src/share/vm/adlc/formssel.cpp

Fri, 14 Jun 2013 01:19:56 +0200

author
adlertz
date
Fri, 14 Jun 2013 01:19:56 +0200
changeset 5288
7fa25f5575c9
parent 5221
f15fe46d8c00
child 5791
c9ccd7b85f20
permissions
-rw-r--r--

8016157: During CTW: C2: assert(!def_outside->member(r)) failed: Use of external LRG overlaps the same LRG defined in this block
Summary: Disable rematerialization for negD node
Reviewed-by: kvn, roland

duke@435 1 /*
kvn@3882 2 * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // FORMS.CPP - Definitions for ADL Parser Forms Classes
duke@435 26 #include "adlc.hpp"
duke@435 27
duke@435 28 //==============================Instructions===================================
duke@435 29 //------------------------------InstructForm-----------------------------------
duke@435 30 InstructForm::InstructForm(const char *id, bool ideal_only)
duke@435 31 : _ident(id), _ideal_only(ideal_only),
duke@435 32 _localNames(cmpstr, hashstr, Form::arena),
twisti@2350 33 _effects(cmpstr, hashstr, Form::arena),
roland@3316 34 _is_mach_constant(false),
roland@3316 35 _has_call(false)
twisti@2350 36 {
duke@435 37 _ftype = Form::INS;
duke@435 38
duke@435 39 _matrule = NULL;
duke@435 40 _insencode = NULL;
twisti@2350 41 _constant = NULL;
duke@435 42 _opcode = NULL;
duke@435 43 _size = NULL;
duke@435 44 _attribs = NULL;
duke@435 45 _predicate = NULL;
duke@435 46 _exprule = NULL;
duke@435 47 _rewrule = NULL;
duke@435 48 _format = NULL;
duke@435 49 _peephole = NULL;
duke@435 50 _ins_pipe = NULL;
duke@435 51 _uniq_idx = NULL;
duke@435 52 _num_uniq = 0;
duke@435 53 _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
duke@435 54 _cisc_spill_alternate = NULL; // possible cisc replacement
duke@435 55 _cisc_reg_mask_name = NULL;
duke@435 56 _is_cisc_alternate = false;
duke@435 57 _is_short_branch = false;
duke@435 58 _short_branch_form = NULL;
duke@435 59 _alignment = 1;
duke@435 60 }
duke@435 61
duke@435 62 InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
duke@435 63 : _ident(id), _ideal_only(false),
duke@435 64 _localNames(instr->_localNames),
twisti@2350 65 _effects(instr->_effects),
roland@3316 66 _is_mach_constant(false),
roland@3316 67 _has_call(false)
twisti@2350 68 {
duke@435 69 _ftype = Form::INS;
duke@435 70
duke@435 71 _matrule = rule;
duke@435 72 _insencode = instr->_insencode;
twisti@2350 73 _constant = instr->_constant;
duke@435 74 _opcode = instr->_opcode;
duke@435 75 _size = instr->_size;
duke@435 76 _attribs = instr->_attribs;
duke@435 77 _predicate = instr->_predicate;
duke@435 78 _exprule = instr->_exprule;
duke@435 79 _rewrule = instr->_rewrule;
duke@435 80 _format = instr->_format;
duke@435 81 _peephole = instr->_peephole;
duke@435 82 _ins_pipe = instr->_ins_pipe;
duke@435 83 _uniq_idx = instr->_uniq_idx;
duke@435 84 _num_uniq = instr->_num_uniq;
duke@435 85 _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
duke@435 86 _cisc_spill_alternate = NULL; // possible cisc replacement
duke@435 87 _cisc_reg_mask_name = NULL;
duke@435 88 _is_cisc_alternate = false;
duke@435 89 _is_short_branch = false;
duke@435 90 _short_branch_form = NULL;
duke@435 91 _alignment = 1;
duke@435 92 // Copy parameters
duke@435 93 const char *name;
duke@435 94 instr->_parameters.reset();
duke@435 95 for (; (name = instr->_parameters.iter()) != NULL;)
duke@435 96 _parameters.addName(name);
duke@435 97 }
duke@435 98
duke@435 99 InstructForm::~InstructForm() {
duke@435 100 }
duke@435 101
duke@435 102 InstructForm *InstructForm::is_instruction() const {
duke@435 103 return (InstructForm*)this;
duke@435 104 }
duke@435 105
duke@435 106 bool InstructForm::ideal_only() const {
duke@435 107 return _ideal_only;
duke@435 108 }
duke@435 109
duke@435 110 bool InstructForm::sets_result() const {
duke@435 111 return (_matrule != NULL && _matrule->sets_result());
duke@435 112 }
duke@435 113
duke@435 114 bool InstructForm::needs_projections() {
duke@435 115 _components.reset();
duke@435 116 for( Component *comp; (comp = _components.iter()) != NULL; ) {
duke@435 117 if (comp->isa(Component::KILL)) {
duke@435 118 return true;
duke@435 119 }
duke@435 120 }
duke@435 121 return false;
duke@435 122 }
duke@435 123
duke@435 124
duke@435 125 bool InstructForm::has_temps() {
duke@435 126 if (_matrule) {
duke@435 127 // Examine each component to see if it is a TEMP
duke@435 128 _components.reset();
duke@435 129 // Skip the first component, if already handled as (SET dst (...))
duke@435 130 Component *comp = NULL;
duke@435 131 if (sets_result()) comp = _components.iter();
duke@435 132 while ((comp = _components.iter()) != NULL) {
duke@435 133 if (comp->isa(Component::TEMP)) {
duke@435 134 return true;
duke@435 135 }
duke@435 136 }
duke@435 137 }
duke@435 138
duke@435 139 return false;
duke@435 140 }
duke@435 141
duke@435 142 uint InstructForm::num_defs_or_kills() {
duke@435 143 uint defs_or_kills = 0;
duke@435 144
duke@435 145 _components.reset();
duke@435 146 for( Component *comp; (comp = _components.iter()) != NULL; ) {
duke@435 147 if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
duke@435 148 ++defs_or_kills;
duke@435 149 }
duke@435 150 }
duke@435 151
duke@435 152 return defs_or_kills;
duke@435 153 }
duke@435 154
duke@435 155 // This instruction has an expand rule?
duke@435 156 bool InstructForm::expands() const {
duke@435 157 return ( _exprule != NULL );
duke@435 158 }
duke@435 159
duke@435 160 // This instruction has a peephole rule?
duke@435 161 Peephole *InstructForm::peepholes() const {
duke@435 162 return _peephole;
duke@435 163 }
duke@435 164
duke@435 165 // This instruction has a peephole rule?
duke@435 166 void InstructForm::append_peephole(Peephole *peephole) {
duke@435 167 if( _peephole == NULL ) {
duke@435 168 _peephole = peephole;
duke@435 169 } else {
duke@435 170 _peephole->append_peephole(peephole);
duke@435 171 }
duke@435 172 }
duke@435 173
duke@435 174
duke@435 175 // ideal opcode enumeration
duke@435 176 const char *InstructForm::ideal_Opcode( FormDict &globalNames ) const {
duke@435 177 if( !_matrule ) return "Node"; // Something weird
duke@435 178 // Chain rules do not really have ideal Opcodes; use their source
duke@435 179 // operand ideal Opcode instead.
duke@435 180 if( is_simple_chain_rule(globalNames) ) {
duke@435 181 const char *src = _matrule->_rChild->_opType;
duke@435 182 OperandForm *src_op = globalNames[src]->is_operand();
duke@435 183 assert( src_op, "Not operand class of chain rule" );
duke@435 184 if( !src_op->_matrule ) return "Node";
duke@435 185 return src_op->_matrule->_opType;
duke@435 186 }
duke@435 187 // Operand chain rules do not really have ideal Opcodes
duke@435 188 if( _matrule->is_chain_rule(globalNames) )
duke@435 189 return "Node";
duke@435 190 return strcmp(_matrule->_opType,"Set")
duke@435 191 ? _matrule->_opType
duke@435 192 : _matrule->_rChild->_opType;
duke@435 193 }
duke@435 194
duke@435 195 // Recursive check on all operands' match rules in my match rule
duke@435 196 bool InstructForm::is_pinned(FormDict &globals) {
duke@435 197 if ( ! _matrule) return false;
duke@435 198
duke@435 199 int index = 0;
duke@435 200 if (_matrule->find_type("Goto", index)) return true;
duke@435 201 if (_matrule->find_type("If", index)) return true;
duke@435 202 if (_matrule->find_type("CountedLoopEnd",index)) return true;
duke@435 203 if (_matrule->find_type("Return", index)) return true;
duke@435 204 if (_matrule->find_type("Rethrow", index)) return true;
duke@435 205 if (_matrule->find_type("TailCall", index)) return true;
duke@435 206 if (_matrule->find_type("TailJump", index)) return true;
duke@435 207 if (_matrule->find_type("Halt", index)) return true;
duke@435 208 if (_matrule->find_type("Jump", index)) return true;
duke@435 209
duke@435 210 return is_parm(globals);
duke@435 211 }
duke@435 212
duke@435 213 // Recursive check on all operands' match rules in my match rule
duke@435 214 bool InstructForm::is_projection(FormDict &globals) {
duke@435 215 if ( ! _matrule) return false;
duke@435 216
duke@435 217 int index = 0;
duke@435 218 if (_matrule->find_type("Goto", index)) return true;
duke@435 219 if (_matrule->find_type("Return", index)) return true;
duke@435 220 if (_matrule->find_type("Rethrow", index)) return true;
duke@435 221 if (_matrule->find_type("TailCall",index)) return true;
duke@435 222 if (_matrule->find_type("TailJump",index)) return true;
duke@435 223 if (_matrule->find_type("Halt", index)) return true;
duke@435 224
duke@435 225 return false;
duke@435 226 }
duke@435 227
duke@435 228 // Recursive check on all operands' match rules in my match rule
duke@435 229 bool InstructForm::is_parm(FormDict &globals) {
duke@435 230 if ( ! _matrule) return false;
duke@435 231
duke@435 232 int index = 0;
duke@435 233 if (_matrule->find_type("Parm",index)) return true;
duke@435 234
duke@435 235 return false;
duke@435 236 }
duke@435 237
adlertz@5288 238 bool InstructForm::is_ideal_negD() const {
adlertz@5288 239 return (_matrule && _matrule->_rChild && strcmp(_matrule->_rChild->_opType, "NegD") == 0);
adlertz@5288 240 }
duke@435 241
duke@435 242 // Return 'true' if this instruction matches an ideal 'Copy*' node
duke@435 243 int InstructForm::is_ideal_copy() const {
duke@435 244 return _matrule ? _matrule->is_ideal_copy() : 0;
duke@435 245 }
duke@435 246
duke@435 247 // Return 'true' if this instruction is too complex to rematerialize.
duke@435 248 int InstructForm::is_expensive() const {
duke@435 249 // We can prove it is cheap if it has an empty encoding.
duke@435 250 // This helps with platform-specific nops like ThreadLocal and RoundFloat.
duke@435 251 if (is_empty_encoding())
duke@435 252 return 0;
duke@435 253
duke@435 254 if (is_tls_instruction())
duke@435 255 return 1;
duke@435 256
duke@435 257 if (_matrule == NULL) return 0;
duke@435 258
duke@435 259 return _matrule->is_expensive();
duke@435 260 }
duke@435 261
duke@435 262 // Has an empty encoding if _size is a constant zero or there
duke@435 263 // are no ins_encode tokens.
duke@435 264 int InstructForm::is_empty_encoding() const {
duke@435 265 if (_insencode != NULL) {
duke@435 266 _insencode->reset();
duke@435 267 if (_insencode->encode_class_iter() == NULL) {
duke@435 268 return 1;
duke@435 269 }
duke@435 270 }
duke@435 271 if (_size != NULL && strcmp(_size, "0") == 0) {
duke@435 272 return 1;
duke@435 273 }
duke@435 274 return 0;
duke@435 275 }
duke@435 276
duke@435 277 int InstructForm::is_tls_instruction() const {
duke@435 278 if (_ident != NULL &&
duke@435 279 ( ! strcmp( _ident,"tlsLoadP") ||
duke@435 280 ! strncmp(_ident,"tlsLoadP_",9)) ) {
duke@435 281 return 1;
duke@435 282 }
duke@435 283
duke@435 284 if (_matrule != NULL && _insencode != NULL) {
duke@435 285 const char* opType = _matrule->_opType;
duke@435 286 if (strcmp(opType, "Set")==0)
duke@435 287 opType = _matrule->_rChild->_opType;
duke@435 288 if (strcmp(opType,"ThreadLocal")==0) {
duke@435 289 fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
duke@435 290 (_ident == NULL ? "NULL" : _ident));
duke@435 291 return 1;
duke@435 292 }
duke@435 293 }
duke@435 294
duke@435 295 return 0;
duke@435 296 }
duke@435 297
duke@435 298
duke@435 299 // Return 'true' if this instruction matches an ideal 'If' node
duke@435 300 bool InstructForm::is_ideal_if() const {
duke@435 301 if( _matrule == NULL ) return false;
duke@435 302
duke@435 303 return _matrule->is_ideal_if();
duke@435 304 }
duke@435 305
duke@435 306 // Return 'true' if this instruction matches an ideal 'FastLock' node
duke@435 307 bool InstructForm::is_ideal_fastlock() const {
duke@435 308 if( _matrule == NULL ) return false;
duke@435 309
duke@435 310 return _matrule->is_ideal_fastlock();
duke@435 311 }
duke@435 312
duke@435 313 // Return 'true' if this instruction matches an ideal 'MemBarXXX' node
duke@435 314 bool InstructForm::is_ideal_membar() const {
duke@435 315 if( _matrule == NULL ) return false;
duke@435 316
duke@435 317 return _matrule->is_ideal_membar();
duke@435 318 }
duke@435 319
duke@435 320 // Return 'true' if this instruction matches an ideal 'LoadPC' node
duke@435 321 bool InstructForm::is_ideal_loadPC() const {
duke@435 322 if( _matrule == NULL ) return false;
duke@435 323
duke@435 324 return _matrule->is_ideal_loadPC();
duke@435 325 }
duke@435 326
duke@435 327 // Return 'true' if this instruction matches an ideal 'Box' node
duke@435 328 bool InstructForm::is_ideal_box() const {
duke@435 329 if( _matrule == NULL ) return false;
duke@435 330
duke@435 331 return _matrule->is_ideal_box();
duke@435 332 }
duke@435 333
duke@435 334 // Return 'true' if this instruction matches an ideal 'Goto' node
duke@435 335 bool InstructForm::is_ideal_goto() const {
duke@435 336 if( _matrule == NULL ) return false;
duke@435 337
duke@435 338 return _matrule->is_ideal_goto();
duke@435 339 }
duke@435 340
duke@435 341 // Return 'true' if this instruction matches an ideal 'Jump' node
duke@435 342 bool InstructForm::is_ideal_jump() const {
duke@435 343 if( _matrule == NULL ) return false;
duke@435 344
duke@435 345 return _matrule->is_ideal_jump();
duke@435 346 }
duke@435 347
kvn@3051 348 // Return 'true' if instruction matches ideal 'If' | 'Goto' | 'CountedLoopEnd'
duke@435 349 bool InstructForm::is_ideal_branch() const {
duke@435 350 if( _matrule == NULL ) return false;
duke@435 351
kvn@3051 352 return _matrule->is_ideal_if() || _matrule->is_ideal_goto();
duke@435 353 }
duke@435 354
duke@435 355
duke@435 356 // Return 'true' if this instruction matches an ideal 'Return' node
duke@435 357 bool InstructForm::is_ideal_return() const {
duke@435 358 if( _matrule == NULL ) return false;
duke@435 359
duke@435 360 // Check MatchRule to see if the first entry is the ideal "Return" node
duke@435 361 int index = 0;
duke@435 362 if (_matrule->find_type("Return",index)) return true;
duke@435 363 if (_matrule->find_type("Rethrow",index)) return true;
duke@435 364 if (_matrule->find_type("TailCall",index)) return true;
duke@435 365 if (_matrule->find_type("TailJump",index)) return true;
duke@435 366
duke@435 367 return false;
duke@435 368 }
duke@435 369
duke@435 370 // Return 'true' if this instruction matches an ideal 'Halt' node
duke@435 371 bool InstructForm::is_ideal_halt() const {
duke@435 372 int index = 0;
duke@435 373 return _matrule && _matrule->find_type("Halt",index);
duke@435 374 }
duke@435 375
duke@435 376 // Return 'true' if this instruction matches an ideal 'SafePoint' node
duke@435 377 bool InstructForm::is_ideal_safepoint() const {
duke@435 378 int index = 0;
duke@435 379 return _matrule && _matrule->find_type("SafePoint",index);
duke@435 380 }
duke@435 381
duke@435 382 // Return 'true' if this instruction matches an ideal 'Nop' node
duke@435 383 bool InstructForm::is_ideal_nop() const {
duke@435 384 return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
duke@435 385 }
duke@435 386
duke@435 387 bool InstructForm::is_ideal_control() const {
duke@435 388 if ( ! _matrule) return false;
duke@435 389
kvn@3051 390 return is_ideal_return() || is_ideal_branch() || _matrule->is_ideal_jump() || is_ideal_halt();
duke@435 391 }
duke@435 392
duke@435 393 // Return 'true' if this instruction matches an ideal 'Call' node
duke@435 394 Form::CallType InstructForm::is_ideal_call() const {
duke@435 395 if( _matrule == NULL ) return Form::invalid_type;
duke@435 396
duke@435 397 // Check MatchRule to see if the first entry is the ideal "Call" node
duke@435 398 int idx = 0;
duke@435 399 if(_matrule->find_type("CallStaticJava",idx)) return Form::JAVA_STATIC;
duke@435 400 idx = 0;
duke@435 401 if(_matrule->find_type("Lock",idx)) return Form::JAVA_STATIC;
duke@435 402 idx = 0;
duke@435 403 if(_matrule->find_type("Unlock",idx)) return Form::JAVA_STATIC;
duke@435 404 idx = 0;
duke@435 405 if(_matrule->find_type("CallDynamicJava",idx)) return Form::JAVA_DYNAMIC;
duke@435 406 idx = 0;
duke@435 407 if(_matrule->find_type("CallRuntime",idx)) return Form::JAVA_RUNTIME;
duke@435 408 idx = 0;
duke@435 409 if(_matrule->find_type("CallLeaf",idx)) return Form::JAVA_LEAF;
duke@435 410 idx = 0;
duke@435 411 if(_matrule->find_type("CallLeafNoFP",idx)) return Form::JAVA_LEAF;
duke@435 412 idx = 0;
duke@435 413
duke@435 414 return Form::invalid_type;
duke@435 415 }
duke@435 416
duke@435 417 // Return 'true' if this instruction matches an ideal 'Load?' node
duke@435 418 Form::DataType InstructForm::is_ideal_load() const {
duke@435 419 if( _matrule == NULL ) return Form::none;
duke@435 420
duke@435 421 return _matrule->is_ideal_load();
duke@435 422 }
duke@435 423
never@1290 424 // Return 'true' if this instruction matches an ideal 'LoadKlass' node
never@1290 425 bool InstructForm::skip_antidep_check() const {
never@1290 426 if( _matrule == NULL ) return false;
never@1290 427
never@1290 428 return _matrule->skip_antidep_check();
never@1290 429 }
never@1290 430
duke@435 431 // Return 'true' if this instruction matches an ideal 'Load?' node
duke@435 432 Form::DataType InstructForm::is_ideal_store() const {
duke@435 433 if( _matrule == NULL ) return Form::none;
duke@435 434
duke@435 435 return _matrule->is_ideal_store();
duke@435 436 }
duke@435 437
kvn@3882 438 // Return 'true' if this instruction matches an ideal vector node
kvn@3882 439 bool InstructForm::is_vector() const {
kvn@3882 440 if( _matrule == NULL ) return false;
kvn@3882 441
kvn@3882 442 return _matrule->is_vector();
kvn@3882 443 }
kvn@3882 444
kvn@3882 445
duke@435 446 // Return the input register that must match the output register
duke@435 447 // If this is not required, return 0
duke@435 448 uint InstructForm::two_address(FormDict &globals) {
duke@435 449 uint matching_input = 0;
duke@435 450 if(_components.count() == 0) return 0;
duke@435 451
duke@435 452 _components.reset();
duke@435 453 Component *comp = _components.iter();
duke@435 454 // Check if there is a DEF
duke@435 455 if( comp->isa(Component::DEF) ) {
duke@435 456 // Check that this is a register
duke@435 457 const char *def_type = comp->_type;
duke@435 458 const Form *form = globals[def_type];
duke@435 459 OperandForm *op = form->is_operand();
duke@435 460 if( op ) {
duke@435 461 if( op->constrained_reg_class() != NULL &&
duke@435 462 op->interface_type(globals) == Form::register_interface ) {
duke@435 463 // Remember the local name for equality test later
duke@435 464 const char *def_name = comp->_name;
duke@435 465 // Check if a component has the same name and is a USE
duke@435 466 do {
duke@435 467 if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
duke@435 468 return operand_position_format(def_name);
duke@435 469 }
duke@435 470 } while( (comp = _components.iter()) != NULL);
duke@435 471 }
duke@435 472 }
duke@435 473 }
duke@435 474
duke@435 475 return 0;
duke@435 476 }
duke@435 477
duke@435 478
duke@435 479 // when chaining a constant to an instruction, returns 'true' and sets opType
duke@435 480 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
duke@435 481 const char *dummy = NULL;
duke@435 482 const char *dummy2 = NULL;
duke@435 483 return is_chain_of_constant(globals, dummy, dummy2);
duke@435 484 }
duke@435 485 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
duke@435 486 const char * &opTypeParam) {
duke@435 487 const char *result = NULL;
duke@435 488
duke@435 489 return is_chain_of_constant(globals, opTypeParam, result);
duke@435 490 }
duke@435 491
duke@435 492 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
duke@435 493 const char * &opTypeParam, const char * &resultParam) {
duke@435 494 Form::DataType data_type = Form::none;
duke@435 495 if ( ! _matrule) return data_type;
duke@435 496
duke@435 497 // !!!!!
duke@435 498 // The source of the chain rule is 'position = 1'
duke@435 499 uint position = 1;
duke@435 500 const char *result = NULL;
duke@435 501 const char *name = NULL;
duke@435 502 const char *opType = NULL;
duke@435 503 // Here base_operand is looking for an ideal type to be returned (opType).
duke@435 504 if ( _matrule->is_chain_rule(globals)
duke@435 505 && _matrule->base_operand(position, globals, result, name, opType) ) {
duke@435 506 data_type = ideal_to_const_type(opType);
duke@435 507
duke@435 508 // if it isn't an ideal constant type, just return
duke@435 509 if ( data_type == Form::none ) return data_type;
duke@435 510
duke@435 511 // Ideal constant types also adjust the opType parameter.
duke@435 512 resultParam = result;
duke@435 513 opTypeParam = opType;
duke@435 514 return data_type;
duke@435 515 }
duke@435 516
duke@435 517 return data_type;
duke@435 518 }
duke@435 519
duke@435 520 // Check if a simple chain rule
duke@435 521 bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
duke@435 522 if( _matrule && _matrule->sets_result()
duke@435 523 && _matrule->_rChild->_lChild == NULL
duke@435 524 && globals[_matrule->_rChild->_opType]
duke@435 525 && globals[_matrule->_rChild->_opType]->is_opclass() ) {
duke@435 526 return true;
duke@435 527 }
duke@435 528 return false;
duke@435 529 }
duke@435 530
duke@435 531 // check for structural rematerialization
duke@435 532 bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
duke@435 533 bool rematerialize = false;
duke@435 534
duke@435 535 Form::DataType data_type = is_chain_of_constant(globals);
duke@435 536 if( data_type != Form::none )
duke@435 537 rematerialize = true;
duke@435 538
adlertz@5288 539 // Ugly: until a better fix is implemented, disable rematerialization for
adlertz@5288 540 // negD nodes because they are proved to be problematic.
adlertz@5288 541 if (is_ideal_negD()) {
adlertz@5288 542 return false;
adlertz@5288 543 }
adlertz@5288 544
duke@435 545 // Constants
duke@435 546 if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) )
duke@435 547 rematerialize = true;
duke@435 548
duke@435 549 // Pseudo-constants (values easily available to the runtime)
duke@435 550 if (is_empty_encoding() && is_tls_instruction())
duke@435 551 rematerialize = true;
duke@435 552
duke@435 553 // 1-input, 1-output, such as copies or increments.
duke@435 554 if( _components.count() == 2 &&
duke@435 555 _components[0]->is(Component::DEF) &&
duke@435 556 _components[1]->isa(Component::USE) )
duke@435 557 rematerialize = true;
duke@435 558
duke@435 559 // Check for an ideal 'Load?' and eliminate rematerialize option
duke@435 560 if ( is_ideal_load() != Form::none || // Ideal load? Do not rematerialize
duke@435 561 is_ideal_copy() != Form::none || // Ideal copy? Do not rematerialize
duke@435 562 is_expensive() != Form::none) { // Expensive? Do not rematerialize
duke@435 563 rematerialize = false;
duke@435 564 }
duke@435 565
duke@435 566 // Always rematerialize the flags. They are more expensive to save &
duke@435 567 // restore than to recompute (and possibly spill the compare's inputs).
duke@435 568 if( _components.count() >= 1 ) {
duke@435 569 Component *c = _components[0];
duke@435 570 const Form *form = globals[c->_type];
duke@435 571 OperandForm *opform = form->is_operand();
duke@435 572 if( opform ) {
duke@435 573 // Avoid the special stack_slots register classes
duke@435 574 const char *rc_name = opform->constrained_reg_class();
duke@435 575 if( rc_name ) {
duke@435 576 if( strcmp(rc_name,"stack_slots") ) {
duke@435 577 // Check for ideal_type of RegFlags
duke@435 578 const char *type = opform->ideal_type( globals, registers );
kvn@4161 579 if( (type != NULL) && !strcmp(type, "RegFlags") )
duke@435 580 rematerialize = true;
duke@435 581 } else
duke@435 582 rematerialize = false; // Do not rematerialize things target stk
duke@435 583 }
duke@435 584 }
duke@435 585 }
duke@435 586
duke@435 587 return rematerialize;
duke@435 588 }
duke@435 589
duke@435 590 // loads from memory, so must check for anti-dependence
duke@435 591 bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
never@1290 592 if ( skip_antidep_check() ) return false;
never@1290 593
duke@435 594 // Machine independent loads must be checked for anti-dependences
duke@435 595 if( is_ideal_load() != Form::none ) return true;
duke@435 596
duke@435 597 // !!!!! !!!!! !!!!!
duke@435 598 // TEMPORARY
duke@435 599 // if( is_simple_chain_rule(globals) ) return false;
duke@435 600
cfang@1116 601 // String.(compareTo/equals/indexOf) and Arrays.equals use many memorys edges,
cfang@1116 602 // but writes none
duke@435 603 if( _matrule && _matrule->_rChild &&
cfang@1116 604 ( strcmp(_matrule->_rChild->_opType,"StrComp" )==0 ||
cfang@1116 605 strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 ||
cfang@1116 606 strcmp(_matrule->_rChild->_opType,"StrIndexOf" )==0 ||
cfang@1116 607 strcmp(_matrule->_rChild->_opType,"AryEq" )==0 ))
duke@435 608 return true;
duke@435 609
duke@435 610 // Check if instruction has a USE of a memory operand class, but no defs
duke@435 611 bool USE_of_memory = false;
duke@435 612 bool DEF_of_memory = false;
duke@435 613 Component *comp = NULL;
duke@435 614 ComponentList &components = (ComponentList &)_components;
duke@435 615
duke@435 616 components.reset();
duke@435 617 while( (comp = components.iter()) != NULL ) {
duke@435 618 const Form *form = globals[comp->_type];
duke@435 619 if( !form ) continue;
duke@435 620 OpClassForm *op = form->is_opclass();
duke@435 621 if( !op ) continue;
duke@435 622 if( form->interface_type(globals) == Form::memory_interface ) {
duke@435 623 if( comp->isa(Component::USE) ) USE_of_memory = true;
duke@435 624 if( comp->isa(Component::DEF) ) {
duke@435 625 OperandForm *oper = form->is_operand();
duke@435 626 if( oper && oper->is_user_name_for_sReg() ) {
duke@435 627 // Stack slots are unaliased memory handled by allocator
duke@435 628 oper = oper; // debug stopping point !!!!!
duke@435 629 } else {
duke@435 630 DEF_of_memory = true;
duke@435 631 }
duke@435 632 }
duke@435 633 }
duke@435 634 }
duke@435 635 return (USE_of_memory && !DEF_of_memory);
duke@435 636 }
duke@435 637
duke@435 638
duke@435 639 bool InstructForm::is_wide_memory_kill(FormDict &globals) const {
duke@435 640 if( _matrule == NULL ) return false;
duke@435 641 if( !_matrule->_opType ) return false;
duke@435 642
duke@435 643 if( strcmp(_matrule->_opType,"MemBarRelease") == 0 ) return true;
duke@435 644 if( strcmp(_matrule->_opType,"MemBarAcquire") == 0 ) return true;
roland@3047 645 if( strcmp(_matrule->_opType,"MemBarReleaseLock") == 0 ) return true;
roland@3047 646 if( strcmp(_matrule->_opType,"MemBarAcquireLock") == 0 ) return true;
roland@3392 647 if( strcmp(_matrule->_opType,"MemBarStoreStore") == 0 ) return true;
duke@435 648
duke@435 649 return false;
duke@435 650 }
duke@435 651
duke@435 652 int InstructForm::memory_operand(FormDict &globals) const {
duke@435 653 // Machine independent loads must be checked for anti-dependences
duke@435 654 // Check if instruction has a USE of a memory operand class, or a def.
duke@435 655 int USE_of_memory = 0;
duke@435 656 int DEF_of_memory = 0;
duke@435 657 const char* last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
duke@435 658 Component *unique = NULL;
duke@435 659 Component *comp = NULL;
duke@435 660 ComponentList &components = (ComponentList &)_components;
duke@435 661
duke@435 662 components.reset();
duke@435 663 while( (comp = components.iter()) != NULL ) {
duke@435 664 const Form *form = globals[comp->_type];
duke@435 665 if( !form ) continue;
duke@435 666 OpClassForm *op = form->is_opclass();
duke@435 667 if( !op ) continue;
duke@435 668 if( op->stack_slots_only(globals) ) continue;
duke@435 669 if( form->interface_type(globals) == Form::memory_interface ) {
duke@435 670 if( comp->isa(Component::DEF) ) {
duke@435 671 last_memory_DEF = comp->_name;
duke@435 672 DEF_of_memory++;
duke@435 673 unique = comp;
duke@435 674 } else if( comp->isa(Component::USE) ) {
duke@435 675 if( last_memory_DEF != NULL ) {
duke@435 676 assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
duke@435 677 last_memory_DEF = NULL;
duke@435 678 }
duke@435 679 USE_of_memory++;
duke@435 680 if (DEF_of_memory == 0) // defs take precedence
duke@435 681 unique = comp;
duke@435 682 } else {
duke@435 683 assert(last_memory_DEF == NULL, "unpaired memory DEF");
duke@435 684 }
duke@435 685 }
duke@435 686 }
duke@435 687 assert(last_memory_DEF == NULL, "unpaired memory DEF");
duke@435 688 assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
duke@435 689 USE_of_memory -= DEF_of_memory; // treat paired DEF/USE as one occurrence
duke@435 690 if( (USE_of_memory + DEF_of_memory) > 0 ) {
duke@435 691 if( is_simple_chain_rule(globals) ) {
duke@435 692 //fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
duke@435 693 //((InstructForm*)this)->dump();
duke@435 694 // Preceding code prints nothing on sparc and these insns on intel:
duke@435 695 // leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
duke@435 696 // leaPIdxOff leaPIdxScale leaPIdxScaleOff
duke@435 697 return NO_MEMORY_OPERAND;
duke@435 698 }
duke@435 699
duke@435 700 if( DEF_of_memory == 1 ) {
duke@435 701 assert(unique != NULL, "");
duke@435 702 if( USE_of_memory == 0 ) {
duke@435 703 // unique def, no uses
duke@435 704 } else {
duke@435 705 // // unique def, some uses
duke@435 706 // // must return bottom unless all uses match def
duke@435 707 // unique = NULL;
duke@435 708 }
duke@435 709 } else if( DEF_of_memory > 0 ) {
duke@435 710 // multiple defs, don't care about uses
duke@435 711 unique = NULL;
duke@435 712 } else if( USE_of_memory == 1) {
duke@435 713 // unique use, no defs
duke@435 714 assert(unique != NULL, "");
duke@435 715 } else if( USE_of_memory > 0 ) {
duke@435 716 // multiple uses, no defs
duke@435 717 unique = NULL;
duke@435 718 } else {
duke@435 719 assert(false, "bad case analysis");
duke@435 720 }
duke@435 721 // process the unique DEF or USE, if there is one
duke@435 722 if( unique == NULL ) {
duke@435 723 return MANY_MEMORY_OPERANDS;
duke@435 724 } else {
duke@435 725 int pos = components.operand_position(unique->_name);
duke@435 726 if( unique->isa(Component::DEF) ) {
duke@435 727 pos += 1; // get corresponding USE from DEF
duke@435 728 }
duke@435 729 assert(pos >= 1, "I was just looking at it!");
duke@435 730 return pos;
duke@435 731 }
duke@435 732 }
duke@435 733
duke@435 734 // missed the memory op??
duke@435 735 if( true ) { // %%% should not be necessary
duke@435 736 if( is_ideal_store() != Form::none ) {
duke@435 737 fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
duke@435 738 ((InstructForm*)this)->dump();
duke@435 739 // pretend it has multiple defs and uses
duke@435 740 return MANY_MEMORY_OPERANDS;
duke@435 741 }
duke@435 742 if( is_ideal_load() != Form::none ) {
duke@435 743 fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
duke@435 744 ((InstructForm*)this)->dump();
duke@435 745 // pretend it has multiple uses and no defs
duke@435 746 return MANY_MEMORY_OPERANDS;
duke@435 747 }
duke@435 748 }
duke@435 749
duke@435 750 return NO_MEMORY_OPERAND;
duke@435 751 }
duke@435 752
duke@435 753
duke@435 754 // This instruction captures the machine-independent bottom_type
duke@435 755 // Expected use is for pointer vs oop determination for LoadP
never@1896 756 bool InstructForm::captures_bottom_type(FormDict &globals) const {
duke@435 757 if( _matrule && _matrule->_rChild &&
roland@4159 758 (!strcmp(_matrule->_rChild->_opType,"CastPP") || // new result type
roland@4159 759 !strcmp(_matrule->_rChild->_opType,"CastX2P") || // new result type
roland@4159 760 !strcmp(_matrule->_rChild->_opType,"DecodeN") ||
roland@4159 761 !strcmp(_matrule->_rChild->_opType,"EncodeP") ||
roland@4159 762 !strcmp(_matrule->_rChild->_opType,"DecodeNKlass") ||
roland@4159 763 !strcmp(_matrule->_rChild->_opType,"EncodePKlass") ||
roland@4159 764 !strcmp(_matrule->_rChild->_opType,"LoadN") ||
roland@4159 765 !strcmp(_matrule->_rChild->_opType,"LoadNKlass") ||
roland@4159 766 !strcmp(_matrule->_rChild->_opType,"CreateEx") || // type of exception
roland@4658 767 !strcmp(_matrule->_rChild->_opType,"CheckCastPP") ||
roland@4658 768 !strcmp(_matrule->_rChild->_opType,"GetAndSetP") ||
roland@4658 769 !strcmp(_matrule->_rChild->_opType,"GetAndSetN")) ) return true;
duke@435 770 else if ( is_ideal_load() == Form::idealP ) return true;
duke@435 771 else if ( is_ideal_store() != Form::none ) return true;
duke@435 772
never@1896 773 if (needs_base_oop_edge(globals)) return true;
never@1896 774
kvn@3882 775 if (is_vector()) return true;
kvn@3882 776 if (is_mach_constant()) return true;
kvn@3882 777
duke@435 778 return false;
duke@435 779 }
duke@435 780
duke@435 781
duke@435 782 // Access instr_cost attribute or return NULL.
duke@435 783 const char* InstructForm::cost() {
duke@435 784 for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
duke@435 785 if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
duke@435 786 return cur->_val;
duke@435 787 }
duke@435 788 }
duke@435 789 return NULL;
duke@435 790 }
duke@435 791
duke@435 792 // Return count of top-level operands.
duke@435 793 uint InstructForm::num_opnds() {
duke@435 794 int num_opnds = _components.num_operands();
duke@435 795
duke@435 796 // Need special handling for matching some ideal nodes
duke@435 797 // i.e. Matching a return node
duke@435 798 /*
duke@435 799 if( _matrule ) {
duke@435 800 if( strcmp(_matrule->_opType,"Return" )==0 ||
duke@435 801 strcmp(_matrule->_opType,"Halt" )==0 )
duke@435 802 return 3;
duke@435 803 }
duke@435 804 */
duke@435 805 return num_opnds;
duke@435 806 }
duke@435 807
twisti@5221 808 const char* InstructForm::opnd_ident(int idx) {
kvn@4161 809 return _components.at(idx)->_name;
kvn@4161 810 }
kvn@4161 811
twisti@5221 812 const char* InstructForm::unique_opnd_ident(uint idx) {
kvn@4161 813 uint i;
kvn@4161 814 for (i = 1; i < num_opnds(); ++i) {
kvn@4161 815 if (unique_opnds_idx(i) == idx) {
kvn@4161 816 break;
kvn@4161 817 }
kvn@4161 818 }
kvn@4161 819 return (_components.at(i) != NULL) ? _components.at(i)->_name : "";
kvn@4161 820 }
kvn@4161 821
duke@435 822 // Return count of unmatched operands.
duke@435 823 uint InstructForm::num_post_match_opnds() {
duke@435 824 uint num_post_match_opnds = _components.count();
duke@435 825 uint num_match_opnds = _components.match_count();
duke@435 826 num_post_match_opnds = num_post_match_opnds - num_match_opnds;
duke@435 827
duke@435 828 return num_post_match_opnds;
duke@435 829 }
duke@435 830
duke@435 831 // Return the number of leaves below this complex operand
duke@435 832 uint InstructForm::num_consts(FormDict &globals) const {
duke@435 833 if ( ! _matrule) return 0;
duke@435 834
duke@435 835 // This is a recursive invocation on all operands in the matchrule
duke@435 836 return _matrule->num_consts(globals);
duke@435 837 }
duke@435 838
duke@435 839 // Constants in match rule with specified type
duke@435 840 uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
duke@435 841 if ( ! _matrule) return 0;
duke@435 842
duke@435 843 // This is a recursive invocation on all operands in the matchrule
duke@435 844 return _matrule->num_consts(globals, type);
duke@435 845 }
duke@435 846
duke@435 847
duke@435 848 // Return the register class associated with 'leaf'.
duke@435 849 const char *InstructForm::out_reg_class(FormDict &globals) {
duke@435 850 assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");
duke@435 851
duke@435 852 return NULL;
duke@435 853 }
duke@435 854
duke@435 855
duke@435 856
duke@435 857 // Lookup the starting position of inputs we are interested in wrt. ideal nodes
duke@435 858 uint InstructForm::oper_input_base(FormDict &globals) {
duke@435 859 if( !_matrule ) return 1; // Skip control for most nodes
duke@435 860
duke@435 861 // Need special handling for matching some ideal nodes
duke@435 862 // i.e. Matching a return node
duke@435 863 if( strcmp(_matrule->_opType,"Return" )==0 ||
duke@435 864 strcmp(_matrule->_opType,"Rethrow" )==0 ||
duke@435 865 strcmp(_matrule->_opType,"TailCall" )==0 ||
duke@435 866 strcmp(_matrule->_opType,"TailJump" )==0 ||
duke@435 867 strcmp(_matrule->_opType,"SafePoint" )==0 ||
duke@435 868 strcmp(_matrule->_opType,"Halt" )==0 )
duke@435 869 return AdlcVMDeps::Parms; // Skip the machine-state edges
duke@435 870
duke@435 871 if( _matrule->_rChild &&
kvn@1421 872 ( strcmp(_matrule->_rChild->_opType,"AryEq" )==0 ||
kvn@1421 873 strcmp(_matrule->_rChild->_opType,"StrComp" )==0 ||
cfang@1116 874 strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 ||
kvn@4479 875 strcmp(_matrule->_rChild->_opType,"StrIndexOf")==0 ||
kvn@4479 876 strcmp(_matrule->_rChild->_opType,"EncodeISOArray")==0)) {
kvn@1421 877 // String.(compareTo/equals/indexOf) and Arrays.equals
kvn@4479 878 // and sun.nio.cs.iso8859_1$Encoder.EncodeISOArray
kvn@1421 879 // take 1 control and 1 memory edges.
kvn@1421 880 return 2;
duke@435 881 }
duke@435 882
duke@435 883 // Check for handling of 'Memory' input/edge in the ideal world.
duke@435 884 // The AD file writer is shielded from knowledge of these edges.
duke@435 885 int base = 1; // Skip control
duke@435 886 base += _matrule->needs_ideal_memory_edge(globals);
duke@435 887
duke@435 888 // Also skip the base-oop value for uses of derived oops.
duke@435 889 // The AD file writer is shielded from knowledge of these edges.
duke@435 890 base += needs_base_oop_edge(globals);
duke@435 891
duke@435 892 return base;
duke@435 893 }
duke@435 894
kvn@4161 895 // This function determines the order of the MachOper in _opnds[]
kvn@4161 896 // by writing the operand names into the _components list.
kvn@4161 897 //
duke@435 898 // Implementation does not modify state of internal structures
duke@435 899 void InstructForm::build_components() {
duke@435 900 // Add top-level operands to the components
duke@435 901 if (_matrule) _matrule->append_components(_localNames, _components);
duke@435 902
duke@435 903 // Add parameters that "do not appear in match rule".
duke@435 904 bool has_temp = false;
duke@435 905 const char *name;
duke@435 906 const char *kill_name = NULL;
duke@435 907 for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
duke@435 908 OperandForm *opForm = (OperandForm*)_localNames[name];
duke@435 909
twisti@1038 910 Effect* e = NULL;
twisti@1038 911 {
twisti@1038 912 const Form* form = _effects[name];
twisti@1038 913 e = form ? form->is_effect() : NULL;
twisti@1038 914 }
twisti@1038 915
duke@435 916 if (e != NULL) {
duke@435 917 has_temp |= e->is(Component::TEMP);
duke@435 918
duke@435 919 // KILLs must be declared after any TEMPs because TEMPs are real
duke@435 920 // uses so their operand numbering must directly follow the real
duke@435 921 // inputs from the match rule. Fixing the numbering seems
duke@435 922 // complex so simply enforce the restriction during parse.
duke@435 923 if (kill_name != NULL &&
duke@435 924 e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
duke@435 925 OperandForm* kill = (OperandForm*)_localNames[kill_name];
duke@435 926 globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
duke@435 927 _ident, kill->_ident, kill_name);
never@1037 928 } else if (e->isa(Component::KILL) && !e->isa(Component::USE)) {
duke@435 929 kill_name = name;
duke@435 930 }
duke@435 931 }
duke@435 932
duke@435 933 const Component *component = _components.search(name);
duke@435 934 if ( component == NULL ) {
duke@435 935 if (e) {
duke@435 936 _components.insert(name, opForm->_ident, e->_use_def, false);
duke@435 937 component = _components.search(name);
duke@435 938 if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
duke@435 939 const Form *form = globalAD->globalNames()[component->_type];
duke@435 940 assert( form, "component type must be a defined form");
duke@435 941 OperandForm *op = form->is_operand();
duke@435 942 if (op->_interface && op->_interface->is_RegInterface()) {
duke@435 943 globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
duke@435 944 _ident, opForm->_ident, name);
duke@435 945 }
duke@435 946 }
duke@435 947 } else {
duke@435 948 // This would be a nice warning but it triggers in a few places in a benign way
duke@435 949 // if (_matrule != NULL && !expands()) {
duke@435 950 // globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
duke@435 951 // _ident, opForm->_ident, name);
duke@435 952 // }
duke@435 953 _components.insert(name, opForm->_ident, Component::INVALID, false);
duke@435 954 }
duke@435 955 }
duke@435 956 else if (e) {
duke@435 957 // Component was found in the list
duke@435 958 // Check if there is a new effect that requires an extra component.
duke@435 959 // This happens when adding 'USE' to a component that is not yet one.
duke@435 960 if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
duke@435 961 if (component->isa(Component::USE) && _matrule) {
duke@435 962 const Form *form = globalAD->globalNames()[component->_type];
duke@435 963 assert( form, "component type must be a defined form");
duke@435 964 OperandForm *op = form->is_operand();
duke@435 965 if (op->_interface && op->_interface->is_RegInterface()) {
duke@435 966 globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
duke@435 967 _ident, opForm->_ident, name);
duke@435 968 }
duke@435 969 }
duke@435 970 _components.insert(name, opForm->_ident, e->_use_def, false);
duke@435 971 } else {
duke@435 972 Component *comp = (Component*)component;
duke@435 973 comp->promote_use_def_info(e->_use_def);
duke@435 974 }
duke@435 975 // Component positions are zero based.
duke@435 976 int pos = _components.operand_position(name);
duke@435 977 assert( ! (component->isa(Component::DEF) && (pos >= 1)),
duke@435 978 "Component::DEF can only occur in the first position");
duke@435 979 }
duke@435 980 }
duke@435 981
duke@435 982 // Resolving the interactions between expand rules and TEMPs would
duke@435 983 // be complex so simply disallow it.
duke@435 984 if (_matrule == NULL && has_temp) {
duke@435 985 globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
duke@435 986 }
duke@435 987
duke@435 988 return;
duke@435 989 }
duke@435 990
duke@435 991 // Return zero-based position in component list; -1 if not in list.
duke@435 992 int InstructForm::operand_position(const char *name, int usedef) {
kvn@4161 993 return unique_opnds_idx(_components.operand_position(name, usedef, this));
duke@435 994 }
duke@435 995
duke@435 996 int InstructForm::operand_position_format(const char *name) {
kvn@4161 997 return unique_opnds_idx(_components.operand_position_format(name, this));
duke@435 998 }
duke@435 999
duke@435 1000 // Return zero-based position in component list; -1 if not in list.
duke@435 1001 int InstructForm::label_position() {
duke@435 1002 return unique_opnds_idx(_components.label_position());
duke@435 1003 }
duke@435 1004
duke@435 1005 int InstructForm::method_position() {
duke@435 1006 return unique_opnds_idx(_components.method_position());
duke@435 1007 }
duke@435 1008
duke@435 1009 // Return number of relocation entries needed for this instruction.
duke@435 1010 uint InstructForm::reloc(FormDict &globals) {
duke@435 1011 uint reloc_entries = 0;
duke@435 1012 // Check for "Call" nodes
duke@435 1013 if ( is_ideal_call() ) ++reloc_entries;
duke@435 1014 if ( is_ideal_return() ) ++reloc_entries;
duke@435 1015 if ( is_ideal_safepoint() ) ++reloc_entries;
duke@435 1016
duke@435 1017
duke@435 1018 // Check if operands MAYBE oop pointers, by checking for ConP elements
duke@435 1019 // Proceed through the leaves of the match-tree and check for ConPs
duke@435 1020 if ( _matrule != NULL ) {
duke@435 1021 uint position = 0;
duke@435 1022 const char *result = NULL;
duke@435 1023 const char *name = NULL;
duke@435 1024 const char *opType = NULL;
duke@435 1025 while (_matrule->base_operand(position, globals, result, name, opType)) {
duke@435 1026 if ( strcmp(opType,"ConP") == 0 ) {
duke@435 1027 #ifdef SPARC
duke@435 1028 reloc_entries += 2; // 1 for sethi + 1 for setlo
duke@435 1029 #else
duke@435 1030 ++reloc_entries;
duke@435 1031 #endif
duke@435 1032 }
duke@435 1033 ++position;
duke@435 1034 }
duke@435 1035 }
duke@435 1036
duke@435 1037 // Above is only a conservative estimate
duke@435 1038 // because it did not check contents of operand classes.
duke@435 1039 // !!!!! !!!!!
duke@435 1040 // Add 1 to reloc info for each operand class in the component list.
duke@435 1041 Component *comp;
duke@435 1042 _components.reset();
duke@435 1043 while ( (comp = _components.iter()) != NULL ) {
duke@435 1044 const Form *form = globals[comp->_type];
duke@435 1045 assert( form, "Did not find component's type in global names");
duke@435 1046 const OpClassForm *opc = form->is_opclass();
duke@435 1047 const OperandForm *oper = form->is_operand();
duke@435 1048 if ( opc && (oper == NULL) ) {
duke@435 1049 ++reloc_entries;
duke@435 1050 } else if ( oper ) {
duke@435 1051 // floats and doubles loaded out of method's constant pool require reloc info
duke@435 1052 Form::DataType type = oper->is_base_constant(globals);
duke@435 1053 if ( (type == Form::idealF) || (type == Form::idealD) ) {
duke@435 1054 ++reloc_entries;
duke@435 1055 }
duke@435 1056 }
duke@435 1057 }
duke@435 1058
duke@435 1059 // Float and Double constants may come from the CodeBuffer table
duke@435 1060 // and require relocatable addresses for access
duke@435 1061 // !!!!!
duke@435 1062 // Check for any component being an immediate float or double.
duke@435 1063 Form::DataType data_type = is_chain_of_constant(globals);
duke@435 1064 if( data_type==idealD || data_type==idealF ) {
duke@435 1065 #ifdef SPARC
duke@435 1066 // sparc required more relocation entries for floating constants
duke@435 1067 // (expires 9/98)
duke@435 1068 reloc_entries += 6;
duke@435 1069 #else
duke@435 1070 reloc_entries++;
duke@435 1071 #endif
duke@435 1072 }
duke@435 1073
duke@435 1074 return reloc_entries;
duke@435 1075 }
duke@435 1076
duke@435 1077 // Utility function defined in archDesc.cpp
duke@435 1078 extern bool is_def(int usedef);
duke@435 1079
duke@435 1080 // Return the result of reducing an instruction
duke@435 1081 const char *InstructForm::reduce_result() {
duke@435 1082 const char* result = "Universe"; // default
duke@435 1083 _components.reset();
duke@435 1084 Component *comp = _components.iter();
duke@435 1085 if (comp != NULL && comp->isa(Component::DEF)) {
duke@435 1086 result = comp->_type;
duke@435 1087 // Override this if the rule is a store operation:
duke@435 1088 if (_matrule && _matrule->_rChild &&
duke@435 1089 is_store_to_memory(_matrule->_rChild->_opType))
duke@435 1090 result = "Universe";
duke@435 1091 }
duke@435 1092 return result;
duke@435 1093 }
duke@435 1094
duke@435 1095 // Return the name of the operand on the right hand side of the binary match
duke@435 1096 // Return NULL if there is no right hand side
duke@435 1097 const char *InstructForm::reduce_right(FormDict &globals) const {
duke@435 1098 if( _matrule == NULL ) return NULL;
duke@435 1099 return _matrule->reduce_right(globals);
duke@435 1100 }
duke@435 1101
duke@435 1102 // Similar for left
duke@435 1103 const char *InstructForm::reduce_left(FormDict &globals) const {
duke@435 1104 if( _matrule == NULL ) return NULL;
duke@435 1105 return _matrule->reduce_left(globals);
duke@435 1106 }
duke@435 1107
duke@435 1108
duke@435 1109 // Base class for this instruction, MachNode except for calls
never@1896 1110 const char *InstructForm::mach_base_class(FormDict &globals) const {
duke@435 1111 if( is_ideal_call() == Form::JAVA_STATIC ) {
duke@435 1112 return "MachCallStaticJavaNode";
duke@435 1113 }
duke@435 1114 else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
duke@435 1115 return "MachCallDynamicJavaNode";
duke@435 1116 }
duke@435 1117 else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
duke@435 1118 return "MachCallRuntimeNode";
duke@435 1119 }
duke@435 1120 else if( is_ideal_call() == Form::JAVA_LEAF ) {
duke@435 1121 return "MachCallLeafNode";
duke@435 1122 }
duke@435 1123 else if (is_ideal_return()) {
duke@435 1124 return "MachReturnNode";
duke@435 1125 }
duke@435 1126 else if (is_ideal_halt()) {
duke@435 1127 return "MachHaltNode";
duke@435 1128 }
duke@435 1129 else if (is_ideal_safepoint()) {
duke@435 1130 return "MachSafePointNode";
duke@435 1131 }
duke@435 1132 else if (is_ideal_if()) {
duke@435 1133 return "MachIfNode";
duke@435 1134 }
kvn@3040 1135 else if (is_ideal_goto()) {
kvn@3040 1136 return "MachGotoNode";
kvn@3040 1137 }
duke@435 1138 else if (is_ideal_fastlock()) {
duke@435 1139 return "MachFastLockNode";
duke@435 1140 }
duke@435 1141 else if (is_ideal_nop()) {
duke@435 1142 return "MachNopNode";
duke@435 1143 }
twisti@2350 1144 else if (is_mach_constant()) {
twisti@2350 1145 return "MachConstantNode";
twisti@2350 1146 }
never@1896 1147 else if (captures_bottom_type(globals)) {
duke@435 1148 return "MachTypeNode";
duke@435 1149 } else {
duke@435 1150 return "MachNode";
duke@435 1151 }
duke@435 1152 assert( false, "ShouldNotReachHere()");
duke@435 1153 return NULL;
duke@435 1154 }
duke@435 1155
duke@435 1156 // Compare the instruction predicates for textual equality
duke@435 1157 bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
duke@435 1158 const Predicate *pred1 = instr1->_predicate;
duke@435 1159 const Predicate *pred2 = instr2->_predicate;
duke@435 1160 if( pred1 == NULL && pred2 == NULL ) {
duke@435 1161 // no predicates means they are identical
duke@435 1162 return true;
duke@435 1163 }
duke@435 1164 if( pred1 != NULL && pred2 != NULL ) {
duke@435 1165 // compare the predicates
jrose@910 1166 if (ADLParser::equivalent_expressions(pred1->_pred, pred2->_pred)) {
duke@435 1167 return true;
duke@435 1168 }
duke@435 1169 }
duke@435 1170
duke@435 1171 return false;
duke@435 1172 }
duke@435 1173
duke@435 1174 // Check if this instruction can cisc-spill to 'alternate'
duke@435 1175 bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
duke@435 1176 assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
duke@435 1177 // Do not replace if a cisc-version has been found.
duke@435 1178 if( cisc_spill_operand() != Not_cisc_spillable ) return false;
duke@435 1179
duke@435 1180 int cisc_spill_operand = Maybe_cisc_spillable;
duke@435 1181 char *result = NULL;
duke@435 1182 char *result2 = NULL;
duke@435 1183 const char *op_name = NULL;
duke@435 1184 const char *reg_type = NULL;
duke@435 1185 FormDict &globals = AD.globalNames();
twisti@1038 1186 cisc_spill_operand = _matrule->matchrule_cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
duke@435 1187 if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
duke@435 1188 cisc_spill_operand = operand_position(op_name, Component::USE);
duke@435 1189 int def_oper = operand_position(op_name, Component::DEF);
duke@435 1190 if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
duke@435 1191 // Do not support cisc-spilling for destination operands and
duke@435 1192 // make sure they have the same number of operands.
duke@435 1193 _cisc_spill_alternate = instr;
duke@435 1194 instr->set_cisc_alternate(true);
duke@435 1195 if( AD._cisc_spill_debug ) {
duke@435 1196 fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
duke@435 1197 fprintf(stderr, " using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
duke@435 1198 }
duke@435 1199 // Record that a stack-version of the reg_mask is needed
duke@435 1200 // !!!!!
duke@435 1201 OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
duke@435 1202 assert( oper != NULL, "cisc-spilling non operand");
duke@435 1203 const char *reg_class_name = oper->constrained_reg_class();
duke@435 1204 AD.set_stack_or_reg(reg_class_name);
duke@435 1205 const char *reg_mask_name = AD.reg_mask(*oper);
duke@435 1206 set_cisc_reg_mask_name(reg_mask_name);
duke@435 1207 const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
duke@435 1208 } else {
duke@435 1209 cisc_spill_operand = Not_cisc_spillable;
duke@435 1210 }
duke@435 1211 } else {
duke@435 1212 cisc_spill_operand = Not_cisc_spillable;
duke@435 1213 }
duke@435 1214
duke@435 1215 set_cisc_spill_operand(cisc_spill_operand);
duke@435 1216 return (cisc_spill_operand != Not_cisc_spillable);
duke@435 1217 }
duke@435 1218
duke@435 1219 // Check to see if this instruction can be replaced with the short branch
duke@435 1220 // instruction `short-branch'
duke@435 1221 bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
duke@435 1222 if (_matrule != NULL &&
duke@435 1223 this != short_branch && // Don't match myself
duke@435 1224 !is_short_branch() && // Don't match another short branch variant
duke@435 1225 reduce_result() != NULL &&
duke@435 1226 strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
duke@435 1227 _matrule->equivalent(AD.globalNames(), short_branch->_matrule)) {
duke@435 1228 // The instructions are equivalent.
kvn@3049 1229
kvn@3049 1230 // Now verify that both instructions have the same parameters and
kvn@3049 1231 // the same effects. Both branch forms should have the same inputs
kvn@3049 1232 // and resulting projections to correctly replace a long branch node
kvn@3049 1233 // with corresponding short branch node during code generation.
kvn@3049 1234
kvn@3049 1235 bool different = false;
kvn@3049 1236 if (short_branch->_components.count() != _components.count()) {
kvn@3049 1237 different = true;
kvn@3049 1238 } else if (_components.count() > 0) {
kvn@3049 1239 short_branch->_components.reset();
kvn@3049 1240 _components.reset();
kvn@3049 1241 Component *comp;
kvn@3049 1242 while ((comp = _components.iter()) != NULL) {
kvn@3049 1243 Component *short_comp = short_branch->_components.iter();
kvn@3049 1244 if (short_comp == NULL ||
kvn@3049 1245 short_comp->_type != comp->_type ||
kvn@3049 1246 short_comp->_usedef != comp->_usedef) {
kvn@3049 1247 different = true;
kvn@3049 1248 break;
kvn@3049 1249 }
kvn@3049 1250 }
kvn@3049 1251 if (short_branch->_components.iter() != NULL)
kvn@3049 1252 different = true;
kvn@3049 1253 }
kvn@3049 1254 if (different) {
kvn@3049 1255 globalAD->syntax_err(short_branch->_linenum, "Instruction %s and its short form %s have different parameters\n", _ident, short_branch->_ident);
kvn@3049 1256 }
kvn@4161 1257 if (AD._adl_debug > 1 || AD._short_branch_debug) {
duke@435 1258 fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
duke@435 1259 }
duke@435 1260 _short_branch_form = short_branch;
duke@435 1261 return true;
duke@435 1262 }
duke@435 1263 return false;
duke@435 1264 }
duke@435 1265
duke@435 1266
duke@435 1267 // --------------------------- FILE *output_routines
duke@435 1268 //
duke@435 1269 // Generate the format call for the replacement variable
duke@435 1270 void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
twisti@2350 1271 // Handle special constant table variables.
twisti@2350 1272 if (strcmp(rep_var, "constanttablebase") == 0) {
twisti@2350 1273 fprintf(fp, "char reg[128]; ra->dump_register(in(mach_constant_base_node_input()), reg);\n");
roland@3161 1274 fprintf(fp, " st->print(\"%%s\", reg);\n");
twisti@2350 1275 return;
twisti@2350 1276 }
twisti@2350 1277 if (strcmp(rep_var, "constantoffset") == 0) {
twisti@2350 1278 fprintf(fp, "st->print(\"#%%d\", constant_offset());\n");
twisti@2350 1279 return;
twisti@2350 1280 }
twisti@2350 1281 if (strcmp(rep_var, "constantaddress") == 0) {
twisti@2350 1282 fprintf(fp, "st->print(\"constant table base + #%%d\", constant_offset());\n");
twisti@2350 1283 return;
twisti@2350 1284 }
twisti@2350 1285
duke@435 1286 // Find replacement variable's type
duke@435 1287 const Form *form = _localNames[rep_var];
duke@435 1288 if (form == NULL) {
kvn@4161 1289 globalAD->syntax_err(_linenum, "Unknown replacement variable %s in format statement of %s.",
kvn@4161 1290 rep_var, _ident);
kvn@4161 1291 return;
duke@435 1292 }
duke@435 1293 OpClassForm *opc = form->is_opclass();
duke@435 1294 assert( opc, "replacement variable was not found in local names");
duke@435 1295 // Lookup the index position of the replacement variable
duke@435 1296 int idx = operand_position_format(rep_var);
duke@435 1297 if ( idx == -1 ) {
kvn@4161 1298 globalAD->syntax_err(_linenum, "Could not find replacement variable %s in format statement of %s.\n",
kvn@4161 1299 rep_var, _ident);
kvn@4161 1300 assert(strcmp(opc->_ident, "label") == 0, "Unimplemented");
kvn@4161 1301 return;
duke@435 1302 }
duke@435 1303
duke@435 1304 if (is_noninput_operand(idx)) {
duke@435 1305 // This component isn't in the input array. Print out the static
duke@435 1306 // name of the register.
duke@435 1307 OperandForm* oper = form->is_operand();
duke@435 1308 if (oper != NULL && oper->is_bound_register()) {
duke@435 1309 const RegDef* first = oper->get_RegClass()->find_first_elem();
kvn@4161 1310 fprintf(fp, " st->print(\"%s\");\n", first->_regname);
duke@435 1311 } else {
duke@435 1312 globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
duke@435 1313 }
duke@435 1314 } else {
duke@435 1315 // Output the format call for this operand
duke@435 1316 fprintf(fp,"opnd_array(%d)->",idx);
duke@435 1317 if (idx == 0)
duke@435 1318 fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
duke@435 1319 else
duke@435 1320 fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
duke@435 1321 }
duke@435 1322 }
duke@435 1323
duke@435 1324 // Seach through operands to determine parameters unique positions.
duke@435 1325 void InstructForm::set_unique_opnds() {
duke@435 1326 uint* uniq_idx = NULL;
twisti@5221 1327 uint nopnds = num_opnds();
duke@435 1328 uint num_uniq = nopnds;
twisti@5221 1329 uint i;
never@1034 1330 _uniq_idx_length = 0;
twisti@5221 1331 if (nopnds > 0) {
never@1034 1332 // Allocate index array. Worst case we're mapping from each
never@1034 1333 // component back to an index and any DEF always goes at 0 so the
never@1034 1334 // length of the array has to be the number of components + 1.
never@1034 1335 _uniq_idx_length = _components.count() + 1;
twisti@5221 1336 uniq_idx = (uint*) malloc(sizeof(uint) * _uniq_idx_length);
twisti@5221 1337 for (i = 0; i < _uniq_idx_length; i++) {
duke@435 1338 uniq_idx[i] = i;
duke@435 1339 }
duke@435 1340 }
duke@435 1341 // Do it only if there is a match rule and no expand rule. With an
duke@435 1342 // expand rule it is done by creating new mach node in Expand()
duke@435 1343 // method.
twisti@5221 1344 if (nopnds > 0 && _matrule != NULL && _exprule == NULL) {
duke@435 1345 const char *name;
duke@435 1346 uint count;
duke@435 1347 bool has_dupl_use = false;
duke@435 1348
duke@435 1349 _parameters.reset();
twisti@5221 1350 while ((name = _parameters.iter()) != NULL) {
duke@435 1351 count = 0;
twisti@5221 1352 uint position = 0;
twisti@5221 1353 uint uniq_position = 0;
duke@435 1354 _components.reset();
duke@435 1355 Component *comp = NULL;
twisti@5221 1356 if (sets_result()) {
duke@435 1357 comp = _components.iter();
duke@435 1358 position++;
duke@435 1359 }
duke@435 1360 // The next code is copied from the method operand_position().
duke@435 1361 for (; (comp = _components.iter()) != NULL; ++position) {
duke@435 1362 // When the first component is not a DEF,
duke@435 1363 // leave space for the result operand!
twisti@5221 1364 if (position==0 && (!comp->isa(Component::DEF))) {
duke@435 1365 ++position;
duke@435 1366 }
twisti@5221 1367 if (strcmp(name, comp->_name) == 0) {
twisti@5221 1368 if (++count > 1) {
never@1034 1369 assert(position < _uniq_idx_length, "out of bounds");
duke@435 1370 uniq_idx[position] = uniq_position;
duke@435 1371 has_dupl_use = true;
duke@435 1372 } else {
duke@435 1373 uniq_position = position;
duke@435 1374 }
duke@435 1375 }
twisti@5221 1376 if (comp->isa(Component::DEF) && comp->isa(Component::USE)) {
duke@435 1377 ++position;
twisti@5221 1378 if (position != 1)
duke@435 1379 --position; // only use two slots for the 1st USE_DEF
duke@435 1380 }
duke@435 1381 }
duke@435 1382 }
twisti@5221 1383 if (has_dupl_use) {
twisti@5221 1384 for (i = 1; i < nopnds; i++) {
twisti@5221 1385 if (i != uniq_idx[i]) {
duke@435 1386 break;
twisti@5221 1387 }
twisti@5221 1388 }
twisti@5221 1389 uint j = i;
twisti@5221 1390 for (; i < nopnds; i++) {
twisti@5221 1391 if (i == uniq_idx[i]) {
duke@435 1392 uniq_idx[i] = j++;
twisti@5221 1393 }
twisti@5221 1394 }
duke@435 1395 num_uniq = j;
duke@435 1396 }
duke@435 1397 }
duke@435 1398 _uniq_idx = uniq_idx;
duke@435 1399 _num_uniq = num_uniq;
duke@435 1400 }
duke@435 1401
twisti@1040 1402 // Generate index values needed for determining the operand position
duke@435 1403 void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
duke@435 1404 uint idx = 0; // position of operand in match rule
duke@435 1405 int cur_num_opnds = num_opnds();
duke@435 1406
duke@435 1407 // Compute the index into vector of operand pointers:
duke@435 1408 // idx0=0 is used to indicate that info comes from this same node, not from input edge.
duke@435 1409 // idx1 starts at oper_input_base()
duke@435 1410 if ( cur_num_opnds >= 1 ) {
kvn@4161 1411 fprintf(fp," // Start at oper_input_base() and count operands\n");
kvn@4161 1412 fprintf(fp," unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
kvn@4161 1413 fprintf(fp," unsigned %sidx1 = %d;", prefix, oper_input_base(globals));
kvn@4161 1414 fprintf(fp," \t// %s\n", unique_opnd_ident(1));
duke@435 1415
duke@435 1416 // Generate starting points for other unique operands if they exist
duke@435 1417 for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
duke@435 1418 if( *receiver == 0 ) {
kvn@4161 1419 fprintf(fp," unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();",
duke@435 1420 prefix, idx, prefix, idx-1, idx-1 );
duke@435 1421 } else {
kvn@4161 1422 fprintf(fp," unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();",
duke@435 1423 prefix, idx, prefix, idx-1, receiver, idx-1 );
duke@435 1424 }
kvn@4161 1425 fprintf(fp," \t// %s\n", unique_opnd_ident(idx));
duke@435 1426 }
duke@435 1427 }
duke@435 1428 if( *receiver != 0 ) {
duke@435 1429 // This value is used by generate_peepreplace when copying a node.
duke@435 1430 // Don't emit it in other cases since it can hide bugs with the
duke@435 1431 // use invalid idx's.
kvn@4161 1432 fprintf(fp," unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
duke@435 1433 }
duke@435 1434
duke@435 1435 }
duke@435 1436
duke@435 1437 // ---------------------------
duke@435 1438 bool InstructForm::verify() {
duke@435 1439 // !!!!! !!!!!
duke@435 1440 // Check that a "label" operand occurs last in the operand list, if present
duke@435 1441 return true;
duke@435 1442 }
duke@435 1443
duke@435 1444 void InstructForm::dump() {
duke@435 1445 output(stderr);
duke@435 1446 }
duke@435 1447
duke@435 1448 void InstructForm::output(FILE *fp) {
duke@435 1449 fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
duke@435 1450 if (_matrule) _matrule->output(fp);
duke@435 1451 if (_insencode) _insencode->output(fp);
twisti@2350 1452 if (_constant) _constant->output(fp);
duke@435 1453 if (_opcode) _opcode->output(fp);
duke@435 1454 if (_attribs) _attribs->output(fp);
duke@435 1455 if (_predicate) _predicate->output(fp);
duke@435 1456 if (_effects.Size()) {
duke@435 1457 fprintf(fp,"Effects\n");
duke@435 1458 _effects.dump();
duke@435 1459 }
duke@435 1460 if (_exprule) _exprule->output(fp);
duke@435 1461 if (_rewrule) _rewrule->output(fp);
duke@435 1462 if (_format) _format->output(fp);
duke@435 1463 if (_peephole) _peephole->output(fp);
duke@435 1464 }
duke@435 1465
duke@435 1466 void MachNodeForm::dump() {
duke@435 1467 output(stderr);
duke@435 1468 }
duke@435 1469
duke@435 1470 void MachNodeForm::output(FILE *fp) {
duke@435 1471 fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
duke@435 1472 }
duke@435 1473
duke@435 1474 //------------------------------build_predicate--------------------------------
duke@435 1475 // Build instruction predicates. If the user uses the same operand name
duke@435 1476 // twice, we need to check that the operands are pointer-eequivalent in
duke@435 1477 // the DFA during the labeling process.
duke@435 1478 Predicate *InstructForm::build_predicate() {
duke@435 1479 char buf[1024], *s=buf;
duke@435 1480 Dict names(cmpstr,hashstr,Form::arena); // Map Names to counts
duke@435 1481
duke@435 1482 MatchNode *mnode =
duke@435 1483 strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
duke@435 1484 mnode->count_instr_names(names);
duke@435 1485
duke@435 1486 uint first = 1;
duke@435 1487 // Start with the predicate supplied in the .ad file.
duke@435 1488 if( _predicate ) {
duke@435 1489 if( first ) first=0;
duke@435 1490 strcpy(s,"("); s += strlen(s);
duke@435 1491 strcpy(s,_predicate->_pred);
duke@435 1492 s += strlen(s);
duke@435 1493 strcpy(s,")"); s += strlen(s);
duke@435 1494 }
duke@435 1495 for( DictI i(&names); i.test(); ++i ) {
duke@435 1496 uintptr_t cnt = (uintptr_t)i._value;
duke@435 1497 if( cnt > 1 ) { // Need a predicate at all?
duke@435 1498 assert( cnt == 2, "Unimplemented" );
duke@435 1499 // Handle many pairs
duke@435 1500 if( first ) first=0;
duke@435 1501 else { // All tests must pass, so use '&&'
duke@435 1502 strcpy(s," && ");
duke@435 1503 s += strlen(s);
duke@435 1504 }
duke@435 1505 // Add predicate to working buffer
duke@435 1506 sprintf(s,"/*%s*/(",(char*)i._key);
duke@435 1507 s += strlen(s);
duke@435 1508 mnode->build_instr_pred(s,(char*)i._key,0);
duke@435 1509 s += strlen(s);
duke@435 1510 strcpy(s," == "); s += strlen(s);
duke@435 1511 mnode->build_instr_pred(s,(char*)i._key,1);
duke@435 1512 s += strlen(s);
duke@435 1513 strcpy(s,")"); s += strlen(s);
duke@435 1514 }
duke@435 1515 }
duke@435 1516 if( s == buf ) s = NULL;
duke@435 1517 else {
duke@435 1518 assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
duke@435 1519 s = strdup(buf);
duke@435 1520 }
duke@435 1521 return new Predicate(s);
duke@435 1522 }
duke@435 1523
duke@435 1524 //------------------------------EncodeForm-------------------------------------
duke@435 1525 // Constructor
duke@435 1526 EncodeForm::EncodeForm()
duke@435 1527 : _encClass(cmpstr,hashstr, Form::arena) {
duke@435 1528 }
duke@435 1529 EncodeForm::~EncodeForm() {
duke@435 1530 }
duke@435 1531
duke@435 1532 // record a new register class
duke@435 1533 EncClass *EncodeForm::add_EncClass(const char *className) {
duke@435 1534 EncClass *encClass = new EncClass(className);
duke@435 1535 _eclasses.addName(className);
duke@435 1536 _encClass.Insert(className,encClass);
duke@435 1537 return encClass;
duke@435 1538 }
duke@435 1539
duke@435 1540 // Lookup the function body for an encoding class
duke@435 1541 EncClass *EncodeForm::encClass(const char *className) {
duke@435 1542 assert( className != NULL, "Must provide a defined encoding name");
duke@435 1543
duke@435 1544 EncClass *encClass = (EncClass*)_encClass[className];
duke@435 1545 return encClass;
duke@435 1546 }
duke@435 1547
duke@435 1548 // Lookup the function body for an encoding class
duke@435 1549 const char *EncodeForm::encClassBody(const char *className) {
duke@435 1550 if( className == NULL ) return NULL;
duke@435 1551
duke@435 1552 EncClass *encClass = (EncClass*)_encClass[className];
duke@435 1553 assert( encClass != NULL, "Encode Class is missing.");
duke@435 1554 encClass->_code.reset();
duke@435 1555 const char *code = (const char*)encClass->_code.iter();
duke@435 1556 assert( code != NULL, "Found an empty encode class body.");
duke@435 1557
duke@435 1558 return code;
duke@435 1559 }
duke@435 1560
duke@435 1561 // Lookup the function body for an encoding class
duke@435 1562 const char *EncodeForm::encClassPrototype(const char *className) {
duke@435 1563 assert( className != NULL, "Encode class name must be non NULL.");
duke@435 1564
duke@435 1565 return className;
duke@435 1566 }
duke@435 1567
duke@435 1568 void EncodeForm::dump() { // Debug printer
duke@435 1569 output(stderr);
duke@435 1570 }
duke@435 1571
duke@435 1572 void EncodeForm::output(FILE *fp) { // Write info to output files
duke@435 1573 const char *name;
duke@435 1574 fprintf(fp,"\n");
duke@435 1575 fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
duke@435 1576 for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
duke@435 1577 ((EncClass*)_encClass[name])->output(fp);
duke@435 1578 }
duke@435 1579 fprintf(fp,"-------------------- end EncodeForm --------------------\n");
duke@435 1580 }
duke@435 1581 //------------------------------EncClass---------------------------------------
duke@435 1582 EncClass::EncClass(const char *name)
duke@435 1583 : _localNames(cmpstr,hashstr, Form::arena), _name(name) {
duke@435 1584 }
duke@435 1585 EncClass::~EncClass() {
duke@435 1586 }
duke@435 1587
duke@435 1588 // Add a parameter <type,name> pair
duke@435 1589 void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
duke@435 1590 _parameter_type.addName( parameter_type );
duke@435 1591 _parameter_name.addName( parameter_name );
duke@435 1592 }
duke@435 1593
duke@435 1594 // Verify operand types in parameter list
duke@435 1595 bool EncClass::check_parameter_types(FormDict &globals) {
duke@435 1596 // !!!!!
duke@435 1597 return false;
duke@435 1598 }
duke@435 1599
duke@435 1600 // Add the decomposed "code" sections of an encoding's code-block
duke@435 1601 void EncClass::add_code(const char *code) {
duke@435 1602 _code.addName(code);
duke@435 1603 }
duke@435 1604
duke@435 1605 // Add the decomposed "replacement variables" of an encoding's code-block
duke@435 1606 void EncClass::add_rep_var(char *replacement_var) {
duke@435 1607 _code.addName(NameList::_signal);
duke@435 1608 _rep_vars.addName(replacement_var);
duke@435 1609 }
duke@435 1610
duke@435 1611 // Lookup the function body for an encoding class
duke@435 1612 int EncClass::rep_var_index(const char *rep_var) {
duke@435 1613 uint position = 0;
duke@435 1614 const char *name = NULL;
duke@435 1615
duke@435 1616 _parameter_name.reset();
duke@435 1617 while ( (name = _parameter_name.iter()) != NULL ) {
duke@435 1618 if ( strcmp(rep_var,name) == 0 ) return position;
duke@435 1619 ++position;
duke@435 1620 }
duke@435 1621
duke@435 1622 return -1;
duke@435 1623 }
duke@435 1624
duke@435 1625 // Check after parsing
duke@435 1626 bool EncClass::verify() {
duke@435 1627 // 1!!!!
duke@435 1628 // Check that each replacement variable, '$name' in architecture description
duke@435 1629 // is actually a local variable for this encode class, or a reserved name
duke@435 1630 // "primary, secondary, tertiary"
duke@435 1631 return true;
duke@435 1632 }
duke@435 1633
duke@435 1634 void EncClass::dump() {
duke@435 1635 output(stderr);
duke@435 1636 }
duke@435 1637
duke@435 1638 // Write info to output files
duke@435 1639 void EncClass::output(FILE *fp) {
duke@435 1640 fprintf(fp,"EncClass: %s", (_name ? _name : ""));
duke@435 1641
duke@435 1642 // Output the parameter list
duke@435 1643 _parameter_type.reset();
duke@435 1644 _parameter_name.reset();
duke@435 1645 const char *type = _parameter_type.iter();
duke@435 1646 const char *name = _parameter_name.iter();
duke@435 1647 fprintf(fp, " ( ");
duke@435 1648 for ( ; (type != NULL) && (name != NULL);
duke@435 1649 (type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
duke@435 1650 fprintf(fp, " %s %s,", type, name);
duke@435 1651 }
duke@435 1652 fprintf(fp, " ) ");
duke@435 1653
duke@435 1654 // Output the code block
duke@435 1655 _code.reset();
duke@435 1656 _rep_vars.reset();
duke@435 1657 const char *code;
duke@435 1658 while ( (code = _code.iter()) != NULL ) {
duke@435 1659 if ( _code.is_signal(code) ) {
duke@435 1660 // A replacement variable
duke@435 1661 const char *rep_var = _rep_vars.iter();
duke@435 1662 fprintf(fp,"($%s)", rep_var);
duke@435 1663 } else {
duke@435 1664 // A section of code
duke@435 1665 fprintf(fp,"%s", code);
duke@435 1666 }
duke@435 1667 }
duke@435 1668
duke@435 1669 }
duke@435 1670
duke@435 1671 //------------------------------Opcode-----------------------------------------
duke@435 1672 Opcode::Opcode(char *primary, char *secondary, char *tertiary)
duke@435 1673 : _primary(primary), _secondary(secondary), _tertiary(tertiary) {
duke@435 1674 }
duke@435 1675
duke@435 1676 Opcode::~Opcode() {
duke@435 1677 }
duke@435 1678
duke@435 1679 Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
duke@435 1680 if( strcmp(param,"primary") == 0 ) {
duke@435 1681 return Opcode::PRIMARY;
duke@435 1682 }
duke@435 1683 else if( strcmp(param,"secondary") == 0 ) {
duke@435 1684 return Opcode::SECONDARY;
duke@435 1685 }
duke@435 1686 else if( strcmp(param,"tertiary") == 0 ) {
duke@435 1687 return Opcode::TERTIARY;
duke@435 1688 }
duke@435 1689 return Opcode::NOT_AN_OPCODE;
duke@435 1690 }
duke@435 1691
never@850 1692 bool Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
duke@435 1693 // Default values previously provided by MachNode::primary()...
never@850 1694 const char *description = NULL;
never@850 1695 const char *value = NULL;
duke@435 1696 // Check if user provided any opcode definitions
duke@435 1697 if( this != NULL ) {
duke@435 1698 // Update 'value' if user provided a definition in the instruction
duke@435 1699 switch (desired_opcode) {
duke@435 1700 case PRIMARY:
duke@435 1701 description = "primary()";
duke@435 1702 if( _primary != NULL) { value = _primary; }
duke@435 1703 break;
duke@435 1704 case SECONDARY:
duke@435 1705 description = "secondary()";
duke@435 1706 if( _secondary != NULL ) { value = _secondary; }
duke@435 1707 break;
duke@435 1708 case TERTIARY:
duke@435 1709 description = "tertiary()";
duke@435 1710 if( _tertiary != NULL ) { value = _tertiary; }
duke@435 1711 break;
duke@435 1712 default:
duke@435 1713 assert( false, "ShouldNotReachHere();");
duke@435 1714 break;
duke@435 1715 }
duke@435 1716 }
never@850 1717 if (value != NULL) {
never@850 1718 fprintf(fp, "(%s /*%s*/)", value, description);
never@850 1719 }
never@850 1720 return value != NULL;
duke@435 1721 }
duke@435 1722
duke@435 1723 void Opcode::dump() {
duke@435 1724 output(stderr);
duke@435 1725 }
duke@435 1726
duke@435 1727 // Write info to output files
duke@435 1728 void Opcode::output(FILE *fp) {
duke@435 1729 if (_primary != NULL) fprintf(fp,"Primary opcode: %s\n", _primary);
duke@435 1730 if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
duke@435 1731 if (_tertiary != NULL) fprintf(fp,"Tertiary opcode: %s\n", _tertiary);
duke@435 1732 }
duke@435 1733
duke@435 1734 //------------------------------InsEncode--------------------------------------
duke@435 1735 InsEncode::InsEncode() {
duke@435 1736 }
duke@435 1737 InsEncode::~InsEncode() {
duke@435 1738 }
duke@435 1739
duke@435 1740 // Add "encode class name" and its parameters
duke@435 1741 NameAndList *InsEncode::add_encode(char *encoding) {
duke@435 1742 assert( encoding != NULL, "Must provide name for encoding");
duke@435 1743
duke@435 1744 // add_parameter(NameList::_signal);
duke@435 1745 NameAndList *encode = new NameAndList(encoding);
duke@435 1746 _encoding.addName((char*)encode);
duke@435 1747
duke@435 1748 return encode;
duke@435 1749 }
duke@435 1750
duke@435 1751 // Access the list of encodings
duke@435 1752 void InsEncode::reset() {
duke@435 1753 _encoding.reset();
duke@435 1754 // _parameter.reset();
duke@435 1755 }
duke@435 1756 const char* InsEncode::encode_class_iter() {
duke@435 1757 NameAndList *encode_class = (NameAndList*)_encoding.iter();
duke@435 1758 return ( encode_class != NULL ? encode_class->name() : NULL );
duke@435 1759 }
duke@435 1760 // Obtain parameter name from zero based index
duke@435 1761 const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
duke@435 1762 NameAndList *params = (NameAndList*)_encoding.current();
duke@435 1763 assert( params != NULL, "Internal Error");
duke@435 1764 const char *param = (*params)[param_no];
duke@435 1765
duke@435 1766 // Remove '$' if parser placed it there.
duke@435 1767 return ( param != NULL && *param == '$') ? (param+1) : param;
duke@435 1768 }
duke@435 1769
duke@435 1770 void InsEncode::dump() {
duke@435 1771 output(stderr);
duke@435 1772 }
duke@435 1773
duke@435 1774 // Write info to output files
duke@435 1775 void InsEncode::output(FILE *fp) {
duke@435 1776 NameAndList *encoding = NULL;
duke@435 1777 const char *parameter = NULL;
duke@435 1778
duke@435 1779 fprintf(fp,"InsEncode: ");
duke@435 1780 _encoding.reset();
duke@435 1781
duke@435 1782 while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
duke@435 1783 // Output the encoding being used
duke@435 1784 fprintf(fp,"%s(", encoding->name() );
duke@435 1785
duke@435 1786 // Output its parameter list, if any
duke@435 1787 bool first_param = true;
duke@435 1788 encoding->reset();
duke@435 1789 while ( (parameter = encoding->iter()) != 0 ) {
duke@435 1790 // Output the ',' between parameters
duke@435 1791 if ( ! first_param ) fprintf(fp,", ");
duke@435 1792 first_param = false;
duke@435 1793 // Output the parameter
duke@435 1794 fprintf(fp,"%s", parameter);
duke@435 1795 } // done with parameters
duke@435 1796 fprintf(fp,") ");
duke@435 1797 } // done with encodings
duke@435 1798
duke@435 1799 fprintf(fp,"\n");
duke@435 1800 }
duke@435 1801
duke@435 1802 //------------------------------Effect-----------------------------------------
duke@435 1803 static int effect_lookup(const char *name) {
duke@435 1804 if(!strcmp(name, "USE")) return Component::USE;
duke@435 1805 if(!strcmp(name, "DEF")) return Component::DEF;
duke@435 1806 if(!strcmp(name, "USE_DEF")) return Component::USE_DEF;
duke@435 1807 if(!strcmp(name, "KILL")) return Component::KILL;
duke@435 1808 if(!strcmp(name, "USE_KILL")) return Component::USE_KILL;
duke@435 1809 if(!strcmp(name, "TEMP")) return Component::TEMP;
duke@435 1810 if(!strcmp(name, "INVALID")) return Component::INVALID;
roland@3316 1811 if(!strcmp(name, "CALL")) return Component::CALL;
duke@435 1812 assert( false,"Invalid effect name specified\n");
duke@435 1813 return Component::INVALID;
duke@435 1814 }
duke@435 1815
kvn@4161 1816 const char *Component::getUsedefName() {
kvn@4161 1817 switch (_usedef) {
kvn@4161 1818 case Component::INVALID: return "INVALID"; break;
kvn@4161 1819 case Component::USE: return "USE"; break;
kvn@4161 1820 case Component::USE_DEF: return "USE_DEF"; break;
kvn@4161 1821 case Component::USE_KILL: return "USE_KILL"; break;
kvn@4161 1822 case Component::KILL: return "KILL"; break;
kvn@4161 1823 case Component::TEMP: return "TEMP"; break;
kvn@4161 1824 case Component::DEF: return "DEF"; break;
kvn@4161 1825 case Component::CALL: return "CALL"; break;
kvn@4161 1826 default: assert(false, "unknown effect");
kvn@4161 1827 }
kvn@4161 1828 return "Undefined Use/Def info";
kvn@4161 1829 }
kvn@4161 1830
duke@435 1831 Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
duke@435 1832 _ftype = Form::EFF;
duke@435 1833 }
kvn@4161 1834
duke@435 1835 Effect::~Effect() {
duke@435 1836 }
duke@435 1837
duke@435 1838 // Dynamic type check
duke@435 1839 Effect *Effect::is_effect() const {
duke@435 1840 return (Effect*)this;
duke@435 1841 }
duke@435 1842
duke@435 1843
duke@435 1844 // True if this component is equal to the parameter.
duke@435 1845 bool Effect::is(int use_def_kill_enum) const {
duke@435 1846 return (_use_def == use_def_kill_enum ? true : false);
duke@435 1847 }
duke@435 1848 // True if this component is used/def'd/kill'd as the parameter suggests.
duke@435 1849 bool Effect::isa(int use_def_kill_enum) const {
duke@435 1850 return (_use_def & use_def_kill_enum) == use_def_kill_enum;
duke@435 1851 }
duke@435 1852
duke@435 1853 void Effect::dump() {
duke@435 1854 output(stderr);
duke@435 1855 }
duke@435 1856
duke@435 1857 void Effect::output(FILE *fp) { // Write info to output files
duke@435 1858 fprintf(fp,"Effect: %s\n", (_name?_name:""));
duke@435 1859 }
duke@435 1860
duke@435 1861 //------------------------------ExpandRule-------------------------------------
duke@435 1862 ExpandRule::ExpandRule() : _expand_instrs(),
duke@435 1863 _newopconst(cmpstr, hashstr, Form::arena) {
duke@435 1864 _ftype = Form::EXP;
duke@435 1865 }
duke@435 1866
duke@435 1867 ExpandRule::~ExpandRule() { // Destructor
duke@435 1868 }
duke@435 1869
duke@435 1870 void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
duke@435 1871 _expand_instrs.addName((char*)instruction_name_and_operand_list);
duke@435 1872 }
duke@435 1873
duke@435 1874 void ExpandRule::reset_instructions() {
duke@435 1875 _expand_instrs.reset();
duke@435 1876 }
duke@435 1877
duke@435 1878 NameAndList* ExpandRule::iter_instructions() {
duke@435 1879 return (NameAndList*)_expand_instrs.iter();
duke@435 1880 }
duke@435 1881
duke@435 1882
duke@435 1883 void ExpandRule::dump() {
duke@435 1884 output(stderr);
duke@435 1885 }
duke@435 1886
duke@435 1887 void ExpandRule::output(FILE *fp) { // Write info to output files
duke@435 1888 NameAndList *expand_instr = NULL;
duke@435 1889 const char *opid = NULL;
duke@435 1890
duke@435 1891 fprintf(fp,"\nExpand Rule:\n");
duke@435 1892
duke@435 1893 // Iterate over the instructions 'node' expands into
duke@435 1894 for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
duke@435 1895 fprintf(fp,"%s(", expand_instr->name());
duke@435 1896
duke@435 1897 // iterate over the operand list
duke@435 1898 for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
duke@435 1899 fprintf(fp,"%s ", opid);
duke@435 1900 }
duke@435 1901 fprintf(fp,");\n");
duke@435 1902 }
duke@435 1903 }
duke@435 1904
duke@435 1905 //------------------------------RewriteRule------------------------------------
duke@435 1906 RewriteRule::RewriteRule(char* params, char* block)
duke@435 1907 : _tempParams(params), _tempBlock(block) { }; // Constructor
duke@435 1908 RewriteRule::~RewriteRule() { // Destructor
duke@435 1909 }
duke@435 1910
duke@435 1911 void RewriteRule::dump() {
duke@435 1912 output(stderr);
duke@435 1913 }
duke@435 1914
duke@435 1915 void RewriteRule::output(FILE *fp) { // Write info to output files
duke@435 1916 fprintf(fp,"\nRewrite Rule:\n%s\n%s\n",
duke@435 1917 (_tempParams?_tempParams:""),
duke@435 1918 (_tempBlock?_tempBlock:""));
duke@435 1919 }
duke@435 1920
duke@435 1921
duke@435 1922 //==============================MachNodes======================================
duke@435 1923 //------------------------------MachNodeForm-----------------------------------
duke@435 1924 MachNodeForm::MachNodeForm(char *id)
duke@435 1925 : _ident(id) {
duke@435 1926 }
duke@435 1927
duke@435 1928 MachNodeForm::~MachNodeForm() {
duke@435 1929 }
duke@435 1930
duke@435 1931 MachNodeForm *MachNodeForm::is_machnode() const {
duke@435 1932 return (MachNodeForm*)this;
duke@435 1933 }
duke@435 1934
duke@435 1935 //==============================Operand Classes================================
duke@435 1936 //------------------------------OpClassForm------------------------------------
duke@435 1937 OpClassForm::OpClassForm(const char* id) : _ident(id) {
duke@435 1938 _ftype = Form::OPCLASS;
duke@435 1939 }
duke@435 1940
duke@435 1941 OpClassForm::~OpClassForm() {
duke@435 1942 }
duke@435 1943
duke@435 1944 bool OpClassForm::ideal_only() const { return 0; }
duke@435 1945
duke@435 1946 OpClassForm *OpClassForm::is_opclass() const {
duke@435 1947 return (OpClassForm*)this;
duke@435 1948 }
duke@435 1949
duke@435 1950 Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
duke@435 1951 if( _oplst.count() == 0 ) return Form::no_interface;
duke@435 1952
duke@435 1953 // Check that my operands have the same interface type
duke@435 1954 Form::InterfaceType interface;
duke@435 1955 bool first = true;
duke@435 1956 NameList &op_list = (NameList &)_oplst;
duke@435 1957 op_list.reset();
duke@435 1958 const char *op_name;
duke@435 1959 while( (op_name = op_list.iter()) != NULL ) {
duke@435 1960 const Form *form = globals[op_name];
duke@435 1961 OperandForm *operand = form->is_operand();
duke@435 1962 assert( operand, "Entry in operand class that is not an operand");
duke@435 1963 if( first ) {
duke@435 1964 first = false;
duke@435 1965 interface = operand->interface_type(globals);
duke@435 1966 } else {
duke@435 1967 interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
duke@435 1968 }
duke@435 1969 }
duke@435 1970 return interface;
duke@435 1971 }
duke@435 1972
duke@435 1973 bool OpClassForm::stack_slots_only(FormDict &globals) const {
duke@435 1974 if( _oplst.count() == 0 ) return false; // how?
duke@435 1975
duke@435 1976 NameList &op_list = (NameList &)_oplst;
duke@435 1977 op_list.reset();
duke@435 1978 const char *op_name;
duke@435 1979 while( (op_name = op_list.iter()) != NULL ) {
duke@435 1980 const Form *form = globals[op_name];
duke@435 1981 OperandForm *operand = form->is_operand();
duke@435 1982 assert( operand, "Entry in operand class that is not an operand");
duke@435 1983 if( !operand->stack_slots_only(globals) ) return false;
duke@435 1984 }
duke@435 1985 return true;
duke@435 1986 }
duke@435 1987
duke@435 1988
duke@435 1989 void OpClassForm::dump() {
duke@435 1990 output(stderr);
duke@435 1991 }
duke@435 1992
duke@435 1993 void OpClassForm::output(FILE *fp) {
duke@435 1994 const char *name;
duke@435 1995 fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
duke@435 1996 fprintf(fp,"\nCount = %d\n", _oplst.count());
duke@435 1997 for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
duke@435 1998 fprintf(fp,"%s, ",name);
duke@435 1999 }
duke@435 2000 fprintf(fp,"\n");
duke@435 2001 }
duke@435 2002
duke@435 2003
duke@435 2004 //==============================Operands=======================================
duke@435 2005 //------------------------------OperandForm------------------------------------
duke@435 2006 OperandForm::OperandForm(const char* id)
duke@435 2007 : OpClassForm(id), _ideal_only(false),
duke@435 2008 _localNames(cmpstr, hashstr, Form::arena) {
duke@435 2009 _ftype = Form::OPER;
duke@435 2010
duke@435 2011 _matrule = NULL;
duke@435 2012 _interface = NULL;
duke@435 2013 _attribs = NULL;
duke@435 2014 _predicate = NULL;
duke@435 2015 _constraint= NULL;
duke@435 2016 _construct = NULL;
duke@435 2017 _format = NULL;
duke@435 2018 }
duke@435 2019 OperandForm::OperandForm(const char* id, bool ideal_only)
duke@435 2020 : OpClassForm(id), _ideal_only(ideal_only),
duke@435 2021 _localNames(cmpstr, hashstr, Form::arena) {
duke@435 2022 _ftype = Form::OPER;
duke@435 2023
duke@435 2024 _matrule = NULL;
duke@435 2025 _interface = NULL;
duke@435 2026 _attribs = NULL;
duke@435 2027 _predicate = NULL;
duke@435 2028 _constraint= NULL;
duke@435 2029 _construct = NULL;
duke@435 2030 _format = NULL;
duke@435 2031 }
duke@435 2032 OperandForm::~OperandForm() {
duke@435 2033 }
duke@435 2034
duke@435 2035
duke@435 2036 OperandForm *OperandForm::is_operand() const {
duke@435 2037 return (OperandForm*)this;
duke@435 2038 }
duke@435 2039
duke@435 2040 bool OperandForm::ideal_only() const {
duke@435 2041 return _ideal_only;
duke@435 2042 }
duke@435 2043
duke@435 2044 Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
duke@435 2045 if( _interface == NULL ) return Form::no_interface;
duke@435 2046
duke@435 2047 return _interface->interface_type(globals);
duke@435 2048 }
duke@435 2049
duke@435 2050
duke@435 2051 bool OperandForm::stack_slots_only(FormDict &globals) const {
duke@435 2052 if( _constraint == NULL ) return false;
duke@435 2053 return _constraint->stack_slots_only();
duke@435 2054 }
duke@435 2055
duke@435 2056
duke@435 2057 // Access op_cost attribute or return NULL.
duke@435 2058 const char* OperandForm::cost() {
duke@435 2059 for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
duke@435 2060 if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
duke@435 2061 return cur->_val;
duke@435 2062 }
duke@435 2063 }
duke@435 2064 return NULL;
duke@435 2065 }
duke@435 2066
duke@435 2067 // Return the number of leaves below this complex operand
duke@435 2068 uint OperandForm::num_leaves() const {
duke@435 2069 if ( ! _matrule) return 0;
duke@435 2070
duke@435 2071 int num_leaves = _matrule->_numleaves;
duke@435 2072 return num_leaves;
duke@435 2073 }
duke@435 2074
duke@435 2075 // Return the number of constants contained within this complex operand
duke@435 2076 uint OperandForm::num_consts(FormDict &globals) const {
duke@435 2077 if ( ! _matrule) return 0;
duke@435 2078
duke@435 2079 // This is a recursive invocation on all operands in the matchrule
duke@435 2080 return _matrule->num_consts(globals);
duke@435 2081 }
duke@435 2082
duke@435 2083 // Return the number of constants in match rule with specified type
duke@435 2084 uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
duke@435 2085 if ( ! _matrule) return 0;
duke@435 2086
duke@435 2087 // This is a recursive invocation on all operands in the matchrule
duke@435 2088 return _matrule->num_consts(globals, type);
duke@435 2089 }
duke@435 2090
duke@435 2091 // Return the number of pointer constants contained within this complex operand
duke@435 2092 uint OperandForm::num_const_ptrs(FormDict &globals) const {
duke@435 2093 if ( ! _matrule) return 0;
duke@435 2094
duke@435 2095 // This is a recursive invocation on all operands in the matchrule
duke@435 2096 return _matrule->num_const_ptrs(globals);
duke@435 2097 }
duke@435 2098
duke@435 2099 uint OperandForm::num_edges(FormDict &globals) const {
duke@435 2100 uint edges = 0;
duke@435 2101 uint leaves = num_leaves();
duke@435 2102 uint consts = num_consts(globals);
duke@435 2103
duke@435 2104 // If we are matching a constant directly, there are no leaves.
duke@435 2105 edges = ( leaves > consts ) ? leaves - consts : 0;
duke@435 2106
duke@435 2107 // !!!!!
duke@435 2108 // Special case operands that do not have a corresponding ideal node.
duke@435 2109 if( (edges == 0) && (consts == 0) ) {
duke@435 2110 if( constrained_reg_class() != NULL ) {
duke@435 2111 edges = 1;
duke@435 2112 } else {
duke@435 2113 if( _matrule
duke@435 2114 && (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
duke@435 2115 const Form *form = globals[_matrule->_opType];
duke@435 2116 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 2117 if( oper ) {
duke@435 2118 return oper->num_edges(globals);
duke@435 2119 }
duke@435 2120 }
duke@435 2121 }
duke@435 2122 }
duke@435 2123
duke@435 2124 return edges;
duke@435 2125 }
duke@435 2126
duke@435 2127
duke@435 2128 // Check if this operand is usable for cisc-spilling
duke@435 2129 bool OperandForm::is_cisc_reg(FormDict &globals) const {
duke@435 2130 const char *ideal = ideal_type(globals);
duke@435 2131 bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
duke@435 2132 return is_cisc_reg;
duke@435 2133 }
duke@435 2134
duke@435 2135 bool OpClassForm::is_cisc_mem(FormDict &globals) const {
duke@435 2136 Form::InterfaceType my_interface = interface_type(globals);
duke@435 2137 return (my_interface == memory_interface);
duke@435 2138 }
duke@435 2139
duke@435 2140
duke@435 2141 // node matches ideal 'Bool'
duke@435 2142 bool OperandForm::is_ideal_bool() const {
duke@435 2143 if( _matrule == NULL ) return false;
duke@435 2144
duke@435 2145 return _matrule->is_ideal_bool();
duke@435 2146 }
duke@435 2147
duke@435 2148 // Require user's name for an sRegX to be stackSlotX
duke@435 2149 Form::DataType OperandForm::is_user_name_for_sReg() const {
duke@435 2150 DataType data_type = none;
duke@435 2151 if( _ident != NULL ) {
duke@435 2152 if( strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
duke@435 2153 else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
duke@435 2154 else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
duke@435 2155 else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
duke@435 2156 else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
duke@435 2157 }
duke@435 2158 assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");
duke@435 2159
duke@435 2160 return data_type;
duke@435 2161 }
duke@435 2162
duke@435 2163
duke@435 2164 // Return ideal type, if there is a single ideal type for this operand
duke@435 2165 const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
duke@435 2166 const char *type = NULL;
duke@435 2167 if (ideal_only()) type = _ident;
duke@435 2168 else if( _matrule == NULL ) {
duke@435 2169 // Check for condition code register
duke@435 2170 const char *rc_name = constrained_reg_class();
duke@435 2171 // !!!!!
duke@435 2172 if (rc_name == NULL) return NULL;
duke@435 2173 // !!!!! !!!!!
duke@435 2174 // Check constraints on result's register class
duke@435 2175 if( registers ) {
duke@435 2176 RegClass *reg_class = registers->getRegClass(rc_name);
duke@435 2177 assert( reg_class != NULL, "Register class is not defined");
duke@435 2178
duke@435 2179 // Check for ideal type of entries in register class, all are the same type
duke@435 2180 reg_class->reset();
duke@435 2181 RegDef *reg_def = reg_class->RegDef_iter();
duke@435 2182 assert( reg_def != NULL, "No entries in register class");
duke@435 2183 assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
duke@435 2184 // Return substring that names the register's ideal type
duke@435 2185 type = reg_def->_idealtype + 3;
duke@435 2186 assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
duke@435 2187 assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
duke@435 2188 assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
duke@435 2189 }
duke@435 2190 }
duke@435 2191 else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
duke@435 2192 // This operand matches a single type, at the top level.
duke@435 2193 // Check for ideal type
duke@435 2194 type = _matrule->_opType;
duke@435 2195 if( strcmp(type,"Bool") == 0 )
duke@435 2196 return "Bool";
duke@435 2197 // transitive lookup
duke@435 2198 const Form *frm = globals[type];
duke@435 2199 OperandForm *op = frm->is_operand();
duke@435 2200 type = op->ideal_type(globals, registers);
duke@435 2201 }
duke@435 2202 return type;
duke@435 2203 }
duke@435 2204
duke@435 2205
duke@435 2206 // If there is a single ideal type for this interface field, return it.
duke@435 2207 const char *OperandForm::interface_ideal_type(FormDict &globals,
duke@435 2208 const char *field) const {
duke@435 2209 const char *ideal_type = NULL;
duke@435 2210 const char *value = NULL;
duke@435 2211
duke@435 2212 // Check if "field" is valid for this operand's interface
duke@435 2213 if ( ! is_interface_field(field, value) ) return ideal_type;
duke@435 2214
duke@435 2215 // !!!!! !!!!! !!!!!
duke@435 2216 // If a valid field has a constant value, identify "ConI" or "ConP" or ...
duke@435 2217
duke@435 2218 // Else, lookup type of field's replacement variable
duke@435 2219
duke@435 2220 return ideal_type;
duke@435 2221 }
duke@435 2222
duke@435 2223
duke@435 2224 RegClass* OperandForm::get_RegClass() const {
duke@435 2225 if (_interface && !_interface->is_RegInterface()) return NULL;
duke@435 2226 return globalAD->get_registers()->getRegClass(constrained_reg_class());
duke@435 2227 }
duke@435 2228
duke@435 2229
duke@435 2230 bool OperandForm::is_bound_register() const {
twisti@5221 2231 RegClass* reg_class = get_RegClass();
twisti@5221 2232 if (reg_class == NULL) {
twisti@5221 2233 return false;
twisti@5221 2234 }
twisti@5221 2235
twisti@5221 2236 const char* name = ideal_type(globalAD->globalNames());
twisti@5221 2237 if (name == NULL) {
twisti@5221 2238 return false;
twisti@5221 2239 }
twisti@5221 2240
twisti@5221 2241 uint size = 0;
twisti@5221 2242 if (strcmp(name, "RegFlags") == 0) size = 1;
twisti@5221 2243 if (strcmp(name, "RegI") == 0) size = 1;
twisti@5221 2244 if (strcmp(name, "RegF") == 0) size = 1;
twisti@5221 2245 if (strcmp(name, "RegD") == 0) size = 2;
twisti@5221 2246 if (strcmp(name, "RegL") == 0) size = 2;
twisti@5221 2247 if (strcmp(name, "RegN") == 0) size = 1;
twisti@5221 2248 if (strcmp(name, "RegP") == 0) size = globalAD->get_preproc_def("_LP64") ? 2 : 1;
twisti@5221 2249 if (size == 0) {
twisti@5221 2250 return false;
twisti@5221 2251 }
duke@435 2252 return size == reg_class->size();
duke@435 2253 }
duke@435 2254
duke@435 2255
duke@435 2256 // Check if this is a valid field for this operand,
duke@435 2257 // Return 'true' if valid, and set the value to the string the user provided.
duke@435 2258 bool OperandForm::is_interface_field(const char *field,
duke@435 2259 const char * &value) const {
duke@435 2260 return false;
duke@435 2261 }
duke@435 2262
duke@435 2263
duke@435 2264 // Return register class name if a constraint specifies the register class.
duke@435 2265 const char *OperandForm::constrained_reg_class() const {
duke@435 2266 const char *reg_class = NULL;
duke@435 2267 if ( _constraint ) {
duke@435 2268 // !!!!!
duke@435 2269 Constraint *constraint = _constraint;
duke@435 2270 if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
duke@435 2271 reg_class = _constraint->_arg;
duke@435 2272 }
duke@435 2273 }
duke@435 2274
duke@435 2275 return reg_class;
duke@435 2276 }
duke@435 2277
duke@435 2278
duke@435 2279 // Return the register class associated with 'leaf'.
duke@435 2280 const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
duke@435 2281 const char *reg_class = NULL; // "RegMask::Empty";
duke@435 2282
duke@435 2283 if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
duke@435 2284 reg_class = constrained_reg_class();
duke@435 2285 return reg_class;
duke@435 2286 }
duke@435 2287 const char *result = NULL;
duke@435 2288 const char *name = NULL;
duke@435 2289 const char *type = NULL;
duke@435 2290 // iterate through all base operands
duke@435 2291 // until we reach the register that corresponds to "leaf"
duke@435 2292 // This function is not looking for an ideal type. It needs the first
duke@435 2293 // level user type associated with the leaf.
duke@435 2294 for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
duke@435 2295 const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
duke@435 2296 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 2297 if( oper ) {
duke@435 2298 reg_class = oper->constrained_reg_class();
duke@435 2299 if( reg_class ) {
duke@435 2300 reg_class = reg_class;
duke@435 2301 } else {
duke@435 2302 // ShouldNotReachHere();
duke@435 2303 }
duke@435 2304 } else {
duke@435 2305 // ShouldNotReachHere();
duke@435 2306 }
duke@435 2307
duke@435 2308 // Increment our target leaf position if current leaf is not a candidate.
duke@435 2309 if( reg_class == NULL) ++leaf;
duke@435 2310 // Exit the loop with the value of reg_class when at the correct index
duke@435 2311 if( idx == leaf ) break;
duke@435 2312 // May iterate through all base operands if reg_class for 'leaf' is NULL
duke@435 2313 }
duke@435 2314 return reg_class;
duke@435 2315 }
duke@435 2316
duke@435 2317
duke@435 2318 // Recursive call to construct list of top-level operands.
duke@435 2319 // Implementation does not modify state of internal structures
duke@435 2320 void OperandForm::build_components() {
duke@435 2321 if (_matrule) _matrule->append_components(_localNames, _components);
duke@435 2322
duke@435 2323 // Add parameters that "do not appear in match rule".
duke@435 2324 const char *name;
duke@435 2325 for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
duke@435 2326 OperandForm *opForm = (OperandForm*)_localNames[name];
duke@435 2327
duke@435 2328 if ( _components.operand_position(name) == -1 ) {
duke@435 2329 _components.insert(name, opForm->_ident, Component::INVALID, false);
duke@435 2330 }
duke@435 2331 }
duke@435 2332
duke@435 2333 return;
duke@435 2334 }
duke@435 2335
duke@435 2336 int OperandForm::operand_position(const char *name, int usedef) {
kvn@4161 2337 return _components.operand_position(name, usedef, this);
duke@435 2338 }
duke@435 2339
duke@435 2340
duke@435 2341 // Return zero-based position in component list, only counting constants;
duke@435 2342 // Return -1 if not in list.
duke@435 2343 int OperandForm::constant_position(FormDict &globals, const Component *last) {
twisti@1040 2344 // Iterate through components and count constants preceding 'constant'
twisti@1038 2345 int position = 0;
duke@435 2346 Component *comp;
duke@435 2347 _components.reset();
duke@435 2348 while( (comp = _components.iter()) != NULL && (comp != last) ) {
duke@435 2349 // Special case for operands that take a single user-defined operand
duke@435 2350 // Skip the initial definition in the component list.
duke@435 2351 if( strcmp(comp->_name,this->_ident) == 0 ) continue;
duke@435 2352
duke@435 2353 const char *type = comp->_type;
duke@435 2354 // Lookup operand form for replacement variable's type
duke@435 2355 const Form *form = globals[type];
duke@435 2356 assert( form != NULL, "Component's type not found");
duke@435 2357 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 2358 if( oper ) {
duke@435 2359 if( oper->_matrule->is_base_constant(globals) != Form::none ) {
duke@435 2360 ++position;
duke@435 2361 }
duke@435 2362 }
duke@435 2363 }
duke@435 2364
duke@435 2365 // Check for being passed a component that was not in the list
duke@435 2366 if( comp != last ) position = -1;
duke@435 2367
duke@435 2368 return position;
duke@435 2369 }
duke@435 2370 // Provide position of constant by "name"
duke@435 2371 int OperandForm::constant_position(FormDict &globals, const char *name) {
duke@435 2372 const Component *comp = _components.search(name);
duke@435 2373 int idx = constant_position( globals, comp );
duke@435 2374
duke@435 2375 return idx;
duke@435 2376 }
duke@435 2377
duke@435 2378
duke@435 2379 // Return zero-based position in component list, only counting constants;
duke@435 2380 // Return -1 if not in list.
duke@435 2381 int OperandForm::register_position(FormDict &globals, const char *reg_name) {
twisti@1040 2382 // Iterate through components and count registers preceding 'last'
duke@435 2383 uint position = 0;
duke@435 2384 Component *comp;
duke@435 2385 _components.reset();
duke@435 2386 while( (comp = _components.iter()) != NULL
duke@435 2387 && (strcmp(comp->_name,reg_name) != 0) ) {
duke@435 2388 // Special case for operands that take a single user-defined operand
duke@435 2389 // Skip the initial definition in the component list.
duke@435 2390 if( strcmp(comp->_name,this->_ident) == 0 ) continue;
duke@435 2391
duke@435 2392 const char *type = comp->_type;
duke@435 2393 // Lookup operand form for component's type
duke@435 2394 const Form *form = globals[type];
duke@435 2395 assert( form != NULL, "Component's type not found");
duke@435 2396 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 2397 if( oper ) {
duke@435 2398 if( oper->_matrule->is_base_register(globals) ) {
duke@435 2399 ++position;
duke@435 2400 }
duke@435 2401 }
duke@435 2402 }
duke@435 2403
duke@435 2404 return position;
duke@435 2405 }
duke@435 2406
duke@435 2407
duke@435 2408 const char *OperandForm::reduce_result() const {
duke@435 2409 return _ident;
duke@435 2410 }
duke@435 2411 // Return the name of the operand on the right hand side of the binary match
duke@435 2412 // Return NULL if there is no right hand side
duke@435 2413 const char *OperandForm::reduce_right(FormDict &globals) const {
duke@435 2414 return ( _matrule ? _matrule->reduce_right(globals) : NULL );
duke@435 2415 }
duke@435 2416
duke@435 2417 // Similar for left
duke@435 2418 const char *OperandForm::reduce_left(FormDict &globals) const {
duke@435 2419 return ( _matrule ? _matrule->reduce_left(globals) : NULL );
duke@435 2420 }
duke@435 2421
duke@435 2422
duke@435 2423 // --------------------------- FILE *output_routines
duke@435 2424 //
duke@435 2425 // Output code for disp_is_oop, if true.
duke@435 2426 void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
duke@435 2427 // Check it is a memory interface with a non-user-constant disp field
duke@435 2428 if ( this->_interface == NULL ) return;
duke@435 2429 MemInterface *mem_interface = this->_interface->is_MemInterface();
duke@435 2430 if ( mem_interface == NULL ) return;
duke@435 2431 const char *disp = mem_interface->_disp;
duke@435 2432 if ( *disp != '$' ) return;
duke@435 2433
duke@435 2434 // Lookup replacement variable in operand's component list
duke@435 2435 const char *rep_var = disp + 1;
duke@435 2436 const Component *comp = this->_components.search(rep_var);
duke@435 2437 assert( comp != NULL, "Replacement variable not found in components");
duke@435 2438 // Lookup operand form for replacement variable's type
duke@435 2439 const char *type = comp->_type;
duke@435 2440 Form *form = (Form*)globals[type];
duke@435 2441 assert( form != NULL, "Replacement variable's type not found");
duke@435 2442 OperandForm *op = form->is_operand();
duke@435 2443 assert( op, "Memory Interface 'disp' can only emit an operand form");
duke@435 2444 // Check if this is a ConP, which may require relocation
duke@435 2445 if ( op->is_base_constant(globals) == Form::idealP ) {
duke@435 2446 // Find the constant's index: _c0, _c1, _c2, ... , _cN
duke@435 2447 uint idx = op->constant_position( globals, rep_var);
coleenp@4037 2448 fprintf(fp," virtual relocInfo::relocType disp_reloc() const {");
coleenp@4037 2449 fprintf(fp, " return _c%d->reloc();", idx);
duke@435 2450 fprintf(fp, " }\n");
duke@435 2451 }
duke@435 2452 }
duke@435 2453
duke@435 2454 // Generate code for internal and external format methods
duke@435 2455 //
duke@435 2456 // internal access to reg# node->_idx
duke@435 2457 // access to subsumed constant _c0, _c1,
duke@435 2458 void OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
duke@435 2459 Form::DataType dtype;
duke@435 2460 if (_matrule && (_matrule->is_base_register(globals) ||
duke@435 2461 strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
duke@435 2462 // !!!!! !!!!!
kvn@4161 2463 fprintf(fp," { char reg_str[128];\n");
kvn@4161 2464 fprintf(fp," ra->dump_register(node,reg_str);\n");
kvn@4161 2465 fprintf(fp," st->print(\"%cs\",reg_str);\n",'%');
kvn@4161 2466 fprintf(fp," }\n");
duke@435 2467 } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
duke@435 2468 format_constant( fp, index, dtype );
duke@435 2469 } else if (ideal_to_sReg_type(_ident) != Form::none) {
duke@435 2470 // Special format for Stack Slot Register
kvn@4161 2471 fprintf(fp," { char reg_str[128];\n");
kvn@4161 2472 fprintf(fp," ra->dump_register(node,reg_str);\n");
kvn@4161 2473 fprintf(fp," st->print(\"%cs\",reg_str);\n",'%');
kvn@4161 2474 fprintf(fp," }\n");
duke@435 2475 } else {
kvn@4161 2476 fprintf(fp," st->print(\"No format defined for %s\n\");\n", _ident);
duke@435 2477 fflush(fp);
duke@435 2478 fprintf(stderr,"No format defined for %s\n", _ident);
duke@435 2479 dump();
duke@435 2480 assert( false,"Internal error:\n output_internal_operand() attempting to output other than a Register or Constant");
duke@435 2481 }
duke@435 2482 }
duke@435 2483
duke@435 2484 // Similar to "int_format" but for cases where data is external to operand
duke@435 2485 // external access to reg# node->in(idx)->_idx,
duke@435 2486 void OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
duke@435 2487 Form::DataType dtype;
duke@435 2488 if (_matrule && (_matrule->is_base_register(globals) ||
duke@435 2489 strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
kvn@4161 2490 fprintf(fp," { char reg_str[128];\n");
kvn@4161 2491 fprintf(fp," ra->dump_register(node->in(idx");
kvn@4161 2492 if ( index != 0 ) fprintf(fp, "+%d",index);
kvn@4161 2493 fprintf(fp, "),reg_str);\n");
kvn@4161 2494 fprintf(fp," st->print(\"%cs\",reg_str);\n",'%');
kvn@4161 2495 fprintf(fp," }\n");
duke@435 2496 } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
duke@435 2497 format_constant( fp, index, dtype );
duke@435 2498 } else if (ideal_to_sReg_type(_ident) != Form::none) {
duke@435 2499 // Special format for Stack Slot Register
kvn@4161 2500 fprintf(fp," { char reg_str[128];\n");
kvn@4161 2501 fprintf(fp," ra->dump_register(node->in(idx");
duke@435 2502 if ( index != 0 ) fprintf(fp, "+%d",index);
duke@435 2503 fprintf(fp, "),reg_str);\n");
kvn@4161 2504 fprintf(fp," st->print(\"%cs\",reg_str);\n",'%');
kvn@4161 2505 fprintf(fp," }\n");
duke@435 2506 } else {
kvn@4161 2507 fprintf(fp," st->print(\"No format defined for %s\n\");\n", _ident);
duke@435 2508 assert( false,"Internal error:\n output_external_operand() attempting to output other than a Register or Constant");
duke@435 2509 }
duke@435 2510 }
duke@435 2511
duke@435 2512 void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
duke@435 2513 switch(const_type) {
kvn@4161 2514 case Form::idealI: fprintf(fp," st->print(\"#%%d\", _c%d);\n", const_index); break;
kvn@4161 2515 case Form::idealP: fprintf(fp," if (_c%d) _c%d->dump_on(st);\n", const_index, const_index); break;
roland@4159 2516 case Form::idealNKlass:
kvn@4161 2517 case Form::idealN: fprintf(fp," if (_c%d) _c%d->dump_on(st);\n", const_index, const_index); break;
kvn@4161 2518 case Form::idealL: fprintf(fp," st->print(\"#%%lld\", _c%d);\n", const_index); break;
kvn@4161 2519 case Form::idealF: fprintf(fp," st->print(\"#%%f\", _c%d);\n", const_index); break;
kvn@4161 2520 case Form::idealD: fprintf(fp," st->print(\"#%%f\", _c%d);\n", const_index); break;
duke@435 2521 default:
duke@435 2522 assert( false, "ShouldNotReachHere()");
duke@435 2523 }
duke@435 2524 }
duke@435 2525
duke@435 2526 // Return the operand form corresponding to the given index, else NULL.
duke@435 2527 OperandForm *OperandForm::constant_operand(FormDict &globals,
duke@435 2528 uint index) {
duke@435 2529 // !!!!!
duke@435 2530 // Check behavior on complex operands
duke@435 2531 uint n_consts = num_consts(globals);
duke@435 2532 if( n_consts > 0 ) {
duke@435 2533 uint i = 0;
duke@435 2534 const char *type;
duke@435 2535 Component *comp;
duke@435 2536 _components.reset();
duke@435 2537 if ((comp = _components.iter()) == NULL) {
duke@435 2538 assert(n_consts == 1, "Bad component list detected.\n");
duke@435 2539 // Current operand is THE operand
duke@435 2540 if ( index == 0 ) {
duke@435 2541 return this;
duke@435 2542 }
duke@435 2543 } // end if NULL
duke@435 2544 else {
duke@435 2545 // Skip the first component, it can not be a DEF of a constant
duke@435 2546 do {
duke@435 2547 type = comp->base_type(globals);
duke@435 2548 // Check that "type" is a 'ConI', 'ConP', ...
duke@435 2549 if ( ideal_to_const_type(type) != Form::none ) {
duke@435 2550 // When at correct component, get corresponding Operand
duke@435 2551 if ( index == 0 ) {
duke@435 2552 return globals[comp->_type]->is_operand();
duke@435 2553 }
duke@435 2554 // Decrement number of constants to go
duke@435 2555 --index;
duke@435 2556 }
duke@435 2557 } while((comp = _components.iter()) != NULL);
duke@435 2558 }
duke@435 2559 }
duke@435 2560
duke@435 2561 // Did not find a constant for this index.
duke@435 2562 return NULL;
duke@435 2563 }
duke@435 2564
duke@435 2565 // If this operand has a single ideal type, return its type
duke@435 2566 Form::DataType OperandForm::simple_type(FormDict &globals) const {
duke@435 2567 const char *type_name = ideal_type(globals);
duke@435 2568 Form::DataType type = type_name ? ideal_to_const_type( type_name )
duke@435 2569 : Form::none;
duke@435 2570 return type;
duke@435 2571 }
duke@435 2572
duke@435 2573 Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
duke@435 2574 if ( _matrule == NULL ) return Form::none;
duke@435 2575
duke@435 2576 return _matrule->is_base_constant(globals);
duke@435 2577 }
duke@435 2578
duke@435 2579 // "true" if this operand is a simple type that is swallowed
duke@435 2580 bool OperandForm::swallowed(FormDict &globals) const {
duke@435 2581 Form::DataType type = simple_type(globals);
duke@435 2582 if( type != Form::none ) {
duke@435 2583 return true;
duke@435 2584 }
duke@435 2585
duke@435 2586 return false;
duke@435 2587 }
duke@435 2588
duke@435 2589 // Output code to access the value of the index'th constant
duke@435 2590 void OperandForm::access_constant(FILE *fp, FormDict &globals,
duke@435 2591 uint const_index) {
duke@435 2592 OperandForm *oper = constant_operand(globals, const_index);
duke@435 2593 assert( oper, "Index exceeds number of constants in operand");
duke@435 2594 Form::DataType dtype = oper->is_base_constant(globals);
duke@435 2595
duke@435 2596 switch(dtype) {
duke@435 2597 case idealI: fprintf(fp,"_c%d", const_index); break;
duke@435 2598 case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
duke@435 2599 case idealL: fprintf(fp,"_c%d", const_index); break;
duke@435 2600 case idealF: fprintf(fp,"_c%d", const_index); break;
duke@435 2601 case idealD: fprintf(fp,"_c%d", const_index); break;
duke@435 2602 default:
duke@435 2603 assert( false, "ShouldNotReachHere()");
duke@435 2604 }
duke@435 2605 }
duke@435 2606
duke@435 2607
duke@435 2608 void OperandForm::dump() {
duke@435 2609 output(stderr);
duke@435 2610 }
duke@435 2611
duke@435 2612 void OperandForm::output(FILE *fp) {
duke@435 2613 fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
duke@435 2614 if (_matrule) _matrule->dump();
duke@435 2615 if (_interface) _interface->dump();
duke@435 2616 if (_attribs) _attribs->dump();
duke@435 2617 if (_predicate) _predicate->dump();
duke@435 2618 if (_constraint) _constraint->dump();
duke@435 2619 if (_construct) _construct->dump();
duke@435 2620 if (_format) _format->dump();
duke@435 2621 }
duke@435 2622
duke@435 2623 //------------------------------Constraint-------------------------------------
duke@435 2624 Constraint::Constraint(const char *func, const char *arg)
duke@435 2625 : _func(func), _arg(arg) {
duke@435 2626 }
duke@435 2627 Constraint::~Constraint() { /* not owner of char* */
duke@435 2628 }
duke@435 2629
duke@435 2630 bool Constraint::stack_slots_only() const {
duke@435 2631 return strcmp(_func, "ALLOC_IN_RC") == 0
duke@435 2632 && strcmp(_arg, "stack_slots") == 0;
duke@435 2633 }
duke@435 2634
duke@435 2635 void Constraint::dump() {
duke@435 2636 output(stderr);
duke@435 2637 }
duke@435 2638
duke@435 2639 void Constraint::output(FILE *fp) { // Write info to output files
duke@435 2640 assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
duke@435 2641 fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg);
duke@435 2642 }
duke@435 2643
duke@435 2644 //------------------------------Predicate--------------------------------------
duke@435 2645 Predicate::Predicate(char *pr)
duke@435 2646 : _pred(pr) {
duke@435 2647 }
duke@435 2648 Predicate::~Predicate() {
duke@435 2649 }
duke@435 2650
duke@435 2651 void Predicate::dump() {
duke@435 2652 output(stderr);
duke@435 2653 }
duke@435 2654
duke@435 2655 void Predicate::output(FILE *fp) {
duke@435 2656 fprintf(fp,"Predicate"); // Write to output files
duke@435 2657 }
duke@435 2658 //------------------------------Interface--------------------------------------
duke@435 2659 Interface::Interface(const char *name) : _name(name) {
duke@435 2660 }
duke@435 2661 Interface::~Interface() {
duke@435 2662 }
duke@435 2663
duke@435 2664 Form::InterfaceType Interface::interface_type(FormDict &globals) const {
duke@435 2665 Interface *thsi = (Interface*)this;
duke@435 2666 if ( thsi->is_RegInterface() ) return Form::register_interface;
duke@435 2667 if ( thsi->is_MemInterface() ) return Form::memory_interface;
duke@435 2668 if ( thsi->is_ConstInterface() ) return Form::constant_interface;
duke@435 2669 if ( thsi->is_CondInterface() ) return Form::conditional_interface;
duke@435 2670
duke@435 2671 return Form::no_interface;
duke@435 2672 }
duke@435 2673
duke@435 2674 RegInterface *Interface::is_RegInterface() {
duke@435 2675 if ( strcmp(_name,"REG_INTER") != 0 )
duke@435 2676 return NULL;
duke@435 2677 return (RegInterface*)this;
duke@435 2678 }
duke@435 2679 MemInterface *Interface::is_MemInterface() {
duke@435 2680 if ( strcmp(_name,"MEMORY_INTER") != 0 ) return NULL;
duke@435 2681 return (MemInterface*)this;
duke@435 2682 }
duke@435 2683 ConstInterface *Interface::is_ConstInterface() {
duke@435 2684 if ( strcmp(_name,"CONST_INTER") != 0 ) return NULL;
duke@435 2685 return (ConstInterface*)this;
duke@435 2686 }
duke@435 2687 CondInterface *Interface::is_CondInterface() {
duke@435 2688 if ( strcmp(_name,"COND_INTER") != 0 ) return NULL;
duke@435 2689 return (CondInterface*)this;
duke@435 2690 }
duke@435 2691
duke@435 2692
duke@435 2693 void Interface::dump() {
duke@435 2694 output(stderr);
duke@435 2695 }
duke@435 2696
duke@435 2697 // Write info to output files
duke@435 2698 void Interface::output(FILE *fp) {
duke@435 2699 fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
duke@435 2700 }
duke@435 2701
duke@435 2702 //------------------------------RegInterface-----------------------------------
duke@435 2703 RegInterface::RegInterface() : Interface("REG_INTER") {
duke@435 2704 }
duke@435 2705 RegInterface::~RegInterface() {
duke@435 2706 }
duke@435 2707
duke@435 2708 void RegInterface::dump() {
duke@435 2709 output(stderr);
duke@435 2710 }
duke@435 2711
duke@435 2712 // Write info to output files
duke@435 2713 void RegInterface::output(FILE *fp) {
duke@435 2714 Interface::output(fp);
duke@435 2715 }
duke@435 2716
duke@435 2717 //------------------------------ConstInterface---------------------------------
duke@435 2718 ConstInterface::ConstInterface() : Interface("CONST_INTER") {
duke@435 2719 }
duke@435 2720 ConstInterface::~ConstInterface() {
duke@435 2721 }
duke@435 2722
duke@435 2723 void ConstInterface::dump() {
duke@435 2724 output(stderr);
duke@435 2725 }
duke@435 2726
duke@435 2727 // Write info to output files
duke@435 2728 void ConstInterface::output(FILE *fp) {
duke@435 2729 Interface::output(fp);
duke@435 2730 }
duke@435 2731
duke@435 2732 //------------------------------MemInterface-----------------------------------
duke@435 2733 MemInterface::MemInterface(char *base, char *index, char *scale, char *disp)
duke@435 2734 : Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
duke@435 2735 }
duke@435 2736 MemInterface::~MemInterface() {
duke@435 2737 // not owner of any character arrays
duke@435 2738 }
duke@435 2739
duke@435 2740 void MemInterface::dump() {
duke@435 2741 output(stderr);
duke@435 2742 }
duke@435 2743
duke@435 2744 // Write info to output files
duke@435 2745 void MemInterface::output(FILE *fp) {
duke@435 2746 Interface::output(fp);
duke@435 2747 if ( _base != NULL ) fprintf(fp," base == %s\n", _base);
duke@435 2748 if ( _index != NULL ) fprintf(fp," index == %s\n", _index);
duke@435 2749 if ( _scale != NULL ) fprintf(fp," scale == %s\n", _scale);
duke@435 2750 if ( _disp != NULL ) fprintf(fp," disp == %s\n", _disp);
duke@435 2751 // fprintf(fp,"\n");
duke@435 2752 }
duke@435 2753
duke@435 2754 //------------------------------CondInterface----------------------------------
never@850 2755 CondInterface::CondInterface(const char* equal, const char* equal_format,
never@850 2756 const char* not_equal, const char* not_equal_format,
never@850 2757 const char* less, const char* less_format,
never@850 2758 const char* greater_equal, const char* greater_equal_format,
never@850 2759 const char* less_equal, const char* less_equal_format,
never@850 2760 const char* greater, const char* greater_format)
duke@435 2761 : Interface("COND_INTER"),
never@850 2762 _equal(equal), _equal_format(equal_format),
never@850 2763 _not_equal(not_equal), _not_equal_format(not_equal_format),
never@850 2764 _less(less), _less_format(less_format),
never@850 2765 _greater_equal(greater_equal), _greater_equal_format(greater_equal_format),
never@850 2766 _less_equal(less_equal), _less_equal_format(less_equal_format),
never@850 2767 _greater(greater), _greater_format(greater_format) {
duke@435 2768 }
duke@435 2769 CondInterface::~CondInterface() {
duke@435 2770 // not owner of any character arrays
duke@435 2771 }
duke@435 2772
duke@435 2773 void CondInterface::dump() {
duke@435 2774 output(stderr);
duke@435 2775 }
duke@435 2776
duke@435 2777 // Write info to output files
duke@435 2778 void CondInterface::output(FILE *fp) {
duke@435 2779 Interface::output(fp);
duke@435 2780 if ( _equal != NULL ) fprintf(fp," equal == %s\n", _equal);
duke@435 2781 if ( _not_equal != NULL ) fprintf(fp," not_equal == %s\n", _not_equal);
duke@435 2782 if ( _less != NULL ) fprintf(fp," less == %s\n", _less);
duke@435 2783 if ( _greater_equal != NULL ) fprintf(fp," greater_equal == %s\n", _greater_equal);
duke@435 2784 if ( _less_equal != NULL ) fprintf(fp," less_equal == %s\n", _less_equal);
duke@435 2785 if ( _greater != NULL ) fprintf(fp," greater == %s\n", _greater);
duke@435 2786 // fprintf(fp,"\n");
duke@435 2787 }
duke@435 2788
duke@435 2789 //------------------------------ConstructRule----------------------------------
duke@435 2790 ConstructRule::ConstructRule(char *cnstr)
duke@435 2791 : _construct(cnstr) {
duke@435 2792 }
duke@435 2793 ConstructRule::~ConstructRule() {
duke@435 2794 }
duke@435 2795
duke@435 2796 void ConstructRule::dump() {
duke@435 2797 output(stderr);
duke@435 2798 }
duke@435 2799
duke@435 2800 void ConstructRule::output(FILE *fp) {
duke@435 2801 fprintf(fp,"\nConstruct Rule\n"); // Write to output files
duke@435 2802 }
duke@435 2803
duke@435 2804
duke@435 2805 //==============================Shared Forms===================================
duke@435 2806 //------------------------------AttributeForm----------------------------------
duke@435 2807 int AttributeForm::_insId = 0; // start counter at 0
duke@435 2808 int AttributeForm::_opId = 0; // start counter at 0
duke@435 2809 const char* AttributeForm::_ins_cost = "ins_cost"; // required name
duke@435 2810 const char* AttributeForm::_op_cost = "op_cost"; // required name
duke@435 2811
duke@435 2812 AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
duke@435 2813 : Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
duke@435 2814 if (type==OP_ATTR) {
duke@435 2815 id = ++_opId;
duke@435 2816 }
duke@435 2817 else if (type==INS_ATTR) {
duke@435 2818 id = ++_insId;
duke@435 2819 }
duke@435 2820 else assert( false,"");
duke@435 2821 }
duke@435 2822 AttributeForm::~AttributeForm() {
duke@435 2823 }
duke@435 2824
duke@435 2825 // Dynamic type check
duke@435 2826 AttributeForm *AttributeForm::is_attribute() const {
duke@435 2827 return (AttributeForm*)this;
duke@435 2828 }
duke@435 2829
duke@435 2830
duke@435 2831 // inlined // int AttributeForm::type() { return id;}
duke@435 2832
duke@435 2833 void AttributeForm::dump() {
duke@435 2834 output(stderr);
duke@435 2835 }
duke@435 2836
duke@435 2837 void AttributeForm::output(FILE *fp) {
duke@435 2838 if( _attrname && _attrdef ) {
duke@435 2839 fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
duke@435 2840 _attrname, _attrdef);
duke@435 2841 }
duke@435 2842 else {
duke@435 2843 fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
duke@435 2844 (_attrname?_attrname:""), (_attrdef?_attrdef:"") );
duke@435 2845 }
duke@435 2846 }
duke@435 2847
duke@435 2848 //------------------------------Component--------------------------------------
duke@435 2849 Component::Component(const char *name, const char *type, int usedef)
duke@435 2850 : _name(name), _type(type), _usedef(usedef) {
duke@435 2851 _ftype = Form::COMP;
duke@435 2852 }
duke@435 2853 Component::~Component() {
duke@435 2854 }
duke@435 2855
duke@435 2856 // True if this component is equal to the parameter.
duke@435 2857 bool Component::is(int use_def_kill_enum) const {
duke@435 2858 return (_usedef == use_def_kill_enum ? true : false);
duke@435 2859 }
duke@435 2860 // True if this component is used/def'd/kill'd as the parameter suggests.
duke@435 2861 bool Component::isa(int use_def_kill_enum) const {
duke@435 2862 return (_usedef & use_def_kill_enum) == use_def_kill_enum;
duke@435 2863 }
duke@435 2864
duke@435 2865 // Extend this component with additional use/def/kill behavior
duke@435 2866 int Component::promote_use_def_info(int new_use_def) {
duke@435 2867 _usedef |= new_use_def;
duke@435 2868
duke@435 2869 return _usedef;
duke@435 2870 }
duke@435 2871
duke@435 2872 // Check the base type of this component, if it has one
duke@435 2873 const char *Component::base_type(FormDict &globals) {
duke@435 2874 const Form *frm = globals[_type];
duke@435 2875 if (frm == NULL) return NULL;
duke@435 2876 OperandForm *op = frm->is_operand();
duke@435 2877 if (op == NULL) return NULL;
duke@435 2878 if (op->ideal_only()) return op->_ident;
duke@435 2879 return (char *)op->ideal_type(globals);
duke@435 2880 }
duke@435 2881
duke@435 2882 void Component::dump() {
duke@435 2883 output(stderr);
duke@435 2884 }
duke@435 2885
duke@435 2886 void Component::output(FILE *fp) {
duke@435 2887 fprintf(fp,"Component:"); // Write to output files
duke@435 2888 fprintf(fp, " name = %s", _name);
duke@435 2889 fprintf(fp, ", type = %s", _type);
kvn@4161 2890 assert(_usedef != 0, "unknown effect");
kvn@4161 2891 fprintf(fp, ", use/def = %s\n", getUsedefName());
duke@435 2892 }
duke@435 2893
duke@435 2894
duke@435 2895 //------------------------------ComponentList---------------------------------
duke@435 2896 ComponentList::ComponentList() : NameList(), _matchcnt(0) {
duke@435 2897 }
duke@435 2898 ComponentList::~ComponentList() {
duke@435 2899 // // This list may not own its elements if copied via assignment
duke@435 2900 // Component *component;
duke@435 2901 // for (reset(); (component = iter()) != NULL;) {
duke@435 2902 // delete component;
duke@435 2903 // }
duke@435 2904 }
duke@435 2905
duke@435 2906 void ComponentList::insert(Component *component, bool mflag) {
duke@435 2907 NameList::addName((char *)component);
duke@435 2908 if(mflag) _matchcnt++;
duke@435 2909 }
duke@435 2910 void ComponentList::insert(const char *name, const char *opType, int usedef,
duke@435 2911 bool mflag) {
duke@435 2912 Component * component = new Component(name, opType, usedef);
duke@435 2913 insert(component, mflag);
duke@435 2914 }
duke@435 2915 Component *ComponentList::current() { return (Component*)NameList::current(); }
duke@435 2916 Component *ComponentList::iter() { return (Component*)NameList::iter(); }
duke@435 2917 Component *ComponentList::match_iter() {
duke@435 2918 if(_iter < _matchcnt) return (Component*)NameList::iter();
duke@435 2919 return NULL;
duke@435 2920 }
duke@435 2921 Component *ComponentList::post_match_iter() {
duke@435 2922 Component *comp = iter();
duke@435 2923 // At end of list?
duke@435 2924 if ( comp == NULL ) {
duke@435 2925 return comp;
duke@435 2926 }
duke@435 2927 // In post-match components?
duke@435 2928 if (_iter > match_count()-1) {
duke@435 2929 return comp;
duke@435 2930 }
duke@435 2931
duke@435 2932 return post_match_iter();
duke@435 2933 }
duke@435 2934
duke@435 2935 void ComponentList::reset() { NameList::reset(); }
duke@435 2936 int ComponentList::count() { return NameList::count(); }
duke@435 2937
duke@435 2938 Component *ComponentList::operator[](int position) {
duke@435 2939 // Shortcut complete iteration if there are not enough entries
duke@435 2940 if (position >= count()) return NULL;
duke@435 2941
duke@435 2942 int index = 0;
duke@435 2943 Component *component = NULL;
duke@435 2944 for (reset(); (component = iter()) != NULL;) {
duke@435 2945 if (index == position) {
duke@435 2946 return component;
duke@435 2947 }
duke@435 2948 ++index;
duke@435 2949 }
duke@435 2950
duke@435 2951 return NULL;
duke@435 2952 }
duke@435 2953
duke@435 2954 const Component *ComponentList::search(const char *name) {
duke@435 2955 PreserveIter pi(this);
duke@435 2956 reset();
duke@435 2957 for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
duke@435 2958 if( strcmp(comp->_name,name) == 0 ) return comp;
duke@435 2959 }
duke@435 2960
duke@435 2961 return NULL;
duke@435 2962 }
duke@435 2963
duke@435 2964 // Return number of USEs + number of DEFs
duke@435 2965 // When there are no components, or the first component is a USE,
duke@435 2966 // then we add '1' to hold a space for the 'result' operand.
duke@435 2967 int ComponentList::num_operands() {
duke@435 2968 PreserveIter pi(this);
duke@435 2969 uint count = 1; // result operand
duke@435 2970 uint position = 0;
duke@435 2971
duke@435 2972 Component *component = NULL;
duke@435 2973 for( reset(); (component = iter()) != NULL; ++position ) {
duke@435 2974 if( component->isa(Component::USE) ||
duke@435 2975 ( position == 0 && (! component->isa(Component::DEF))) ) {
duke@435 2976 ++count;
duke@435 2977 }
duke@435 2978 }
duke@435 2979
duke@435 2980 return count;
duke@435 2981 }
duke@435 2982
kvn@4161 2983 // Return zero-based position of operand 'name' in list; -1 if not in list.
duke@435 2984 // if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
kvn@4161 2985 int ComponentList::operand_position(const char *name, int usedef, Form *fm) {
duke@435 2986 PreserveIter pi(this);
duke@435 2987 int position = 0;
duke@435 2988 int num_opnds = num_operands();
duke@435 2989 Component *component;
duke@435 2990 Component* preceding_non_use = NULL;
duke@435 2991 Component* first_def = NULL;
duke@435 2992 for (reset(); (component = iter()) != NULL; ++position) {
duke@435 2993 // When the first component is not a DEF,
duke@435 2994 // leave space for the result operand!
duke@435 2995 if ( position==0 && (! component->isa(Component::DEF)) ) {
duke@435 2996 ++position;
duke@435 2997 ++num_opnds;
duke@435 2998 }
duke@435 2999 if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
duke@435 3000 // When the first entry in the component list is a DEF and a USE
duke@435 3001 // Treat them as being separate, a DEF first, then a USE
duke@435 3002 if( position==0
duke@435 3003 && usedef==Component::USE && component->isa(Component::DEF) ) {
duke@435 3004 assert(position+1 < num_opnds, "advertised index in bounds");
duke@435 3005 return position+1;
duke@435 3006 } else {
duke@435 3007 if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
kvn@4161 3008 fprintf(stderr, "the name '%s(%s)' should not precede the name '%s(%s)'",
kvn@4161 3009 preceding_non_use->_name, preceding_non_use->getUsedefName(),
kvn@4161 3010 name, component->getUsedefName());
kvn@4161 3011 if (fm && fm->is_instruction()) fprintf(stderr, "in form '%s'", fm->is_instruction()->_ident);
kvn@4161 3012 if (fm && fm->is_operand()) fprintf(stderr, "in form '%s'", fm->is_operand()->_ident);
kvn@4161 3013 fprintf(stderr, "\n");
duke@435 3014 }
duke@435 3015 if( position >= num_opnds ) {
kvn@4161 3016 fprintf(stderr, "the name '%s' is too late in its name list", name);
kvn@4161 3017 if (fm && fm->is_instruction()) fprintf(stderr, "in form '%s'", fm->is_instruction()->_ident);
kvn@4161 3018 if (fm && fm->is_operand()) fprintf(stderr, "in form '%s'", fm->is_operand()->_ident);
kvn@4161 3019 fprintf(stderr, "\n");
duke@435 3020 }
duke@435 3021 assert(position < num_opnds, "advertised index in bounds");
duke@435 3022 return position;
duke@435 3023 }
duke@435 3024 }
duke@435 3025 if( component->isa(Component::DEF)
duke@435 3026 && component->isa(Component::USE) ) {
duke@435 3027 ++position;
duke@435 3028 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 3029 }
duke@435 3030 if( component->isa(Component::DEF) && !first_def ) {
duke@435 3031 first_def = component;
duke@435 3032 }
duke@435 3033 if( !component->isa(Component::USE) && component != first_def ) {
duke@435 3034 preceding_non_use = component;
duke@435 3035 } else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
duke@435 3036 preceding_non_use = NULL;
duke@435 3037 }
duke@435 3038 }
duke@435 3039 return Not_in_list;
duke@435 3040 }
duke@435 3041
duke@435 3042 // Find position for this name, regardless of use/def information
duke@435 3043 int ComponentList::operand_position(const char *name) {
duke@435 3044 PreserveIter pi(this);
duke@435 3045 int position = 0;
duke@435 3046 Component *component;
duke@435 3047 for (reset(); (component = iter()) != NULL; ++position) {
duke@435 3048 // When the first component is not a DEF,
duke@435 3049 // leave space for the result operand!
duke@435 3050 if ( position==0 && (! component->isa(Component::DEF)) ) {
duke@435 3051 ++position;
duke@435 3052 }
duke@435 3053 if (strcmp(name, component->_name)==0) {
duke@435 3054 return position;
duke@435 3055 }
duke@435 3056 if( component->isa(Component::DEF)
duke@435 3057 && component->isa(Component::USE) ) {
duke@435 3058 ++position;
duke@435 3059 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 3060 }
duke@435 3061 }
duke@435 3062 return Not_in_list;
duke@435 3063 }
duke@435 3064
kvn@4161 3065 int ComponentList::operand_position_format(const char *name, Form *fm) {
duke@435 3066 PreserveIter pi(this);
duke@435 3067 int first_position = operand_position(name);
kvn@4161 3068 int use_position = operand_position(name, Component::USE, fm);
duke@435 3069
duke@435 3070 return ((first_position < use_position) ? use_position : first_position);
duke@435 3071 }
duke@435 3072
duke@435 3073 int ComponentList::label_position() {
duke@435 3074 PreserveIter pi(this);
duke@435 3075 int position = 0;
duke@435 3076 reset();
duke@435 3077 for( Component *comp; (comp = iter()) != NULL; ++position) {
duke@435 3078 // When the first component is not a DEF,
duke@435 3079 // leave space for the result operand!
duke@435 3080 if ( position==0 && (! comp->isa(Component::DEF)) ) {
duke@435 3081 ++position;
duke@435 3082 }
duke@435 3083 if (strcmp(comp->_type, "label")==0) {
duke@435 3084 return position;
duke@435 3085 }
duke@435 3086 if( comp->isa(Component::DEF)
duke@435 3087 && comp->isa(Component::USE) ) {
duke@435 3088 ++position;
duke@435 3089 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 3090 }
duke@435 3091 }
duke@435 3092
duke@435 3093 return -1;
duke@435 3094 }
duke@435 3095
duke@435 3096 int ComponentList::method_position() {
duke@435 3097 PreserveIter pi(this);
duke@435 3098 int position = 0;
duke@435 3099 reset();
duke@435 3100 for( Component *comp; (comp = iter()) != NULL; ++position) {
duke@435 3101 // When the first component is not a DEF,
duke@435 3102 // leave space for the result operand!
duke@435 3103 if ( position==0 && (! comp->isa(Component::DEF)) ) {
duke@435 3104 ++position;
duke@435 3105 }
duke@435 3106 if (strcmp(comp->_type, "method")==0) {
duke@435 3107 return position;
duke@435 3108 }
duke@435 3109 if( comp->isa(Component::DEF)
duke@435 3110 && comp->isa(Component::USE) ) {
duke@435 3111 ++position;
duke@435 3112 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 3113 }
duke@435 3114 }
duke@435 3115
duke@435 3116 return -1;
duke@435 3117 }
duke@435 3118
duke@435 3119 void ComponentList::dump() { output(stderr); }
duke@435 3120
duke@435 3121 void ComponentList::output(FILE *fp) {
duke@435 3122 PreserveIter pi(this);
duke@435 3123 fprintf(fp, "\n");
duke@435 3124 Component *component;
duke@435 3125 for (reset(); (component = iter()) != NULL;) {
duke@435 3126 component->output(fp);
duke@435 3127 }
duke@435 3128 fprintf(fp, "\n");
duke@435 3129 }
duke@435 3130
duke@435 3131 //------------------------------MatchNode--------------------------------------
duke@435 3132 MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
duke@435 3133 const char *opType, MatchNode *lChild, MatchNode *rChild)
duke@435 3134 : _AD(ad), _result(result), _name(mexpr), _opType(opType),
duke@435 3135 _lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0),
duke@435 3136 _commutative_id(0) {
duke@435 3137 _numleaves = (lChild ? lChild->_numleaves : 0)
duke@435 3138 + (rChild ? rChild->_numleaves : 0);
duke@435 3139 }
duke@435 3140
duke@435 3141 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode)
duke@435 3142 : _AD(ad), _result(mnode._result), _name(mnode._name),
duke@435 3143 _opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild),
duke@435 3144 _internalop(0), _numleaves(mnode._numleaves),
duke@435 3145 _commutative_id(mnode._commutative_id) {
duke@435 3146 }
duke@435 3147
duke@435 3148 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone)
duke@435 3149 : _AD(ad), _result(mnode._result), _name(mnode._name),
duke@435 3150 _opType(mnode._opType),
duke@435 3151 _internalop(0), _numleaves(mnode._numleaves),
duke@435 3152 _commutative_id(mnode._commutative_id) {
duke@435 3153 if (mnode._lChild) {
duke@435 3154 _lChild = new MatchNode(ad, *mnode._lChild, clone);
duke@435 3155 } else {
duke@435 3156 _lChild = NULL;
duke@435 3157 }
duke@435 3158 if (mnode._rChild) {
duke@435 3159 _rChild = new MatchNode(ad, *mnode._rChild, clone);
duke@435 3160 } else {
duke@435 3161 _rChild = NULL;
duke@435 3162 }
duke@435 3163 }
duke@435 3164
duke@435 3165 MatchNode::~MatchNode() {
duke@435 3166 // // This node may not own its children if copied via assignment
duke@435 3167 // if( _lChild ) delete _lChild;
duke@435 3168 // if( _rChild ) delete _rChild;
duke@435 3169 }
duke@435 3170
duke@435 3171 bool MatchNode::find_type(const char *type, int &position) const {
duke@435 3172 if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
duke@435 3173 if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;
duke@435 3174
duke@435 3175 if (strcmp(type,_opType)==0) {
duke@435 3176 return true;
duke@435 3177 } else {
duke@435 3178 ++position;
duke@435 3179 }
duke@435 3180 return false;
duke@435 3181 }
duke@435 3182
duke@435 3183 // Recursive call collecting info on top-level operands, not transitive.
duke@435 3184 // Implementation does not modify state of internal structures.
twisti@1038 3185 void MatchNode::append_components(FormDict& locals, ComponentList& components,
twisti@1038 3186 bool def_flag) const {
twisti@1038 3187 int usedef = def_flag ? Component::DEF : Component::USE;
duke@435 3188 FormDict &globals = _AD.globalNames();
duke@435 3189
duke@435 3190 assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
duke@435 3191 // Base case
duke@435 3192 if (_lChild==NULL && _rChild==NULL) {
duke@435 3193 // If _opType is not an operation, do not build a component for it #####
duke@435 3194 const Form *f = globals[_opType];
duke@435 3195 if( f != NULL ) {
duke@435 3196 // Add non-ideals that are operands, operand-classes,
duke@435 3197 if( ! f->ideal_only()
duke@435 3198 && (f->is_opclass() || f->is_operand()) ) {
duke@435 3199 components.insert(_name, _opType, usedef, true);
duke@435 3200 }
duke@435 3201 }
duke@435 3202 return;
duke@435 3203 }
duke@435 3204 // Promote results of "Set" to DEF
twisti@1038 3205 bool tmpdef_flag = (!strcmp(_opType, "Set")) ? true : false;
twisti@1038 3206 if (_lChild) _lChild->append_components(locals, components, tmpdef_flag);
twisti@1038 3207 tmpdef_flag = false; // only applies to component immediately following 'Set'
twisti@1038 3208 if (_rChild) _rChild->append_components(locals, components, tmpdef_flag);
duke@435 3209 }
duke@435 3210
duke@435 3211 // Find the n'th base-operand in the match node,
duke@435 3212 // recursively investigates match rules of user-defined operands.
duke@435 3213 //
duke@435 3214 // Implementation does not modify state of internal structures since they
duke@435 3215 // can be shared.
duke@435 3216 bool MatchNode::base_operand(uint &position, FormDict &globals,
duke@435 3217 const char * &result, const char * &name,
duke@435 3218 const char * &opType) const {
duke@435 3219 assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
duke@435 3220 // Base case
duke@435 3221 if (_lChild==NULL && _rChild==NULL) {
duke@435 3222 // Check for special case: "Universe", "label"
duke@435 3223 if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
duke@435 3224 if (position == 0) {
duke@435 3225 result = _result;
duke@435 3226 name = _name;
duke@435 3227 opType = _opType;
duke@435 3228 return 1;
duke@435 3229 } else {
duke@435 3230 -- position;
duke@435 3231 return 0;
duke@435 3232 }
duke@435 3233 }
duke@435 3234
duke@435 3235 const Form *form = globals[_opType];
duke@435 3236 MatchNode *matchNode = NULL;
duke@435 3237 // Check for user-defined type
duke@435 3238 if (form) {
duke@435 3239 // User operand or instruction?
duke@435 3240 OperandForm *opForm = form->is_operand();
duke@435 3241 InstructForm *inForm = form->is_instruction();
duke@435 3242 if ( opForm ) {
duke@435 3243 matchNode = (MatchNode*)opForm->_matrule;
duke@435 3244 } else if ( inForm ) {
duke@435 3245 matchNode = (MatchNode*)inForm->_matrule;
duke@435 3246 }
duke@435 3247 }
duke@435 3248 // if this is user-defined, recurse on match rule
duke@435 3249 // User-defined operand and instruction forms have a match-rule.
duke@435 3250 if (matchNode) {
duke@435 3251 return (matchNode->base_operand(position,globals,result,name,opType));
duke@435 3252 } else {
duke@435 3253 // Either not a form, or a system-defined form (no match rule).
duke@435 3254 if (position==0) {
duke@435 3255 result = _result;
duke@435 3256 name = _name;
duke@435 3257 opType = _opType;
duke@435 3258 return 1;
duke@435 3259 } else {
duke@435 3260 --position;
duke@435 3261 return 0;
duke@435 3262 }
duke@435 3263 }
duke@435 3264
duke@435 3265 } else {
duke@435 3266 // Examine the left child and right child as well
duke@435 3267 if (_lChild) {
duke@435 3268 if (_lChild->base_operand(position, globals, result, name, opType))
duke@435 3269 return 1;
duke@435 3270 }
duke@435 3271
duke@435 3272 if (_rChild) {
duke@435 3273 if (_rChild->base_operand(position, globals, result, name, opType))
duke@435 3274 return 1;
duke@435 3275 }
duke@435 3276 }
duke@435 3277
duke@435 3278 return 0;
duke@435 3279 }
duke@435 3280
duke@435 3281 // Recursive call on all operands' match rules in my match rule.
duke@435 3282 uint MatchNode::num_consts(FormDict &globals) const {
duke@435 3283 uint index = 0;
duke@435 3284 uint num_consts = 0;
duke@435 3285 const char *result;
duke@435 3286 const char *name;
duke@435 3287 const char *opType;
duke@435 3288
duke@435 3289 for (uint position = index;
duke@435 3290 base_operand(position,globals,result,name,opType); position = index) {
duke@435 3291 ++index;
duke@435 3292 if( ideal_to_const_type(opType) ) num_consts++;
duke@435 3293 }
duke@435 3294
duke@435 3295 return num_consts;
duke@435 3296 }
duke@435 3297
duke@435 3298 // Recursive call on all operands' match rules in my match rule.
duke@435 3299 // Constants in match rule subtree with specified type
duke@435 3300 uint MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
duke@435 3301 uint index = 0;
duke@435 3302 uint num_consts = 0;
duke@435 3303 const char *result;
duke@435 3304 const char *name;
duke@435 3305 const char *opType;
duke@435 3306
duke@435 3307 for (uint position = index;
duke@435 3308 base_operand(position,globals,result,name,opType); position = index) {
duke@435 3309 ++index;
duke@435 3310 if( ideal_to_const_type(opType) == type ) num_consts++;
duke@435 3311 }
duke@435 3312
duke@435 3313 return num_consts;
duke@435 3314 }
duke@435 3315
duke@435 3316 // Recursive call on all operands' match rules in my match rule.
duke@435 3317 uint MatchNode::num_const_ptrs(FormDict &globals) const {
duke@435 3318 return num_consts( globals, Form::idealP );
duke@435 3319 }
duke@435 3320
duke@435 3321 bool MatchNode::sets_result() const {
duke@435 3322 return ( (strcmp(_name,"Set") == 0) ? true : false );
duke@435 3323 }
duke@435 3324
duke@435 3325 const char *MatchNode::reduce_right(FormDict &globals) const {
duke@435 3326 // If there is no right reduction, return NULL.
duke@435 3327 const char *rightStr = NULL;
duke@435 3328
duke@435 3329 // If we are a "Set", start from the right child.
duke@435 3330 const MatchNode *const mnode = sets_result() ?
kvn@4161 3331 (const MatchNode *)this->_rChild :
kvn@4161 3332 (const MatchNode *)this;
duke@435 3333
duke@435 3334 // If our right child exists, it is the right reduction
duke@435 3335 if ( mnode->_rChild ) {
duke@435 3336 rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
duke@435 3337 : mnode->_rChild->_opType;
duke@435 3338 }
duke@435 3339 // Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
duke@435 3340 return rightStr;
duke@435 3341 }
duke@435 3342
duke@435 3343 const char *MatchNode::reduce_left(FormDict &globals) const {
duke@435 3344 // If there is no left reduction, return NULL.
duke@435 3345 const char *leftStr = NULL;
duke@435 3346
duke@435 3347 // If we are a "Set", start from the right child.
duke@435 3348 const MatchNode *const mnode = sets_result() ?
kvn@4161 3349 (const MatchNode *)this->_rChild :
kvn@4161 3350 (const MatchNode *)this;
duke@435 3351
duke@435 3352 // If our left child exists, it is the left reduction
duke@435 3353 if ( mnode->_lChild ) {
duke@435 3354 leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
duke@435 3355 : mnode->_lChild->_opType;
duke@435 3356 } else {
duke@435 3357 // May be simple chain rule: (Set dst operand_form_source)
duke@435 3358 if ( sets_result() ) {
duke@435 3359 OperandForm *oper = globals[mnode->_opType]->is_operand();
duke@435 3360 if( oper ) {
duke@435 3361 leftStr = mnode->_opType;
duke@435 3362 }
duke@435 3363 }
duke@435 3364 }
duke@435 3365 return leftStr;
duke@435 3366 }
duke@435 3367
duke@435 3368 //------------------------------count_instr_names------------------------------
duke@435 3369 // Count occurrences of operands names in the leaves of the instruction
duke@435 3370 // match rule.
duke@435 3371 void MatchNode::count_instr_names( Dict &names ) {
duke@435 3372 if( !this ) return;
duke@435 3373 if( _lChild ) _lChild->count_instr_names(names);
duke@435 3374 if( _rChild ) _rChild->count_instr_names(names);
duke@435 3375 if( !_lChild && !_rChild ) {
duke@435 3376 uintptr_t cnt = (uintptr_t)names[_name];
duke@435 3377 cnt++; // One more name found
duke@435 3378 names.Insert(_name,(void*)cnt);
duke@435 3379 }
duke@435 3380 }
duke@435 3381
duke@435 3382 //------------------------------build_instr_pred-------------------------------
duke@435 3383 // Build a path to 'name' in buf. Actually only build if cnt is zero, so we
duke@435 3384 // can skip some leading instances of 'name'.
duke@435 3385 int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
duke@435 3386 if( _lChild ) {
duke@435 3387 if( !cnt ) strcpy( buf, "_kids[0]->" );
duke@435 3388 cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
duke@435 3389 if( cnt < 0 ) return cnt; // Found it, all done
duke@435 3390 }
duke@435 3391 if( _rChild ) {
duke@435 3392 if( !cnt ) strcpy( buf, "_kids[1]->" );
duke@435 3393 cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
duke@435 3394 if( cnt < 0 ) return cnt; // Found it, all done
duke@435 3395 }
duke@435 3396 if( !_lChild && !_rChild ) { // Found a leaf
duke@435 3397 // Wrong name? Give up...
duke@435 3398 if( strcmp(name,_name) ) return cnt;
duke@435 3399 if( !cnt ) strcpy(buf,"_leaf");
duke@435 3400 return cnt-1;
duke@435 3401 }
duke@435 3402 return cnt;
duke@435 3403 }
duke@435 3404
duke@435 3405
duke@435 3406 //------------------------------build_internalop-------------------------------
duke@435 3407 // Build string representation of subtree
duke@435 3408 void MatchNode::build_internalop( ) {
duke@435 3409 char *iop, *subtree;
duke@435 3410 const char *lstr, *rstr;
duke@435 3411 // Build string representation of subtree
duke@435 3412 // Operation lchildType rchildType
duke@435 3413 int len = (int)strlen(_opType) + 4;
duke@435 3414 lstr = (_lChild) ? ((_lChild->_internalop) ?
duke@435 3415 _lChild->_internalop : _lChild->_opType) : "";
duke@435 3416 rstr = (_rChild) ? ((_rChild->_internalop) ?
duke@435 3417 _rChild->_internalop : _rChild->_opType) : "";
duke@435 3418 len += (int)strlen(lstr) + (int)strlen(rstr);
duke@435 3419 subtree = (char *)malloc(len);
duke@435 3420 sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
duke@435 3421 // Hash the subtree string in _internalOps; if a name exists, use it
duke@435 3422 iop = (char *)_AD._internalOps[subtree];
duke@435 3423 // Else create a unique name, and add it to the hash table
duke@435 3424 if (iop == NULL) {
duke@435 3425 iop = subtree;
duke@435 3426 _AD._internalOps.Insert(subtree, iop);
duke@435 3427 _AD._internalOpNames.addName(iop);
duke@435 3428 _AD._internalMatch.Insert(iop, this);
duke@435 3429 }
duke@435 3430 // Add the internal operand name to the MatchNode
duke@435 3431 _internalop = iop;
duke@435 3432 _result = iop;
duke@435 3433 }
duke@435 3434
duke@435 3435
duke@435 3436 void MatchNode::dump() {
duke@435 3437 output(stderr);
duke@435 3438 }
duke@435 3439
duke@435 3440 void MatchNode::output(FILE *fp) {
duke@435 3441 if (_lChild==0 && _rChild==0) {
duke@435 3442 fprintf(fp," %s",_name); // operand
duke@435 3443 }
duke@435 3444 else {
duke@435 3445 fprintf(fp," (%s ",_name); // " (opcodeName "
duke@435 3446 if(_lChild) _lChild->output(fp); // left operand
duke@435 3447 if(_rChild) _rChild->output(fp); // right operand
duke@435 3448 fprintf(fp,")"); // ")"
duke@435 3449 }
duke@435 3450 }
duke@435 3451
duke@435 3452 int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
duke@435 3453 static const char *needs_ideal_memory_list[] = {
roland@4159 3454 "StoreI","StoreL","StoreP","StoreN","StoreNKlass","StoreD","StoreF" ,
duke@435 3455 "StoreB","StoreC","Store" ,"StoreFP",
vlivanov@4160 3456 "LoadI", "LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF" ,
kvn@3882 3457 "LoadB" , "LoadUB", "LoadUS" ,"LoadS" ,"Load" ,
kvn@3882 3458 "StoreVector", "LoadVector",
kvn@599 3459 "LoadRange", "LoadKlass", "LoadNKlass", "LoadL_unaligned", "LoadD_unaligned",
twisti@3846 3460 "LoadPLocked",
kvn@855 3461 "StorePConditional", "StoreIConditional", "StoreLConditional",
coleenp@548 3462 "CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN",
duke@435 3463 "StoreCM",
roland@4106 3464 "ClearArray",
roland@4106 3465 "GetAndAddI", "GetAndSetI", "GetAndSetP",
roland@4106 3466 "GetAndAddL", "GetAndSetL", "GetAndSetN",
duke@435 3467 };
duke@435 3468 int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
kvn@3052 3469 if( strcmp(_opType,"PrefetchRead")==0 ||
kvn@3052 3470 strcmp(_opType,"PrefetchWrite")==0 ||
kvn@3052 3471 strcmp(_opType,"PrefetchAllocation")==0 )
duke@435 3472 return 1;
duke@435 3473 if( _lChild ) {
duke@435 3474 const char *opType = _lChild->_opType;
duke@435 3475 for( int i=0; i<cnt; i++ )
duke@435 3476 if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
duke@435 3477 return 1;
duke@435 3478 if( _lChild->needs_ideal_memory_edge(globals) )
duke@435 3479 return 1;
duke@435 3480 }
duke@435 3481 if( _rChild ) {
duke@435 3482 const char *opType = _rChild->_opType;
duke@435 3483 for( int i=0; i<cnt; i++ )
duke@435 3484 if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
duke@435 3485 return 1;
duke@435 3486 if( _rChild->needs_ideal_memory_edge(globals) )
duke@435 3487 return 1;
duke@435 3488 }
duke@435 3489
duke@435 3490 return 0;
duke@435 3491 }
duke@435 3492
duke@435 3493 // TRUE if defines a derived oop, and so needs a base oop edge present
duke@435 3494 // post-matching.
duke@435 3495 int MatchNode::needs_base_oop_edge() const {
duke@435 3496 if( !strcmp(_opType,"AddP") ) return 1;
duke@435 3497 if( strcmp(_opType,"Set") ) return 0;
duke@435 3498 return !strcmp(_rChild->_opType,"AddP");
duke@435 3499 }
duke@435 3500
duke@435 3501 int InstructForm::needs_base_oop_edge(FormDict &globals) const {
duke@435 3502 if( is_simple_chain_rule(globals) ) {
duke@435 3503 const char *src = _matrule->_rChild->_opType;
duke@435 3504 OperandForm *src_op = globals[src]->is_operand();
duke@435 3505 assert( src_op, "Not operand class of chain rule" );
duke@435 3506 return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
duke@435 3507 } // Else check instruction
duke@435 3508
duke@435 3509 return _matrule ? _matrule->needs_base_oop_edge() : 0;
duke@435 3510 }
duke@435 3511
duke@435 3512
duke@435 3513 //-------------------------cisc spilling methods-------------------------------
duke@435 3514 // helper routines and methods for detecting cisc-spilling instructions
duke@435 3515 //-------------------------cisc_spill_merge------------------------------------
duke@435 3516 int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
duke@435 3517 int cisc_spillable = Maybe_cisc_spillable;
duke@435 3518
duke@435 3519 // Combine results of left and right checks
duke@435 3520 if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
duke@435 3521 // neither side is spillable, nor prevents cisc spilling
duke@435 3522 cisc_spillable = Maybe_cisc_spillable;
duke@435 3523 }
duke@435 3524 else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
duke@435 3525 // right side is spillable
duke@435 3526 cisc_spillable = right_spillable;
duke@435 3527 }
duke@435 3528 else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
duke@435 3529 // left side is spillable
duke@435 3530 cisc_spillable = left_spillable;
duke@435 3531 }
duke@435 3532 else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
duke@435 3533 // left or right prevents cisc spilling this instruction
duke@435 3534 cisc_spillable = Not_cisc_spillable;
duke@435 3535 }
duke@435 3536 else {
duke@435 3537 // Only allow one to spill
duke@435 3538 cisc_spillable = Not_cisc_spillable;
duke@435 3539 }
duke@435 3540
duke@435 3541 return cisc_spillable;
duke@435 3542 }
duke@435 3543
duke@435 3544 //-------------------------root_ops_match--------------------------------------
duke@435 3545 bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
duke@435 3546 // Base Case: check that the current operands/operations match
duke@435 3547 assert( op1, "Must have op's name");
duke@435 3548 assert( op2, "Must have op's name");
duke@435 3549 const Form *form1 = globals[op1];
duke@435 3550 const Form *form2 = globals[op2];
duke@435 3551
duke@435 3552 return (form1 == form2);
duke@435 3553 }
duke@435 3554
twisti@1038 3555 //-------------------------cisc_spill_match_node-------------------------------
duke@435 3556 // Recursively check two MatchRules for legal conversion via cisc-spilling
twisti@1038 3557 int MatchNode::cisc_spill_match(FormDict& globals, RegisterForm* registers, MatchNode* mRule2, const char* &operand, const char* &reg_type) {
duke@435 3558 int cisc_spillable = Maybe_cisc_spillable;
duke@435 3559 int left_spillable = Maybe_cisc_spillable;
duke@435 3560 int right_spillable = Maybe_cisc_spillable;
duke@435 3561
duke@435 3562 // Check that each has same number of operands at this level
duke@435 3563 if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) )
duke@435 3564 return Not_cisc_spillable;
duke@435 3565
duke@435 3566 // Base Case: check that the current operands/operations match
duke@435 3567 // or are CISC spillable
duke@435 3568 assert( _opType, "Must have _opType");
duke@435 3569 assert( mRule2->_opType, "Must have _opType");
duke@435 3570 const Form *form = globals[_opType];
duke@435 3571 const Form *form2 = globals[mRule2->_opType];
duke@435 3572 if( form == form2 ) {
duke@435 3573 cisc_spillable = Maybe_cisc_spillable;
duke@435 3574 } else {
duke@435 3575 const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
duke@435 3576 const char *name_left = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
duke@435 3577 const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
twisti@1059 3578 DataType data_type = Form::none;
twisti@1059 3579 if (form->is_operand()) {
twisti@1059 3580 // Make sure the loadX matches the type of the reg
twisti@1059 3581 data_type = form->ideal_to_Reg_type(form->is_operand()->ideal_type(globals));
twisti@1059 3582 }
duke@435 3583 // Detect reg vs (loadX memory)
duke@435 3584 if( form->is_cisc_reg(globals)
duke@435 3585 && form2_inst
twisti@1059 3586 && data_type != Form::none
twisti@1059 3587 && (is_load_from_memory(mRule2->_opType) == data_type) // reg vs. (load memory)
duke@435 3588 && (name_left != NULL) // NOT (load)
duke@435 3589 && (name_right == NULL) ) { // NOT (load memory foo)
duke@435 3590 const Form *form2_left = name_left ? globals[name_left] : NULL;
duke@435 3591 if( form2_left && form2_left->is_cisc_mem(globals) ) {
duke@435 3592 cisc_spillable = Is_cisc_spillable;
duke@435 3593 operand = _name;
duke@435 3594 reg_type = _result;
duke@435 3595 return Is_cisc_spillable;
duke@435 3596 } else {
duke@435 3597 cisc_spillable = Not_cisc_spillable;
duke@435 3598 }
duke@435 3599 }
duke@435 3600 // Detect reg vs memory
duke@435 3601 else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) {
duke@435 3602 cisc_spillable = Is_cisc_spillable;
duke@435 3603 operand = _name;
duke@435 3604 reg_type = _result;
duke@435 3605 return Is_cisc_spillable;
duke@435 3606 } else {
duke@435 3607 cisc_spillable = Not_cisc_spillable;
duke@435 3608 }
duke@435 3609 }
duke@435 3610
duke@435 3611 // If cisc is still possible, check rest of tree
duke@435 3612 if( cisc_spillable == Maybe_cisc_spillable ) {
duke@435 3613 // Check that each has same number of operands at this level
duke@435 3614 if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
duke@435 3615
duke@435 3616 // Check left operands
duke@435 3617 if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
duke@435 3618 left_spillable = Maybe_cisc_spillable;
duke@435 3619 } else {
duke@435 3620 left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
duke@435 3621 }
duke@435 3622
duke@435 3623 // Check right operands
duke@435 3624 if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
duke@435 3625 right_spillable = Maybe_cisc_spillable;
duke@435 3626 } else {
duke@435 3627 right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
duke@435 3628 }
duke@435 3629
duke@435 3630 // Combine results of left and right checks
duke@435 3631 cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
duke@435 3632 }
duke@435 3633
duke@435 3634 return cisc_spillable;
duke@435 3635 }
duke@435 3636
twisti@1038 3637 //---------------------------cisc_spill_match_rule------------------------------
duke@435 3638 // Recursively check two MatchRules for legal conversion via cisc-spilling
duke@435 3639 // This method handles the root of Match tree,
duke@435 3640 // general recursive checks done in MatchNode
twisti@1038 3641 int MatchRule::matchrule_cisc_spill_match(FormDict& globals, RegisterForm* registers,
twisti@1038 3642 MatchRule* mRule2, const char* &operand,
twisti@1038 3643 const char* &reg_type) {
duke@435 3644 int cisc_spillable = Maybe_cisc_spillable;
duke@435 3645 int left_spillable = Maybe_cisc_spillable;
duke@435 3646 int right_spillable = Maybe_cisc_spillable;
duke@435 3647
duke@435 3648 // Check that each sets a result
duke@435 3649 if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
duke@435 3650 // Check that each has same number of operands at this level
duke@435 3651 if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
duke@435 3652
duke@435 3653 // Check left operands: at root, must be target of 'Set'
duke@435 3654 if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
duke@435 3655 left_spillable = Not_cisc_spillable;
duke@435 3656 } else {
duke@435 3657 // Do not support cisc-spilling instruction's target location
duke@435 3658 if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
duke@435 3659 left_spillable = Maybe_cisc_spillable;
duke@435 3660 } else {
duke@435 3661 left_spillable = Not_cisc_spillable;
duke@435 3662 }
duke@435 3663 }
duke@435 3664
duke@435 3665 // Check right operands: recursive walk to identify reg->mem operand
duke@435 3666 if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
duke@435 3667 right_spillable = Maybe_cisc_spillable;
duke@435 3668 } else {
duke@435 3669 right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
duke@435 3670 }
duke@435 3671
duke@435 3672 // Combine results of left and right checks
duke@435 3673 cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
duke@435 3674
duke@435 3675 return cisc_spillable;
duke@435 3676 }
duke@435 3677
duke@435 3678 //----------------------------- equivalent ------------------------------------
duke@435 3679 // Recursively check to see if two match rules are equivalent.
duke@435 3680 // This rule handles the root.
twisti@1038 3681 bool MatchRule::equivalent(FormDict &globals, MatchNode *mRule2) {
duke@435 3682 // Check that each sets a result
duke@435 3683 if (sets_result() != mRule2->sets_result()) {
duke@435 3684 return false;
duke@435 3685 }
duke@435 3686
duke@435 3687 // Check that the current operands/operations match
duke@435 3688 assert( _opType, "Must have _opType");
duke@435 3689 assert( mRule2->_opType, "Must have _opType");
duke@435 3690 const Form *form = globals[_opType];
duke@435 3691 const Form *form2 = globals[mRule2->_opType];
duke@435 3692 if( form != form2 ) {
duke@435 3693 return false;
duke@435 3694 }
duke@435 3695
duke@435 3696 if (_lChild ) {
duke@435 3697 if( !_lChild->equivalent(globals, mRule2->_lChild) )
duke@435 3698 return false;
duke@435 3699 } else if (mRule2->_lChild) {
duke@435 3700 return false; // I have NULL left child, mRule2 has non-NULL left child.
duke@435 3701 }
duke@435 3702
duke@435 3703 if (_rChild ) {
duke@435 3704 if( !_rChild->equivalent(globals, mRule2->_rChild) )
duke@435 3705 return false;
duke@435 3706 } else if (mRule2->_rChild) {
duke@435 3707 return false; // I have NULL right child, mRule2 has non-NULL right child.
duke@435 3708 }
duke@435 3709
duke@435 3710 // We've made it through the gauntlet.
duke@435 3711 return true;
duke@435 3712 }
duke@435 3713
duke@435 3714 //----------------------------- equivalent ------------------------------------
duke@435 3715 // Recursively check to see if two match rules are equivalent.
duke@435 3716 // This rule handles the operands.
duke@435 3717 bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
duke@435 3718 if( !mNode2 )
duke@435 3719 return false;
duke@435 3720
duke@435 3721 // Check that the current operands/operations match
duke@435 3722 assert( _opType, "Must have _opType");
duke@435 3723 assert( mNode2->_opType, "Must have _opType");
duke@435 3724 const Form *form = globals[_opType];
duke@435 3725 const Form *form2 = globals[mNode2->_opType];
kvn@3037 3726 if( form != form2 ) {
kvn@3037 3727 return false;
kvn@3037 3728 }
kvn@3037 3729
kvn@3037 3730 // Check that their children also match
kvn@3037 3731 if (_lChild ) {
kvn@3037 3732 if( !_lChild->equivalent(globals, mNode2->_lChild) )
kvn@3037 3733 return false;
kvn@3037 3734 } else if (mNode2->_lChild) {
kvn@3037 3735 return false; // I have NULL left child, mNode2 has non-NULL left child.
kvn@3037 3736 }
kvn@3037 3737
kvn@3037 3738 if (_rChild ) {
kvn@3037 3739 if( !_rChild->equivalent(globals, mNode2->_rChild) )
kvn@3037 3740 return false;
kvn@3037 3741 } else if (mNode2->_rChild) {
kvn@3037 3742 return false; // I have NULL right child, mNode2 has non-NULL right child.
kvn@3037 3743 }
kvn@3037 3744
kvn@3037 3745 // We've made it through the gauntlet.
kvn@3037 3746 return true;
duke@435 3747 }
duke@435 3748
duke@435 3749 //-------------------------- has_commutative_op -------------------------------
duke@435 3750 // Recursively check for commutative operations with subtree operands
duke@435 3751 // which could be swapped.
duke@435 3752 void MatchNode::count_commutative_op(int& count) {
duke@435 3753 static const char *commut_op_list[] = {
duke@435 3754 "AddI","AddL","AddF","AddD",
duke@435 3755 "AndI","AndL",
duke@435 3756 "MaxI","MinI",
duke@435 3757 "MulI","MulL","MulF","MulD",
duke@435 3758 "OrI" ,"OrL" ,
duke@435 3759 "XorI","XorL"
duke@435 3760 };
duke@435 3761 int cnt = sizeof(commut_op_list)/sizeof(char*);
duke@435 3762
duke@435 3763 if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
duke@435 3764 // Don't swap if right operand is an immediate constant.
duke@435 3765 bool is_const = false;
duke@435 3766 if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
duke@435 3767 FormDict &globals = _AD.globalNames();
duke@435 3768 const Form *form = globals[_rChild->_opType];
duke@435 3769 if ( form ) {
duke@435 3770 OperandForm *oper = form->is_operand();
duke@435 3771 if( oper && oper->interface_type(globals) == Form::constant_interface )
duke@435 3772 is_const = true;
duke@435 3773 }
duke@435 3774 }
duke@435 3775 if( !is_const ) {
duke@435 3776 for( int i=0; i<cnt; i++ ) {
duke@435 3777 if( strcmp(_opType, commut_op_list[i]) == 0 ) {
duke@435 3778 count++;
duke@435 3779 _commutative_id = count; // id should be > 0
duke@435 3780 break;
duke@435 3781 }
duke@435 3782 }
duke@435 3783 }
duke@435 3784 }
duke@435 3785 if( _lChild )
duke@435 3786 _lChild->count_commutative_op(count);
duke@435 3787 if( _rChild )
duke@435 3788 _rChild->count_commutative_op(count);
duke@435 3789 }
duke@435 3790
duke@435 3791 //-------------------------- swap_commutative_op ------------------------------
duke@435 3792 // Recursively swap specified commutative operation with subtree operands.
duke@435 3793 void MatchNode::swap_commutative_op(bool atroot, int id) {
duke@435 3794 if( _commutative_id == id ) { // id should be > 0
duke@435 3795 assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ),
duke@435 3796 "not swappable operation");
duke@435 3797 MatchNode* tmp = _lChild;
duke@435 3798 _lChild = _rChild;
duke@435 3799 _rChild = tmp;
duke@435 3800 // Don't exit here since we need to build internalop.
duke@435 3801 }
duke@435 3802
duke@435 3803 bool is_set = ( strcmp(_opType, "Set") == 0 );
duke@435 3804 if( _lChild )
duke@435 3805 _lChild->swap_commutative_op(is_set, id);
duke@435 3806 if( _rChild )
duke@435 3807 _rChild->swap_commutative_op(is_set, id);
duke@435 3808
duke@435 3809 // If not the root, reduce this subtree to an internal operand
duke@435 3810 if( !atroot && (_lChild || _rChild) ) {
duke@435 3811 build_internalop();
duke@435 3812 }
duke@435 3813 }
duke@435 3814
duke@435 3815 //-------------------------- swap_commutative_op ------------------------------
duke@435 3816 // Recursively swap specified commutative operation with subtree operands.
twisti@1038 3817 void MatchRule::matchrule_swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
duke@435 3818 assert(match_rules_cnt < 100," too many match rule clones");
duke@435 3819 // Clone
duke@435 3820 MatchRule* clone = new MatchRule(_AD, this);
duke@435 3821 // Swap operands of commutative operation
duke@435 3822 ((MatchNode*)clone)->swap_commutative_op(true, count);
duke@435 3823 char* buf = (char*) malloc(strlen(instr_ident) + 4);
duke@435 3824 sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
duke@435 3825 clone->_result = buf;
duke@435 3826
duke@435 3827 clone->_next = this->_next;
duke@435 3828 this-> _next = clone;
duke@435 3829 if( (--count) > 0 ) {
twisti@1038 3830 this-> matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
twisti@1038 3831 clone->matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
duke@435 3832 }
duke@435 3833 }
duke@435 3834
duke@435 3835 //------------------------------MatchRule--------------------------------------
duke@435 3836 MatchRule::MatchRule(ArchDesc &ad)
duke@435 3837 : MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
duke@435 3838 _next = NULL;
duke@435 3839 }
duke@435 3840
duke@435 3841 MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
duke@435 3842 : MatchNode(ad, *mRule, 0), _depth(mRule->_depth),
duke@435 3843 _construct(mRule->_construct), _numchilds(mRule->_numchilds) {
duke@435 3844 _next = NULL;
duke@435 3845 }
duke@435 3846
duke@435 3847 MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
duke@435 3848 int numleaves)
duke@435 3849 : MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
duke@435 3850 _numchilds(0) {
duke@435 3851 _next = NULL;
duke@435 3852 mroot->_lChild = NULL;
duke@435 3853 mroot->_rChild = NULL;
duke@435 3854 delete mroot;
duke@435 3855 _numleaves = numleaves;
duke@435 3856 _numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
duke@435 3857 }
duke@435 3858 MatchRule::~MatchRule() {
duke@435 3859 }
duke@435 3860
duke@435 3861 // Recursive call collecting info on top-level operands, not transitive.
duke@435 3862 // Implementation does not modify state of internal structures.
twisti@1038 3863 void MatchRule::append_components(FormDict& locals, ComponentList& components, bool def_flag) const {
duke@435 3864 assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
duke@435 3865
duke@435 3866 MatchNode::append_components(locals, components,
duke@435 3867 false /* not necessarily a def */);
duke@435 3868 }
duke@435 3869
duke@435 3870 // Recursive call on all operands' match rules in my match rule.
duke@435 3871 // Implementation does not modify state of internal structures since they
duke@435 3872 // can be shared.
duke@435 3873 // The MatchNode that is called first treats its
duke@435 3874 bool MatchRule::base_operand(uint &position0, FormDict &globals,
duke@435 3875 const char *&result, const char * &name,
duke@435 3876 const char * &opType)const{
duke@435 3877 uint position = position0;
duke@435 3878
duke@435 3879 return (MatchNode::base_operand( position, globals, result, name, opType));
duke@435 3880 }
duke@435 3881
duke@435 3882
duke@435 3883 bool MatchRule::is_base_register(FormDict &globals) const {
duke@435 3884 uint position = 1;
duke@435 3885 const char *result = NULL;
duke@435 3886 const char *name = NULL;
duke@435 3887 const char *opType = NULL;
duke@435 3888 if (!base_operand(position, globals, result, name, opType)) {
duke@435 3889 position = 0;
duke@435 3890 if( base_operand(position, globals, result, name, opType) &&
duke@435 3891 (strcmp(opType,"RegI")==0 ||
duke@435 3892 strcmp(opType,"RegP")==0 ||
coleenp@548 3893 strcmp(opType,"RegN")==0 ||
duke@435 3894 strcmp(opType,"RegL")==0 ||
duke@435 3895 strcmp(opType,"RegF")==0 ||
duke@435 3896 strcmp(opType,"RegD")==0 ||
kvn@3882 3897 strcmp(opType,"VecS")==0 ||
kvn@3882 3898 strcmp(opType,"VecD")==0 ||
kvn@3882 3899 strcmp(opType,"VecX")==0 ||
kvn@3882 3900 strcmp(opType,"VecY")==0 ||
duke@435 3901 strcmp(opType,"Reg" )==0) ) {
duke@435 3902 return 1;
duke@435 3903 }
duke@435 3904 }
duke@435 3905 return 0;
duke@435 3906 }
duke@435 3907
duke@435 3908 Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
duke@435 3909 uint position = 1;
duke@435 3910 const char *result = NULL;
duke@435 3911 const char *name = NULL;
duke@435 3912 const char *opType = NULL;
duke@435 3913 if (!base_operand(position, globals, result, name, opType)) {
duke@435 3914 position = 0;
duke@435 3915 if (base_operand(position, globals, result, name, opType)) {
duke@435 3916 return ideal_to_const_type(opType);
duke@435 3917 }
duke@435 3918 }
duke@435 3919 return Form::none;
duke@435 3920 }
duke@435 3921
duke@435 3922 bool MatchRule::is_chain_rule(FormDict &globals) const {
duke@435 3923
duke@435 3924 // Check for chain rule, and do not generate a match list for it
duke@435 3925 if ((_lChild == NULL) && (_rChild == NULL) ) {
duke@435 3926 const Form *form = globals[_opType];
duke@435 3927 // If this is ideal, then it is a base match, not a chain rule.
duke@435 3928 if ( form && form->is_operand() && (!form->ideal_only())) {
duke@435 3929 return true;
duke@435 3930 }
duke@435 3931 }
duke@435 3932 // Check for "Set" form of chain rule, and do not generate a match list
duke@435 3933 if (_rChild) {
duke@435 3934 const char *rch = _rChild->_opType;
duke@435 3935 const Form *form = globals[rch];
duke@435 3936 if ((!strcmp(_opType,"Set") &&
duke@435 3937 ((form) && form->is_operand()))) {
duke@435 3938 return true;
duke@435 3939 }
duke@435 3940 }
duke@435 3941 return false;
duke@435 3942 }
duke@435 3943
duke@435 3944 int MatchRule::is_ideal_copy() const {
duke@435 3945 if( _rChild ) {
duke@435 3946 const char *opType = _rChild->_opType;
ysr@777 3947 #if 1
ysr@777 3948 if( strcmp(opType,"CastIP")==0 )
ysr@777 3949 return 1;
ysr@777 3950 #else
duke@435 3951 if( strcmp(opType,"CastII")==0 )
duke@435 3952 return 1;
duke@435 3953 // Do not treat *CastPP this way, because it
duke@435 3954 // may transfer a raw pointer to an oop.
duke@435 3955 // If the register allocator were to coalesce this
duke@435 3956 // into a single LRG, the GC maps would be incorrect.
duke@435 3957 //if( strcmp(opType,"CastPP")==0 )
duke@435 3958 // return 1;
duke@435 3959 //if( strcmp(opType,"CheckCastPP")==0 )
duke@435 3960 // return 1;
duke@435 3961 //
duke@435 3962 // Do not treat CastX2P or CastP2X this way, because
duke@435 3963 // raw pointers and int types are treated differently
duke@435 3964 // when saving local & stack info for safepoints in
duke@435 3965 // Output().
duke@435 3966 //if( strcmp(opType,"CastX2P")==0 )
duke@435 3967 // return 1;
duke@435 3968 //if( strcmp(opType,"CastP2X")==0 )
duke@435 3969 // return 1;
ysr@777 3970 #endif
duke@435 3971 }
duke@435 3972 if( is_chain_rule(_AD.globalNames()) &&
duke@435 3973 _lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 )
duke@435 3974 return 1;
duke@435 3975 return 0;
duke@435 3976 }
duke@435 3977
duke@435 3978
duke@435 3979 int MatchRule::is_expensive() const {
duke@435 3980 if( _rChild ) {
duke@435 3981 const char *opType = _rChild->_opType;
duke@435 3982 if( strcmp(opType,"AtanD")==0 ||
duke@435 3983 strcmp(opType,"CosD")==0 ||
duke@435 3984 strcmp(opType,"DivD")==0 ||
duke@435 3985 strcmp(opType,"DivF")==0 ||
duke@435 3986 strcmp(opType,"DivI")==0 ||
duke@435 3987 strcmp(opType,"ExpD")==0 ||
duke@435 3988 strcmp(opType,"LogD")==0 ||
duke@435 3989 strcmp(opType,"Log10D")==0 ||
duke@435 3990 strcmp(opType,"ModD")==0 ||
duke@435 3991 strcmp(opType,"ModF")==0 ||
duke@435 3992 strcmp(opType,"ModI")==0 ||
duke@435 3993 strcmp(opType,"PowD")==0 ||
duke@435 3994 strcmp(opType,"SinD")==0 ||
duke@435 3995 strcmp(opType,"SqrtD")==0 ||
duke@435 3996 strcmp(opType,"TanD")==0 ||
duke@435 3997 strcmp(opType,"ConvD2F")==0 ||
duke@435 3998 strcmp(opType,"ConvD2I")==0 ||
duke@435 3999 strcmp(opType,"ConvD2L")==0 ||
duke@435 4000 strcmp(opType,"ConvF2D")==0 ||
duke@435 4001 strcmp(opType,"ConvF2I")==0 ||
duke@435 4002 strcmp(opType,"ConvF2L")==0 ||
duke@435 4003 strcmp(opType,"ConvI2D")==0 ||
duke@435 4004 strcmp(opType,"ConvI2F")==0 ||
duke@435 4005 strcmp(opType,"ConvI2L")==0 ||
duke@435 4006 strcmp(opType,"ConvL2D")==0 ||
duke@435 4007 strcmp(opType,"ConvL2F")==0 ||
duke@435 4008 strcmp(opType,"ConvL2I")==0 ||
kvn@682 4009 strcmp(opType,"DecodeN")==0 ||
kvn@682 4010 strcmp(opType,"EncodeP")==0 ||
roland@4159 4011 strcmp(opType,"EncodePKlass")==0 ||
roland@4159 4012 strcmp(opType,"DecodeNKlass")==0 ||
duke@435 4013 strcmp(opType,"RoundDouble")==0 ||
duke@435 4014 strcmp(opType,"RoundFloat")==0 ||
duke@435 4015 strcmp(opType,"ReverseBytesI")==0 ||
duke@435 4016 strcmp(opType,"ReverseBytesL")==0 ||
never@1831 4017 strcmp(opType,"ReverseBytesUS")==0 ||
never@1831 4018 strcmp(opType,"ReverseBytesS")==0 ||
kvn@3882 4019 strcmp(opType,"ReplicateB")==0 ||
kvn@3882 4020 strcmp(opType,"ReplicateS")==0 ||
kvn@3882 4021 strcmp(opType,"ReplicateI")==0 ||
kvn@3882 4022 strcmp(opType,"ReplicateL")==0 ||
kvn@3882 4023 strcmp(opType,"ReplicateF")==0 ||
kvn@3882 4024 strcmp(opType,"ReplicateD")==0 ||
duke@435 4025 0 /* 0 to line up columns nicely */ )
duke@435 4026 return 1;
duke@435 4027 }
duke@435 4028 return 0;
duke@435 4029 }
duke@435 4030
duke@435 4031 bool MatchRule::is_ideal_if() const {
duke@435 4032 if( !_opType ) return false;
duke@435 4033 return
duke@435 4034 !strcmp(_opType,"If" ) ||
duke@435 4035 !strcmp(_opType,"CountedLoopEnd");
duke@435 4036 }
duke@435 4037
duke@435 4038 bool MatchRule::is_ideal_fastlock() const {
duke@435 4039 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 4040 return (strcmp(_rChild->_opType,"FastLock") == 0);
duke@435 4041 }
duke@435 4042 return false;
duke@435 4043 }
duke@435 4044
duke@435 4045 bool MatchRule::is_ideal_membar() const {
duke@435 4046 if( !_opType ) return false;
duke@435 4047 return
duke@435 4048 !strcmp(_opType,"MemBarAcquire" ) ||
duke@435 4049 !strcmp(_opType,"MemBarRelease" ) ||
roland@3047 4050 !strcmp(_opType,"MemBarAcquireLock") ||
roland@3047 4051 !strcmp(_opType,"MemBarReleaseLock") ||
duke@435 4052 !strcmp(_opType,"MemBarVolatile" ) ||
roland@3392 4053 !strcmp(_opType,"MemBarCPUOrder" ) ||
roland@3392 4054 !strcmp(_opType,"MemBarStoreStore" );
duke@435 4055 }
duke@435 4056
duke@435 4057 bool MatchRule::is_ideal_loadPC() const {
duke@435 4058 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 4059 return (strcmp(_rChild->_opType,"LoadPC") == 0);
duke@435 4060 }
duke@435 4061 return false;
duke@435 4062 }
duke@435 4063
duke@435 4064 bool MatchRule::is_ideal_box() const {
duke@435 4065 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 4066 return (strcmp(_rChild->_opType,"Box") == 0);
duke@435 4067 }
duke@435 4068 return false;
duke@435 4069 }
duke@435 4070
duke@435 4071 bool MatchRule::is_ideal_goto() const {
duke@435 4072 bool ideal_goto = false;
duke@435 4073
duke@435 4074 if( _opType && (strcmp(_opType,"Goto") == 0) ) {
duke@435 4075 ideal_goto = true;
duke@435 4076 }
duke@435 4077 return ideal_goto;
duke@435 4078 }
duke@435 4079
duke@435 4080 bool MatchRule::is_ideal_jump() const {
duke@435 4081 if( _opType ) {
duke@435 4082 if( !strcmp(_opType,"Jump") )
duke@435 4083 return true;
duke@435 4084 }
duke@435 4085 return false;
duke@435 4086 }
duke@435 4087
duke@435 4088 bool MatchRule::is_ideal_bool() const {
duke@435 4089 if( _opType ) {
duke@435 4090 if( !strcmp(_opType,"Bool") )
duke@435 4091 return true;
duke@435 4092 }
duke@435 4093 return false;
duke@435 4094 }
duke@435 4095
duke@435 4096
duke@435 4097 Form::DataType MatchRule::is_ideal_load() const {
duke@435 4098 Form::DataType ideal_load = Form::none;
duke@435 4099
duke@435 4100 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 4101 const char *opType = _rChild->_opType;
duke@435 4102 ideal_load = is_load_from_memory(opType);
duke@435 4103 }
duke@435 4104
duke@435 4105 return ideal_load;
duke@435 4106 }
duke@435 4107
kvn@3882 4108 bool MatchRule::is_vector() const {
kvn@4113 4109 static const char *vector_list[] = {
kvn@4113 4110 "AddVB","AddVS","AddVI","AddVL","AddVF","AddVD",
kvn@4113 4111 "SubVB","SubVS","SubVI","SubVL","SubVF","SubVD",
kvn@4113 4112 "MulVS","MulVI","MulVF","MulVD",
kvn@4113 4113 "DivVF","DivVD",
kvn@4113 4114 "AndV" ,"XorV" ,"OrV",
kvn@4134 4115 "LShiftCntV","RShiftCntV",
kvn@4113 4116 "LShiftVB","LShiftVS","LShiftVI","LShiftVL",
kvn@4113 4117 "RShiftVB","RShiftVS","RShiftVI","RShiftVL",
kvn@4113 4118 "URShiftVB","URShiftVS","URShiftVI","URShiftVL",
kvn@4113 4119 "ReplicateB","ReplicateS","ReplicateI","ReplicateL","ReplicateF","ReplicateD",
kvn@4113 4120 "LoadVector","StoreVector",
kvn@4113 4121 // Next are not supported currently.
kvn@4113 4122 "PackB","PackS","PackI","PackL","PackF","PackD","Pack2L","Pack2D",
kvn@4113 4123 "ExtractB","ExtractUB","ExtractC","ExtractS","ExtractI","ExtractL","ExtractF","ExtractD"
kvn@4113 4124 };
kvn@4113 4125 int cnt = sizeof(vector_list)/sizeof(char*);
kvn@4113 4126 if (_rChild) {
kvn@3882 4127 const char *opType = _rChild->_opType;
kvn@4113 4128 for (int i=0; i<cnt; i++)
kvn@4113 4129 if (strcmp(opType,vector_list[i]) == 0)
kvn@4113 4130 return true;
kvn@3882 4131 }
kvn@3882 4132 return false;
kvn@3882 4133 }
kvn@3882 4134
duke@435 4135
never@1290 4136 bool MatchRule::skip_antidep_check() const {
never@1290 4137 // Some loads operate on what is effectively immutable memory so we
never@1290 4138 // should skip the anti dep computations. For some of these nodes
never@1290 4139 // the rewritable field keeps the anti dep logic from triggering but
never@1290 4140 // for certain kinds of LoadKlass it does not since they are
never@1290 4141 // actually reading memory which could be rewritten by the runtime,
never@1290 4142 // though never by generated code. This disables it uniformly for
never@1290 4143 // the nodes that behave like this: LoadKlass, LoadNKlass and
never@1290 4144 // LoadRange.
never@1290 4145 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
never@1290 4146 const char *opType = _rChild->_opType;
never@1290 4147 if (strcmp("LoadKlass", opType) == 0 ||
never@1290 4148 strcmp("LoadNKlass", opType) == 0 ||
never@1290 4149 strcmp("LoadRange", opType) == 0) {
never@1290 4150 return true;
never@1290 4151 }
never@1290 4152 }
never@1290 4153
never@1290 4154 return false;
never@1290 4155 }
never@1290 4156
never@1290 4157
duke@435 4158 Form::DataType MatchRule::is_ideal_store() const {
duke@435 4159 Form::DataType ideal_store = Form::none;
duke@435 4160
duke@435 4161 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 4162 const char *opType = _rChild->_opType;
duke@435 4163 ideal_store = is_store_to_memory(opType);
duke@435 4164 }
duke@435 4165
duke@435 4166 return ideal_store;
duke@435 4167 }
duke@435 4168
duke@435 4169
duke@435 4170 void MatchRule::dump() {
duke@435 4171 output(stderr);
duke@435 4172 }
duke@435 4173
kvn@4161 4174 // Write just one line.
kvn@4161 4175 void MatchRule::output_short(FILE *fp) {
duke@435 4176 fprintf(fp,"MatchRule: ( %s",_name);
duke@435 4177 if (_lChild) _lChild->output(fp);
duke@435 4178 if (_rChild) _rChild->output(fp);
kvn@4161 4179 fprintf(fp," )");
kvn@4161 4180 }
kvn@4161 4181
kvn@4161 4182 void MatchRule::output(FILE *fp) {
kvn@4161 4183 output_short(fp);
kvn@4161 4184 fprintf(fp,"\n nesting depth = %d\n", _depth);
duke@435 4185 if (_result) fprintf(fp," Result Type = %s", _result);
duke@435 4186 fprintf(fp,"\n");
duke@435 4187 }
duke@435 4188
duke@435 4189 //------------------------------Attribute--------------------------------------
duke@435 4190 Attribute::Attribute(char *id, char* val, int type)
duke@435 4191 : _ident(id), _val(val), _atype(type) {
duke@435 4192 }
duke@435 4193 Attribute::~Attribute() {
duke@435 4194 }
duke@435 4195
duke@435 4196 int Attribute::int_val(ArchDesc &ad) {
duke@435 4197 // Make sure it is an integer constant:
duke@435 4198 int result = 0;
duke@435 4199 if (!_val || !ADLParser::is_int_token(_val, result)) {
duke@435 4200 ad.syntax_err(0, "Attribute %s must have an integer value: %s",
duke@435 4201 _ident, _val ? _val : "");
duke@435 4202 }
duke@435 4203 return result;
duke@435 4204 }
duke@435 4205
duke@435 4206 void Attribute::dump() {
duke@435 4207 output(stderr);
duke@435 4208 } // Debug printer
duke@435 4209
duke@435 4210 // Write to output files
duke@435 4211 void Attribute::output(FILE *fp) {
duke@435 4212 fprintf(fp,"Attribute: %s %s\n", (_ident?_ident:""), (_val?_val:""));
duke@435 4213 }
duke@435 4214
duke@435 4215 //------------------------------FormatRule----------------------------------
duke@435 4216 FormatRule::FormatRule(char *temp)
duke@435 4217 : _temp(temp) {
duke@435 4218 }
duke@435 4219 FormatRule::~FormatRule() {
duke@435 4220 }
duke@435 4221
duke@435 4222 void FormatRule::dump() {
duke@435 4223 output(stderr);
duke@435 4224 }
duke@435 4225
duke@435 4226 // Write to output files
duke@435 4227 void FormatRule::output(FILE *fp) {
duke@435 4228 fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
duke@435 4229 fprintf(fp,"\n");
duke@435 4230 }

mercurial