src/share/vm/adlc/formssel.cpp

Sat, 01 Sep 2012 13:25:18 -0400

author
coleenp
date
Sat, 01 Sep 2012 13:25:18 -0400
changeset 4037
da91efe96a93
parent 3882
8c92982cbbc4
child 4106
7eca5de9e0b6
permissions
-rw-r--r--

6964458: Reimplement class meta-data storage to use native memory
Summary: Remove PermGen, allocate meta-data in metaspace linked to class loaders, rewrite GC walking, rewrite and rename metadata to be C++ classes
Reviewed-by: jmasa, stefank, never, coleenp, kvn, brutisso, mgerdin, dholmes, jrose, twisti, roland
Contributed-by: jmasa <jon.masamitsu@oracle.com>, stefank <stefan.karlsson@oracle.com>, mgerdin <mikael.gerdin@oracle.com>, never <tom.rodriguez@oracle.com>

duke@435 1 /*
kvn@3882 2 * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // FORMS.CPP - Definitions for ADL Parser Forms Classes
duke@435 26 #include "adlc.hpp"
duke@435 27
duke@435 28 //==============================Instructions===================================
duke@435 29 //------------------------------InstructForm-----------------------------------
duke@435 30 InstructForm::InstructForm(const char *id, bool ideal_only)
duke@435 31 : _ident(id), _ideal_only(ideal_only),
duke@435 32 _localNames(cmpstr, hashstr, Form::arena),
twisti@2350 33 _effects(cmpstr, hashstr, Form::arena),
roland@3316 34 _is_mach_constant(false),
roland@3316 35 _has_call(false)
twisti@2350 36 {
duke@435 37 _ftype = Form::INS;
duke@435 38
duke@435 39 _matrule = NULL;
duke@435 40 _insencode = NULL;
twisti@2350 41 _constant = NULL;
duke@435 42 _opcode = NULL;
duke@435 43 _size = NULL;
duke@435 44 _attribs = NULL;
duke@435 45 _predicate = NULL;
duke@435 46 _exprule = NULL;
duke@435 47 _rewrule = NULL;
duke@435 48 _format = NULL;
duke@435 49 _peephole = NULL;
duke@435 50 _ins_pipe = NULL;
duke@435 51 _uniq_idx = NULL;
duke@435 52 _num_uniq = 0;
duke@435 53 _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
duke@435 54 _cisc_spill_alternate = NULL; // possible cisc replacement
duke@435 55 _cisc_reg_mask_name = NULL;
duke@435 56 _is_cisc_alternate = false;
duke@435 57 _is_short_branch = false;
duke@435 58 _short_branch_form = NULL;
duke@435 59 _alignment = 1;
duke@435 60 }
duke@435 61
duke@435 62 InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
duke@435 63 : _ident(id), _ideal_only(false),
duke@435 64 _localNames(instr->_localNames),
twisti@2350 65 _effects(instr->_effects),
roland@3316 66 _is_mach_constant(false),
roland@3316 67 _has_call(false)
twisti@2350 68 {
duke@435 69 _ftype = Form::INS;
duke@435 70
duke@435 71 _matrule = rule;
duke@435 72 _insencode = instr->_insencode;
twisti@2350 73 _constant = instr->_constant;
duke@435 74 _opcode = instr->_opcode;
duke@435 75 _size = instr->_size;
duke@435 76 _attribs = instr->_attribs;
duke@435 77 _predicate = instr->_predicate;
duke@435 78 _exprule = instr->_exprule;
duke@435 79 _rewrule = instr->_rewrule;
duke@435 80 _format = instr->_format;
duke@435 81 _peephole = instr->_peephole;
duke@435 82 _ins_pipe = instr->_ins_pipe;
duke@435 83 _uniq_idx = instr->_uniq_idx;
duke@435 84 _num_uniq = instr->_num_uniq;
duke@435 85 _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
duke@435 86 _cisc_spill_alternate = NULL; // possible cisc replacement
duke@435 87 _cisc_reg_mask_name = NULL;
duke@435 88 _is_cisc_alternate = false;
duke@435 89 _is_short_branch = false;
duke@435 90 _short_branch_form = NULL;
duke@435 91 _alignment = 1;
duke@435 92 // Copy parameters
duke@435 93 const char *name;
duke@435 94 instr->_parameters.reset();
duke@435 95 for (; (name = instr->_parameters.iter()) != NULL;)
duke@435 96 _parameters.addName(name);
duke@435 97 }
duke@435 98
duke@435 99 InstructForm::~InstructForm() {
duke@435 100 }
duke@435 101
duke@435 102 InstructForm *InstructForm::is_instruction() const {
duke@435 103 return (InstructForm*)this;
duke@435 104 }
duke@435 105
duke@435 106 bool InstructForm::ideal_only() const {
duke@435 107 return _ideal_only;
duke@435 108 }
duke@435 109
duke@435 110 bool InstructForm::sets_result() const {
duke@435 111 return (_matrule != NULL && _matrule->sets_result());
duke@435 112 }
duke@435 113
duke@435 114 bool InstructForm::needs_projections() {
duke@435 115 _components.reset();
duke@435 116 for( Component *comp; (comp = _components.iter()) != NULL; ) {
duke@435 117 if (comp->isa(Component::KILL)) {
duke@435 118 return true;
duke@435 119 }
duke@435 120 }
duke@435 121 return false;
duke@435 122 }
duke@435 123
duke@435 124
duke@435 125 bool InstructForm::has_temps() {
duke@435 126 if (_matrule) {
duke@435 127 // Examine each component to see if it is a TEMP
duke@435 128 _components.reset();
duke@435 129 // Skip the first component, if already handled as (SET dst (...))
duke@435 130 Component *comp = NULL;
duke@435 131 if (sets_result()) comp = _components.iter();
duke@435 132 while ((comp = _components.iter()) != NULL) {
duke@435 133 if (comp->isa(Component::TEMP)) {
duke@435 134 return true;
duke@435 135 }
duke@435 136 }
duke@435 137 }
duke@435 138
duke@435 139 return false;
duke@435 140 }
duke@435 141
duke@435 142 uint InstructForm::num_defs_or_kills() {
duke@435 143 uint defs_or_kills = 0;
duke@435 144
duke@435 145 _components.reset();
duke@435 146 for( Component *comp; (comp = _components.iter()) != NULL; ) {
duke@435 147 if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
duke@435 148 ++defs_or_kills;
duke@435 149 }
duke@435 150 }
duke@435 151
duke@435 152 return defs_or_kills;
duke@435 153 }
duke@435 154
duke@435 155 // This instruction has an expand rule?
duke@435 156 bool InstructForm::expands() const {
duke@435 157 return ( _exprule != NULL );
duke@435 158 }
duke@435 159
duke@435 160 // This instruction has a peephole rule?
duke@435 161 Peephole *InstructForm::peepholes() const {
duke@435 162 return _peephole;
duke@435 163 }
duke@435 164
duke@435 165 // This instruction has a peephole rule?
duke@435 166 void InstructForm::append_peephole(Peephole *peephole) {
duke@435 167 if( _peephole == NULL ) {
duke@435 168 _peephole = peephole;
duke@435 169 } else {
duke@435 170 _peephole->append_peephole(peephole);
duke@435 171 }
duke@435 172 }
duke@435 173
duke@435 174
duke@435 175 // ideal opcode enumeration
duke@435 176 const char *InstructForm::ideal_Opcode( FormDict &globalNames ) const {
duke@435 177 if( !_matrule ) return "Node"; // Something weird
duke@435 178 // Chain rules do not really have ideal Opcodes; use their source
duke@435 179 // operand ideal Opcode instead.
duke@435 180 if( is_simple_chain_rule(globalNames) ) {
duke@435 181 const char *src = _matrule->_rChild->_opType;
duke@435 182 OperandForm *src_op = globalNames[src]->is_operand();
duke@435 183 assert( src_op, "Not operand class of chain rule" );
duke@435 184 if( !src_op->_matrule ) return "Node";
duke@435 185 return src_op->_matrule->_opType;
duke@435 186 }
duke@435 187 // Operand chain rules do not really have ideal Opcodes
duke@435 188 if( _matrule->is_chain_rule(globalNames) )
duke@435 189 return "Node";
duke@435 190 return strcmp(_matrule->_opType,"Set")
duke@435 191 ? _matrule->_opType
duke@435 192 : _matrule->_rChild->_opType;
duke@435 193 }
duke@435 194
duke@435 195 // Recursive check on all operands' match rules in my match rule
duke@435 196 bool InstructForm::is_pinned(FormDict &globals) {
duke@435 197 if ( ! _matrule) return false;
duke@435 198
duke@435 199 int index = 0;
duke@435 200 if (_matrule->find_type("Goto", index)) return true;
duke@435 201 if (_matrule->find_type("If", index)) return true;
duke@435 202 if (_matrule->find_type("CountedLoopEnd",index)) return true;
duke@435 203 if (_matrule->find_type("Return", index)) return true;
duke@435 204 if (_matrule->find_type("Rethrow", index)) return true;
duke@435 205 if (_matrule->find_type("TailCall", index)) return true;
duke@435 206 if (_matrule->find_type("TailJump", index)) return true;
duke@435 207 if (_matrule->find_type("Halt", index)) return true;
duke@435 208 if (_matrule->find_type("Jump", index)) return true;
duke@435 209
duke@435 210 return is_parm(globals);
duke@435 211 }
duke@435 212
duke@435 213 // Recursive check on all operands' match rules in my match rule
duke@435 214 bool InstructForm::is_projection(FormDict &globals) {
duke@435 215 if ( ! _matrule) return false;
duke@435 216
duke@435 217 int index = 0;
duke@435 218 if (_matrule->find_type("Goto", index)) return true;
duke@435 219 if (_matrule->find_type("Return", index)) return true;
duke@435 220 if (_matrule->find_type("Rethrow", index)) return true;
duke@435 221 if (_matrule->find_type("TailCall",index)) return true;
duke@435 222 if (_matrule->find_type("TailJump",index)) return true;
duke@435 223 if (_matrule->find_type("Halt", index)) return true;
duke@435 224
duke@435 225 return false;
duke@435 226 }
duke@435 227
duke@435 228 // Recursive check on all operands' match rules in my match rule
duke@435 229 bool InstructForm::is_parm(FormDict &globals) {
duke@435 230 if ( ! _matrule) return false;
duke@435 231
duke@435 232 int index = 0;
duke@435 233 if (_matrule->find_type("Parm",index)) return true;
duke@435 234
duke@435 235 return false;
duke@435 236 }
duke@435 237
duke@435 238
duke@435 239 // Return 'true' if this instruction matches an ideal 'Copy*' node
duke@435 240 int InstructForm::is_ideal_copy() const {
duke@435 241 return _matrule ? _matrule->is_ideal_copy() : 0;
duke@435 242 }
duke@435 243
duke@435 244 // Return 'true' if this instruction is too complex to rematerialize.
duke@435 245 int InstructForm::is_expensive() const {
duke@435 246 // We can prove it is cheap if it has an empty encoding.
duke@435 247 // This helps with platform-specific nops like ThreadLocal and RoundFloat.
duke@435 248 if (is_empty_encoding())
duke@435 249 return 0;
duke@435 250
duke@435 251 if (is_tls_instruction())
duke@435 252 return 1;
duke@435 253
duke@435 254 if (_matrule == NULL) return 0;
duke@435 255
duke@435 256 return _matrule->is_expensive();
duke@435 257 }
duke@435 258
duke@435 259 // Has an empty encoding if _size is a constant zero or there
duke@435 260 // are no ins_encode tokens.
duke@435 261 int InstructForm::is_empty_encoding() const {
duke@435 262 if (_insencode != NULL) {
duke@435 263 _insencode->reset();
duke@435 264 if (_insencode->encode_class_iter() == NULL) {
duke@435 265 return 1;
duke@435 266 }
duke@435 267 }
duke@435 268 if (_size != NULL && strcmp(_size, "0") == 0) {
duke@435 269 return 1;
duke@435 270 }
duke@435 271 return 0;
duke@435 272 }
duke@435 273
duke@435 274 int InstructForm::is_tls_instruction() const {
duke@435 275 if (_ident != NULL &&
duke@435 276 ( ! strcmp( _ident,"tlsLoadP") ||
duke@435 277 ! strncmp(_ident,"tlsLoadP_",9)) ) {
duke@435 278 return 1;
duke@435 279 }
duke@435 280
duke@435 281 if (_matrule != NULL && _insencode != NULL) {
duke@435 282 const char* opType = _matrule->_opType;
duke@435 283 if (strcmp(opType, "Set")==0)
duke@435 284 opType = _matrule->_rChild->_opType;
duke@435 285 if (strcmp(opType,"ThreadLocal")==0) {
duke@435 286 fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
duke@435 287 (_ident == NULL ? "NULL" : _ident));
duke@435 288 return 1;
duke@435 289 }
duke@435 290 }
duke@435 291
duke@435 292 return 0;
duke@435 293 }
duke@435 294
duke@435 295
duke@435 296 // Return 'true' if this instruction matches an ideal 'If' node
duke@435 297 bool InstructForm::is_ideal_if() const {
duke@435 298 if( _matrule == NULL ) return false;
duke@435 299
duke@435 300 return _matrule->is_ideal_if();
duke@435 301 }
duke@435 302
duke@435 303 // Return 'true' if this instruction matches an ideal 'FastLock' node
duke@435 304 bool InstructForm::is_ideal_fastlock() const {
duke@435 305 if( _matrule == NULL ) return false;
duke@435 306
duke@435 307 return _matrule->is_ideal_fastlock();
duke@435 308 }
duke@435 309
duke@435 310 // Return 'true' if this instruction matches an ideal 'MemBarXXX' node
duke@435 311 bool InstructForm::is_ideal_membar() const {
duke@435 312 if( _matrule == NULL ) return false;
duke@435 313
duke@435 314 return _matrule->is_ideal_membar();
duke@435 315 }
duke@435 316
duke@435 317 // Return 'true' if this instruction matches an ideal 'LoadPC' node
duke@435 318 bool InstructForm::is_ideal_loadPC() const {
duke@435 319 if( _matrule == NULL ) return false;
duke@435 320
duke@435 321 return _matrule->is_ideal_loadPC();
duke@435 322 }
duke@435 323
duke@435 324 // Return 'true' if this instruction matches an ideal 'Box' node
duke@435 325 bool InstructForm::is_ideal_box() const {
duke@435 326 if( _matrule == NULL ) return false;
duke@435 327
duke@435 328 return _matrule->is_ideal_box();
duke@435 329 }
duke@435 330
duke@435 331 // Return 'true' if this instruction matches an ideal 'Goto' node
duke@435 332 bool InstructForm::is_ideal_goto() const {
duke@435 333 if( _matrule == NULL ) return false;
duke@435 334
duke@435 335 return _matrule->is_ideal_goto();
duke@435 336 }
duke@435 337
duke@435 338 // Return 'true' if this instruction matches an ideal 'Jump' node
duke@435 339 bool InstructForm::is_ideal_jump() const {
duke@435 340 if( _matrule == NULL ) return false;
duke@435 341
duke@435 342 return _matrule->is_ideal_jump();
duke@435 343 }
duke@435 344
kvn@3051 345 // Return 'true' if instruction matches ideal 'If' | 'Goto' | 'CountedLoopEnd'
duke@435 346 bool InstructForm::is_ideal_branch() const {
duke@435 347 if( _matrule == NULL ) return false;
duke@435 348
kvn@3051 349 return _matrule->is_ideal_if() || _matrule->is_ideal_goto();
duke@435 350 }
duke@435 351
duke@435 352
duke@435 353 // Return 'true' if this instruction matches an ideal 'Return' node
duke@435 354 bool InstructForm::is_ideal_return() const {
duke@435 355 if( _matrule == NULL ) return false;
duke@435 356
duke@435 357 // Check MatchRule to see if the first entry is the ideal "Return" node
duke@435 358 int index = 0;
duke@435 359 if (_matrule->find_type("Return",index)) return true;
duke@435 360 if (_matrule->find_type("Rethrow",index)) return true;
duke@435 361 if (_matrule->find_type("TailCall",index)) return true;
duke@435 362 if (_matrule->find_type("TailJump",index)) return true;
duke@435 363
duke@435 364 return false;
duke@435 365 }
duke@435 366
duke@435 367 // Return 'true' if this instruction matches an ideal 'Halt' node
duke@435 368 bool InstructForm::is_ideal_halt() const {
duke@435 369 int index = 0;
duke@435 370 return _matrule && _matrule->find_type("Halt",index);
duke@435 371 }
duke@435 372
duke@435 373 // Return 'true' if this instruction matches an ideal 'SafePoint' node
duke@435 374 bool InstructForm::is_ideal_safepoint() const {
duke@435 375 int index = 0;
duke@435 376 return _matrule && _matrule->find_type("SafePoint",index);
duke@435 377 }
duke@435 378
duke@435 379 // Return 'true' if this instruction matches an ideal 'Nop' node
duke@435 380 bool InstructForm::is_ideal_nop() const {
duke@435 381 return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
duke@435 382 }
duke@435 383
duke@435 384 bool InstructForm::is_ideal_control() const {
duke@435 385 if ( ! _matrule) return false;
duke@435 386
kvn@3051 387 return is_ideal_return() || is_ideal_branch() || _matrule->is_ideal_jump() || is_ideal_halt();
duke@435 388 }
duke@435 389
duke@435 390 // Return 'true' if this instruction matches an ideal 'Call' node
duke@435 391 Form::CallType InstructForm::is_ideal_call() const {
duke@435 392 if( _matrule == NULL ) return Form::invalid_type;
duke@435 393
duke@435 394 // Check MatchRule to see if the first entry is the ideal "Call" node
duke@435 395 int idx = 0;
duke@435 396 if(_matrule->find_type("CallStaticJava",idx)) return Form::JAVA_STATIC;
duke@435 397 idx = 0;
duke@435 398 if(_matrule->find_type("Lock",idx)) return Form::JAVA_STATIC;
duke@435 399 idx = 0;
duke@435 400 if(_matrule->find_type("Unlock",idx)) return Form::JAVA_STATIC;
duke@435 401 idx = 0;
duke@435 402 if(_matrule->find_type("CallDynamicJava",idx)) return Form::JAVA_DYNAMIC;
duke@435 403 idx = 0;
duke@435 404 if(_matrule->find_type("CallRuntime",idx)) return Form::JAVA_RUNTIME;
duke@435 405 idx = 0;
duke@435 406 if(_matrule->find_type("CallLeaf",idx)) return Form::JAVA_LEAF;
duke@435 407 idx = 0;
duke@435 408 if(_matrule->find_type("CallLeafNoFP",idx)) return Form::JAVA_LEAF;
duke@435 409 idx = 0;
duke@435 410
duke@435 411 return Form::invalid_type;
duke@435 412 }
duke@435 413
duke@435 414 // Return 'true' if this instruction matches an ideal 'Load?' node
duke@435 415 Form::DataType InstructForm::is_ideal_load() const {
duke@435 416 if( _matrule == NULL ) return Form::none;
duke@435 417
duke@435 418 return _matrule->is_ideal_load();
duke@435 419 }
duke@435 420
never@1290 421 // Return 'true' if this instruction matches an ideal 'LoadKlass' node
never@1290 422 bool InstructForm::skip_antidep_check() const {
never@1290 423 if( _matrule == NULL ) return false;
never@1290 424
never@1290 425 return _matrule->skip_antidep_check();
never@1290 426 }
never@1290 427
duke@435 428 // Return 'true' if this instruction matches an ideal 'Load?' node
duke@435 429 Form::DataType InstructForm::is_ideal_store() const {
duke@435 430 if( _matrule == NULL ) return Form::none;
duke@435 431
duke@435 432 return _matrule->is_ideal_store();
duke@435 433 }
duke@435 434
kvn@3882 435 // Return 'true' if this instruction matches an ideal vector node
kvn@3882 436 bool InstructForm::is_vector() const {
kvn@3882 437 if( _matrule == NULL ) return false;
kvn@3882 438
kvn@3882 439 return _matrule->is_vector();
kvn@3882 440 }
kvn@3882 441
kvn@3882 442
duke@435 443 // Return the input register that must match the output register
duke@435 444 // If this is not required, return 0
duke@435 445 uint InstructForm::two_address(FormDict &globals) {
duke@435 446 uint matching_input = 0;
duke@435 447 if(_components.count() == 0) return 0;
duke@435 448
duke@435 449 _components.reset();
duke@435 450 Component *comp = _components.iter();
duke@435 451 // Check if there is a DEF
duke@435 452 if( comp->isa(Component::DEF) ) {
duke@435 453 // Check that this is a register
duke@435 454 const char *def_type = comp->_type;
duke@435 455 const Form *form = globals[def_type];
duke@435 456 OperandForm *op = form->is_operand();
duke@435 457 if( op ) {
duke@435 458 if( op->constrained_reg_class() != NULL &&
duke@435 459 op->interface_type(globals) == Form::register_interface ) {
duke@435 460 // Remember the local name for equality test later
duke@435 461 const char *def_name = comp->_name;
duke@435 462 // Check if a component has the same name and is a USE
duke@435 463 do {
duke@435 464 if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
duke@435 465 return operand_position_format(def_name);
duke@435 466 }
duke@435 467 } while( (comp = _components.iter()) != NULL);
duke@435 468 }
duke@435 469 }
duke@435 470 }
duke@435 471
duke@435 472 return 0;
duke@435 473 }
duke@435 474
duke@435 475
duke@435 476 // when chaining a constant to an instruction, returns 'true' and sets opType
duke@435 477 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
duke@435 478 const char *dummy = NULL;
duke@435 479 const char *dummy2 = NULL;
duke@435 480 return is_chain_of_constant(globals, dummy, dummy2);
duke@435 481 }
duke@435 482 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
duke@435 483 const char * &opTypeParam) {
duke@435 484 const char *result = NULL;
duke@435 485
duke@435 486 return is_chain_of_constant(globals, opTypeParam, result);
duke@435 487 }
duke@435 488
duke@435 489 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
duke@435 490 const char * &opTypeParam, const char * &resultParam) {
duke@435 491 Form::DataType data_type = Form::none;
duke@435 492 if ( ! _matrule) return data_type;
duke@435 493
duke@435 494 // !!!!!
duke@435 495 // The source of the chain rule is 'position = 1'
duke@435 496 uint position = 1;
duke@435 497 const char *result = NULL;
duke@435 498 const char *name = NULL;
duke@435 499 const char *opType = NULL;
duke@435 500 // Here base_operand is looking for an ideal type to be returned (opType).
duke@435 501 if ( _matrule->is_chain_rule(globals)
duke@435 502 && _matrule->base_operand(position, globals, result, name, opType) ) {
duke@435 503 data_type = ideal_to_const_type(opType);
duke@435 504
duke@435 505 // if it isn't an ideal constant type, just return
duke@435 506 if ( data_type == Form::none ) return data_type;
duke@435 507
duke@435 508 // Ideal constant types also adjust the opType parameter.
duke@435 509 resultParam = result;
duke@435 510 opTypeParam = opType;
duke@435 511 return data_type;
duke@435 512 }
duke@435 513
duke@435 514 return data_type;
duke@435 515 }
duke@435 516
duke@435 517 // Check if a simple chain rule
duke@435 518 bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
duke@435 519 if( _matrule && _matrule->sets_result()
duke@435 520 && _matrule->_rChild->_lChild == NULL
duke@435 521 && globals[_matrule->_rChild->_opType]
duke@435 522 && globals[_matrule->_rChild->_opType]->is_opclass() ) {
duke@435 523 return true;
duke@435 524 }
duke@435 525 return false;
duke@435 526 }
duke@435 527
duke@435 528 // check for structural rematerialization
duke@435 529 bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
duke@435 530 bool rematerialize = false;
duke@435 531
duke@435 532 Form::DataType data_type = is_chain_of_constant(globals);
duke@435 533 if( data_type != Form::none )
duke@435 534 rematerialize = true;
duke@435 535
duke@435 536 // Constants
duke@435 537 if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) )
duke@435 538 rematerialize = true;
duke@435 539
duke@435 540 // Pseudo-constants (values easily available to the runtime)
duke@435 541 if (is_empty_encoding() && is_tls_instruction())
duke@435 542 rematerialize = true;
duke@435 543
duke@435 544 // 1-input, 1-output, such as copies or increments.
duke@435 545 if( _components.count() == 2 &&
duke@435 546 _components[0]->is(Component::DEF) &&
duke@435 547 _components[1]->isa(Component::USE) )
duke@435 548 rematerialize = true;
duke@435 549
duke@435 550 // Check for an ideal 'Load?' and eliminate rematerialize option
duke@435 551 if ( is_ideal_load() != Form::none || // Ideal load? Do not rematerialize
duke@435 552 is_ideal_copy() != Form::none || // Ideal copy? Do not rematerialize
duke@435 553 is_expensive() != Form::none) { // Expensive? Do not rematerialize
duke@435 554 rematerialize = false;
duke@435 555 }
duke@435 556
duke@435 557 // Always rematerialize the flags. They are more expensive to save &
duke@435 558 // restore than to recompute (and possibly spill the compare's inputs).
duke@435 559 if( _components.count() >= 1 ) {
duke@435 560 Component *c = _components[0];
duke@435 561 const Form *form = globals[c->_type];
duke@435 562 OperandForm *opform = form->is_operand();
duke@435 563 if( opform ) {
duke@435 564 // Avoid the special stack_slots register classes
duke@435 565 const char *rc_name = opform->constrained_reg_class();
duke@435 566 if( rc_name ) {
duke@435 567 if( strcmp(rc_name,"stack_slots") ) {
duke@435 568 // Check for ideal_type of RegFlags
duke@435 569 const char *type = opform->ideal_type( globals, registers );
duke@435 570 if( !strcmp(type,"RegFlags") )
duke@435 571 rematerialize = true;
duke@435 572 } else
duke@435 573 rematerialize = false; // Do not rematerialize things target stk
duke@435 574 }
duke@435 575 }
duke@435 576 }
duke@435 577
duke@435 578 return rematerialize;
duke@435 579 }
duke@435 580
duke@435 581 // loads from memory, so must check for anti-dependence
duke@435 582 bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
never@1290 583 if ( skip_antidep_check() ) return false;
never@1290 584
duke@435 585 // Machine independent loads must be checked for anti-dependences
duke@435 586 if( is_ideal_load() != Form::none ) return true;
duke@435 587
duke@435 588 // !!!!! !!!!! !!!!!
duke@435 589 // TEMPORARY
duke@435 590 // if( is_simple_chain_rule(globals) ) return false;
duke@435 591
cfang@1116 592 // String.(compareTo/equals/indexOf) and Arrays.equals use many memorys edges,
cfang@1116 593 // but writes none
duke@435 594 if( _matrule && _matrule->_rChild &&
cfang@1116 595 ( strcmp(_matrule->_rChild->_opType,"StrComp" )==0 ||
cfang@1116 596 strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 ||
cfang@1116 597 strcmp(_matrule->_rChild->_opType,"StrIndexOf" )==0 ||
cfang@1116 598 strcmp(_matrule->_rChild->_opType,"AryEq" )==0 ))
duke@435 599 return true;
duke@435 600
duke@435 601 // Check if instruction has a USE of a memory operand class, but no defs
duke@435 602 bool USE_of_memory = false;
duke@435 603 bool DEF_of_memory = false;
duke@435 604 Component *comp = NULL;
duke@435 605 ComponentList &components = (ComponentList &)_components;
duke@435 606
duke@435 607 components.reset();
duke@435 608 while( (comp = components.iter()) != NULL ) {
duke@435 609 const Form *form = globals[comp->_type];
duke@435 610 if( !form ) continue;
duke@435 611 OpClassForm *op = form->is_opclass();
duke@435 612 if( !op ) continue;
duke@435 613 if( form->interface_type(globals) == Form::memory_interface ) {
duke@435 614 if( comp->isa(Component::USE) ) USE_of_memory = true;
duke@435 615 if( comp->isa(Component::DEF) ) {
duke@435 616 OperandForm *oper = form->is_operand();
duke@435 617 if( oper && oper->is_user_name_for_sReg() ) {
duke@435 618 // Stack slots are unaliased memory handled by allocator
duke@435 619 oper = oper; // debug stopping point !!!!!
duke@435 620 } else {
duke@435 621 DEF_of_memory = true;
duke@435 622 }
duke@435 623 }
duke@435 624 }
duke@435 625 }
duke@435 626 return (USE_of_memory && !DEF_of_memory);
duke@435 627 }
duke@435 628
duke@435 629
duke@435 630 bool InstructForm::is_wide_memory_kill(FormDict &globals) const {
duke@435 631 if( _matrule == NULL ) return false;
duke@435 632 if( !_matrule->_opType ) return false;
duke@435 633
duke@435 634 if( strcmp(_matrule->_opType,"MemBarRelease") == 0 ) return true;
duke@435 635 if( strcmp(_matrule->_opType,"MemBarAcquire") == 0 ) return true;
roland@3047 636 if( strcmp(_matrule->_opType,"MemBarReleaseLock") == 0 ) return true;
roland@3047 637 if( strcmp(_matrule->_opType,"MemBarAcquireLock") == 0 ) return true;
roland@3392 638 if( strcmp(_matrule->_opType,"MemBarStoreStore") == 0 ) return true;
duke@435 639
duke@435 640 return false;
duke@435 641 }
duke@435 642
duke@435 643 int InstructForm::memory_operand(FormDict &globals) const {
duke@435 644 // Machine independent loads must be checked for anti-dependences
duke@435 645 // Check if instruction has a USE of a memory operand class, or a def.
duke@435 646 int USE_of_memory = 0;
duke@435 647 int DEF_of_memory = 0;
duke@435 648 const char* last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
duke@435 649 Component *unique = NULL;
duke@435 650 Component *comp = NULL;
duke@435 651 ComponentList &components = (ComponentList &)_components;
duke@435 652
duke@435 653 components.reset();
duke@435 654 while( (comp = components.iter()) != NULL ) {
duke@435 655 const Form *form = globals[comp->_type];
duke@435 656 if( !form ) continue;
duke@435 657 OpClassForm *op = form->is_opclass();
duke@435 658 if( !op ) continue;
duke@435 659 if( op->stack_slots_only(globals) ) continue;
duke@435 660 if( form->interface_type(globals) == Form::memory_interface ) {
duke@435 661 if( comp->isa(Component::DEF) ) {
duke@435 662 last_memory_DEF = comp->_name;
duke@435 663 DEF_of_memory++;
duke@435 664 unique = comp;
duke@435 665 } else if( comp->isa(Component::USE) ) {
duke@435 666 if( last_memory_DEF != NULL ) {
duke@435 667 assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
duke@435 668 last_memory_DEF = NULL;
duke@435 669 }
duke@435 670 USE_of_memory++;
duke@435 671 if (DEF_of_memory == 0) // defs take precedence
duke@435 672 unique = comp;
duke@435 673 } else {
duke@435 674 assert(last_memory_DEF == NULL, "unpaired memory DEF");
duke@435 675 }
duke@435 676 }
duke@435 677 }
duke@435 678 assert(last_memory_DEF == NULL, "unpaired memory DEF");
duke@435 679 assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
duke@435 680 USE_of_memory -= DEF_of_memory; // treat paired DEF/USE as one occurrence
duke@435 681 if( (USE_of_memory + DEF_of_memory) > 0 ) {
duke@435 682 if( is_simple_chain_rule(globals) ) {
duke@435 683 //fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
duke@435 684 //((InstructForm*)this)->dump();
duke@435 685 // Preceding code prints nothing on sparc and these insns on intel:
duke@435 686 // leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
duke@435 687 // leaPIdxOff leaPIdxScale leaPIdxScaleOff
duke@435 688 return NO_MEMORY_OPERAND;
duke@435 689 }
duke@435 690
duke@435 691 if( DEF_of_memory == 1 ) {
duke@435 692 assert(unique != NULL, "");
duke@435 693 if( USE_of_memory == 0 ) {
duke@435 694 // unique def, no uses
duke@435 695 } else {
duke@435 696 // // unique def, some uses
duke@435 697 // // must return bottom unless all uses match def
duke@435 698 // unique = NULL;
duke@435 699 }
duke@435 700 } else if( DEF_of_memory > 0 ) {
duke@435 701 // multiple defs, don't care about uses
duke@435 702 unique = NULL;
duke@435 703 } else if( USE_of_memory == 1) {
duke@435 704 // unique use, no defs
duke@435 705 assert(unique != NULL, "");
duke@435 706 } else if( USE_of_memory > 0 ) {
duke@435 707 // multiple uses, no defs
duke@435 708 unique = NULL;
duke@435 709 } else {
duke@435 710 assert(false, "bad case analysis");
duke@435 711 }
duke@435 712 // process the unique DEF or USE, if there is one
duke@435 713 if( unique == NULL ) {
duke@435 714 return MANY_MEMORY_OPERANDS;
duke@435 715 } else {
duke@435 716 int pos = components.operand_position(unique->_name);
duke@435 717 if( unique->isa(Component::DEF) ) {
duke@435 718 pos += 1; // get corresponding USE from DEF
duke@435 719 }
duke@435 720 assert(pos >= 1, "I was just looking at it!");
duke@435 721 return pos;
duke@435 722 }
duke@435 723 }
duke@435 724
duke@435 725 // missed the memory op??
duke@435 726 if( true ) { // %%% should not be necessary
duke@435 727 if( is_ideal_store() != Form::none ) {
duke@435 728 fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
duke@435 729 ((InstructForm*)this)->dump();
duke@435 730 // pretend it has multiple defs and uses
duke@435 731 return MANY_MEMORY_OPERANDS;
duke@435 732 }
duke@435 733 if( is_ideal_load() != Form::none ) {
duke@435 734 fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
duke@435 735 ((InstructForm*)this)->dump();
duke@435 736 // pretend it has multiple uses and no defs
duke@435 737 return MANY_MEMORY_OPERANDS;
duke@435 738 }
duke@435 739 }
duke@435 740
duke@435 741 return NO_MEMORY_OPERAND;
duke@435 742 }
duke@435 743
duke@435 744
duke@435 745 // This instruction captures the machine-independent bottom_type
duke@435 746 // Expected use is for pointer vs oop determination for LoadP
never@1896 747 bool InstructForm::captures_bottom_type(FormDict &globals) const {
duke@435 748 if( _matrule && _matrule->_rChild &&
duke@435 749 (!strcmp(_matrule->_rChild->_opType,"CastPP") || // new result type
duke@435 750 !strcmp(_matrule->_rChild->_opType,"CastX2P") || // new result type
coleenp@548 751 !strcmp(_matrule->_rChild->_opType,"DecodeN") ||
coleenp@548 752 !strcmp(_matrule->_rChild->_opType,"EncodeP") ||
coleenp@548 753 !strcmp(_matrule->_rChild->_opType,"LoadN") ||
kvn@651 754 !strcmp(_matrule->_rChild->_opType,"LoadNKlass") ||
duke@435 755 !strcmp(_matrule->_rChild->_opType,"CreateEx") || // type of exception
duke@435 756 !strcmp(_matrule->_rChild->_opType,"CheckCastPP")) ) return true;
duke@435 757 else if ( is_ideal_load() == Form::idealP ) return true;
duke@435 758 else if ( is_ideal_store() != Form::none ) return true;
duke@435 759
never@1896 760 if (needs_base_oop_edge(globals)) return true;
never@1896 761
kvn@3882 762 if (is_vector()) return true;
kvn@3882 763 if (is_mach_constant()) return true;
kvn@3882 764
duke@435 765 return false;
duke@435 766 }
duke@435 767
duke@435 768
duke@435 769 // Access instr_cost attribute or return NULL.
duke@435 770 const char* InstructForm::cost() {
duke@435 771 for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
duke@435 772 if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
duke@435 773 return cur->_val;
duke@435 774 }
duke@435 775 }
duke@435 776 return NULL;
duke@435 777 }
duke@435 778
duke@435 779 // Return count of top-level operands.
duke@435 780 uint InstructForm::num_opnds() {
duke@435 781 int num_opnds = _components.num_operands();
duke@435 782
duke@435 783 // Need special handling for matching some ideal nodes
duke@435 784 // i.e. Matching a return node
duke@435 785 /*
duke@435 786 if( _matrule ) {
duke@435 787 if( strcmp(_matrule->_opType,"Return" )==0 ||
duke@435 788 strcmp(_matrule->_opType,"Halt" )==0 )
duke@435 789 return 3;
duke@435 790 }
duke@435 791 */
duke@435 792 return num_opnds;
duke@435 793 }
duke@435 794
duke@435 795 // Return count of unmatched operands.
duke@435 796 uint InstructForm::num_post_match_opnds() {
duke@435 797 uint num_post_match_opnds = _components.count();
duke@435 798 uint num_match_opnds = _components.match_count();
duke@435 799 num_post_match_opnds = num_post_match_opnds - num_match_opnds;
duke@435 800
duke@435 801 return num_post_match_opnds;
duke@435 802 }
duke@435 803
duke@435 804 // Return the number of leaves below this complex operand
duke@435 805 uint InstructForm::num_consts(FormDict &globals) const {
duke@435 806 if ( ! _matrule) return 0;
duke@435 807
duke@435 808 // This is a recursive invocation on all operands in the matchrule
duke@435 809 return _matrule->num_consts(globals);
duke@435 810 }
duke@435 811
duke@435 812 // Constants in match rule with specified type
duke@435 813 uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
duke@435 814 if ( ! _matrule) return 0;
duke@435 815
duke@435 816 // This is a recursive invocation on all operands in the matchrule
duke@435 817 return _matrule->num_consts(globals, type);
duke@435 818 }
duke@435 819
duke@435 820
duke@435 821 // Return the register class associated with 'leaf'.
duke@435 822 const char *InstructForm::out_reg_class(FormDict &globals) {
duke@435 823 assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");
duke@435 824
duke@435 825 return NULL;
duke@435 826 }
duke@435 827
duke@435 828
duke@435 829
duke@435 830 // Lookup the starting position of inputs we are interested in wrt. ideal nodes
duke@435 831 uint InstructForm::oper_input_base(FormDict &globals) {
duke@435 832 if( !_matrule ) return 1; // Skip control for most nodes
duke@435 833
duke@435 834 // Need special handling for matching some ideal nodes
duke@435 835 // i.e. Matching a return node
duke@435 836 if( strcmp(_matrule->_opType,"Return" )==0 ||
duke@435 837 strcmp(_matrule->_opType,"Rethrow" )==0 ||
duke@435 838 strcmp(_matrule->_opType,"TailCall" )==0 ||
duke@435 839 strcmp(_matrule->_opType,"TailJump" )==0 ||
duke@435 840 strcmp(_matrule->_opType,"SafePoint" )==0 ||
duke@435 841 strcmp(_matrule->_opType,"Halt" )==0 )
duke@435 842 return AdlcVMDeps::Parms; // Skip the machine-state edges
duke@435 843
duke@435 844 if( _matrule->_rChild &&
kvn@1421 845 ( strcmp(_matrule->_rChild->_opType,"AryEq" )==0 ||
kvn@1421 846 strcmp(_matrule->_rChild->_opType,"StrComp" )==0 ||
cfang@1116 847 strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 ||
cfang@1116 848 strcmp(_matrule->_rChild->_opType,"StrIndexOf")==0 )) {
kvn@1421 849 // String.(compareTo/equals/indexOf) and Arrays.equals
kvn@1421 850 // take 1 control and 1 memory edges.
kvn@1421 851 return 2;
duke@435 852 }
duke@435 853
duke@435 854 // Check for handling of 'Memory' input/edge in the ideal world.
duke@435 855 // The AD file writer is shielded from knowledge of these edges.
duke@435 856 int base = 1; // Skip control
duke@435 857 base += _matrule->needs_ideal_memory_edge(globals);
duke@435 858
duke@435 859 // Also skip the base-oop value for uses of derived oops.
duke@435 860 // The AD file writer is shielded from knowledge of these edges.
duke@435 861 base += needs_base_oop_edge(globals);
duke@435 862
duke@435 863 return base;
duke@435 864 }
duke@435 865
duke@435 866 // Implementation does not modify state of internal structures
duke@435 867 void InstructForm::build_components() {
duke@435 868 // Add top-level operands to the components
duke@435 869 if (_matrule) _matrule->append_components(_localNames, _components);
duke@435 870
duke@435 871 // Add parameters that "do not appear in match rule".
duke@435 872 bool has_temp = false;
duke@435 873 const char *name;
duke@435 874 const char *kill_name = NULL;
duke@435 875 for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
duke@435 876 OperandForm *opForm = (OperandForm*)_localNames[name];
duke@435 877
twisti@1038 878 Effect* e = NULL;
twisti@1038 879 {
twisti@1038 880 const Form* form = _effects[name];
twisti@1038 881 e = form ? form->is_effect() : NULL;
twisti@1038 882 }
twisti@1038 883
duke@435 884 if (e != NULL) {
duke@435 885 has_temp |= e->is(Component::TEMP);
duke@435 886
duke@435 887 // KILLs must be declared after any TEMPs because TEMPs are real
duke@435 888 // uses so their operand numbering must directly follow the real
duke@435 889 // inputs from the match rule. Fixing the numbering seems
duke@435 890 // complex so simply enforce the restriction during parse.
duke@435 891 if (kill_name != NULL &&
duke@435 892 e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
duke@435 893 OperandForm* kill = (OperandForm*)_localNames[kill_name];
duke@435 894 globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
duke@435 895 _ident, kill->_ident, kill_name);
never@1037 896 } else if (e->isa(Component::KILL) && !e->isa(Component::USE)) {
duke@435 897 kill_name = name;
duke@435 898 }
duke@435 899 }
duke@435 900
duke@435 901 const Component *component = _components.search(name);
duke@435 902 if ( component == NULL ) {
duke@435 903 if (e) {
duke@435 904 _components.insert(name, opForm->_ident, e->_use_def, false);
duke@435 905 component = _components.search(name);
duke@435 906 if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
duke@435 907 const Form *form = globalAD->globalNames()[component->_type];
duke@435 908 assert( form, "component type must be a defined form");
duke@435 909 OperandForm *op = form->is_operand();
duke@435 910 if (op->_interface && op->_interface->is_RegInterface()) {
duke@435 911 globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
duke@435 912 _ident, opForm->_ident, name);
duke@435 913 }
duke@435 914 }
duke@435 915 } else {
duke@435 916 // This would be a nice warning but it triggers in a few places in a benign way
duke@435 917 // if (_matrule != NULL && !expands()) {
duke@435 918 // globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
duke@435 919 // _ident, opForm->_ident, name);
duke@435 920 // }
duke@435 921 _components.insert(name, opForm->_ident, Component::INVALID, false);
duke@435 922 }
duke@435 923 }
duke@435 924 else if (e) {
duke@435 925 // Component was found in the list
duke@435 926 // Check if there is a new effect that requires an extra component.
duke@435 927 // This happens when adding 'USE' to a component that is not yet one.
duke@435 928 if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
duke@435 929 if (component->isa(Component::USE) && _matrule) {
duke@435 930 const Form *form = globalAD->globalNames()[component->_type];
duke@435 931 assert( form, "component type must be a defined form");
duke@435 932 OperandForm *op = form->is_operand();
duke@435 933 if (op->_interface && op->_interface->is_RegInterface()) {
duke@435 934 globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
duke@435 935 _ident, opForm->_ident, name);
duke@435 936 }
duke@435 937 }
duke@435 938 _components.insert(name, opForm->_ident, e->_use_def, false);
duke@435 939 } else {
duke@435 940 Component *comp = (Component*)component;
duke@435 941 comp->promote_use_def_info(e->_use_def);
duke@435 942 }
duke@435 943 // Component positions are zero based.
duke@435 944 int pos = _components.operand_position(name);
duke@435 945 assert( ! (component->isa(Component::DEF) && (pos >= 1)),
duke@435 946 "Component::DEF can only occur in the first position");
duke@435 947 }
duke@435 948 }
duke@435 949
duke@435 950 // Resolving the interactions between expand rules and TEMPs would
duke@435 951 // be complex so simply disallow it.
duke@435 952 if (_matrule == NULL && has_temp) {
duke@435 953 globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
duke@435 954 }
duke@435 955
duke@435 956 return;
duke@435 957 }
duke@435 958
duke@435 959 // Return zero-based position in component list; -1 if not in list.
duke@435 960 int InstructForm::operand_position(const char *name, int usedef) {
duke@435 961 return unique_opnds_idx(_components.operand_position(name, usedef));
duke@435 962 }
duke@435 963
duke@435 964 int InstructForm::operand_position_format(const char *name) {
duke@435 965 return unique_opnds_idx(_components.operand_position_format(name));
duke@435 966 }
duke@435 967
duke@435 968 // Return zero-based position in component list; -1 if not in list.
duke@435 969 int InstructForm::label_position() {
duke@435 970 return unique_opnds_idx(_components.label_position());
duke@435 971 }
duke@435 972
duke@435 973 int InstructForm::method_position() {
duke@435 974 return unique_opnds_idx(_components.method_position());
duke@435 975 }
duke@435 976
duke@435 977 // Return number of relocation entries needed for this instruction.
duke@435 978 uint InstructForm::reloc(FormDict &globals) {
duke@435 979 uint reloc_entries = 0;
duke@435 980 // Check for "Call" nodes
duke@435 981 if ( is_ideal_call() ) ++reloc_entries;
duke@435 982 if ( is_ideal_return() ) ++reloc_entries;
duke@435 983 if ( is_ideal_safepoint() ) ++reloc_entries;
duke@435 984
duke@435 985
duke@435 986 // Check if operands MAYBE oop pointers, by checking for ConP elements
duke@435 987 // Proceed through the leaves of the match-tree and check for ConPs
duke@435 988 if ( _matrule != NULL ) {
duke@435 989 uint position = 0;
duke@435 990 const char *result = NULL;
duke@435 991 const char *name = NULL;
duke@435 992 const char *opType = NULL;
duke@435 993 while (_matrule->base_operand(position, globals, result, name, opType)) {
duke@435 994 if ( strcmp(opType,"ConP") == 0 ) {
duke@435 995 #ifdef SPARC
duke@435 996 reloc_entries += 2; // 1 for sethi + 1 for setlo
duke@435 997 #else
duke@435 998 ++reloc_entries;
duke@435 999 #endif
duke@435 1000 }
duke@435 1001 ++position;
duke@435 1002 }
duke@435 1003 }
duke@435 1004
duke@435 1005 // Above is only a conservative estimate
duke@435 1006 // because it did not check contents of operand classes.
duke@435 1007 // !!!!! !!!!!
duke@435 1008 // Add 1 to reloc info for each operand class in the component list.
duke@435 1009 Component *comp;
duke@435 1010 _components.reset();
duke@435 1011 while ( (comp = _components.iter()) != NULL ) {
duke@435 1012 const Form *form = globals[comp->_type];
duke@435 1013 assert( form, "Did not find component's type in global names");
duke@435 1014 const OpClassForm *opc = form->is_opclass();
duke@435 1015 const OperandForm *oper = form->is_operand();
duke@435 1016 if ( opc && (oper == NULL) ) {
duke@435 1017 ++reloc_entries;
duke@435 1018 } else if ( oper ) {
duke@435 1019 // floats and doubles loaded out of method's constant pool require reloc info
duke@435 1020 Form::DataType type = oper->is_base_constant(globals);
duke@435 1021 if ( (type == Form::idealF) || (type == Form::idealD) ) {
duke@435 1022 ++reloc_entries;
duke@435 1023 }
duke@435 1024 }
duke@435 1025 }
duke@435 1026
duke@435 1027 // Float and Double constants may come from the CodeBuffer table
duke@435 1028 // and require relocatable addresses for access
duke@435 1029 // !!!!!
duke@435 1030 // Check for any component being an immediate float or double.
duke@435 1031 Form::DataType data_type = is_chain_of_constant(globals);
duke@435 1032 if( data_type==idealD || data_type==idealF ) {
duke@435 1033 #ifdef SPARC
duke@435 1034 // sparc required more relocation entries for floating constants
duke@435 1035 // (expires 9/98)
duke@435 1036 reloc_entries += 6;
duke@435 1037 #else
duke@435 1038 reloc_entries++;
duke@435 1039 #endif
duke@435 1040 }
duke@435 1041
duke@435 1042 return reloc_entries;
duke@435 1043 }
duke@435 1044
duke@435 1045 // Utility function defined in archDesc.cpp
duke@435 1046 extern bool is_def(int usedef);
duke@435 1047
duke@435 1048 // Return the result of reducing an instruction
duke@435 1049 const char *InstructForm::reduce_result() {
duke@435 1050 const char* result = "Universe"; // default
duke@435 1051 _components.reset();
duke@435 1052 Component *comp = _components.iter();
duke@435 1053 if (comp != NULL && comp->isa(Component::DEF)) {
duke@435 1054 result = comp->_type;
duke@435 1055 // Override this if the rule is a store operation:
duke@435 1056 if (_matrule && _matrule->_rChild &&
duke@435 1057 is_store_to_memory(_matrule->_rChild->_opType))
duke@435 1058 result = "Universe";
duke@435 1059 }
duke@435 1060 return result;
duke@435 1061 }
duke@435 1062
duke@435 1063 // Return the name of the operand on the right hand side of the binary match
duke@435 1064 // Return NULL if there is no right hand side
duke@435 1065 const char *InstructForm::reduce_right(FormDict &globals) const {
duke@435 1066 if( _matrule == NULL ) return NULL;
duke@435 1067 return _matrule->reduce_right(globals);
duke@435 1068 }
duke@435 1069
duke@435 1070 // Similar for left
duke@435 1071 const char *InstructForm::reduce_left(FormDict &globals) const {
duke@435 1072 if( _matrule == NULL ) return NULL;
duke@435 1073 return _matrule->reduce_left(globals);
duke@435 1074 }
duke@435 1075
duke@435 1076
duke@435 1077 // Base class for this instruction, MachNode except for calls
never@1896 1078 const char *InstructForm::mach_base_class(FormDict &globals) const {
duke@435 1079 if( is_ideal_call() == Form::JAVA_STATIC ) {
duke@435 1080 return "MachCallStaticJavaNode";
duke@435 1081 }
duke@435 1082 else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
duke@435 1083 return "MachCallDynamicJavaNode";
duke@435 1084 }
duke@435 1085 else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
duke@435 1086 return "MachCallRuntimeNode";
duke@435 1087 }
duke@435 1088 else if( is_ideal_call() == Form::JAVA_LEAF ) {
duke@435 1089 return "MachCallLeafNode";
duke@435 1090 }
duke@435 1091 else if (is_ideal_return()) {
duke@435 1092 return "MachReturnNode";
duke@435 1093 }
duke@435 1094 else if (is_ideal_halt()) {
duke@435 1095 return "MachHaltNode";
duke@435 1096 }
duke@435 1097 else if (is_ideal_safepoint()) {
duke@435 1098 return "MachSafePointNode";
duke@435 1099 }
duke@435 1100 else if (is_ideal_if()) {
duke@435 1101 return "MachIfNode";
duke@435 1102 }
kvn@3040 1103 else if (is_ideal_goto()) {
kvn@3040 1104 return "MachGotoNode";
kvn@3040 1105 }
duke@435 1106 else if (is_ideal_fastlock()) {
duke@435 1107 return "MachFastLockNode";
duke@435 1108 }
duke@435 1109 else if (is_ideal_nop()) {
duke@435 1110 return "MachNopNode";
duke@435 1111 }
twisti@2350 1112 else if (is_mach_constant()) {
twisti@2350 1113 return "MachConstantNode";
twisti@2350 1114 }
never@1896 1115 else if (captures_bottom_type(globals)) {
duke@435 1116 return "MachTypeNode";
duke@435 1117 } else {
duke@435 1118 return "MachNode";
duke@435 1119 }
duke@435 1120 assert( false, "ShouldNotReachHere()");
duke@435 1121 return NULL;
duke@435 1122 }
duke@435 1123
duke@435 1124 // Compare the instruction predicates for textual equality
duke@435 1125 bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
duke@435 1126 const Predicate *pred1 = instr1->_predicate;
duke@435 1127 const Predicate *pred2 = instr2->_predicate;
duke@435 1128 if( pred1 == NULL && pred2 == NULL ) {
duke@435 1129 // no predicates means they are identical
duke@435 1130 return true;
duke@435 1131 }
duke@435 1132 if( pred1 != NULL && pred2 != NULL ) {
duke@435 1133 // compare the predicates
jrose@910 1134 if (ADLParser::equivalent_expressions(pred1->_pred, pred2->_pred)) {
duke@435 1135 return true;
duke@435 1136 }
duke@435 1137 }
duke@435 1138
duke@435 1139 return false;
duke@435 1140 }
duke@435 1141
duke@435 1142 // Check if this instruction can cisc-spill to 'alternate'
duke@435 1143 bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
duke@435 1144 assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
duke@435 1145 // Do not replace if a cisc-version has been found.
duke@435 1146 if( cisc_spill_operand() != Not_cisc_spillable ) return false;
duke@435 1147
duke@435 1148 int cisc_spill_operand = Maybe_cisc_spillable;
duke@435 1149 char *result = NULL;
duke@435 1150 char *result2 = NULL;
duke@435 1151 const char *op_name = NULL;
duke@435 1152 const char *reg_type = NULL;
duke@435 1153 FormDict &globals = AD.globalNames();
twisti@1038 1154 cisc_spill_operand = _matrule->matchrule_cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
duke@435 1155 if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
duke@435 1156 cisc_spill_operand = operand_position(op_name, Component::USE);
duke@435 1157 int def_oper = operand_position(op_name, Component::DEF);
duke@435 1158 if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
duke@435 1159 // Do not support cisc-spilling for destination operands and
duke@435 1160 // make sure they have the same number of operands.
duke@435 1161 _cisc_spill_alternate = instr;
duke@435 1162 instr->set_cisc_alternate(true);
duke@435 1163 if( AD._cisc_spill_debug ) {
duke@435 1164 fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
duke@435 1165 fprintf(stderr, " using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
duke@435 1166 }
duke@435 1167 // Record that a stack-version of the reg_mask is needed
duke@435 1168 // !!!!!
duke@435 1169 OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
duke@435 1170 assert( oper != NULL, "cisc-spilling non operand");
duke@435 1171 const char *reg_class_name = oper->constrained_reg_class();
duke@435 1172 AD.set_stack_or_reg(reg_class_name);
duke@435 1173 const char *reg_mask_name = AD.reg_mask(*oper);
duke@435 1174 set_cisc_reg_mask_name(reg_mask_name);
duke@435 1175 const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
duke@435 1176 } else {
duke@435 1177 cisc_spill_operand = Not_cisc_spillable;
duke@435 1178 }
duke@435 1179 } else {
duke@435 1180 cisc_spill_operand = Not_cisc_spillable;
duke@435 1181 }
duke@435 1182
duke@435 1183 set_cisc_spill_operand(cisc_spill_operand);
duke@435 1184 return (cisc_spill_operand != Not_cisc_spillable);
duke@435 1185 }
duke@435 1186
duke@435 1187 // Check to see if this instruction can be replaced with the short branch
duke@435 1188 // instruction `short-branch'
duke@435 1189 bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
duke@435 1190 if (_matrule != NULL &&
duke@435 1191 this != short_branch && // Don't match myself
duke@435 1192 !is_short_branch() && // Don't match another short branch variant
duke@435 1193 reduce_result() != NULL &&
duke@435 1194 strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
duke@435 1195 _matrule->equivalent(AD.globalNames(), short_branch->_matrule)) {
duke@435 1196 // The instructions are equivalent.
kvn@3049 1197
kvn@3049 1198 // Now verify that both instructions have the same parameters and
kvn@3049 1199 // the same effects. Both branch forms should have the same inputs
kvn@3049 1200 // and resulting projections to correctly replace a long branch node
kvn@3049 1201 // with corresponding short branch node during code generation.
kvn@3049 1202
kvn@3049 1203 bool different = false;
kvn@3049 1204 if (short_branch->_components.count() != _components.count()) {
kvn@3049 1205 different = true;
kvn@3049 1206 } else if (_components.count() > 0) {
kvn@3049 1207 short_branch->_components.reset();
kvn@3049 1208 _components.reset();
kvn@3049 1209 Component *comp;
kvn@3049 1210 while ((comp = _components.iter()) != NULL) {
kvn@3049 1211 Component *short_comp = short_branch->_components.iter();
kvn@3049 1212 if (short_comp == NULL ||
kvn@3049 1213 short_comp->_type != comp->_type ||
kvn@3049 1214 short_comp->_usedef != comp->_usedef) {
kvn@3049 1215 different = true;
kvn@3049 1216 break;
kvn@3049 1217 }
kvn@3049 1218 }
kvn@3049 1219 if (short_branch->_components.iter() != NULL)
kvn@3049 1220 different = true;
kvn@3049 1221 }
kvn@3049 1222 if (different) {
kvn@3049 1223 globalAD->syntax_err(short_branch->_linenum, "Instruction %s and its short form %s have different parameters\n", _ident, short_branch->_ident);
kvn@3049 1224 }
duke@435 1225 if (AD._short_branch_debug) {
duke@435 1226 fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
duke@435 1227 }
duke@435 1228 _short_branch_form = short_branch;
duke@435 1229 return true;
duke@435 1230 }
duke@435 1231 return false;
duke@435 1232 }
duke@435 1233
duke@435 1234
duke@435 1235 // --------------------------- FILE *output_routines
duke@435 1236 //
duke@435 1237 // Generate the format call for the replacement variable
duke@435 1238 void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
twisti@2350 1239 // Handle special constant table variables.
twisti@2350 1240 if (strcmp(rep_var, "constanttablebase") == 0) {
twisti@2350 1241 fprintf(fp, "char reg[128]; ra->dump_register(in(mach_constant_base_node_input()), reg);\n");
roland@3161 1242 fprintf(fp, " st->print(\"%%s\", reg);\n");
twisti@2350 1243 return;
twisti@2350 1244 }
twisti@2350 1245 if (strcmp(rep_var, "constantoffset") == 0) {
twisti@2350 1246 fprintf(fp, "st->print(\"#%%d\", constant_offset());\n");
twisti@2350 1247 return;
twisti@2350 1248 }
twisti@2350 1249 if (strcmp(rep_var, "constantaddress") == 0) {
twisti@2350 1250 fprintf(fp, "st->print(\"constant table base + #%%d\", constant_offset());\n");
twisti@2350 1251 return;
twisti@2350 1252 }
twisti@2350 1253
duke@435 1254 // Find replacement variable's type
duke@435 1255 const Form *form = _localNames[rep_var];
duke@435 1256 if (form == NULL) {
duke@435 1257 fprintf(stderr, "unknown replacement variable in format statement: '%s'\n", rep_var);
duke@435 1258 assert(false, "ShouldNotReachHere()");
duke@435 1259 }
duke@435 1260 OpClassForm *opc = form->is_opclass();
duke@435 1261 assert( opc, "replacement variable was not found in local names");
duke@435 1262 // Lookup the index position of the replacement variable
duke@435 1263 int idx = operand_position_format(rep_var);
duke@435 1264 if ( idx == -1 ) {
duke@435 1265 assert( strcmp(opc->_ident,"label")==0, "Unimplemented");
duke@435 1266 assert( false, "ShouldNotReachHere()");
duke@435 1267 }
duke@435 1268
duke@435 1269 if (is_noninput_operand(idx)) {
duke@435 1270 // This component isn't in the input array. Print out the static
duke@435 1271 // name of the register.
duke@435 1272 OperandForm* oper = form->is_operand();
duke@435 1273 if (oper != NULL && oper->is_bound_register()) {
duke@435 1274 const RegDef* first = oper->get_RegClass()->find_first_elem();
duke@435 1275 fprintf(fp, " tty->print(\"%s\");\n", first->_regname);
duke@435 1276 } else {
duke@435 1277 globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
duke@435 1278 }
duke@435 1279 } else {
duke@435 1280 // Output the format call for this operand
duke@435 1281 fprintf(fp,"opnd_array(%d)->",idx);
duke@435 1282 if (idx == 0)
duke@435 1283 fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
duke@435 1284 else
duke@435 1285 fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
duke@435 1286 }
duke@435 1287 }
duke@435 1288
duke@435 1289 // Seach through operands to determine parameters unique positions.
duke@435 1290 void InstructForm::set_unique_opnds() {
duke@435 1291 uint* uniq_idx = NULL;
never@1034 1292 int nopnds = num_opnds();
duke@435 1293 uint num_uniq = nopnds;
never@1034 1294 int i;
never@1034 1295 _uniq_idx_length = 0;
duke@435 1296 if ( nopnds > 0 ) {
never@1034 1297 // Allocate index array. Worst case we're mapping from each
never@1034 1298 // component back to an index and any DEF always goes at 0 so the
never@1034 1299 // length of the array has to be the number of components + 1.
never@1034 1300 _uniq_idx_length = _components.count() + 1;
never@1034 1301 uniq_idx = (uint*) malloc(sizeof(uint)*(_uniq_idx_length));
never@1034 1302 for( i = 0; i < _uniq_idx_length; i++ ) {
duke@435 1303 uniq_idx[i] = i;
duke@435 1304 }
duke@435 1305 }
duke@435 1306 // Do it only if there is a match rule and no expand rule. With an
duke@435 1307 // expand rule it is done by creating new mach node in Expand()
duke@435 1308 // method.
duke@435 1309 if ( nopnds > 0 && _matrule != NULL && _exprule == NULL ) {
duke@435 1310 const char *name;
duke@435 1311 uint count;
duke@435 1312 bool has_dupl_use = false;
duke@435 1313
duke@435 1314 _parameters.reset();
duke@435 1315 while( (name = _parameters.iter()) != NULL ) {
duke@435 1316 count = 0;
never@1034 1317 int position = 0;
never@1034 1318 int uniq_position = 0;
duke@435 1319 _components.reset();
duke@435 1320 Component *comp = NULL;
duke@435 1321 if( sets_result() ) {
duke@435 1322 comp = _components.iter();
duke@435 1323 position++;
duke@435 1324 }
duke@435 1325 // The next code is copied from the method operand_position().
duke@435 1326 for (; (comp = _components.iter()) != NULL; ++position) {
duke@435 1327 // When the first component is not a DEF,
duke@435 1328 // leave space for the result operand!
duke@435 1329 if ( position==0 && (! comp->isa(Component::DEF)) ) {
duke@435 1330 ++position;
duke@435 1331 }
duke@435 1332 if( strcmp(name, comp->_name)==0 ) {
duke@435 1333 if( ++count > 1 ) {
never@1034 1334 assert(position < _uniq_idx_length, "out of bounds");
duke@435 1335 uniq_idx[position] = uniq_position;
duke@435 1336 has_dupl_use = true;
duke@435 1337 } else {
duke@435 1338 uniq_position = position;
duke@435 1339 }
duke@435 1340 }
duke@435 1341 if( comp->isa(Component::DEF)
duke@435 1342 && comp->isa(Component::USE) ) {
duke@435 1343 ++position;
duke@435 1344 if( position != 1 )
duke@435 1345 --position; // only use two slots for the 1st USE_DEF
duke@435 1346 }
duke@435 1347 }
duke@435 1348 }
duke@435 1349 if( has_dupl_use ) {
duke@435 1350 for( i = 1; i < nopnds; i++ )
duke@435 1351 if( i != uniq_idx[i] )
duke@435 1352 break;
duke@435 1353 int j = i;
duke@435 1354 for( ; i < nopnds; i++ )
duke@435 1355 if( i == uniq_idx[i] )
duke@435 1356 uniq_idx[i] = j++;
duke@435 1357 num_uniq = j;
duke@435 1358 }
duke@435 1359 }
duke@435 1360 _uniq_idx = uniq_idx;
duke@435 1361 _num_uniq = num_uniq;
duke@435 1362 }
duke@435 1363
twisti@1040 1364 // Generate index values needed for determining the operand position
duke@435 1365 void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
duke@435 1366 uint idx = 0; // position of operand in match rule
duke@435 1367 int cur_num_opnds = num_opnds();
duke@435 1368
duke@435 1369 // Compute the index into vector of operand pointers:
duke@435 1370 // idx0=0 is used to indicate that info comes from this same node, not from input edge.
duke@435 1371 // idx1 starts at oper_input_base()
duke@435 1372 if ( cur_num_opnds >= 1 ) {
duke@435 1373 fprintf(fp," // Start at oper_input_base() and count operands\n");
duke@435 1374 fprintf(fp," unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
duke@435 1375 fprintf(fp," unsigned %sidx1 = %d;\n", prefix, oper_input_base(globals));
duke@435 1376
duke@435 1377 // Generate starting points for other unique operands if they exist
duke@435 1378 for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
duke@435 1379 if( *receiver == 0 ) {
duke@435 1380 fprintf(fp," unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();\n",
duke@435 1381 prefix, idx, prefix, idx-1, idx-1 );
duke@435 1382 } else {
duke@435 1383 fprintf(fp," unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();\n",
duke@435 1384 prefix, idx, prefix, idx-1, receiver, idx-1 );
duke@435 1385 }
duke@435 1386 }
duke@435 1387 }
duke@435 1388 if( *receiver != 0 ) {
duke@435 1389 // This value is used by generate_peepreplace when copying a node.
duke@435 1390 // Don't emit it in other cases since it can hide bugs with the
duke@435 1391 // use invalid idx's.
duke@435 1392 fprintf(fp," unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
duke@435 1393 }
duke@435 1394
duke@435 1395 }
duke@435 1396
duke@435 1397 // ---------------------------
duke@435 1398 bool InstructForm::verify() {
duke@435 1399 // !!!!! !!!!!
duke@435 1400 // Check that a "label" operand occurs last in the operand list, if present
duke@435 1401 return true;
duke@435 1402 }
duke@435 1403
duke@435 1404 void InstructForm::dump() {
duke@435 1405 output(stderr);
duke@435 1406 }
duke@435 1407
duke@435 1408 void InstructForm::output(FILE *fp) {
duke@435 1409 fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
duke@435 1410 if (_matrule) _matrule->output(fp);
duke@435 1411 if (_insencode) _insencode->output(fp);
twisti@2350 1412 if (_constant) _constant->output(fp);
duke@435 1413 if (_opcode) _opcode->output(fp);
duke@435 1414 if (_attribs) _attribs->output(fp);
duke@435 1415 if (_predicate) _predicate->output(fp);
duke@435 1416 if (_effects.Size()) {
duke@435 1417 fprintf(fp,"Effects\n");
duke@435 1418 _effects.dump();
duke@435 1419 }
duke@435 1420 if (_exprule) _exprule->output(fp);
duke@435 1421 if (_rewrule) _rewrule->output(fp);
duke@435 1422 if (_format) _format->output(fp);
duke@435 1423 if (_peephole) _peephole->output(fp);
duke@435 1424 }
duke@435 1425
duke@435 1426 void MachNodeForm::dump() {
duke@435 1427 output(stderr);
duke@435 1428 }
duke@435 1429
duke@435 1430 void MachNodeForm::output(FILE *fp) {
duke@435 1431 fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
duke@435 1432 }
duke@435 1433
duke@435 1434 //------------------------------build_predicate--------------------------------
duke@435 1435 // Build instruction predicates. If the user uses the same operand name
duke@435 1436 // twice, we need to check that the operands are pointer-eequivalent in
duke@435 1437 // the DFA during the labeling process.
duke@435 1438 Predicate *InstructForm::build_predicate() {
duke@435 1439 char buf[1024], *s=buf;
duke@435 1440 Dict names(cmpstr,hashstr,Form::arena); // Map Names to counts
duke@435 1441
duke@435 1442 MatchNode *mnode =
duke@435 1443 strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
duke@435 1444 mnode->count_instr_names(names);
duke@435 1445
duke@435 1446 uint first = 1;
duke@435 1447 // Start with the predicate supplied in the .ad file.
duke@435 1448 if( _predicate ) {
duke@435 1449 if( first ) first=0;
duke@435 1450 strcpy(s,"("); s += strlen(s);
duke@435 1451 strcpy(s,_predicate->_pred);
duke@435 1452 s += strlen(s);
duke@435 1453 strcpy(s,")"); s += strlen(s);
duke@435 1454 }
duke@435 1455 for( DictI i(&names); i.test(); ++i ) {
duke@435 1456 uintptr_t cnt = (uintptr_t)i._value;
duke@435 1457 if( cnt > 1 ) { // Need a predicate at all?
duke@435 1458 assert( cnt == 2, "Unimplemented" );
duke@435 1459 // Handle many pairs
duke@435 1460 if( first ) first=0;
duke@435 1461 else { // All tests must pass, so use '&&'
duke@435 1462 strcpy(s," && ");
duke@435 1463 s += strlen(s);
duke@435 1464 }
duke@435 1465 // Add predicate to working buffer
duke@435 1466 sprintf(s,"/*%s*/(",(char*)i._key);
duke@435 1467 s += strlen(s);
duke@435 1468 mnode->build_instr_pred(s,(char*)i._key,0);
duke@435 1469 s += strlen(s);
duke@435 1470 strcpy(s," == "); s += strlen(s);
duke@435 1471 mnode->build_instr_pred(s,(char*)i._key,1);
duke@435 1472 s += strlen(s);
duke@435 1473 strcpy(s,")"); s += strlen(s);
duke@435 1474 }
duke@435 1475 }
duke@435 1476 if( s == buf ) s = NULL;
duke@435 1477 else {
duke@435 1478 assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
duke@435 1479 s = strdup(buf);
duke@435 1480 }
duke@435 1481 return new Predicate(s);
duke@435 1482 }
duke@435 1483
duke@435 1484 //------------------------------EncodeForm-------------------------------------
duke@435 1485 // Constructor
duke@435 1486 EncodeForm::EncodeForm()
duke@435 1487 : _encClass(cmpstr,hashstr, Form::arena) {
duke@435 1488 }
duke@435 1489 EncodeForm::~EncodeForm() {
duke@435 1490 }
duke@435 1491
duke@435 1492 // record a new register class
duke@435 1493 EncClass *EncodeForm::add_EncClass(const char *className) {
duke@435 1494 EncClass *encClass = new EncClass(className);
duke@435 1495 _eclasses.addName(className);
duke@435 1496 _encClass.Insert(className,encClass);
duke@435 1497 return encClass;
duke@435 1498 }
duke@435 1499
duke@435 1500 // Lookup the function body for an encoding class
duke@435 1501 EncClass *EncodeForm::encClass(const char *className) {
duke@435 1502 assert( className != NULL, "Must provide a defined encoding name");
duke@435 1503
duke@435 1504 EncClass *encClass = (EncClass*)_encClass[className];
duke@435 1505 return encClass;
duke@435 1506 }
duke@435 1507
duke@435 1508 // Lookup the function body for an encoding class
duke@435 1509 const char *EncodeForm::encClassBody(const char *className) {
duke@435 1510 if( className == NULL ) return NULL;
duke@435 1511
duke@435 1512 EncClass *encClass = (EncClass*)_encClass[className];
duke@435 1513 assert( encClass != NULL, "Encode Class is missing.");
duke@435 1514 encClass->_code.reset();
duke@435 1515 const char *code = (const char*)encClass->_code.iter();
duke@435 1516 assert( code != NULL, "Found an empty encode class body.");
duke@435 1517
duke@435 1518 return code;
duke@435 1519 }
duke@435 1520
duke@435 1521 // Lookup the function body for an encoding class
duke@435 1522 const char *EncodeForm::encClassPrototype(const char *className) {
duke@435 1523 assert( className != NULL, "Encode class name must be non NULL.");
duke@435 1524
duke@435 1525 return className;
duke@435 1526 }
duke@435 1527
duke@435 1528 void EncodeForm::dump() { // Debug printer
duke@435 1529 output(stderr);
duke@435 1530 }
duke@435 1531
duke@435 1532 void EncodeForm::output(FILE *fp) { // Write info to output files
duke@435 1533 const char *name;
duke@435 1534 fprintf(fp,"\n");
duke@435 1535 fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
duke@435 1536 for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
duke@435 1537 ((EncClass*)_encClass[name])->output(fp);
duke@435 1538 }
duke@435 1539 fprintf(fp,"-------------------- end EncodeForm --------------------\n");
duke@435 1540 }
duke@435 1541 //------------------------------EncClass---------------------------------------
duke@435 1542 EncClass::EncClass(const char *name)
duke@435 1543 : _localNames(cmpstr,hashstr, Form::arena), _name(name) {
duke@435 1544 }
duke@435 1545 EncClass::~EncClass() {
duke@435 1546 }
duke@435 1547
duke@435 1548 // Add a parameter <type,name> pair
duke@435 1549 void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
duke@435 1550 _parameter_type.addName( parameter_type );
duke@435 1551 _parameter_name.addName( parameter_name );
duke@435 1552 }
duke@435 1553
duke@435 1554 // Verify operand types in parameter list
duke@435 1555 bool EncClass::check_parameter_types(FormDict &globals) {
duke@435 1556 // !!!!!
duke@435 1557 return false;
duke@435 1558 }
duke@435 1559
duke@435 1560 // Add the decomposed "code" sections of an encoding's code-block
duke@435 1561 void EncClass::add_code(const char *code) {
duke@435 1562 _code.addName(code);
duke@435 1563 }
duke@435 1564
duke@435 1565 // Add the decomposed "replacement variables" of an encoding's code-block
duke@435 1566 void EncClass::add_rep_var(char *replacement_var) {
duke@435 1567 _code.addName(NameList::_signal);
duke@435 1568 _rep_vars.addName(replacement_var);
duke@435 1569 }
duke@435 1570
duke@435 1571 // Lookup the function body for an encoding class
duke@435 1572 int EncClass::rep_var_index(const char *rep_var) {
duke@435 1573 uint position = 0;
duke@435 1574 const char *name = NULL;
duke@435 1575
duke@435 1576 _parameter_name.reset();
duke@435 1577 while ( (name = _parameter_name.iter()) != NULL ) {
duke@435 1578 if ( strcmp(rep_var,name) == 0 ) return position;
duke@435 1579 ++position;
duke@435 1580 }
duke@435 1581
duke@435 1582 return -1;
duke@435 1583 }
duke@435 1584
duke@435 1585 // Check after parsing
duke@435 1586 bool EncClass::verify() {
duke@435 1587 // 1!!!!
duke@435 1588 // Check that each replacement variable, '$name' in architecture description
duke@435 1589 // is actually a local variable for this encode class, or a reserved name
duke@435 1590 // "primary, secondary, tertiary"
duke@435 1591 return true;
duke@435 1592 }
duke@435 1593
duke@435 1594 void EncClass::dump() {
duke@435 1595 output(stderr);
duke@435 1596 }
duke@435 1597
duke@435 1598 // Write info to output files
duke@435 1599 void EncClass::output(FILE *fp) {
duke@435 1600 fprintf(fp,"EncClass: %s", (_name ? _name : ""));
duke@435 1601
duke@435 1602 // Output the parameter list
duke@435 1603 _parameter_type.reset();
duke@435 1604 _parameter_name.reset();
duke@435 1605 const char *type = _parameter_type.iter();
duke@435 1606 const char *name = _parameter_name.iter();
duke@435 1607 fprintf(fp, " ( ");
duke@435 1608 for ( ; (type != NULL) && (name != NULL);
duke@435 1609 (type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
duke@435 1610 fprintf(fp, " %s %s,", type, name);
duke@435 1611 }
duke@435 1612 fprintf(fp, " ) ");
duke@435 1613
duke@435 1614 // Output the code block
duke@435 1615 _code.reset();
duke@435 1616 _rep_vars.reset();
duke@435 1617 const char *code;
duke@435 1618 while ( (code = _code.iter()) != NULL ) {
duke@435 1619 if ( _code.is_signal(code) ) {
duke@435 1620 // A replacement variable
duke@435 1621 const char *rep_var = _rep_vars.iter();
duke@435 1622 fprintf(fp,"($%s)", rep_var);
duke@435 1623 } else {
duke@435 1624 // A section of code
duke@435 1625 fprintf(fp,"%s", code);
duke@435 1626 }
duke@435 1627 }
duke@435 1628
duke@435 1629 }
duke@435 1630
duke@435 1631 //------------------------------Opcode-----------------------------------------
duke@435 1632 Opcode::Opcode(char *primary, char *secondary, char *tertiary)
duke@435 1633 : _primary(primary), _secondary(secondary), _tertiary(tertiary) {
duke@435 1634 }
duke@435 1635
duke@435 1636 Opcode::~Opcode() {
duke@435 1637 }
duke@435 1638
duke@435 1639 Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
duke@435 1640 if( strcmp(param,"primary") == 0 ) {
duke@435 1641 return Opcode::PRIMARY;
duke@435 1642 }
duke@435 1643 else if( strcmp(param,"secondary") == 0 ) {
duke@435 1644 return Opcode::SECONDARY;
duke@435 1645 }
duke@435 1646 else if( strcmp(param,"tertiary") == 0 ) {
duke@435 1647 return Opcode::TERTIARY;
duke@435 1648 }
duke@435 1649 return Opcode::NOT_AN_OPCODE;
duke@435 1650 }
duke@435 1651
never@850 1652 bool Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
duke@435 1653 // Default values previously provided by MachNode::primary()...
never@850 1654 const char *description = NULL;
never@850 1655 const char *value = NULL;
duke@435 1656 // Check if user provided any opcode definitions
duke@435 1657 if( this != NULL ) {
duke@435 1658 // Update 'value' if user provided a definition in the instruction
duke@435 1659 switch (desired_opcode) {
duke@435 1660 case PRIMARY:
duke@435 1661 description = "primary()";
duke@435 1662 if( _primary != NULL) { value = _primary; }
duke@435 1663 break;
duke@435 1664 case SECONDARY:
duke@435 1665 description = "secondary()";
duke@435 1666 if( _secondary != NULL ) { value = _secondary; }
duke@435 1667 break;
duke@435 1668 case TERTIARY:
duke@435 1669 description = "tertiary()";
duke@435 1670 if( _tertiary != NULL ) { value = _tertiary; }
duke@435 1671 break;
duke@435 1672 default:
duke@435 1673 assert( false, "ShouldNotReachHere();");
duke@435 1674 break;
duke@435 1675 }
duke@435 1676 }
never@850 1677 if (value != NULL) {
never@850 1678 fprintf(fp, "(%s /*%s*/)", value, description);
never@850 1679 }
never@850 1680 return value != NULL;
duke@435 1681 }
duke@435 1682
duke@435 1683 void Opcode::dump() {
duke@435 1684 output(stderr);
duke@435 1685 }
duke@435 1686
duke@435 1687 // Write info to output files
duke@435 1688 void Opcode::output(FILE *fp) {
duke@435 1689 if (_primary != NULL) fprintf(fp,"Primary opcode: %s\n", _primary);
duke@435 1690 if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
duke@435 1691 if (_tertiary != NULL) fprintf(fp,"Tertiary opcode: %s\n", _tertiary);
duke@435 1692 }
duke@435 1693
duke@435 1694 //------------------------------InsEncode--------------------------------------
duke@435 1695 InsEncode::InsEncode() {
duke@435 1696 }
duke@435 1697 InsEncode::~InsEncode() {
duke@435 1698 }
duke@435 1699
duke@435 1700 // Add "encode class name" and its parameters
duke@435 1701 NameAndList *InsEncode::add_encode(char *encoding) {
duke@435 1702 assert( encoding != NULL, "Must provide name for encoding");
duke@435 1703
duke@435 1704 // add_parameter(NameList::_signal);
duke@435 1705 NameAndList *encode = new NameAndList(encoding);
duke@435 1706 _encoding.addName((char*)encode);
duke@435 1707
duke@435 1708 return encode;
duke@435 1709 }
duke@435 1710
duke@435 1711 // Access the list of encodings
duke@435 1712 void InsEncode::reset() {
duke@435 1713 _encoding.reset();
duke@435 1714 // _parameter.reset();
duke@435 1715 }
duke@435 1716 const char* InsEncode::encode_class_iter() {
duke@435 1717 NameAndList *encode_class = (NameAndList*)_encoding.iter();
duke@435 1718 return ( encode_class != NULL ? encode_class->name() : NULL );
duke@435 1719 }
duke@435 1720 // Obtain parameter name from zero based index
duke@435 1721 const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
duke@435 1722 NameAndList *params = (NameAndList*)_encoding.current();
duke@435 1723 assert( params != NULL, "Internal Error");
duke@435 1724 const char *param = (*params)[param_no];
duke@435 1725
duke@435 1726 // Remove '$' if parser placed it there.
duke@435 1727 return ( param != NULL && *param == '$') ? (param+1) : param;
duke@435 1728 }
duke@435 1729
duke@435 1730 void InsEncode::dump() {
duke@435 1731 output(stderr);
duke@435 1732 }
duke@435 1733
duke@435 1734 // Write info to output files
duke@435 1735 void InsEncode::output(FILE *fp) {
duke@435 1736 NameAndList *encoding = NULL;
duke@435 1737 const char *parameter = NULL;
duke@435 1738
duke@435 1739 fprintf(fp,"InsEncode: ");
duke@435 1740 _encoding.reset();
duke@435 1741
duke@435 1742 while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
duke@435 1743 // Output the encoding being used
duke@435 1744 fprintf(fp,"%s(", encoding->name() );
duke@435 1745
duke@435 1746 // Output its parameter list, if any
duke@435 1747 bool first_param = true;
duke@435 1748 encoding->reset();
duke@435 1749 while ( (parameter = encoding->iter()) != 0 ) {
duke@435 1750 // Output the ',' between parameters
duke@435 1751 if ( ! first_param ) fprintf(fp,", ");
duke@435 1752 first_param = false;
duke@435 1753 // Output the parameter
duke@435 1754 fprintf(fp,"%s", parameter);
duke@435 1755 } // done with parameters
duke@435 1756 fprintf(fp,") ");
duke@435 1757 } // done with encodings
duke@435 1758
duke@435 1759 fprintf(fp,"\n");
duke@435 1760 }
duke@435 1761
duke@435 1762 //------------------------------Effect-----------------------------------------
duke@435 1763 static int effect_lookup(const char *name) {
duke@435 1764 if(!strcmp(name, "USE")) return Component::USE;
duke@435 1765 if(!strcmp(name, "DEF")) return Component::DEF;
duke@435 1766 if(!strcmp(name, "USE_DEF")) return Component::USE_DEF;
duke@435 1767 if(!strcmp(name, "KILL")) return Component::KILL;
duke@435 1768 if(!strcmp(name, "USE_KILL")) return Component::USE_KILL;
duke@435 1769 if(!strcmp(name, "TEMP")) return Component::TEMP;
duke@435 1770 if(!strcmp(name, "INVALID")) return Component::INVALID;
roland@3316 1771 if(!strcmp(name, "CALL")) return Component::CALL;
duke@435 1772 assert( false,"Invalid effect name specified\n");
duke@435 1773 return Component::INVALID;
duke@435 1774 }
duke@435 1775
duke@435 1776 Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
duke@435 1777 _ftype = Form::EFF;
duke@435 1778 }
duke@435 1779 Effect::~Effect() {
duke@435 1780 }
duke@435 1781
duke@435 1782 // Dynamic type check
duke@435 1783 Effect *Effect::is_effect() const {
duke@435 1784 return (Effect*)this;
duke@435 1785 }
duke@435 1786
duke@435 1787
duke@435 1788 // True if this component is equal to the parameter.
duke@435 1789 bool Effect::is(int use_def_kill_enum) const {
duke@435 1790 return (_use_def == use_def_kill_enum ? true : false);
duke@435 1791 }
duke@435 1792 // True if this component is used/def'd/kill'd as the parameter suggests.
duke@435 1793 bool Effect::isa(int use_def_kill_enum) const {
duke@435 1794 return (_use_def & use_def_kill_enum) == use_def_kill_enum;
duke@435 1795 }
duke@435 1796
duke@435 1797 void Effect::dump() {
duke@435 1798 output(stderr);
duke@435 1799 }
duke@435 1800
duke@435 1801 void Effect::output(FILE *fp) { // Write info to output files
duke@435 1802 fprintf(fp,"Effect: %s\n", (_name?_name:""));
duke@435 1803 }
duke@435 1804
duke@435 1805 //------------------------------ExpandRule-------------------------------------
duke@435 1806 ExpandRule::ExpandRule() : _expand_instrs(),
duke@435 1807 _newopconst(cmpstr, hashstr, Form::arena) {
duke@435 1808 _ftype = Form::EXP;
duke@435 1809 }
duke@435 1810
duke@435 1811 ExpandRule::~ExpandRule() { // Destructor
duke@435 1812 }
duke@435 1813
duke@435 1814 void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
duke@435 1815 _expand_instrs.addName((char*)instruction_name_and_operand_list);
duke@435 1816 }
duke@435 1817
duke@435 1818 void ExpandRule::reset_instructions() {
duke@435 1819 _expand_instrs.reset();
duke@435 1820 }
duke@435 1821
duke@435 1822 NameAndList* ExpandRule::iter_instructions() {
duke@435 1823 return (NameAndList*)_expand_instrs.iter();
duke@435 1824 }
duke@435 1825
duke@435 1826
duke@435 1827 void ExpandRule::dump() {
duke@435 1828 output(stderr);
duke@435 1829 }
duke@435 1830
duke@435 1831 void ExpandRule::output(FILE *fp) { // Write info to output files
duke@435 1832 NameAndList *expand_instr = NULL;
duke@435 1833 const char *opid = NULL;
duke@435 1834
duke@435 1835 fprintf(fp,"\nExpand Rule:\n");
duke@435 1836
duke@435 1837 // Iterate over the instructions 'node' expands into
duke@435 1838 for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
duke@435 1839 fprintf(fp,"%s(", expand_instr->name());
duke@435 1840
duke@435 1841 // iterate over the operand list
duke@435 1842 for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
duke@435 1843 fprintf(fp,"%s ", opid);
duke@435 1844 }
duke@435 1845 fprintf(fp,");\n");
duke@435 1846 }
duke@435 1847 }
duke@435 1848
duke@435 1849 //------------------------------RewriteRule------------------------------------
duke@435 1850 RewriteRule::RewriteRule(char* params, char* block)
duke@435 1851 : _tempParams(params), _tempBlock(block) { }; // Constructor
duke@435 1852 RewriteRule::~RewriteRule() { // Destructor
duke@435 1853 }
duke@435 1854
duke@435 1855 void RewriteRule::dump() {
duke@435 1856 output(stderr);
duke@435 1857 }
duke@435 1858
duke@435 1859 void RewriteRule::output(FILE *fp) { // Write info to output files
duke@435 1860 fprintf(fp,"\nRewrite Rule:\n%s\n%s\n",
duke@435 1861 (_tempParams?_tempParams:""),
duke@435 1862 (_tempBlock?_tempBlock:""));
duke@435 1863 }
duke@435 1864
duke@435 1865
duke@435 1866 //==============================MachNodes======================================
duke@435 1867 //------------------------------MachNodeForm-----------------------------------
duke@435 1868 MachNodeForm::MachNodeForm(char *id)
duke@435 1869 : _ident(id) {
duke@435 1870 }
duke@435 1871
duke@435 1872 MachNodeForm::~MachNodeForm() {
duke@435 1873 }
duke@435 1874
duke@435 1875 MachNodeForm *MachNodeForm::is_machnode() const {
duke@435 1876 return (MachNodeForm*)this;
duke@435 1877 }
duke@435 1878
duke@435 1879 //==============================Operand Classes================================
duke@435 1880 //------------------------------OpClassForm------------------------------------
duke@435 1881 OpClassForm::OpClassForm(const char* id) : _ident(id) {
duke@435 1882 _ftype = Form::OPCLASS;
duke@435 1883 }
duke@435 1884
duke@435 1885 OpClassForm::~OpClassForm() {
duke@435 1886 }
duke@435 1887
duke@435 1888 bool OpClassForm::ideal_only() const { return 0; }
duke@435 1889
duke@435 1890 OpClassForm *OpClassForm::is_opclass() const {
duke@435 1891 return (OpClassForm*)this;
duke@435 1892 }
duke@435 1893
duke@435 1894 Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
duke@435 1895 if( _oplst.count() == 0 ) return Form::no_interface;
duke@435 1896
duke@435 1897 // Check that my operands have the same interface type
duke@435 1898 Form::InterfaceType interface;
duke@435 1899 bool first = true;
duke@435 1900 NameList &op_list = (NameList &)_oplst;
duke@435 1901 op_list.reset();
duke@435 1902 const char *op_name;
duke@435 1903 while( (op_name = op_list.iter()) != NULL ) {
duke@435 1904 const Form *form = globals[op_name];
duke@435 1905 OperandForm *operand = form->is_operand();
duke@435 1906 assert( operand, "Entry in operand class that is not an operand");
duke@435 1907 if( first ) {
duke@435 1908 first = false;
duke@435 1909 interface = operand->interface_type(globals);
duke@435 1910 } else {
duke@435 1911 interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
duke@435 1912 }
duke@435 1913 }
duke@435 1914 return interface;
duke@435 1915 }
duke@435 1916
duke@435 1917 bool OpClassForm::stack_slots_only(FormDict &globals) const {
duke@435 1918 if( _oplst.count() == 0 ) return false; // how?
duke@435 1919
duke@435 1920 NameList &op_list = (NameList &)_oplst;
duke@435 1921 op_list.reset();
duke@435 1922 const char *op_name;
duke@435 1923 while( (op_name = op_list.iter()) != NULL ) {
duke@435 1924 const Form *form = globals[op_name];
duke@435 1925 OperandForm *operand = form->is_operand();
duke@435 1926 assert( operand, "Entry in operand class that is not an operand");
duke@435 1927 if( !operand->stack_slots_only(globals) ) return false;
duke@435 1928 }
duke@435 1929 return true;
duke@435 1930 }
duke@435 1931
duke@435 1932
duke@435 1933 void OpClassForm::dump() {
duke@435 1934 output(stderr);
duke@435 1935 }
duke@435 1936
duke@435 1937 void OpClassForm::output(FILE *fp) {
duke@435 1938 const char *name;
duke@435 1939 fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
duke@435 1940 fprintf(fp,"\nCount = %d\n", _oplst.count());
duke@435 1941 for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
duke@435 1942 fprintf(fp,"%s, ",name);
duke@435 1943 }
duke@435 1944 fprintf(fp,"\n");
duke@435 1945 }
duke@435 1946
duke@435 1947
duke@435 1948 //==============================Operands=======================================
duke@435 1949 //------------------------------OperandForm------------------------------------
duke@435 1950 OperandForm::OperandForm(const char* id)
duke@435 1951 : OpClassForm(id), _ideal_only(false),
duke@435 1952 _localNames(cmpstr, hashstr, Form::arena) {
duke@435 1953 _ftype = Form::OPER;
duke@435 1954
duke@435 1955 _matrule = NULL;
duke@435 1956 _interface = NULL;
duke@435 1957 _attribs = NULL;
duke@435 1958 _predicate = NULL;
duke@435 1959 _constraint= NULL;
duke@435 1960 _construct = NULL;
duke@435 1961 _format = NULL;
duke@435 1962 }
duke@435 1963 OperandForm::OperandForm(const char* id, bool ideal_only)
duke@435 1964 : OpClassForm(id), _ideal_only(ideal_only),
duke@435 1965 _localNames(cmpstr, hashstr, Form::arena) {
duke@435 1966 _ftype = Form::OPER;
duke@435 1967
duke@435 1968 _matrule = NULL;
duke@435 1969 _interface = NULL;
duke@435 1970 _attribs = NULL;
duke@435 1971 _predicate = NULL;
duke@435 1972 _constraint= NULL;
duke@435 1973 _construct = NULL;
duke@435 1974 _format = NULL;
duke@435 1975 }
duke@435 1976 OperandForm::~OperandForm() {
duke@435 1977 }
duke@435 1978
duke@435 1979
duke@435 1980 OperandForm *OperandForm::is_operand() const {
duke@435 1981 return (OperandForm*)this;
duke@435 1982 }
duke@435 1983
duke@435 1984 bool OperandForm::ideal_only() const {
duke@435 1985 return _ideal_only;
duke@435 1986 }
duke@435 1987
duke@435 1988 Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
duke@435 1989 if( _interface == NULL ) return Form::no_interface;
duke@435 1990
duke@435 1991 return _interface->interface_type(globals);
duke@435 1992 }
duke@435 1993
duke@435 1994
duke@435 1995 bool OperandForm::stack_slots_only(FormDict &globals) const {
duke@435 1996 if( _constraint == NULL ) return false;
duke@435 1997 return _constraint->stack_slots_only();
duke@435 1998 }
duke@435 1999
duke@435 2000
duke@435 2001 // Access op_cost attribute or return NULL.
duke@435 2002 const char* OperandForm::cost() {
duke@435 2003 for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
duke@435 2004 if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
duke@435 2005 return cur->_val;
duke@435 2006 }
duke@435 2007 }
duke@435 2008 return NULL;
duke@435 2009 }
duke@435 2010
duke@435 2011 // Return the number of leaves below this complex operand
duke@435 2012 uint OperandForm::num_leaves() const {
duke@435 2013 if ( ! _matrule) return 0;
duke@435 2014
duke@435 2015 int num_leaves = _matrule->_numleaves;
duke@435 2016 return num_leaves;
duke@435 2017 }
duke@435 2018
duke@435 2019 // Return the number of constants contained within this complex operand
duke@435 2020 uint OperandForm::num_consts(FormDict &globals) const {
duke@435 2021 if ( ! _matrule) return 0;
duke@435 2022
duke@435 2023 // This is a recursive invocation on all operands in the matchrule
duke@435 2024 return _matrule->num_consts(globals);
duke@435 2025 }
duke@435 2026
duke@435 2027 // Return the number of constants in match rule with specified type
duke@435 2028 uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
duke@435 2029 if ( ! _matrule) return 0;
duke@435 2030
duke@435 2031 // This is a recursive invocation on all operands in the matchrule
duke@435 2032 return _matrule->num_consts(globals, type);
duke@435 2033 }
duke@435 2034
duke@435 2035 // Return the number of pointer constants contained within this complex operand
duke@435 2036 uint OperandForm::num_const_ptrs(FormDict &globals) const {
duke@435 2037 if ( ! _matrule) return 0;
duke@435 2038
duke@435 2039 // This is a recursive invocation on all operands in the matchrule
duke@435 2040 return _matrule->num_const_ptrs(globals);
duke@435 2041 }
duke@435 2042
duke@435 2043 uint OperandForm::num_edges(FormDict &globals) const {
duke@435 2044 uint edges = 0;
duke@435 2045 uint leaves = num_leaves();
duke@435 2046 uint consts = num_consts(globals);
duke@435 2047
duke@435 2048 // If we are matching a constant directly, there are no leaves.
duke@435 2049 edges = ( leaves > consts ) ? leaves - consts : 0;
duke@435 2050
duke@435 2051 // !!!!!
duke@435 2052 // Special case operands that do not have a corresponding ideal node.
duke@435 2053 if( (edges == 0) && (consts == 0) ) {
duke@435 2054 if( constrained_reg_class() != NULL ) {
duke@435 2055 edges = 1;
duke@435 2056 } else {
duke@435 2057 if( _matrule
duke@435 2058 && (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
duke@435 2059 const Form *form = globals[_matrule->_opType];
duke@435 2060 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 2061 if( oper ) {
duke@435 2062 return oper->num_edges(globals);
duke@435 2063 }
duke@435 2064 }
duke@435 2065 }
duke@435 2066 }
duke@435 2067
duke@435 2068 return edges;
duke@435 2069 }
duke@435 2070
duke@435 2071
duke@435 2072 // Check if this operand is usable for cisc-spilling
duke@435 2073 bool OperandForm::is_cisc_reg(FormDict &globals) const {
duke@435 2074 const char *ideal = ideal_type(globals);
duke@435 2075 bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
duke@435 2076 return is_cisc_reg;
duke@435 2077 }
duke@435 2078
duke@435 2079 bool OpClassForm::is_cisc_mem(FormDict &globals) const {
duke@435 2080 Form::InterfaceType my_interface = interface_type(globals);
duke@435 2081 return (my_interface == memory_interface);
duke@435 2082 }
duke@435 2083
duke@435 2084
duke@435 2085 // node matches ideal 'Bool'
duke@435 2086 bool OperandForm::is_ideal_bool() const {
duke@435 2087 if( _matrule == NULL ) return false;
duke@435 2088
duke@435 2089 return _matrule->is_ideal_bool();
duke@435 2090 }
duke@435 2091
duke@435 2092 // Require user's name for an sRegX to be stackSlotX
duke@435 2093 Form::DataType OperandForm::is_user_name_for_sReg() const {
duke@435 2094 DataType data_type = none;
duke@435 2095 if( _ident != NULL ) {
duke@435 2096 if( strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
duke@435 2097 else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
duke@435 2098 else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
duke@435 2099 else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
duke@435 2100 else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
duke@435 2101 }
duke@435 2102 assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");
duke@435 2103
duke@435 2104 return data_type;
duke@435 2105 }
duke@435 2106
duke@435 2107
duke@435 2108 // Return ideal type, if there is a single ideal type for this operand
duke@435 2109 const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
duke@435 2110 const char *type = NULL;
duke@435 2111 if (ideal_only()) type = _ident;
duke@435 2112 else if( _matrule == NULL ) {
duke@435 2113 // Check for condition code register
duke@435 2114 const char *rc_name = constrained_reg_class();
duke@435 2115 // !!!!!
duke@435 2116 if (rc_name == NULL) return NULL;
duke@435 2117 // !!!!! !!!!!
duke@435 2118 // Check constraints on result's register class
duke@435 2119 if( registers ) {
duke@435 2120 RegClass *reg_class = registers->getRegClass(rc_name);
duke@435 2121 assert( reg_class != NULL, "Register class is not defined");
duke@435 2122
duke@435 2123 // Check for ideal type of entries in register class, all are the same type
duke@435 2124 reg_class->reset();
duke@435 2125 RegDef *reg_def = reg_class->RegDef_iter();
duke@435 2126 assert( reg_def != NULL, "No entries in register class");
duke@435 2127 assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
duke@435 2128 // Return substring that names the register's ideal type
duke@435 2129 type = reg_def->_idealtype + 3;
duke@435 2130 assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
duke@435 2131 assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
duke@435 2132 assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
duke@435 2133 }
duke@435 2134 }
duke@435 2135 else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
duke@435 2136 // This operand matches a single type, at the top level.
duke@435 2137 // Check for ideal type
duke@435 2138 type = _matrule->_opType;
duke@435 2139 if( strcmp(type,"Bool") == 0 )
duke@435 2140 return "Bool";
duke@435 2141 // transitive lookup
duke@435 2142 const Form *frm = globals[type];
duke@435 2143 OperandForm *op = frm->is_operand();
duke@435 2144 type = op->ideal_type(globals, registers);
duke@435 2145 }
duke@435 2146 return type;
duke@435 2147 }
duke@435 2148
duke@435 2149
duke@435 2150 // If there is a single ideal type for this interface field, return it.
duke@435 2151 const char *OperandForm::interface_ideal_type(FormDict &globals,
duke@435 2152 const char *field) const {
duke@435 2153 const char *ideal_type = NULL;
duke@435 2154 const char *value = NULL;
duke@435 2155
duke@435 2156 // Check if "field" is valid for this operand's interface
duke@435 2157 if ( ! is_interface_field(field, value) ) return ideal_type;
duke@435 2158
duke@435 2159 // !!!!! !!!!! !!!!!
duke@435 2160 // If a valid field has a constant value, identify "ConI" or "ConP" or ...
duke@435 2161
duke@435 2162 // Else, lookup type of field's replacement variable
duke@435 2163
duke@435 2164 return ideal_type;
duke@435 2165 }
duke@435 2166
duke@435 2167
duke@435 2168 RegClass* OperandForm::get_RegClass() const {
duke@435 2169 if (_interface && !_interface->is_RegInterface()) return NULL;
duke@435 2170 return globalAD->get_registers()->getRegClass(constrained_reg_class());
duke@435 2171 }
duke@435 2172
duke@435 2173
duke@435 2174 bool OperandForm::is_bound_register() const {
duke@435 2175 RegClass *reg_class = get_RegClass();
duke@435 2176 if (reg_class == NULL) return false;
duke@435 2177
duke@435 2178 const char * name = ideal_type(globalAD->globalNames());
duke@435 2179 if (name == NULL) return false;
duke@435 2180
duke@435 2181 int size = 0;
duke@435 2182 if (strcmp(name,"RegFlags")==0) size = 1;
duke@435 2183 if (strcmp(name,"RegI")==0) size = 1;
duke@435 2184 if (strcmp(name,"RegF")==0) size = 1;
duke@435 2185 if (strcmp(name,"RegD")==0) size = 2;
duke@435 2186 if (strcmp(name,"RegL")==0) size = 2;
coleenp@548 2187 if (strcmp(name,"RegN")==0) size = 1;
duke@435 2188 if (strcmp(name,"RegP")==0) size = globalAD->get_preproc_def("_LP64") ? 2 : 1;
duke@435 2189 if (size == 0) return false;
duke@435 2190 return size == reg_class->size();
duke@435 2191 }
duke@435 2192
duke@435 2193
duke@435 2194 // Check if this is a valid field for this operand,
duke@435 2195 // Return 'true' if valid, and set the value to the string the user provided.
duke@435 2196 bool OperandForm::is_interface_field(const char *field,
duke@435 2197 const char * &value) const {
duke@435 2198 return false;
duke@435 2199 }
duke@435 2200
duke@435 2201
duke@435 2202 // Return register class name if a constraint specifies the register class.
duke@435 2203 const char *OperandForm::constrained_reg_class() const {
duke@435 2204 const char *reg_class = NULL;
duke@435 2205 if ( _constraint ) {
duke@435 2206 // !!!!!
duke@435 2207 Constraint *constraint = _constraint;
duke@435 2208 if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
duke@435 2209 reg_class = _constraint->_arg;
duke@435 2210 }
duke@435 2211 }
duke@435 2212
duke@435 2213 return reg_class;
duke@435 2214 }
duke@435 2215
duke@435 2216
duke@435 2217 // Return the register class associated with 'leaf'.
duke@435 2218 const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
duke@435 2219 const char *reg_class = NULL; // "RegMask::Empty";
duke@435 2220
duke@435 2221 if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
duke@435 2222 reg_class = constrained_reg_class();
duke@435 2223 return reg_class;
duke@435 2224 }
duke@435 2225 const char *result = NULL;
duke@435 2226 const char *name = NULL;
duke@435 2227 const char *type = NULL;
duke@435 2228 // iterate through all base operands
duke@435 2229 // until we reach the register that corresponds to "leaf"
duke@435 2230 // This function is not looking for an ideal type. It needs the first
duke@435 2231 // level user type associated with the leaf.
duke@435 2232 for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
duke@435 2233 const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
duke@435 2234 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 2235 if( oper ) {
duke@435 2236 reg_class = oper->constrained_reg_class();
duke@435 2237 if( reg_class ) {
duke@435 2238 reg_class = reg_class;
duke@435 2239 } else {
duke@435 2240 // ShouldNotReachHere();
duke@435 2241 }
duke@435 2242 } else {
duke@435 2243 // ShouldNotReachHere();
duke@435 2244 }
duke@435 2245
duke@435 2246 // Increment our target leaf position if current leaf is not a candidate.
duke@435 2247 if( reg_class == NULL) ++leaf;
duke@435 2248 // Exit the loop with the value of reg_class when at the correct index
duke@435 2249 if( idx == leaf ) break;
duke@435 2250 // May iterate through all base operands if reg_class for 'leaf' is NULL
duke@435 2251 }
duke@435 2252 return reg_class;
duke@435 2253 }
duke@435 2254
duke@435 2255
duke@435 2256 // Recursive call to construct list of top-level operands.
duke@435 2257 // Implementation does not modify state of internal structures
duke@435 2258 void OperandForm::build_components() {
duke@435 2259 if (_matrule) _matrule->append_components(_localNames, _components);
duke@435 2260
duke@435 2261 // Add parameters that "do not appear in match rule".
duke@435 2262 const char *name;
duke@435 2263 for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
duke@435 2264 OperandForm *opForm = (OperandForm*)_localNames[name];
duke@435 2265
duke@435 2266 if ( _components.operand_position(name) == -1 ) {
duke@435 2267 _components.insert(name, opForm->_ident, Component::INVALID, false);
duke@435 2268 }
duke@435 2269 }
duke@435 2270
duke@435 2271 return;
duke@435 2272 }
duke@435 2273
duke@435 2274 int OperandForm::operand_position(const char *name, int usedef) {
duke@435 2275 return _components.operand_position(name, usedef);
duke@435 2276 }
duke@435 2277
duke@435 2278
duke@435 2279 // Return zero-based position in component list, only counting constants;
duke@435 2280 // Return -1 if not in list.
duke@435 2281 int OperandForm::constant_position(FormDict &globals, const Component *last) {
twisti@1040 2282 // Iterate through components and count constants preceding 'constant'
twisti@1038 2283 int position = 0;
duke@435 2284 Component *comp;
duke@435 2285 _components.reset();
duke@435 2286 while( (comp = _components.iter()) != NULL && (comp != last) ) {
duke@435 2287 // Special case for operands that take a single user-defined operand
duke@435 2288 // Skip the initial definition in the component list.
duke@435 2289 if( strcmp(comp->_name,this->_ident) == 0 ) continue;
duke@435 2290
duke@435 2291 const char *type = comp->_type;
duke@435 2292 // Lookup operand form for replacement variable's type
duke@435 2293 const Form *form = globals[type];
duke@435 2294 assert( form != NULL, "Component's type not found");
duke@435 2295 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 2296 if( oper ) {
duke@435 2297 if( oper->_matrule->is_base_constant(globals) != Form::none ) {
duke@435 2298 ++position;
duke@435 2299 }
duke@435 2300 }
duke@435 2301 }
duke@435 2302
duke@435 2303 // Check for being passed a component that was not in the list
duke@435 2304 if( comp != last ) position = -1;
duke@435 2305
duke@435 2306 return position;
duke@435 2307 }
duke@435 2308 // Provide position of constant by "name"
duke@435 2309 int OperandForm::constant_position(FormDict &globals, const char *name) {
duke@435 2310 const Component *comp = _components.search(name);
duke@435 2311 int idx = constant_position( globals, comp );
duke@435 2312
duke@435 2313 return idx;
duke@435 2314 }
duke@435 2315
duke@435 2316
duke@435 2317 // Return zero-based position in component list, only counting constants;
duke@435 2318 // Return -1 if not in list.
duke@435 2319 int OperandForm::register_position(FormDict &globals, const char *reg_name) {
twisti@1040 2320 // Iterate through components and count registers preceding 'last'
duke@435 2321 uint position = 0;
duke@435 2322 Component *comp;
duke@435 2323 _components.reset();
duke@435 2324 while( (comp = _components.iter()) != NULL
duke@435 2325 && (strcmp(comp->_name,reg_name) != 0) ) {
duke@435 2326 // Special case for operands that take a single user-defined operand
duke@435 2327 // Skip the initial definition in the component list.
duke@435 2328 if( strcmp(comp->_name,this->_ident) == 0 ) continue;
duke@435 2329
duke@435 2330 const char *type = comp->_type;
duke@435 2331 // Lookup operand form for component's type
duke@435 2332 const Form *form = globals[type];
duke@435 2333 assert( form != NULL, "Component's type not found");
duke@435 2334 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 2335 if( oper ) {
duke@435 2336 if( oper->_matrule->is_base_register(globals) ) {
duke@435 2337 ++position;
duke@435 2338 }
duke@435 2339 }
duke@435 2340 }
duke@435 2341
duke@435 2342 return position;
duke@435 2343 }
duke@435 2344
duke@435 2345
duke@435 2346 const char *OperandForm::reduce_result() const {
duke@435 2347 return _ident;
duke@435 2348 }
duke@435 2349 // Return the name of the operand on the right hand side of the binary match
duke@435 2350 // Return NULL if there is no right hand side
duke@435 2351 const char *OperandForm::reduce_right(FormDict &globals) const {
duke@435 2352 return ( _matrule ? _matrule->reduce_right(globals) : NULL );
duke@435 2353 }
duke@435 2354
duke@435 2355 // Similar for left
duke@435 2356 const char *OperandForm::reduce_left(FormDict &globals) const {
duke@435 2357 return ( _matrule ? _matrule->reduce_left(globals) : NULL );
duke@435 2358 }
duke@435 2359
duke@435 2360
duke@435 2361 // --------------------------- FILE *output_routines
duke@435 2362 //
duke@435 2363 // Output code for disp_is_oop, if true.
duke@435 2364 void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
duke@435 2365 // Check it is a memory interface with a non-user-constant disp field
duke@435 2366 if ( this->_interface == NULL ) return;
duke@435 2367 MemInterface *mem_interface = this->_interface->is_MemInterface();
duke@435 2368 if ( mem_interface == NULL ) return;
duke@435 2369 const char *disp = mem_interface->_disp;
duke@435 2370 if ( *disp != '$' ) return;
duke@435 2371
duke@435 2372 // Lookup replacement variable in operand's component list
duke@435 2373 const char *rep_var = disp + 1;
duke@435 2374 const Component *comp = this->_components.search(rep_var);
duke@435 2375 assert( comp != NULL, "Replacement variable not found in components");
duke@435 2376 // Lookup operand form for replacement variable's type
duke@435 2377 const char *type = comp->_type;
duke@435 2378 Form *form = (Form*)globals[type];
duke@435 2379 assert( form != NULL, "Replacement variable's type not found");
duke@435 2380 OperandForm *op = form->is_operand();
duke@435 2381 assert( op, "Memory Interface 'disp' can only emit an operand form");
duke@435 2382 // Check if this is a ConP, which may require relocation
duke@435 2383 if ( op->is_base_constant(globals) == Form::idealP ) {
duke@435 2384 // Find the constant's index: _c0, _c1, _c2, ... , _cN
duke@435 2385 uint idx = op->constant_position( globals, rep_var);
coleenp@4037 2386 fprintf(fp," virtual relocInfo::relocType disp_reloc() const {");
coleenp@4037 2387 fprintf(fp, " return _c%d->reloc();", idx);
duke@435 2388 fprintf(fp, " }\n");
duke@435 2389 }
duke@435 2390 }
duke@435 2391
duke@435 2392 // Generate code for internal and external format methods
duke@435 2393 //
duke@435 2394 // internal access to reg# node->_idx
duke@435 2395 // access to subsumed constant _c0, _c1,
duke@435 2396 void OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
duke@435 2397 Form::DataType dtype;
duke@435 2398 if (_matrule && (_matrule->is_base_register(globals) ||
duke@435 2399 strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
duke@435 2400 // !!!!! !!!!!
duke@435 2401 fprintf(fp, "{ char reg_str[128];\n");
duke@435 2402 fprintf(fp," ra->dump_register(node,reg_str);\n");
duke@435 2403 fprintf(fp," tty->print(\"%cs\",reg_str);\n",'%');
duke@435 2404 fprintf(fp," }\n");
duke@435 2405 } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
duke@435 2406 format_constant( fp, index, dtype );
duke@435 2407 } else if (ideal_to_sReg_type(_ident) != Form::none) {
duke@435 2408 // Special format for Stack Slot Register
duke@435 2409 fprintf(fp, "{ char reg_str[128];\n");
duke@435 2410 fprintf(fp," ra->dump_register(node,reg_str);\n");
duke@435 2411 fprintf(fp," tty->print(\"%cs\",reg_str);\n",'%');
duke@435 2412 fprintf(fp," }\n");
duke@435 2413 } else {
duke@435 2414 fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
duke@435 2415 fflush(fp);
duke@435 2416 fprintf(stderr,"No format defined for %s\n", _ident);
duke@435 2417 dump();
duke@435 2418 assert( false,"Internal error:\n output_internal_operand() attempting to output other than a Register or Constant");
duke@435 2419 }
duke@435 2420 }
duke@435 2421
duke@435 2422 // Similar to "int_format" but for cases where data is external to operand
duke@435 2423 // external access to reg# node->in(idx)->_idx,
duke@435 2424 void OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
duke@435 2425 Form::DataType dtype;
duke@435 2426 if (_matrule && (_matrule->is_base_register(globals) ||
duke@435 2427 strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
duke@435 2428 fprintf(fp, "{ char reg_str[128];\n");
duke@435 2429 fprintf(fp," ra->dump_register(node->in(idx");
duke@435 2430 if ( index != 0 ) fprintf(fp, "+%d",index);
duke@435 2431 fprintf(fp, "),reg_str);\n");
duke@435 2432 fprintf(fp," tty->print(\"%cs\",reg_str);\n",'%');
duke@435 2433 fprintf(fp," }\n");
duke@435 2434 } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
duke@435 2435 format_constant( fp, index, dtype );
duke@435 2436 } else if (ideal_to_sReg_type(_ident) != Form::none) {
duke@435 2437 // Special format for Stack Slot Register
duke@435 2438 fprintf(fp, "{ char reg_str[128];\n");
duke@435 2439 fprintf(fp," ra->dump_register(node->in(idx");
duke@435 2440 if ( index != 0 ) fprintf(fp, "+%d",index);
duke@435 2441 fprintf(fp, "),reg_str);\n");
duke@435 2442 fprintf(fp," tty->print(\"%cs\",reg_str);\n",'%');
duke@435 2443 fprintf(fp," }\n");
duke@435 2444 } else {
duke@435 2445 fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
duke@435 2446 assert( false,"Internal error:\n output_external_operand() attempting to output other than a Register or Constant");
duke@435 2447 }
duke@435 2448 }
duke@435 2449
duke@435 2450 void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
duke@435 2451 switch(const_type) {
coleenp@548 2452 case Form::idealI: fprintf(fp,"st->print(\"#%%d\", _c%d);\n", const_index); break;
coleenp@548 2453 case Form::idealP: fprintf(fp,"_c%d->dump_on(st);\n", const_index); break;
coleenp@548 2454 case Form::idealN: fprintf(fp,"_c%d->dump_on(st);\n", const_index); break;
coleenp@548 2455 case Form::idealL: fprintf(fp,"st->print(\"#%%lld\", _c%d);\n", const_index); break;
coleenp@548 2456 case Form::idealF: fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
coleenp@548 2457 case Form::idealD: fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
duke@435 2458 default:
duke@435 2459 assert( false, "ShouldNotReachHere()");
duke@435 2460 }
duke@435 2461 }
duke@435 2462
duke@435 2463 // Return the operand form corresponding to the given index, else NULL.
duke@435 2464 OperandForm *OperandForm::constant_operand(FormDict &globals,
duke@435 2465 uint index) {
duke@435 2466 // !!!!!
duke@435 2467 // Check behavior on complex operands
duke@435 2468 uint n_consts = num_consts(globals);
duke@435 2469 if( n_consts > 0 ) {
duke@435 2470 uint i = 0;
duke@435 2471 const char *type;
duke@435 2472 Component *comp;
duke@435 2473 _components.reset();
duke@435 2474 if ((comp = _components.iter()) == NULL) {
duke@435 2475 assert(n_consts == 1, "Bad component list detected.\n");
duke@435 2476 // Current operand is THE operand
duke@435 2477 if ( index == 0 ) {
duke@435 2478 return this;
duke@435 2479 }
duke@435 2480 } // end if NULL
duke@435 2481 else {
duke@435 2482 // Skip the first component, it can not be a DEF of a constant
duke@435 2483 do {
duke@435 2484 type = comp->base_type(globals);
duke@435 2485 // Check that "type" is a 'ConI', 'ConP', ...
duke@435 2486 if ( ideal_to_const_type(type) != Form::none ) {
duke@435 2487 // When at correct component, get corresponding Operand
duke@435 2488 if ( index == 0 ) {
duke@435 2489 return globals[comp->_type]->is_operand();
duke@435 2490 }
duke@435 2491 // Decrement number of constants to go
duke@435 2492 --index;
duke@435 2493 }
duke@435 2494 } while((comp = _components.iter()) != NULL);
duke@435 2495 }
duke@435 2496 }
duke@435 2497
duke@435 2498 // Did not find a constant for this index.
duke@435 2499 return NULL;
duke@435 2500 }
duke@435 2501
duke@435 2502 // If this operand has a single ideal type, return its type
duke@435 2503 Form::DataType OperandForm::simple_type(FormDict &globals) const {
duke@435 2504 const char *type_name = ideal_type(globals);
duke@435 2505 Form::DataType type = type_name ? ideal_to_const_type( type_name )
duke@435 2506 : Form::none;
duke@435 2507 return type;
duke@435 2508 }
duke@435 2509
duke@435 2510 Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
duke@435 2511 if ( _matrule == NULL ) return Form::none;
duke@435 2512
duke@435 2513 return _matrule->is_base_constant(globals);
duke@435 2514 }
duke@435 2515
duke@435 2516 // "true" if this operand is a simple type that is swallowed
duke@435 2517 bool OperandForm::swallowed(FormDict &globals) const {
duke@435 2518 Form::DataType type = simple_type(globals);
duke@435 2519 if( type != Form::none ) {
duke@435 2520 return true;
duke@435 2521 }
duke@435 2522
duke@435 2523 return false;
duke@435 2524 }
duke@435 2525
duke@435 2526 // Output code to access the value of the index'th constant
duke@435 2527 void OperandForm::access_constant(FILE *fp, FormDict &globals,
duke@435 2528 uint const_index) {
duke@435 2529 OperandForm *oper = constant_operand(globals, const_index);
duke@435 2530 assert( oper, "Index exceeds number of constants in operand");
duke@435 2531 Form::DataType dtype = oper->is_base_constant(globals);
duke@435 2532
duke@435 2533 switch(dtype) {
duke@435 2534 case idealI: fprintf(fp,"_c%d", const_index); break;
duke@435 2535 case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
duke@435 2536 case idealL: fprintf(fp,"_c%d", const_index); break;
duke@435 2537 case idealF: fprintf(fp,"_c%d", const_index); break;
duke@435 2538 case idealD: fprintf(fp,"_c%d", const_index); break;
duke@435 2539 default:
duke@435 2540 assert( false, "ShouldNotReachHere()");
duke@435 2541 }
duke@435 2542 }
duke@435 2543
duke@435 2544
duke@435 2545 void OperandForm::dump() {
duke@435 2546 output(stderr);
duke@435 2547 }
duke@435 2548
duke@435 2549 void OperandForm::output(FILE *fp) {
duke@435 2550 fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
duke@435 2551 if (_matrule) _matrule->dump();
duke@435 2552 if (_interface) _interface->dump();
duke@435 2553 if (_attribs) _attribs->dump();
duke@435 2554 if (_predicate) _predicate->dump();
duke@435 2555 if (_constraint) _constraint->dump();
duke@435 2556 if (_construct) _construct->dump();
duke@435 2557 if (_format) _format->dump();
duke@435 2558 }
duke@435 2559
duke@435 2560 //------------------------------Constraint-------------------------------------
duke@435 2561 Constraint::Constraint(const char *func, const char *arg)
duke@435 2562 : _func(func), _arg(arg) {
duke@435 2563 }
duke@435 2564 Constraint::~Constraint() { /* not owner of char* */
duke@435 2565 }
duke@435 2566
duke@435 2567 bool Constraint::stack_slots_only() const {
duke@435 2568 return strcmp(_func, "ALLOC_IN_RC") == 0
duke@435 2569 && strcmp(_arg, "stack_slots") == 0;
duke@435 2570 }
duke@435 2571
duke@435 2572 void Constraint::dump() {
duke@435 2573 output(stderr);
duke@435 2574 }
duke@435 2575
duke@435 2576 void Constraint::output(FILE *fp) { // Write info to output files
duke@435 2577 assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
duke@435 2578 fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg);
duke@435 2579 }
duke@435 2580
duke@435 2581 //------------------------------Predicate--------------------------------------
duke@435 2582 Predicate::Predicate(char *pr)
duke@435 2583 : _pred(pr) {
duke@435 2584 }
duke@435 2585 Predicate::~Predicate() {
duke@435 2586 }
duke@435 2587
duke@435 2588 void Predicate::dump() {
duke@435 2589 output(stderr);
duke@435 2590 }
duke@435 2591
duke@435 2592 void Predicate::output(FILE *fp) {
duke@435 2593 fprintf(fp,"Predicate"); // Write to output files
duke@435 2594 }
duke@435 2595 //------------------------------Interface--------------------------------------
duke@435 2596 Interface::Interface(const char *name) : _name(name) {
duke@435 2597 }
duke@435 2598 Interface::~Interface() {
duke@435 2599 }
duke@435 2600
duke@435 2601 Form::InterfaceType Interface::interface_type(FormDict &globals) const {
duke@435 2602 Interface *thsi = (Interface*)this;
duke@435 2603 if ( thsi->is_RegInterface() ) return Form::register_interface;
duke@435 2604 if ( thsi->is_MemInterface() ) return Form::memory_interface;
duke@435 2605 if ( thsi->is_ConstInterface() ) return Form::constant_interface;
duke@435 2606 if ( thsi->is_CondInterface() ) return Form::conditional_interface;
duke@435 2607
duke@435 2608 return Form::no_interface;
duke@435 2609 }
duke@435 2610
duke@435 2611 RegInterface *Interface::is_RegInterface() {
duke@435 2612 if ( strcmp(_name,"REG_INTER") != 0 )
duke@435 2613 return NULL;
duke@435 2614 return (RegInterface*)this;
duke@435 2615 }
duke@435 2616 MemInterface *Interface::is_MemInterface() {
duke@435 2617 if ( strcmp(_name,"MEMORY_INTER") != 0 ) return NULL;
duke@435 2618 return (MemInterface*)this;
duke@435 2619 }
duke@435 2620 ConstInterface *Interface::is_ConstInterface() {
duke@435 2621 if ( strcmp(_name,"CONST_INTER") != 0 ) return NULL;
duke@435 2622 return (ConstInterface*)this;
duke@435 2623 }
duke@435 2624 CondInterface *Interface::is_CondInterface() {
duke@435 2625 if ( strcmp(_name,"COND_INTER") != 0 ) return NULL;
duke@435 2626 return (CondInterface*)this;
duke@435 2627 }
duke@435 2628
duke@435 2629
duke@435 2630 void Interface::dump() {
duke@435 2631 output(stderr);
duke@435 2632 }
duke@435 2633
duke@435 2634 // Write info to output files
duke@435 2635 void Interface::output(FILE *fp) {
duke@435 2636 fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
duke@435 2637 }
duke@435 2638
duke@435 2639 //------------------------------RegInterface-----------------------------------
duke@435 2640 RegInterface::RegInterface() : Interface("REG_INTER") {
duke@435 2641 }
duke@435 2642 RegInterface::~RegInterface() {
duke@435 2643 }
duke@435 2644
duke@435 2645 void RegInterface::dump() {
duke@435 2646 output(stderr);
duke@435 2647 }
duke@435 2648
duke@435 2649 // Write info to output files
duke@435 2650 void RegInterface::output(FILE *fp) {
duke@435 2651 Interface::output(fp);
duke@435 2652 }
duke@435 2653
duke@435 2654 //------------------------------ConstInterface---------------------------------
duke@435 2655 ConstInterface::ConstInterface() : Interface("CONST_INTER") {
duke@435 2656 }
duke@435 2657 ConstInterface::~ConstInterface() {
duke@435 2658 }
duke@435 2659
duke@435 2660 void ConstInterface::dump() {
duke@435 2661 output(stderr);
duke@435 2662 }
duke@435 2663
duke@435 2664 // Write info to output files
duke@435 2665 void ConstInterface::output(FILE *fp) {
duke@435 2666 Interface::output(fp);
duke@435 2667 }
duke@435 2668
duke@435 2669 //------------------------------MemInterface-----------------------------------
duke@435 2670 MemInterface::MemInterface(char *base, char *index, char *scale, char *disp)
duke@435 2671 : Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
duke@435 2672 }
duke@435 2673 MemInterface::~MemInterface() {
duke@435 2674 // not owner of any character arrays
duke@435 2675 }
duke@435 2676
duke@435 2677 void MemInterface::dump() {
duke@435 2678 output(stderr);
duke@435 2679 }
duke@435 2680
duke@435 2681 // Write info to output files
duke@435 2682 void MemInterface::output(FILE *fp) {
duke@435 2683 Interface::output(fp);
duke@435 2684 if ( _base != NULL ) fprintf(fp," base == %s\n", _base);
duke@435 2685 if ( _index != NULL ) fprintf(fp," index == %s\n", _index);
duke@435 2686 if ( _scale != NULL ) fprintf(fp," scale == %s\n", _scale);
duke@435 2687 if ( _disp != NULL ) fprintf(fp," disp == %s\n", _disp);
duke@435 2688 // fprintf(fp,"\n");
duke@435 2689 }
duke@435 2690
duke@435 2691 //------------------------------CondInterface----------------------------------
never@850 2692 CondInterface::CondInterface(const char* equal, const char* equal_format,
never@850 2693 const char* not_equal, const char* not_equal_format,
never@850 2694 const char* less, const char* less_format,
never@850 2695 const char* greater_equal, const char* greater_equal_format,
never@850 2696 const char* less_equal, const char* less_equal_format,
never@850 2697 const char* greater, const char* greater_format)
duke@435 2698 : Interface("COND_INTER"),
never@850 2699 _equal(equal), _equal_format(equal_format),
never@850 2700 _not_equal(not_equal), _not_equal_format(not_equal_format),
never@850 2701 _less(less), _less_format(less_format),
never@850 2702 _greater_equal(greater_equal), _greater_equal_format(greater_equal_format),
never@850 2703 _less_equal(less_equal), _less_equal_format(less_equal_format),
never@850 2704 _greater(greater), _greater_format(greater_format) {
duke@435 2705 }
duke@435 2706 CondInterface::~CondInterface() {
duke@435 2707 // not owner of any character arrays
duke@435 2708 }
duke@435 2709
duke@435 2710 void CondInterface::dump() {
duke@435 2711 output(stderr);
duke@435 2712 }
duke@435 2713
duke@435 2714 // Write info to output files
duke@435 2715 void CondInterface::output(FILE *fp) {
duke@435 2716 Interface::output(fp);
duke@435 2717 if ( _equal != NULL ) fprintf(fp," equal == %s\n", _equal);
duke@435 2718 if ( _not_equal != NULL ) fprintf(fp," not_equal == %s\n", _not_equal);
duke@435 2719 if ( _less != NULL ) fprintf(fp," less == %s\n", _less);
duke@435 2720 if ( _greater_equal != NULL ) fprintf(fp," greater_equal == %s\n", _greater_equal);
duke@435 2721 if ( _less_equal != NULL ) fprintf(fp," less_equal == %s\n", _less_equal);
duke@435 2722 if ( _greater != NULL ) fprintf(fp," greater == %s\n", _greater);
duke@435 2723 // fprintf(fp,"\n");
duke@435 2724 }
duke@435 2725
duke@435 2726 //------------------------------ConstructRule----------------------------------
duke@435 2727 ConstructRule::ConstructRule(char *cnstr)
duke@435 2728 : _construct(cnstr) {
duke@435 2729 }
duke@435 2730 ConstructRule::~ConstructRule() {
duke@435 2731 }
duke@435 2732
duke@435 2733 void ConstructRule::dump() {
duke@435 2734 output(stderr);
duke@435 2735 }
duke@435 2736
duke@435 2737 void ConstructRule::output(FILE *fp) {
duke@435 2738 fprintf(fp,"\nConstruct Rule\n"); // Write to output files
duke@435 2739 }
duke@435 2740
duke@435 2741
duke@435 2742 //==============================Shared Forms===================================
duke@435 2743 //------------------------------AttributeForm----------------------------------
duke@435 2744 int AttributeForm::_insId = 0; // start counter at 0
duke@435 2745 int AttributeForm::_opId = 0; // start counter at 0
duke@435 2746 const char* AttributeForm::_ins_cost = "ins_cost"; // required name
duke@435 2747 const char* AttributeForm::_op_cost = "op_cost"; // required name
duke@435 2748
duke@435 2749 AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
duke@435 2750 : Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
duke@435 2751 if (type==OP_ATTR) {
duke@435 2752 id = ++_opId;
duke@435 2753 }
duke@435 2754 else if (type==INS_ATTR) {
duke@435 2755 id = ++_insId;
duke@435 2756 }
duke@435 2757 else assert( false,"");
duke@435 2758 }
duke@435 2759 AttributeForm::~AttributeForm() {
duke@435 2760 }
duke@435 2761
duke@435 2762 // Dynamic type check
duke@435 2763 AttributeForm *AttributeForm::is_attribute() const {
duke@435 2764 return (AttributeForm*)this;
duke@435 2765 }
duke@435 2766
duke@435 2767
duke@435 2768 // inlined // int AttributeForm::type() { return id;}
duke@435 2769
duke@435 2770 void AttributeForm::dump() {
duke@435 2771 output(stderr);
duke@435 2772 }
duke@435 2773
duke@435 2774 void AttributeForm::output(FILE *fp) {
duke@435 2775 if( _attrname && _attrdef ) {
duke@435 2776 fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
duke@435 2777 _attrname, _attrdef);
duke@435 2778 }
duke@435 2779 else {
duke@435 2780 fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
duke@435 2781 (_attrname?_attrname:""), (_attrdef?_attrdef:"") );
duke@435 2782 }
duke@435 2783 }
duke@435 2784
duke@435 2785 //------------------------------Component--------------------------------------
duke@435 2786 Component::Component(const char *name, const char *type, int usedef)
duke@435 2787 : _name(name), _type(type), _usedef(usedef) {
duke@435 2788 _ftype = Form::COMP;
duke@435 2789 }
duke@435 2790 Component::~Component() {
duke@435 2791 }
duke@435 2792
duke@435 2793 // True if this component is equal to the parameter.
duke@435 2794 bool Component::is(int use_def_kill_enum) const {
duke@435 2795 return (_usedef == use_def_kill_enum ? true : false);
duke@435 2796 }
duke@435 2797 // True if this component is used/def'd/kill'd as the parameter suggests.
duke@435 2798 bool Component::isa(int use_def_kill_enum) const {
duke@435 2799 return (_usedef & use_def_kill_enum) == use_def_kill_enum;
duke@435 2800 }
duke@435 2801
duke@435 2802 // Extend this component with additional use/def/kill behavior
duke@435 2803 int Component::promote_use_def_info(int new_use_def) {
duke@435 2804 _usedef |= new_use_def;
duke@435 2805
duke@435 2806 return _usedef;
duke@435 2807 }
duke@435 2808
duke@435 2809 // Check the base type of this component, if it has one
duke@435 2810 const char *Component::base_type(FormDict &globals) {
duke@435 2811 const Form *frm = globals[_type];
duke@435 2812 if (frm == NULL) return NULL;
duke@435 2813 OperandForm *op = frm->is_operand();
duke@435 2814 if (op == NULL) return NULL;
duke@435 2815 if (op->ideal_only()) return op->_ident;
duke@435 2816 return (char *)op->ideal_type(globals);
duke@435 2817 }
duke@435 2818
duke@435 2819 void Component::dump() {
duke@435 2820 output(stderr);
duke@435 2821 }
duke@435 2822
duke@435 2823 void Component::output(FILE *fp) {
duke@435 2824 fprintf(fp,"Component:"); // Write to output files
duke@435 2825 fprintf(fp, " name = %s", _name);
duke@435 2826 fprintf(fp, ", type = %s", _type);
duke@435 2827 const char * usedef = "Undefined Use/Def info";
duke@435 2828 switch (_usedef) {
duke@435 2829 case USE: usedef = "USE"; break;
duke@435 2830 case USE_DEF: usedef = "USE_DEF"; break;
duke@435 2831 case USE_KILL: usedef = "USE_KILL"; break;
duke@435 2832 case KILL: usedef = "KILL"; break;
duke@435 2833 case TEMP: usedef = "TEMP"; break;
duke@435 2834 case DEF: usedef = "DEF"; break;
duke@435 2835 default: assert(false, "unknown effect");
duke@435 2836 }
duke@435 2837 fprintf(fp, ", use/def = %s\n", usedef);
duke@435 2838 }
duke@435 2839
duke@435 2840
duke@435 2841 //------------------------------ComponentList---------------------------------
duke@435 2842 ComponentList::ComponentList() : NameList(), _matchcnt(0) {
duke@435 2843 }
duke@435 2844 ComponentList::~ComponentList() {
duke@435 2845 // // This list may not own its elements if copied via assignment
duke@435 2846 // Component *component;
duke@435 2847 // for (reset(); (component = iter()) != NULL;) {
duke@435 2848 // delete component;
duke@435 2849 // }
duke@435 2850 }
duke@435 2851
duke@435 2852 void ComponentList::insert(Component *component, bool mflag) {
duke@435 2853 NameList::addName((char *)component);
duke@435 2854 if(mflag) _matchcnt++;
duke@435 2855 }
duke@435 2856 void ComponentList::insert(const char *name, const char *opType, int usedef,
duke@435 2857 bool mflag) {
duke@435 2858 Component * component = new Component(name, opType, usedef);
duke@435 2859 insert(component, mflag);
duke@435 2860 }
duke@435 2861 Component *ComponentList::current() { return (Component*)NameList::current(); }
duke@435 2862 Component *ComponentList::iter() { return (Component*)NameList::iter(); }
duke@435 2863 Component *ComponentList::match_iter() {
duke@435 2864 if(_iter < _matchcnt) return (Component*)NameList::iter();
duke@435 2865 return NULL;
duke@435 2866 }
duke@435 2867 Component *ComponentList::post_match_iter() {
duke@435 2868 Component *comp = iter();
duke@435 2869 // At end of list?
duke@435 2870 if ( comp == NULL ) {
duke@435 2871 return comp;
duke@435 2872 }
duke@435 2873 // In post-match components?
duke@435 2874 if (_iter > match_count()-1) {
duke@435 2875 return comp;
duke@435 2876 }
duke@435 2877
duke@435 2878 return post_match_iter();
duke@435 2879 }
duke@435 2880
duke@435 2881 void ComponentList::reset() { NameList::reset(); }
duke@435 2882 int ComponentList::count() { return NameList::count(); }
duke@435 2883
duke@435 2884 Component *ComponentList::operator[](int position) {
duke@435 2885 // Shortcut complete iteration if there are not enough entries
duke@435 2886 if (position >= count()) return NULL;
duke@435 2887
duke@435 2888 int index = 0;
duke@435 2889 Component *component = NULL;
duke@435 2890 for (reset(); (component = iter()) != NULL;) {
duke@435 2891 if (index == position) {
duke@435 2892 return component;
duke@435 2893 }
duke@435 2894 ++index;
duke@435 2895 }
duke@435 2896
duke@435 2897 return NULL;
duke@435 2898 }
duke@435 2899
duke@435 2900 const Component *ComponentList::search(const char *name) {
duke@435 2901 PreserveIter pi(this);
duke@435 2902 reset();
duke@435 2903 for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
duke@435 2904 if( strcmp(comp->_name,name) == 0 ) return comp;
duke@435 2905 }
duke@435 2906
duke@435 2907 return NULL;
duke@435 2908 }
duke@435 2909
duke@435 2910 // Return number of USEs + number of DEFs
duke@435 2911 // When there are no components, or the first component is a USE,
duke@435 2912 // then we add '1' to hold a space for the 'result' operand.
duke@435 2913 int ComponentList::num_operands() {
duke@435 2914 PreserveIter pi(this);
duke@435 2915 uint count = 1; // result operand
duke@435 2916 uint position = 0;
duke@435 2917
duke@435 2918 Component *component = NULL;
duke@435 2919 for( reset(); (component = iter()) != NULL; ++position ) {
duke@435 2920 if( component->isa(Component::USE) ||
duke@435 2921 ( position == 0 && (! component->isa(Component::DEF))) ) {
duke@435 2922 ++count;
duke@435 2923 }
duke@435 2924 }
duke@435 2925
duke@435 2926 return count;
duke@435 2927 }
duke@435 2928
duke@435 2929 // Return zero-based position in list; -1 if not in list.
duke@435 2930 // if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
duke@435 2931 int ComponentList::operand_position(const char *name, int usedef) {
duke@435 2932 PreserveIter pi(this);
duke@435 2933 int position = 0;
duke@435 2934 int num_opnds = num_operands();
duke@435 2935 Component *component;
duke@435 2936 Component* preceding_non_use = NULL;
duke@435 2937 Component* first_def = NULL;
duke@435 2938 for (reset(); (component = iter()) != NULL; ++position) {
duke@435 2939 // When the first component is not a DEF,
duke@435 2940 // leave space for the result operand!
duke@435 2941 if ( position==0 && (! component->isa(Component::DEF)) ) {
duke@435 2942 ++position;
duke@435 2943 ++num_opnds;
duke@435 2944 }
duke@435 2945 if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
duke@435 2946 // When the first entry in the component list is a DEF and a USE
duke@435 2947 // Treat them as being separate, a DEF first, then a USE
duke@435 2948 if( position==0
duke@435 2949 && usedef==Component::USE && component->isa(Component::DEF) ) {
duke@435 2950 assert(position+1 < num_opnds, "advertised index in bounds");
duke@435 2951 return position+1;
duke@435 2952 } else {
duke@435 2953 if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
duke@435 2954 fprintf(stderr, "the name '%s' should not precede the name '%s'\n", preceding_non_use->_name, name);
duke@435 2955 }
duke@435 2956 if( position >= num_opnds ) {
duke@435 2957 fprintf(stderr, "the name '%s' is too late in its name list\n", name);
duke@435 2958 }
duke@435 2959 assert(position < num_opnds, "advertised index in bounds");
duke@435 2960 return position;
duke@435 2961 }
duke@435 2962 }
duke@435 2963 if( component->isa(Component::DEF)
duke@435 2964 && component->isa(Component::USE) ) {
duke@435 2965 ++position;
duke@435 2966 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 2967 }
duke@435 2968 if( component->isa(Component::DEF) && !first_def ) {
duke@435 2969 first_def = component;
duke@435 2970 }
duke@435 2971 if( !component->isa(Component::USE) && component != first_def ) {
duke@435 2972 preceding_non_use = component;
duke@435 2973 } else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
duke@435 2974 preceding_non_use = NULL;
duke@435 2975 }
duke@435 2976 }
duke@435 2977 return Not_in_list;
duke@435 2978 }
duke@435 2979
duke@435 2980 // Find position for this name, regardless of use/def information
duke@435 2981 int ComponentList::operand_position(const char *name) {
duke@435 2982 PreserveIter pi(this);
duke@435 2983 int position = 0;
duke@435 2984 Component *component;
duke@435 2985 for (reset(); (component = iter()) != NULL; ++position) {
duke@435 2986 // When the first component is not a DEF,
duke@435 2987 // leave space for the result operand!
duke@435 2988 if ( position==0 && (! component->isa(Component::DEF)) ) {
duke@435 2989 ++position;
duke@435 2990 }
duke@435 2991 if (strcmp(name, component->_name)==0) {
duke@435 2992 return position;
duke@435 2993 }
duke@435 2994 if( component->isa(Component::DEF)
duke@435 2995 && component->isa(Component::USE) ) {
duke@435 2996 ++position;
duke@435 2997 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 2998 }
duke@435 2999 }
duke@435 3000 return Not_in_list;
duke@435 3001 }
duke@435 3002
duke@435 3003 int ComponentList::operand_position_format(const char *name) {
duke@435 3004 PreserveIter pi(this);
duke@435 3005 int first_position = operand_position(name);
duke@435 3006 int use_position = operand_position(name, Component::USE);
duke@435 3007
duke@435 3008 return ((first_position < use_position) ? use_position : first_position);
duke@435 3009 }
duke@435 3010
duke@435 3011 int ComponentList::label_position() {
duke@435 3012 PreserveIter pi(this);
duke@435 3013 int position = 0;
duke@435 3014 reset();
duke@435 3015 for( Component *comp; (comp = iter()) != NULL; ++position) {
duke@435 3016 // When the first component is not a DEF,
duke@435 3017 // leave space for the result operand!
duke@435 3018 if ( position==0 && (! comp->isa(Component::DEF)) ) {
duke@435 3019 ++position;
duke@435 3020 }
duke@435 3021 if (strcmp(comp->_type, "label")==0) {
duke@435 3022 return position;
duke@435 3023 }
duke@435 3024 if( comp->isa(Component::DEF)
duke@435 3025 && comp->isa(Component::USE) ) {
duke@435 3026 ++position;
duke@435 3027 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 3028 }
duke@435 3029 }
duke@435 3030
duke@435 3031 return -1;
duke@435 3032 }
duke@435 3033
duke@435 3034 int ComponentList::method_position() {
duke@435 3035 PreserveIter pi(this);
duke@435 3036 int position = 0;
duke@435 3037 reset();
duke@435 3038 for( Component *comp; (comp = iter()) != NULL; ++position) {
duke@435 3039 // When the first component is not a DEF,
duke@435 3040 // leave space for the result operand!
duke@435 3041 if ( position==0 && (! comp->isa(Component::DEF)) ) {
duke@435 3042 ++position;
duke@435 3043 }
duke@435 3044 if (strcmp(comp->_type, "method")==0) {
duke@435 3045 return position;
duke@435 3046 }
duke@435 3047 if( comp->isa(Component::DEF)
duke@435 3048 && comp->isa(Component::USE) ) {
duke@435 3049 ++position;
duke@435 3050 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 3051 }
duke@435 3052 }
duke@435 3053
duke@435 3054 return -1;
duke@435 3055 }
duke@435 3056
duke@435 3057 void ComponentList::dump() { output(stderr); }
duke@435 3058
duke@435 3059 void ComponentList::output(FILE *fp) {
duke@435 3060 PreserveIter pi(this);
duke@435 3061 fprintf(fp, "\n");
duke@435 3062 Component *component;
duke@435 3063 for (reset(); (component = iter()) != NULL;) {
duke@435 3064 component->output(fp);
duke@435 3065 }
duke@435 3066 fprintf(fp, "\n");
duke@435 3067 }
duke@435 3068
duke@435 3069 //------------------------------MatchNode--------------------------------------
duke@435 3070 MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
duke@435 3071 const char *opType, MatchNode *lChild, MatchNode *rChild)
duke@435 3072 : _AD(ad), _result(result), _name(mexpr), _opType(opType),
duke@435 3073 _lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0),
duke@435 3074 _commutative_id(0) {
duke@435 3075 _numleaves = (lChild ? lChild->_numleaves : 0)
duke@435 3076 + (rChild ? rChild->_numleaves : 0);
duke@435 3077 }
duke@435 3078
duke@435 3079 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode)
duke@435 3080 : _AD(ad), _result(mnode._result), _name(mnode._name),
duke@435 3081 _opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild),
duke@435 3082 _internalop(0), _numleaves(mnode._numleaves),
duke@435 3083 _commutative_id(mnode._commutative_id) {
duke@435 3084 }
duke@435 3085
duke@435 3086 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone)
duke@435 3087 : _AD(ad), _result(mnode._result), _name(mnode._name),
duke@435 3088 _opType(mnode._opType),
duke@435 3089 _internalop(0), _numleaves(mnode._numleaves),
duke@435 3090 _commutative_id(mnode._commutative_id) {
duke@435 3091 if (mnode._lChild) {
duke@435 3092 _lChild = new MatchNode(ad, *mnode._lChild, clone);
duke@435 3093 } else {
duke@435 3094 _lChild = NULL;
duke@435 3095 }
duke@435 3096 if (mnode._rChild) {
duke@435 3097 _rChild = new MatchNode(ad, *mnode._rChild, clone);
duke@435 3098 } else {
duke@435 3099 _rChild = NULL;
duke@435 3100 }
duke@435 3101 }
duke@435 3102
duke@435 3103 MatchNode::~MatchNode() {
duke@435 3104 // // This node may not own its children if copied via assignment
duke@435 3105 // if( _lChild ) delete _lChild;
duke@435 3106 // if( _rChild ) delete _rChild;
duke@435 3107 }
duke@435 3108
duke@435 3109 bool MatchNode::find_type(const char *type, int &position) const {
duke@435 3110 if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
duke@435 3111 if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;
duke@435 3112
duke@435 3113 if (strcmp(type,_opType)==0) {
duke@435 3114 return true;
duke@435 3115 } else {
duke@435 3116 ++position;
duke@435 3117 }
duke@435 3118 return false;
duke@435 3119 }
duke@435 3120
duke@435 3121 // Recursive call collecting info on top-level operands, not transitive.
duke@435 3122 // Implementation does not modify state of internal structures.
twisti@1038 3123 void MatchNode::append_components(FormDict& locals, ComponentList& components,
twisti@1038 3124 bool def_flag) const {
twisti@1038 3125 int usedef = def_flag ? Component::DEF : Component::USE;
duke@435 3126 FormDict &globals = _AD.globalNames();
duke@435 3127
duke@435 3128 assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
duke@435 3129 // Base case
duke@435 3130 if (_lChild==NULL && _rChild==NULL) {
duke@435 3131 // If _opType is not an operation, do not build a component for it #####
duke@435 3132 const Form *f = globals[_opType];
duke@435 3133 if( f != NULL ) {
duke@435 3134 // Add non-ideals that are operands, operand-classes,
duke@435 3135 if( ! f->ideal_only()
duke@435 3136 && (f->is_opclass() || f->is_operand()) ) {
duke@435 3137 components.insert(_name, _opType, usedef, true);
duke@435 3138 }
duke@435 3139 }
duke@435 3140 return;
duke@435 3141 }
duke@435 3142 // Promote results of "Set" to DEF
twisti@1038 3143 bool tmpdef_flag = (!strcmp(_opType, "Set")) ? true : false;
twisti@1038 3144 if (_lChild) _lChild->append_components(locals, components, tmpdef_flag);
twisti@1038 3145 tmpdef_flag = false; // only applies to component immediately following 'Set'
twisti@1038 3146 if (_rChild) _rChild->append_components(locals, components, tmpdef_flag);
duke@435 3147 }
duke@435 3148
duke@435 3149 // Find the n'th base-operand in the match node,
duke@435 3150 // recursively investigates match rules of user-defined operands.
duke@435 3151 //
duke@435 3152 // Implementation does not modify state of internal structures since they
duke@435 3153 // can be shared.
duke@435 3154 bool MatchNode::base_operand(uint &position, FormDict &globals,
duke@435 3155 const char * &result, const char * &name,
duke@435 3156 const char * &opType) const {
duke@435 3157 assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
duke@435 3158 // Base case
duke@435 3159 if (_lChild==NULL && _rChild==NULL) {
duke@435 3160 // Check for special case: "Universe", "label"
duke@435 3161 if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
duke@435 3162 if (position == 0) {
duke@435 3163 result = _result;
duke@435 3164 name = _name;
duke@435 3165 opType = _opType;
duke@435 3166 return 1;
duke@435 3167 } else {
duke@435 3168 -- position;
duke@435 3169 return 0;
duke@435 3170 }
duke@435 3171 }
duke@435 3172
duke@435 3173 const Form *form = globals[_opType];
duke@435 3174 MatchNode *matchNode = NULL;
duke@435 3175 // Check for user-defined type
duke@435 3176 if (form) {
duke@435 3177 // User operand or instruction?
duke@435 3178 OperandForm *opForm = form->is_operand();
duke@435 3179 InstructForm *inForm = form->is_instruction();
duke@435 3180 if ( opForm ) {
duke@435 3181 matchNode = (MatchNode*)opForm->_matrule;
duke@435 3182 } else if ( inForm ) {
duke@435 3183 matchNode = (MatchNode*)inForm->_matrule;
duke@435 3184 }
duke@435 3185 }
duke@435 3186 // if this is user-defined, recurse on match rule
duke@435 3187 // User-defined operand and instruction forms have a match-rule.
duke@435 3188 if (matchNode) {
duke@435 3189 return (matchNode->base_operand(position,globals,result,name,opType));
duke@435 3190 } else {
duke@435 3191 // Either not a form, or a system-defined form (no match rule).
duke@435 3192 if (position==0) {
duke@435 3193 result = _result;
duke@435 3194 name = _name;
duke@435 3195 opType = _opType;
duke@435 3196 return 1;
duke@435 3197 } else {
duke@435 3198 --position;
duke@435 3199 return 0;
duke@435 3200 }
duke@435 3201 }
duke@435 3202
duke@435 3203 } else {
duke@435 3204 // Examine the left child and right child as well
duke@435 3205 if (_lChild) {
duke@435 3206 if (_lChild->base_operand(position, globals, result, name, opType))
duke@435 3207 return 1;
duke@435 3208 }
duke@435 3209
duke@435 3210 if (_rChild) {
duke@435 3211 if (_rChild->base_operand(position, globals, result, name, opType))
duke@435 3212 return 1;
duke@435 3213 }
duke@435 3214 }
duke@435 3215
duke@435 3216 return 0;
duke@435 3217 }
duke@435 3218
duke@435 3219 // Recursive call on all operands' match rules in my match rule.
duke@435 3220 uint MatchNode::num_consts(FormDict &globals) const {
duke@435 3221 uint index = 0;
duke@435 3222 uint num_consts = 0;
duke@435 3223 const char *result;
duke@435 3224 const char *name;
duke@435 3225 const char *opType;
duke@435 3226
duke@435 3227 for (uint position = index;
duke@435 3228 base_operand(position,globals,result,name,opType); position = index) {
duke@435 3229 ++index;
duke@435 3230 if( ideal_to_const_type(opType) ) num_consts++;
duke@435 3231 }
duke@435 3232
duke@435 3233 return num_consts;
duke@435 3234 }
duke@435 3235
duke@435 3236 // Recursive call on all operands' match rules in my match rule.
duke@435 3237 // Constants in match rule subtree with specified type
duke@435 3238 uint MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
duke@435 3239 uint index = 0;
duke@435 3240 uint num_consts = 0;
duke@435 3241 const char *result;
duke@435 3242 const char *name;
duke@435 3243 const char *opType;
duke@435 3244
duke@435 3245 for (uint position = index;
duke@435 3246 base_operand(position,globals,result,name,opType); position = index) {
duke@435 3247 ++index;
duke@435 3248 if( ideal_to_const_type(opType) == type ) num_consts++;
duke@435 3249 }
duke@435 3250
duke@435 3251 return num_consts;
duke@435 3252 }
duke@435 3253
duke@435 3254 // Recursive call on all operands' match rules in my match rule.
duke@435 3255 uint MatchNode::num_const_ptrs(FormDict &globals) const {
duke@435 3256 return num_consts( globals, Form::idealP );
duke@435 3257 }
duke@435 3258
duke@435 3259 bool MatchNode::sets_result() const {
duke@435 3260 return ( (strcmp(_name,"Set") == 0) ? true : false );
duke@435 3261 }
duke@435 3262
duke@435 3263 const char *MatchNode::reduce_right(FormDict &globals) const {
duke@435 3264 // If there is no right reduction, return NULL.
duke@435 3265 const char *rightStr = NULL;
duke@435 3266
duke@435 3267 // If we are a "Set", start from the right child.
duke@435 3268 const MatchNode *const mnode = sets_result() ?
duke@435 3269 (const MatchNode *const)this->_rChild :
duke@435 3270 (const MatchNode *const)this;
duke@435 3271
duke@435 3272 // If our right child exists, it is the right reduction
duke@435 3273 if ( mnode->_rChild ) {
duke@435 3274 rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
duke@435 3275 : mnode->_rChild->_opType;
duke@435 3276 }
duke@435 3277 // Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
duke@435 3278 return rightStr;
duke@435 3279 }
duke@435 3280
duke@435 3281 const char *MatchNode::reduce_left(FormDict &globals) const {
duke@435 3282 // If there is no left reduction, return NULL.
duke@435 3283 const char *leftStr = NULL;
duke@435 3284
duke@435 3285 // If we are a "Set", start from the right child.
duke@435 3286 const MatchNode *const mnode = sets_result() ?
duke@435 3287 (const MatchNode *const)this->_rChild :
duke@435 3288 (const MatchNode *const)this;
duke@435 3289
duke@435 3290 // If our left child exists, it is the left reduction
duke@435 3291 if ( mnode->_lChild ) {
duke@435 3292 leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
duke@435 3293 : mnode->_lChild->_opType;
duke@435 3294 } else {
duke@435 3295 // May be simple chain rule: (Set dst operand_form_source)
duke@435 3296 if ( sets_result() ) {
duke@435 3297 OperandForm *oper = globals[mnode->_opType]->is_operand();
duke@435 3298 if( oper ) {
duke@435 3299 leftStr = mnode->_opType;
duke@435 3300 }
duke@435 3301 }
duke@435 3302 }
duke@435 3303 return leftStr;
duke@435 3304 }
duke@435 3305
duke@435 3306 //------------------------------count_instr_names------------------------------
duke@435 3307 // Count occurrences of operands names in the leaves of the instruction
duke@435 3308 // match rule.
duke@435 3309 void MatchNode::count_instr_names( Dict &names ) {
duke@435 3310 if( !this ) return;
duke@435 3311 if( _lChild ) _lChild->count_instr_names(names);
duke@435 3312 if( _rChild ) _rChild->count_instr_names(names);
duke@435 3313 if( !_lChild && !_rChild ) {
duke@435 3314 uintptr_t cnt = (uintptr_t)names[_name];
duke@435 3315 cnt++; // One more name found
duke@435 3316 names.Insert(_name,(void*)cnt);
duke@435 3317 }
duke@435 3318 }
duke@435 3319
duke@435 3320 //------------------------------build_instr_pred-------------------------------
duke@435 3321 // Build a path to 'name' in buf. Actually only build if cnt is zero, so we
duke@435 3322 // can skip some leading instances of 'name'.
duke@435 3323 int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
duke@435 3324 if( _lChild ) {
duke@435 3325 if( !cnt ) strcpy( buf, "_kids[0]->" );
duke@435 3326 cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
duke@435 3327 if( cnt < 0 ) return cnt; // Found it, all done
duke@435 3328 }
duke@435 3329 if( _rChild ) {
duke@435 3330 if( !cnt ) strcpy( buf, "_kids[1]->" );
duke@435 3331 cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
duke@435 3332 if( cnt < 0 ) return cnt; // Found it, all done
duke@435 3333 }
duke@435 3334 if( !_lChild && !_rChild ) { // Found a leaf
duke@435 3335 // Wrong name? Give up...
duke@435 3336 if( strcmp(name,_name) ) return cnt;
duke@435 3337 if( !cnt ) strcpy(buf,"_leaf");
duke@435 3338 return cnt-1;
duke@435 3339 }
duke@435 3340 return cnt;
duke@435 3341 }
duke@435 3342
duke@435 3343
duke@435 3344 //------------------------------build_internalop-------------------------------
duke@435 3345 // Build string representation of subtree
duke@435 3346 void MatchNode::build_internalop( ) {
duke@435 3347 char *iop, *subtree;
duke@435 3348 const char *lstr, *rstr;
duke@435 3349 // Build string representation of subtree
duke@435 3350 // Operation lchildType rchildType
duke@435 3351 int len = (int)strlen(_opType) + 4;
duke@435 3352 lstr = (_lChild) ? ((_lChild->_internalop) ?
duke@435 3353 _lChild->_internalop : _lChild->_opType) : "";
duke@435 3354 rstr = (_rChild) ? ((_rChild->_internalop) ?
duke@435 3355 _rChild->_internalop : _rChild->_opType) : "";
duke@435 3356 len += (int)strlen(lstr) + (int)strlen(rstr);
duke@435 3357 subtree = (char *)malloc(len);
duke@435 3358 sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
duke@435 3359 // Hash the subtree string in _internalOps; if a name exists, use it
duke@435 3360 iop = (char *)_AD._internalOps[subtree];
duke@435 3361 // Else create a unique name, and add it to the hash table
duke@435 3362 if (iop == NULL) {
duke@435 3363 iop = subtree;
duke@435 3364 _AD._internalOps.Insert(subtree, iop);
duke@435 3365 _AD._internalOpNames.addName(iop);
duke@435 3366 _AD._internalMatch.Insert(iop, this);
duke@435 3367 }
duke@435 3368 // Add the internal operand name to the MatchNode
duke@435 3369 _internalop = iop;
duke@435 3370 _result = iop;
duke@435 3371 }
duke@435 3372
duke@435 3373
duke@435 3374 void MatchNode::dump() {
duke@435 3375 output(stderr);
duke@435 3376 }
duke@435 3377
duke@435 3378 void MatchNode::output(FILE *fp) {
duke@435 3379 if (_lChild==0 && _rChild==0) {
duke@435 3380 fprintf(fp," %s",_name); // operand
duke@435 3381 }
duke@435 3382 else {
duke@435 3383 fprintf(fp," (%s ",_name); // " (opcodeName "
duke@435 3384 if(_lChild) _lChild->output(fp); // left operand
duke@435 3385 if(_rChild) _rChild->output(fp); // right operand
duke@435 3386 fprintf(fp,")"); // ")"
duke@435 3387 }
duke@435 3388 }
duke@435 3389
duke@435 3390 int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
duke@435 3391 static const char *needs_ideal_memory_list[] = {
coleenp@548 3392 "StoreI","StoreL","StoreP","StoreN","StoreD","StoreF" ,
duke@435 3393 "StoreB","StoreC","Store" ,"StoreFP",
twisti@1059 3394 "LoadI", "LoadUI2L", "LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF" ,
kvn@3882 3395 "LoadB" , "LoadUB", "LoadUS" ,"LoadS" ,"Load" ,
kvn@3882 3396 "StoreVector", "LoadVector",
kvn@599 3397 "LoadRange", "LoadKlass", "LoadNKlass", "LoadL_unaligned", "LoadD_unaligned",
twisti@3846 3398 "LoadPLocked",
kvn@855 3399 "StorePConditional", "StoreIConditional", "StoreLConditional",
coleenp@548 3400 "CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN",
duke@435 3401 "StoreCM",
duke@435 3402 "ClearArray"
duke@435 3403 };
duke@435 3404 int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
kvn@3052 3405 if( strcmp(_opType,"PrefetchRead")==0 ||
kvn@3052 3406 strcmp(_opType,"PrefetchWrite")==0 ||
kvn@3052 3407 strcmp(_opType,"PrefetchAllocation")==0 )
duke@435 3408 return 1;
duke@435 3409 if( _lChild ) {
duke@435 3410 const char *opType = _lChild->_opType;
duke@435 3411 for( int i=0; i<cnt; i++ )
duke@435 3412 if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
duke@435 3413 return 1;
duke@435 3414 if( _lChild->needs_ideal_memory_edge(globals) )
duke@435 3415 return 1;
duke@435 3416 }
duke@435 3417 if( _rChild ) {
duke@435 3418 const char *opType = _rChild->_opType;
duke@435 3419 for( int i=0; i<cnt; i++ )
duke@435 3420 if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
duke@435 3421 return 1;
duke@435 3422 if( _rChild->needs_ideal_memory_edge(globals) )
duke@435 3423 return 1;
duke@435 3424 }
duke@435 3425
duke@435 3426 return 0;
duke@435 3427 }
duke@435 3428
duke@435 3429 // TRUE if defines a derived oop, and so needs a base oop edge present
duke@435 3430 // post-matching.
duke@435 3431 int MatchNode::needs_base_oop_edge() const {
duke@435 3432 if( !strcmp(_opType,"AddP") ) return 1;
duke@435 3433 if( strcmp(_opType,"Set") ) return 0;
duke@435 3434 return !strcmp(_rChild->_opType,"AddP");
duke@435 3435 }
duke@435 3436
duke@435 3437 int InstructForm::needs_base_oop_edge(FormDict &globals) const {
duke@435 3438 if( is_simple_chain_rule(globals) ) {
duke@435 3439 const char *src = _matrule->_rChild->_opType;
duke@435 3440 OperandForm *src_op = globals[src]->is_operand();
duke@435 3441 assert( src_op, "Not operand class of chain rule" );
duke@435 3442 return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
duke@435 3443 } // Else check instruction
duke@435 3444
duke@435 3445 return _matrule ? _matrule->needs_base_oop_edge() : 0;
duke@435 3446 }
duke@435 3447
duke@435 3448
duke@435 3449 //-------------------------cisc spilling methods-------------------------------
duke@435 3450 // helper routines and methods for detecting cisc-spilling instructions
duke@435 3451 //-------------------------cisc_spill_merge------------------------------------
duke@435 3452 int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
duke@435 3453 int cisc_spillable = Maybe_cisc_spillable;
duke@435 3454
duke@435 3455 // Combine results of left and right checks
duke@435 3456 if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
duke@435 3457 // neither side is spillable, nor prevents cisc spilling
duke@435 3458 cisc_spillable = Maybe_cisc_spillable;
duke@435 3459 }
duke@435 3460 else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
duke@435 3461 // right side is spillable
duke@435 3462 cisc_spillable = right_spillable;
duke@435 3463 }
duke@435 3464 else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
duke@435 3465 // left side is spillable
duke@435 3466 cisc_spillable = left_spillable;
duke@435 3467 }
duke@435 3468 else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
duke@435 3469 // left or right prevents cisc spilling this instruction
duke@435 3470 cisc_spillable = Not_cisc_spillable;
duke@435 3471 }
duke@435 3472 else {
duke@435 3473 // Only allow one to spill
duke@435 3474 cisc_spillable = Not_cisc_spillable;
duke@435 3475 }
duke@435 3476
duke@435 3477 return cisc_spillable;
duke@435 3478 }
duke@435 3479
duke@435 3480 //-------------------------root_ops_match--------------------------------------
duke@435 3481 bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
duke@435 3482 // Base Case: check that the current operands/operations match
duke@435 3483 assert( op1, "Must have op's name");
duke@435 3484 assert( op2, "Must have op's name");
duke@435 3485 const Form *form1 = globals[op1];
duke@435 3486 const Form *form2 = globals[op2];
duke@435 3487
duke@435 3488 return (form1 == form2);
duke@435 3489 }
duke@435 3490
twisti@1038 3491 //-------------------------cisc_spill_match_node-------------------------------
duke@435 3492 // Recursively check two MatchRules for legal conversion via cisc-spilling
twisti@1038 3493 int MatchNode::cisc_spill_match(FormDict& globals, RegisterForm* registers, MatchNode* mRule2, const char* &operand, const char* &reg_type) {
duke@435 3494 int cisc_spillable = Maybe_cisc_spillable;
duke@435 3495 int left_spillable = Maybe_cisc_spillable;
duke@435 3496 int right_spillable = Maybe_cisc_spillable;
duke@435 3497
duke@435 3498 // Check that each has same number of operands at this level
duke@435 3499 if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) )
duke@435 3500 return Not_cisc_spillable;
duke@435 3501
duke@435 3502 // Base Case: check that the current operands/operations match
duke@435 3503 // or are CISC spillable
duke@435 3504 assert( _opType, "Must have _opType");
duke@435 3505 assert( mRule2->_opType, "Must have _opType");
duke@435 3506 const Form *form = globals[_opType];
duke@435 3507 const Form *form2 = globals[mRule2->_opType];
duke@435 3508 if( form == form2 ) {
duke@435 3509 cisc_spillable = Maybe_cisc_spillable;
duke@435 3510 } else {
duke@435 3511 const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
duke@435 3512 const char *name_left = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
duke@435 3513 const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
twisti@1059 3514 DataType data_type = Form::none;
twisti@1059 3515 if (form->is_operand()) {
twisti@1059 3516 // Make sure the loadX matches the type of the reg
twisti@1059 3517 data_type = form->ideal_to_Reg_type(form->is_operand()->ideal_type(globals));
twisti@1059 3518 }
duke@435 3519 // Detect reg vs (loadX memory)
duke@435 3520 if( form->is_cisc_reg(globals)
duke@435 3521 && form2_inst
twisti@1059 3522 && data_type != Form::none
twisti@1059 3523 && (is_load_from_memory(mRule2->_opType) == data_type) // reg vs. (load memory)
duke@435 3524 && (name_left != NULL) // NOT (load)
duke@435 3525 && (name_right == NULL) ) { // NOT (load memory foo)
duke@435 3526 const Form *form2_left = name_left ? globals[name_left] : NULL;
duke@435 3527 if( form2_left && form2_left->is_cisc_mem(globals) ) {
duke@435 3528 cisc_spillable = Is_cisc_spillable;
duke@435 3529 operand = _name;
duke@435 3530 reg_type = _result;
duke@435 3531 return Is_cisc_spillable;
duke@435 3532 } else {
duke@435 3533 cisc_spillable = Not_cisc_spillable;
duke@435 3534 }
duke@435 3535 }
duke@435 3536 // Detect reg vs memory
duke@435 3537 else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) {
duke@435 3538 cisc_spillable = Is_cisc_spillable;
duke@435 3539 operand = _name;
duke@435 3540 reg_type = _result;
duke@435 3541 return Is_cisc_spillable;
duke@435 3542 } else {
duke@435 3543 cisc_spillable = Not_cisc_spillable;
duke@435 3544 }
duke@435 3545 }
duke@435 3546
duke@435 3547 // If cisc is still possible, check rest of tree
duke@435 3548 if( cisc_spillable == Maybe_cisc_spillable ) {
duke@435 3549 // Check that each has same number of operands at this level
duke@435 3550 if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
duke@435 3551
duke@435 3552 // Check left operands
duke@435 3553 if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
duke@435 3554 left_spillable = Maybe_cisc_spillable;
duke@435 3555 } else {
duke@435 3556 left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
duke@435 3557 }
duke@435 3558
duke@435 3559 // Check right operands
duke@435 3560 if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
duke@435 3561 right_spillable = Maybe_cisc_spillable;
duke@435 3562 } else {
duke@435 3563 right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
duke@435 3564 }
duke@435 3565
duke@435 3566 // Combine results of left and right checks
duke@435 3567 cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
duke@435 3568 }
duke@435 3569
duke@435 3570 return cisc_spillable;
duke@435 3571 }
duke@435 3572
twisti@1038 3573 //---------------------------cisc_spill_match_rule------------------------------
duke@435 3574 // Recursively check two MatchRules for legal conversion via cisc-spilling
duke@435 3575 // This method handles the root of Match tree,
duke@435 3576 // general recursive checks done in MatchNode
twisti@1038 3577 int MatchRule::matchrule_cisc_spill_match(FormDict& globals, RegisterForm* registers,
twisti@1038 3578 MatchRule* mRule2, const char* &operand,
twisti@1038 3579 const char* &reg_type) {
duke@435 3580 int cisc_spillable = Maybe_cisc_spillable;
duke@435 3581 int left_spillable = Maybe_cisc_spillable;
duke@435 3582 int right_spillable = Maybe_cisc_spillable;
duke@435 3583
duke@435 3584 // Check that each sets a result
duke@435 3585 if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
duke@435 3586 // Check that each has same number of operands at this level
duke@435 3587 if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
duke@435 3588
duke@435 3589 // Check left operands: at root, must be target of 'Set'
duke@435 3590 if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
duke@435 3591 left_spillable = Not_cisc_spillable;
duke@435 3592 } else {
duke@435 3593 // Do not support cisc-spilling instruction's target location
duke@435 3594 if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
duke@435 3595 left_spillable = Maybe_cisc_spillable;
duke@435 3596 } else {
duke@435 3597 left_spillable = Not_cisc_spillable;
duke@435 3598 }
duke@435 3599 }
duke@435 3600
duke@435 3601 // Check right operands: recursive walk to identify reg->mem operand
duke@435 3602 if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
duke@435 3603 right_spillable = Maybe_cisc_spillable;
duke@435 3604 } else {
duke@435 3605 right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
duke@435 3606 }
duke@435 3607
duke@435 3608 // Combine results of left and right checks
duke@435 3609 cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
duke@435 3610
duke@435 3611 return cisc_spillable;
duke@435 3612 }
duke@435 3613
duke@435 3614 //----------------------------- equivalent ------------------------------------
duke@435 3615 // Recursively check to see if two match rules are equivalent.
duke@435 3616 // This rule handles the root.
twisti@1038 3617 bool MatchRule::equivalent(FormDict &globals, MatchNode *mRule2) {
duke@435 3618 // Check that each sets a result
duke@435 3619 if (sets_result() != mRule2->sets_result()) {
duke@435 3620 return false;
duke@435 3621 }
duke@435 3622
duke@435 3623 // Check that the current operands/operations match
duke@435 3624 assert( _opType, "Must have _opType");
duke@435 3625 assert( mRule2->_opType, "Must have _opType");
duke@435 3626 const Form *form = globals[_opType];
duke@435 3627 const Form *form2 = globals[mRule2->_opType];
duke@435 3628 if( form != form2 ) {
duke@435 3629 return false;
duke@435 3630 }
duke@435 3631
duke@435 3632 if (_lChild ) {
duke@435 3633 if( !_lChild->equivalent(globals, mRule2->_lChild) )
duke@435 3634 return false;
duke@435 3635 } else if (mRule2->_lChild) {
duke@435 3636 return false; // I have NULL left child, mRule2 has non-NULL left child.
duke@435 3637 }
duke@435 3638
duke@435 3639 if (_rChild ) {
duke@435 3640 if( !_rChild->equivalent(globals, mRule2->_rChild) )
duke@435 3641 return false;
duke@435 3642 } else if (mRule2->_rChild) {
duke@435 3643 return false; // I have NULL right child, mRule2 has non-NULL right child.
duke@435 3644 }
duke@435 3645
duke@435 3646 // We've made it through the gauntlet.
duke@435 3647 return true;
duke@435 3648 }
duke@435 3649
duke@435 3650 //----------------------------- equivalent ------------------------------------
duke@435 3651 // Recursively check to see if two match rules are equivalent.
duke@435 3652 // This rule handles the operands.
duke@435 3653 bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
duke@435 3654 if( !mNode2 )
duke@435 3655 return false;
duke@435 3656
duke@435 3657 // Check that the current operands/operations match
duke@435 3658 assert( _opType, "Must have _opType");
duke@435 3659 assert( mNode2->_opType, "Must have _opType");
duke@435 3660 const Form *form = globals[_opType];
duke@435 3661 const Form *form2 = globals[mNode2->_opType];
kvn@3037 3662 if( form != form2 ) {
kvn@3037 3663 return false;
kvn@3037 3664 }
kvn@3037 3665
kvn@3037 3666 // Check that their children also match
kvn@3037 3667 if (_lChild ) {
kvn@3037 3668 if( !_lChild->equivalent(globals, mNode2->_lChild) )
kvn@3037 3669 return false;
kvn@3037 3670 } else if (mNode2->_lChild) {
kvn@3037 3671 return false; // I have NULL left child, mNode2 has non-NULL left child.
kvn@3037 3672 }
kvn@3037 3673
kvn@3037 3674 if (_rChild ) {
kvn@3037 3675 if( !_rChild->equivalent(globals, mNode2->_rChild) )
kvn@3037 3676 return false;
kvn@3037 3677 } else if (mNode2->_rChild) {
kvn@3037 3678 return false; // I have NULL right child, mNode2 has non-NULL right child.
kvn@3037 3679 }
kvn@3037 3680
kvn@3037 3681 // We've made it through the gauntlet.
kvn@3037 3682 return true;
duke@435 3683 }
duke@435 3684
duke@435 3685 //-------------------------- has_commutative_op -------------------------------
duke@435 3686 // Recursively check for commutative operations with subtree operands
duke@435 3687 // which could be swapped.
duke@435 3688 void MatchNode::count_commutative_op(int& count) {
duke@435 3689 static const char *commut_op_list[] = {
duke@435 3690 "AddI","AddL","AddF","AddD",
duke@435 3691 "AndI","AndL",
duke@435 3692 "MaxI","MinI",
duke@435 3693 "MulI","MulL","MulF","MulD",
duke@435 3694 "OrI" ,"OrL" ,
duke@435 3695 "XorI","XorL"
duke@435 3696 };
duke@435 3697 int cnt = sizeof(commut_op_list)/sizeof(char*);
duke@435 3698
duke@435 3699 if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
duke@435 3700 // Don't swap if right operand is an immediate constant.
duke@435 3701 bool is_const = false;
duke@435 3702 if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
duke@435 3703 FormDict &globals = _AD.globalNames();
duke@435 3704 const Form *form = globals[_rChild->_opType];
duke@435 3705 if ( form ) {
duke@435 3706 OperandForm *oper = form->is_operand();
duke@435 3707 if( oper && oper->interface_type(globals) == Form::constant_interface )
duke@435 3708 is_const = true;
duke@435 3709 }
duke@435 3710 }
duke@435 3711 if( !is_const ) {
duke@435 3712 for( int i=0; i<cnt; i++ ) {
duke@435 3713 if( strcmp(_opType, commut_op_list[i]) == 0 ) {
duke@435 3714 count++;
duke@435 3715 _commutative_id = count; // id should be > 0
duke@435 3716 break;
duke@435 3717 }
duke@435 3718 }
duke@435 3719 }
duke@435 3720 }
duke@435 3721 if( _lChild )
duke@435 3722 _lChild->count_commutative_op(count);
duke@435 3723 if( _rChild )
duke@435 3724 _rChild->count_commutative_op(count);
duke@435 3725 }
duke@435 3726
duke@435 3727 //-------------------------- swap_commutative_op ------------------------------
duke@435 3728 // Recursively swap specified commutative operation with subtree operands.
duke@435 3729 void MatchNode::swap_commutative_op(bool atroot, int id) {
duke@435 3730 if( _commutative_id == id ) { // id should be > 0
duke@435 3731 assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ),
duke@435 3732 "not swappable operation");
duke@435 3733 MatchNode* tmp = _lChild;
duke@435 3734 _lChild = _rChild;
duke@435 3735 _rChild = tmp;
duke@435 3736 // Don't exit here since we need to build internalop.
duke@435 3737 }
duke@435 3738
duke@435 3739 bool is_set = ( strcmp(_opType, "Set") == 0 );
duke@435 3740 if( _lChild )
duke@435 3741 _lChild->swap_commutative_op(is_set, id);
duke@435 3742 if( _rChild )
duke@435 3743 _rChild->swap_commutative_op(is_set, id);
duke@435 3744
duke@435 3745 // If not the root, reduce this subtree to an internal operand
duke@435 3746 if( !atroot && (_lChild || _rChild) ) {
duke@435 3747 build_internalop();
duke@435 3748 }
duke@435 3749 }
duke@435 3750
duke@435 3751 //-------------------------- swap_commutative_op ------------------------------
duke@435 3752 // Recursively swap specified commutative operation with subtree operands.
twisti@1038 3753 void MatchRule::matchrule_swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
duke@435 3754 assert(match_rules_cnt < 100," too many match rule clones");
duke@435 3755 // Clone
duke@435 3756 MatchRule* clone = new MatchRule(_AD, this);
duke@435 3757 // Swap operands of commutative operation
duke@435 3758 ((MatchNode*)clone)->swap_commutative_op(true, count);
duke@435 3759 char* buf = (char*) malloc(strlen(instr_ident) + 4);
duke@435 3760 sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
duke@435 3761 clone->_result = buf;
duke@435 3762
duke@435 3763 clone->_next = this->_next;
duke@435 3764 this-> _next = clone;
duke@435 3765 if( (--count) > 0 ) {
twisti@1038 3766 this-> matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
twisti@1038 3767 clone->matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
duke@435 3768 }
duke@435 3769 }
duke@435 3770
duke@435 3771 //------------------------------MatchRule--------------------------------------
duke@435 3772 MatchRule::MatchRule(ArchDesc &ad)
duke@435 3773 : MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
duke@435 3774 _next = NULL;
duke@435 3775 }
duke@435 3776
duke@435 3777 MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
duke@435 3778 : MatchNode(ad, *mRule, 0), _depth(mRule->_depth),
duke@435 3779 _construct(mRule->_construct), _numchilds(mRule->_numchilds) {
duke@435 3780 _next = NULL;
duke@435 3781 }
duke@435 3782
duke@435 3783 MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
duke@435 3784 int numleaves)
duke@435 3785 : MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
duke@435 3786 _numchilds(0) {
duke@435 3787 _next = NULL;
duke@435 3788 mroot->_lChild = NULL;
duke@435 3789 mroot->_rChild = NULL;
duke@435 3790 delete mroot;
duke@435 3791 _numleaves = numleaves;
duke@435 3792 _numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
duke@435 3793 }
duke@435 3794 MatchRule::~MatchRule() {
duke@435 3795 }
duke@435 3796
duke@435 3797 // Recursive call collecting info on top-level operands, not transitive.
duke@435 3798 // Implementation does not modify state of internal structures.
twisti@1038 3799 void MatchRule::append_components(FormDict& locals, ComponentList& components, bool def_flag) const {
duke@435 3800 assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
duke@435 3801
duke@435 3802 MatchNode::append_components(locals, components,
duke@435 3803 false /* not necessarily a def */);
duke@435 3804 }
duke@435 3805
duke@435 3806 // Recursive call on all operands' match rules in my match rule.
duke@435 3807 // Implementation does not modify state of internal structures since they
duke@435 3808 // can be shared.
duke@435 3809 // The MatchNode that is called first treats its
duke@435 3810 bool MatchRule::base_operand(uint &position0, FormDict &globals,
duke@435 3811 const char *&result, const char * &name,
duke@435 3812 const char * &opType)const{
duke@435 3813 uint position = position0;
duke@435 3814
duke@435 3815 return (MatchNode::base_operand( position, globals, result, name, opType));
duke@435 3816 }
duke@435 3817
duke@435 3818
duke@435 3819 bool MatchRule::is_base_register(FormDict &globals) const {
duke@435 3820 uint position = 1;
duke@435 3821 const char *result = NULL;
duke@435 3822 const char *name = NULL;
duke@435 3823 const char *opType = NULL;
duke@435 3824 if (!base_operand(position, globals, result, name, opType)) {
duke@435 3825 position = 0;
duke@435 3826 if( base_operand(position, globals, result, name, opType) &&
duke@435 3827 (strcmp(opType,"RegI")==0 ||
duke@435 3828 strcmp(opType,"RegP")==0 ||
coleenp@548 3829 strcmp(opType,"RegN")==0 ||
duke@435 3830 strcmp(opType,"RegL")==0 ||
duke@435 3831 strcmp(opType,"RegF")==0 ||
duke@435 3832 strcmp(opType,"RegD")==0 ||
kvn@3882 3833 strcmp(opType,"VecS")==0 ||
kvn@3882 3834 strcmp(opType,"VecD")==0 ||
kvn@3882 3835 strcmp(opType,"VecX")==0 ||
kvn@3882 3836 strcmp(opType,"VecY")==0 ||
duke@435 3837 strcmp(opType,"Reg" )==0) ) {
duke@435 3838 return 1;
duke@435 3839 }
duke@435 3840 }
duke@435 3841 return 0;
duke@435 3842 }
duke@435 3843
duke@435 3844 Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
duke@435 3845 uint position = 1;
duke@435 3846 const char *result = NULL;
duke@435 3847 const char *name = NULL;
duke@435 3848 const char *opType = NULL;
duke@435 3849 if (!base_operand(position, globals, result, name, opType)) {
duke@435 3850 position = 0;
duke@435 3851 if (base_operand(position, globals, result, name, opType)) {
duke@435 3852 return ideal_to_const_type(opType);
duke@435 3853 }
duke@435 3854 }
duke@435 3855 return Form::none;
duke@435 3856 }
duke@435 3857
duke@435 3858 bool MatchRule::is_chain_rule(FormDict &globals) const {
duke@435 3859
duke@435 3860 // Check for chain rule, and do not generate a match list for it
duke@435 3861 if ((_lChild == NULL) && (_rChild == NULL) ) {
duke@435 3862 const Form *form = globals[_opType];
duke@435 3863 // If this is ideal, then it is a base match, not a chain rule.
duke@435 3864 if ( form && form->is_operand() && (!form->ideal_only())) {
duke@435 3865 return true;
duke@435 3866 }
duke@435 3867 }
duke@435 3868 // Check for "Set" form of chain rule, and do not generate a match list
duke@435 3869 if (_rChild) {
duke@435 3870 const char *rch = _rChild->_opType;
duke@435 3871 const Form *form = globals[rch];
duke@435 3872 if ((!strcmp(_opType,"Set") &&
duke@435 3873 ((form) && form->is_operand()))) {
duke@435 3874 return true;
duke@435 3875 }
duke@435 3876 }
duke@435 3877 return false;
duke@435 3878 }
duke@435 3879
duke@435 3880 int MatchRule::is_ideal_copy() const {
duke@435 3881 if( _rChild ) {
duke@435 3882 const char *opType = _rChild->_opType;
ysr@777 3883 #if 1
ysr@777 3884 if( strcmp(opType,"CastIP")==0 )
ysr@777 3885 return 1;
ysr@777 3886 #else
duke@435 3887 if( strcmp(opType,"CastII")==0 )
duke@435 3888 return 1;
duke@435 3889 // Do not treat *CastPP this way, because it
duke@435 3890 // may transfer a raw pointer to an oop.
duke@435 3891 // If the register allocator were to coalesce this
duke@435 3892 // into a single LRG, the GC maps would be incorrect.
duke@435 3893 //if( strcmp(opType,"CastPP")==0 )
duke@435 3894 // return 1;
duke@435 3895 //if( strcmp(opType,"CheckCastPP")==0 )
duke@435 3896 // return 1;
duke@435 3897 //
duke@435 3898 // Do not treat CastX2P or CastP2X this way, because
duke@435 3899 // raw pointers and int types are treated differently
duke@435 3900 // when saving local & stack info for safepoints in
duke@435 3901 // Output().
duke@435 3902 //if( strcmp(opType,"CastX2P")==0 )
duke@435 3903 // return 1;
duke@435 3904 //if( strcmp(opType,"CastP2X")==0 )
duke@435 3905 // return 1;
ysr@777 3906 #endif
duke@435 3907 }
duke@435 3908 if( is_chain_rule(_AD.globalNames()) &&
duke@435 3909 _lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 )
duke@435 3910 return 1;
duke@435 3911 return 0;
duke@435 3912 }
duke@435 3913
duke@435 3914
duke@435 3915 int MatchRule::is_expensive() const {
duke@435 3916 if( _rChild ) {
duke@435 3917 const char *opType = _rChild->_opType;
duke@435 3918 if( strcmp(opType,"AtanD")==0 ||
duke@435 3919 strcmp(opType,"CosD")==0 ||
duke@435 3920 strcmp(opType,"DivD")==0 ||
duke@435 3921 strcmp(opType,"DivF")==0 ||
duke@435 3922 strcmp(opType,"DivI")==0 ||
duke@435 3923 strcmp(opType,"ExpD")==0 ||
duke@435 3924 strcmp(opType,"LogD")==0 ||
duke@435 3925 strcmp(opType,"Log10D")==0 ||
duke@435 3926 strcmp(opType,"ModD")==0 ||
duke@435 3927 strcmp(opType,"ModF")==0 ||
duke@435 3928 strcmp(opType,"ModI")==0 ||
duke@435 3929 strcmp(opType,"PowD")==0 ||
duke@435 3930 strcmp(opType,"SinD")==0 ||
duke@435 3931 strcmp(opType,"SqrtD")==0 ||
duke@435 3932 strcmp(opType,"TanD")==0 ||
duke@435 3933 strcmp(opType,"ConvD2F")==0 ||
duke@435 3934 strcmp(opType,"ConvD2I")==0 ||
duke@435 3935 strcmp(opType,"ConvD2L")==0 ||
duke@435 3936 strcmp(opType,"ConvF2D")==0 ||
duke@435 3937 strcmp(opType,"ConvF2I")==0 ||
duke@435 3938 strcmp(opType,"ConvF2L")==0 ||
duke@435 3939 strcmp(opType,"ConvI2D")==0 ||
duke@435 3940 strcmp(opType,"ConvI2F")==0 ||
duke@435 3941 strcmp(opType,"ConvI2L")==0 ||
duke@435 3942 strcmp(opType,"ConvL2D")==0 ||
duke@435 3943 strcmp(opType,"ConvL2F")==0 ||
duke@435 3944 strcmp(opType,"ConvL2I")==0 ||
kvn@682 3945 strcmp(opType,"DecodeN")==0 ||
kvn@682 3946 strcmp(opType,"EncodeP")==0 ||
duke@435 3947 strcmp(opType,"RoundDouble")==0 ||
duke@435 3948 strcmp(opType,"RoundFloat")==0 ||
duke@435 3949 strcmp(opType,"ReverseBytesI")==0 ||
duke@435 3950 strcmp(opType,"ReverseBytesL")==0 ||
never@1831 3951 strcmp(opType,"ReverseBytesUS")==0 ||
never@1831 3952 strcmp(opType,"ReverseBytesS")==0 ||
kvn@3882 3953 strcmp(opType,"ReplicateB")==0 ||
kvn@3882 3954 strcmp(opType,"ReplicateS")==0 ||
kvn@3882 3955 strcmp(opType,"ReplicateI")==0 ||
kvn@3882 3956 strcmp(opType,"ReplicateL")==0 ||
kvn@3882 3957 strcmp(opType,"ReplicateF")==0 ||
kvn@3882 3958 strcmp(opType,"ReplicateD")==0 ||
duke@435 3959 0 /* 0 to line up columns nicely */ )
duke@435 3960 return 1;
duke@435 3961 }
duke@435 3962 return 0;
duke@435 3963 }
duke@435 3964
duke@435 3965 bool MatchRule::is_ideal_if() const {
duke@435 3966 if( !_opType ) return false;
duke@435 3967 return
duke@435 3968 !strcmp(_opType,"If" ) ||
duke@435 3969 !strcmp(_opType,"CountedLoopEnd");
duke@435 3970 }
duke@435 3971
duke@435 3972 bool MatchRule::is_ideal_fastlock() const {
duke@435 3973 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 3974 return (strcmp(_rChild->_opType,"FastLock") == 0);
duke@435 3975 }
duke@435 3976 return false;
duke@435 3977 }
duke@435 3978
duke@435 3979 bool MatchRule::is_ideal_membar() const {
duke@435 3980 if( !_opType ) return false;
duke@435 3981 return
duke@435 3982 !strcmp(_opType,"MemBarAcquire" ) ||
duke@435 3983 !strcmp(_opType,"MemBarRelease" ) ||
roland@3047 3984 !strcmp(_opType,"MemBarAcquireLock") ||
roland@3047 3985 !strcmp(_opType,"MemBarReleaseLock") ||
duke@435 3986 !strcmp(_opType,"MemBarVolatile" ) ||
roland@3392 3987 !strcmp(_opType,"MemBarCPUOrder" ) ||
roland@3392 3988 !strcmp(_opType,"MemBarStoreStore" );
duke@435 3989 }
duke@435 3990
duke@435 3991 bool MatchRule::is_ideal_loadPC() const {
duke@435 3992 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 3993 return (strcmp(_rChild->_opType,"LoadPC") == 0);
duke@435 3994 }
duke@435 3995 return false;
duke@435 3996 }
duke@435 3997
duke@435 3998 bool MatchRule::is_ideal_box() const {
duke@435 3999 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 4000 return (strcmp(_rChild->_opType,"Box") == 0);
duke@435 4001 }
duke@435 4002 return false;
duke@435 4003 }
duke@435 4004
duke@435 4005 bool MatchRule::is_ideal_goto() const {
duke@435 4006 bool ideal_goto = false;
duke@435 4007
duke@435 4008 if( _opType && (strcmp(_opType,"Goto") == 0) ) {
duke@435 4009 ideal_goto = true;
duke@435 4010 }
duke@435 4011 return ideal_goto;
duke@435 4012 }
duke@435 4013
duke@435 4014 bool MatchRule::is_ideal_jump() const {
duke@435 4015 if( _opType ) {
duke@435 4016 if( !strcmp(_opType,"Jump") )
duke@435 4017 return true;
duke@435 4018 }
duke@435 4019 return false;
duke@435 4020 }
duke@435 4021
duke@435 4022 bool MatchRule::is_ideal_bool() const {
duke@435 4023 if( _opType ) {
duke@435 4024 if( !strcmp(_opType,"Bool") )
duke@435 4025 return true;
duke@435 4026 }
duke@435 4027 return false;
duke@435 4028 }
duke@435 4029
duke@435 4030
duke@435 4031 Form::DataType MatchRule::is_ideal_load() const {
duke@435 4032 Form::DataType ideal_load = Form::none;
duke@435 4033
duke@435 4034 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 4035 const char *opType = _rChild->_opType;
duke@435 4036 ideal_load = is_load_from_memory(opType);
duke@435 4037 }
duke@435 4038
duke@435 4039 return ideal_load;
duke@435 4040 }
duke@435 4041
kvn@3882 4042 bool MatchRule::is_vector() const {
kvn@3882 4043 if( _rChild ) {
kvn@3882 4044 const char *opType = _rChild->_opType;
kvn@3882 4045 if( strcmp(opType,"ReplicateB")==0 ||
kvn@3882 4046 strcmp(opType,"ReplicateS")==0 ||
kvn@3882 4047 strcmp(opType,"ReplicateI")==0 ||
kvn@3882 4048 strcmp(opType,"ReplicateL")==0 ||
kvn@3882 4049 strcmp(opType,"ReplicateF")==0 ||
kvn@3882 4050 strcmp(opType,"ReplicateD")==0 ||
kvn@3882 4051 strcmp(opType,"LoadVector")==0 ||
kvn@3882 4052 strcmp(opType,"StoreVector")==0 ||
kvn@3882 4053 0 /* 0 to line up columns nicely */ )
kvn@3882 4054 return true;
kvn@3882 4055 }
kvn@3882 4056 return false;
kvn@3882 4057 }
kvn@3882 4058
duke@435 4059
never@1290 4060 bool MatchRule::skip_antidep_check() const {
never@1290 4061 // Some loads operate on what is effectively immutable memory so we
never@1290 4062 // should skip the anti dep computations. For some of these nodes
never@1290 4063 // the rewritable field keeps the anti dep logic from triggering but
never@1290 4064 // for certain kinds of LoadKlass it does not since they are
never@1290 4065 // actually reading memory which could be rewritten by the runtime,
never@1290 4066 // though never by generated code. This disables it uniformly for
never@1290 4067 // the nodes that behave like this: LoadKlass, LoadNKlass and
never@1290 4068 // LoadRange.
never@1290 4069 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
never@1290 4070 const char *opType = _rChild->_opType;
never@1290 4071 if (strcmp("LoadKlass", opType) == 0 ||
never@1290 4072 strcmp("LoadNKlass", opType) == 0 ||
never@1290 4073 strcmp("LoadRange", opType) == 0) {
never@1290 4074 return true;
never@1290 4075 }
never@1290 4076 }
never@1290 4077
never@1290 4078 return false;
never@1290 4079 }
never@1290 4080
never@1290 4081
duke@435 4082 Form::DataType MatchRule::is_ideal_store() const {
duke@435 4083 Form::DataType ideal_store = Form::none;
duke@435 4084
duke@435 4085 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 4086 const char *opType = _rChild->_opType;
duke@435 4087 ideal_store = is_store_to_memory(opType);
duke@435 4088 }
duke@435 4089
duke@435 4090 return ideal_store;
duke@435 4091 }
duke@435 4092
duke@435 4093
duke@435 4094 void MatchRule::dump() {
duke@435 4095 output(stderr);
duke@435 4096 }
duke@435 4097
duke@435 4098 void MatchRule::output(FILE *fp) {
duke@435 4099 fprintf(fp,"MatchRule: ( %s",_name);
duke@435 4100 if (_lChild) _lChild->output(fp);
duke@435 4101 if (_rChild) _rChild->output(fp);
duke@435 4102 fprintf(fp," )\n");
duke@435 4103 fprintf(fp," nesting depth = %d\n", _depth);
duke@435 4104 if (_result) fprintf(fp," Result Type = %s", _result);
duke@435 4105 fprintf(fp,"\n");
duke@435 4106 }
duke@435 4107
duke@435 4108 //------------------------------Attribute--------------------------------------
duke@435 4109 Attribute::Attribute(char *id, char* val, int type)
duke@435 4110 : _ident(id), _val(val), _atype(type) {
duke@435 4111 }
duke@435 4112 Attribute::~Attribute() {
duke@435 4113 }
duke@435 4114
duke@435 4115 int Attribute::int_val(ArchDesc &ad) {
duke@435 4116 // Make sure it is an integer constant:
duke@435 4117 int result = 0;
duke@435 4118 if (!_val || !ADLParser::is_int_token(_val, result)) {
duke@435 4119 ad.syntax_err(0, "Attribute %s must have an integer value: %s",
duke@435 4120 _ident, _val ? _val : "");
duke@435 4121 }
duke@435 4122 return result;
duke@435 4123 }
duke@435 4124
duke@435 4125 void Attribute::dump() {
duke@435 4126 output(stderr);
duke@435 4127 } // Debug printer
duke@435 4128
duke@435 4129 // Write to output files
duke@435 4130 void Attribute::output(FILE *fp) {
duke@435 4131 fprintf(fp,"Attribute: %s %s\n", (_ident?_ident:""), (_val?_val:""));
duke@435 4132 }
duke@435 4133
duke@435 4134 //------------------------------FormatRule----------------------------------
duke@435 4135 FormatRule::FormatRule(char *temp)
duke@435 4136 : _temp(temp) {
duke@435 4137 }
duke@435 4138 FormatRule::~FormatRule() {
duke@435 4139 }
duke@435 4140
duke@435 4141 void FormatRule::dump() {
duke@435 4142 output(stderr);
duke@435 4143 }
duke@435 4144
duke@435 4145 // Write to output files
duke@435 4146 void FormatRule::output(FILE *fp) {
duke@435 4147 fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
duke@435 4148 fprintf(fp,"\n");
duke@435 4149 }

mercurial