src/share/vm/adlc/formssel.cpp

Thu, 21 Nov 2013 12:30:35 -0800

author
kvn
date
Thu, 21 Nov 2013 12:30:35 -0800
changeset 6485
da862781b584
parent 6484
318d0622a6d7
child 6489
50fdb38839eb
permissions
-rw-r--r--

Merge

     1 /*
     2  * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // FORMS.CPP - Definitions for ADL Parser Forms Classes
    26 #include "adlc.hpp"
    28 //==============================Instructions===================================
    29 //------------------------------InstructForm-----------------------------------
    30 InstructForm::InstructForm(const char *id, bool ideal_only)
    31   : _ident(id), _ideal_only(ideal_only),
    32     _localNames(cmpstr, hashstr, Form::arena),
    33     _effects(cmpstr, hashstr, Form::arena),
    34     _is_mach_constant(false),
    35     _needs_constant_base(false),
    36     _has_call(false)
    37 {
    38       _ftype = Form::INS;
    40       _matrule              = NULL;
    41       _insencode            = NULL;
    42       _constant             = NULL;
    43       _is_postalloc_expand  = false;
    44       _opcode               = NULL;
    45       _size                 = NULL;
    46       _attribs              = NULL;
    47       _predicate            = NULL;
    48       _exprule              = NULL;
    49       _rewrule              = NULL;
    50       _format               = NULL;
    51       _peephole             = NULL;
    52       _ins_pipe             = NULL;
    53       _uniq_idx             = NULL;
    54       _num_uniq             = 0;
    55       _cisc_spill_operand   = Not_cisc_spillable;// Which operand may cisc-spill
    56       _cisc_spill_alternate = NULL;            // possible cisc replacement
    57       _cisc_reg_mask_name   = NULL;
    58       _is_cisc_alternate    = false;
    59       _is_short_branch      = false;
    60       _short_branch_form    = NULL;
    61       _alignment            = 1;
    62 }
    64 InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
    65   : _ident(id), _ideal_only(false),
    66     _localNames(instr->_localNames),
    67     _effects(instr->_effects),
    68     _is_mach_constant(false),
    69     _needs_constant_base(false),
    70     _has_call(false)
    71 {
    72       _ftype = Form::INS;
    74       _matrule               = rule;
    75       _insencode             = instr->_insencode;
    76       _constant              = instr->_constant;
    77       _is_postalloc_expand   = instr->_is_postalloc_expand;
    78       _opcode                = instr->_opcode;
    79       _size                  = instr->_size;
    80       _attribs               = instr->_attribs;
    81       _predicate             = instr->_predicate;
    82       _exprule               = instr->_exprule;
    83       _rewrule               = instr->_rewrule;
    84       _format                = instr->_format;
    85       _peephole              = instr->_peephole;
    86       _ins_pipe              = instr->_ins_pipe;
    87       _uniq_idx              = instr->_uniq_idx;
    88       _num_uniq              = instr->_num_uniq;
    89       _cisc_spill_operand    = Not_cisc_spillable; // Which operand may cisc-spill
    90       _cisc_spill_alternate  = NULL;               // possible cisc replacement
    91       _cisc_reg_mask_name    = NULL;
    92       _is_cisc_alternate     = false;
    93       _is_short_branch       = false;
    94       _short_branch_form     = NULL;
    95       _alignment             = 1;
    96      // Copy parameters
    97      const char *name;
    98      instr->_parameters.reset();
    99      for (; (name = instr->_parameters.iter()) != NULL;)
   100        _parameters.addName(name);
   101 }
   103 InstructForm::~InstructForm() {
   104 }
   106 InstructForm *InstructForm::is_instruction() const {
   107   return (InstructForm*)this;
   108 }
   110 bool InstructForm::ideal_only() const {
   111   return _ideal_only;
   112 }
   114 bool InstructForm::sets_result() const {
   115   return (_matrule != NULL && _matrule->sets_result());
   116 }
   118 bool InstructForm::needs_projections() {
   119   _components.reset();
   120   for( Component *comp; (comp = _components.iter()) != NULL; ) {
   121     if (comp->isa(Component::KILL)) {
   122       return true;
   123     }
   124   }
   125   return false;
   126 }
   129 bool InstructForm::has_temps() {
   130   if (_matrule) {
   131     // Examine each component to see if it is a TEMP
   132     _components.reset();
   133     // Skip the first component, if already handled as (SET dst (...))
   134     Component *comp = NULL;
   135     if (sets_result())  comp = _components.iter();
   136     while ((comp = _components.iter()) != NULL) {
   137       if (comp->isa(Component::TEMP)) {
   138         return true;
   139       }
   140     }
   141   }
   143   return false;
   144 }
   146 uint InstructForm::num_defs_or_kills() {
   147   uint   defs_or_kills = 0;
   149   _components.reset();
   150   for( Component *comp; (comp = _components.iter()) != NULL; ) {
   151     if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
   152       ++defs_or_kills;
   153     }
   154   }
   156   return  defs_or_kills;
   157 }
   159 // This instruction has an expand rule?
   160 bool InstructForm::expands() const {
   161   return ( _exprule != NULL );
   162 }
   164 // This instruction has a late expand rule?
   165 bool InstructForm::postalloc_expands() const {
   166   return _is_postalloc_expand;
   167 }
   169 // This instruction has a peephole rule?
   170 Peephole *InstructForm::peepholes() const {
   171   return _peephole;
   172 }
   174 // This instruction has a peephole rule?
   175 void InstructForm::append_peephole(Peephole *peephole) {
   176   if( _peephole == NULL ) {
   177     _peephole = peephole;
   178   } else {
   179     _peephole->append_peephole(peephole);
   180   }
   181 }
   184 // ideal opcode enumeration
   185 const char *InstructForm::ideal_Opcode( FormDict &globalNames )  const {
   186   if( !_matrule ) return "Node"; // Something weird
   187   // Chain rules do not really have ideal Opcodes; use their source
   188   // operand ideal Opcode instead.
   189   if( is_simple_chain_rule(globalNames) ) {
   190     const char *src = _matrule->_rChild->_opType;
   191     OperandForm *src_op = globalNames[src]->is_operand();
   192     assert( src_op, "Not operand class of chain rule" );
   193     if( !src_op->_matrule ) return "Node";
   194     return src_op->_matrule->_opType;
   195   }
   196   // Operand chain rules do not really have ideal Opcodes
   197   if( _matrule->is_chain_rule(globalNames) )
   198     return "Node";
   199   return strcmp(_matrule->_opType,"Set")
   200     ? _matrule->_opType
   201     : _matrule->_rChild->_opType;
   202 }
   204 // Recursive check on all operands' match rules in my match rule
   205 bool InstructForm::is_pinned(FormDict &globals) {
   206   if ( ! _matrule)  return false;
   208   int  index   = 0;
   209   if (_matrule->find_type("Goto",          index)) return true;
   210   if (_matrule->find_type("If",            index)) return true;
   211   if (_matrule->find_type("CountedLoopEnd",index)) return true;
   212   if (_matrule->find_type("Return",        index)) return true;
   213   if (_matrule->find_type("Rethrow",       index)) return true;
   214   if (_matrule->find_type("TailCall",      index)) return true;
   215   if (_matrule->find_type("TailJump",      index)) return true;
   216   if (_matrule->find_type("Halt",          index)) return true;
   217   if (_matrule->find_type("Jump",          index)) return true;
   219   return is_parm(globals);
   220 }
   222 // Recursive check on all operands' match rules in my match rule
   223 bool InstructForm::is_projection(FormDict &globals) {
   224   if ( ! _matrule)  return false;
   226   int  index   = 0;
   227   if (_matrule->find_type("Goto",    index)) return true;
   228   if (_matrule->find_type("Return",  index)) return true;
   229   if (_matrule->find_type("Rethrow", index)) return true;
   230   if (_matrule->find_type("TailCall",index)) return true;
   231   if (_matrule->find_type("TailJump",index)) return true;
   232   if (_matrule->find_type("Halt",    index)) return true;
   234   return false;
   235 }
   237 // Recursive check on all operands' match rules in my match rule
   238 bool InstructForm::is_parm(FormDict &globals) {
   239   if ( ! _matrule)  return false;
   241   int  index   = 0;
   242   if (_matrule->find_type("Parm",index)) return true;
   244   return false;
   245 }
   247 bool InstructForm::is_ideal_negD() const {
   248   return (_matrule && _matrule->_rChild && strcmp(_matrule->_rChild->_opType, "NegD") == 0);
   249 }
   251 // Return 'true' if this instruction matches an ideal 'Copy*' node
   252 int InstructForm::is_ideal_copy() const {
   253   return _matrule ? _matrule->is_ideal_copy() : 0;
   254 }
   256 // Return 'true' if this instruction is too complex to rematerialize.
   257 int InstructForm::is_expensive() const {
   258   // We can prove it is cheap if it has an empty encoding.
   259   // This helps with platform-specific nops like ThreadLocal and RoundFloat.
   260   if (is_empty_encoding())
   261     return 0;
   263   if (is_tls_instruction())
   264     return 1;
   266   if (_matrule == NULL)  return 0;
   268   return _matrule->is_expensive();
   269 }
   271 // Has an empty encoding if _size is a constant zero or there
   272 // are no ins_encode tokens.
   273 int InstructForm::is_empty_encoding() const {
   274   if (_insencode != NULL) {
   275     _insencode->reset();
   276     if (_insencode->encode_class_iter() == NULL) {
   277       return 1;
   278     }
   279   }
   280   if (_size != NULL && strcmp(_size, "0") == 0) {
   281     return 1;
   282   }
   283   return 0;
   284 }
   286 int InstructForm::is_tls_instruction() const {
   287   if (_ident != NULL &&
   288       ( ! strcmp( _ident,"tlsLoadP") ||
   289         ! strncmp(_ident,"tlsLoadP_",9)) ) {
   290     return 1;
   291   }
   293   if (_matrule != NULL && _insencode != NULL) {
   294     const char* opType = _matrule->_opType;
   295     if (strcmp(opType, "Set")==0)
   296       opType = _matrule->_rChild->_opType;
   297     if (strcmp(opType,"ThreadLocal")==0) {
   298       fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
   299               (_ident == NULL ? "NULL" : _ident));
   300       return 1;
   301     }
   302   }
   304   return 0;
   305 }
   308 // Return 'true' if this instruction matches an ideal 'If' node
   309 bool InstructForm::is_ideal_if() const {
   310   if( _matrule == NULL ) return false;
   312   return _matrule->is_ideal_if();
   313 }
   315 // Return 'true' if this instruction matches an ideal 'FastLock' node
   316 bool InstructForm::is_ideal_fastlock() const {
   317   if( _matrule == NULL ) return false;
   319   return _matrule->is_ideal_fastlock();
   320 }
   322 // Return 'true' if this instruction matches an ideal 'MemBarXXX' node
   323 bool InstructForm::is_ideal_membar() const {
   324   if( _matrule == NULL ) return false;
   326   return _matrule->is_ideal_membar();
   327 }
   329 // Return 'true' if this instruction matches an ideal 'LoadPC' node
   330 bool InstructForm::is_ideal_loadPC() const {
   331   if( _matrule == NULL ) return false;
   333   return _matrule->is_ideal_loadPC();
   334 }
   336 // Return 'true' if this instruction matches an ideal 'Box' node
   337 bool InstructForm::is_ideal_box() const {
   338   if( _matrule == NULL ) return false;
   340   return _matrule->is_ideal_box();
   341 }
   343 // Return 'true' if this instruction matches an ideal 'Goto' node
   344 bool InstructForm::is_ideal_goto() const {
   345   if( _matrule == NULL ) return false;
   347   return _matrule->is_ideal_goto();
   348 }
   350 // Return 'true' if this instruction matches an ideal 'Jump' node
   351 bool InstructForm::is_ideal_jump() const {
   352   if( _matrule == NULL ) return false;
   354   return _matrule->is_ideal_jump();
   355 }
   357 // Return 'true' if instruction matches ideal 'If' | 'Goto' | 'CountedLoopEnd'
   358 bool InstructForm::is_ideal_branch() const {
   359   if( _matrule == NULL ) return false;
   361   return _matrule->is_ideal_if() || _matrule->is_ideal_goto();
   362 }
   365 // Return 'true' if this instruction matches an ideal 'Return' node
   366 bool InstructForm::is_ideal_return() const {
   367   if( _matrule == NULL ) return false;
   369   // Check MatchRule to see if the first entry is the ideal "Return" node
   370   int  index   = 0;
   371   if (_matrule->find_type("Return",index)) return true;
   372   if (_matrule->find_type("Rethrow",index)) return true;
   373   if (_matrule->find_type("TailCall",index)) return true;
   374   if (_matrule->find_type("TailJump",index)) return true;
   376   return false;
   377 }
   379 // Return 'true' if this instruction matches an ideal 'Halt' node
   380 bool InstructForm::is_ideal_halt() const {
   381   int  index   = 0;
   382   return _matrule && _matrule->find_type("Halt",index);
   383 }
   385 // Return 'true' if this instruction matches an ideal 'SafePoint' node
   386 bool InstructForm::is_ideal_safepoint() const {
   387   int  index   = 0;
   388   return _matrule && _matrule->find_type("SafePoint",index);
   389 }
   391 // Return 'true' if this instruction matches an ideal 'Nop' node
   392 bool InstructForm::is_ideal_nop() const {
   393   return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
   394 }
   396 bool InstructForm::is_ideal_control() const {
   397   if ( ! _matrule)  return false;
   399   return is_ideal_return() || is_ideal_branch() || _matrule->is_ideal_jump() || is_ideal_halt();
   400 }
   402 // Return 'true' if this instruction matches an ideal 'Call' node
   403 Form::CallType InstructForm::is_ideal_call() const {
   404   if( _matrule == NULL ) return Form::invalid_type;
   406   // Check MatchRule to see if the first entry is the ideal "Call" node
   407   int  idx   = 0;
   408   if(_matrule->find_type("CallStaticJava",idx))   return Form::JAVA_STATIC;
   409   idx = 0;
   410   if(_matrule->find_type("Lock",idx))             return Form::JAVA_STATIC;
   411   idx = 0;
   412   if(_matrule->find_type("Unlock",idx))           return Form::JAVA_STATIC;
   413   idx = 0;
   414   if(_matrule->find_type("CallDynamicJava",idx))  return Form::JAVA_DYNAMIC;
   415   idx = 0;
   416   if(_matrule->find_type("CallRuntime",idx))      return Form::JAVA_RUNTIME;
   417   idx = 0;
   418   if(_matrule->find_type("CallLeaf",idx))         return Form::JAVA_LEAF;
   419   idx = 0;
   420   if(_matrule->find_type("CallLeafNoFP",idx))     return Form::JAVA_LEAF;
   421   idx = 0;
   423   return Form::invalid_type;
   424 }
   426 // Return 'true' if this instruction matches an ideal 'Load?' node
   427 Form::DataType InstructForm::is_ideal_load() const {
   428   if( _matrule == NULL ) return Form::none;
   430   return  _matrule->is_ideal_load();
   431 }
   433 // Return 'true' if this instruction matches an ideal 'LoadKlass' node
   434 bool InstructForm::skip_antidep_check() const {
   435   if( _matrule == NULL ) return false;
   437   return  _matrule->skip_antidep_check();
   438 }
   440 // Return 'true' if this instruction matches an ideal 'Load?' node
   441 Form::DataType InstructForm::is_ideal_store() const {
   442   if( _matrule == NULL ) return Form::none;
   444   return  _matrule->is_ideal_store();
   445 }
   447 // Return 'true' if this instruction matches an ideal vector node
   448 bool InstructForm::is_vector() const {
   449   if( _matrule == NULL ) return false;
   451   return _matrule->is_vector();
   452 }
   455 // Return the input register that must match the output register
   456 // If this is not required, return 0
   457 uint InstructForm::two_address(FormDict &globals) {
   458   uint  matching_input = 0;
   459   if(_components.count() == 0) return 0;
   461   _components.reset();
   462   Component *comp = _components.iter();
   463   // Check if there is a DEF
   464   if( comp->isa(Component::DEF) ) {
   465     // Check that this is a register
   466     const char  *def_type = comp->_type;
   467     const Form  *form     = globals[def_type];
   468     OperandForm *op       = form->is_operand();
   469     if( op ) {
   470       if( op->constrained_reg_class() != NULL &&
   471           op->interface_type(globals) == Form::register_interface ) {
   472         // Remember the local name for equality test later
   473         const char *def_name = comp->_name;
   474         // Check if a component has the same name and is a USE
   475         do {
   476           if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
   477             return operand_position_format(def_name);
   478           }
   479         } while( (comp = _components.iter()) != NULL);
   480       }
   481     }
   482   }
   484   return 0;
   485 }
   488 // when chaining a constant to an instruction, returns 'true' and sets opType
   489 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
   490   const char *dummy  = NULL;
   491   const char *dummy2 = NULL;
   492   return is_chain_of_constant(globals, dummy, dummy2);
   493 }
   494 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
   495                 const char * &opTypeParam) {
   496   const char *result = NULL;
   498   return is_chain_of_constant(globals, opTypeParam, result);
   499 }
   501 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
   502                 const char * &opTypeParam, const char * &resultParam) {
   503   Form::DataType  data_type = Form::none;
   504   if ( ! _matrule)  return data_type;
   506   // !!!!!
   507   // The source of the chain rule is 'position = 1'
   508   uint         position = 1;
   509   const char  *result   = NULL;
   510   const char  *name     = NULL;
   511   const char  *opType   = NULL;
   512   // Here base_operand is looking for an ideal type to be returned (opType).
   513   if ( _matrule->is_chain_rule(globals)
   514        && _matrule->base_operand(position, globals, result, name, opType) ) {
   515     data_type = ideal_to_const_type(opType);
   517     // if it isn't an ideal constant type, just return
   518     if ( data_type == Form::none ) return data_type;
   520     // Ideal constant types also adjust the opType parameter.
   521     resultParam = result;
   522     opTypeParam = opType;
   523     return data_type;
   524   }
   526   return data_type;
   527 }
   529 // Check if a simple chain rule
   530 bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
   531   if( _matrule && _matrule->sets_result()
   532       && _matrule->_rChild->_lChild == NULL
   533       && globals[_matrule->_rChild->_opType]
   534       && globals[_matrule->_rChild->_opType]->is_opclass() ) {
   535     return true;
   536   }
   537   return false;
   538 }
   540 // check for structural rematerialization
   541 bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
   542   bool   rematerialize = false;
   544   Form::DataType data_type = is_chain_of_constant(globals);
   545   if( data_type != Form::none )
   546     rematerialize = true;
   548   // Constants
   549   if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) )
   550     rematerialize = true;
   552   // Pseudo-constants (values easily available to the runtime)
   553   if (is_empty_encoding() && is_tls_instruction())
   554     rematerialize = true;
   556   // 1-input, 1-output, such as copies or increments.
   557   if( _components.count() == 2 &&
   558       _components[0]->is(Component::DEF) &&
   559       _components[1]->isa(Component::USE) )
   560     rematerialize = true;
   562   // Check for an ideal 'Load?' and eliminate rematerialize option
   563   if ( is_ideal_load() != Form::none || // Ideal load?  Do not rematerialize
   564        is_ideal_copy() != Form::none || // Ideal copy?  Do not rematerialize
   565        is_expensive()  != Form::none) { // Expensive?   Do not rematerialize
   566     rematerialize = false;
   567   }
   569   // Always rematerialize the flags.  They are more expensive to save &
   570   // restore than to recompute (and possibly spill the compare's inputs).
   571   if( _components.count() >= 1 ) {
   572     Component *c = _components[0];
   573     const Form *form = globals[c->_type];
   574     OperandForm *opform = form->is_operand();
   575     if( opform ) {
   576       // Avoid the special stack_slots register classes
   577       const char *rc_name = opform->constrained_reg_class();
   578       if( rc_name ) {
   579         if( strcmp(rc_name,"stack_slots") ) {
   580           // Check for ideal_type of RegFlags
   581           const char *type = opform->ideal_type( globals, registers );
   582           if( (type != NULL) && !strcmp(type, "RegFlags") )
   583             rematerialize = true;
   584         } else
   585           rematerialize = false; // Do not rematerialize things target stk
   586       }
   587     }
   588   }
   590   return rematerialize;
   591 }
   593 // loads from memory, so must check for anti-dependence
   594 bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
   595   if ( skip_antidep_check() ) return false;
   597   // Machine independent loads must be checked for anti-dependences
   598   if( is_ideal_load() != Form::none )  return true;
   600   // !!!!! !!!!! !!!!!
   601   // TEMPORARY
   602   // if( is_simple_chain_rule(globals) )  return false;
   604   // String.(compareTo/equals/indexOf) and Arrays.equals use many memorys edges,
   605   // but writes none
   606   if( _matrule && _matrule->_rChild &&
   607       ( strcmp(_matrule->_rChild->_opType,"StrComp"    )==0 ||
   608         strcmp(_matrule->_rChild->_opType,"StrEquals"  )==0 ||
   609         strcmp(_matrule->_rChild->_opType,"StrIndexOf" )==0 ||
   610         strcmp(_matrule->_rChild->_opType,"AryEq"      )==0 ))
   611     return true;
   613   // Check if instruction has a USE of a memory operand class, but no defs
   614   bool USE_of_memory  = false;
   615   bool DEF_of_memory  = false;
   616   Component     *comp = NULL;
   617   ComponentList &components = (ComponentList &)_components;
   619   components.reset();
   620   while( (comp = components.iter()) != NULL ) {
   621     const Form  *form = globals[comp->_type];
   622     if( !form ) continue;
   623     OpClassForm *op   = form->is_opclass();
   624     if( !op ) continue;
   625     if( form->interface_type(globals) == Form::memory_interface ) {
   626       if( comp->isa(Component::USE) ) USE_of_memory = true;
   627       if( comp->isa(Component::DEF) ) {
   628         OperandForm *oper = form->is_operand();
   629         if( oper && oper->is_user_name_for_sReg() ) {
   630           // Stack slots are unaliased memory handled by allocator
   631           oper = oper;  // debug stopping point !!!!!
   632         } else {
   633           DEF_of_memory = true;
   634         }
   635       }
   636     }
   637   }
   638   return (USE_of_memory && !DEF_of_memory);
   639 }
   642 bool InstructForm::is_wide_memory_kill(FormDict &globals) const {
   643   if( _matrule == NULL ) return false;
   644   if( !_matrule->_opType ) return false;
   646   if( strcmp(_matrule->_opType,"MemBarRelease") == 0 ) return true;
   647   if( strcmp(_matrule->_opType,"MemBarAcquire") == 0 ) return true;
   648   if( strcmp(_matrule->_opType,"MemBarReleaseLock") == 0 ) return true;
   649   if( strcmp(_matrule->_opType,"MemBarAcquireLock") == 0 ) return true;
   650   if( strcmp(_matrule->_opType,"MemBarStoreStore") == 0 ) return true;
   652   return false;
   653 }
   655 int InstructForm::memory_operand(FormDict &globals) const {
   656   // Machine independent loads must be checked for anti-dependences
   657   // Check if instruction has a USE of a memory operand class, or a def.
   658   int USE_of_memory  = 0;
   659   int DEF_of_memory  = 0;
   660   const char*    last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
   661   Component     *unique          = NULL;
   662   Component     *comp            = NULL;
   663   ComponentList &components      = (ComponentList &)_components;
   665   components.reset();
   666   while( (comp = components.iter()) != NULL ) {
   667     const Form  *form = globals[comp->_type];
   668     if( !form ) continue;
   669     OpClassForm *op   = form->is_opclass();
   670     if( !op ) continue;
   671     if( op->stack_slots_only(globals) )  continue;
   672     if( form->interface_type(globals) == Form::memory_interface ) {
   673       if( comp->isa(Component::DEF) ) {
   674         last_memory_DEF = comp->_name;
   675         DEF_of_memory++;
   676         unique = comp;
   677       } else if( comp->isa(Component::USE) ) {
   678         if( last_memory_DEF != NULL ) {
   679           assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
   680           last_memory_DEF = NULL;
   681         }
   682         USE_of_memory++;
   683         if (DEF_of_memory == 0)  // defs take precedence
   684           unique = comp;
   685       } else {
   686         assert(last_memory_DEF == NULL, "unpaired memory DEF");
   687       }
   688     }
   689   }
   690   assert(last_memory_DEF == NULL, "unpaired memory DEF");
   691   assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
   692   USE_of_memory -= DEF_of_memory;   // treat paired DEF/USE as one occurrence
   693   if( (USE_of_memory + DEF_of_memory) > 0 ) {
   694     if( is_simple_chain_rule(globals) ) {
   695       //fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
   696       //((InstructForm*)this)->dump();
   697       // Preceding code prints nothing on sparc and these insns on intel:
   698       // leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
   699       // leaPIdxOff leaPIdxScale leaPIdxScaleOff
   700       return NO_MEMORY_OPERAND;
   701     }
   703     if( DEF_of_memory == 1 ) {
   704       assert(unique != NULL, "");
   705       if( USE_of_memory == 0 ) {
   706         // unique def, no uses
   707       } else {
   708         // // unique def, some uses
   709         // // must return bottom unless all uses match def
   710         // unique = NULL;
   711       }
   712     } else if( DEF_of_memory > 0 ) {
   713       // multiple defs, don't care about uses
   714       unique = NULL;
   715     } else if( USE_of_memory == 1) {
   716       // unique use, no defs
   717       assert(unique != NULL, "");
   718     } else if( USE_of_memory > 0 ) {
   719       // multiple uses, no defs
   720       unique = NULL;
   721     } else {
   722       assert(false, "bad case analysis");
   723     }
   724     // process the unique DEF or USE, if there is one
   725     if( unique == NULL ) {
   726       return MANY_MEMORY_OPERANDS;
   727     } else {
   728       int pos = components.operand_position(unique->_name);
   729       if( unique->isa(Component::DEF) ) {
   730         pos += 1;                // get corresponding USE from DEF
   731       }
   732       assert(pos >= 1, "I was just looking at it!");
   733       return pos;
   734     }
   735   }
   737   // missed the memory op??
   738   if( true ) {  // %%% should not be necessary
   739     if( is_ideal_store() != Form::none ) {
   740       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
   741       ((InstructForm*)this)->dump();
   742       // pretend it has multiple defs and uses
   743       return MANY_MEMORY_OPERANDS;
   744     }
   745     if( is_ideal_load()  != Form::none ) {
   746       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
   747       ((InstructForm*)this)->dump();
   748       // pretend it has multiple uses and no defs
   749       return MANY_MEMORY_OPERANDS;
   750     }
   751   }
   753   return NO_MEMORY_OPERAND;
   754 }
   757 // This instruction captures the machine-independent bottom_type
   758 // Expected use is for pointer vs oop determination for LoadP
   759 bool InstructForm::captures_bottom_type(FormDict &globals) const {
   760   if( _matrule && _matrule->_rChild &&
   761        (!strcmp(_matrule->_rChild->_opType,"CastPP")       ||  // new result type
   762         !strcmp(_matrule->_rChild->_opType,"CastX2P")      ||  // new result type
   763         !strcmp(_matrule->_rChild->_opType,"DecodeN")      ||
   764         !strcmp(_matrule->_rChild->_opType,"EncodeP")      ||
   765         !strcmp(_matrule->_rChild->_opType,"DecodeNKlass") ||
   766         !strcmp(_matrule->_rChild->_opType,"EncodePKlass") ||
   767         !strcmp(_matrule->_rChild->_opType,"LoadN")        ||
   768         !strcmp(_matrule->_rChild->_opType,"LoadNKlass")   ||
   769         !strcmp(_matrule->_rChild->_opType,"CreateEx")     ||  // type of exception
   770         !strcmp(_matrule->_rChild->_opType,"CheckCastPP")  ||
   771         !strcmp(_matrule->_rChild->_opType,"GetAndSetP")   ||
   772         !strcmp(_matrule->_rChild->_opType,"GetAndSetN")) )  return true;
   773   else if ( is_ideal_load() == Form::idealP )                return true;
   774   else if ( is_ideal_store() != Form::none  )                return true;
   776   if (needs_base_oop_edge(globals)) return true;
   778   if (is_vector()) return true;
   779   if (is_mach_constant()) return true;
   781   return  false;
   782 }
   785 // Access instr_cost attribute or return NULL.
   786 const char* InstructForm::cost() {
   787   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
   788     if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
   789       return cur->_val;
   790     }
   791   }
   792   return NULL;
   793 }
   795 // Return count of top-level operands.
   796 uint InstructForm::num_opnds() {
   797   int  num_opnds = _components.num_operands();
   799   // Need special handling for matching some ideal nodes
   800   // i.e. Matching a return node
   801   /*
   802   if( _matrule ) {
   803     if( strcmp(_matrule->_opType,"Return"   )==0 ||
   804         strcmp(_matrule->_opType,"Halt"     )==0 )
   805       return 3;
   806   }
   807     */
   808   return num_opnds;
   809 }
   811 const char* InstructForm::opnd_ident(int idx) {
   812   return _components.at(idx)->_name;
   813 }
   815 const char* InstructForm::unique_opnd_ident(uint idx) {
   816   uint i;
   817   for (i = 1; i < num_opnds(); ++i) {
   818     if (unique_opnds_idx(i) == idx) {
   819       break;
   820     }
   821   }
   822   return (_components.at(i) != NULL) ? _components.at(i)->_name : "";
   823 }
   825 // Return count of unmatched operands.
   826 uint InstructForm::num_post_match_opnds() {
   827   uint  num_post_match_opnds = _components.count();
   828   uint  num_match_opnds = _components.match_count();
   829   num_post_match_opnds = num_post_match_opnds - num_match_opnds;
   831   return num_post_match_opnds;
   832 }
   834 // Return the number of leaves below this complex operand
   835 uint InstructForm::num_consts(FormDict &globals) const {
   836   if ( ! _matrule) return 0;
   838   // This is a recursive invocation on all operands in the matchrule
   839   return _matrule->num_consts(globals);
   840 }
   842 // Constants in match rule with specified type
   843 uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
   844   if ( ! _matrule) return 0;
   846   // This is a recursive invocation on all operands in the matchrule
   847   return _matrule->num_consts(globals, type);
   848 }
   851 // Return the register class associated with 'leaf'.
   852 const char *InstructForm::out_reg_class(FormDict &globals) {
   853   assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");
   855   return NULL;
   856 }
   860 // Lookup the starting position of inputs we are interested in wrt. ideal nodes
   861 uint InstructForm::oper_input_base(FormDict &globals) {
   862   if( !_matrule ) return 1;     // Skip control for most nodes
   864   // Need special handling for matching some ideal nodes
   865   // i.e. Matching a return node
   866   if( strcmp(_matrule->_opType,"Return"    )==0 ||
   867       strcmp(_matrule->_opType,"Rethrow"   )==0 ||
   868       strcmp(_matrule->_opType,"TailCall"  )==0 ||
   869       strcmp(_matrule->_opType,"TailJump"  )==0 ||
   870       strcmp(_matrule->_opType,"SafePoint" )==0 ||
   871       strcmp(_matrule->_opType,"Halt"      )==0 )
   872     return AdlcVMDeps::Parms;   // Skip the machine-state edges
   874   if( _matrule->_rChild &&
   875       ( strcmp(_matrule->_rChild->_opType,"AryEq"     )==0 ||
   876         strcmp(_matrule->_rChild->_opType,"StrComp"   )==0 ||
   877         strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 ||
   878         strcmp(_matrule->_rChild->_opType,"StrIndexOf")==0 ||
   879         strcmp(_matrule->_rChild->_opType,"EncodeISOArray")==0)) {
   880         // String.(compareTo/equals/indexOf) and Arrays.equals
   881         // and sun.nio.cs.iso8859_1$Encoder.EncodeISOArray
   882         // take 1 control and 1 memory edges.
   883     return 2;
   884   }
   886   // Check for handling of 'Memory' input/edge in the ideal world.
   887   // The AD file writer is shielded from knowledge of these edges.
   888   int base = 1;                 // Skip control
   889   base += _matrule->needs_ideal_memory_edge(globals);
   891   // Also skip the base-oop value for uses of derived oops.
   892   // The AD file writer is shielded from knowledge of these edges.
   893   base += needs_base_oop_edge(globals);
   895   return base;
   896 }
   898 // This function determines the order of the MachOper in _opnds[]
   899 // by writing the operand names into the _components list.
   900 //
   901 // Implementation does not modify state of internal structures
   902 void InstructForm::build_components() {
   903   // Add top-level operands to the components
   904   if (_matrule)  _matrule->append_components(_localNames, _components);
   906   // Add parameters that "do not appear in match rule".
   907   bool has_temp = false;
   908   const char *name;
   909   const char *kill_name = NULL;
   910   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
   911     OperandForm *opForm = (OperandForm*)_localNames[name];
   913     Effect* e = NULL;
   914     {
   915       const Form* form = _effects[name];
   916       e = form ? form->is_effect() : NULL;
   917     }
   919     if (e != NULL) {
   920       has_temp |= e->is(Component::TEMP);
   922       // KILLs must be declared after any TEMPs because TEMPs are real
   923       // uses so their operand numbering must directly follow the real
   924       // inputs from the match rule.  Fixing the numbering seems
   925       // complex so simply enforce the restriction during parse.
   926       if (kill_name != NULL &&
   927           e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
   928         OperandForm* kill = (OperandForm*)_localNames[kill_name];
   929         globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
   930                              _ident, kill->_ident, kill_name);
   931       } else if (e->isa(Component::KILL) && !e->isa(Component::USE)) {
   932         kill_name = name;
   933       }
   934     }
   936     const Component *component  = _components.search(name);
   937     if ( component  == NULL ) {
   938       if (e) {
   939         _components.insert(name, opForm->_ident, e->_use_def, false);
   940         component = _components.search(name);
   941         if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
   942           const Form *form = globalAD->globalNames()[component->_type];
   943           assert( form, "component type must be a defined form");
   944           OperandForm *op   = form->is_operand();
   945           if (op->_interface && op->_interface->is_RegInterface()) {
   946             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
   947                                  _ident, opForm->_ident, name);
   948           }
   949         }
   950       } else {
   951         // This would be a nice warning but it triggers in a few places in a benign way
   952         // if (_matrule != NULL && !expands()) {
   953         //   globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
   954         //                        _ident, opForm->_ident, name);
   955         // }
   956         _components.insert(name, opForm->_ident, Component::INVALID, false);
   957       }
   958     }
   959     else if (e) {
   960       // Component was found in the list
   961       // Check if there is a new effect that requires an extra component.
   962       // This happens when adding 'USE' to a component that is not yet one.
   963       if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
   964         if (component->isa(Component::USE) && _matrule) {
   965           const Form *form = globalAD->globalNames()[component->_type];
   966           assert( form, "component type must be a defined form");
   967           OperandForm *op   = form->is_operand();
   968           if (op->_interface && op->_interface->is_RegInterface()) {
   969             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
   970                                  _ident, opForm->_ident, name);
   971           }
   972         }
   973         _components.insert(name, opForm->_ident, e->_use_def, false);
   974       } else {
   975         Component  *comp = (Component*)component;
   976         comp->promote_use_def_info(e->_use_def);
   977       }
   978       // Component positions are zero based.
   979       int  pos  = _components.operand_position(name);
   980       assert( ! (component->isa(Component::DEF) && (pos >= 1)),
   981               "Component::DEF can only occur in the first position");
   982     }
   983   }
   985   // Resolving the interactions between expand rules and TEMPs would
   986   // be complex so simply disallow it.
   987   if (_matrule == NULL && has_temp) {
   988     globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
   989   }
   991   return;
   992 }
   994 // Return zero-based position in component list;  -1 if not in list.
   995 int   InstructForm::operand_position(const char *name, int usedef) {
   996   return unique_opnds_idx(_components.operand_position(name, usedef, this));
   997 }
   999 int   InstructForm::operand_position_format(const char *name) {
  1000   return unique_opnds_idx(_components.operand_position_format(name, this));
  1003 // Return zero-based position in component list; -1 if not in list.
  1004 int   InstructForm::label_position() {
  1005   return unique_opnds_idx(_components.label_position());
  1008 int   InstructForm::method_position() {
  1009   return unique_opnds_idx(_components.method_position());
  1012 // Return number of relocation entries needed for this instruction.
  1013 uint  InstructForm::reloc(FormDict &globals) {
  1014   uint reloc_entries  = 0;
  1015   // Check for "Call" nodes
  1016   if ( is_ideal_call() )      ++reloc_entries;
  1017   if ( is_ideal_return() )    ++reloc_entries;
  1018   if ( is_ideal_safepoint() ) ++reloc_entries;
  1021   // Check if operands MAYBE oop pointers, by checking for ConP elements
  1022   // Proceed through the leaves of the match-tree and check for ConPs
  1023   if ( _matrule != NULL ) {
  1024     uint         position = 0;
  1025     const char  *result   = NULL;
  1026     const char  *name     = NULL;
  1027     const char  *opType   = NULL;
  1028     while (_matrule->base_operand(position, globals, result, name, opType)) {
  1029       if ( strcmp(opType,"ConP") == 0 ) {
  1030 #ifdef SPARC
  1031         reloc_entries += 2; // 1 for sethi + 1 for setlo
  1032 #else
  1033         ++reloc_entries;
  1034 #endif
  1036       ++position;
  1040   // Above is only a conservative estimate
  1041   // because it did not check contents of operand classes.
  1042   // !!!!! !!!!!
  1043   // Add 1 to reloc info for each operand class in the component list.
  1044   Component  *comp;
  1045   _components.reset();
  1046   while ( (comp = _components.iter()) != NULL ) {
  1047     const Form        *form = globals[comp->_type];
  1048     assert( form, "Did not find component's type in global names");
  1049     const OpClassForm *opc  = form->is_opclass();
  1050     const OperandForm *oper = form->is_operand();
  1051     if ( opc && (oper == NULL) ) {
  1052       ++reloc_entries;
  1053     } else if ( oper ) {
  1054       // floats and doubles loaded out of method's constant pool require reloc info
  1055       Form::DataType type = oper->is_base_constant(globals);
  1056       if ( (type == Form::idealF) || (type == Form::idealD) ) {
  1057         ++reloc_entries;
  1062   // Float and Double constants may come from the CodeBuffer table
  1063   // and require relocatable addresses for access
  1064   // !!!!!
  1065   // Check for any component being an immediate float or double.
  1066   Form::DataType data_type = is_chain_of_constant(globals);
  1067   if( data_type==idealD || data_type==idealF ) {
  1068 #ifdef SPARC
  1069     // sparc required more relocation entries for floating constants
  1070     // (expires 9/98)
  1071     reloc_entries += 6;
  1072 #else
  1073     reloc_entries++;
  1074 #endif
  1077   return reloc_entries;
  1080 // Utility function defined in archDesc.cpp
  1081 extern bool is_def(int usedef);
  1083 // Return the result of reducing an instruction
  1084 const char *InstructForm::reduce_result() {
  1085   const char* result = "Universe";  // default
  1086   _components.reset();
  1087   Component *comp = _components.iter();
  1088   if (comp != NULL && comp->isa(Component::DEF)) {
  1089     result = comp->_type;
  1090     // Override this if the rule is a store operation:
  1091     if (_matrule && _matrule->_rChild &&
  1092         is_store_to_memory(_matrule->_rChild->_opType))
  1093       result = "Universe";
  1095   return result;
  1098 // Return the name of the operand on the right hand side of the binary match
  1099 // Return NULL if there is no right hand side
  1100 const char *InstructForm::reduce_right(FormDict &globals)  const {
  1101   if( _matrule == NULL ) return NULL;
  1102   return  _matrule->reduce_right(globals);
  1105 // Similar for left
  1106 const char *InstructForm::reduce_left(FormDict &globals)   const {
  1107   if( _matrule == NULL ) return NULL;
  1108   return  _matrule->reduce_left(globals);
  1112 // Base class for this instruction, MachNode except for calls
  1113 const char *InstructForm::mach_base_class(FormDict &globals)  const {
  1114   if( is_ideal_call() == Form::JAVA_STATIC ) {
  1115     return "MachCallStaticJavaNode";
  1117   else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
  1118     return "MachCallDynamicJavaNode";
  1120   else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
  1121     return "MachCallRuntimeNode";
  1123   else if( is_ideal_call() == Form::JAVA_LEAF ) {
  1124     return "MachCallLeafNode";
  1126   else if (is_ideal_return()) {
  1127     return "MachReturnNode";
  1129   else if (is_ideal_halt()) {
  1130     return "MachHaltNode";
  1132   else if (is_ideal_safepoint()) {
  1133     return "MachSafePointNode";
  1135   else if (is_ideal_if()) {
  1136     return "MachIfNode";
  1138   else if (is_ideal_goto()) {
  1139     return "MachGotoNode";
  1141   else if (is_ideal_fastlock()) {
  1142     return "MachFastLockNode";
  1144   else if (is_ideal_nop()) {
  1145     return "MachNopNode";
  1147   else if (is_mach_constant()) {
  1148     return "MachConstantNode";
  1150   else if (captures_bottom_type(globals)) {
  1151     return "MachTypeNode";
  1152   } else {
  1153     return "MachNode";
  1155   assert( false, "ShouldNotReachHere()");
  1156   return NULL;
  1159 // Compare the instruction predicates for textual equality
  1160 bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
  1161   const Predicate *pred1  = instr1->_predicate;
  1162   const Predicate *pred2  = instr2->_predicate;
  1163   if( pred1 == NULL && pred2 == NULL ) {
  1164     // no predicates means they are identical
  1165     return true;
  1167   if( pred1 != NULL && pred2 != NULL ) {
  1168     // compare the predicates
  1169     if (ADLParser::equivalent_expressions(pred1->_pred, pred2->_pred)) {
  1170       return true;
  1174   return false;
  1177 // Check if this instruction can cisc-spill to 'alternate'
  1178 bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
  1179   assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
  1180   // Do not replace if a cisc-version has been found.
  1181   if( cisc_spill_operand() != Not_cisc_spillable ) return false;
  1183   int         cisc_spill_operand = Maybe_cisc_spillable;
  1184   char       *result             = NULL;
  1185   char       *result2            = NULL;
  1186   const char *op_name            = NULL;
  1187   const char *reg_type           = NULL;
  1188   FormDict   &globals            = AD.globalNames();
  1189   cisc_spill_operand = _matrule->matchrule_cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
  1190   if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
  1191     cisc_spill_operand = operand_position(op_name, Component::USE);
  1192     int def_oper  = operand_position(op_name, Component::DEF);
  1193     if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
  1194       // Do not support cisc-spilling for destination operands and
  1195       // make sure they have the same number of operands.
  1196       _cisc_spill_alternate = instr;
  1197       instr->set_cisc_alternate(true);
  1198       if( AD._cisc_spill_debug ) {
  1199         fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
  1200         fprintf(stderr, "   using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
  1202       // Record that a stack-version of the reg_mask is needed
  1203       // !!!!!
  1204       OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
  1205       assert( oper != NULL, "cisc-spilling non operand");
  1206       const char *reg_class_name = oper->constrained_reg_class();
  1207       AD.set_stack_or_reg(reg_class_name);
  1208       const char *reg_mask_name  = AD.reg_mask(*oper);
  1209       set_cisc_reg_mask_name(reg_mask_name);
  1210       const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
  1211     } else {
  1212       cisc_spill_operand = Not_cisc_spillable;
  1214   } else {
  1215     cisc_spill_operand = Not_cisc_spillable;
  1218   set_cisc_spill_operand(cisc_spill_operand);
  1219   return (cisc_spill_operand != Not_cisc_spillable);
  1222 // Check to see if this instruction can be replaced with the short branch
  1223 // instruction `short-branch'
  1224 bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
  1225   if (_matrule != NULL &&
  1226       this != short_branch &&   // Don't match myself
  1227       !is_short_branch() &&     // Don't match another short branch variant
  1228       reduce_result() != NULL &&
  1229       strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
  1230       _matrule->equivalent(AD.globalNames(), short_branch->_matrule)) {
  1231     // The instructions are equivalent.
  1233     // Now verify that both instructions have the same parameters and
  1234     // the same effects. Both branch forms should have the same inputs
  1235     // and resulting projections to correctly replace a long branch node
  1236     // with corresponding short branch node during code generation.
  1238     bool different = false;
  1239     if (short_branch->_components.count() != _components.count()) {
  1240        different = true;
  1241     } else if (_components.count() > 0) {
  1242       short_branch->_components.reset();
  1243       _components.reset();
  1244       Component *comp;
  1245       while ((comp = _components.iter()) != NULL) {
  1246         Component *short_comp = short_branch->_components.iter();
  1247         if (short_comp == NULL ||
  1248             short_comp->_type != comp->_type ||
  1249             short_comp->_usedef != comp->_usedef) {
  1250           different = true;
  1251           break;
  1254       if (short_branch->_components.iter() != NULL)
  1255         different = true;
  1257     if (different) {
  1258       globalAD->syntax_err(short_branch->_linenum, "Instruction %s and its short form %s have different parameters\n", _ident, short_branch->_ident);
  1260     if (AD._adl_debug > 1 || AD._short_branch_debug) {
  1261       fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
  1263     _short_branch_form = short_branch;
  1264     return true;
  1266   return false;
  1270 // --------------------------- FILE *output_routines
  1271 //
  1272 // Generate the format call for the replacement variable
  1273 void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
  1274   // Handle special constant table variables.
  1275   if (strcmp(rep_var, "constanttablebase") == 0) {
  1276     fprintf(fp, "char reg[128];  ra->dump_register(in(mach_constant_base_node_input()), reg);\n");
  1277     fprintf(fp, "    st->print(\"%%s\", reg);\n");
  1278     return;
  1280   if (strcmp(rep_var, "constantoffset") == 0) {
  1281     fprintf(fp, "st->print(\"#%%d\", constant_offset_unchecked());\n");
  1282     return;
  1284   if (strcmp(rep_var, "constantaddress") == 0) {
  1285     fprintf(fp, "st->print(\"constant table base + #%%d\", constant_offset_unchecked());\n");
  1286     return;
  1289   // Find replacement variable's type
  1290   const Form *form   = _localNames[rep_var];
  1291   if (form == NULL) {
  1292     globalAD->syntax_err(_linenum, "Unknown replacement variable %s in format statement of %s.",
  1293                          rep_var, _ident);
  1294     return;
  1296   OpClassForm *opc   = form->is_opclass();
  1297   assert( opc, "replacement variable was not found in local names");
  1298   // Lookup the index position of the replacement variable
  1299   int idx  = operand_position_format(rep_var);
  1300   if ( idx == -1 ) {
  1301     globalAD->syntax_err(_linenum, "Could not find replacement variable %s in format statement of %s.\n",
  1302                          rep_var, _ident);
  1303     assert(strcmp(opc->_ident, "label") == 0, "Unimplemented");
  1304     return;
  1307   if (is_noninput_operand(idx)) {
  1308     // This component isn't in the input array.  Print out the static
  1309     // name of the register.
  1310     OperandForm* oper = form->is_operand();
  1311     if (oper != NULL && oper->is_bound_register()) {
  1312       const RegDef* first = oper->get_RegClass()->find_first_elem();
  1313       fprintf(fp, "    st->print(\"%s\");\n", first->_regname);
  1314     } else {
  1315       globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
  1317   } else {
  1318     // Output the format call for this operand
  1319     fprintf(fp,"opnd_array(%d)->",idx);
  1320     if (idx == 0)
  1321       fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
  1322     else
  1323       fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
  1327 // Seach through operands to determine parameters unique positions.
  1328 void InstructForm::set_unique_opnds() {
  1329   uint* uniq_idx = NULL;
  1330   uint  nopnds = num_opnds();
  1331   uint  num_uniq = nopnds;
  1332   uint i;
  1333   _uniq_idx_length = 0;
  1334   if (nopnds > 0) {
  1335     // Allocate index array.  Worst case we're mapping from each
  1336     // component back to an index and any DEF always goes at 0 so the
  1337     // length of the array has to be the number of components + 1.
  1338     _uniq_idx_length = _components.count() + 1;
  1339     uniq_idx = (uint*) malloc(sizeof(uint) * _uniq_idx_length);
  1340     for (i = 0; i < _uniq_idx_length; i++) {
  1341       uniq_idx[i] = i;
  1344   // Do it only if there is a match rule and no expand rule.  With an
  1345   // expand rule it is done by creating new mach node in Expand()
  1346   // method.
  1347   if (nopnds > 0 && _matrule != NULL && _exprule == NULL) {
  1348     const char *name;
  1349     uint count;
  1350     bool has_dupl_use = false;
  1352     _parameters.reset();
  1353     while ((name = _parameters.iter()) != NULL) {
  1354       count = 0;
  1355       uint position = 0;
  1356       uint uniq_position = 0;
  1357       _components.reset();
  1358       Component *comp = NULL;
  1359       if (sets_result()) {
  1360         comp = _components.iter();
  1361         position++;
  1363       // The next code is copied from the method operand_position().
  1364       for (; (comp = _components.iter()) != NULL; ++position) {
  1365         // When the first component is not a DEF,
  1366         // leave space for the result operand!
  1367         if (position==0 && (!comp->isa(Component::DEF))) {
  1368           ++position;
  1370         if (strcmp(name, comp->_name) == 0) {
  1371           if (++count > 1) {
  1372             assert(position < _uniq_idx_length, "out of bounds");
  1373             uniq_idx[position] = uniq_position;
  1374             has_dupl_use = true;
  1375           } else {
  1376             uniq_position = position;
  1379         if (comp->isa(Component::DEF) && comp->isa(Component::USE)) {
  1380           ++position;
  1381           if (position != 1)
  1382             --position;   // only use two slots for the 1st USE_DEF
  1386     if (has_dupl_use) {
  1387       for (i = 1; i < nopnds; i++) {
  1388         if (i != uniq_idx[i]) {
  1389           break;
  1392       uint j = i;
  1393       for (; i < nopnds; i++) {
  1394         if (i == uniq_idx[i]) {
  1395           uniq_idx[i] = j++;
  1398       num_uniq = j;
  1401   _uniq_idx = uniq_idx;
  1402   _num_uniq = num_uniq;
  1405 // Generate index values needed for determining the operand position
  1406 void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
  1407   uint  idx = 0;                  // position of operand in match rule
  1408   int   cur_num_opnds = num_opnds();
  1410   // Compute the index into vector of operand pointers:
  1411   // idx0=0 is used to indicate that info comes from this same node, not from input edge.
  1412   // idx1 starts at oper_input_base()
  1413   if ( cur_num_opnds >= 1 ) {
  1414     fprintf(fp,"  // Start at oper_input_base() and count operands\n");
  1415     fprintf(fp,"  unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
  1416     fprintf(fp,"  unsigned %sidx1 = %d;", prefix, oper_input_base(globals));
  1417     fprintf(fp," \t// %s\n", unique_opnd_ident(1));
  1419     // Generate starting points for other unique operands if they exist
  1420     for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
  1421       if( *receiver == 0 ) {
  1422         fprintf(fp,"  unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();",
  1423                 prefix, idx, prefix, idx-1, idx-1 );
  1424       } else {
  1425         fprintf(fp,"  unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();",
  1426                 prefix, idx, prefix, idx-1, receiver, idx-1 );
  1428       fprintf(fp," \t// %s\n", unique_opnd_ident(idx));
  1431   if( *receiver != 0 ) {
  1432     // This value is used by generate_peepreplace when copying a node.
  1433     // Don't emit it in other cases since it can hide bugs with the
  1434     // use invalid idx's.
  1435     fprintf(fp,"  unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
  1440 // ---------------------------
  1441 bool InstructForm::verify() {
  1442   // !!!!! !!!!!
  1443   // Check that a "label" operand occurs last in the operand list, if present
  1444   return true;
  1447 void InstructForm::dump() {
  1448   output(stderr);
  1451 void InstructForm::output(FILE *fp) {
  1452   fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
  1453   if (_matrule)   _matrule->output(fp);
  1454   if (_insencode) _insencode->output(fp);
  1455   if (_constant)  _constant->output(fp);
  1456   if (_opcode)    _opcode->output(fp);
  1457   if (_attribs)   _attribs->output(fp);
  1458   if (_predicate) _predicate->output(fp);
  1459   if (_effects.Size()) {
  1460     fprintf(fp,"Effects\n");
  1461     _effects.dump();
  1463   if (_exprule)   _exprule->output(fp);
  1464   if (_rewrule)   _rewrule->output(fp);
  1465   if (_format)    _format->output(fp);
  1466   if (_peephole)  _peephole->output(fp);
  1469 void MachNodeForm::dump() {
  1470   output(stderr);
  1473 void MachNodeForm::output(FILE *fp) {
  1474   fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
  1477 //------------------------------build_predicate--------------------------------
  1478 // Build instruction predicates.  If the user uses the same operand name
  1479 // twice, we need to check that the operands are pointer-eequivalent in
  1480 // the DFA during the labeling process.
  1481 Predicate *InstructForm::build_predicate() {
  1482   char buf[1024], *s=buf;
  1483   Dict names(cmpstr,hashstr,Form::arena);       // Map Names to counts
  1485   MatchNode *mnode =
  1486     strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
  1487   mnode->count_instr_names(names);
  1489   uint first = 1;
  1490   // Start with the predicate supplied in the .ad file.
  1491   if( _predicate ) {
  1492     if( first ) first=0;
  1493     strcpy(s,"("); s += strlen(s);
  1494     strcpy(s,_predicate->_pred);
  1495     s += strlen(s);
  1496     strcpy(s,")"); s += strlen(s);
  1498   for( DictI i(&names); i.test(); ++i ) {
  1499     uintptr_t cnt = (uintptr_t)i._value;
  1500     if( cnt > 1 ) {             // Need a predicate at all?
  1501       assert( cnt == 2, "Unimplemented" );
  1502       // Handle many pairs
  1503       if( first ) first=0;
  1504       else {                    // All tests must pass, so use '&&'
  1505         strcpy(s," && ");
  1506         s += strlen(s);
  1508       // Add predicate to working buffer
  1509       sprintf(s,"/*%s*/(",(char*)i._key);
  1510       s += strlen(s);
  1511       mnode->build_instr_pred(s,(char*)i._key,0);
  1512       s += strlen(s);
  1513       strcpy(s," == "); s += strlen(s);
  1514       mnode->build_instr_pred(s,(char*)i._key,1);
  1515       s += strlen(s);
  1516       strcpy(s,")"); s += strlen(s);
  1519   if( s == buf ) s = NULL;
  1520   else {
  1521     assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
  1522     s = strdup(buf);
  1524   return new Predicate(s);
  1527 //------------------------------EncodeForm-------------------------------------
  1528 // Constructor
  1529 EncodeForm::EncodeForm()
  1530   : _encClass(cmpstr,hashstr, Form::arena) {
  1532 EncodeForm::~EncodeForm() {
  1535 // record a new register class
  1536 EncClass *EncodeForm::add_EncClass(const char *className) {
  1537   EncClass *encClass = new EncClass(className);
  1538   _eclasses.addName(className);
  1539   _encClass.Insert(className,encClass);
  1540   return encClass;
  1543 // Lookup the function body for an encoding class
  1544 EncClass  *EncodeForm::encClass(const char *className) {
  1545   assert( className != NULL, "Must provide a defined encoding name");
  1547   EncClass *encClass = (EncClass*)_encClass[className];
  1548   return encClass;
  1551 // Lookup the function body for an encoding class
  1552 const char *EncodeForm::encClassBody(const char *className) {
  1553   if( className == NULL ) return NULL;
  1555   EncClass *encClass = (EncClass*)_encClass[className];
  1556   assert( encClass != NULL, "Encode Class is missing.");
  1557   encClass->_code.reset();
  1558   const char *code = (const char*)encClass->_code.iter();
  1559   assert( code != NULL, "Found an empty encode class body.");
  1561   return code;
  1564 // Lookup the function body for an encoding class
  1565 const char *EncodeForm::encClassPrototype(const char *className) {
  1566   assert( className != NULL, "Encode class name must be non NULL.");
  1568   return className;
  1571 void EncodeForm::dump() {                  // Debug printer
  1572   output(stderr);
  1575 void EncodeForm::output(FILE *fp) {          // Write info to output files
  1576   const char *name;
  1577   fprintf(fp,"\n");
  1578   fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
  1579   for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
  1580     ((EncClass*)_encClass[name])->output(fp);
  1582   fprintf(fp,"-------------------- end  EncodeForm --------------------\n");
  1584 //------------------------------EncClass---------------------------------------
  1585 EncClass::EncClass(const char *name)
  1586   : _localNames(cmpstr,hashstr, Form::arena), _name(name) {
  1588 EncClass::~EncClass() {
  1591 // Add a parameter <type,name> pair
  1592 void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
  1593   _parameter_type.addName( parameter_type );
  1594   _parameter_name.addName( parameter_name );
  1597 // Verify operand types in parameter list
  1598 bool EncClass::check_parameter_types(FormDict &globals) {
  1599   // !!!!!
  1600   return false;
  1603 // Add the decomposed "code" sections of an encoding's code-block
  1604 void EncClass::add_code(const char *code) {
  1605   _code.addName(code);
  1608 // Add the decomposed "replacement variables" of an encoding's code-block
  1609 void EncClass::add_rep_var(char *replacement_var) {
  1610   _code.addName(NameList::_signal);
  1611   _rep_vars.addName(replacement_var);
  1614 // Lookup the function body for an encoding class
  1615 int EncClass::rep_var_index(const char *rep_var) {
  1616   uint        position = 0;
  1617   const char *name     = NULL;
  1619   _parameter_name.reset();
  1620   while ( (name = _parameter_name.iter()) != NULL ) {
  1621     if ( strcmp(rep_var,name) == 0 ) return position;
  1622     ++position;
  1625   return -1;
  1628 // Check after parsing
  1629 bool EncClass::verify() {
  1630   // 1!!!!
  1631   // Check that each replacement variable, '$name' in architecture description
  1632   // is actually a local variable for this encode class, or a reserved name
  1633   // "primary, secondary, tertiary"
  1634   return true;
  1637 void EncClass::dump() {
  1638   output(stderr);
  1641 // Write info to output files
  1642 void EncClass::output(FILE *fp) {
  1643   fprintf(fp,"EncClass: %s", (_name ? _name : ""));
  1645   // Output the parameter list
  1646   _parameter_type.reset();
  1647   _parameter_name.reset();
  1648   const char *type = _parameter_type.iter();
  1649   const char *name = _parameter_name.iter();
  1650   fprintf(fp, " ( ");
  1651   for ( ; (type != NULL) && (name != NULL);
  1652         (type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
  1653     fprintf(fp, " %s %s,", type, name);
  1655   fprintf(fp, " ) ");
  1657   // Output the code block
  1658   _code.reset();
  1659   _rep_vars.reset();
  1660   const char *code;
  1661   while ( (code = _code.iter()) != NULL ) {
  1662     if ( _code.is_signal(code) ) {
  1663       // A replacement variable
  1664       const char *rep_var = _rep_vars.iter();
  1665       fprintf(fp,"($%s)", rep_var);
  1666     } else {
  1667       // A section of code
  1668       fprintf(fp,"%s", code);
  1674 //------------------------------Opcode-----------------------------------------
  1675 Opcode::Opcode(char *primary, char *secondary, char *tertiary)
  1676   : _primary(primary), _secondary(secondary), _tertiary(tertiary) {
  1679 Opcode::~Opcode() {
  1682 Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
  1683   if( strcmp(param,"primary") == 0 ) {
  1684     return Opcode::PRIMARY;
  1686   else if( strcmp(param,"secondary") == 0 ) {
  1687     return Opcode::SECONDARY;
  1689   else if( strcmp(param,"tertiary") == 0 ) {
  1690     return Opcode::TERTIARY;
  1692   return Opcode::NOT_AN_OPCODE;
  1695 bool Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
  1696   // Default values previously provided by MachNode::primary()...
  1697   const char *description = NULL;
  1698   const char *value       = NULL;
  1699   // Check if user provided any opcode definitions
  1700   if( this != NULL ) {
  1701     // Update 'value' if user provided a definition in the instruction
  1702     switch (desired_opcode) {
  1703     case PRIMARY:
  1704       description = "primary()";
  1705       if( _primary   != NULL)  { value = _primary;     }
  1706       break;
  1707     case SECONDARY:
  1708       description = "secondary()";
  1709       if( _secondary != NULL ) { value = _secondary;   }
  1710       break;
  1711     case TERTIARY:
  1712       description = "tertiary()";
  1713       if( _tertiary  != NULL ) { value = _tertiary;    }
  1714       break;
  1715     default:
  1716       assert( false, "ShouldNotReachHere();");
  1717       break;
  1720   if (value != NULL) {
  1721     fprintf(fp, "(%s /*%s*/)", value, description);
  1723   return value != NULL;
  1726 void Opcode::dump() {
  1727   output(stderr);
  1730 // Write info to output files
  1731 void Opcode::output(FILE *fp) {
  1732   if (_primary   != NULL) fprintf(fp,"Primary   opcode: %s\n", _primary);
  1733   if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
  1734   if (_tertiary  != NULL) fprintf(fp,"Tertiary  opcode: %s\n", _tertiary);
  1737 //------------------------------InsEncode--------------------------------------
  1738 InsEncode::InsEncode() {
  1740 InsEncode::~InsEncode() {
  1743 // Add "encode class name" and its parameters
  1744 NameAndList *InsEncode::add_encode(char *encoding) {
  1745   assert( encoding != NULL, "Must provide name for encoding");
  1747   // add_parameter(NameList::_signal);
  1748   NameAndList *encode = new NameAndList(encoding);
  1749   _encoding.addName((char*)encode);
  1751   return encode;
  1754 // Access the list of encodings
  1755 void InsEncode::reset() {
  1756   _encoding.reset();
  1757   // _parameter.reset();
  1759 const char* InsEncode::encode_class_iter() {
  1760   NameAndList  *encode_class = (NameAndList*)_encoding.iter();
  1761   return  ( encode_class != NULL ? encode_class->name() : NULL );
  1763 // Obtain parameter name from zero based index
  1764 const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
  1765   NameAndList *params = (NameAndList*)_encoding.current();
  1766   assert( params != NULL, "Internal Error");
  1767   const char *param = (*params)[param_no];
  1769   // Remove '$' if parser placed it there.
  1770   return ( param != NULL && *param == '$') ? (param+1) : param;
  1773 void InsEncode::dump() {
  1774   output(stderr);
  1777 // Write info to output files
  1778 void InsEncode::output(FILE *fp) {
  1779   NameAndList *encoding  = NULL;
  1780   const char  *parameter = NULL;
  1782   fprintf(fp,"InsEncode: ");
  1783   _encoding.reset();
  1785   while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
  1786     // Output the encoding being used
  1787     fprintf(fp,"%s(", encoding->name() );
  1789     // Output its parameter list, if any
  1790     bool first_param = true;
  1791     encoding->reset();
  1792     while (  (parameter = encoding->iter()) != 0 ) {
  1793       // Output the ',' between parameters
  1794       if ( ! first_param )  fprintf(fp,", ");
  1795       first_param = false;
  1796       // Output the parameter
  1797       fprintf(fp,"%s", parameter);
  1798     } // done with parameters
  1799     fprintf(fp,")  ");
  1800   } // done with encodings
  1802   fprintf(fp,"\n");
  1805 //------------------------------Effect-----------------------------------------
  1806 static int effect_lookup(const char *name) {
  1807   if(!strcmp(name, "USE")) return Component::USE;
  1808   if(!strcmp(name, "DEF")) return Component::DEF;
  1809   if(!strcmp(name, "USE_DEF")) return Component::USE_DEF;
  1810   if(!strcmp(name, "KILL")) return Component::KILL;
  1811   if(!strcmp(name, "USE_KILL")) return Component::USE_KILL;
  1812   if(!strcmp(name, "TEMP")) return Component::TEMP;
  1813   if(!strcmp(name, "INVALID")) return Component::INVALID;
  1814   if(!strcmp(name, "CALL")) return Component::CALL;
  1815   assert( false,"Invalid effect name specified\n");
  1816   return Component::INVALID;
  1819 const char *Component::getUsedefName() {
  1820   switch (_usedef) {
  1821     case Component::INVALID:  return "INVALID";  break;
  1822     case Component::USE:      return "USE";      break;
  1823     case Component::USE_DEF:  return "USE_DEF";  break;
  1824     case Component::USE_KILL: return "USE_KILL"; break;
  1825     case Component::KILL:     return "KILL";     break;
  1826     case Component::TEMP:     return "TEMP";     break;
  1827     case Component::DEF:      return "DEF";      break;
  1828     case Component::CALL:     return "CALL";     break;
  1829     default: assert(false, "unknown effect");
  1831   return "Undefined Use/Def info";
  1834 Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
  1835   _ftype = Form::EFF;
  1838 Effect::~Effect() {
  1841 // Dynamic type check
  1842 Effect *Effect::is_effect() const {
  1843   return (Effect*)this;
  1847 // True if this component is equal to the parameter.
  1848 bool Effect::is(int use_def_kill_enum) const {
  1849   return (_use_def == use_def_kill_enum ? true : false);
  1851 // True if this component is used/def'd/kill'd as the parameter suggests.
  1852 bool Effect::isa(int use_def_kill_enum) const {
  1853   return (_use_def & use_def_kill_enum) == use_def_kill_enum;
  1856 void Effect::dump() {
  1857   output(stderr);
  1860 void Effect::output(FILE *fp) {          // Write info to output files
  1861   fprintf(fp,"Effect: %s\n", (_name?_name:""));
  1864 //------------------------------ExpandRule-------------------------------------
  1865 ExpandRule::ExpandRule() : _expand_instrs(),
  1866                            _newopconst(cmpstr, hashstr, Form::arena) {
  1867   _ftype = Form::EXP;
  1870 ExpandRule::~ExpandRule() {                  // Destructor
  1873 void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
  1874   _expand_instrs.addName((char*)instruction_name_and_operand_list);
  1877 void ExpandRule::reset_instructions() {
  1878   _expand_instrs.reset();
  1881 NameAndList* ExpandRule::iter_instructions() {
  1882   return (NameAndList*)_expand_instrs.iter();
  1886 void ExpandRule::dump() {
  1887   output(stderr);
  1890 void ExpandRule::output(FILE *fp) {         // Write info to output files
  1891   NameAndList *expand_instr = NULL;
  1892   const char *opid = NULL;
  1894   fprintf(fp,"\nExpand Rule:\n");
  1896   // Iterate over the instructions 'node' expands into
  1897   for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
  1898     fprintf(fp,"%s(", expand_instr->name());
  1900     // iterate over the operand list
  1901     for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
  1902       fprintf(fp,"%s ", opid);
  1904     fprintf(fp,");\n");
  1908 //------------------------------RewriteRule------------------------------------
  1909 RewriteRule::RewriteRule(char* params, char* block)
  1910   : _tempParams(params), _tempBlock(block) { };  // Constructor
  1911 RewriteRule::~RewriteRule() {                 // Destructor
  1914 void RewriteRule::dump() {
  1915   output(stderr);
  1918 void RewriteRule::output(FILE *fp) {         // Write info to output files
  1919   fprintf(fp,"\nRewrite Rule:\n%s\n%s\n",
  1920           (_tempParams?_tempParams:""),
  1921           (_tempBlock?_tempBlock:""));
  1925 //==============================MachNodes======================================
  1926 //------------------------------MachNodeForm-----------------------------------
  1927 MachNodeForm::MachNodeForm(char *id)
  1928   : _ident(id) {
  1931 MachNodeForm::~MachNodeForm() {
  1934 MachNodeForm *MachNodeForm::is_machnode() const {
  1935   return (MachNodeForm*)this;
  1938 //==============================Operand Classes================================
  1939 //------------------------------OpClassForm------------------------------------
  1940 OpClassForm::OpClassForm(const char* id) : _ident(id) {
  1941   _ftype = Form::OPCLASS;
  1944 OpClassForm::~OpClassForm() {
  1947 bool OpClassForm::ideal_only() const { return 0; }
  1949 OpClassForm *OpClassForm::is_opclass() const {
  1950   return (OpClassForm*)this;
  1953 Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
  1954   if( _oplst.count() == 0 ) return Form::no_interface;
  1956   // Check that my operands have the same interface type
  1957   Form::InterfaceType  interface;
  1958   bool  first = true;
  1959   NameList &op_list = (NameList &)_oplst;
  1960   op_list.reset();
  1961   const char *op_name;
  1962   while( (op_name = op_list.iter()) != NULL ) {
  1963     const Form  *form    = globals[op_name];
  1964     OperandForm *operand = form->is_operand();
  1965     assert( operand, "Entry in operand class that is not an operand");
  1966     if( first ) {
  1967       first     = false;
  1968       interface = operand->interface_type(globals);
  1969     } else {
  1970       interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
  1973   return interface;
  1976 bool OpClassForm::stack_slots_only(FormDict &globals) const {
  1977   if( _oplst.count() == 0 ) return false;  // how?
  1979   NameList &op_list = (NameList &)_oplst;
  1980   op_list.reset();
  1981   const char *op_name;
  1982   while( (op_name = op_list.iter()) != NULL ) {
  1983     const Form  *form    = globals[op_name];
  1984     OperandForm *operand = form->is_operand();
  1985     assert( operand, "Entry in operand class that is not an operand");
  1986     if( !operand->stack_slots_only(globals) )  return false;
  1988   return true;
  1992 void OpClassForm::dump() {
  1993   output(stderr);
  1996 void OpClassForm::output(FILE *fp) {
  1997   const char *name;
  1998   fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
  1999   fprintf(fp,"\nCount = %d\n", _oplst.count());
  2000   for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
  2001     fprintf(fp,"%s, ",name);
  2003   fprintf(fp,"\n");
  2007 //==============================Operands=======================================
  2008 //------------------------------OperandForm------------------------------------
  2009 OperandForm::OperandForm(const char* id)
  2010   : OpClassForm(id), _ideal_only(false),
  2011     _localNames(cmpstr, hashstr, Form::arena) {
  2012       _ftype = Form::OPER;
  2014       _matrule   = NULL;
  2015       _interface = NULL;
  2016       _attribs   = NULL;
  2017       _predicate = NULL;
  2018       _constraint= NULL;
  2019       _construct = NULL;
  2020       _format    = NULL;
  2022 OperandForm::OperandForm(const char* id, bool ideal_only)
  2023   : OpClassForm(id), _ideal_only(ideal_only),
  2024     _localNames(cmpstr, hashstr, Form::arena) {
  2025       _ftype = Form::OPER;
  2027       _matrule   = NULL;
  2028       _interface = NULL;
  2029       _attribs   = NULL;
  2030       _predicate = NULL;
  2031       _constraint= NULL;
  2032       _construct = NULL;
  2033       _format    = NULL;
  2035 OperandForm::~OperandForm() {
  2039 OperandForm *OperandForm::is_operand() const {
  2040   return (OperandForm*)this;
  2043 bool OperandForm::ideal_only() const {
  2044   return _ideal_only;
  2047 Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
  2048   if( _interface == NULL )  return Form::no_interface;
  2050   return _interface->interface_type(globals);
  2054 bool OperandForm::stack_slots_only(FormDict &globals) const {
  2055   if( _constraint == NULL )  return false;
  2056   return _constraint->stack_slots_only();
  2060 // Access op_cost attribute or return NULL.
  2061 const char* OperandForm::cost() {
  2062   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
  2063     if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
  2064       return cur->_val;
  2067   return NULL;
  2070 // Return the number of leaves below this complex operand
  2071 uint OperandForm::num_leaves() const {
  2072   if ( ! _matrule) return 0;
  2074   int num_leaves = _matrule->_numleaves;
  2075   return num_leaves;
  2078 // Return the number of constants contained within this complex operand
  2079 uint OperandForm::num_consts(FormDict &globals) const {
  2080   if ( ! _matrule) return 0;
  2082   // This is a recursive invocation on all operands in the matchrule
  2083   return _matrule->num_consts(globals);
  2086 // Return the number of constants in match rule with specified type
  2087 uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
  2088   if ( ! _matrule) return 0;
  2090   // This is a recursive invocation on all operands in the matchrule
  2091   return _matrule->num_consts(globals, type);
  2094 // Return the number of pointer constants contained within this complex operand
  2095 uint OperandForm::num_const_ptrs(FormDict &globals) const {
  2096   if ( ! _matrule) return 0;
  2098   // This is a recursive invocation on all operands in the matchrule
  2099   return _matrule->num_const_ptrs(globals);
  2102 uint OperandForm::num_edges(FormDict &globals) const {
  2103   uint edges  = 0;
  2104   uint leaves = num_leaves();
  2105   uint consts = num_consts(globals);
  2107   // If we are matching a constant directly, there are no leaves.
  2108   edges = ( leaves > consts ) ? leaves - consts : 0;
  2110   // !!!!!
  2111   // Special case operands that do not have a corresponding ideal node.
  2112   if( (edges == 0) && (consts == 0) ) {
  2113     if( constrained_reg_class() != NULL ) {
  2114       edges = 1;
  2115     } else {
  2116       if( _matrule
  2117           && (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
  2118         const Form *form = globals[_matrule->_opType];
  2119         OperandForm *oper = form ? form->is_operand() : NULL;
  2120         if( oper ) {
  2121           return oper->num_edges(globals);
  2127   return edges;
  2131 // Check if this operand is usable for cisc-spilling
  2132 bool  OperandForm::is_cisc_reg(FormDict &globals) const {
  2133   const char *ideal = ideal_type(globals);
  2134   bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
  2135   return is_cisc_reg;
  2138 bool  OpClassForm::is_cisc_mem(FormDict &globals) const {
  2139   Form::InterfaceType my_interface = interface_type(globals);
  2140   return (my_interface == memory_interface);
  2144 // node matches ideal 'Bool'
  2145 bool OperandForm::is_ideal_bool() const {
  2146   if( _matrule == NULL ) return false;
  2148   return _matrule->is_ideal_bool();
  2151 // Require user's name for an sRegX to be stackSlotX
  2152 Form::DataType OperandForm::is_user_name_for_sReg() const {
  2153   DataType data_type = none;
  2154   if( _ident != NULL ) {
  2155     if(      strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
  2156     else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
  2157     else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
  2158     else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
  2159     else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
  2161   assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");
  2163   return data_type;
  2167 // Return ideal type, if there is a single ideal type for this operand
  2168 const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
  2169   const char *type = NULL;
  2170   if (ideal_only()) type = _ident;
  2171   else if( _matrule == NULL ) {
  2172     // Check for condition code register
  2173     const char *rc_name = constrained_reg_class();
  2174     // !!!!!
  2175     if (rc_name == NULL) return NULL;
  2176     // !!!!! !!!!!
  2177     // Check constraints on result's register class
  2178     if( registers ) {
  2179       RegClass *reg_class  = registers->getRegClass(rc_name);
  2180       assert( reg_class != NULL, "Register class is not defined");
  2182       // Check for ideal type of entries in register class, all are the same type
  2183       reg_class->reset();
  2184       RegDef *reg_def = reg_class->RegDef_iter();
  2185       assert( reg_def != NULL, "No entries in register class");
  2186       assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
  2187       // Return substring that names the register's ideal type
  2188       type = reg_def->_idealtype + 3;
  2189       assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
  2190       assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
  2191       assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
  2194   else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
  2195     // This operand matches a single type, at the top level.
  2196     // Check for ideal type
  2197     type = _matrule->_opType;
  2198     if( strcmp(type,"Bool") == 0 )
  2199       return "Bool";
  2200     // transitive lookup
  2201     const Form *frm = globals[type];
  2202     OperandForm *op = frm->is_operand();
  2203     type = op->ideal_type(globals, registers);
  2205   return type;
  2209 // If there is a single ideal type for this interface field, return it.
  2210 const char *OperandForm::interface_ideal_type(FormDict &globals,
  2211                                               const char *field) const {
  2212   const char  *ideal_type = NULL;
  2213   const char  *value      = NULL;
  2215   // Check if "field" is valid for this operand's interface
  2216   if ( ! is_interface_field(field, value) )   return ideal_type;
  2218   // !!!!! !!!!! !!!!!
  2219   // If a valid field has a constant value, identify "ConI" or "ConP" or ...
  2221   // Else, lookup type of field's replacement variable
  2223   return ideal_type;
  2227 RegClass* OperandForm::get_RegClass() const {
  2228   if (_interface && !_interface->is_RegInterface()) return NULL;
  2229   return globalAD->get_registers()->getRegClass(constrained_reg_class());
  2233 bool OperandForm::is_bound_register() const {
  2234   RegClass* reg_class = get_RegClass();
  2235   if (reg_class == NULL) {
  2236     return false;
  2239   const char* name = ideal_type(globalAD->globalNames());
  2240   if (name == NULL) {
  2241     return false;
  2244   uint size = 0;
  2245   if (strcmp(name, "RegFlags") == 0) size = 1;
  2246   if (strcmp(name, "RegI") == 0) size = 1;
  2247   if (strcmp(name, "RegF") == 0) size = 1;
  2248   if (strcmp(name, "RegD") == 0) size = 2;
  2249   if (strcmp(name, "RegL") == 0) size = 2;
  2250   if (strcmp(name, "RegN") == 0) size = 1;
  2251   if (strcmp(name, "RegP") == 0) size = globalAD->get_preproc_def("_LP64") ? 2 : 1;
  2252   if (size == 0) {
  2253     return false;
  2255   return size == reg_class->size();
  2259 // Check if this is a valid field for this operand,
  2260 // Return 'true' if valid, and set the value to the string the user provided.
  2261 bool  OperandForm::is_interface_field(const char *field,
  2262                                       const char * &value) const {
  2263   return false;
  2267 // Return register class name if a constraint specifies the register class.
  2268 const char *OperandForm::constrained_reg_class() const {
  2269   const char *reg_class  = NULL;
  2270   if ( _constraint ) {
  2271     // !!!!!
  2272     Constraint *constraint = _constraint;
  2273     if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
  2274       reg_class = _constraint->_arg;
  2278   return reg_class;
  2282 // Return the register class associated with 'leaf'.
  2283 const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
  2284   const char *reg_class = NULL; // "RegMask::Empty";
  2286   if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
  2287     reg_class = constrained_reg_class();
  2288     return reg_class;
  2290   const char *result   = NULL;
  2291   const char *name     = NULL;
  2292   const char *type     = NULL;
  2293   // iterate through all base operands
  2294   // until we reach the register that corresponds to "leaf"
  2295   // This function is not looking for an ideal type.  It needs the first
  2296   // level user type associated with the leaf.
  2297   for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
  2298     const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
  2299     OperandForm *oper = form ? form->is_operand() : NULL;
  2300     if( oper ) {
  2301       reg_class = oper->constrained_reg_class();
  2302       if( reg_class ) {
  2303         reg_class = reg_class;
  2304       } else {
  2305         // ShouldNotReachHere();
  2307     } else {
  2308       // ShouldNotReachHere();
  2311     // Increment our target leaf position if current leaf is not a candidate.
  2312     if( reg_class == NULL)    ++leaf;
  2313     // Exit the loop with the value of reg_class when at the correct index
  2314     if( idx == leaf )         break;
  2315     // May iterate through all base operands if reg_class for 'leaf' is NULL
  2317   return reg_class;
  2321 // Recursive call to construct list of top-level operands.
  2322 // Implementation does not modify state of internal structures
  2323 void OperandForm::build_components() {
  2324   if (_matrule)  _matrule->append_components(_localNames, _components);
  2326   // Add parameters that "do not appear in match rule".
  2327   const char *name;
  2328   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
  2329     OperandForm *opForm = (OperandForm*)_localNames[name];
  2331     if ( _components.operand_position(name) == -1 ) {
  2332       _components.insert(name, opForm->_ident, Component::INVALID, false);
  2336   return;
  2339 int OperandForm::operand_position(const char *name, int usedef) {
  2340   return _components.operand_position(name, usedef, this);
  2344 // Return zero-based position in component list, only counting constants;
  2345 // Return -1 if not in list.
  2346 int OperandForm::constant_position(FormDict &globals, const Component *last) {
  2347   // Iterate through components and count constants preceding 'constant'
  2348   int position = 0;
  2349   Component *comp;
  2350   _components.reset();
  2351   while( (comp = _components.iter()) != NULL  && (comp != last) ) {
  2352     // Special case for operands that take a single user-defined operand
  2353     // Skip the initial definition in the component list.
  2354     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
  2356     const char *type = comp->_type;
  2357     // Lookup operand form for replacement variable's type
  2358     const Form *form = globals[type];
  2359     assert( form != NULL, "Component's type not found");
  2360     OperandForm *oper = form ? form->is_operand() : NULL;
  2361     if( oper ) {
  2362       if( oper->_matrule->is_base_constant(globals) != Form::none ) {
  2363         ++position;
  2368   // Check for being passed a component that was not in the list
  2369   if( comp != last )  position = -1;
  2371   return position;
  2373 // Provide position of constant by "name"
  2374 int OperandForm::constant_position(FormDict &globals, const char *name) {
  2375   const Component *comp = _components.search(name);
  2376   int idx = constant_position( globals, comp );
  2378   return idx;
  2382 // Return zero-based position in component list, only counting constants;
  2383 // Return -1 if not in list.
  2384 int OperandForm::register_position(FormDict &globals, const char *reg_name) {
  2385   // Iterate through components and count registers preceding 'last'
  2386   uint  position = 0;
  2387   Component *comp;
  2388   _components.reset();
  2389   while( (comp = _components.iter()) != NULL
  2390          && (strcmp(comp->_name,reg_name) != 0) ) {
  2391     // Special case for operands that take a single user-defined operand
  2392     // Skip the initial definition in the component list.
  2393     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
  2395     const char *type = comp->_type;
  2396     // Lookup operand form for component's type
  2397     const Form *form = globals[type];
  2398     assert( form != NULL, "Component's type not found");
  2399     OperandForm *oper = form ? form->is_operand() : NULL;
  2400     if( oper ) {
  2401       if( oper->_matrule->is_base_register(globals) ) {
  2402         ++position;
  2407   return position;
  2411 const char *OperandForm::reduce_result()  const {
  2412   return _ident;
  2414 // Return the name of the operand on the right hand side of the binary match
  2415 // Return NULL if there is no right hand side
  2416 const char *OperandForm::reduce_right(FormDict &globals)  const {
  2417   return  ( _matrule ? _matrule->reduce_right(globals) : NULL );
  2420 // Similar for left
  2421 const char *OperandForm::reduce_left(FormDict &globals)   const {
  2422   return  ( _matrule ? _matrule->reduce_left(globals) : NULL );
  2426 // --------------------------- FILE *output_routines
  2427 //
  2428 // Output code for disp_is_oop, if true.
  2429 void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
  2430   //  Check it is a memory interface with a non-user-constant disp field
  2431   if ( this->_interface == NULL ) return;
  2432   MemInterface *mem_interface = this->_interface->is_MemInterface();
  2433   if ( mem_interface == NULL )    return;
  2434   const char   *disp  = mem_interface->_disp;
  2435   if ( *disp != '$' )             return;
  2437   // Lookup replacement variable in operand's component list
  2438   const char   *rep_var = disp + 1;
  2439   const Component *comp = this->_components.search(rep_var);
  2440   assert( comp != NULL, "Replacement variable not found in components");
  2441   // Lookup operand form for replacement variable's type
  2442   const char      *type = comp->_type;
  2443   Form            *form = (Form*)globals[type];
  2444   assert( form != NULL, "Replacement variable's type not found");
  2445   OperandForm     *op   = form->is_operand();
  2446   assert( op, "Memory Interface 'disp' can only emit an operand form");
  2447   // Check if this is a ConP, which may require relocation
  2448   if ( op->is_base_constant(globals) == Form::idealP ) {
  2449     // Find the constant's index:  _c0, _c1, _c2, ... , _cN
  2450     uint idx  = op->constant_position( globals, rep_var);
  2451     fprintf(fp,"  virtual relocInfo::relocType disp_reloc() const {");
  2452     fprintf(fp,  "  return _c%d->reloc();", idx);
  2453     fprintf(fp, " }\n");
  2457 // Generate code for internal and external format methods
  2458 //
  2459 // internal access to reg# node->_idx
  2460 // access to subsumed constant _c0, _c1,
  2461 void  OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
  2462   Form::DataType dtype;
  2463   if (_matrule && (_matrule->is_base_register(globals) ||
  2464                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
  2465     // !!!!! !!!!!
  2466     fprintf(fp,"  { char reg_str[128];\n");
  2467     fprintf(fp,"    ra->dump_register(node,reg_str);\n");
  2468     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
  2469     fprintf(fp,"  }\n");
  2470   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
  2471     format_constant( fp, index, dtype );
  2472   } else if (ideal_to_sReg_type(_ident) != Form::none) {
  2473     // Special format for Stack Slot Register
  2474     fprintf(fp,"  { char reg_str[128];\n");
  2475     fprintf(fp,"    ra->dump_register(node,reg_str);\n");
  2476     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
  2477     fprintf(fp,"  }\n");
  2478   } else {
  2479     fprintf(fp,"  st->print(\"No format defined for %s\n\");\n", _ident);
  2480     fflush(fp);
  2481     fprintf(stderr,"No format defined for %s\n", _ident);
  2482     dump();
  2483     assert( false,"Internal error:\n  output_internal_operand() attempting to output other than a Register or Constant");
  2487 // Similar to "int_format" but for cases where data is external to operand
  2488 // external access to reg# node->in(idx)->_idx,
  2489 void  OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
  2490   Form::DataType dtype;
  2491   if (_matrule && (_matrule->is_base_register(globals) ||
  2492                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
  2493     fprintf(fp,"  { char reg_str[128];\n");
  2494     fprintf(fp,"    ra->dump_register(node->in(idx");
  2495     if ( index != 0 ) fprintf(fp,              "+%d",index);
  2496     fprintf(fp,                                      "),reg_str);\n");
  2497     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
  2498     fprintf(fp,"  }\n");
  2499   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
  2500     format_constant( fp, index, dtype );
  2501   } else if (ideal_to_sReg_type(_ident) != Form::none) {
  2502     // Special format for Stack Slot Register
  2503     fprintf(fp,"  { char reg_str[128];\n");
  2504     fprintf(fp,"    ra->dump_register(node->in(idx");
  2505     if ( index != 0 ) fprintf(fp,                  "+%d",index);
  2506     fprintf(fp,                                       "),reg_str);\n");
  2507     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
  2508     fprintf(fp,"  }\n");
  2509   } else {
  2510     fprintf(fp,"  st->print(\"No format defined for %s\n\");\n", _ident);
  2511     assert( false,"Internal error:\n  output_external_operand() attempting to output other than a Register or Constant");
  2515 void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
  2516   switch(const_type) {
  2517   case Form::idealI: fprintf(fp,"  st->print(\"#%%d\", _c%d);\n", const_index); break;
  2518   case Form::idealP: fprintf(fp,"  if (_c%d) _c%d->dump_on(st);\n", const_index, const_index); break;
  2519   case Form::idealNKlass:
  2520   case Form::idealN: fprintf(fp,"  if (_c%d) _c%d->dump_on(st);\n", const_index, const_index); break;
  2521   case Form::idealL: fprintf(fp,"  st->print(\"#%%lld\", _c%d);\n", const_index); break;
  2522   case Form::idealF: fprintf(fp,"  st->print(\"#%%f\", _c%d);\n", const_index); break;
  2523   case Form::idealD: fprintf(fp,"  st->print(\"#%%f\", _c%d);\n", const_index); break;
  2524   default:
  2525     assert( false, "ShouldNotReachHere()");
  2529 // Return the operand form corresponding to the given index, else NULL.
  2530 OperandForm *OperandForm::constant_operand(FormDict &globals,
  2531                                            uint      index) {
  2532   // !!!!!
  2533   // Check behavior on complex operands
  2534   uint n_consts = num_consts(globals);
  2535   if( n_consts > 0 ) {
  2536     uint i = 0;
  2537     const char *type;
  2538     Component  *comp;
  2539     _components.reset();
  2540     if ((comp = _components.iter()) == NULL) {
  2541       assert(n_consts == 1, "Bad component list detected.\n");
  2542       // Current operand is THE operand
  2543       if ( index == 0 ) {
  2544         return this;
  2546     } // end if NULL
  2547     else {
  2548       // Skip the first component, it can not be a DEF of a constant
  2549       do {
  2550         type = comp->base_type(globals);
  2551         // Check that "type" is a 'ConI', 'ConP', ...
  2552         if ( ideal_to_const_type(type) != Form::none ) {
  2553           // When at correct component, get corresponding Operand
  2554           if ( index == 0 ) {
  2555             return globals[comp->_type]->is_operand();
  2557           // Decrement number of constants to go
  2558           --index;
  2560       } while((comp = _components.iter()) != NULL);
  2564   // Did not find a constant for this index.
  2565   return NULL;
  2568 // If this operand has a single ideal type, return its type
  2569 Form::DataType OperandForm::simple_type(FormDict &globals) const {
  2570   const char *type_name = ideal_type(globals);
  2571   Form::DataType type   = type_name ? ideal_to_const_type( type_name )
  2572                                     : Form::none;
  2573   return type;
  2576 Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
  2577   if ( _matrule == NULL )    return Form::none;
  2579   return _matrule->is_base_constant(globals);
  2582 // "true" if this operand is a simple type that is swallowed
  2583 bool  OperandForm::swallowed(FormDict &globals) const {
  2584   Form::DataType type   = simple_type(globals);
  2585   if( type != Form::none ) {
  2586     return true;
  2589   return false;
  2592 // Output code to access the value of the index'th constant
  2593 void OperandForm::access_constant(FILE *fp, FormDict &globals,
  2594                                   uint const_index) {
  2595   OperandForm *oper = constant_operand(globals, const_index);
  2596   assert( oper, "Index exceeds number of constants in operand");
  2597   Form::DataType dtype = oper->is_base_constant(globals);
  2599   switch(dtype) {
  2600   case idealI: fprintf(fp,"_c%d",           const_index); break;
  2601   case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
  2602   case idealL: fprintf(fp,"_c%d",           const_index); break;
  2603   case idealF: fprintf(fp,"_c%d",           const_index); break;
  2604   case idealD: fprintf(fp,"_c%d",           const_index); break;
  2605   default:
  2606     assert( false, "ShouldNotReachHere()");
  2611 void OperandForm::dump() {
  2612   output(stderr);
  2615 void OperandForm::output(FILE *fp) {
  2616   fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
  2617   if (_matrule)    _matrule->dump();
  2618   if (_interface)  _interface->dump();
  2619   if (_attribs)    _attribs->dump();
  2620   if (_predicate)  _predicate->dump();
  2621   if (_constraint) _constraint->dump();
  2622   if (_construct)  _construct->dump();
  2623   if (_format)     _format->dump();
  2626 //------------------------------Constraint-------------------------------------
  2627 Constraint::Constraint(const char *func, const char *arg)
  2628   : _func(func), _arg(arg) {
  2630 Constraint::~Constraint() { /* not owner of char* */
  2633 bool Constraint::stack_slots_only() const {
  2634   return strcmp(_func, "ALLOC_IN_RC") == 0
  2635       && strcmp(_arg,  "stack_slots") == 0;
  2638 void Constraint::dump() {
  2639   output(stderr);
  2642 void Constraint::output(FILE *fp) {           // Write info to output files
  2643   assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
  2644   fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg);
  2647 //------------------------------Predicate--------------------------------------
  2648 Predicate::Predicate(char *pr)
  2649   : _pred(pr) {
  2651 Predicate::~Predicate() {
  2654 void Predicate::dump() {
  2655   output(stderr);
  2658 void Predicate::output(FILE *fp) {
  2659   fprintf(fp,"Predicate");  // Write to output files
  2661 //------------------------------Interface--------------------------------------
  2662 Interface::Interface(const char *name) : _name(name) {
  2664 Interface::~Interface() {
  2667 Form::InterfaceType Interface::interface_type(FormDict &globals) const {
  2668   Interface *thsi = (Interface*)this;
  2669   if ( thsi->is_RegInterface()   ) return Form::register_interface;
  2670   if ( thsi->is_MemInterface()   ) return Form::memory_interface;
  2671   if ( thsi->is_ConstInterface() ) return Form::constant_interface;
  2672   if ( thsi->is_CondInterface()  ) return Form::conditional_interface;
  2674   return Form::no_interface;
  2677 RegInterface   *Interface::is_RegInterface() {
  2678   if ( strcmp(_name,"REG_INTER") != 0 )
  2679     return NULL;
  2680   return (RegInterface*)this;
  2682 MemInterface   *Interface::is_MemInterface() {
  2683   if ( strcmp(_name,"MEMORY_INTER") != 0 )  return NULL;
  2684   return (MemInterface*)this;
  2686 ConstInterface *Interface::is_ConstInterface() {
  2687   if ( strcmp(_name,"CONST_INTER") != 0 )  return NULL;
  2688   return (ConstInterface*)this;
  2690 CondInterface  *Interface::is_CondInterface() {
  2691   if ( strcmp(_name,"COND_INTER") != 0 )  return NULL;
  2692   return (CondInterface*)this;
  2696 void Interface::dump() {
  2697   output(stderr);
  2700 // Write info to output files
  2701 void Interface::output(FILE *fp) {
  2702   fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
  2705 //------------------------------RegInterface-----------------------------------
  2706 RegInterface::RegInterface() : Interface("REG_INTER") {
  2708 RegInterface::~RegInterface() {
  2711 void RegInterface::dump() {
  2712   output(stderr);
  2715 // Write info to output files
  2716 void RegInterface::output(FILE *fp) {
  2717   Interface::output(fp);
  2720 //------------------------------ConstInterface---------------------------------
  2721 ConstInterface::ConstInterface() : Interface("CONST_INTER") {
  2723 ConstInterface::~ConstInterface() {
  2726 void ConstInterface::dump() {
  2727   output(stderr);
  2730 // Write info to output files
  2731 void ConstInterface::output(FILE *fp) {
  2732   Interface::output(fp);
  2735 //------------------------------MemInterface-----------------------------------
  2736 MemInterface::MemInterface(char *base, char *index, char *scale, char *disp)
  2737   : Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
  2739 MemInterface::~MemInterface() {
  2740   // not owner of any character arrays
  2743 void MemInterface::dump() {
  2744   output(stderr);
  2747 // Write info to output files
  2748 void MemInterface::output(FILE *fp) {
  2749   Interface::output(fp);
  2750   if ( _base  != NULL ) fprintf(fp,"  base  == %s\n", _base);
  2751   if ( _index != NULL ) fprintf(fp,"  index == %s\n", _index);
  2752   if ( _scale != NULL ) fprintf(fp,"  scale == %s\n", _scale);
  2753   if ( _disp  != NULL ) fprintf(fp,"  disp  == %s\n", _disp);
  2754   // fprintf(fp,"\n");
  2757 //------------------------------CondInterface----------------------------------
  2758 CondInterface::CondInterface(const char* equal,         const char* equal_format,
  2759                              const char* not_equal,     const char* not_equal_format,
  2760                              const char* less,          const char* less_format,
  2761                              const char* greater_equal, const char* greater_equal_format,
  2762                              const char* less_equal,    const char* less_equal_format,
  2763                              const char* greater,       const char* greater_format,
  2764                              const char* overflow,      const char* overflow_format,
  2765                              const char* no_overflow,   const char* no_overflow_format)
  2766   : Interface("COND_INTER"),
  2767     _equal(equal),                 _equal_format(equal_format),
  2768     _not_equal(not_equal),         _not_equal_format(not_equal_format),
  2769     _less(less),                   _less_format(less_format),
  2770     _greater_equal(greater_equal), _greater_equal_format(greater_equal_format),
  2771     _less_equal(less_equal),       _less_equal_format(less_equal_format),
  2772     _greater(greater),             _greater_format(greater_format),
  2773     _overflow(overflow),           _overflow_format(overflow_format),
  2774     _no_overflow(no_overflow),     _no_overflow_format(no_overflow_format) {
  2776 CondInterface::~CondInterface() {
  2777   // not owner of any character arrays
  2780 void CondInterface::dump() {
  2781   output(stderr);
  2784 // Write info to output files
  2785 void CondInterface::output(FILE *fp) {
  2786   Interface::output(fp);
  2787   if ( _equal  != NULL )     fprintf(fp," equal        == %s\n", _equal);
  2788   if ( _not_equal  != NULL ) fprintf(fp," not_equal    == %s\n", _not_equal);
  2789   if ( _less  != NULL )      fprintf(fp," less         == %s\n", _less);
  2790   if ( _greater_equal  != NULL ) fprintf(fp," greater_equal    == %s\n", _greater_equal);
  2791   if ( _less_equal  != NULL ) fprintf(fp," less_equal   == %s\n", _less_equal);
  2792   if ( _greater  != NULL )    fprintf(fp," greater      == %s\n", _greater);
  2793   if ( _overflow != NULL )    fprintf(fp," overflow     == %s\n", _overflow);
  2794   if ( _no_overflow != NULL ) fprintf(fp," no_overflow  == %s\n", _no_overflow);
  2795   // fprintf(fp,"\n");
  2798 //------------------------------ConstructRule----------------------------------
  2799 ConstructRule::ConstructRule(char *cnstr)
  2800   : _construct(cnstr) {
  2802 ConstructRule::~ConstructRule() {
  2805 void ConstructRule::dump() {
  2806   output(stderr);
  2809 void ConstructRule::output(FILE *fp) {
  2810   fprintf(fp,"\nConstruct Rule\n");  // Write to output files
  2814 //==============================Shared Forms===================================
  2815 //------------------------------AttributeForm----------------------------------
  2816 int         AttributeForm::_insId   = 0;           // start counter at 0
  2817 int         AttributeForm::_opId    = 0;           // start counter at 0
  2818 const char* AttributeForm::_ins_cost = "ins_cost"; // required name
  2819 const char* AttributeForm::_op_cost  = "op_cost";  // required name
  2821 AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
  2822   : Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
  2823     if (type==OP_ATTR) {
  2824       id = ++_opId;
  2826     else if (type==INS_ATTR) {
  2827       id = ++_insId;
  2829     else assert( false,"");
  2831 AttributeForm::~AttributeForm() {
  2834 // Dynamic type check
  2835 AttributeForm *AttributeForm::is_attribute() const {
  2836   return (AttributeForm*)this;
  2840 // inlined  // int  AttributeForm::type() { return id;}
  2842 void AttributeForm::dump() {
  2843   output(stderr);
  2846 void AttributeForm::output(FILE *fp) {
  2847   if( _attrname && _attrdef ) {
  2848     fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
  2849             _attrname, _attrdef);
  2851   else {
  2852     fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
  2853             (_attrname?_attrname:""), (_attrdef?_attrdef:"") );
  2857 //------------------------------Component--------------------------------------
  2858 Component::Component(const char *name, const char *type, int usedef)
  2859   : _name(name), _type(type), _usedef(usedef) {
  2860     _ftype = Form::COMP;
  2862 Component::~Component() {
  2865 // True if this component is equal to the parameter.
  2866 bool Component::is(int use_def_kill_enum) const {
  2867   return (_usedef == use_def_kill_enum ? true : false);
  2869 // True if this component is used/def'd/kill'd as the parameter suggests.
  2870 bool Component::isa(int use_def_kill_enum) const {
  2871   return (_usedef & use_def_kill_enum) == use_def_kill_enum;
  2874 // Extend this component with additional use/def/kill behavior
  2875 int Component::promote_use_def_info(int new_use_def) {
  2876   _usedef |= new_use_def;
  2878   return _usedef;
  2881 // Check the base type of this component, if it has one
  2882 const char *Component::base_type(FormDict &globals) {
  2883   const Form *frm = globals[_type];
  2884   if (frm == NULL) return NULL;
  2885   OperandForm *op = frm->is_operand();
  2886   if (op == NULL) return NULL;
  2887   if (op->ideal_only()) return op->_ident;
  2888   return (char *)op->ideal_type(globals);
  2891 void Component::dump() {
  2892   output(stderr);
  2895 void Component::output(FILE *fp) {
  2896   fprintf(fp,"Component:");  // Write to output files
  2897   fprintf(fp, "  name = %s", _name);
  2898   fprintf(fp, ", type = %s", _type);
  2899   assert(_usedef != 0, "unknown effect");
  2900   fprintf(fp, ", use/def = %s\n", getUsedefName());
  2904 //------------------------------ComponentList---------------------------------
  2905 ComponentList::ComponentList() : NameList(), _matchcnt(0) {
  2907 ComponentList::~ComponentList() {
  2908   // // This list may not own its elements if copied via assignment
  2909   // Component *component;
  2910   // for (reset(); (component = iter()) != NULL;) {
  2911   //   delete component;
  2912   // }
  2915 void   ComponentList::insert(Component *component, bool mflag) {
  2916   NameList::addName((char *)component);
  2917   if(mflag) _matchcnt++;
  2919 void   ComponentList::insert(const char *name, const char *opType, int usedef,
  2920                              bool mflag) {
  2921   Component * component = new Component(name, opType, usedef);
  2922   insert(component, mflag);
  2924 Component *ComponentList::current() { return (Component*)NameList::current(); }
  2925 Component *ComponentList::iter()    { return (Component*)NameList::iter(); }
  2926 Component *ComponentList::match_iter() {
  2927   if(_iter < _matchcnt) return (Component*)NameList::iter();
  2928   return NULL;
  2930 Component *ComponentList::post_match_iter() {
  2931   Component *comp = iter();
  2932   // At end of list?
  2933   if ( comp == NULL ) {
  2934     return comp;
  2936   // In post-match components?
  2937   if (_iter > match_count()-1) {
  2938     return comp;
  2941   return post_match_iter();
  2944 void       ComponentList::reset()   { NameList::reset(); }
  2945 int        ComponentList::count()   { return NameList::count(); }
  2947 Component *ComponentList::operator[](int position) {
  2948   // Shortcut complete iteration if there are not enough entries
  2949   if (position >= count()) return NULL;
  2951   int        index     = 0;
  2952   Component *component = NULL;
  2953   for (reset(); (component = iter()) != NULL;) {
  2954     if (index == position) {
  2955       return component;
  2957     ++index;
  2960   return NULL;
  2963 const Component *ComponentList::search(const char *name) {
  2964   PreserveIter pi(this);
  2965   reset();
  2966   for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
  2967     if( strcmp(comp->_name,name) == 0 ) return comp;
  2970   return NULL;
  2973 // Return number of USEs + number of DEFs
  2974 // When there are no components, or the first component is a USE,
  2975 // then we add '1' to hold a space for the 'result' operand.
  2976 int ComponentList::num_operands() {
  2977   PreserveIter pi(this);
  2978   uint       count = 1;           // result operand
  2979   uint       position = 0;
  2981   Component *component  = NULL;
  2982   for( reset(); (component = iter()) != NULL; ++position ) {
  2983     if( component->isa(Component::USE) ||
  2984         ( position == 0 && (! component->isa(Component::DEF))) ) {
  2985       ++count;
  2989   return count;
  2992 // Return zero-based position of operand 'name' in list;  -1 if not in list.
  2993 // if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
  2994 int ComponentList::operand_position(const char *name, int usedef, Form *fm) {
  2995   PreserveIter pi(this);
  2996   int position = 0;
  2997   int num_opnds = num_operands();
  2998   Component *component;
  2999   Component* preceding_non_use = NULL;
  3000   Component* first_def = NULL;
  3001   for (reset(); (component = iter()) != NULL; ++position) {
  3002     // When the first component is not a DEF,
  3003     // leave space for the result operand!
  3004     if ( position==0 && (! component->isa(Component::DEF)) ) {
  3005       ++position;
  3006       ++num_opnds;
  3008     if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
  3009       // When the first entry in the component list is a DEF and a USE
  3010       // Treat them as being separate, a DEF first, then a USE
  3011       if( position==0
  3012           && usedef==Component::USE && component->isa(Component::DEF) ) {
  3013         assert(position+1 < num_opnds, "advertised index in bounds");
  3014         return position+1;
  3015       } else {
  3016         if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
  3017           fprintf(stderr, "the name '%s(%s)' should not precede the name '%s(%s)'",
  3018                   preceding_non_use->_name, preceding_non_use->getUsedefName(),
  3019                   name, component->getUsedefName());
  3020           if (fm && fm->is_instruction()) fprintf(stderr,  "in form '%s'", fm->is_instruction()->_ident);
  3021           if (fm && fm->is_operand()) fprintf(stderr,  "in form '%s'", fm->is_operand()->_ident);
  3022           fprintf(stderr,  "\n");
  3024         if( position >= num_opnds ) {
  3025           fprintf(stderr, "the name '%s' is too late in its name list", name);
  3026           if (fm && fm->is_instruction()) fprintf(stderr,  "in form '%s'", fm->is_instruction()->_ident);
  3027           if (fm && fm->is_operand()) fprintf(stderr,  "in form '%s'", fm->is_operand()->_ident);
  3028           fprintf(stderr,  "\n");
  3030         assert(position < num_opnds, "advertised index in bounds");
  3031         return position;
  3034     if( component->isa(Component::DEF)
  3035         && component->isa(Component::USE) ) {
  3036       ++position;
  3037       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  3039     if( component->isa(Component::DEF) && !first_def ) {
  3040       first_def = component;
  3042     if( !component->isa(Component::USE) && component != first_def ) {
  3043       preceding_non_use = component;
  3044     } else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
  3045       preceding_non_use = NULL;
  3048   return Not_in_list;
  3051 // Find position for this name, regardless of use/def information
  3052 int ComponentList::operand_position(const char *name) {
  3053   PreserveIter pi(this);
  3054   int position = 0;
  3055   Component *component;
  3056   for (reset(); (component = iter()) != NULL; ++position) {
  3057     // When the first component is not a DEF,
  3058     // leave space for the result operand!
  3059     if ( position==0 && (! component->isa(Component::DEF)) ) {
  3060       ++position;
  3062     if (strcmp(name, component->_name)==0) {
  3063       return position;
  3065     if( component->isa(Component::DEF)
  3066         && component->isa(Component::USE) ) {
  3067       ++position;
  3068       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  3071   return Not_in_list;
  3074 int ComponentList::operand_position_format(const char *name, Form *fm) {
  3075   PreserveIter pi(this);
  3076   int  first_position = operand_position(name);
  3077   int  use_position   = operand_position(name, Component::USE, fm);
  3079   return ((first_position < use_position) ? use_position : first_position);
  3082 int ComponentList::label_position() {
  3083   PreserveIter pi(this);
  3084   int position = 0;
  3085   reset();
  3086   for( Component *comp; (comp = iter()) != NULL; ++position) {
  3087     // When the first component is not a DEF,
  3088     // leave space for the result operand!
  3089     if ( position==0 && (! comp->isa(Component::DEF)) ) {
  3090       ++position;
  3092     if (strcmp(comp->_type, "label")==0) {
  3093       return position;
  3095     if( comp->isa(Component::DEF)
  3096         && comp->isa(Component::USE) ) {
  3097       ++position;
  3098       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  3102   return -1;
  3105 int ComponentList::method_position() {
  3106   PreserveIter pi(this);
  3107   int position = 0;
  3108   reset();
  3109   for( Component *comp; (comp = iter()) != NULL; ++position) {
  3110     // When the first component is not a DEF,
  3111     // leave space for the result operand!
  3112     if ( position==0 && (! comp->isa(Component::DEF)) ) {
  3113       ++position;
  3115     if (strcmp(comp->_type, "method")==0) {
  3116       return position;
  3118     if( comp->isa(Component::DEF)
  3119         && comp->isa(Component::USE) ) {
  3120       ++position;
  3121       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  3125   return -1;
  3128 void ComponentList::dump() { output(stderr); }
  3130 void ComponentList::output(FILE *fp) {
  3131   PreserveIter pi(this);
  3132   fprintf(fp, "\n");
  3133   Component *component;
  3134   for (reset(); (component = iter()) != NULL;) {
  3135     component->output(fp);
  3137   fprintf(fp, "\n");
  3140 //------------------------------MatchNode--------------------------------------
  3141 MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
  3142                      const char *opType, MatchNode *lChild, MatchNode *rChild)
  3143   : _AD(ad), _result(result), _name(mexpr), _opType(opType),
  3144     _lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0),
  3145     _commutative_id(0) {
  3146   _numleaves = (lChild ? lChild->_numleaves : 0)
  3147                + (rChild ? rChild->_numleaves : 0);
  3150 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode)
  3151   : _AD(ad), _result(mnode._result), _name(mnode._name),
  3152     _opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild),
  3153     _internalop(0), _numleaves(mnode._numleaves),
  3154     _commutative_id(mnode._commutative_id) {
  3157 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone)
  3158   : _AD(ad), _result(mnode._result), _name(mnode._name),
  3159     _opType(mnode._opType),
  3160     _internalop(0), _numleaves(mnode._numleaves),
  3161     _commutative_id(mnode._commutative_id) {
  3162   if (mnode._lChild) {
  3163     _lChild = new MatchNode(ad, *mnode._lChild, clone);
  3164   } else {
  3165     _lChild = NULL;
  3167   if (mnode._rChild) {
  3168     _rChild = new MatchNode(ad, *mnode._rChild, clone);
  3169   } else {
  3170     _rChild = NULL;
  3174 MatchNode::~MatchNode() {
  3175   // // This node may not own its children if copied via assignment
  3176   // if( _lChild ) delete _lChild;
  3177   // if( _rChild ) delete _rChild;
  3180 bool  MatchNode::find_type(const char *type, int &position) const {
  3181   if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
  3182   if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;
  3184   if (strcmp(type,_opType)==0)  {
  3185     return true;
  3186   } else {
  3187     ++position;
  3189   return false;
  3192 // Recursive call collecting info on top-level operands, not transitive.
  3193 // Implementation does not modify state of internal structures.
  3194 void MatchNode::append_components(FormDict& locals, ComponentList& components,
  3195                                   bool def_flag) const {
  3196   int usedef = def_flag ? Component::DEF : Component::USE;
  3197   FormDict &globals = _AD.globalNames();
  3199   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
  3200   // Base case
  3201   if (_lChild==NULL && _rChild==NULL) {
  3202     // If _opType is not an operation, do not build a component for it #####
  3203     const Form *f = globals[_opType];
  3204     if( f != NULL ) {
  3205       // Add non-ideals that are operands, operand-classes,
  3206       if( ! f->ideal_only()
  3207           && (f->is_opclass() || f->is_operand()) ) {
  3208         components.insert(_name, _opType, usedef, true);
  3211     return;
  3213   // Promote results of "Set" to DEF
  3214   bool tmpdef_flag = (!strcmp(_opType, "Set")) ? true : false;
  3215   if (_lChild) _lChild->append_components(locals, components, tmpdef_flag);
  3216   tmpdef_flag = false;   // only applies to component immediately following 'Set'
  3217   if (_rChild) _rChild->append_components(locals, components, tmpdef_flag);
  3220 // Find the n'th base-operand in the match node,
  3221 // recursively investigates match rules of user-defined operands.
  3222 //
  3223 // Implementation does not modify state of internal structures since they
  3224 // can be shared.
  3225 bool MatchNode::base_operand(uint &position, FormDict &globals,
  3226                              const char * &result, const char * &name,
  3227                              const char * &opType) const {
  3228   assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
  3229   // Base case
  3230   if (_lChild==NULL && _rChild==NULL) {
  3231     // Check for special case: "Universe", "label"
  3232     if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
  3233       if (position == 0) {
  3234         result = _result;
  3235         name   = _name;
  3236         opType = _opType;
  3237         return 1;
  3238       } else {
  3239         -- position;
  3240         return 0;
  3244     const Form *form = globals[_opType];
  3245     MatchNode *matchNode = NULL;
  3246     // Check for user-defined type
  3247     if (form) {
  3248       // User operand or instruction?
  3249       OperandForm  *opForm = form->is_operand();
  3250       InstructForm *inForm = form->is_instruction();
  3251       if ( opForm ) {
  3252         matchNode = (MatchNode*)opForm->_matrule;
  3253       } else if ( inForm ) {
  3254         matchNode = (MatchNode*)inForm->_matrule;
  3257     // if this is user-defined, recurse on match rule
  3258     // User-defined operand and instruction forms have a match-rule.
  3259     if (matchNode) {
  3260       return (matchNode->base_operand(position,globals,result,name,opType));
  3261     } else {
  3262       // Either not a form, or a system-defined form (no match rule).
  3263       if (position==0) {
  3264         result = _result;
  3265         name   = _name;
  3266         opType = _opType;
  3267         return 1;
  3268       } else {
  3269         --position;
  3270         return 0;
  3274   } else {
  3275     // Examine the left child and right child as well
  3276     if (_lChild) {
  3277       if (_lChild->base_operand(position, globals, result, name, opType))
  3278         return 1;
  3281     if (_rChild) {
  3282       if (_rChild->base_operand(position, globals, result, name, opType))
  3283         return 1;
  3287   return 0;
  3290 // Recursive call on all operands' match rules in my match rule.
  3291 uint  MatchNode::num_consts(FormDict &globals) const {
  3292   uint        index      = 0;
  3293   uint        num_consts = 0;
  3294   const char *result;
  3295   const char *name;
  3296   const char *opType;
  3298   for (uint position = index;
  3299        base_operand(position,globals,result,name,opType); position = index) {
  3300     ++index;
  3301     if( ideal_to_const_type(opType) )        num_consts++;
  3304   return num_consts;
  3307 // Recursive call on all operands' match rules in my match rule.
  3308 // Constants in match rule subtree with specified type
  3309 uint  MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
  3310   uint        index      = 0;
  3311   uint        num_consts = 0;
  3312   const char *result;
  3313   const char *name;
  3314   const char *opType;
  3316   for (uint position = index;
  3317        base_operand(position,globals,result,name,opType); position = index) {
  3318     ++index;
  3319     if( ideal_to_const_type(opType) == type ) num_consts++;
  3322   return num_consts;
  3325 // Recursive call on all operands' match rules in my match rule.
  3326 uint  MatchNode::num_const_ptrs(FormDict &globals) const {
  3327   return  num_consts( globals, Form::idealP );
  3330 bool  MatchNode::sets_result() const {
  3331   return   ( (strcmp(_name,"Set") == 0) ? true : false );
  3334 const char *MatchNode::reduce_right(FormDict &globals) const {
  3335   // If there is no right reduction, return NULL.
  3336   const char      *rightStr    = NULL;
  3338   // If we are a "Set", start from the right child.
  3339   const MatchNode *const mnode = sets_result() ?
  3340     (const MatchNode *)this->_rChild :
  3341     (const MatchNode *)this;
  3343   // If our right child exists, it is the right reduction
  3344   if ( mnode->_rChild ) {
  3345     rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
  3346       : mnode->_rChild->_opType;
  3348   // Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
  3349   return rightStr;
  3352 const char *MatchNode::reduce_left(FormDict &globals) const {
  3353   // If there is no left reduction, return NULL.
  3354   const char  *leftStr  = NULL;
  3356   // If we are a "Set", start from the right child.
  3357   const MatchNode *const mnode = sets_result() ?
  3358     (const MatchNode *)this->_rChild :
  3359     (const MatchNode *)this;
  3361   // If our left child exists, it is the left reduction
  3362   if ( mnode->_lChild ) {
  3363     leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
  3364       : mnode->_lChild->_opType;
  3365   } else {
  3366     // May be simple chain rule: (Set dst operand_form_source)
  3367     if ( sets_result() ) {
  3368       OperandForm *oper = globals[mnode->_opType]->is_operand();
  3369       if( oper ) {
  3370         leftStr = mnode->_opType;
  3374   return leftStr;
  3377 //------------------------------count_instr_names------------------------------
  3378 // Count occurrences of operands names in the leaves of the instruction
  3379 // match rule.
  3380 void MatchNode::count_instr_names( Dict &names ) {
  3381   if( !this ) return;
  3382   if( _lChild ) _lChild->count_instr_names(names);
  3383   if( _rChild ) _rChild->count_instr_names(names);
  3384   if( !_lChild && !_rChild ) {
  3385     uintptr_t cnt = (uintptr_t)names[_name];
  3386     cnt++;                      // One more name found
  3387     names.Insert(_name,(void*)cnt);
  3391 //------------------------------build_instr_pred-------------------------------
  3392 // Build a path to 'name' in buf.  Actually only build if cnt is zero, so we
  3393 // can skip some leading instances of 'name'.
  3394 int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
  3395   if( _lChild ) {
  3396     if( !cnt ) strcpy( buf, "_kids[0]->" );
  3397     cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
  3398     if( cnt < 0 ) return cnt;   // Found it, all done
  3400   if( _rChild ) {
  3401     if( !cnt ) strcpy( buf, "_kids[1]->" );
  3402     cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
  3403     if( cnt < 0 ) return cnt;   // Found it, all done
  3405   if( !_lChild && !_rChild ) {  // Found a leaf
  3406     // Wrong name?  Give up...
  3407     if( strcmp(name,_name) ) return cnt;
  3408     if( !cnt ) strcpy(buf,"_leaf");
  3409     return cnt-1;
  3411   return cnt;
  3415 //------------------------------build_internalop-------------------------------
  3416 // Build string representation of subtree
  3417 void MatchNode::build_internalop( ) {
  3418   char *iop, *subtree;
  3419   const char *lstr, *rstr;
  3420   // Build string representation of subtree
  3421   // Operation lchildType rchildType
  3422   int len = (int)strlen(_opType) + 4;
  3423   lstr = (_lChild) ? ((_lChild->_internalop) ?
  3424                        _lChild->_internalop : _lChild->_opType) : "";
  3425   rstr = (_rChild) ? ((_rChild->_internalop) ?
  3426                        _rChild->_internalop : _rChild->_opType) : "";
  3427   len += (int)strlen(lstr) + (int)strlen(rstr);
  3428   subtree = (char *)malloc(len);
  3429   sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
  3430   // Hash the subtree string in _internalOps; if a name exists, use it
  3431   iop = (char *)_AD._internalOps[subtree];
  3432   // Else create a unique name, and add it to the hash table
  3433   if (iop == NULL) {
  3434     iop = subtree;
  3435     _AD._internalOps.Insert(subtree, iop);
  3436     _AD._internalOpNames.addName(iop);
  3437     _AD._internalMatch.Insert(iop, this);
  3439   // Add the internal operand name to the MatchNode
  3440   _internalop = iop;
  3441   _result = iop;
  3445 void MatchNode::dump() {
  3446   output(stderr);
  3449 void MatchNode::output(FILE *fp) {
  3450   if (_lChild==0 && _rChild==0) {
  3451     fprintf(fp," %s",_name);    // operand
  3453   else {
  3454     fprintf(fp," (%s ",_name);  // " (opcodeName "
  3455     if(_lChild) _lChild->output(fp); //               left operand
  3456     if(_rChild) _rChild->output(fp); //                    right operand
  3457     fprintf(fp,")");                 //                                 ")"
  3461 int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
  3462   static const char *needs_ideal_memory_list[] = {
  3463     "StoreI","StoreL","StoreP","StoreN","StoreNKlass","StoreD","StoreF" ,
  3464     "StoreB","StoreC","Store" ,"StoreFP",
  3465     "LoadI", "LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF"  ,
  3466     "LoadB" , "LoadUB", "LoadUS" ,"LoadS" ,"Load" ,
  3467     "StoreVector", "LoadVector",
  3468     "LoadRange", "LoadKlass", "LoadNKlass", "LoadL_unaligned", "LoadD_unaligned",
  3469     "LoadPLocked",
  3470     "StorePConditional", "StoreIConditional", "StoreLConditional",
  3471     "CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN",
  3472     "StoreCM",
  3473     "ClearArray",
  3474     "GetAndAddI", "GetAndSetI", "GetAndSetP",
  3475     "GetAndAddL", "GetAndSetL", "GetAndSetN",
  3476   };
  3477   int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
  3478   if( strcmp(_opType,"PrefetchRead")==0 ||
  3479       strcmp(_opType,"PrefetchWrite")==0 ||
  3480       strcmp(_opType,"PrefetchAllocation")==0 )
  3481     return 1;
  3482   if( _lChild ) {
  3483     const char *opType = _lChild->_opType;
  3484     for( int i=0; i<cnt; i++ )
  3485       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
  3486         return 1;
  3487     if( _lChild->needs_ideal_memory_edge(globals) )
  3488       return 1;
  3490   if( _rChild ) {
  3491     const char *opType = _rChild->_opType;
  3492     for( int i=0; i<cnt; i++ )
  3493       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
  3494         return 1;
  3495     if( _rChild->needs_ideal_memory_edge(globals) )
  3496       return 1;
  3499   return 0;
  3502 // TRUE if defines a derived oop, and so needs a base oop edge present
  3503 // post-matching.
  3504 int MatchNode::needs_base_oop_edge() const {
  3505   if( !strcmp(_opType,"AddP") ) return 1;
  3506   if( strcmp(_opType,"Set") ) return 0;
  3507   return !strcmp(_rChild->_opType,"AddP");
  3510 int InstructForm::needs_base_oop_edge(FormDict &globals) const {
  3511   if( is_simple_chain_rule(globals) ) {
  3512     const char *src = _matrule->_rChild->_opType;
  3513     OperandForm *src_op = globals[src]->is_operand();
  3514     assert( src_op, "Not operand class of chain rule" );
  3515     return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
  3516   }                             // Else check instruction
  3518   return _matrule ? _matrule->needs_base_oop_edge() : 0;
  3522 //-------------------------cisc spilling methods-------------------------------
  3523 // helper routines and methods for detecting cisc-spilling instructions
  3524 //-------------------------cisc_spill_merge------------------------------------
  3525 int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
  3526   int cisc_spillable  = Maybe_cisc_spillable;
  3528   // Combine results of left and right checks
  3529   if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
  3530     // neither side is spillable, nor prevents cisc spilling
  3531     cisc_spillable = Maybe_cisc_spillable;
  3533   else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
  3534     // right side is spillable
  3535     cisc_spillable = right_spillable;
  3537   else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
  3538     // left side is spillable
  3539     cisc_spillable = left_spillable;
  3541   else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
  3542     // left or right prevents cisc spilling this instruction
  3543     cisc_spillable = Not_cisc_spillable;
  3545   else {
  3546     // Only allow one to spill
  3547     cisc_spillable = Not_cisc_spillable;
  3550   return cisc_spillable;
  3553 //-------------------------root_ops_match--------------------------------------
  3554 bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
  3555   // Base Case: check that the current operands/operations match
  3556   assert( op1, "Must have op's name");
  3557   assert( op2, "Must have op's name");
  3558   const Form *form1 = globals[op1];
  3559   const Form *form2 = globals[op2];
  3561   return (form1 == form2);
  3564 //-------------------------cisc_spill_match_node-------------------------------
  3565 // Recursively check two MatchRules for legal conversion via cisc-spilling
  3566 int MatchNode::cisc_spill_match(FormDict& globals, RegisterForm* registers, MatchNode* mRule2, const char* &operand, const char* &reg_type) {
  3567   int cisc_spillable  = Maybe_cisc_spillable;
  3568   int left_spillable  = Maybe_cisc_spillable;
  3569   int right_spillable = Maybe_cisc_spillable;
  3571   // Check that each has same number of operands at this level
  3572   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) )
  3573     return Not_cisc_spillable;
  3575   // Base Case: check that the current operands/operations match
  3576   // or are CISC spillable
  3577   assert( _opType, "Must have _opType");
  3578   assert( mRule2->_opType, "Must have _opType");
  3579   const Form *form  = globals[_opType];
  3580   const Form *form2 = globals[mRule2->_opType];
  3581   if( form == form2 ) {
  3582     cisc_spillable = Maybe_cisc_spillable;
  3583   } else {
  3584     const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
  3585     const char *name_left  = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
  3586     const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
  3587     DataType data_type = Form::none;
  3588     if (form->is_operand()) {
  3589       // Make sure the loadX matches the type of the reg
  3590       data_type = form->ideal_to_Reg_type(form->is_operand()->ideal_type(globals));
  3592     // Detect reg vs (loadX memory)
  3593     if( form->is_cisc_reg(globals)
  3594         && form2_inst
  3595         && data_type != Form::none
  3596         && (is_load_from_memory(mRule2->_opType) == data_type) // reg vs. (load memory)
  3597         && (name_left != NULL)       // NOT (load)
  3598         && (name_right == NULL) ) {  // NOT (load memory foo)
  3599       const Form *form2_left = name_left ? globals[name_left] : NULL;
  3600       if( form2_left && form2_left->is_cisc_mem(globals) ) {
  3601         cisc_spillable = Is_cisc_spillable;
  3602         operand        = _name;
  3603         reg_type       = _result;
  3604         return Is_cisc_spillable;
  3605       } else {
  3606         cisc_spillable = Not_cisc_spillable;
  3609     // Detect reg vs memory
  3610     else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) {
  3611       cisc_spillable = Is_cisc_spillable;
  3612       operand        = _name;
  3613       reg_type       = _result;
  3614       return Is_cisc_spillable;
  3615     } else {
  3616       cisc_spillable = Not_cisc_spillable;
  3620   // If cisc is still possible, check rest of tree
  3621   if( cisc_spillable == Maybe_cisc_spillable ) {
  3622     // Check that each has same number of operands at this level
  3623     if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
  3625     // Check left operands
  3626     if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
  3627       left_spillable = Maybe_cisc_spillable;
  3628     } else {
  3629       left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
  3632     // Check right operands
  3633     if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
  3634       right_spillable =  Maybe_cisc_spillable;
  3635     } else {
  3636       right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
  3639     // Combine results of left and right checks
  3640     cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
  3643   return cisc_spillable;
  3646 //---------------------------cisc_spill_match_rule------------------------------
  3647 // Recursively check two MatchRules for legal conversion via cisc-spilling
  3648 // This method handles the root of Match tree,
  3649 // general recursive checks done in MatchNode
  3650 int  MatchRule::matchrule_cisc_spill_match(FormDict& globals, RegisterForm* registers,
  3651                                            MatchRule* mRule2, const char* &operand,
  3652                                            const char* &reg_type) {
  3653   int cisc_spillable  = Maybe_cisc_spillable;
  3654   int left_spillable  = Maybe_cisc_spillable;
  3655   int right_spillable = Maybe_cisc_spillable;
  3657   // Check that each sets a result
  3658   if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
  3659   // Check that each has same number of operands at this level
  3660   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
  3662   // Check left operands: at root, must be target of 'Set'
  3663   if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
  3664     left_spillable = Not_cisc_spillable;
  3665   } else {
  3666     // Do not support cisc-spilling instruction's target location
  3667     if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
  3668       left_spillable = Maybe_cisc_spillable;
  3669     } else {
  3670       left_spillable = Not_cisc_spillable;
  3674   // Check right operands: recursive walk to identify reg->mem operand
  3675   if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
  3676     right_spillable =  Maybe_cisc_spillable;
  3677   } else {
  3678     right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
  3681   // Combine results of left and right checks
  3682   cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
  3684   return cisc_spillable;
  3687 //----------------------------- equivalent ------------------------------------
  3688 // Recursively check to see if two match rules are equivalent.
  3689 // This rule handles the root.
  3690 bool MatchRule::equivalent(FormDict &globals, MatchNode *mRule2) {
  3691   // Check that each sets a result
  3692   if (sets_result() != mRule2->sets_result()) {
  3693     return false;
  3696   // Check that the current operands/operations match
  3697   assert( _opType, "Must have _opType");
  3698   assert( mRule2->_opType, "Must have _opType");
  3699   const Form *form  = globals[_opType];
  3700   const Form *form2 = globals[mRule2->_opType];
  3701   if( form != form2 ) {
  3702     return false;
  3705   if (_lChild ) {
  3706     if( !_lChild->equivalent(globals, mRule2->_lChild) )
  3707       return false;
  3708   } else if (mRule2->_lChild) {
  3709     return false; // I have NULL left child, mRule2 has non-NULL left child.
  3712   if (_rChild ) {
  3713     if( !_rChild->equivalent(globals, mRule2->_rChild) )
  3714       return false;
  3715   } else if (mRule2->_rChild) {
  3716     return false; // I have NULL right child, mRule2 has non-NULL right child.
  3719   // We've made it through the gauntlet.
  3720   return true;
  3723 //----------------------------- equivalent ------------------------------------
  3724 // Recursively check to see if two match rules are equivalent.
  3725 // This rule handles the operands.
  3726 bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
  3727   if( !mNode2 )
  3728     return false;
  3730   // Check that the current operands/operations match
  3731   assert( _opType, "Must have _opType");
  3732   assert( mNode2->_opType, "Must have _opType");
  3733   const Form *form  = globals[_opType];
  3734   const Form *form2 = globals[mNode2->_opType];
  3735   if( form != form2 ) {
  3736     return false;
  3739   // Check that their children also match
  3740   if (_lChild ) {
  3741     if( !_lChild->equivalent(globals, mNode2->_lChild) )
  3742       return false;
  3743   } else if (mNode2->_lChild) {
  3744     return false; // I have NULL left child, mNode2 has non-NULL left child.
  3747   if (_rChild ) {
  3748     if( !_rChild->equivalent(globals, mNode2->_rChild) )
  3749       return false;
  3750   } else if (mNode2->_rChild) {
  3751     return false; // I have NULL right child, mNode2 has non-NULL right child.
  3754   // We've made it through the gauntlet.
  3755   return true;
  3758 //-------------------------- has_commutative_op -------------------------------
  3759 // Recursively check for commutative operations with subtree operands
  3760 // which could be swapped.
  3761 void MatchNode::count_commutative_op(int& count) {
  3762   static const char *commut_op_list[] = {
  3763     "AddI","AddL","AddF","AddD",
  3764     "AndI","AndL",
  3765     "MaxI","MinI",
  3766     "MulI","MulL","MulF","MulD",
  3767     "OrI" ,"OrL" ,
  3768     "XorI","XorL"
  3769   };
  3770   int cnt = sizeof(commut_op_list)/sizeof(char*);
  3772   if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
  3773     // Don't swap if right operand is an immediate constant.
  3774     bool is_const = false;
  3775     if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
  3776       FormDict &globals = _AD.globalNames();
  3777       const Form *form = globals[_rChild->_opType];
  3778       if ( form ) {
  3779         OperandForm  *oper = form->is_operand();
  3780         if( oper && oper->interface_type(globals) == Form::constant_interface )
  3781           is_const = true;
  3784     if( !is_const ) {
  3785       for( int i=0; i<cnt; i++ ) {
  3786         if( strcmp(_opType, commut_op_list[i]) == 0 ) {
  3787           count++;
  3788           _commutative_id = count; // id should be > 0
  3789           break;
  3794   if( _lChild )
  3795     _lChild->count_commutative_op(count);
  3796   if( _rChild )
  3797     _rChild->count_commutative_op(count);
  3800 //-------------------------- swap_commutative_op ------------------------------
  3801 // Recursively swap specified commutative operation with subtree operands.
  3802 void MatchNode::swap_commutative_op(bool atroot, int id) {
  3803   if( _commutative_id == id ) { // id should be > 0
  3804     assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ),
  3805             "not swappable operation");
  3806     MatchNode* tmp = _lChild;
  3807     _lChild = _rChild;
  3808     _rChild = tmp;
  3809     // Don't exit here since we need to build internalop.
  3812   bool is_set = ( strcmp(_opType, "Set") == 0 );
  3813   if( _lChild )
  3814     _lChild->swap_commutative_op(is_set, id);
  3815   if( _rChild )
  3816     _rChild->swap_commutative_op(is_set, id);
  3818   // If not the root, reduce this subtree to an internal operand
  3819   if( !atroot && (_lChild || _rChild) ) {
  3820     build_internalop();
  3824 //-------------------------- swap_commutative_op ------------------------------
  3825 // Recursively swap specified commutative operation with subtree operands.
  3826 void MatchRule::matchrule_swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
  3827   assert(match_rules_cnt < 100," too many match rule clones");
  3828   // Clone
  3829   MatchRule* clone = new MatchRule(_AD, this);
  3830   // Swap operands of commutative operation
  3831   ((MatchNode*)clone)->swap_commutative_op(true, count);
  3832   char* buf = (char*) malloc(strlen(instr_ident) + 4);
  3833   sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
  3834   clone->_result = buf;
  3836   clone->_next = this->_next;
  3837   this-> _next = clone;
  3838   if( (--count) > 0 ) {
  3839     this-> matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
  3840     clone->matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
  3844 //------------------------------MatchRule--------------------------------------
  3845 MatchRule::MatchRule(ArchDesc &ad)
  3846   : MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
  3847     _next = NULL;
  3850 MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
  3851   : MatchNode(ad, *mRule, 0), _depth(mRule->_depth),
  3852     _construct(mRule->_construct), _numchilds(mRule->_numchilds) {
  3853     _next = NULL;
  3856 MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
  3857                      int numleaves)
  3858   : MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
  3859     _numchilds(0) {
  3860       _next = NULL;
  3861       mroot->_lChild = NULL;
  3862       mroot->_rChild = NULL;
  3863       delete mroot;
  3864       _numleaves = numleaves;
  3865       _numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
  3867 MatchRule::~MatchRule() {
  3870 // Recursive call collecting info on top-level operands, not transitive.
  3871 // Implementation does not modify state of internal structures.
  3872 void MatchRule::append_components(FormDict& locals, ComponentList& components, bool def_flag) const {
  3873   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
  3875   MatchNode::append_components(locals, components,
  3876                                false /* not necessarily a def */);
  3879 // Recursive call on all operands' match rules in my match rule.
  3880 // Implementation does not modify state of internal structures  since they
  3881 // can be shared.
  3882 // The MatchNode that is called first treats its
  3883 bool MatchRule::base_operand(uint &position0, FormDict &globals,
  3884                              const char *&result, const char * &name,
  3885                              const char * &opType)const{
  3886   uint position = position0;
  3888   return (MatchNode::base_operand( position, globals, result, name, opType));
  3892 bool MatchRule::is_base_register(FormDict &globals) const {
  3893   uint   position = 1;
  3894   const char  *result   = NULL;
  3895   const char  *name     = NULL;
  3896   const char  *opType   = NULL;
  3897   if (!base_operand(position, globals, result, name, opType)) {
  3898     position = 0;
  3899     if( base_operand(position, globals, result, name, opType) &&
  3900         (strcmp(opType,"RegI")==0 ||
  3901          strcmp(opType,"RegP")==0 ||
  3902          strcmp(opType,"RegN")==0 ||
  3903          strcmp(opType,"RegL")==0 ||
  3904          strcmp(opType,"RegF")==0 ||
  3905          strcmp(opType,"RegD")==0 ||
  3906          strcmp(opType,"VecS")==0 ||
  3907          strcmp(opType,"VecD")==0 ||
  3908          strcmp(opType,"VecX")==0 ||
  3909          strcmp(opType,"VecY")==0 ||
  3910          strcmp(opType,"Reg" )==0) ) {
  3911       return 1;
  3914   return 0;
  3917 Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
  3918   uint         position = 1;
  3919   const char  *result   = NULL;
  3920   const char  *name     = NULL;
  3921   const char  *opType   = NULL;
  3922   if (!base_operand(position, globals, result, name, opType)) {
  3923     position = 0;
  3924     if (base_operand(position, globals, result, name, opType)) {
  3925       return ideal_to_const_type(opType);
  3928   return Form::none;
  3931 bool MatchRule::is_chain_rule(FormDict &globals) const {
  3933   // Check for chain rule, and do not generate a match list for it
  3934   if ((_lChild == NULL) && (_rChild == NULL) ) {
  3935     const Form *form = globals[_opType];
  3936     // If this is ideal, then it is a base match, not a chain rule.
  3937     if ( form && form->is_operand() && (!form->ideal_only())) {
  3938       return true;
  3941   // Check for "Set" form of chain rule, and do not generate a match list
  3942   if (_rChild) {
  3943     const char *rch = _rChild->_opType;
  3944     const Form *form = globals[rch];
  3945     if ((!strcmp(_opType,"Set") &&
  3946          ((form) && form->is_operand()))) {
  3947       return true;
  3950   return false;
  3953 int MatchRule::is_ideal_copy() const {
  3954   if( _rChild ) {
  3955     const char  *opType = _rChild->_opType;
  3956 #if 1
  3957     if( strcmp(opType,"CastIP")==0 )
  3958       return 1;
  3959 #else
  3960     if( strcmp(opType,"CastII")==0 )
  3961       return 1;
  3962     // Do not treat *CastPP this way, because it
  3963     // may transfer a raw pointer to an oop.
  3964     // If the register allocator were to coalesce this
  3965     // into a single LRG, the GC maps would be incorrect.
  3966     //if( strcmp(opType,"CastPP")==0 )
  3967     //  return 1;
  3968     //if( strcmp(opType,"CheckCastPP")==0 )
  3969     //  return 1;
  3970     //
  3971     // Do not treat CastX2P or CastP2X this way, because
  3972     // raw pointers and int types are treated differently
  3973     // when saving local & stack info for safepoints in
  3974     // Output().
  3975     //if( strcmp(opType,"CastX2P")==0 )
  3976     //  return 1;
  3977     //if( strcmp(opType,"CastP2X")==0 )
  3978     //  return 1;
  3979 #endif
  3981   if( is_chain_rule(_AD.globalNames()) &&
  3982       _lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 )
  3983     return 1;
  3984   return 0;
  3988 int MatchRule::is_expensive() const {
  3989   if( _rChild ) {
  3990     const char  *opType = _rChild->_opType;
  3991     if( strcmp(opType,"AtanD")==0 ||
  3992         strcmp(opType,"CosD")==0 ||
  3993         strcmp(opType,"DivD")==0 ||
  3994         strcmp(opType,"DivF")==0 ||
  3995         strcmp(opType,"DivI")==0 ||
  3996         strcmp(opType,"ExpD")==0 ||
  3997         strcmp(opType,"LogD")==0 ||
  3998         strcmp(opType,"Log10D")==0 ||
  3999         strcmp(opType,"ModD")==0 ||
  4000         strcmp(opType,"ModF")==0 ||
  4001         strcmp(opType,"ModI")==0 ||
  4002         strcmp(opType,"PowD")==0 ||
  4003         strcmp(opType,"SinD")==0 ||
  4004         strcmp(opType,"SqrtD")==0 ||
  4005         strcmp(opType,"TanD")==0 ||
  4006         strcmp(opType,"ConvD2F")==0 ||
  4007         strcmp(opType,"ConvD2I")==0 ||
  4008         strcmp(opType,"ConvD2L")==0 ||
  4009         strcmp(opType,"ConvF2D")==0 ||
  4010         strcmp(opType,"ConvF2I")==0 ||
  4011         strcmp(opType,"ConvF2L")==0 ||
  4012         strcmp(opType,"ConvI2D")==0 ||
  4013         strcmp(opType,"ConvI2F")==0 ||
  4014         strcmp(opType,"ConvI2L")==0 ||
  4015         strcmp(opType,"ConvL2D")==0 ||
  4016         strcmp(opType,"ConvL2F")==0 ||
  4017         strcmp(opType,"ConvL2I")==0 ||
  4018         strcmp(opType,"DecodeN")==0 ||
  4019         strcmp(opType,"EncodeP")==0 ||
  4020         strcmp(opType,"EncodePKlass")==0 ||
  4021         strcmp(opType,"DecodeNKlass")==0 ||
  4022         strcmp(opType,"RoundDouble")==0 ||
  4023         strcmp(opType,"RoundFloat")==0 ||
  4024         strcmp(opType,"ReverseBytesI")==0 ||
  4025         strcmp(opType,"ReverseBytesL")==0 ||
  4026         strcmp(opType,"ReverseBytesUS")==0 ||
  4027         strcmp(opType,"ReverseBytesS")==0 ||
  4028         strcmp(opType,"ReplicateB")==0 ||
  4029         strcmp(opType,"ReplicateS")==0 ||
  4030         strcmp(opType,"ReplicateI")==0 ||
  4031         strcmp(opType,"ReplicateL")==0 ||
  4032         strcmp(opType,"ReplicateF")==0 ||
  4033         strcmp(opType,"ReplicateD")==0 ||
  4034         0 /* 0 to line up columns nicely */ )
  4035       return 1;
  4037   return 0;
  4040 bool MatchRule::is_ideal_if() const {
  4041   if( !_opType ) return false;
  4042   return
  4043     !strcmp(_opType,"If"            ) ||
  4044     !strcmp(_opType,"CountedLoopEnd");
  4047 bool MatchRule::is_ideal_fastlock() const {
  4048   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  4049     return (strcmp(_rChild->_opType,"FastLock") == 0);
  4051   return false;
  4054 bool MatchRule::is_ideal_membar() const {
  4055   if( !_opType ) return false;
  4056   return
  4057     !strcmp(_opType,"MemBarAcquire"  ) ||
  4058     !strcmp(_opType,"MemBarRelease"  ) ||
  4059     !strcmp(_opType,"MemBarAcquireLock") ||
  4060     !strcmp(_opType,"MemBarReleaseLock") ||
  4061     !strcmp(_opType,"MemBarVolatile" ) ||
  4062     !strcmp(_opType,"MemBarCPUOrder" ) ||
  4063     !strcmp(_opType,"MemBarStoreStore" );
  4066 bool MatchRule::is_ideal_loadPC() const {
  4067   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  4068     return (strcmp(_rChild->_opType,"LoadPC") == 0);
  4070   return false;
  4073 bool MatchRule::is_ideal_box() const {
  4074   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  4075     return (strcmp(_rChild->_opType,"Box") == 0);
  4077   return false;
  4080 bool MatchRule::is_ideal_goto() const {
  4081   bool   ideal_goto = false;
  4083   if( _opType && (strcmp(_opType,"Goto") == 0) ) {
  4084     ideal_goto = true;
  4086   return ideal_goto;
  4089 bool MatchRule::is_ideal_jump() const {
  4090   if( _opType ) {
  4091     if( !strcmp(_opType,"Jump") )
  4092       return true;
  4094   return false;
  4097 bool MatchRule::is_ideal_bool() const {
  4098   if( _opType ) {
  4099     if( !strcmp(_opType,"Bool") )
  4100       return true;
  4102   return false;
  4106 Form::DataType MatchRule::is_ideal_load() const {
  4107   Form::DataType ideal_load = Form::none;
  4109   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  4110     const char *opType = _rChild->_opType;
  4111     ideal_load = is_load_from_memory(opType);
  4114   return ideal_load;
  4117 bool MatchRule::is_vector() const {
  4118   static const char *vector_list[] = {
  4119     "AddVB","AddVS","AddVI","AddVL","AddVF","AddVD",
  4120     "SubVB","SubVS","SubVI","SubVL","SubVF","SubVD",
  4121     "MulVS","MulVI","MulVF","MulVD",
  4122     "DivVF","DivVD",
  4123     "AndV" ,"XorV" ,"OrV",
  4124     "LShiftCntV","RShiftCntV",
  4125     "LShiftVB","LShiftVS","LShiftVI","LShiftVL",
  4126     "RShiftVB","RShiftVS","RShiftVI","RShiftVL",
  4127     "URShiftVB","URShiftVS","URShiftVI","URShiftVL",
  4128     "ReplicateB","ReplicateS","ReplicateI","ReplicateL","ReplicateF","ReplicateD",
  4129     "LoadVector","StoreVector",
  4130     // Next are not supported currently.
  4131     "PackB","PackS","PackI","PackL","PackF","PackD","Pack2L","Pack2D",
  4132     "ExtractB","ExtractUB","ExtractC","ExtractS","ExtractI","ExtractL","ExtractF","ExtractD"
  4133   };
  4134   int cnt = sizeof(vector_list)/sizeof(char*);
  4135   if (_rChild) {
  4136     const char  *opType = _rChild->_opType;
  4137     for (int i=0; i<cnt; i++)
  4138       if (strcmp(opType,vector_list[i]) == 0)
  4139         return true;
  4141   return false;
  4145 bool MatchRule::skip_antidep_check() const {
  4146   // Some loads operate on what is effectively immutable memory so we
  4147   // should skip the anti dep computations.  For some of these nodes
  4148   // the rewritable field keeps the anti dep logic from triggering but
  4149   // for certain kinds of LoadKlass it does not since they are
  4150   // actually reading memory which could be rewritten by the runtime,
  4151   // though never by generated code.  This disables it uniformly for
  4152   // the nodes that behave like this: LoadKlass, LoadNKlass and
  4153   // LoadRange.
  4154   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  4155     const char *opType = _rChild->_opType;
  4156     if (strcmp("LoadKlass", opType) == 0 ||
  4157         strcmp("LoadNKlass", opType) == 0 ||
  4158         strcmp("LoadRange", opType) == 0) {
  4159       return true;
  4163   return false;
  4167 Form::DataType MatchRule::is_ideal_store() const {
  4168   Form::DataType ideal_store = Form::none;
  4170   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  4171     const char *opType = _rChild->_opType;
  4172     ideal_store = is_store_to_memory(opType);
  4175   return ideal_store;
  4179 void MatchRule::dump() {
  4180   output(stderr);
  4183 // Write just one line.
  4184 void MatchRule::output_short(FILE *fp) {
  4185   fprintf(fp,"MatchRule: ( %s",_name);
  4186   if (_lChild) _lChild->output(fp);
  4187   if (_rChild) _rChild->output(fp);
  4188   fprintf(fp," )");
  4191 void MatchRule::output(FILE *fp) {
  4192   output_short(fp);
  4193   fprintf(fp,"\n   nesting depth = %d\n", _depth);
  4194   if (_result) fprintf(fp,"   Result Type = %s", _result);
  4195   fprintf(fp,"\n");
  4198 //------------------------------Attribute--------------------------------------
  4199 Attribute::Attribute(char *id, char* val, int type)
  4200   : _ident(id), _val(val), _atype(type) {
  4202 Attribute::~Attribute() {
  4205 int Attribute::int_val(ArchDesc &ad) {
  4206   // Make sure it is an integer constant:
  4207   int result = 0;
  4208   if (!_val || !ADLParser::is_int_token(_val, result)) {
  4209     ad.syntax_err(0, "Attribute %s must have an integer value: %s",
  4210                   _ident, _val ? _val : "");
  4212   return result;
  4215 void Attribute::dump() {
  4216   output(stderr);
  4217 } // Debug printer
  4219 // Write to output files
  4220 void Attribute::output(FILE *fp) {
  4221   fprintf(fp,"Attribute: %s  %s\n", (_ident?_ident:""), (_val?_val:""));
  4224 //------------------------------FormatRule----------------------------------
  4225 FormatRule::FormatRule(char *temp)
  4226   : _temp(temp) {
  4228 FormatRule::~FormatRule() {
  4231 void FormatRule::dump() {
  4232   output(stderr);
  4235 // Write to output files
  4236 void FormatRule::output(FILE *fp) {
  4237   fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
  4238   fprintf(fp,"\n");

mercurial