3167 result = _result;
duke@435 3168 name = _name;
duke@435 3169 opType = _opType;
duke@435 3170 return 1;
duke@435 3171 } else {
duke@435 3172 -- position;
duke@435 3173 return 0;
duke@435 3174 }
duke@435 3175 }
duke@435 3176
duke@435 3177 const Form *form = globals[_opType];
duke@435 3178 MatchNode *matchNode = NULL;
duke@435 3179 // Check for user-defined type
duke@435 3180 if (form) {
duke@435 3181 // User operand or instruction?
duke@435 3182 OperandForm *opForm = form->is_operand();
duke@435 3183 InstructForm *inForm = form->is_instruction();
duke@435 3184 if ( opForm ) {
duke@435 3185 matchNode = (MatchNode*)opForm->_matrule;
duke@435 3186 } else if ( inForm ) {
duke@435 3187 matchNode = (MatchNode*)inForm->_matrule;
duke@435 3188 }
duke@435 3189 }
duke@435 3190 // if this is user-defined, recurse on match rule
duke@435 3191 // User-defined operand and instruction forms have a match-rule.
duke@435 3192 if (matchNode) {
duke@435 3193 return (matchNode->base_operand(position,globals,result,name,opType));
duke@435 3194 } else {
duke@435 3195 // Either not a form, or a system-defined form (no match rule).
duke@435 3196 if (position==0) {
duke@435 3197 result = _result;
duke@435 3198 name = _name;
duke@435 3199 opType = _opType;
duke@435 3200 return 1;
duke@435 3201 } else {
duke@435 3202 --position;
duke@435 3203 return 0;
duke@435 3204 }
duke@435 3205 }
duke@435 3206
duke@435 3207 } else {
duke@435 3208 // Examine the left child and right child as well
duke@435 3209 if (_lChild) {
duke@435 3210 if (_lChild->base_operand(position, globals, result, name, opType))
duke@435 3211 return 1;
duke@435 3212 }
duke@435 3213
duke@435 3214 if (_rChild) {
duke@435 3215 if (_rChild->base_operand(position, globals, result, name, opType))
duke@435 3216 return 1;
duke@435 3217 }
duke@435 3218 }
duke@435 3219
duke@435 3220 return 0;
duke@435 3221 }
duke@435 3222
duke@435 3223 // Recursive call on all operands' match rules in my match rule.
duke@435 3224 uint MatchNode::num_consts(FormDict &globals) const {
duke@435 3225 uint index = 0;
duke@435 3226 uint num_consts = 0;
duke@435 3227 const char *result;
duke@435 3228 const char *name;
duke@435 3229 const char *opType;
duke@435 3230
duke@435 3231 for (uint position = index;
duke@435 3232 base_operand(position,globals,result,name,opType); position = index) {
duke@435 3233 ++index;
duke@435 3234 if( ideal_to_const_type(opType) ) num_consts++;
duke@435 3235 }
duke@435 3236
duke@435 3237 return num_consts;
duke@435 3238 }
duke@435 3239
duke@435 3240 // Recursive call on all operands' match rules in my match rule.
duke@435 3241 // Constants in match rule subtree with specified type
duke@435 3242 uint MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
duke@435 3243 uint index = 0;
duke@435 3244 uint num_consts = 0;
duke@435 3245 const char *result;
duke@435 3246 const char *name;
duke@435 3247 const char *opType;
duke@435 3248
duke@435 3249 for (uint position = index;
duke@435 3250 base_operand(position,globals,result,name,opType); position = index) {
duke@435 3251 ++index;
duke@435 3252 if( ideal_to_const_type(opType) == type ) num_consts++;
duke@435 3253 }
duke@435 3254
duke@435 3255 return num_consts;
duke@435 3256 }
duke@435 3257
duke@435 3258 // Recursive call on all operands' match rules in my match rule.
duke@435 3259 uint MatchNode::num_const_ptrs(FormDict &globals) const {
duke@435 3260 return num_consts( globals, Form::idealP );
duke@435 3261 }
duke@435 3262
duke@435 3263 bool MatchNode::sets_result() const {
duke@435 3264 return ( (strcmp(_name,"Set") == 0) ? true : false );
duke@435 3265 }
duke@435 3266
duke@435 3267 const char *MatchNode::reduce_right(FormDict &globals) const {
duke@435 3268 // If there is no right reduction, return NULL.
duke@435 3269 const char *rightStr = NULL;
duke@435 3270
duke@435 3271 // If we are a "Set", start from the right child.
duke@435 3272 const MatchNode *const mnode = sets_result() ?
duke@435 3273 (const MatchNode *const)this->_rChild :
duke@435 3274 (const MatchNode *const)this;
duke@435 3275
duke@435 3276 // If our right child exists, it is the right reduction
duke@435 3277 if ( mnode->_rChild ) {
duke@435 3278 rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
duke@435 3279 : mnode->_rChild->_opType;
duke@435 3280 }
duke@435 3281 // Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
duke@435 3282 return rightStr;
duke@435 3283 }
duke@435 3284
duke@435 3285 const char *MatchNode::reduce_left(FormDict &globals) const {
duke@435 3286 // If there is no left reduction, return NULL.
duke@435 3287 const char *leftStr = NULL;
duke@435 3288
duke@435 3289 // If we are a "Set", start from the right child.
duke@435 3290 const MatchNode *const mnode = sets_result() ?
duke@435 3291 (const MatchNode *const)this->_rChild :
duke@435 3292 (const MatchNode *const)this;
duke@435 3293
duke@435 3294 // If our left child exists, it is the left reduction
duke@435 3295 if ( mnode->_lChild ) {
duke@435 3296 leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
duke@435 3297 : mnode->_lChild->_opType;
duke@435 3298 } else {
duke@435 3299 // May be simple chain rule: (Set dst operand_form_source)
duke@435 3300 if ( sets_result() ) {
duke@435 3301 OperandForm *oper = globals[mnode->_opType]->is_operand();
duke@435 3302 if( oper ) {
duke@435 3303 leftStr = mnode->_opType;
duke@435 3304 }
duke@435 3305 }
duke@435 3306 }
duke@435 3307 return leftStr;
duke@435 3308 }
duke@435 3309
duke@435 3310 //------------------------------count_instr_names------------------------------
duke@435 3311 // Count occurrences of operands names in the leaves of the instruction
duke@435 3312 // match rule.
duke@435 3313 void MatchNode::count_instr_names( Dict &names ) {
duke@435 3314 if( !this ) return;
duke@435 3315 if( _lChild ) _lChild->count_instr_names(names);
duke@435 3316 if( _rChild ) _rChild->count_instr_names(names);
duke@435 3317 if( !_lChild && !_rChild ) {
duke@435 3318 uintptr_t cnt = (uintptr_t)names[_name];
duke@435 3319 cnt++; // One more name found
duke@435 3320 names.Insert(_name,(void*)cnt);
duke@435 3321 }
duke@435 3322 }
duke@435 3323
duke@435 3324 //------------------------------build_instr_pred-------------------------------
duke@435 3325 // Build a path to 'name' in buf. Actually only build if cnt is zero, so we
duke@435 3326 // can skip some leading instances of 'name'.
duke@435 3327 int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
duke@435 3328 if( _lChild ) {
duke@435 3329 if( !cnt ) strcpy( buf, "_kids[0]->" );
duke@435 3330 cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
duke@435 3331 if( cnt < 0 ) return cnt; // Found it, all done
duke@435 3332 }
duke@435 3333 if( _rChild ) {
duke@435 3334 if( !cnt ) strcpy( buf, "_kids[1]->" );
duke@435 3335 cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
duke@435 3336 if( cnt < 0 ) return cnt; // Found it, all done
duke@435 3337 }
duke@435 3338 if( !_lChild && !_rChild ) { // Found a leaf
duke@435 3339 // Wrong name? Give up...
duke@435 3340 if( strcmp(name,_name) ) return cnt;
duke@435 3341 if( !cnt ) strcpy(buf,"_leaf");
duke@435 3342 return cnt-1;
duke@435 3343 }
duke@435 3344 return cnt;
duke@435 3345 }
duke@435 3346
duke@435 3347
duke@435 3348 //------------------------------build_internalop-------------------------------
duke@435 3349 // Build string representation of subtree
duke@435 3350 void MatchNode::build_internalop( ) {
duke@435 3351 char *iop, *subtree;
duke@435 3352 const char *lstr, *rstr;
duke@435 3353 // Build string representation of subtree
duke@435 3354 // Operation lchildType rchildType
duke@435 3355 int len = (int)strlen(_opType) + 4;
duke@435 3356 lstr = (_lChild) ? ((_lChild->_internalop) ?
duke@435 3357 _lChild->_internalop : _lChild->_opType) : "";
duke@435 3358 rstr = (_rChild) ? ((_rChild->_internalop) ?
duke@435 3359 _rChild->_internalop : _rChild->_opType) : "";
duke@435 3360 len += (int)strlen(lstr) + (int)strlen(rstr);
duke@435 3361 subtree = (char *)malloc(len);
duke@435 3362 sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
duke@435 3363 // Hash the subtree string in _internalOps; if a name exists, use it
duke@435 3364 iop = (char *)_AD._internalOps[subtree];
duke@435 3365 // Else create a unique name, and add it to the hash table
duke@435 3366 if (iop == NULL) {
duke@435 3367 iop = subtree;
duke@435 3368 _AD._internalOps.Insert(subtree, iop);
duke@435 3369 _AD._internalOpNames.addName(iop);
duke@435 3370 _AD._internalMatch.Insert(iop, this);
duke@435 3371 }
duke@435 3372 // Add the internal operand name to the MatchNode
duke@435 3373 _internalop = iop;
duke@435 3374 _result = iop;
duke@435 3375 }
duke@435 3376
duke@435 3377
duke@435 3378 void MatchNode::dump() {
duke@435 3379 output(stderr);
duke@435 3380 }
duke@435 3381
duke@435 3382 void MatchNode::output(FILE *fp) {
duke@435 3383 if (_lChild==0 && _rChild==0) {
duke@435 3384 fprintf(fp," %s",_name); // operand
duke@435 3385 }
duke@435 3386 else {
duke@435 3387 fprintf(fp," (%s ",_name); // " (opcodeName "
duke@435 3388 if(_lChild) _lChild->output(fp); // left operand
duke@435 3389 if(_rChild) _rChild->output(fp); // right operand
duke@435 3390 fprintf(fp,")"); // ")"
duke@435 3391 }
duke@435 3392 }
duke@435 3393
duke@435 3394 int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
duke@435 3395 static const char *needs_ideal_memory_list[] = {
roland@4159 3396 "StoreI","StoreL","StoreP","StoreN","StoreNKlass","StoreD","StoreF" ,
duke@435 3397 "StoreB","StoreC","Store" ,"StoreFP",
twisti@1059 3398 "LoadI", "LoadUI2L", "LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF" ,
kvn@3882 3399 "LoadB" , "LoadUB", "LoadUS" ,"LoadS" ,"Load" ,
kvn@3882 3400 "StoreVector", "LoadVector",
kvn@599 3401 "LoadRange", "LoadKlass", "LoadNKlass", "LoadL_unaligned", "LoadD_unaligned",
twisti@3846 3402 "LoadPLocked",
kvn@855 3403 "StorePConditional", "StoreIConditional", "StoreLConditional",
coleenp@548 3404 "CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN",
duke@435 3405 "StoreCM",
roland@4106 3406 "ClearArray",
roland@4106 3407 "GetAndAddI", "GetAndSetI", "GetAndSetP",
roland@4106 3408 "GetAndAddL", "GetAndSetL", "GetAndSetN",
duke@435 3409 };
duke@435 3410 int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
kvn@3052 3411 if( strcmp(_opType,"PrefetchRead")==0 ||
kvn@3052 3412 strcmp(_opType,"PrefetchWrite")==0 ||
kvn@3052 3413 strcmp(_opType,"PrefetchAllocation")==0 )
duke@435 3414 return 1;
duke@435 3415 if( _lChild ) {
duke@435 3416 const char *opType = _lChild->_opType;
duke@435 3417 for( int i=0; i<cnt; i++ )
duke@435 3418 if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
duke@435 3419 return 1;
duke@435 3420 if( _lChild->needs_ideal_memory_edge(globals) )
duke@435 3421 return 1;
duke@435 3422 }
duke@435 3423 if( _rChild ) {
duke@435 3424 const char *opType = _rChild->_opType;
duke@435 3425 for( int i=0; i<cnt; i++ )
duke@435 3426 if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
duke@435 3427 return 1;
duke@435 3428 if( _rChild->needs_ideal_memory_edge(globals) )
duke@435 3429 return 1;
duke@435 3430 }
duke@435 3431
duke@435 3432 return 0;
duke@435 3433 }
duke@435 3434
duke@435 3435 // TRUE if defines a derived oop, and so needs a base oop edge present
duke@435 3436 // post-matching.
duke@435 3437 int MatchNode::needs_base_oop_edge() const {
duke@435 3438 if( !strcmp(_opType,"AddP") ) return 1;
duke@435 3439 if( strcmp(_opType,"Set") ) return 0;
duke@435 3440 return !strcmp(_rChild->_opType,"AddP");
duke@435 3441 }
duke@435 3442
duke@435 3443 int InstructForm::needs_base_oop_edge(FormDict &globals) const {
duke@435 3444 if( is_simple_chain_rule(globals) ) {
duke@435 3445 const char *src = _matrule->_rChild->_opType;
duke@435 3446 OperandForm *src_op = globals[src]->is_operand();
duke@435 3447 assert( src_op, "Not operand class of chain rule" );
duke@435 3448 return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
duke@435 3449 } // Else check instruction
duke@435 3450
duke@435 3451 return _matrule ? _matrule->needs_base_oop_edge() : 0;
duke@435 3452 }
duke@435 3453
duke@435 3454
duke@435 3455 //-------------------------cisc spilling methods-------------------------------
duke@435 3456 // helper routines and methods for detecting cisc-spilling instructions
duke@435 3457 //-------------------------cisc_spill_merge------------------------------------
duke@435 3458 int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
duke@435 3459 int cisc_spillable = Maybe_cisc_spillable;
duke@435 3460
duke@435 3461 // Combine results of left and right checks
duke@435 3462 if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
duke@435 3463 // neither side is spillable, nor prevents cisc spilling
duke@435 3464 cisc_spillable = Maybe_cisc_spillable;
duke@435 3465 }
duke@435 3466 else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
duke@435 3467 // right side is spillable
duke@435 3468 cisc_spillable = right_spillable;
duke@435 3469 }
duke@435 3470 else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
duke@435 3471 // left side is spillable
duke@435 3472 cisc_spillable = left_spillable;
duke@435 3473 }
duke@435 3474 else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
duke@435 3475 // left or right prevents cisc spilling this instruction
duke@435 3476 cisc_spillable = Not_cisc_spillable;
duke@435 3477 }
duke@435 3478 else {
duke@435 3479 // Only allow one to spill
duke@435 3480 cisc_spillable = Not_cisc_spillable;
duke@435 3481 }
duke@435 3482
duke@435 3483 return cisc_spillable;
duke@435 3484 }
duke@435 3485
duke@435 3486 //-------------------------root_ops_match--------------------------------------
duke@435 3487 bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
duke@435 3488 // Base Case: check that the current operands/operations match
duke@435 3489 assert( op1, "Must have op's name");
duke@435 3490 assert( op2, "Must have op's name");
duke@435 3491 const Form *form1 = globals[op1];
duke@435 3492 const Form *form2 = globals[op2];
duke@435 3493
duke@435 3494 return (form1 == form2);
duke@435 3495 }
duke@435 3496
twisti@1038 3497 //-------------------------cisc_spill_match_node-------------------------------
duke@435 3498 // Recursively check two MatchRules for legal conversion via cisc-spilling
twisti@1038 3499 int MatchNode::cisc_spill_match(FormDict& globals, RegisterForm* registers, MatchNode* mRule2, const char* &operand, const char* &reg_type) {
duke@435 3500 int cisc_spillable = Maybe_cisc_spillable;
duke@435 3501 int left_spillable = Maybe_cisc_spillable;
duke@435 3502 int right_spillable = Maybe_cisc_spillable;
duke@435 3503
duke@435 3504 // Check that each has same number of operands at this level
duke@435 3505 if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) )
duke@435 3506 return Not_cisc_spillable;
duke@435 3507
duke@435 3508 // Base Case: check that the current operands/operations match
duke@435 3509 // or are CISC spillable
duke@435 3510 assert( _opType, "Must have _opType");
duke@435 3511 assert( mRule2->_opType, "Must have _opType");
duke@435 3512 const Form *form = globals[_opType];
duke@435 3513 const Form *form2 = globals[mRule2->_opType];
duke@435 3514 if( form == form2 ) {
duke@435 3515 cisc_spillable = Maybe_cisc_spillable;
duke@435 3516 } else {
duke@435 3517 const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
duke@435 3518 const char *name_left = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
duke@435 3519 const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
twisti@1059 3520 DataType data_type = Form::none;
twisti@1059 3521 if (form->is_operand()) {
twisti@1059 3522 // Make sure the loadX matches the type of the reg
twisti@1059 3523 data_type = form->ideal_to_Reg_type(form->is_operand()->ideal_type(globals));
twisti@1059 3524 }
duke@435 3525 // Detect reg vs (loadX memory)
duke@435 3526 if( form->is_cisc_reg(globals)
duke@435 3527 && form2_inst
twisti@1059 3528 && data_type != Form::none
twisti@1059 3529 && (is_load_from_memory(mRule2->_opType) == data_type) // reg vs. (load memory)
duke@435 3530 && (name_left != NULL) // NOT (load)
duke@435 3531 && (name_right == NULL) ) { // NOT (load memory foo)
duke@435 3532 const Form *form2_left = name_left ? globals[name_left] : NULL;
duke@435 3533 if( form2_left && form2_left->is_cisc_mem(globals) ) {
duke@435 3534 cisc_spillable = Is_cisc_spillable;
duke@435 3535 operand = _name;
duke@435 3536 reg_type = _result;
duke@435 3537 return Is_cisc_spillable;
duke@435 3538 } else {
duke@435 3539 cisc_spillable = Not_cisc_spillable;
duke@435 3540 }
duke@435 3541 }
duke@435 3542 // Detect reg vs memory
duke@435 3543 else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) {
duke@435 3544 cisc_spillable = Is_cisc_spillable;
duke@435 3545 operand = _name;
duke@435 3546 reg_type = _result;
duke@435 3547 return Is_cisc_spillable;
duke@435 3548 } else {
duke@435 3549 cisc_spillable = Not_cisc_spillable;
duke@435 3550 }
duke@435 3551 }
duke@435 3552
duke@435 3553 // If cisc is still possible, check rest of tree
duke@435 3554 if( cisc_spillable == Maybe_cisc_spillable ) {
duke@435 3555 // Check that each has same number of operands at this level
duke@435 3556 if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
duke@435 3557
duke@435 3558 // Check left operands
duke@435 3559 if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
duke@435 3560 left_spillable = Maybe_cisc_spillable;
duke@435 3561 } else {
duke@435 3562 left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
duke@435 3563 }
duke@435 3564
duke@435 3565 // Check right operands
duke@435 3566 if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
duke@435 3567 right_spillable = Maybe_cisc_spillable;
duke@435 3568 } else {
duke@435 3569 right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
duke@435 3570 }
duke@435 3571
duke@435 3572 // Combine results of left and right checks
duke@435 3573 cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
duke@435 3574 }
duke@435 3575
duke@435 3576 return cisc_spillable;
duke@435 3577 }
duke@435 3578
twisti@1038 3579 //---------------------------cisc_spill_match_rule------------------------------
duke@435 3580 // Recursively check two MatchRules for legal conversion via cisc-spilling
duke@435 3581 // This method handles the root of Match tree,
duke@435 3582 // general recursive checks done in MatchNode
twisti@1038 3583 int MatchRule::matchrule_cisc_spill_match(FormDict& globals, RegisterForm* registers,
twisti@1038 3584 MatchRule* mRule2, const char* &operand,
twisti@1038 3585 const char* &reg_type) {
duke@435 3586 int cisc_spillable = Maybe_cisc_spillable;
duke@435 3587 int left_spillable = Maybe_cisc_spillable;
duke@435 3588 int right_spillable = Maybe_cisc_spillable;
duke@435 3589
duke@435 3590 // Check that each sets a result
duke@435 3591 if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
duke@435 3592 // Check that each has same number of operands at this level
duke@435 3593 if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
duke@435 3594
duke@435 3595 // Check left operands: at root, must be target of 'Set'
duke@435 3596 if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
duke@435 3597 left_spillable = Not_cisc_spillable;
duke@435 3598 } else {
duke@435 3599 // Do not support cisc-spilling instruction's target location
duke@435 3600 if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
duke@435 3601 left_spillable = Maybe_cisc_spillable;
duke@435 3602 } else {
duke@435 3603 left_spillable = Not_cisc_spillable;
duke@435 3604 }
duke@435 3605 }
duke@435 3606
duke@435 3607 // Check right operands: recursive walk to identify reg->mem operand
duke@435 3608 if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
duke@435 3609 right_spillable = Maybe_cisc_spillable;
duke@435 3610 } else {
duke@435 3611 right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
duke@435 3612 }
duke@435 3613
duke@435 3614 // Combine results of left and right checks
duke@435 3615 cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
duke@435 3616
duke@435 3617 return cisc_spillable;
duke@435 3618 }
duke@435 3619
duke@435 3620 //----------------------------- equivalent ------------------------------------
duke@435 3621 // Recursively check to see if two match rules are equivalent.
duke@435 3622 // This rule handles the root.
twisti@1038 3623 bool MatchRule::equivalent(FormDict &globals, MatchNode *mRule2) {
duke@435 3624 // Check that each sets a result
duke@435 3625 if (sets_result() != mRule2->sets_result()) {
duke@435 3626 return false;
duke@435 3627 }
duke@435 3628
duke@435 3629 // Check that the current operands/operations match
duke@435 3630 assert( _opType, "Must have _opType");
duke@435 3631 assert( mRule2->_opType, "Must have _opType");
duke@435 3632 const Form *form = globals[_opType];
duke@435 3633 const Form *form2 = globals[mRule2->_opType];
duke@435 3634 if( form != form2 ) {
duke@435 3635 return false;
duke@435 3636 }
duke@435 3637
duke@435 3638 if (_lChild ) {
duke@435 3639 if( !_lChild->equivalent(globals, mRule2->_lChild) )
duke@435 3640 return false;
duke@435 3641 } else if (mRule2->_lChild) {
duke@435 3642 return false; // I have NULL left child, mRule2 has non-NULL left child.
duke@435 3643 }
duke@435 3644
duke@435 3645 if (_rChild ) {
duke@435 3646 if( !_rChild->equivalent(globals, mRule2->_rChild) )
duke@435 3647 return false;
duke@435 3648 } else if (mRule2->_rChild) {
duke@435 3649 return false; // I have NULL right child, mRule2 has non-NULL right child.
duke@435 3650 }
duke@435 3651
duke@435 3652 // We've made it through the gauntlet.
duke@435 3653 return true;
duke@435 3654 }
duke@435 3655
duke@435 3656 //----------------------------- equivalent ------------------------------------
duke@435 3657 // Recursively check to see if two match rules are equivalent.
duke@435 3658 // This rule handles the operands.
duke@435 3659 bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
duke@435 3660 if( !mNode2 )
duke@435 3661 return false;
duke@435 3662
duke@435 3663 // Check that the current operands/operations match
duke@435 3664 assert( _opType, "Must have _opType");
duke@435 3665 assert( mNode2->_opType, "Must have _opType");
duke@435 3666 const Form *form = globals[_opType];
duke@435 3667 const Form *form2 = globals[mNode2->_opType];
kvn@3037 3668 if( form != form2 ) {
kvn@3037 3669 return false;
kvn@3037 3670 }
kvn@3037 3671
kvn@3037 3672 // Check that their children also match
kvn@3037 3673 if (_lChild ) {
kvn@3037 3674 if( !_lChild->equivalent(globals, mNode2->_lChild) )
kvn@3037 3675 return false;
kvn@3037 3676 } else if (mNode2->_lChild) {
kvn@3037 3677 return false; // I have NULL left child, mNode2 has non-NULL left child.
kvn@3037 3678 }
kvn@3037 3679
kvn@3037 3680 if (_rChild ) {
kvn@3037 3681 if( !_rChild->equivalent(globals, mNode2->_rChild) )
kvn@3037 3682 return false;
kvn@3037 3683 } else if (mNode2->_rChild) {
kvn@3037 3684 return false; // I have NULL right child, mNode2 has non-NULL right child.
kvn@3037 3685 }
kvn@3037 3686
kvn@3037 3687 // We've made it through the gauntlet.
kvn@3037 3688 return true;
duke@435 3689 }
duke@435 3690
duke@435 3691 //-------------------------- has_commutative_op -------------------------------
duke@435 3692 // Recursively check for commutative operations with subtree operands
duke@435 3693 // which could be swapped.
duke@435 3694 void MatchNode::count_commutative_op(int& count) {
duke@435 3695 static const char *commut_op_list[] = {
duke@435 3696 "AddI","AddL","AddF","AddD",
duke@435 3697 "AndI","AndL",
duke@435 3698 "MaxI","MinI",
duke@435 3699 "MulI","MulL","MulF","MulD",
duke@435 3700 "OrI" ,"OrL" ,
duke@435 3701 "XorI","XorL"
duke@435 3702 };
duke@435 3703 int cnt = sizeof(commut_op_list)/sizeof(char*);
duke@435 3704
duke@435 3705 if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
duke@435 3706 // Don't swap if right operand is an immediate constant.
duke@435 3707 bool is_const = false;
duke@435 3708 if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
duke@435 3709 FormDict &globals = _AD.globalNames();
duke@435 3710 const Form *form = globals[_rChild->_opType];
duke@435 3711 if ( form ) {
duke@435 3712 OperandForm *oper = form->is_operand();
duke@435 3713 if( oper && oper->interface_type(globals) == Form::constant_interface )
duke@435 3714 is_const = true;
duke@435 3715 }
duke@435 3716 }
duke@435 3717 if( !is_const ) {
duke@435 3718 for( int i=0; i<cnt; i++ ) {
duke@435 3719 if( strcmp(_opType, commut_op_list[i]) == 0 ) {
duke@435 3720 count++;
duke@435 3721 _commutative_id = count; // id should be > 0
duke@435 3722 break;
duke@435 3723 }
duke@435 3724 }
duke@435 3725 }
duke@435 3726 }
duke@435 3727 if( _lChild )
duke@435 3728 _lChild->count_commutative_op(count);
duke@435 3729 if( _rChild )
duke@435 3730 _rChild->count_commutative_op(count);
duke@435 3731 }
duke@435 3732
duke@435 3733 //-------------------------- swap_commutative_op ------------------------------
duke@435 3734 // Recursively swap specified commutative operation with subtree operands.
duke@435 3735 void MatchNode::swap_commutative_op(bool atroot, int id) {
duke@435 3736 if( _commutative_id == id ) { // id should be > 0
duke@435 3737 assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ),
duke@435 3738 "not swappable operation");
duke@435 3739 MatchNode* tmp = _lChild;
duke@435 3740 _lChild = _rChild;
duke@435 3741 _rChild = tmp;
duke@435 3742 // Don't exit here since we need to build internalop.
duke@435 3743 }
duke@435 3744
duke@435 3745 bool is_set = ( strcmp(_opType, "Set") == 0 );
duke@435 3746 if( _lChild )
duke@435 3747 _lChild->swap_commutative_op(is_set, id);
duke@435 3748 if( _rChild )
duke@435 3749 _rChild->swap_commutative_op(is_set, id);
duke@435 3750
duke@435 3751 // If not the root, reduce this subtree to an internal operand
duke@435 3752 if( !atroot && (_lChild || _rChild) ) {
duke@435 3753 build_internalop();
duke@435 3754 }
duke@435 3755 }
duke@435 3756
duke@435 3757 //-------------------------- swap_commutative_op ------------------------------
duke@435 3758 // Recursively swap specified commutative operation with subtree operands.
twisti@1038 3759 void MatchRule::matchrule_swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
duke@435 3760 assert(match_rules_cnt < 100," too many match rule clones");
duke@435 3761 // Clone
duke@435 3762 MatchRule* clone = new MatchRule(_AD, this);
duke@435 3763 // Swap operands of commutative operation
duke@435 3764 ((MatchNode*)clone)->swap_commutative_op(true, count);
duke@435 3765 char* buf = (char*) malloc(strlen(instr_ident) + 4);
duke@435 3766 sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
duke@435 3767 clone->_result = buf;
duke@435 3768
duke@435 3769 clone->_next = this->_next;
duke@435 3770 this-> _next = clone;
duke@435 3771 if( (--count) > 0 ) {
twisti@1038 3772 this-> matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
twisti@1038 3773 clone->matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
duke@435 3774 }
duke@435 3775 }
duke@435 3776
duke@435 3777 //------------------------------MatchRule--------------------------------------
duke@435 3778 MatchRule::MatchRule(ArchDesc &ad)
duke@435 3779 : MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
duke@435 3780 _next = NULL;
duke@435 3781 }
duke@435 3782
duke@435 3783 MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
duke@435 3784 : MatchNode(ad, *mRule, 0), _depth(mRule->_depth),
duke@435 3785 _construct(mRule->_construct), _numchilds(mRule->_numchilds) {
duke@435 3786 _next = NULL;
duke@435 3787 }
duke@435 3788
duke@435 3789 MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
duke@435 3790 int numleaves)
duke@435 3791 : MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
duke@435 3792 _numchilds(0) {
duke@435 3793 _next = NULL;
duke@435 3794 mroot->_lChild = NULL;
duke@435 3795 mroot->_rChild = NULL;
duke@435 3796 delete mroot;
duke@435 3797 _numleaves = numleaves;
duke@435 3798 _numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
duke@435 3799 }
duke@435 3800 MatchRule::~MatchRule() {
duke@435 3801 }
duke@435 3802
duke@435 3803 // Recursive call collecting info on top-level operands, not transitive.
duke@435 3804 // Implementation does not modify state of internal structures.
twisti@1038 3805 void MatchRule::append_components(FormDict& locals, ComponentList& components, bool def_flag) const {
duke@435 3806 assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
duke@435 3807
duke@435 3808 MatchNode::append_components(locals, components,
duke@435 3809 false /* not necessarily a def */);
duke@435 3810 }
duke@435 3811
duke@435 3812 // Recursive call on all operands' match rules in my match rule.
duke@435 3813 // Implementation does not modify state of internal structures since they
duke@435 3814 // can be shared.
duke@435 3815 // The MatchNode that is called first treats its
duke@435 3816 bool MatchRule::base_operand(uint &position0, FormDict &globals,
duke@435 3817 const char *&result, const char * &name,
duke@435 3818 const char * &opType)const{
duke@435 3819 uint position = position0;
duke@435 3820
duke@435 3821 return (MatchNode::base_operand( position, globals, result, name, opType));
duke@435 3822 }
duke@435 3823
duke@435 3824
duke@435 3825 bool MatchRule::is_base_register(FormDict &globals) const {
duke@435 3826 uint position = 1;
duke@435 3827 const char *result = NULL;
duke@435 3828 const char *name = NULL;
duke@435 3829 const char *opType = NULL;
duke@435 3830 if (!base_operand(position, globals, result, name, opType)) {
duke@435 3831 position = 0;
duke@435 3832 if( base_operand(position, globals, result, name, opType) &&
duke@435 3833 (strcmp(opType,"RegI")==0 ||
duke@435 3834 strcmp(opType,"RegP")==0 ||
coleenp@548 3835 strcmp(opType,"RegN")==0 ||
duke@435 3836 strcmp(opType,"RegL")==0 ||
duke@435 3837 strcmp(opType,"RegF")==0 ||
duke@435 3838 strcmp(opType,"RegD")==0 ||
kvn@3882 3839 strcmp(opType,"VecS")==0 ||
kvn@3882 3840 strcmp(opType,"VecD")==0 ||
kvn@3882 3841 strcmp(opType,"VecX")==0 ||
kvn@3882 3842 strcmp(opType,"VecY")==0 ||
duke@435 3843 strcmp(opType,"Reg" )==0) ) {
duke@435 3844 return 1;
duke@435 3845 }
duke@435 3846 }
duke@435 3847 return 0;
duke@435 3848 }
duke@435 3849
duke@435 3850 Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
duke@435 3851 uint position = 1;
duke@435 3852 const char *result = NULL;
duke@435 3853 const char *name = NULL;
duke@435 3854 const char *opType = NULL;
duke@435 3855 if (!base_operand(position, globals, result, name, opType)) {
duke@435 3856 position = 0;
duke@435 3857 if (base_operand(position, globals, result, name, opType)) {
duke@435 3858 return ideal_to_const_type(opType);
duke@435 3859 }
duke@435 3860 }
duke@435 3861 return Form::none;
duke@435 3862 }
duke@435 3863
duke@435 3864 bool MatchRule::is_chain_rule(FormDict &globals) const {
duke@435 3865
duke@435 3866 // Check for chain rule, and do not generate a match list for it
duke@435 3867 if ((_lChild == NULL) && (_rChild == NULL) ) {
duke@435 3868 const Form *form = globals[_opType];
duke@435 3869 // If this is ideal, then it is a base match, not a chain rule.
duke@435 3870 if ( form && form->is_operand() && (!form->ideal_only())) {
duke@435 3871 return true;
duke@435 3872 }
duke@435 3873 }
duke@435 3874 // Check for "Set" form of chain rule, and do not generate a match list
duke@435 3875 if (_rChild) {
duke@435 3876 const char *rch = _rChild->_opType;
duke@435 3877 const Form *form = globals[rch];
duke@435 3878 if ((!strcmp(_opType,"Set") &&
duke@435 3879 ((form) && form->is_operand()))) {
duke@435 3880 return true;
duke@435 3881 }
duke@435 3882 }
duke@435 3883 return false;
duke@435 3884 }
duke@435 3885
duke@435 3886 int MatchRule::is_ideal_copy() const {
duke@435 3887 if( _rChild ) {
duke@435 3888 const char *opType = _rChild->_opType;
ysr@777 3889 #if 1
ysr@777 3890 if( strcmp(opType,"CastIP")==0 )
ysr@777 3891 return 1;
ysr@777 3892 #else
duke@435 3893 if( strcmp(opType,"CastII")==0 )
duke@435 3894 return 1;
duke@435 3895 // Do not treat *CastPP this way, because it
duke@435 3896 // may transfer a raw pointer to an oop.
duke@435 3897 // If the register allocator were to coalesce this
duke@435 3898 // into a single LRG, the GC maps would be incorrect.
duke@435 3899 //if( strcmp(opType,"CastPP")==0 )
duke@435 3900 // return 1;
duke@435 3901 //if( strcmp(opType,"CheckCastPP")==0 )
duke@435 3902 // return 1;
duke@435 3903 //
duke@435 3904 // Do not treat CastX2P or CastP2X this way, because
duke@435 3905 // raw pointers and int types are treated differently
duke@435 3906 // when saving local & stack info for safepoints in
duke@435 3907 // Output().
duke@435 3908 //if( strcmp(opType,"CastX2P")==0 )
duke@435 3909 // return 1;
duke@435 3910 //if( strcmp(opType,"CastP2X")==0 )
duke@435 3911 // return 1;
ysr@777 3912 #endif
duke@435 3913 }
duke@435 3914 if( is_chain_rule(_AD.globalNames()) &&
duke@435 3915 _lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 )
duke@435 3916 return 1;
duke@435 3917 return 0;
duke@435 3918 }
duke@435 3919
duke@435 3920
duke@435 3921 int MatchRule::is_expensive() const {
duke@435 3922 if( _rChild ) {
duke@435 3923 const char *opType = _rChild->_opType;
duke@435 3924 if( strcmp(opType,"AtanD")==0 ||
duke@435 3925 strcmp(opType,"CosD")==0 ||
duke@435 3926 strcmp(opType,"DivD")==0 ||
duke@435 3927 strcmp(opType,"DivF")==0 ||
duke@435 3928 strcmp(opType,"DivI")==0 ||
duke@435 3929 strcmp(opType,"ExpD")==0 ||
duke@435 3930 strcmp(opType,"LogD")==0 ||
duke@435 3931 strcmp(opType,"Log10D")==0 ||
duke@435 3932 strcmp(opType,"ModD")==0 ||
duke@435 3933 strcmp(opType,"ModF")==0 ||
duke@435 3934 strcmp(opType,"ModI")==0 ||
duke@435 3935 strcmp(opType,"PowD")==0 ||
duke@435 3936 strcmp(opType,"SinD")==0 ||
duke@435 3937 strcmp(opType,"SqrtD")==0 ||
duke@435 3938 strcmp(opType,"TanD")==0 ||
duke@435 3939 strcmp(opType,"ConvD2F")==0 ||
duke@435 3940 strcmp(opType,"ConvD2I")==0 ||
duke@435 3941 strcmp(opType,"ConvD2L")==0 ||
duke@435 3942 strcmp(opType,"ConvF2D")==0 ||
duke@435 3943 strcmp(opType,"ConvF2I")==0 ||
duke@435 3944 strcmp(opType,"ConvF2L")==0 ||
duke@435 3945 strcmp(opType,"ConvI2D")==0 ||
duke@435 3946 strcmp(opType,"ConvI2F")==0 ||
duke@435 3947 strcmp(opType,"ConvI2L")==0 ||
duke@435 3948 strcmp(opType,"ConvL2D")==0 ||
duke@435 3949 strcmp(opType,"ConvL2F")==0 ||
duke@435 3950 strcmp(opType,"ConvL2I")==0 ||
kvn@682 3951 strcmp(opType,"DecodeN")==0 ||
kvn@682 3952 strcmp(opType,"EncodeP")==0 ||
roland@4159 3953 strcmp(opType,"EncodePKlass")==0 ||
roland@4159 3954 strcmp(opType,"DecodeNKlass")==0 ||
duke@435 3955 strcmp(opType,"RoundDouble")==0 ||
duke@435 3956 strcmp(opType,"RoundFloat")==0 ||
duke@435 3957 strcmp(opType,"ReverseBytesI")==0 ||
duke@435 3958 strcmp(opType,"ReverseBytesL")==0 ||
never@1831 3959 strcmp(opType,"ReverseBytesUS")==0 ||
never@1831 3960 strcmp(opType,"ReverseBytesS")==0 ||
kvn@3882 3961 strcmp(opType,"ReplicateB")==0 ||
kvn@3882 3962 strcmp(opType,"ReplicateS")==0 ||
kvn@3882 3963 strcmp(opType,"ReplicateI")==0 ||
kvn@3882 3964 strcmp(opType,"ReplicateL")==0 ||
kvn@3882 3965 strcmp(opType,"ReplicateF")==0 ||
kvn@3882 3966 strcmp(opType,"ReplicateD")==0 ||
duke@435 3967 0 /* 0 to line up columns nicely */ )
duke@435 3968 return 1;
duke@435 3969 }
duke@435 3970 return 0;
duke@435 3971 }
duke@435 3972
duke@435 3973 bool MatchRule::is_ideal_if() const {
duke@435 3974 if( !_opType ) return false;
duke@435 3975 return
duke@435 3976 !strcmp(_opType,"If" ) ||
duke@435 3977 !strcmp(_opType,"CountedLoopEnd");
duke@435 3978 }
duke@435 3979
duke@435 3980 bool MatchRule::is_ideal_fastlock() const {
duke@435 3981 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 3982 return (strcmp(_rChild->_opType,"FastLock") == 0);
duke@435 3983 }
duke@435 3984 return false;
duke@435 3985 }
duke@435 3986
duke@435 3987 bool MatchRule::is_ideal_membar() const {
duke@435 3988 if( !_opType ) return false;
duke@435 3989 return
duke@435 3990 !strcmp(_opType,"MemBarAcquire" ) ||
duke@435 3991 !strcmp(_opType,"MemBarRelease" ) ||
roland@3047 3992 !strcmp(_opType,"MemBarAcquireLock") ||
roland@3047 3993 !strcmp(_opType,"MemBarReleaseLock") ||
duke@435 3994 !strcmp(_opType,"MemBarVolatile" ) ||
roland@3392 3995 !strcmp(_opType,"MemBarCPUOrder" ) ||
roland@3392 3996 !strcmp(_opType,"MemBarStoreStore" );
duke@435 3997 }
duke@435 3998
duke@435 3999 bool MatchRule::is_ideal_loadPC() const {
duke@435 4000 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 4001 return (strcmp(_rChild->_opType,"LoadPC") == 0);
duke@435 4002 }
duke@435 4003 return false;
duke@435 4004 }
duke@435 4005
duke@435 4006 bool MatchRule::is_ideal_box() const {
duke@435 4007 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 4008 return (strcmp(_rChild->_opType,"Box") == 0);
duke@435 4009 }
duke@435 4010 return false;
duke@435 4011 }
duke@435 4012
duke@435 4013 bool MatchRule::is_ideal_goto() const {
duke@435 4014 bool ideal_goto = false;
duke@435 4015
duke@435 4016 if( _opType && (strcmp(_opType,"Goto") == 0) ) {
duke@435 4017 ideal_goto = true;
duke@435 4018 }
duke@435 4019 return ideal_goto;
duke@435 4020 }
duke@435 4021
duke@435 4022 bool MatchRule::is_ideal_jump() const {
duke@435 4023 if( _opType ) {
duke@435 4024 if( !strcmp(_opType,"Jump") )
duke@435 4025 return true;
duke@435 4026 }
duke@435 4027 return false;
duke@435 4028 }
duke@435 4029
duke@435 4030 bool MatchRule::is_ideal_bool() const {
duke@435 4031 if( _opType ) {
duke@435 4032 if( !strcmp(_opType,"Bool") )
duke@435 4033 return true;
duke@435 4034 }
duke@435 4035 return false;
duke@435 4036 }
duke@435 4037
duke@435 4038
duke@435 4039 Form::DataType MatchRule::is_ideal_load() const {
duke@435 4040 Form::DataType ideal_load = Form::none;
duke@435 4041
duke@435 4042 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 4043 const char *opType = _rChild->_opType;
duke@435 4044 ideal_load = is_load_from_memory(opType);
duke@435 4045 }
duke@435 4046
duke@435 4047 return ideal_load;
duke@435 4048 }
duke@435 4049
kvn@3882 4050 bool MatchRule::is_vector() const {
kvn@4113 4051 static const char *vector_list[] = {
kvn@4113 4052 "AddVB","AddVS","AddVI","AddVL","AddVF","AddVD",
kvn@4113 4053 "SubVB","SubVS","SubVI","SubVL","SubVF","SubVD",
kvn@4113 4054 "MulVS","MulVI","MulVF","MulVD",
kvn@4113 4055 "DivVF","DivVD",
kvn@4113 4056 "AndV" ,"XorV" ,"OrV",
kvn@4134 4057 "LShiftCntV","RShiftCntV",
kvn@4113 4058 "LShiftVB","LShiftVS","LShiftVI","LShiftVL",
kvn@4113 4059 "RShiftVB","RShiftVS","RShiftVI","RShiftVL",
kvn@4113 4060 "URShiftVB","URShiftVS","URShiftVI","URShiftVL",
kvn@4113 4061 "ReplicateB","ReplicateS","ReplicateI","ReplicateL","ReplicateF","ReplicateD",
kvn@4113 4062 "LoadVector","StoreVector",
kvn@4113 4063 // Next are not supported currently.
kvn@4113 4064 "PackB","PackS","PackI","PackL","PackF","PackD","Pack2L","Pack2D",
kvn@4113 4065 "ExtractB","ExtractUB","ExtractC","ExtractS","ExtractI","ExtractL","ExtractF","ExtractD"
kvn@4113 4066 };
kvn@4113 4067 int cnt = sizeof(vector_list)/sizeof(char*);
kvn@4113 4068 if (_rChild) {
kvn@3882 4069 const char *opType = _rChild->_opType;
kvn@4113 4070 for (int i=0; i<cnt; i++)
kvn@4113 4071 if (strcmp(opType,vector_list[i]) == 0)
kvn@4113 4072 return true;
kvn@3882 4073 }
kvn@3882 4074 return false;
kvn@3882 4075 }
kvn@3882 4076
duke@435 4077
never@1290 4078 bool MatchRule::skip_antidep_check() const {
never@1290 4079 // Some loads operate on what is effectively immutable memory so we
never@1290 4080 // should skip the anti dep computations. For some of these nodes
never@1290 4081 // the rewritable field keeps the anti dep logic from triggering but
never@1290 4082 // for certain kinds of LoadKlass it does not since they are
never@1290 4083 // actually reading memory which could be rewritten by the runtime,
never@1290 4084 // though never by generated code. This disables it uniformly for
never@1290 4085 // the nodes that behave like this: LoadKlass, LoadNKlass and
never@1290 4086 // LoadRange.
never@1290 4087 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
never@1290 4088 const char *opType = _rChild->_opType;
never@1290 4089 if (strcmp("LoadKlass", opType) == 0 ||
never@1290 4090 strcmp("LoadNKlass", opType) == 0 ||
never@1290 4091 strcmp("LoadRange", opType) == 0) {
never@1290 4092 return true;
never@1290 4093 }
never@1290 4094 }
never@1290 4095
never@1290 4096 return false;
never@1290 4097 }
never@1290 4098
never@1290 4099
duke@435 4100 Form::DataType MatchRule::is_ideal_store() const {
duke@435 4101 Form::DataType ideal_store = Form::none;
duke@435 4102
duke@435 4103 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 4104 const char *opType = _rChild->_opType;
duke@435 4105 ideal_store = is_store_to_memory(opType);
duke@435 4106 }
duke@435 4107
duke@435 4108 return ideal_store;
duke@435 4109 }
duke@435 4110
duke@435 4111
duke@435 4112 void MatchRule::dump() {
duke@435 4113 output(stderr);
duke@435 4114 }
duke@435 4115
duke@435 4116 void MatchRule::output(FILE *fp) {
duke@435 4117 fprintf(fp,"MatchRule: ( %s",_name);
duke@435 4118 if (_lChild) _lChild->output(fp);
duke@435 4119 if (_rChild) _rChild->output(fp);
duke@435 4120 fprintf(fp," )\n");
duke@435 4121 fprintf(fp," nesting depth = %d\n", _depth);
duke@435 4122 if (_result) fprintf(fp," Result Type = %s", _result);
duke@435 4123 fprintf(fp,"\n");
duke@435 4124 }
duke@435 4125
duke@435 4126 //------------------------------Attribute--------------------------------------
duke@435 4127 Attribute::Attribute(char *id, char* val, int type)
duke@435 4128 : _ident(id), _val(val), _atype(type) {
duke@435 4129 }
duke@435 4130 Attribute::~Attribute() {
duke@435 4131 }
duke@435 4132
duke@435 4133 int Attribute::int_val(ArchDesc &ad) {
duke@435 4134 // Make sure it is an integer constant:
duke@435 4135 int result = 0;
duke@435 4136 if (!_val || !ADLParser::is_int_token(_val, result)) {
duke@435 4137 ad.syntax_err(0, "Attribute %s must have an integer value: %s",
duke@435 4138 _ident, _val ? _val : "");
duke@435 4139 }
duke@435 4140 return result;
duke@435 4141 }
duke@435 4142
duke@435 4143 void Attribute::dump() {
duke@435 4144 output(stderr);
duke@435 4145 } // Debug printer
duke@435 4146
duke@435 4147 // Write to output files
duke@435 4148 void Attribute::output(FILE *fp) {
duke@435 4149 fprintf(fp,"Attribute: %s %s\n", (_ident?_ident:""), (_val?_val:""));
duke@435 4150 }
duke@435 4151
duke@435 4152 //------------------------------FormatRule----------------------------------
duke@435 4153 FormatRule::FormatRule(char *temp)
duke@435 4154 : _temp(temp) {
duke@435 4155 }
duke@435 4156 FormatRule::~FormatRule() {
duke@435 4157 }
duke@435 4158
duke@435 4159 void FormatRule::dump() {
duke@435 4160 output(stderr);
duke@435 4161 }
duke@435 4162
duke@435 4163 // Write to output files
duke@435 4164 void FormatRule::output(FILE *fp) {
duke@435 4165 fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
duke@435 4166 fprintf(fp,"\n");
duke@435 4167 }

mercurial