src/share/vm/adlc/formssel.cpp

Wed, 16 Jul 2008 16:04:39 -0700

author
kvn
date
Wed, 16 Jul 2008 16:04:39 -0700
changeset 682
02a35ad4adf8
parent 670
9c2ecc2ffb12
child 791
1ee8caae33af
permissions
-rw-r--r--

6723160: Nightly failure: Error: meet not symmetric
Summary: Add missing _instance_id settings and other EA fixes.
Reviewed-by: rasbold

duke@435 1 /*
xdono@631 2 * Copyright 1998-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // FORMS.CPP - Definitions for ADL Parser Forms Classes
duke@435 26 #include "adlc.hpp"
duke@435 27
duke@435 28 //==============================Instructions===================================
duke@435 29 //------------------------------InstructForm-----------------------------------
duke@435 30 InstructForm::InstructForm(const char *id, bool ideal_only)
duke@435 31 : _ident(id), _ideal_only(ideal_only),
duke@435 32 _localNames(cmpstr, hashstr, Form::arena),
duke@435 33 _effects(cmpstr, hashstr, Form::arena) {
duke@435 34 _ftype = Form::INS;
duke@435 35
duke@435 36 _matrule = NULL;
duke@435 37 _insencode = NULL;
duke@435 38 _opcode = NULL;
duke@435 39 _size = NULL;
duke@435 40 _attribs = NULL;
duke@435 41 _predicate = NULL;
duke@435 42 _exprule = NULL;
duke@435 43 _rewrule = NULL;
duke@435 44 _format = NULL;
duke@435 45 _peephole = NULL;
duke@435 46 _ins_pipe = NULL;
duke@435 47 _uniq_idx = NULL;
duke@435 48 _num_uniq = 0;
duke@435 49 _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
duke@435 50 _cisc_spill_alternate = NULL; // possible cisc replacement
duke@435 51 _cisc_reg_mask_name = NULL;
duke@435 52 _is_cisc_alternate = false;
duke@435 53 _is_short_branch = false;
duke@435 54 _short_branch_form = NULL;
duke@435 55 _alignment = 1;
duke@435 56 }
duke@435 57
duke@435 58 InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
duke@435 59 : _ident(id), _ideal_only(false),
duke@435 60 _localNames(instr->_localNames),
duke@435 61 _effects(instr->_effects) {
duke@435 62 _ftype = Form::INS;
duke@435 63
duke@435 64 _matrule = rule;
duke@435 65 _insencode = instr->_insencode;
duke@435 66 _opcode = instr->_opcode;
duke@435 67 _size = instr->_size;
duke@435 68 _attribs = instr->_attribs;
duke@435 69 _predicate = instr->_predicate;
duke@435 70 _exprule = instr->_exprule;
duke@435 71 _rewrule = instr->_rewrule;
duke@435 72 _format = instr->_format;
duke@435 73 _peephole = instr->_peephole;
duke@435 74 _ins_pipe = instr->_ins_pipe;
duke@435 75 _uniq_idx = instr->_uniq_idx;
duke@435 76 _num_uniq = instr->_num_uniq;
duke@435 77 _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
duke@435 78 _cisc_spill_alternate = NULL; // possible cisc replacement
duke@435 79 _cisc_reg_mask_name = NULL;
duke@435 80 _is_cisc_alternate = false;
duke@435 81 _is_short_branch = false;
duke@435 82 _short_branch_form = NULL;
duke@435 83 _alignment = 1;
duke@435 84 // Copy parameters
duke@435 85 const char *name;
duke@435 86 instr->_parameters.reset();
duke@435 87 for (; (name = instr->_parameters.iter()) != NULL;)
duke@435 88 _parameters.addName(name);
duke@435 89 }
duke@435 90
duke@435 91 InstructForm::~InstructForm() {
duke@435 92 }
duke@435 93
duke@435 94 InstructForm *InstructForm::is_instruction() const {
duke@435 95 return (InstructForm*)this;
duke@435 96 }
duke@435 97
duke@435 98 bool InstructForm::ideal_only() const {
duke@435 99 return _ideal_only;
duke@435 100 }
duke@435 101
duke@435 102 bool InstructForm::sets_result() const {
duke@435 103 return (_matrule != NULL && _matrule->sets_result());
duke@435 104 }
duke@435 105
duke@435 106 bool InstructForm::needs_projections() {
duke@435 107 _components.reset();
duke@435 108 for( Component *comp; (comp = _components.iter()) != NULL; ) {
duke@435 109 if (comp->isa(Component::KILL)) {
duke@435 110 return true;
duke@435 111 }
duke@435 112 }
duke@435 113 return false;
duke@435 114 }
duke@435 115
duke@435 116
duke@435 117 bool InstructForm::has_temps() {
duke@435 118 if (_matrule) {
duke@435 119 // Examine each component to see if it is a TEMP
duke@435 120 _components.reset();
duke@435 121 // Skip the first component, if already handled as (SET dst (...))
duke@435 122 Component *comp = NULL;
duke@435 123 if (sets_result()) comp = _components.iter();
duke@435 124 while ((comp = _components.iter()) != NULL) {
duke@435 125 if (comp->isa(Component::TEMP)) {
duke@435 126 return true;
duke@435 127 }
duke@435 128 }
duke@435 129 }
duke@435 130
duke@435 131 return false;
duke@435 132 }
duke@435 133
duke@435 134 uint InstructForm::num_defs_or_kills() {
duke@435 135 uint defs_or_kills = 0;
duke@435 136
duke@435 137 _components.reset();
duke@435 138 for( Component *comp; (comp = _components.iter()) != NULL; ) {
duke@435 139 if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
duke@435 140 ++defs_or_kills;
duke@435 141 }
duke@435 142 }
duke@435 143
duke@435 144 return defs_or_kills;
duke@435 145 }
duke@435 146
duke@435 147 // This instruction has an expand rule?
duke@435 148 bool InstructForm::expands() const {
duke@435 149 return ( _exprule != NULL );
duke@435 150 }
duke@435 151
duke@435 152 // This instruction has a peephole rule?
duke@435 153 Peephole *InstructForm::peepholes() const {
duke@435 154 return _peephole;
duke@435 155 }
duke@435 156
duke@435 157 // This instruction has a peephole rule?
duke@435 158 void InstructForm::append_peephole(Peephole *peephole) {
duke@435 159 if( _peephole == NULL ) {
duke@435 160 _peephole = peephole;
duke@435 161 } else {
duke@435 162 _peephole->append_peephole(peephole);
duke@435 163 }
duke@435 164 }
duke@435 165
duke@435 166
duke@435 167 // ideal opcode enumeration
duke@435 168 const char *InstructForm::ideal_Opcode( FormDict &globalNames ) const {
duke@435 169 if( !_matrule ) return "Node"; // Something weird
duke@435 170 // Chain rules do not really have ideal Opcodes; use their source
duke@435 171 // operand ideal Opcode instead.
duke@435 172 if( is_simple_chain_rule(globalNames) ) {
duke@435 173 const char *src = _matrule->_rChild->_opType;
duke@435 174 OperandForm *src_op = globalNames[src]->is_operand();
duke@435 175 assert( src_op, "Not operand class of chain rule" );
duke@435 176 if( !src_op->_matrule ) return "Node";
duke@435 177 return src_op->_matrule->_opType;
duke@435 178 }
duke@435 179 // Operand chain rules do not really have ideal Opcodes
duke@435 180 if( _matrule->is_chain_rule(globalNames) )
duke@435 181 return "Node";
duke@435 182 return strcmp(_matrule->_opType,"Set")
duke@435 183 ? _matrule->_opType
duke@435 184 : _matrule->_rChild->_opType;
duke@435 185 }
duke@435 186
duke@435 187 // Recursive check on all operands' match rules in my match rule
duke@435 188 bool InstructForm::is_pinned(FormDict &globals) {
duke@435 189 if ( ! _matrule) return false;
duke@435 190
duke@435 191 int index = 0;
duke@435 192 if (_matrule->find_type("Goto", index)) return true;
duke@435 193 if (_matrule->find_type("If", index)) return true;
duke@435 194 if (_matrule->find_type("CountedLoopEnd",index)) return true;
duke@435 195 if (_matrule->find_type("Return", index)) return true;
duke@435 196 if (_matrule->find_type("Rethrow", index)) return true;
duke@435 197 if (_matrule->find_type("TailCall", index)) return true;
duke@435 198 if (_matrule->find_type("TailJump", index)) return true;
duke@435 199 if (_matrule->find_type("Halt", index)) return true;
duke@435 200 if (_matrule->find_type("Jump", index)) return true;
duke@435 201
duke@435 202 return is_parm(globals);
duke@435 203 }
duke@435 204
duke@435 205 // Recursive check on all operands' match rules in my match rule
duke@435 206 bool InstructForm::is_projection(FormDict &globals) {
duke@435 207 if ( ! _matrule) return false;
duke@435 208
duke@435 209 int index = 0;
duke@435 210 if (_matrule->find_type("Goto", index)) return true;
duke@435 211 if (_matrule->find_type("Return", index)) return true;
duke@435 212 if (_matrule->find_type("Rethrow", index)) return true;
duke@435 213 if (_matrule->find_type("TailCall",index)) return true;
duke@435 214 if (_matrule->find_type("TailJump",index)) return true;
duke@435 215 if (_matrule->find_type("Halt", index)) return true;
duke@435 216
duke@435 217 return false;
duke@435 218 }
duke@435 219
duke@435 220 // Recursive check on all operands' match rules in my match rule
duke@435 221 bool InstructForm::is_parm(FormDict &globals) {
duke@435 222 if ( ! _matrule) return false;
duke@435 223
duke@435 224 int index = 0;
duke@435 225 if (_matrule->find_type("Parm",index)) return true;
duke@435 226
duke@435 227 return false;
duke@435 228 }
duke@435 229
duke@435 230
duke@435 231 // Return 'true' if this instruction matches an ideal 'Copy*' node
duke@435 232 int InstructForm::is_ideal_copy() const {
duke@435 233 return _matrule ? _matrule->is_ideal_copy() : 0;
duke@435 234 }
duke@435 235
duke@435 236 // Return 'true' if this instruction is too complex to rematerialize.
duke@435 237 int InstructForm::is_expensive() const {
duke@435 238 // We can prove it is cheap if it has an empty encoding.
duke@435 239 // This helps with platform-specific nops like ThreadLocal and RoundFloat.
duke@435 240 if (is_empty_encoding())
duke@435 241 return 0;
duke@435 242
duke@435 243 if (is_tls_instruction())
duke@435 244 return 1;
duke@435 245
duke@435 246 if (_matrule == NULL) return 0;
duke@435 247
duke@435 248 return _matrule->is_expensive();
duke@435 249 }
duke@435 250
duke@435 251 // Has an empty encoding if _size is a constant zero or there
duke@435 252 // are no ins_encode tokens.
duke@435 253 int InstructForm::is_empty_encoding() const {
duke@435 254 if (_insencode != NULL) {
duke@435 255 _insencode->reset();
duke@435 256 if (_insencode->encode_class_iter() == NULL) {
duke@435 257 return 1;
duke@435 258 }
duke@435 259 }
duke@435 260 if (_size != NULL && strcmp(_size, "0") == 0) {
duke@435 261 return 1;
duke@435 262 }
duke@435 263 return 0;
duke@435 264 }
duke@435 265
duke@435 266 int InstructForm::is_tls_instruction() const {
duke@435 267 if (_ident != NULL &&
duke@435 268 ( ! strcmp( _ident,"tlsLoadP") ||
duke@435 269 ! strncmp(_ident,"tlsLoadP_",9)) ) {
duke@435 270 return 1;
duke@435 271 }
duke@435 272
duke@435 273 if (_matrule != NULL && _insencode != NULL) {
duke@435 274 const char* opType = _matrule->_opType;
duke@435 275 if (strcmp(opType, "Set")==0)
duke@435 276 opType = _matrule->_rChild->_opType;
duke@435 277 if (strcmp(opType,"ThreadLocal")==0) {
duke@435 278 fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
duke@435 279 (_ident == NULL ? "NULL" : _ident));
duke@435 280 return 1;
duke@435 281 }
duke@435 282 }
duke@435 283
duke@435 284 return 0;
duke@435 285 }
duke@435 286
duke@435 287
duke@435 288 // Return 'true' if this instruction matches an ideal 'Copy*' node
duke@435 289 bool InstructForm::is_ideal_unlock() const {
duke@435 290 return _matrule ? _matrule->is_ideal_unlock() : false;
duke@435 291 }
duke@435 292
duke@435 293 bool InstructForm::is_ideal_call_leaf() const {
duke@435 294 return _matrule ? _matrule->is_ideal_call_leaf() : false;
duke@435 295 }
duke@435 296
duke@435 297 // Return 'true' if this instruction matches an ideal 'If' node
duke@435 298 bool InstructForm::is_ideal_if() const {
duke@435 299 if( _matrule == NULL ) return false;
duke@435 300
duke@435 301 return _matrule->is_ideal_if();
duke@435 302 }
duke@435 303
duke@435 304 // Return 'true' if this instruction matches an ideal 'FastLock' node
duke@435 305 bool InstructForm::is_ideal_fastlock() const {
duke@435 306 if( _matrule == NULL ) return false;
duke@435 307
duke@435 308 return _matrule->is_ideal_fastlock();
duke@435 309 }
duke@435 310
duke@435 311 // Return 'true' if this instruction matches an ideal 'MemBarXXX' node
duke@435 312 bool InstructForm::is_ideal_membar() const {
duke@435 313 if( _matrule == NULL ) return false;
duke@435 314
duke@435 315 return _matrule->is_ideal_membar();
duke@435 316 }
duke@435 317
duke@435 318 // Return 'true' if this instruction matches an ideal 'LoadPC' node
duke@435 319 bool InstructForm::is_ideal_loadPC() const {
duke@435 320 if( _matrule == NULL ) return false;
duke@435 321
duke@435 322 return _matrule->is_ideal_loadPC();
duke@435 323 }
duke@435 324
duke@435 325 // Return 'true' if this instruction matches an ideal 'Box' node
duke@435 326 bool InstructForm::is_ideal_box() const {
duke@435 327 if( _matrule == NULL ) return false;
duke@435 328
duke@435 329 return _matrule->is_ideal_box();
duke@435 330 }
duke@435 331
duke@435 332 // Return 'true' if this instruction matches an ideal 'Goto' node
duke@435 333 bool InstructForm::is_ideal_goto() const {
duke@435 334 if( _matrule == NULL ) return false;
duke@435 335
duke@435 336 return _matrule->is_ideal_goto();
duke@435 337 }
duke@435 338
duke@435 339 // Return 'true' if this instruction matches an ideal 'Jump' node
duke@435 340 bool InstructForm::is_ideal_jump() const {
duke@435 341 if( _matrule == NULL ) return false;
duke@435 342
duke@435 343 return _matrule->is_ideal_jump();
duke@435 344 }
duke@435 345
duke@435 346 // Return 'true' if instruction matches ideal 'If' | 'Goto' |
duke@435 347 // 'CountedLoopEnd' | 'Jump'
duke@435 348 bool InstructForm::is_ideal_branch() const {
duke@435 349 if( _matrule == NULL ) return false;
duke@435 350
duke@435 351 return _matrule->is_ideal_if() || _matrule->is_ideal_goto() || _matrule->is_ideal_jump();
duke@435 352 }
duke@435 353
duke@435 354
duke@435 355 // Return 'true' if this instruction matches an ideal 'Return' node
duke@435 356 bool InstructForm::is_ideal_return() const {
duke@435 357 if( _matrule == NULL ) return false;
duke@435 358
duke@435 359 // Check MatchRule to see if the first entry is the ideal "Return" node
duke@435 360 int index = 0;
duke@435 361 if (_matrule->find_type("Return",index)) return true;
duke@435 362 if (_matrule->find_type("Rethrow",index)) return true;
duke@435 363 if (_matrule->find_type("TailCall",index)) return true;
duke@435 364 if (_matrule->find_type("TailJump",index)) return true;
duke@435 365
duke@435 366 return false;
duke@435 367 }
duke@435 368
duke@435 369 // Return 'true' if this instruction matches an ideal 'Halt' node
duke@435 370 bool InstructForm::is_ideal_halt() const {
duke@435 371 int index = 0;
duke@435 372 return _matrule && _matrule->find_type("Halt",index);
duke@435 373 }
duke@435 374
duke@435 375 // Return 'true' if this instruction matches an ideal 'SafePoint' node
duke@435 376 bool InstructForm::is_ideal_safepoint() const {
duke@435 377 int index = 0;
duke@435 378 return _matrule && _matrule->find_type("SafePoint",index);
duke@435 379 }
duke@435 380
duke@435 381 // Return 'true' if this instruction matches an ideal 'Nop' node
duke@435 382 bool InstructForm::is_ideal_nop() const {
duke@435 383 return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
duke@435 384 }
duke@435 385
duke@435 386 bool InstructForm::is_ideal_control() const {
duke@435 387 if ( ! _matrule) return false;
duke@435 388
duke@435 389 return is_ideal_return() || is_ideal_branch() || is_ideal_halt();
duke@435 390 }
duke@435 391
duke@435 392 // Return 'true' if this instruction matches an ideal 'Call' node
duke@435 393 Form::CallType InstructForm::is_ideal_call() const {
duke@435 394 if( _matrule == NULL ) return Form::invalid_type;
duke@435 395
duke@435 396 // Check MatchRule to see if the first entry is the ideal "Call" node
duke@435 397 int idx = 0;
duke@435 398 if(_matrule->find_type("CallStaticJava",idx)) return Form::JAVA_STATIC;
duke@435 399 idx = 0;
duke@435 400 if(_matrule->find_type("Lock",idx)) return Form::JAVA_STATIC;
duke@435 401 idx = 0;
duke@435 402 if(_matrule->find_type("Unlock",idx)) return Form::JAVA_STATIC;
duke@435 403 idx = 0;
duke@435 404 if(_matrule->find_type("CallDynamicJava",idx)) return Form::JAVA_DYNAMIC;
duke@435 405 idx = 0;
duke@435 406 if(_matrule->find_type("CallRuntime",idx)) return Form::JAVA_RUNTIME;
duke@435 407 idx = 0;
duke@435 408 if(_matrule->find_type("CallLeaf",idx)) return Form::JAVA_LEAF;
duke@435 409 idx = 0;
duke@435 410 if(_matrule->find_type("CallLeafNoFP",idx)) return Form::JAVA_LEAF;
duke@435 411 idx = 0;
duke@435 412
duke@435 413 return Form::invalid_type;
duke@435 414 }
duke@435 415
duke@435 416 // Return 'true' if this instruction matches an ideal 'Load?' node
duke@435 417 Form::DataType InstructForm::is_ideal_load() const {
duke@435 418 if( _matrule == NULL ) return Form::none;
duke@435 419
duke@435 420 return _matrule->is_ideal_load();
duke@435 421 }
duke@435 422
duke@435 423 // Return 'true' if this instruction matches an ideal 'Load?' node
duke@435 424 Form::DataType InstructForm::is_ideal_store() const {
duke@435 425 if( _matrule == NULL ) return Form::none;
duke@435 426
duke@435 427 return _matrule->is_ideal_store();
duke@435 428 }
duke@435 429
duke@435 430 // Return the input register that must match the output register
duke@435 431 // If this is not required, return 0
duke@435 432 uint InstructForm::two_address(FormDict &globals) {
duke@435 433 uint matching_input = 0;
duke@435 434 if(_components.count() == 0) return 0;
duke@435 435
duke@435 436 _components.reset();
duke@435 437 Component *comp = _components.iter();
duke@435 438 // Check if there is a DEF
duke@435 439 if( comp->isa(Component::DEF) ) {
duke@435 440 // Check that this is a register
duke@435 441 const char *def_type = comp->_type;
duke@435 442 const Form *form = globals[def_type];
duke@435 443 OperandForm *op = form->is_operand();
duke@435 444 if( op ) {
duke@435 445 if( op->constrained_reg_class() != NULL &&
duke@435 446 op->interface_type(globals) == Form::register_interface ) {
duke@435 447 // Remember the local name for equality test later
duke@435 448 const char *def_name = comp->_name;
duke@435 449 // Check if a component has the same name and is a USE
duke@435 450 do {
duke@435 451 if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
duke@435 452 return operand_position_format(def_name);
duke@435 453 }
duke@435 454 } while( (comp = _components.iter()) != NULL);
duke@435 455 }
duke@435 456 }
duke@435 457 }
duke@435 458
duke@435 459 return 0;
duke@435 460 }
duke@435 461
duke@435 462
duke@435 463 // when chaining a constant to an instruction, returns 'true' and sets opType
duke@435 464 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
duke@435 465 const char *dummy = NULL;
duke@435 466 const char *dummy2 = NULL;
duke@435 467 return is_chain_of_constant(globals, dummy, dummy2);
duke@435 468 }
duke@435 469 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
duke@435 470 const char * &opTypeParam) {
duke@435 471 const char *result = NULL;
duke@435 472
duke@435 473 return is_chain_of_constant(globals, opTypeParam, result);
duke@435 474 }
duke@435 475
duke@435 476 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
duke@435 477 const char * &opTypeParam, const char * &resultParam) {
duke@435 478 Form::DataType data_type = Form::none;
duke@435 479 if ( ! _matrule) return data_type;
duke@435 480
duke@435 481 // !!!!!
duke@435 482 // The source of the chain rule is 'position = 1'
duke@435 483 uint position = 1;
duke@435 484 const char *result = NULL;
duke@435 485 const char *name = NULL;
duke@435 486 const char *opType = NULL;
duke@435 487 // Here base_operand is looking for an ideal type to be returned (opType).
duke@435 488 if ( _matrule->is_chain_rule(globals)
duke@435 489 && _matrule->base_operand(position, globals, result, name, opType) ) {
duke@435 490 data_type = ideal_to_const_type(opType);
duke@435 491
duke@435 492 // if it isn't an ideal constant type, just return
duke@435 493 if ( data_type == Form::none ) return data_type;
duke@435 494
duke@435 495 // Ideal constant types also adjust the opType parameter.
duke@435 496 resultParam = result;
duke@435 497 opTypeParam = opType;
duke@435 498 return data_type;
duke@435 499 }
duke@435 500
duke@435 501 return data_type;
duke@435 502 }
duke@435 503
duke@435 504 // Check if a simple chain rule
duke@435 505 bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
duke@435 506 if( _matrule && _matrule->sets_result()
duke@435 507 && _matrule->_rChild->_lChild == NULL
duke@435 508 && globals[_matrule->_rChild->_opType]
duke@435 509 && globals[_matrule->_rChild->_opType]->is_opclass() ) {
duke@435 510 return true;
duke@435 511 }
duke@435 512 return false;
duke@435 513 }
duke@435 514
duke@435 515 // check for structural rematerialization
duke@435 516 bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
duke@435 517 bool rematerialize = false;
duke@435 518
duke@435 519 Form::DataType data_type = is_chain_of_constant(globals);
duke@435 520 if( data_type != Form::none )
duke@435 521 rematerialize = true;
duke@435 522
duke@435 523 // Constants
duke@435 524 if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) )
duke@435 525 rematerialize = true;
duke@435 526
duke@435 527 // Pseudo-constants (values easily available to the runtime)
duke@435 528 if (is_empty_encoding() && is_tls_instruction())
duke@435 529 rematerialize = true;
duke@435 530
duke@435 531 // 1-input, 1-output, such as copies or increments.
duke@435 532 if( _components.count() == 2 &&
duke@435 533 _components[0]->is(Component::DEF) &&
duke@435 534 _components[1]->isa(Component::USE) )
duke@435 535 rematerialize = true;
duke@435 536
duke@435 537 // Check for an ideal 'Load?' and eliminate rematerialize option
duke@435 538 if ( is_ideal_load() != Form::none || // Ideal load? Do not rematerialize
duke@435 539 is_ideal_copy() != Form::none || // Ideal copy? Do not rematerialize
duke@435 540 is_expensive() != Form::none) { // Expensive? Do not rematerialize
duke@435 541 rematerialize = false;
duke@435 542 }
duke@435 543
duke@435 544 // Always rematerialize the flags. They are more expensive to save &
duke@435 545 // restore than to recompute (and possibly spill the compare's inputs).
duke@435 546 if( _components.count() >= 1 ) {
duke@435 547 Component *c = _components[0];
duke@435 548 const Form *form = globals[c->_type];
duke@435 549 OperandForm *opform = form->is_operand();
duke@435 550 if( opform ) {
duke@435 551 // Avoid the special stack_slots register classes
duke@435 552 const char *rc_name = opform->constrained_reg_class();
duke@435 553 if( rc_name ) {
duke@435 554 if( strcmp(rc_name,"stack_slots") ) {
duke@435 555 // Check for ideal_type of RegFlags
duke@435 556 const char *type = opform->ideal_type( globals, registers );
duke@435 557 if( !strcmp(type,"RegFlags") )
duke@435 558 rematerialize = true;
duke@435 559 } else
duke@435 560 rematerialize = false; // Do not rematerialize things target stk
duke@435 561 }
duke@435 562 }
duke@435 563 }
duke@435 564
duke@435 565 return rematerialize;
duke@435 566 }
duke@435 567
duke@435 568 // loads from memory, so must check for anti-dependence
duke@435 569 bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
duke@435 570 // Machine independent loads must be checked for anti-dependences
duke@435 571 if( is_ideal_load() != Form::none ) return true;
duke@435 572
duke@435 573 // !!!!! !!!!! !!!!!
duke@435 574 // TEMPORARY
duke@435 575 // if( is_simple_chain_rule(globals) ) return false;
duke@435 576
duke@435 577 // String-compare uses many memorys edges, but writes none
duke@435 578 if( _matrule && _matrule->_rChild &&
duke@435 579 strcmp(_matrule->_rChild->_opType,"StrComp")==0 )
duke@435 580 return true;
duke@435 581
duke@435 582 // Check if instruction has a USE of a memory operand class, but no defs
duke@435 583 bool USE_of_memory = false;
duke@435 584 bool DEF_of_memory = false;
duke@435 585 Component *comp = NULL;
duke@435 586 ComponentList &components = (ComponentList &)_components;
duke@435 587
duke@435 588 components.reset();
duke@435 589 while( (comp = components.iter()) != NULL ) {
duke@435 590 const Form *form = globals[comp->_type];
duke@435 591 if( !form ) continue;
duke@435 592 OpClassForm *op = form->is_opclass();
duke@435 593 if( !op ) continue;
duke@435 594 if( form->interface_type(globals) == Form::memory_interface ) {
duke@435 595 if( comp->isa(Component::USE) ) USE_of_memory = true;
duke@435 596 if( comp->isa(Component::DEF) ) {
duke@435 597 OperandForm *oper = form->is_operand();
duke@435 598 if( oper && oper->is_user_name_for_sReg() ) {
duke@435 599 // Stack slots are unaliased memory handled by allocator
duke@435 600 oper = oper; // debug stopping point !!!!!
duke@435 601 } else {
duke@435 602 DEF_of_memory = true;
duke@435 603 }
duke@435 604 }
duke@435 605 }
duke@435 606 }
duke@435 607 return (USE_of_memory && !DEF_of_memory);
duke@435 608 }
duke@435 609
duke@435 610
duke@435 611 bool InstructForm::is_wide_memory_kill(FormDict &globals) const {
duke@435 612 if( _matrule == NULL ) return false;
duke@435 613 if( !_matrule->_opType ) return false;
duke@435 614
duke@435 615 if( strcmp(_matrule->_opType,"MemBarRelease") == 0 ) return true;
duke@435 616 if( strcmp(_matrule->_opType,"MemBarAcquire") == 0 ) return true;
duke@435 617
duke@435 618 return false;
duke@435 619 }
duke@435 620
duke@435 621 int InstructForm::memory_operand(FormDict &globals) const {
duke@435 622 // Machine independent loads must be checked for anti-dependences
duke@435 623 // Check if instruction has a USE of a memory operand class, or a def.
duke@435 624 int USE_of_memory = 0;
duke@435 625 int DEF_of_memory = 0;
duke@435 626 const char* last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
duke@435 627 Component *unique = NULL;
duke@435 628 Component *comp = NULL;
duke@435 629 ComponentList &components = (ComponentList &)_components;
duke@435 630
duke@435 631 components.reset();
duke@435 632 while( (comp = components.iter()) != NULL ) {
duke@435 633 const Form *form = globals[comp->_type];
duke@435 634 if( !form ) continue;
duke@435 635 OpClassForm *op = form->is_opclass();
duke@435 636 if( !op ) continue;
duke@435 637 if( op->stack_slots_only(globals) ) continue;
duke@435 638 if( form->interface_type(globals) == Form::memory_interface ) {
duke@435 639 if( comp->isa(Component::DEF) ) {
duke@435 640 last_memory_DEF = comp->_name;
duke@435 641 DEF_of_memory++;
duke@435 642 unique = comp;
duke@435 643 } else if( comp->isa(Component::USE) ) {
duke@435 644 if( last_memory_DEF != NULL ) {
duke@435 645 assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
duke@435 646 last_memory_DEF = NULL;
duke@435 647 }
duke@435 648 USE_of_memory++;
duke@435 649 if (DEF_of_memory == 0) // defs take precedence
duke@435 650 unique = comp;
duke@435 651 } else {
duke@435 652 assert(last_memory_DEF == NULL, "unpaired memory DEF");
duke@435 653 }
duke@435 654 }
duke@435 655 }
duke@435 656 assert(last_memory_DEF == NULL, "unpaired memory DEF");
duke@435 657 assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
duke@435 658 USE_of_memory -= DEF_of_memory; // treat paired DEF/USE as one occurrence
duke@435 659 if( (USE_of_memory + DEF_of_memory) > 0 ) {
duke@435 660 if( is_simple_chain_rule(globals) ) {
duke@435 661 //fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
duke@435 662 //((InstructForm*)this)->dump();
duke@435 663 // Preceding code prints nothing on sparc and these insns on intel:
duke@435 664 // leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
duke@435 665 // leaPIdxOff leaPIdxScale leaPIdxScaleOff
duke@435 666 return NO_MEMORY_OPERAND;
duke@435 667 }
duke@435 668
duke@435 669 if( DEF_of_memory == 1 ) {
duke@435 670 assert(unique != NULL, "");
duke@435 671 if( USE_of_memory == 0 ) {
duke@435 672 // unique def, no uses
duke@435 673 } else {
duke@435 674 // // unique def, some uses
duke@435 675 // // must return bottom unless all uses match def
duke@435 676 // unique = NULL;
duke@435 677 }
duke@435 678 } else if( DEF_of_memory > 0 ) {
duke@435 679 // multiple defs, don't care about uses
duke@435 680 unique = NULL;
duke@435 681 } else if( USE_of_memory == 1) {
duke@435 682 // unique use, no defs
duke@435 683 assert(unique != NULL, "");
duke@435 684 } else if( USE_of_memory > 0 ) {
duke@435 685 // multiple uses, no defs
duke@435 686 unique = NULL;
duke@435 687 } else {
duke@435 688 assert(false, "bad case analysis");
duke@435 689 }
duke@435 690 // process the unique DEF or USE, if there is one
duke@435 691 if( unique == NULL ) {
duke@435 692 return MANY_MEMORY_OPERANDS;
duke@435 693 } else {
duke@435 694 int pos = components.operand_position(unique->_name);
duke@435 695 if( unique->isa(Component::DEF) ) {
duke@435 696 pos += 1; // get corresponding USE from DEF
duke@435 697 }
duke@435 698 assert(pos >= 1, "I was just looking at it!");
duke@435 699 return pos;
duke@435 700 }
duke@435 701 }
duke@435 702
duke@435 703 // missed the memory op??
duke@435 704 if( true ) { // %%% should not be necessary
duke@435 705 if( is_ideal_store() != Form::none ) {
duke@435 706 fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
duke@435 707 ((InstructForm*)this)->dump();
duke@435 708 // pretend it has multiple defs and uses
duke@435 709 return MANY_MEMORY_OPERANDS;
duke@435 710 }
duke@435 711 if( is_ideal_load() != Form::none ) {
duke@435 712 fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
duke@435 713 ((InstructForm*)this)->dump();
duke@435 714 // pretend it has multiple uses and no defs
duke@435 715 return MANY_MEMORY_OPERANDS;
duke@435 716 }
duke@435 717 }
duke@435 718
duke@435 719 return NO_MEMORY_OPERAND;
duke@435 720 }
duke@435 721
duke@435 722
duke@435 723 // This instruction captures the machine-independent bottom_type
duke@435 724 // Expected use is for pointer vs oop determination for LoadP
duke@435 725 bool InstructForm::captures_bottom_type() const {
duke@435 726 if( _matrule && _matrule->_rChild &&
duke@435 727 (!strcmp(_matrule->_rChild->_opType,"CastPP") || // new result type
duke@435 728 !strcmp(_matrule->_rChild->_opType,"CastX2P") || // new result type
coleenp@548 729 !strcmp(_matrule->_rChild->_opType,"DecodeN") ||
coleenp@548 730 !strcmp(_matrule->_rChild->_opType,"EncodeP") ||
coleenp@548 731 !strcmp(_matrule->_rChild->_opType,"LoadN") ||
kvn@651 732 !strcmp(_matrule->_rChild->_opType,"LoadNKlass") ||
duke@435 733 !strcmp(_matrule->_rChild->_opType,"CreateEx") || // type of exception
duke@435 734 !strcmp(_matrule->_rChild->_opType,"CheckCastPP")) ) return true;
duke@435 735 else if ( is_ideal_load() == Form::idealP ) return true;
duke@435 736 else if ( is_ideal_store() != Form::none ) return true;
duke@435 737
duke@435 738 return false;
duke@435 739 }
duke@435 740
duke@435 741
duke@435 742 // Access instr_cost attribute or return NULL.
duke@435 743 const char* InstructForm::cost() {
duke@435 744 for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
duke@435 745 if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
duke@435 746 return cur->_val;
duke@435 747 }
duke@435 748 }
duke@435 749 return NULL;
duke@435 750 }
duke@435 751
duke@435 752 // Return count of top-level operands.
duke@435 753 uint InstructForm::num_opnds() {
duke@435 754 int num_opnds = _components.num_operands();
duke@435 755
duke@435 756 // Need special handling for matching some ideal nodes
duke@435 757 // i.e. Matching a return node
duke@435 758 /*
duke@435 759 if( _matrule ) {
duke@435 760 if( strcmp(_matrule->_opType,"Return" )==0 ||
duke@435 761 strcmp(_matrule->_opType,"Halt" )==0 )
duke@435 762 return 3;
duke@435 763 }
duke@435 764 */
duke@435 765 return num_opnds;
duke@435 766 }
duke@435 767
duke@435 768 // Return count of unmatched operands.
duke@435 769 uint InstructForm::num_post_match_opnds() {
duke@435 770 uint num_post_match_opnds = _components.count();
duke@435 771 uint num_match_opnds = _components.match_count();
duke@435 772 num_post_match_opnds = num_post_match_opnds - num_match_opnds;
duke@435 773
duke@435 774 return num_post_match_opnds;
duke@435 775 }
duke@435 776
duke@435 777 // Return the number of leaves below this complex operand
duke@435 778 uint InstructForm::num_consts(FormDict &globals) const {
duke@435 779 if ( ! _matrule) return 0;
duke@435 780
duke@435 781 // This is a recursive invocation on all operands in the matchrule
duke@435 782 return _matrule->num_consts(globals);
duke@435 783 }
duke@435 784
duke@435 785 // Constants in match rule with specified type
duke@435 786 uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
duke@435 787 if ( ! _matrule) return 0;
duke@435 788
duke@435 789 // This is a recursive invocation on all operands in the matchrule
duke@435 790 return _matrule->num_consts(globals, type);
duke@435 791 }
duke@435 792
duke@435 793
duke@435 794 // Return the register class associated with 'leaf'.
duke@435 795 const char *InstructForm::out_reg_class(FormDict &globals) {
duke@435 796 assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");
duke@435 797
duke@435 798 return NULL;
duke@435 799 }
duke@435 800
duke@435 801
duke@435 802
duke@435 803 // Lookup the starting position of inputs we are interested in wrt. ideal nodes
duke@435 804 uint InstructForm::oper_input_base(FormDict &globals) {
duke@435 805 if( !_matrule ) return 1; // Skip control for most nodes
duke@435 806
duke@435 807 // Need special handling for matching some ideal nodes
duke@435 808 // i.e. Matching a return node
duke@435 809 if( strcmp(_matrule->_opType,"Return" )==0 ||
duke@435 810 strcmp(_matrule->_opType,"Rethrow" )==0 ||
duke@435 811 strcmp(_matrule->_opType,"TailCall" )==0 ||
duke@435 812 strcmp(_matrule->_opType,"TailJump" )==0 ||
duke@435 813 strcmp(_matrule->_opType,"SafePoint" )==0 ||
duke@435 814 strcmp(_matrule->_opType,"Halt" )==0 )
duke@435 815 return AdlcVMDeps::Parms; // Skip the machine-state edges
duke@435 816
duke@435 817 if( _matrule->_rChild &&
duke@435 818 strcmp(_matrule->_rChild->_opType,"StrComp")==0 ) {
duke@435 819 // String compare takes 1 control and 4 memory edges.
duke@435 820 return 5;
duke@435 821 }
duke@435 822
duke@435 823 // Check for handling of 'Memory' input/edge in the ideal world.
duke@435 824 // The AD file writer is shielded from knowledge of these edges.
duke@435 825 int base = 1; // Skip control
duke@435 826 base += _matrule->needs_ideal_memory_edge(globals);
duke@435 827
duke@435 828 // Also skip the base-oop value for uses of derived oops.
duke@435 829 // The AD file writer is shielded from knowledge of these edges.
duke@435 830 base += needs_base_oop_edge(globals);
duke@435 831
duke@435 832 return base;
duke@435 833 }
duke@435 834
duke@435 835 // Implementation does not modify state of internal structures
duke@435 836 void InstructForm::build_components() {
duke@435 837 // Add top-level operands to the components
duke@435 838 if (_matrule) _matrule->append_components(_localNames, _components);
duke@435 839
duke@435 840 // Add parameters that "do not appear in match rule".
duke@435 841 bool has_temp = false;
duke@435 842 const char *name;
duke@435 843 const char *kill_name = NULL;
duke@435 844 for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
duke@435 845 OperandForm *opForm = (OperandForm*)_localNames[name];
duke@435 846
duke@435 847 const Form *form = _effects[name];
duke@435 848 Effect *e = form ? form->is_effect() : NULL;
duke@435 849 if (e != NULL) {
duke@435 850 has_temp |= e->is(Component::TEMP);
duke@435 851
duke@435 852 // KILLs must be declared after any TEMPs because TEMPs are real
duke@435 853 // uses so their operand numbering must directly follow the real
duke@435 854 // inputs from the match rule. Fixing the numbering seems
duke@435 855 // complex so simply enforce the restriction during parse.
duke@435 856 if (kill_name != NULL &&
duke@435 857 e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
duke@435 858 OperandForm* kill = (OperandForm*)_localNames[kill_name];
duke@435 859 globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
duke@435 860 _ident, kill->_ident, kill_name);
duke@435 861 } else if (e->isa(Component::KILL)) {
duke@435 862 kill_name = name;
duke@435 863 }
duke@435 864
duke@435 865 // TEMPs are real uses and need to be among the first parameters
duke@435 866 // listed, otherwise the numbering of operands and inputs gets
duke@435 867 // screwy, so enforce this restriction during parse.
duke@435 868 if (kill_name != NULL &&
duke@435 869 e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
duke@435 870 OperandForm* kill = (OperandForm*)_localNames[kill_name];
duke@435 871 globalAD->syntax_err(_linenum, "%s: %s %s must follow %s %s in the argument list\n",
duke@435 872 _ident, kill->_ident, kill_name, opForm->_ident, name);
duke@435 873 } else if (e->isa(Component::KILL)) {
duke@435 874 kill_name = name;
duke@435 875 }
duke@435 876 }
duke@435 877
duke@435 878 const Component *component = _components.search(name);
duke@435 879 if ( component == NULL ) {
duke@435 880 if (e) {
duke@435 881 _components.insert(name, opForm->_ident, e->_use_def, false);
duke@435 882 component = _components.search(name);
duke@435 883 if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
duke@435 884 const Form *form = globalAD->globalNames()[component->_type];
duke@435 885 assert( form, "component type must be a defined form");
duke@435 886 OperandForm *op = form->is_operand();
duke@435 887 if (op->_interface && op->_interface->is_RegInterface()) {
duke@435 888 globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
duke@435 889 _ident, opForm->_ident, name);
duke@435 890 }
duke@435 891 }
duke@435 892 } else {
duke@435 893 // This would be a nice warning but it triggers in a few places in a benign way
duke@435 894 // if (_matrule != NULL && !expands()) {
duke@435 895 // globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
duke@435 896 // _ident, opForm->_ident, name);
duke@435 897 // }
duke@435 898 _components.insert(name, opForm->_ident, Component::INVALID, false);
duke@435 899 }
duke@435 900 }
duke@435 901 else if (e) {
duke@435 902 // Component was found in the list
duke@435 903 // Check if there is a new effect that requires an extra component.
duke@435 904 // This happens when adding 'USE' to a component that is not yet one.
duke@435 905 if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
duke@435 906 if (component->isa(Component::USE) && _matrule) {
duke@435 907 const Form *form = globalAD->globalNames()[component->_type];
duke@435 908 assert( form, "component type must be a defined form");
duke@435 909 OperandForm *op = form->is_operand();
duke@435 910 if (op->_interface && op->_interface->is_RegInterface()) {
duke@435 911 globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
duke@435 912 _ident, opForm->_ident, name);
duke@435 913 }
duke@435 914 }
duke@435 915 _components.insert(name, opForm->_ident, e->_use_def, false);
duke@435 916 } else {
duke@435 917 Component *comp = (Component*)component;
duke@435 918 comp->promote_use_def_info(e->_use_def);
duke@435 919 }
duke@435 920 // Component positions are zero based.
duke@435 921 int pos = _components.operand_position(name);
duke@435 922 assert( ! (component->isa(Component::DEF) && (pos >= 1)),
duke@435 923 "Component::DEF can only occur in the first position");
duke@435 924 }
duke@435 925 }
duke@435 926
duke@435 927 // Resolving the interactions between expand rules and TEMPs would
duke@435 928 // be complex so simply disallow it.
duke@435 929 if (_matrule == NULL && has_temp) {
duke@435 930 globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
duke@435 931 }
duke@435 932
duke@435 933 return;
duke@435 934 }
duke@435 935
duke@435 936 // Return zero-based position in component list; -1 if not in list.
duke@435 937 int InstructForm::operand_position(const char *name, int usedef) {
duke@435 938 return unique_opnds_idx(_components.operand_position(name, usedef));
duke@435 939 }
duke@435 940
duke@435 941 int InstructForm::operand_position_format(const char *name) {
duke@435 942 return unique_opnds_idx(_components.operand_position_format(name));
duke@435 943 }
duke@435 944
duke@435 945 // Return zero-based position in component list; -1 if not in list.
duke@435 946 int InstructForm::label_position() {
duke@435 947 return unique_opnds_idx(_components.label_position());
duke@435 948 }
duke@435 949
duke@435 950 int InstructForm::method_position() {
duke@435 951 return unique_opnds_idx(_components.method_position());
duke@435 952 }
duke@435 953
duke@435 954 // Return number of relocation entries needed for this instruction.
duke@435 955 uint InstructForm::reloc(FormDict &globals) {
duke@435 956 uint reloc_entries = 0;
duke@435 957 // Check for "Call" nodes
duke@435 958 if ( is_ideal_call() ) ++reloc_entries;
duke@435 959 if ( is_ideal_return() ) ++reloc_entries;
duke@435 960 if ( is_ideal_safepoint() ) ++reloc_entries;
duke@435 961
duke@435 962
duke@435 963 // Check if operands MAYBE oop pointers, by checking for ConP elements
duke@435 964 // Proceed through the leaves of the match-tree and check for ConPs
duke@435 965 if ( _matrule != NULL ) {
duke@435 966 uint position = 0;
duke@435 967 const char *result = NULL;
duke@435 968 const char *name = NULL;
duke@435 969 const char *opType = NULL;
duke@435 970 while (_matrule->base_operand(position, globals, result, name, opType)) {
duke@435 971 if ( strcmp(opType,"ConP") == 0 ) {
duke@435 972 #ifdef SPARC
duke@435 973 reloc_entries += 2; // 1 for sethi + 1 for setlo
duke@435 974 #else
duke@435 975 ++reloc_entries;
duke@435 976 #endif
duke@435 977 }
duke@435 978 ++position;
duke@435 979 }
duke@435 980 }
duke@435 981
duke@435 982 // Above is only a conservative estimate
duke@435 983 // because it did not check contents of operand classes.
duke@435 984 // !!!!! !!!!!
duke@435 985 // Add 1 to reloc info for each operand class in the component list.
duke@435 986 Component *comp;
duke@435 987 _components.reset();
duke@435 988 while ( (comp = _components.iter()) != NULL ) {
duke@435 989 const Form *form = globals[comp->_type];
duke@435 990 assert( form, "Did not find component's type in global names");
duke@435 991 const OpClassForm *opc = form->is_opclass();
duke@435 992 const OperandForm *oper = form->is_operand();
duke@435 993 if ( opc && (oper == NULL) ) {
duke@435 994 ++reloc_entries;
duke@435 995 } else if ( oper ) {
duke@435 996 // floats and doubles loaded out of method's constant pool require reloc info
duke@435 997 Form::DataType type = oper->is_base_constant(globals);
duke@435 998 if ( (type == Form::idealF) || (type == Form::idealD) ) {
duke@435 999 ++reloc_entries;
duke@435 1000 }
duke@435 1001 }
duke@435 1002 }
duke@435 1003
duke@435 1004 // Float and Double constants may come from the CodeBuffer table
duke@435 1005 // and require relocatable addresses for access
duke@435 1006 // !!!!!
duke@435 1007 // Check for any component being an immediate float or double.
duke@435 1008 Form::DataType data_type = is_chain_of_constant(globals);
duke@435 1009 if( data_type==idealD || data_type==idealF ) {
duke@435 1010 #ifdef SPARC
duke@435 1011 // sparc required more relocation entries for floating constants
duke@435 1012 // (expires 9/98)
duke@435 1013 reloc_entries += 6;
duke@435 1014 #else
duke@435 1015 reloc_entries++;
duke@435 1016 #endif
duke@435 1017 }
duke@435 1018
duke@435 1019 return reloc_entries;
duke@435 1020 }
duke@435 1021
duke@435 1022 // Utility function defined in archDesc.cpp
duke@435 1023 extern bool is_def(int usedef);
duke@435 1024
duke@435 1025 // Return the result of reducing an instruction
duke@435 1026 const char *InstructForm::reduce_result() {
duke@435 1027 const char* result = "Universe"; // default
duke@435 1028 _components.reset();
duke@435 1029 Component *comp = _components.iter();
duke@435 1030 if (comp != NULL && comp->isa(Component::DEF)) {
duke@435 1031 result = comp->_type;
duke@435 1032 // Override this if the rule is a store operation:
duke@435 1033 if (_matrule && _matrule->_rChild &&
duke@435 1034 is_store_to_memory(_matrule->_rChild->_opType))
duke@435 1035 result = "Universe";
duke@435 1036 }
duke@435 1037 return result;
duke@435 1038 }
duke@435 1039
duke@435 1040 // Return the name of the operand on the right hand side of the binary match
duke@435 1041 // Return NULL if there is no right hand side
duke@435 1042 const char *InstructForm::reduce_right(FormDict &globals) const {
duke@435 1043 if( _matrule == NULL ) return NULL;
duke@435 1044 return _matrule->reduce_right(globals);
duke@435 1045 }
duke@435 1046
duke@435 1047 // Similar for left
duke@435 1048 const char *InstructForm::reduce_left(FormDict &globals) const {
duke@435 1049 if( _matrule == NULL ) return NULL;
duke@435 1050 return _matrule->reduce_left(globals);
duke@435 1051 }
duke@435 1052
duke@435 1053
duke@435 1054 // Base class for this instruction, MachNode except for calls
duke@435 1055 const char *InstructForm::mach_base_class() const {
duke@435 1056 if( is_ideal_call() == Form::JAVA_STATIC ) {
duke@435 1057 return "MachCallStaticJavaNode";
duke@435 1058 }
duke@435 1059 else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
duke@435 1060 return "MachCallDynamicJavaNode";
duke@435 1061 }
duke@435 1062 else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
duke@435 1063 return "MachCallRuntimeNode";
duke@435 1064 }
duke@435 1065 else if( is_ideal_call() == Form::JAVA_LEAF ) {
duke@435 1066 return "MachCallLeafNode";
duke@435 1067 }
duke@435 1068 else if (is_ideal_return()) {
duke@435 1069 return "MachReturnNode";
duke@435 1070 }
duke@435 1071 else if (is_ideal_halt()) {
duke@435 1072 return "MachHaltNode";
duke@435 1073 }
duke@435 1074 else if (is_ideal_safepoint()) {
duke@435 1075 return "MachSafePointNode";
duke@435 1076 }
duke@435 1077 else if (is_ideal_if()) {
duke@435 1078 return "MachIfNode";
duke@435 1079 }
duke@435 1080 else if (is_ideal_fastlock()) {
duke@435 1081 return "MachFastLockNode";
duke@435 1082 }
duke@435 1083 else if (is_ideal_nop()) {
duke@435 1084 return "MachNopNode";
duke@435 1085 }
duke@435 1086 else if (captures_bottom_type()) {
duke@435 1087 return "MachTypeNode";
duke@435 1088 } else {
duke@435 1089 return "MachNode";
duke@435 1090 }
duke@435 1091 assert( false, "ShouldNotReachHere()");
duke@435 1092 return NULL;
duke@435 1093 }
duke@435 1094
duke@435 1095 // Compare the instruction predicates for textual equality
duke@435 1096 bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
duke@435 1097 const Predicate *pred1 = instr1->_predicate;
duke@435 1098 const Predicate *pred2 = instr2->_predicate;
duke@435 1099 if( pred1 == NULL && pred2 == NULL ) {
duke@435 1100 // no predicates means they are identical
duke@435 1101 return true;
duke@435 1102 }
duke@435 1103 if( pred1 != NULL && pred2 != NULL ) {
duke@435 1104 // compare the predicates
duke@435 1105 const char *str1 = pred1->_pred;
duke@435 1106 const char *str2 = pred2->_pred;
duke@435 1107 if( (str1 == NULL && str2 == NULL)
duke@435 1108 || (str1 != NULL && str2 != NULL && strcmp(str1,str2) == 0) ) {
duke@435 1109 return true;
duke@435 1110 }
duke@435 1111 }
duke@435 1112
duke@435 1113 return false;
duke@435 1114 }
duke@435 1115
duke@435 1116 // Check if this instruction can cisc-spill to 'alternate'
duke@435 1117 bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
duke@435 1118 assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
duke@435 1119 // Do not replace if a cisc-version has been found.
duke@435 1120 if( cisc_spill_operand() != Not_cisc_spillable ) return false;
duke@435 1121
duke@435 1122 int cisc_spill_operand = Maybe_cisc_spillable;
duke@435 1123 char *result = NULL;
duke@435 1124 char *result2 = NULL;
duke@435 1125 const char *op_name = NULL;
duke@435 1126 const char *reg_type = NULL;
duke@435 1127 FormDict &globals = AD.globalNames();
duke@435 1128 cisc_spill_operand = _matrule->cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
duke@435 1129 if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
duke@435 1130 cisc_spill_operand = operand_position(op_name, Component::USE);
duke@435 1131 int def_oper = operand_position(op_name, Component::DEF);
duke@435 1132 if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
duke@435 1133 // Do not support cisc-spilling for destination operands and
duke@435 1134 // make sure they have the same number of operands.
duke@435 1135 _cisc_spill_alternate = instr;
duke@435 1136 instr->set_cisc_alternate(true);
duke@435 1137 if( AD._cisc_spill_debug ) {
duke@435 1138 fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
duke@435 1139 fprintf(stderr, " using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
duke@435 1140 }
duke@435 1141 // Record that a stack-version of the reg_mask is needed
duke@435 1142 // !!!!!
duke@435 1143 OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
duke@435 1144 assert( oper != NULL, "cisc-spilling non operand");
duke@435 1145 const char *reg_class_name = oper->constrained_reg_class();
duke@435 1146 AD.set_stack_or_reg(reg_class_name);
duke@435 1147 const char *reg_mask_name = AD.reg_mask(*oper);
duke@435 1148 set_cisc_reg_mask_name(reg_mask_name);
duke@435 1149 const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
duke@435 1150 } else {
duke@435 1151 cisc_spill_operand = Not_cisc_spillable;
duke@435 1152 }
duke@435 1153 } else {
duke@435 1154 cisc_spill_operand = Not_cisc_spillable;
duke@435 1155 }
duke@435 1156
duke@435 1157 set_cisc_spill_operand(cisc_spill_operand);
duke@435 1158 return (cisc_spill_operand != Not_cisc_spillable);
duke@435 1159 }
duke@435 1160
duke@435 1161 // Check to see if this instruction can be replaced with the short branch
duke@435 1162 // instruction `short-branch'
duke@435 1163 bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
duke@435 1164 if (_matrule != NULL &&
duke@435 1165 this != short_branch && // Don't match myself
duke@435 1166 !is_short_branch() && // Don't match another short branch variant
duke@435 1167 reduce_result() != NULL &&
duke@435 1168 strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
duke@435 1169 _matrule->equivalent(AD.globalNames(), short_branch->_matrule)) {
duke@435 1170 // The instructions are equivalent.
duke@435 1171 if (AD._short_branch_debug) {
duke@435 1172 fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
duke@435 1173 }
duke@435 1174 _short_branch_form = short_branch;
duke@435 1175 return true;
duke@435 1176 }
duke@435 1177 return false;
duke@435 1178 }
duke@435 1179
duke@435 1180
duke@435 1181 // --------------------------- FILE *output_routines
duke@435 1182 //
duke@435 1183 // Generate the format call for the replacement variable
duke@435 1184 void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
duke@435 1185 // Find replacement variable's type
duke@435 1186 const Form *form = _localNames[rep_var];
duke@435 1187 if (form == NULL) {
duke@435 1188 fprintf(stderr, "unknown replacement variable in format statement: '%s'\n", rep_var);
duke@435 1189 assert(false, "ShouldNotReachHere()");
duke@435 1190 }
duke@435 1191 OpClassForm *opc = form->is_opclass();
duke@435 1192 assert( opc, "replacement variable was not found in local names");
duke@435 1193 // Lookup the index position of the replacement variable
duke@435 1194 int idx = operand_position_format(rep_var);
duke@435 1195 if ( idx == -1 ) {
duke@435 1196 assert( strcmp(opc->_ident,"label")==0, "Unimplemented");
duke@435 1197 assert( false, "ShouldNotReachHere()");
duke@435 1198 }
duke@435 1199
duke@435 1200 if (is_noninput_operand(idx)) {
duke@435 1201 // This component isn't in the input array. Print out the static
duke@435 1202 // name of the register.
duke@435 1203 OperandForm* oper = form->is_operand();
duke@435 1204 if (oper != NULL && oper->is_bound_register()) {
duke@435 1205 const RegDef* first = oper->get_RegClass()->find_first_elem();
duke@435 1206 fprintf(fp, " tty->print(\"%s\");\n", first->_regname);
duke@435 1207 } else {
duke@435 1208 globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
duke@435 1209 }
duke@435 1210 } else {
duke@435 1211 // Output the format call for this operand
duke@435 1212 fprintf(fp,"opnd_array(%d)->",idx);
duke@435 1213 if (idx == 0)
duke@435 1214 fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
duke@435 1215 else
duke@435 1216 fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
duke@435 1217 }
duke@435 1218 }
duke@435 1219
duke@435 1220 // Seach through operands to determine parameters unique positions.
duke@435 1221 void InstructForm::set_unique_opnds() {
duke@435 1222 uint* uniq_idx = NULL;
duke@435 1223 uint nopnds = num_opnds();
duke@435 1224 uint num_uniq = nopnds;
duke@435 1225 uint i;
duke@435 1226 if ( nopnds > 0 ) {
duke@435 1227 // Allocate index array with reserve.
duke@435 1228 uniq_idx = (uint*) malloc(sizeof(uint)*(nopnds + 2));
duke@435 1229 for( i = 0; i < nopnds+2; i++ ) {
duke@435 1230 uniq_idx[i] = i;
duke@435 1231 }
duke@435 1232 }
duke@435 1233 // Do it only if there is a match rule and no expand rule. With an
duke@435 1234 // expand rule it is done by creating new mach node in Expand()
duke@435 1235 // method.
duke@435 1236 if ( nopnds > 0 && _matrule != NULL && _exprule == NULL ) {
duke@435 1237 const char *name;
duke@435 1238 uint count;
duke@435 1239 bool has_dupl_use = false;
duke@435 1240
duke@435 1241 _parameters.reset();
duke@435 1242 while( (name = _parameters.iter()) != NULL ) {
duke@435 1243 count = 0;
duke@435 1244 uint position = 0;
duke@435 1245 uint uniq_position = 0;
duke@435 1246 _components.reset();
duke@435 1247 Component *comp = NULL;
duke@435 1248 if( sets_result() ) {
duke@435 1249 comp = _components.iter();
duke@435 1250 position++;
duke@435 1251 }
duke@435 1252 // The next code is copied from the method operand_position().
duke@435 1253 for (; (comp = _components.iter()) != NULL; ++position) {
duke@435 1254 // When the first component is not a DEF,
duke@435 1255 // leave space for the result operand!
duke@435 1256 if ( position==0 && (! comp->isa(Component::DEF)) ) {
duke@435 1257 ++position;
duke@435 1258 }
duke@435 1259 if( strcmp(name, comp->_name)==0 ) {
duke@435 1260 if( ++count > 1 ) {
duke@435 1261 uniq_idx[position] = uniq_position;
duke@435 1262 has_dupl_use = true;
duke@435 1263 } else {
duke@435 1264 uniq_position = position;
duke@435 1265 }
duke@435 1266 }
duke@435 1267 if( comp->isa(Component::DEF)
duke@435 1268 && comp->isa(Component::USE) ) {
duke@435 1269 ++position;
duke@435 1270 if( position != 1 )
duke@435 1271 --position; // only use two slots for the 1st USE_DEF
duke@435 1272 }
duke@435 1273 }
duke@435 1274 }
duke@435 1275 if( has_dupl_use ) {
duke@435 1276 for( i = 1; i < nopnds; i++ )
duke@435 1277 if( i != uniq_idx[i] )
duke@435 1278 break;
duke@435 1279 int j = i;
duke@435 1280 for( ; i < nopnds; i++ )
duke@435 1281 if( i == uniq_idx[i] )
duke@435 1282 uniq_idx[i] = j++;
duke@435 1283 num_uniq = j;
duke@435 1284 }
duke@435 1285 }
duke@435 1286 _uniq_idx = uniq_idx;
duke@435 1287 _num_uniq = num_uniq;
duke@435 1288 }
duke@435 1289
duke@435 1290 // Generate index values needed for determing the operand position
duke@435 1291 void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
duke@435 1292 uint idx = 0; // position of operand in match rule
duke@435 1293 int cur_num_opnds = num_opnds();
duke@435 1294
duke@435 1295 // Compute the index into vector of operand pointers:
duke@435 1296 // idx0=0 is used to indicate that info comes from this same node, not from input edge.
duke@435 1297 // idx1 starts at oper_input_base()
duke@435 1298 if ( cur_num_opnds >= 1 ) {
duke@435 1299 fprintf(fp," // Start at oper_input_base() and count operands\n");
duke@435 1300 fprintf(fp," unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
duke@435 1301 fprintf(fp," unsigned %sidx1 = %d;\n", prefix, oper_input_base(globals));
duke@435 1302
duke@435 1303 // Generate starting points for other unique operands if they exist
duke@435 1304 for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
duke@435 1305 if( *receiver == 0 ) {
duke@435 1306 fprintf(fp," unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();\n",
duke@435 1307 prefix, idx, prefix, idx-1, idx-1 );
duke@435 1308 } else {
duke@435 1309 fprintf(fp," unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();\n",
duke@435 1310 prefix, idx, prefix, idx-1, receiver, idx-1 );
duke@435 1311 }
duke@435 1312 }
duke@435 1313 }
duke@435 1314 if( *receiver != 0 ) {
duke@435 1315 // This value is used by generate_peepreplace when copying a node.
duke@435 1316 // Don't emit it in other cases since it can hide bugs with the
duke@435 1317 // use invalid idx's.
duke@435 1318 fprintf(fp," unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
duke@435 1319 }
duke@435 1320
duke@435 1321 }
duke@435 1322
duke@435 1323 // ---------------------------
duke@435 1324 bool InstructForm::verify() {
duke@435 1325 // !!!!! !!!!!
duke@435 1326 // Check that a "label" operand occurs last in the operand list, if present
duke@435 1327 return true;
duke@435 1328 }
duke@435 1329
duke@435 1330 void InstructForm::dump() {
duke@435 1331 output(stderr);
duke@435 1332 }
duke@435 1333
duke@435 1334 void InstructForm::output(FILE *fp) {
duke@435 1335 fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
duke@435 1336 if (_matrule) _matrule->output(fp);
duke@435 1337 if (_insencode) _insencode->output(fp);
duke@435 1338 if (_opcode) _opcode->output(fp);
duke@435 1339 if (_attribs) _attribs->output(fp);
duke@435 1340 if (_predicate) _predicate->output(fp);
duke@435 1341 if (_effects.Size()) {
duke@435 1342 fprintf(fp,"Effects\n");
duke@435 1343 _effects.dump();
duke@435 1344 }
duke@435 1345 if (_exprule) _exprule->output(fp);
duke@435 1346 if (_rewrule) _rewrule->output(fp);
duke@435 1347 if (_format) _format->output(fp);
duke@435 1348 if (_peephole) _peephole->output(fp);
duke@435 1349 }
duke@435 1350
duke@435 1351 void MachNodeForm::dump() {
duke@435 1352 output(stderr);
duke@435 1353 }
duke@435 1354
duke@435 1355 void MachNodeForm::output(FILE *fp) {
duke@435 1356 fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
duke@435 1357 }
duke@435 1358
duke@435 1359 //------------------------------build_predicate--------------------------------
duke@435 1360 // Build instruction predicates. If the user uses the same operand name
duke@435 1361 // twice, we need to check that the operands are pointer-eequivalent in
duke@435 1362 // the DFA during the labeling process.
duke@435 1363 Predicate *InstructForm::build_predicate() {
duke@435 1364 char buf[1024], *s=buf;
duke@435 1365 Dict names(cmpstr,hashstr,Form::arena); // Map Names to counts
duke@435 1366
duke@435 1367 MatchNode *mnode =
duke@435 1368 strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
duke@435 1369 mnode->count_instr_names(names);
duke@435 1370
duke@435 1371 uint first = 1;
duke@435 1372 // Start with the predicate supplied in the .ad file.
duke@435 1373 if( _predicate ) {
duke@435 1374 if( first ) first=0;
duke@435 1375 strcpy(s,"("); s += strlen(s);
duke@435 1376 strcpy(s,_predicate->_pred);
duke@435 1377 s += strlen(s);
duke@435 1378 strcpy(s,")"); s += strlen(s);
duke@435 1379 }
duke@435 1380 for( DictI i(&names); i.test(); ++i ) {
duke@435 1381 uintptr_t cnt = (uintptr_t)i._value;
duke@435 1382 if( cnt > 1 ) { // Need a predicate at all?
duke@435 1383 assert( cnt == 2, "Unimplemented" );
duke@435 1384 // Handle many pairs
duke@435 1385 if( first ) first=0;
duke@435 1386 else { // All tests must pass, so use '&&'
duke@435 1387 strcpy(s," && ");
duke@435 1388 s += strlen(s);
duke@435 1389 }
duke@435 1390 // Add predicate to working buffer
duke@435 1391 sprintf(s,"/*%s*/(",(char*)i._key);
duke@435 1392 s += strlen(s);
duke@435 1393 mnode->build_instr_pred(s,(char*)i._key,0);
duke@435 1394 s += strlen(s);
duke@435 1395 strcpy(s," == "); s += strlen(s);
duke@435 1396 mnode->build_instr_pred(s,(char*)i._key,1);
duke@435 1397 s += strlen(s);
duke@435 1398 strcpy(s,")"); s += strlen(s);
duke@435 1399 }
duke@435 1400 }
duke@435 1401 if( s == buf ) s = NULL;
duke@435 1402 else {
duke@435 1403 assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
duke@435 1404 s = strdup(buf);
duke@435 1405 }
duke@435 1406 return new Predicate(s);
duke@435 1407 }
duke@435 1408
duke@435 1409 //------------------------------EncodeForm-------------------------------------
duke@435 1410 // Constructor
duke@435 1411 EncodeForm::EncodeForm()
duke@435 1412 : _encClass(cmpstr,hashstr, Form::arena) {
duke@435 1413 }
duke@435 1414 EncodeForm::~EncodeForm() {
duke@435 1415 }
duke@435 1416
duke@435 1417 // record a new register class
duke@435 1418 EncClass *EncodeForm::add_EncClass(const char *className) {
duke@435 1419 EncClass *encClass = new EncClass(className);
duke@435 1420 _eclasses.addName(className);
duke@435 1421 _encClass.Insert(className,encClass);
duke@435 1422 return encClass;
duke@435 1423 }
duke@435 1424
duke@435 1425 // Lookup the function body for an encoding class
duke@435 1426 EncClass *EncodeForm::encClass(const char *className) {
duke@435 1427 assert( className != NULL, "Must provide a defined encoding name");
duke@435 1428
duke@435 1429 EncClass *encClass = (EncClass*)_encClass[className];
duke@435 1430 return encClass;
duke@435 1431 }
duke@435 1432
duke@435 1433 // Lookup the function body for an encoding class
duke@435 1434 const char *EncodeForm::encClassBody(const char *className) {
duke@435 1435 if( className == NULL ) return NULL;
duke@435 1436
duke@435 1437 EncClass *encClass = (EncClass*)_encClass[className];
duke@435 1438 assert( encClass != NULL, "Encode Class is missing.");
duke@435 1439 encClass->_code.reset();
duke@435 1440 const char *code = (const char*)encClass->_code.iter();
duke@435 1441 assert( code != NULL, "Found an empty encode class body.");
duke@435 1442
duke@435 1443 return code;
duke@435 1444 }
duke@435 1445
duke@435 1446 // Lookup the function body for an encoding class
duke@435 1447 const char *EncodeForm::encClassPrototype(const char *className) {
duke@435 1448 assert( className != NULL, "Encode class name must be non NULL.");
duke@435 1449
duke@435 1450 return className;
duke@435 1451 }
duke@435 1452
duke@435 1453 void EncodeForm::dump() { // Debug printer
duke@435 1454 output(stderr);
duke@435 1455 }
duke@435 1456
duke@435 1457 void EncodeForm::output(FILE *fp) { // Write info to output files
duke@435 1458 const char *name;
duke@435 1459 fprintf(fp,"\n");
duke@435 1460 fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
duke@435 1461 for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
duke@435 1462 ((EncClass*)_encClass[name])->output(fp);
duke@435 1463 }
duke@435 1464 fprintf(fp,"-------------------- end EncodeForm --------------------\n");
duke@435 1465 }
duke@435 1466 //------------------------------EncClass---------------------------------------
duke@435 1467 EncClass::EncClass(const char *name)
duke@435 1468 : _localNames(cmpstr,hashstr, Form::arena), _name(name) {
duke@435 1469 }
duke@435 1470 EncClass::~EncClass() {
duke@435 1471 }
duke@435 1472
duke@435 1473 // Add a parameter <type,name> pair
duke@435 1474 void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
duke@435 1475 _parameter_type.addName( parameter_type );
duke@435 1476 _parameter_name.addName( parameter_name );
duke@435 1477 }
duke@435 1478
duke@435 1479 // Verify operand types in parameter list
duke@435 1480 bool EncClass::check_parameter_types(FormDict &globals) {
duke@435 1481 // !!!!!
duke@435 1482 return false;
duke@435 1483 }
duke@435 1484
duke@435 1485 // Add the decomposed "code" sections of an encoding's code-block
duke@435 1486 void EncClass::add_code(const char *code) {
duke@435 1487 _code.addName(code);
duke@435 1488 }
duke@435 1489
duke@435 1490 // Add the decomposed "replacement variables" of an encoding's code-block
duke@435 1491 void EncClass::add_rep_var(char *replacement_var) {
duke@435 1492 _code.addName(NameList::_signal);
duke@435 1493 _rep_vars.addName(replacement_var);
duke@435 1494 }
duke@435 1495
duke@435 1496 // Lookup the function body for an encoding class
duke@435 1497 int EncClass::rep_var_index(const char *rep_var) {
duke@435 1498 uint position = 0;
duke@435 1499 const char *name = NULL;
duke@435 1500
duke@435 1501 _parameter_name.reset();
duke@435 1502 while ( (name = _parameter_name.iter()) != NULL ) {
duke@435 1503 if ( strcmp(rep_var,name) == 0 ) return position;
duke@435 1504 ++position;
duke@435 1505 }
duke@435 1506
duke@435 1507 return -1;
duke@435 1508 }
duke@435 1509
duke@435 1510 // Check after parsing
duke@435 1511 bool EncClass::verify() {
duke@435 1512 // 1!!!!
duke@435 1513 // Check that each replacement variable, '$name' in architecture description
duke@435 1514 // is actually a local variable for this encode class, or a reserved name
duke@435 1515 // "primary, secondary, tertiary"
duke@435 1516 return true;
duke@435 1517 }
duke@435 1518
duke@435 1519 void EncClass::dump() {
duke@435 1520 output(stderr);
duke@435 1521 }
duke@435 1522
duke@435 1523 // Write info to output files
duke@435 1524 void EncClass::output(FILE *fp) {
duke@435 1525 fprintf(fp,"EncClass: %s", (_name ? _name : ""));
duke@435 1526
duke@435 1527 // Output the parameter list
duke@435 1528 _parameter_type.reset();
duke@435 1529 _parameter_name.reset();
duke@435 1530 const char *type = _parameter_type.iter();
duke@435 1531 const char *name = _parameter_name.iter();
duke@435 1532 fprintf(fp, " ( ");
duke@435 1533 for ( ; (type != NULL) && (name != NULL);
duke@435 1534 (type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
duke@435 1535 fprintf(fp, " %s %s,", type, name);
duke@435 1536 }
duke@435 1537 fprintf(fp, " ) ");
duke@435 1538
duke@435 1539 // Output the code block
duke@435 1540 _code.reset();
duke@435 1541 _rep_vars.reset();
duke@435 1542 const char *code;
duke@435 1543 while ( (code = _code.iter()) != NULL ) {
duke@435 1544 if ( _code.is_signal(code) ) {
duke@435 1545 // A replacement variable
duke@435 1546 const char *rep_var = _rep_vars.iter();
duke@435 1547 fprintf(fp,"($%s)", rep_var);
duke@435 1548 } else {
duke@435 1549 // A section of code
duke@435 1550 fprintf(fp,"%s", code);
duke@435 1551 }
duke@435 1552 }
duke@435 1553
duke@435 1554 }
duke@435 1555
duke@435 1556 //------------------------------Opcode-----------------------------------------
duke@435 1557 Opcode::Opcode(char *primary, char *secondary, char *tertiary)
duke@435 1558 : _primary(primary), _secondary(secondary), _tertiary(tertiary) {
duke@435 1559 }
duke@435 1560
duke@435 1561 Opcode::~Opcode() {
duke@435 1562 }
duke@435 1563
duke@435 1564 Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
duke@435 1565 if( strcmp(param,"primary") == 0 ) {
duke@435 1566 return Opcode::PRIMARY;
duke@435 1567 }
duke@435 1568 else if( strcmp(param,"secondary") == 0 ) {
duke@435 1569 return Opcode::SECONDARY;
duke@435 1570 }
duke@435 1571 else if( strcmp(param,"tertiary") == 0 ) {
duke@435 1572 return Opcode::TERTIARY;
duke@435 1573 }
duke@435 1574 return Opcode::NOT_AN_OPCODE;
duke@435 1575 }
duke@435 1576
duke@435 1577 void Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
duke@435 1578 // Default values previously provided by MachNode::primary()...
duke@435 1579 const char *description = "default_opcode()";
duke@435 1580 const char *value = "-1";
duke@435 1581 // Check if user provided any opcode definitions
duke@435 1582 if( this != NULL ) {
duke@435 1583 // Update 'value' if user provided a definition in the instruction
duke@435 1584 switch (desired_opcode) {
duke@435 1585 case PRIMARY:
duke@435 1586 description = "primary()";
duke@435 1587 if( _primary != NULL) { value = _primary; }
duke@435 1588 break;
duke@435 1589 case SECONDARY:
duke@435 1590 description = "secondary()";
duke@435 1591 if( _secondary != NULL ) { value = _secondary; }
duke@435 1592 break;
duke@435 1593 case TERTIARY:
duke@435 1594 description = "tertiary()";
duke@435 1595 if( _tertiary != NULL ) { value = _tertiary; }
duke@435 1596 break;
duke@435 1597 default:
duke@435 1598 assert( false, "ShouldNotReachHere();");
duke@435 1599 break;
duke@435 1600 }
duke@435 1601 }
duke@435 1602 fprintf(fp, "(%s /*%s*/)", value, description);
duke@435 1603 }
duke@435 1604
duke@435 1605 void Opcode::dump() {
duke@435 1606 output(stderr);
duke@435 1607 }
duke@435 1608
duke@435 1609 // Write info to output files
duke@435 1610 void Opcode::output(FILE *fp) {
duke@435 1611 if (_primary != NULL) fprintf(fp,"Primary opcode: %s\n", _primary);
duke@435 1612 if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
duke@435 1613 if (_tertiary != NULL) fprintf(fp,"Tertiary opcode: %s\n", _tertiary);
duke@435 1614 }
duke@435 1615
duke@435 1616 //------------------------------InsEncode--------------------------------------
duke@435 1617 InsEncode::InsEncode() {
duke@435 1618 }
duke@435 1619 InsEncode::~InsEncode() {
duke@435 1620 }
duke@435 1621
duke@435 1622 // Add "encode class name" and its parameters
duke@435 1623 NameAndList *InsEncode::add_encode(char *encoding) {
duke@435 1624 assert( encoding != NULL, "Must provide name for encoding");
duke@435 1625
duke@435 1626 // add_parameter(NameList::_signal);
duke@435 1627 NameAndList *encode = new NameAndList(encoding);
duke@435 1628 _encoding.addName((char*)encode);
duke@435 1629
duke@435 1630 return encode;
duke@435 1631 }
duke@435 1632
duke@435 1633 // Access the list of encodings
duke@435 1634 void InsEncode::reset() {
duke@435 1635 _encoding.reset();
duke@435 1636 // _parameter.reset();
duke@435 1637 }
duke@435 1638 const char* InsEncode::encode_class_iter() {
duke@435 1639 NameAndList *encode_class = (NameAndList*)_encoding.iter();
duke@435 1640 return ( encode_class != NULL ? encode_class->name() : NULL );
duke@435 1641 }
duke@435 1642 // Obtain parameter name from zero based index
duke@435 1643 const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
duke@435 1644 NameAndList *params = (NameAndList*)_encoding.current();
duke@435 1645 assert( params != NULL, "Internal Error");
duke@435 1646 const char *param = (*params)[param_no];
duke@435 1647
duke@435 1648 // Remove '$' if parser placed it there.
duke@435 1649 return ( param != NULL && *param == '$') ? (param+1) : param;
duke@435 1650 }
duke@435 1651
duke@435 1652 void InsEncode::dump() {
duke@435 1653 output(stderr);
duke@435 1654 }
duke@435 1655
duke@435 1656 // Write info to output files
duke@435 1657 void InsEncode::output(FILE *fp) {
duke@435 1658 NameAndList *encoding = NULL;
duke@435 1659 const char *parameter = NULL;
duke@435 1660
duke@435 1661 fprintf(fp,"InsEncode: ");
duke@435 1662 _encoding.reset();
duke@435 1663
duke@435 1664 while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
duke@435 1665 // Output the encoding being used
duke@435 1666 fprintf(fp,"%s(", encoding->name() );
duke@435 1667
duke@435 1668 // Output its parameter list, if any
duke@435 1669 bool first_param = true;
duke@435 1670 encoding->reset();
duke@435 1671 while ( (parameter = encoding->iter()) != 0 ) {
duke@435 1672 // Output the ',' between parameters
duke@435 1673 if ( ! first_param ) fprintf(fp,", ");
duke@435 1674 first_param = false;
duke@435 1675 // Output the parameter
duke@435 1676 fprintf(fp,"%s", parameter);
duke@435 1677 } // done with parameters
duke@435 1678 fprintf(fp,") ");
duke@435 1679 } // done with encodings
duke@435 1680
duke@435 1681 fprintf(fp,"\n");
duke@435 1682 }
duke@435 1683
duke@435 1684 //------------------------------Effect-----------------------------------------
duke@435 1685 static int effect_lookup(const char *name) {
duke@435 1686 if(!strcmp(name, "USE")) return Component::USE;
duke@435 1687 if(!strcmp(name, "DEF")) return Component::DEF;
duke@435 1688 if(!strcmp(name, "USE_DEF")) return Component::USE_DEF;
duke@435 1689 if(!strcmp(name, "KILL")) return Component::KILL;
duke@435 1690 if(!strcmp(name, "USE_KILL")) return Component::USE_KILL;
duke@435 1691 if(!strcmp(name, "TEMP")) return Component::TEMP;
duke@435 1692 if(!strcmp(name, "INVALID")) return Component::INVALID;
duke@435 1693 assert( false,"Invalid effect name specified\n");
duke@435 1694 return Component::INVALID;
duke@435 1695 }
duke@435 1696
duke@435 1697 Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
duke@435 1698 _ftype = Form::EFF;
duke@435 1699 }
duke@435 1700 Effect::~Effect() {
duke@435 1701 }
duke@435 1702
duke@435 1703 // Dynamic type check
duke@435 1704 Effect *Effect::is_effect() const {
duke@435 1705 return (Effect*)this;
duke@435 1706 }
duke@435 1707
duke@435 1708
duke@435 1709 // True if this component is equal to the parameter.
duke@435 1710 bool Effect::is(int use_def_kill_enum) const {
duke@435 1711 return (_use_def == use_def_kill_enum ? true : false);
duke@435 1712 }
duke@435 1713 // True if this component is used/def'd/kill'd as the parameter suggests.
duke@435 1714 bool Effect::isa(int use_def_kill_enum) const {
duke@435 1715 return (_use_def & use_def_kill_enum) == use_def_kill_enum;
duke@435 1716 }
duke@435 1717
duke@435 1718 void Effect::dump() {
duke@435 1719 output(stderr);
duke@435 1720 }
duke@435 1721
duke@435 1722 void Effect::output(FILE *fp) { // Write info to output files
duke@435 1723 fprintf(fp,"Effect: %s\n", (_name?_name:""));
duke@435 1724 }
duke@435 1725
duke@435 1726 //------------------------------ExpandRule-------------------------------------
duke@435 1727 ExpandRule::ExpandRule() : _expand_instrs(),
duke@435 1728 _newopconst(cmpstr, hashstr, Form::arena) {
duke@435 1729 _ftype = Form::EXP;
duke@435 1730 }
duke@435 1731
duke@435 1732 ExpandRule::~ExpandRule() { // Destructor
duke@435 1733 }
duke@435 1734
duke@435 1735 void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
duke@435 1736 _expand_instrs.addName((char*)instruction_name_and_operand_list);
duke@435 1737 }
duke@435 1738
duke@435 1739 void ExpandRule::reset_instructions() {
duke@435 1740 _expand_instrs.reset();
duke@435 1741 }
duke@435 1742
duke@435 1743 NameAndList* ExpandRule::iter_instructions() {
duke@435 1744 return (NameAndList*)_expand_instrs.iter();
duke@435 1745 }
duke@435 1746
duke@435 1747
duke@435 1748 void ExpandRule::dump() {
duke@435 1749 output(stderr);
duke@435 1750 }
duke@435 1751
duke@435 1752 void ExpandRule::output(FILE *fp) { // Write info to output files
duke@435 1753 NameAndList *expand_instr = NULL;
duke@435 1754 const char *opid = NULL;
duke@435 1755
duke@435 1756 fprintf(fp,"\nExpand Rule:\n");
duke@435 1757
duke@435 1758 // Iterate over the instructions 'node' expands into
duke@435 1759 for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
duke@435 1760 fprintf(fp,"%s(", expand_instr->name());
duke@435 1761
duke@435 1762 // iterate over the operand list
duke@435 1763 for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
duke@435 1764 fprintf(fp,"%s ", opid);
duke@435 1765 }
duke@435 1766 fprintf(fp,");\n");
duke@435 1767 }
duke@435 1768 }
duke@435 1769
duke@435 1770 //------------------------------RewriteRule------------------------------------
duke@435 1771 RewriteRule::RewriteRule(char* params, char* block)
duke@435 1772 : _tempParams(params), _tempBlock(block) { }; // Constructor
duke@435 1773 RewriteRule::~RewriteRule() { // Destructor
duke@435 1774 }
duke@435 1775
duke@435 1776 void RewriteRule::dump() {
duke@435 1777 output(stderr);
duke@435 1778 }
duke@435 1779
duke@435 1780 void RewriteRule::output(FILE *fp) { // Write info to output files
duke@435 1781 fprintf(fp,"\nRewrite Rule:\n%s\n%s\n",
duke@435 1782 (_tempParams?_tempParams:""),
duke@435 1783 (_tempBlock?_tempBlock:""));
duke@435 1784 }
duke@435 1785
duke@435 1786
duke@435 1787 //==============================MachNodes======================================
duke@435 1788 //------------------------------MachNodeForm-----------------------------------
duke@435 1789 MachNodeForm::MachNodeForm(char *id)
duke@435 1790 : _ident(id) {
duke@435 1791 }
duke@435 1792
duke@435 1793 MachNodeForm::~MachNodeForm() {
duke@435 1794 }
duke@435 1795
duke@435 1796 MachNodeForm *MachNodeForm::is_machnode() const {
duke@435 1797 return (MachNodeForm*)this;
duke@435 1798 }
duke@435 1799
duke@435 1800 //==============================Operand Classes================================
duke@435 1801 //------------------------------OpClassForm------------------------------------
duke@435 1802 OpClassForm::OpClassForm(const char* id) : _ident(id) {
duke@435 1803 _ftype = Form::OPCLASS;
duke@435 1804 }
duke@435 1805
duke@435 1806 OpClassForm::~OpClassForm() {
duke@435 1807 }
duke@435 1808
duke@435 1809 bool OpClassForm::ideal_only() const { return 0; }
duke@435 1810
duke@435 1811 OpClassForm *OpClassForm::is_opclass() const {
duke@435 1812 return (OpClassForm*)this;
duke@435 1813 }
duke@435 1814
duke@435 1815 Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
duke@435 1816 if( _oplst.count() == 0 ) return Form::no_interface;
duke@435 1817
duke@435 1818 // Check that my operands have the same interface type
duke@435 1819 Form::InterfaceType interface;
duke@435 1820 bool first = true;
duke@435 1821 NameList &op_list = (NameList &)_oplst;
duke@435 1822 op_list.reset();
duke@435 1823 const char *op_name;
duke@435 1824 while( (op_name = op_list.iter()) != NULL ) {
duke@435 1825 const Form *form = globals[op_name];
duke@435 1826 OperandForm *operand = form->is_operand();
duke@435 1827 assert( operand, "Entry in operand class that is not an operand");
duke@435 1828 if( first ) {
duke@435 1829 first = false;
duke@435 1830 interface = operand->interface_type(globals);
duke@435 1831 } else {
duke@435 1832 interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
duke@435 1833 }
duke@435 1834 }
duke@435 1835 return interface;
duke@435 1836 }
duke@435 1837
duke@435 1838 bool OpClassForm::stack_slots_only(FormDict &globals) const {
duke@435 1839 if( _oplst.count() == 0 ) return false; // how?
duke@435 1840
duke@435 1841 NameList &op_list = (NameList &)_oplst;
duke@435 1842 op_list.reset();
duke@435 1843 const char *op_name;
duke@435 1844 while( (op_name = op_list.iter()) != NULL ) {
duke@435 1845 const Form *form = globals[op_name];
duke@435 1846 OperandForm *operand = form->is_operand();
duke@435 1847 assert( operand, "Entry in operand class that is not an operand");
duke@435 1848 if( !operand->stack_slots_only(globals) ) return false;
duke@435 1849 }
duke@435 1850 return true;
duke@435 1851 }
duke@435 1852
duke@435 1853
duke@435 1854 void OpClassForm::dump() {
duke@435 1855 output(stderr);
duke@435 1856 }
duke@435 1857
duke@435 1858 void OpClassForm::output(FILE *fp) {
duke@435 1859 const char *name;
duke@435 1860 fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
duke@435 1861 fprintf(fp,"\nCount = %d\n", _oplst.count());
duke@435 1862 for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
duke@435 1863 fprintf(fp,"%s, ",name);
duke@435 1864 }
duke@435 1865 fprintf(fp,"\n");
duke@435 1866 }
duke@435 1867
duke@435 1868
duke@435 1869 //==============================Operands=======================================
duke@435 1870 //------------------------------OperandForm------------------------------------
duke@435 1871 OperandForm::OperandForm(const char* id)
duke@435 1872 : OpClassForm(id), _ideal_only(false),
duke@435 1873 _localNames(cmpstr, hashstr, Form::arena) {
duke@435 1874 _ftype = Form::OPER;
duke@435 1875
duke@435 1876 _matrule = NULL;
duke@435 1877 _interface = NULL;
duke@435 1878 _attribs = NULL;
duke@435 1879 _predicate = NULL;
duke@435 1880 _constraint= NULL;
duke@435 1881 _construct = NULL;
duke@435 1882 _format = NULL;
duke@435 1883 }
duke@435 1884 OperandForm::OperandForm(const char* id, bool ideal_only)
duke@435 1885 : OpClassForm(id), _ideal_only(ideal_only),
duke@435 1886 _localNames(cmpstr, hashstr, Form::arena) {
duke@435 1887 _ftype = Form::OPER;
duke@435 1888
duke@435 1889 _matrule = NULL;
duke@435 1890 _interface = NULL;
duke@435 1891 _attribs = NULL;
duke@435 1892 _predicate = NULL;
duke@435 1893 _constraint= NULL;
duke@435 1894 _construct = NULL;
duke@435 1895 _format = NULL;
duke@435 1896 }
duke@435 1897 OperandForm::~OperandForm() {
duke@435 1898 }
duke@435 1899
duke@435 1900
duke@435 1901 OperandForm *OperandForm::is_operand() const {
duke@435 1902 return (OperandForm*)this;
duke@435 1903 }
duke@435 1904
duke@435 1905 bool OperandForm::ideal_only() const {
duke@435 1906 return _ideal_only;
duke@435 1907 }
duke@435 1908
duke@435 1909 Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
duke@435 1910 if( _interface == NULL ) return Form::no_interface;
duke@435 1911
duke@435 1912 return _interface->interface_type(globals);
duke@435 1913 }
duke@435 1914
duke@435 1915
duke@435 1916 bool OperandForm::stack_slots_only(FormDict &globals) const {
duke@435 1917 if( _constraint == NULL ) return false;
duke@435 1918 return _constraint->stack_slots_only();
duke@435 1919 }
duke@435 1920
duke@435 1921
duke@435 1922 // Access op_cost attribute or return NULL.
duke@435 1923 const char* OperandForm::cost() {
duke@435 1924 for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
duke@435 1925 if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
duke@435 1926 return cur->_val;
duke@435 1927 }
duke@435 1928 }
duke@435 1929 return NULL;
duke@435 1930 }
duke@435 1931
duke@435 1932 // Return the number of leaves below this complex operand
duke@435 1933 uint OperandForm::num_leaves() const {
duke@435 1934 if ( ! _matrule) return 0;
duke@435 1935
duke@435 1936 int num_leaves = _matrule->_numleaves;
duke@435 1937 return num_leaves;
duke@435 1938 }
duke@435 1939
duke@435 1940 // Return the number of constants contained within this complex operand
duke@435 1941 uint OperandForm::num_consts(FormDict &globals) const {
duke@435 1942 if ( ! _matrule) return 0;
duke@435 1943
duke@435 1944 // This is a recursive invocation on all operands in the matchrule
duke@435 1945 return _matrule->num_consts(globals);
duke@435 1946 }
duke@435 1947
duke@435 1948 // Return the number of constants in match rule with specified type
duke@435 1949 uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
duke@435 1950 if ( ! _matrule) return 0;
duke@435 1951
duke@435 1952 // This is a recursive invocation on all operands in the matchrule
duke@435 1953 return _matrule->num_consts(globals, type);
duke@435 1954 }
duke@435 1955
duke@435 1956 // Return the number of pointer constants contained within this complex operand
duke@435 1957 uint OperandForm::num_const_ptrs(FormDict &globals) const {
duke@435 1958 if ( ! _matrule) return 0;
duke@435 1959
duke@435 1960 // This is a recursive invocation on all operands in the matchrule
duke@435 1961 return _matrule->num_const_ptrs(globals);
duke@435 1962 }
duke@435 1963
duke@435 1964 uint OperandForm::num_edges(FormDict &globals) const {
duke@435 1965 uint edges = 0;
duke@435 1966 uint leaves = num_leaves();
duke@435 1967 uint consts = num_consts(globals);
duke@435 1968
duke@435 1969 // If we are matching a constant directly, there are no leaves.
duke@435 1970 edges = ( leaves > consts ) ? leaves - consts : 0;
duke@435 1971
duke@435 1972 // !!!!!
duke@435 1973 // Special case operands that do not have a corresponding ideal node.
duke@435 1974 if( (edges == 0) && (consts == 0) ) {
duke@435 1975 if( constrained_reg_class() != NULL ) {
duke@435 1976 edges = 1;
duke@435 1977 } else {
duke@435 1978 if( _matrule
duke@435 1979 && (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
duke@435 1980 const Form *form = globals[_matrule->_opType];
duke@435 1981 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 1982 if( oper ) {
duke@435 1983 return oper->num_edges(globals);
duke@435 1984 }
duke@435 1985 }
duke@435 1986 }
duke@435 1987 }
duke@435 1988
duke@435 1989 return edges;
duke@435 1990 }
duke@435 1991
duke@435 1992
duke@435 1993 // Check if this operand is usable for cisc-spilling
duke@435 1994 bool OperandForm::is_cisc_reg(FormDict &globals) const {
duke@435 1995 const char *ideal = ideal_type(globals);
duke@435 1996 bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
duke@435 1997 return is_cisc_reg;
duke@435 1998 }
duke@435 1999
duke@435 2000 bool OpClassForm::is_cisc_mem(FormDict &globals) const {
duke@435 2001 Form::InterfaceType my_interface = interface_type(globals);
duke@435 2002 return (my_interface == memory_interface);
duke@435 2003 }
duke@435 2004
duke@435 2005
duke@435 2006 // node matches ideal 'Bool'
duke@435 2007 bool OperandForm::is_ideal_bool() const {
duke@435 2008 if( _matrule == NULL ) return false;
duke@435 2009
duke@435 2010 return _matrule->is_ideal_bool();
duke@435 2011 }
duke@435 2012
duke@435 2013 // Require user's name for an sRegX to be stackSlotX
duke@435 2014 Form::DataType OperandForm::is_user_name_for_sReg() const {
duke@435 2015 DataType data_type = none;
duke@435 2016 if( _ident != NULL ) {
duke@435 2017 if( strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
duke@435 2018 else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
duke@435 2019 else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
duke@435 2020 else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
duke@435 2021 else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
duke@435 2022 }
duke@435 2023 assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");
duke@435 2024
duke@435 2025 return data_type;
duke@435 2026 }
duke@435 2027
duke@435 2028
duke@435 2029 // Return ideal type, if there is a single ideal type for this operand
duke@435 2030 const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
duke@435 2031 const char *type = NULL;
duke@435 2032 if (ideal_only()) type = _ident;
duke@435 2033 else if( _matrule == NULL ) {
duke@435 2034 // Check for condition code register
duke@435 2035 const char *rc_name = constrained_reg_class();
duke@435 2036 // !!!!!
duke@435 2037 if (rc_name == NULL) return NULL;
duke@435 2038 // !!!!! !!!!!
duke@435 2039 // Check constraints on result's register class
duke@435 2040 if( registers ) {
duke@435 2041 RegClass *reg_class = registers->getRegClass(rc_name);
duke@435 2042 assert( reg_class != NULL, "Register class is not defined");
duke@435 2043
duke@435 2044 // Check for ideal type of entries in register class, all are the same type
duke@435 2045 reg_class->reset();
duke@435 2046 RegDef *reg_def = reg_class->RegDef_iter();
duke@435 2047 assert( reg_def != NULL, "No entries in register class");
duke@435 2048 assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
duke@435 2049 // Return substring that names the register's ideal type
duke@435 2050 type = reg_def->_idealtype + 3;
duke@435 2051 assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
duke@435 2052 assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
duke@435 2053 assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
duke@435 2054 }
duke@435 2055 }
duke@435 2056 else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
duke@435 2057 // This operand matches a single type, at the top level.
duke@435 2058 // Check for ideal type
duke@435 2059 type = _matrule->_opType;
duke@435 2060 if( strcmp(type,"Bool") == 0 )
duke@435 2061 return "Bool";
duke@435 2062 // transitive lookup
duke@435 2063 const Form *frm = globals[type];
duke@435 2064 OperandForm *op = frm->is_operand();
duke@435 2065 type = op->ideal_type(globals, registers);
duke@435 2066 }
duke@435 2067 return type;
duke@435 2068 }
duke@435 2069
duke@435 2070
duke@435 2071 // If there is a single ideal type for this interface field, return it.
duke@435 2072 const char *OperandForm::interface_ideal_type(FormDict &globals,
duke@435 2073 const char *field) const {
duke@435 2074 const char *ideal_type = NULL;
duke@435 2075 const char *value = NULL;
duke@435 2076
duke@435 2077 // Check if "field" is valid for this operand's interface
duke@435 2078 if ( ! is_interface_field(field, value) ) return ideal_type;
duke@435 2079
duke@435 2080 // !!!!! !!!!! !!!!!
duke@435 2081 // If a valid field has a constant value, identify "ConI" or "ConP" or ...
duke@435 2082
duke@435 2083 // Else, lookup type of field's replacement variable
duke@435 2084
duke@435 2085 return ideal_type;
duke@435 2086 }
duke@435 2087
duke@435 2088
duke@435 2089 RegClass* OperandForm::get_RegClass() const {
duke@435 2090 if (_interface && !_interface->is_RegInterface()) return NULL;
duke@435 2091 return globalAD->get_registers()->getRegClass(constrained_reg_class());
duke@435 2092 }
duke@435 2093
duke@435 2094
duke@435 2095 bool OperandForm::is_bound_register() const {
duke@435 2096 RegClass *reg_class = get_RegClass();
duke@435 2097 if (reg_class == NULL) return false;
duke@435 2098
duke@435 2099 const char * name = ideal_type(globalAD->globalNames());
duke@435 2100 if (name == NULL) return false;
duke@435 2101
duke@435 2102 int size = 0;
duke@435 2103 if (strcmp(name,"RegFlags")==0) size = 1;
duke@435 2104 if (strcmp(name,"RegI")==0) size = 1;
duke@435 2105 if (strcmp(name,"RegF")==0) size = 1;
duke@435 2106 if (strcmp(name,"RegD")==0) size = 2;
duke@435 2107 if (strcmp(name,"RegL")==0) size = 2;
coleenp@548 2108 if (strcmp(name,"RegN")==0) size = 1;
duke@435 2109 if (strcmp(name,"RegP")==0) size = globalAD->get_preproc_def("_LP64") ? 2 : 1;
duke@435 2110 if (size == 0) return false;
duke@435 2111 return size == reg_class->size();
duke@435 2112 }
duke@435 2113
duke@435 2114
duke@435 2115 // Check if this is a valid field for this operand,
duke@435 2116 // Return 'true' if valid, and set the value to the string the user provided.
duke@435 2117 bool OperandForm::is_interface_field(const char *field,
duke@435 2118 const char * &value) const {
duke@435 2119 return false;
duke@435 2120 }
duke@435 2121
duke@435 2122
duke@435 2123 // Return register class name if a constraint specifies the register class.
duke@435 2124 const char *OperandForm::constrained_reg_class() const {
duke@435 2125 const char *reg_class = NULL;
duke@435 2126 if ( _constraint ) {
duke@435 2127 // !!!!!
duke@435 2128 Constraint *constraint = _constraint;
duke@435 2129 if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
duke@435 2130 reg_class = _constraint->_arg;
duke@435 2131 }
duke@435 2132 }
duke@435 2133
duke@435 2134 return reg_class;
duke@435 2135 }
duke@435 2136
duke@435 2137
duke@435 2138 // Return the register class associated with 'leaf'.
duke@435 2139 const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
duke@435 2140 const char *reg_class = NULL; // "RegMask::Empty";
duke@435 2141
duke@435 2142 if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
duke@435 2143 reg_class = constrained_reg_class();
duke@435 2144 return reg_class;
duke@435 2145 }
duke@435 2146 const char *result = NULL;
duke@435 2147 const char *name = NULL;
duke@435 2148 const char *type = NULL;
duke@435 2149 // iterate through all base operands
duke@435 2150 // until we reach the register that corresponds to "leaf"
duke@435 2151 // This function is not looking for an ideal type. It needs the first
duke@435 2152 // level user type associated with the leaf.
duke@435 2153 for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
duke@435 2154 const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
duke@435 2155 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 2156 if( oper ) {
duke@435 2157 reg_class = oper->constrained_reg_class();
duke@435 2158 if( reg_class ) {
duke@435 2159 reg_class = reg_class;
duke@435 2160 } else {
duke@435 2161 // ShouldNotReachHere();
duke@435 2162 }
duke@435 2163 } else {
duke@435 2164 // ShouldNotReachHere();
duke@435 2165 }
duke@435 2166
duke@435 2167 // Increment our target leaf position if current leaf is not a candidate.
duke@435 2168 if( reg_class == NULL) ++leaf;
duke@435 2169 // Exit the loop with the value of reg_class when at the correct index
duke@435 2170 if( idx == leaf ) break;
duke@435 2171 // May iterate through all base operands if reg_class for 'leaf' is NULL
duke@435 2172 }
duke@435 2173 return reg_class;
duke@435 2174 }
duke@435 2175
duke@435 2176
duke@435 2177 // Recursive call to construct list of top-level operands.
duke@435 2178 // Implementation does not modify state of internal structures
duke@435 2179 void OperandForm::build_components() {
duke@435 2180 if (_matrule) _matrule->append_components(_localNames, _components);
duke@435 2181
duke@435 2182 // Add parameters that "do not appear in match rule".
duke@435 2183 const char *name;
duke@435 2184 for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
duke@435 2185 OperandForm *opForm = (OperandForm*)_localNames[name];
duke@435 2186
duke@435 2187 if ( _components.operand_position(name) == -1 ) {
duke@435 2188 _components.insert(name, opForm->_ident, Component::INVALID, false);
duke@435 2189 }
duke@435 2190 }
duke@435 2191
duke@435 2192 return;
duke@435 2193 }
duke@435 2194
duke@435 2195 int OperandForm::operand_position(const char *name, int usedef) {
duke@435 2196 return _components.operand_position(name, usedef);
duke@435 2197 }
duke@435 2198
duke@435 2199
duke@435 2200 // Return zero-based position in component list, only counting constants;
duke@435 2201 // Return -1 if not in list.
duke@435 2202 int OperandForm::constant_position(FormDict &globals, const Component *last) {
duke@435 2203 // Iterate through components and count constants preceeding 'constant'
duke@435 2204 uint position = 0;
duke@435 2205 Component *comp;
duke@435 2206 _components.reset();
duke@435 2207 while( (comp = _components.iter()) != NULL && (comp != last) ) {
duke@435 2208 // Special case for operands that take a single user-defined operand
duke@435 2209 // Skip the initial definition in the component list.
duke@435 2210 if( strcmp(comp->_name,this->_ident) == 0 ) continue;
duke@435 2211
duke@435 2212 const char *type = comp->_type;
duke@435 2213 // Lookup operand form for replacement variable's type
duke@435 2214 const Form *form = globals[type];
duke@435 2215 assert( form != NULL, "Component's type not found");
duke@435 2216 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 2217 if( oper ) {
duke@435 2218 if( oper->_matrule->is_base_constant(globals) != Form::none ) {
duke@435 2219 ++position;
duke@435 2220 }
duke@435 2221 }
duke@435 2222 }
duke@435 2223
duke@435 2224 // Check for being passed a component that was not in the list
duke@435 2225 if( comp != last ) position = -1;
duke@435 2226
duke@435 2227 return position;
duke@435 2228 }
duke@435 2229 // Provide position of constant by "name"
duke@435 2230 int OperandForm::constant_position(FormDict &globals, const char *name) {
duke@435 2231 const Component *comp = _components.search(name);
duke@435 2232 int idx = constant_position( globals, comp );
duke@435 2233
duke@435 2234 return idx;
duke@435 2235 }
duke@435 2236
duke@435 2237
duke@435 2238 // Return zero-based position in component list, only counting constants;
duke@435 2239 // Return -1 if not in list.
duke@435 2240 int OperandForm::register_position(FormDict &globals, const char *reg_name) {
duke@435 2241 // Iterate through components and count registers preceeding 'last'
duke@435 2242 uint position = 0;
duke@435 2243 Component *comp;
duke@435 2244 _components.reset();
duke@435 2245 while( (comp = _components.iter()) != NULL
duke@435 2246 && (strcmp(comp->_name,reg_name) != 0) ) {
duke@435 2247 // Special case for operands that take a single user-defined operand
duke@435 2248 // Skip the initial definition in the component list.
duke@435 2249 if( strcmp(comp->_name,this->_ident) == 0 ) continue;
duke@435 2250
duke@435 2251 const char *type = comp->_type;
duke@435 2252 // Lookup operand form for component's type
duke@435 2253 const Form *form = globals[type];
duke@435 2254 assert( form != NULL, "Component's type not found");
duke@435 2255 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 2256 if( oper ) {
duke@435 2257 if( oper->_matrule->is_base_register(globals) ) {
duke@435 2258 ++position;
duke@435 2259 }
duke@435 2260 }
duke@435 2261 }
duke@435 2262
duke@435 2263 return position;
duke@435 2264 }
duke@435 2265
duke@435 2266
duke@435 2267 const char *OperandForm::reduce_result() const {
duke@435 2268 return _ident;
duke@435 2269 }
duke@435 2270 // Return the name of the operand on the right hand side of the binary match
duke@435 2271 // Return NULL if there is no right hand side
duke@435 2272 const char *OperandForm::reduce_right(FormDict &globals) const {
duke@435 2273 return ( _matrule ? _matrule->reduce_right(globals) : NULL );
duke@435 2274 }
duke@435 2275
duke@435 2276 // Similar for left
duke@435 2277 const char *OperandForm::reduce_left(FormDict &globals) const {
duke@435 2278 return ( _matrule ? _matrule->reduce_left(globals) : NULL );
duke@435 2279 }
duke@435 2280
duke@435 2281
duke@435 2282 // --------------------------- FILE *output_routines
duke@435 2283 //
duke@435 2284 // Output code for disp_is_oop, if true.
duke@435 2285 void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
duke@435 2286 // Check it is a memory interface with a non-user-constant disp field
duke@435 2287 if ( this->_interface == NULL ) return;
duke@435 2288 MemInterface *mem_interface = this->_interface->is_MemInterface();
duke@435 2289 if ( mem_interface == NULL ) return;
duke@435 2290 const char *disp = mem_interface->_disp;
duke@435 2291 if ( *disp != '$' ) return;
duke@435 2292
duke@435 2293 // Lookup replacement variable in operand's component list
duke@435 2294 const char *rep_var = disp + 1;
duke@435 2295 const Component *comp = this->_components.search(rep_var);
duke@435 2296 assert( comp != NULL, "Replacement variable not found in components");
duke@435 2297 // Lookup operand form for replacement variable's type
duke@435 2298 const char *type = comp->_type;
duke@435 2299 Form *form = (Form*)globals[type];
duke@435 2300 assert( form != NULL, "Replacement variable's type not found");
duke@435 2301 OperandForm *op = form->is_operand();
duke@435 2302 assert( op, "Memory Interface 'disp' can only emit an operand form");
duke@435 2303 // Check if this is a ConP, which may require relocation
duke@435 2304 if ( op->is_base_constant(globals) == Form::idealP ) {
duke@435 2305 // Find the constant's index: _c0, _c1, _c2, ... , _cN
duke@435 2306 uint idx = op->constant_position( globals, rep_var);
duke@435 2307 fprintf(fp," virtual bool disp_is_oop() const {", _ident);
duke@435 2308 fprintf(fp, " return _c%d->isa_oop_ptr();", idx);
duke@435 2309 fprintf(fp, " }\n");
duke@435 2310 }
duke@435 2311 }
duke@435 2312
duke@435 2313 // Generate code for internal and external format methods
duke@435 2314 //
duke@435 2315 // internal access to reg# node->_idx
duke@435 2316 // access to subsumed constant _c0, _c1,
duke@435 2317 void OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
duke@435 2318 Form::DataType dtype;
duke@435 2319 if (_matrule && (_matrule->is_base_register(globals) ||
duke@435 2320 strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
duke@435 2321 // !!!!! !!!!!
duke@435 2322 fprintf(fp, "{ char reg_str[128];\n");
duke@435 2323 fprintf(fp," ra->dump_register(node,reg_str);\n");
duke@435 2324 fprintf(fp," tty->print(\"%cs\",reg_str);\n",'%');
duke@435 2325 fprintf(fp," }\n");
duke@435 2326 } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
duke@435 2327 format_constant( fp, index, dtype );
duke@435 2328 } else if (ideal_to_sReg_type(_ident) != Form::none) {
duke@435 2329 // Special format for Stack Slot Register
duke@435 2330 fprintf(fp, "{ char reg_str[128];\n");
duke@435 2331 fprintf(fp," ra->dump_register(node,reg_str);\n");
duke@435 2332 fprintf(fp," tty->print(\"%cs\",reg_str);\n",'%');
duke@435 2333 fprintf(fp," }\n");
duke@435 2334 } else {
duke@435 2335 fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
duke@435 2336 fflush(fp);
duke@435 2337 fprintf(stderr,"No format defined for %s\n", _ident);
duke@435 2338 dump();
duke@435 2339 assert( false,"Internal error:\n output_internal_operand() attempting to output other than a Register or Constant");
duke@435 2340 }
duke@435 2341 }
duke@435 2342
duke@435 2343 // Similar to "int_format" but for cases where data is external to operand
duke@435 2344 // external access to reg# node->in(idx)->_idx,
duke@435 2345 void OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
duke@435 2346 Form::DataType dtype;
duke@435 2347 if (_matrule && (_matrule->is_base_register(globals) ||
duke@435 2348 strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
duke@435 2349 fprintf(fp, "{ char reg_str[128];\n");
duke@435 2350 fprintf(fp," ra->dump_register(node->in(idx");
duke@435 2351 if ( index != 0 ) fprintf(fp, "+%d",index);
duke@435 2352 fprintf(fp, "),reg_str);\n");
duke@435 2353 fprintf(fp," tty->print(\"%cs\",reg_str);\n",'%');
duke@435 2354 fprintf(fp," }\n");
duke@435 2355 } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
duke@435 2356 format_constant( fp, index, dtype );
duke@435 2357 } else if (ideal_to_sReg_type(_ident) != Form::none) {
duke@435 2358 // Special format for Stack Slot Register
duke@435 2359 fprintf(fp, "{ char reg_str[128];\n");
duke@435 2360 fprintf(fp," ra->dump_register(node->in(idx");
duke@435 2361 if ( index != 0 ) fprintf(fp, "+%d",index);
duke@435 2362 fprintf(fp, "),reg_str);\n");
duke@435 2363 fprintf(fp," tty->print(\"%cs\",reg_str);\n",'%');
duke@435 2364 fprintf(fp," }\n");
duke@435 2365 } else {
duke@435 2366 fprintf(fp,"tty->print(\"No format defined for %s\n\");\n", _ident);
duke@435 2367 assert( false,"Internal error:\n output_external_operand() attempting to output other than a Register or Constant");
duke@435 2368 }
duke@435 2369 }
duke@435 2370
duke@435 2371 void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
duke@435 2372 switch(const_type) {
coleenp@548 2373 case Form::idealI: fprintf(fp,"st->print(\"#%%d\", _c%d);\n", const_index); break;
coleenp@548 2374 case Form::idealP: fprintf(fp,"_c%d->dump_on(st);\n", const_index); break;
coleenp@548 2375 case Form::idealN: fprintf(fp,"_c%d->dump_on(st);\n", const_index); break;
coleenp@548 2376 case Form::idealL: fprintf(fp,"st->print(\"#%%lld\", _c%d);\n", const_index); break;
coleenp@548 2377 case Form::idealF: fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
coleenp@548 2378 case Form::idealD: fprintf(fp,"st->print(\"#%%f\", _c%d);\n", const_index); break;
duke@435 2379 default:
duke@435 2380 assert( false, "ShouldNotReachHere()");
duke@435 2381 }
duke@435 2382 }
duke@435 2383
duke@435 2384 // Return the operand form corresponding to the given index, else NULL.
duke@435 2385 OperandForm *OperandForm::constant_operand(FormDict &globals,
duke@435 2386 uint index) {
duke@435 2387 // !!!!!
duke@435 2388 // Check behavior on complex operands
duke@435 2389 uint n_consts = num_consts(globals);
duke@435 2390 if( n_consts > 0 ) {
duke@435 2391 uint i = 0;
duke@435 2392 const char *type;
duke@435 2393 Component *comp;
duke@435 2394 _components.reset();
duke@435 2395 if ((comp = _components.iter()) == NULL) {
duke@435 2396 assert(n_consts == 1, "Bad component list detected.\n");
duke@435 2397 // Current operand is THE operand
duke@435 2398 if ( index == 0 ) {
duke@435 2399 return this;
duke@435 2400 }
duke@435 2401 } // end if NULL
duke@435 2402 else {
duke@435 2403 // Skip the first component, it can not be a DEF of a constant
duke@435 2404 do {
duke@435 2405 type = comp->base_type(globals);
duke@435 2406 // Check that "type" is a 'ConI', 'ConP', ...
duke@435 2407 if ( ideal_to_const_type(type) != Form::none ) {
duke@435 2408 // When at correct component, get corresponding Operand
duke@435 2409 if ( index == 0 ) {
duke@435 2410 return globals[comp->_type]->is_operand();
duke@435 2411 }
duke@435 2412 // Decrement number of constants to go
duke@435 2413 --index;
duke@435 2414 }
duke@435 2415 } while((comp = _components.iter()) != NULL);
duke@435 2416 }
duke@435 2417 }
duke@435 2418
duke@435 2419 // Did not find a constant for this index.
duke@435 2420 return NULL;
duke@435 2421 }
duke@435 2422
duke@435 2423 // If this operand has a single ideal type, return its type
duke@435 2424 Form::DataType OperandForm::simple_type(FormDict &globals) const {
duke@435 2425 const char *type_name = ideal_type(globals);
duke@435 2426 Form::DataType type = type_name ? ideal_to_const_type( type_name )
duke@435 2427 : Form::none;
duke@435 2428 return type;
duke@435 2429 }
duke@435 2430
duke@435 2431 Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
duke@435 2432 if ( _matrule == NULL ) return Form::none;
duke@435 2433
duke@435 2434 return _matrule->is_base_constant(globals);
duke@435 2435 }
duke@435 2436
duke@435 2437 // "true" if this operand is a simple type that is swallowed
duke@435 2438 bool OperandForm::swallowed(FormDict &globals) const {
duke@435 2439 Form::DataType type = simple_type(globals);
duke@435 2440 if( type != Form::none ) {
duke@435 2441 return true;
duke@435 2442 }
duke@435 2443
duke@435 2444 return false;
duke@435 2445 }
duke@435 2446
duke@435 2447 // Output code to access the value of the index'th constant
duke@435 2448 void OperandForm::access_constant(FILE *fp, FormDict &globals,
duke@435 2449 uint const_index) {
duke@435 2450 OperandForm *oper = constant_operand(globals, const_index);
duke@435 2451 assert( oper, "Index exceeds number of constants in operand");
duke@435 2452 Form::DataType dtype = oper->is_base_constant(globals);
duke@435 2453
duke@435 2454 switch(dtype) {
duke@435 2455 case idealI: fprintf(fp,"_c%d", const_index); break;
duke@435 2456 case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
duke@435 2457 case idealL: fprintf(fp,"_c%d", const_index); break;
duke@435 2458 case idealF: fprintf(fp,"_c%d", const_index); break;
duke@435 2459 case idealD: fprintf(fp,"_c%d", const_index); break;
duke@435 2460 default:
duke@435 2461 assert( false, "ShouldNotReachHere()");
duke@435 2462 }
duke@435 2463 }
duke@435 2464
duke@435 2465
duke@435 2466 void OperandForm::dump() {
duke@435 2467 output(stderr);
duke@435 2468 }
duke@435 2469
duke@435 2470 void OperandForm::output(FILE *fp) {
duke@435 2471 fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
duke@435 2472 if (_matrule) _matrule->dump();
duke@435 2473 if (_interface) _interface->dump();
duke@435 2474 if (_attribs) _attribs->dump();
duke@435 2475 if (_predicate) _predicate->dump();
duke@435 2476 if (_constraint) _constraint->dump();
duke@435 2477 if (_construct) _construct->dump();
duke@435 2478 if (_format) _format->dump();
duke@435 2479 }
duke@435 2480
duke@435 2481 //------------------------------Constraint-------------------------------------
duke@435 2482 Constraint::Constraint(const char *func, const char *arg)
duke@435 2483 : _func(func), _arg(arg) {
duke@435 2484 }
duke@435 2485 Constraint::~Constraint() { /* not owner of char* */
duke@435 2486 }
duke@435 2487
duke@435 2488 bool Constraint::stack_slots_only() const {
duke@435 2489 return strcmp(_func, "ALLOC_IN_RC") == 0
duke@435 2490 && strcmp(_arg, "stack_slots") == 0;
duke@435 2491 }
duke@435 2492
duke@435 2493 void Constraint::dump() {
duke@435 2494 output(stderr);
duke@435 2495 }
duke@435 2496
duke@435 2497 void Constraint::output(FILE *fp) { // Write info to output files
duke@435 2498 assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
duke@435 2499 fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg);
duke@435 2500 }
duke@435 2501
duke@435 2502 //------------------------------Predicate--------------------------------------
duke@435 2503 Predicate::Predicate(char *pr)
duke@435 2504 : _pred(pr) {
duke@435 2505 }
duke@435 2506 Predicate::~Predicate() {
duke@435 2507 }
duke@435 2508
duke@435 2509 void Predicate::dump() {
duke@435 2510 output(stderr);
duke@435 2511 }
duke@435 2512
duke@435 2513 void Predicate::output(FILE *fp) {
duke@435 2514 fprintf(fp,"Predicate"); // Write to output files
duke@435 2515 }
duke@435 2516 //------------------------------Interface--------------------------------------
duke@435 2517 Interface::Interface(const char *name) : _name(name) {
duke@435 2518 }
duke@435 2519 Interface::~Interface() {
duke@435 2520 }
duke@435 2521
duke@435 2522 Form::InterfaceType Interface::interface_type(FormDict &globals) const {
duke@435 2523 Interface *thsi = (Interface*)this;
duke@435 2524 if ( thsi->is_RegInterface() ) return Form::register_interface;
duke@435 2525 if ( thsi->is_MemInterface() ) return Form::memory_interface;
duke@435 2526 if ( thsi->is_ConstInterface() ) return Form::constant_interface;
duke@435 2527 if ( thsi->is_CondInterface() ) return Form::conditional_interface;
duke@435 2528
duke@435 2529 return Form::no_interface;
duke@435 2530 }
duke@435 2531
duke@435 2532 RegInterface *Interface::is_RegInterface() {
duke@435 2533 if ( strcmp(_name,"REG_INTER") != 0 )
duke@435 2534 return NULL;
duke@435 2535 return (RegInterface*)this;
duke@435 2536 }
duke@435 2537 MemInterface *Interface::is_MemInterface() {
duke@435 2538 if ( strcmp(_name,"MEMORY_INTER") != 0 ) return NULL;
duke@435 2539 return (MemInterface*)this;
duke@435 2540 }
duke@435 2541 ConstInterface *Interface::is_ConstInterface() {
duke@435 2542 if ( strcmp(_name,"CONST_INTER") != 0 ) return NULL;
duke@435 2543 return (ConstInterface*)this;
duke@435 2544 }
duke@435 2545 CondInterface *Interface::is_CondInterface() {
duke@435 2546 if ( strcmp(_name,"COND_INTER") != 0 ) return NULL;
duke@435 2547 return (CondInterface*)this;
duke@435 2548 }
duke@435 2549
duke@435 2550
duke@435 2551 void Interface::dump() {
duke@435 2552 output(stderr);
duke@435 2553 }
duke@435 2554
duke@435 2555 // Write info to output files
duke@435 2556 void Interface::output(FILE *fp) {
duke@435 2557 fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
duke@435 2558 }
duke@435 2559
duke@435 2560 //------------------------------RegInterface-----------------------------------
duke@435 2561 RegInterface::RegInterface() : Interface("REG_INTER") {
duke@435 2562 }
duke@435 2563 RegInterface::~RegInterface() {
duke@435 2564 }
duke@435 2565
duke@435 2566 void RegInterface::dump() {
duke@435 2567 output(stderr);
duke@435 2568 }
duke@435 2569
duke@435 2570 // Write info to output files
duke@435 2571 void RegInterface::output(FILE *fp) {
duke@435 2572 Interface::output(fp);
duke@435 2573 }
duke@435 2574
duke@435 2575 //------------------------------ConstInterface---------------------------------
duke@435 2576 ConstInterface::ConstInterface() : Interface("CONST_INTER") {
duke@435 2577 }
duke@435 2578 ConstInterface::~ConstInterface() {
duke@435 2579 }
duke@435 2580
duke@435 2581 void ConstInterface::dump() {
duke@435 2582 output(stderr);
duke@435 2583 }
duke@435 2584
duke@435 2585 // Write info to output files
duke@435 2586 void ConstInterface::output(FILE *fp) {
duke@435 2587 Interface::output(fp);
duke@435 2588 }
duke@435 2589
duke@435 2590 //------------------------------MemInterface-----------------------------------
duke@435 2591 MemInterface::MemInterface(char *base, char *index, char *scale, char *disp)
duke@435 2592 : Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
duke@435 2593 }
duke@435 2594 MemInterface::~MemInterface() {
duke@435 2595 // not owner of any character arrays
duke@435 2596 }
duke@435 2597
duke@435 2598 void MemInterface::dump() {
duke@435 2599 output(stderr);
duke@435 2600 }
duke@435 2601
duke@435 2602 // Write info to output files
duke@435 2603 void MemInterface::output(FILE *fp) {
duke@435 2604 Interface::output(fp);
duke@435 2605 if ( _base != NULL ) fprintf(fp," base == %s\n", _base);
duke@435 2606 if ( _index != NULL ) fprintf(fp," index == %s\n", _index);
duke@435 2607 if ( _scale != NULL ) fprintf(fp," scale == %s\n", _scale);
duke@435 2608 if ( _disp != NULL ) fprintf(fp," disp == %s\n", _disp);
duke@435 2609 // fprintf(fp,"\n");
duke@435 2610 }
duke@435 2611
duke@435 2612 //------------------------------CondInterface----------------------------------
duke@435 2613 CondInterface::CondInterface(char *equal, char *not_equal,
duke@435 2614 char *less, char *greater_equal,
duke@435 2615 char *less_equal, char *greater)
duke@435 2616 : Interface("COND_INTER"),
duke@435 2617 _equal(equal), _not_equal(not_equal),
duke@435 2618 _less(less), _greater_equal(greater_equal),
duke@435 2619 _less_equal(less_equal), _greater(greater) {
duke@435 2620 //
duke@435 2621 }
duke@435 2622 CondInterface::~CondInterface() {
duke@435 2623 // not owner of any character arrays
duke@435 2624 }
duke@435 2625
duke@435 2626 void CondInterface::dump() {
duke@435 2627 output(stderr);
duke@435 2628 }
duke@435 2629
duke@435 2630 // Write info to output files
duke@435 2631 void CondInterface::output(FILE *fp) {
duke@435 2632 Interface::output(fp);
duke@435 2633 if ( _equal != NULL ) fprintf(fp," equal == %s\n", _equal);
duke@435 2634 if ( _not_equal != NULL ) fprintf(fp," not_equal == %s\n", _not_equal);
duke@435 2635 if ( _less != NULL ) fprintf(fp," less == %s\n", _less);
duke@435 2636 if ( _greater_equal != NULL ) fprintf(fp," greater_equal == %s\n", _greater_equal);
duke@435 2637 if ( _less_equal != NULL ) fprintf(fp," less_equal == %s\n", _less_equal);
duke@435 2638 if ( _greater != NULL ) fprintf(fp," greater == %s\n", _greater);
duke@435 2639 // fprintf(fp,"\n");
duke@435 2640 }
duke@435 2641
duke@435 2642 //------------------------------ConstructRule----------------------------------
duke@435 2643 ConstructRule::ConstructRule(char *cnstr)
duke@435 2644 : _construct(cnstr) {
duke@435 2645 }
duke@435 2646 ConstructRule::~ConstructRule() {
duke@435 2647 }
duke@435 2648
duke@435 2649 void ConstructRule::dump() {
duke@435 2650 output(stderr);
duke@435 2651 }
duke@435 2652
duke@435 2653 void ConstructRule::output(FILE *fp) {
duke@435 2654 fprintf(fp,"\nConstruct Rule\n"); // Write to output files
duke@435 2655 }
duke@435 2656
duke@435 2657
duke@435 2658 //==============================Shared Forms===================================
duke@435 2659 //------------------------------AttributeForm----------------------------------
duke@435 2660 int AttributeForm::_insId = 0; // start counter at 0
duke@435 2661 int AttributeForm::_opId = 0; // start counter at 0
duke@435 2662 const char* AttributeForm::_ins_cost = "ins_cost"; // required name
duke@435 2663 const char* AttributeForm::_ins_pc_relative = "ins_pc_relative";
duke@435 2664 const char* AttributeForm::_op_cost = "op_cost"; // required name
duke@435 2665
duke@435 2666 AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
duke@435 2667 : Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
duke@435 2668 if (type==OP_ATTR) {
duke@435 2669 id = ++_opId;
duke@435 2670 }
duke@435 2671 else if (type==INS_ATTR) {
duke@435 2672 id = ++_insId;
duke@435 2673 }
duke@435 2674 else assert( false,"");
duke@435 2675 }
duke@435 2676 AttributeForm::~AttributeForm() {
duke@435 2677 }
duke@435 2678
duke@435 2679 // Dynamic type check
duke@435 2680 AttributeForm *AttributeForm::is_attribute() const {
duke@435 2681 return (AttributeForm*)this;
duke@435 2682 }
duke@435 2683
duke@435 2684
duke@435 2685 // inlined // int AttributeForm::type() { return id;}
duke@435 2686
duke@435 2687 void AttributeForm::dump() {
duke@435 2688 output(stderr);
duke@435 2689 }
duke@435 2690
duke@435 2691 void AttributeForm::output(FILE *fp) {
duke@435 2692 if( _attrname && _attrdef ) {
duke@435 2693 fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
duke@435 2694 _attrname, _attrdef);
duke@435 2695 }
duke@435 2696 else {
duke@435 2697 fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
duke@435 2698 (_attrname?_attrname:""), (_attrdef?_attrdef:"") );
duke@435 2699 }
duke@435 2700 }
duke@435 2701
duke@435 2702 //------------------------------Component--------------------------------------
duke@435 2703 Component::Component(const char *name, const char *type, int usedef)
duke@435 2704 : _name(name), _type(type), _usedef(usedef) {
duke@435 2705 _ftype = Form::COMP;
duke@435 2706 }
duke@435 2707 Component::~Component() {
duke@435 2708 }
duke@435 2709
duke@435 2710 // True if this component is equal to the parameter.
duke@435 2711 bool Component::is(int use_def_kill_enum) const {
duke@435 2712 return (_usedef == use_def_kill_enum ? true : false);
duke@435 2713 }
duke@435 2714 // True if this component is used/def'd/kill'd as the parameter suggests.
duke@435 2715 bool Component::isa(int use_def_kill_enum) const {
duke@435 2716 return (_usedef & use_def_kill_enum) == use_def_kill_enum;
duke@435 2717 }
duke@435 2718
duke@435 2719 // Extend this component with additional use/def/kill behavior
duke@435 2720 int Component::promote_use_def_info(int new_use_def) {
duke@435 2721 _usedef |= new_use_def;
duke@435 2722
duke@435 2723 return _usedef;
duke@435 2724 }
duke@435 2725
duke@435 2726 // Check the base type of this component, if it has one
duke@435 2727 const char *Component::base_type(FormDict &globals) {
duke@435 2728 const Form *frm = globals[_type];
duke@435 2729 if (frm == NULL) return NULL;
duke@435 2730 OperandForm *op = frm->is_operand();
duke@435 2731 if (op == NULL) return NULL;
duke@435 2732 if (op->ideal_only()) return op->_ident;
duke@435 2733 return (char *)op->ideal_type(globals);
duke@435 2734 }
duke@435 2735
duke@435 2736 void Component::dump() {
duke@435 2737 output(stderr);
duke@435 2738 }
duke@435 2739
duke@435 2740 void Component::output(FILE *fp) {
duke@435 2741 fprintf(fp,"Component:"); // Write to output files
duke@435 2742 fprintf(fp, " name = %s", _name);
duke@435 2743 fprintf(fp, ", type = %s", _type);
duke@435 2744 const char * usedef = "Undefined Use/Def info";
duke@435 2745 switch (_usedef) {
duke@435 2746 case USE: usedef = "USE"; break;
duke@435 2747 case USE_DEF: usedef = "USE_DEF"; break;
duke@435 2748 case USE_KILL: usedef = "USE_KILL"; break;
duke@435 2749 case KILL: usedef = "KILL"; break;
duke@435 2750 case TEMP: usedef = "TEMP"; break;
duke@435 2751 case DEF: usedef = "DEF"; break;
duke@435 2752 default: assert(false, "unknown effect");
duke@435 2753 }
duke@435 2754 fprintf(fp, ", use/def = %s\n", usedef);
duke@435 2755 }
duke@435 2756
duke@435 2757
duke@435 2758 //------------------------------ComponentList---------------------------------
duke@435 2759 ComponentList::ComponentList() : NameList(), _matchcnt(0) {
duke@435 2760 }
duke@435 2761 ComponentList::~ComponentList() {
duke@435 2762 // // This list may not own its elements if copied via assignment
duke@435 2763 // Component *component;
duke@435 2764 // for (reset(); (component = iter()) != NULL;) {
duke@435 2765 // delete component;
duke@435 2766 // }
duke@435 2767 }
duke@435 2768
duke@435 2769 void ComponentList::insert(Component *component, bool mflag) {
duke@435 2770 NameList::addName((char *)component);
duke@435 2771 if(mflag) _matchcnt++;
duke@435 2772 }
duke@435 2773 void ComponentList::insert(const char *name, const char *opType, int usedef,
duke@435 2774 bool mflag) {
duke@435 2775 Component * component = new Component(name, opType, usedef);
duke@435 2776 insert(component, mflag);
duke@435 2777 }
duke@435 2778 Component *ComponentList::current() { return (Component*)NameList::current(); }
duke@435 2779 Component *ComponentList::iter() { return (Component*)NameList::iter(); }
duke@435 2780 Component *ComponentList::match_iter() {
duke@435 2781 if(_iter < _matchcnt) return (Component*)NameList::iter();
duke@435 2782 return NULL;
duke@435 2783 }
duke@435 2784 Component *ComponentList::post_match_iter() {
duke@435 2785 Component *comp = iter();
duke@435 2786 // At end of list?
duke@435 2787 if ( comp == NULL ) {
duke@435 2788 return comp;
duke@435 2789 }
duke@435 2790 // In post-match components?
duke@435 2791 if (_iter > match_count()-1) {
duke@435 2792 return comp;
duke@435 2793 }
duke@435 2794
duke@435 2795 return post_match_iter();
duke@435 2796 }
duke@435 2797
duke@435 2798 void ComponentList::reset() { NameList::reset(); }
duke@435 2799 int ComponentList::count() { return NameList::count(); }
duke@435 2800
duke@435 2801 Component *ComponentList::operator[](int position) {
duke@435 2802 // Shortcut complete iteration if there are not enough entries
duke@435 2803 if (position >= count()) return NULL;
duke@435 2804
duke@435 2805 int index = 0;
duke@435 2806 Component *component = NULL;
duke@435 2807 for (reset(); (component = iter()) != NULL;) {
duke@435 2808 if (index == position) {
duke@435 2809 return component;
duke@435 2810 }
duke@435 2811 ++index;
duke@435 2812 }
duke@435 2813
duke@435 2814 return NULL;
duke@435 2815 }
duke@435 2816
duke@435 2817 const Component *ComponentList::search(const char *name) {
duke@435 2818 PreserveIter pi(this);
duke@435 2819 reset();
duke@435 2820 for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
duke@435 2821 if( strcmp(comp->_name,name) == 0 ) return comp;
duke@435 2822 }
duke@435 2823
duke@435 2824 return NULL;
duke@435 2825 }
duke@435 2826
duke@435 2827 // Return number of USEs + number of DEFs
duke@435 2828 // When there are no components, or the first component is a USE,
duke@435 2829 // then we add '1' to hold a space for the 'result' operand.
duke@435 2830 int ComponentList::num_operands() {
duke@435 2831 PreserveIter pi(this);
duke@435 2832 uint count = 1; // result operand
duke@435 2833 uint position = 0;
duke@435 2834
duke@435 2835 Component *component = NULL;
duke@435 2836 for( reset(); (component = iter()) != NULL; ++position ) {
duke@435 2837 if( component->isa(Component::USE) ||
duke@435 2838 ( position == 0 && (! component->isa(Component::DEF))) ) {
duke@435 2839 ++count;
duke@435 2840 }
duke@435 2841 }
duke@435 2842
duke@435 2843 return count;
duke@435 2844 }
duke@435 2845
duke@435 2846 // Return zero-based position in list; -1 if not in list.
duke@435 2847 // if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
duke@435 2848 int ComponentList::operand_position(const char *name, int usedef) {
duke@435 2849 PreserveIter pi(this);
duke@435 2850 int position = 0;
duke@435 2851 int num_opnds = num_operands();
duke@435 2852 Component *component;
duke@435 2853 Component* preceding_non_use = NULL;
duke@435 2854 Component* first_def = NULL;
duke@435 2855 for (reset(); (component = iter()) != NULL; ++position) {
duke@435 2856 // When the first component is not a DEF,
duke@435 2857 // leave space for the result operand!
duke@435 2858 if ( position==0 && (! component->isa(Component::DEF)) ) {
duke@435 2859 ++position;
duke@435 2860 ++num_opnds;
duke@435 2861 }
duke@435 2862 if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
duke@435 2863 // When the first entry in the component list is a DEF and a USE
duke@435 2864 // Treat them as being separate, a DEF first, then a USE
duke@435 2865 if( position==0
duke@435 2866 && usedef==Component::USE && component->isa(Component::DEF) ) {
duke@435 2867 assert(position+1 < num_opnds, "advertised index in bounds");
duke@435 2868 return position+1;
duke@435 2869 } else {
duke@435 2870 if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
duke@435 2871 fprintf(stderr, "the name '%s' should not precede the name '%s'\n", preceding_non_use->_name, name);
duke@435 2872 }
duke@435 2873 if( position >= num_opnds ) {
duke@435 2874 fprintf(stderr, "the name '%s' is too late in its name list\n", name);
duke@435 2875 }
duke@435 2876 assert(position < num_opnds, "advertised index in bounds");
duke@435 2877 return position;
duke@435 2878 }
duke@435 2879 }
duke@435 2880 if( component->isa(Component::DEF)
duke@435 2881 && component->isa(Component::USE) ) {
duke@435 2882 ++position;
duke@435 2883 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 2884 }
duke@435 2885 if( component->isa(Component::DEF) && !first_def ) {
duke@435 2886 first_def = component;
duke@435 2887 }
duke@435 2888 if( !component->isa(Component::USE) && component != first_def ) {
duke@435 2889 preceding_non_use = component;
duke@435 2890 } else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
duke@435 2891 preceding_non_use = NULL;
duke@435 2892 }
duke@435 2893 }
duke@435 2894 return Not_in_list;
duke@435 2895 }
duke@435 2896
duke@435 2897 // Find position for this name, regardless of use/def information
duke@435 2898 int ComponentList::operand_position(const char *name) {
duke@435 2899 PreserveIter pi(this);
duke@435 2900 int position = 0;
duke@435 2901 Component *component;
duke@435 2902 for (reset(); (component = iter()) != NULL; ++position) {
duke@435 2903 // When the first component is not a DEF,
duke@435 2904 // leave space for the result operand!
duke@435 2905 if ( position==0 && (! component->isa(Component::DEF)) ) {
duke@435 2906 ++position;
duke@435 2907 }
duke@435 2908 if (strcmp(name, component->_name)==0) {
duke@435 2909 return position;
duke@435 2910 }
duke@435 2911 if( component->isa(Component::DEF)
duke@435 2912 && component->isa(Component::USE) ) {
duke@435 2913 ++position;
duke@435 2914 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 2915 }
duke@435 2916 }
duke@435 2917 return Not_in_list;
duke@435 2918 }
duke@435 2919
duke@435 2920 int ComponentList::operand_position_format(const char *name) {
duke@435 2921 PreserveIter pi(this);
duke@435 2922 int first_position = operand_position(name);
duke@435 2923 int use_position = operand_position(name, Component::USE);
duke@435 2924
duke@435 2925 return ((first_position < use_position) ? use_position : first_position);
duke@435 2926 }
duke@435 2927
duke@435 2928 int ComponentList::label_position() {
duke@435 2929 PreserveIter pi(this);
duke@435 2930 int position = 0;
duke@435 2931 reset();
duke@435 2932 for( Component *comp; (comp = iter()) != NULL; ++position) {
duke@435 2933 // When the first component is not a DEF,
duke@435 2934 // leave space for the result operand!
duke@435 2935 if ( position==0 && (! comp->isa(Component::DEF)) ) {
duke@435 2936 ++position;
duke@435 2937 }
duke@435 2938 if (strcmp(comp->_type, "label")==0) {
duke@435 2939 return position;
duke@435 2940 }
duke@435 2941 if( comp->isa(Component::DEF)
duke@435 2942 && comp->isa(Component::USE) ) {
duke@435 2943 ++position;
duke@435 2944 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 2945 }
duke@435 2946 }
duke@435 2947
duke@435 2948 return -1;
duke@435 2949 }
duke@435 2950
duke@435 2951 int ComponentList::method_position() {
duke@435 2952 PreserveIter pi(this);
duke@435 2953 int position = 0;
duke@435 2954 reset();
duke@435 2955 for( Component *comp; (comp = iter()) != NULL; ++position) {
duke@435 2956 // When the first component is not a DEF,
duke@435 2957 // leave space for the result operand!
duke@435 2958 if ( position==0 && (! comp->isa(Component::DEF)) ) {
duke@435 2959 ++position;
duke@435 2960 }
duke@435 2961 if (strcmp(comp->_type, "method")==0) {
duke@435 2962 return position;
duke@435 2963 }
duke@435 2964 if( comp->isa(Component::DEF)
duke@435 2965 && comp->isa(Component::USE) ) {
duke@435 2966 ++position;
duke@435 2967 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 2968 }
duke@435 2969 }
duke@435 2970
duke@435 2971 return -1;
duke@435 2972 }
duke@435 2973
duke@435 2974 void ComponentList::dump() { output(stderr); }
duke@435 2975
duke@435 2976 void ComponentList::output(FILE *fp) {
duke@435 2977 PreserveIter pi(this);
duke@435 2978 fprintf(fp, "\n");
duke@435 2979 Component *component;
duke@435 2980 for (reset(); (component = iter()) != NULL;) {
duke@435 2981 component->output(fp);
duke@435 2982 }
duke@435 2983 fprintf(fp, "\n");
duke@435 2984 }
duke@435 2985
duke@435 2986 //------------------------------MatchNode--------------------------------------
duke@435 2987 MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
duke@435 2988 const char *opType, MatchNode *lChild, MatchNode *rChild)
duke@435 2989 : _AD(ad), _result(result), _name(mexpr), _opType(opType),
duke@435 2990 _lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0),
duke@435 2991 _commutative_id(0) {
duke@435 2992 _numleaves = (lChild ? lChild->_numleaves : 0)
duke@435 2993 + (rChild ? rChild->_numleaves : 0);
duke@435 2994 }
duke@435 2995
duke@435 2996 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode)
duke@435 2997 : _AD(ad), _result(mnode._result), _name(mnode._name),
duke@435 2998 _opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild),
duke@435 2999 _internalop(0), _numleaves(mnode._numleaves),
duke@435 3000 _commutative_id(mnode._commutative_id) {
duke@435 3001 }
duke@435 3002
duke@435 3003 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone)
duke@435 3004 : _AD(ad), _result(mnode._result), _name(mnode._name),
duke@435 3005 _opType(mnode._opType),
duke@435 3006 _internalop(0), _numleaves(mnode._numleaves),
duke@435 3007 _commutative_id(mnode._commutative_id) {
duke@435 3008 if (mnode._lChild) {
duke@435 3009 _lChild = new MatchNode(ad, *mnode._lChild, clone);
duke@435 3010 } else {
duke@435 3011 _lChild = NULL;
duke@435 3012 }
duke@435 3013 if (mnode._rChild) {
duke@435 3014 _rChild = new MatchNode(ad, *mnode._rChild, clone);
duke@435 3015 } else {
duke@435 3016 _rChild = NULL;
duke@435 3017 }
duke@435 3018 }
duke@435 3019
duke@435 3020 MatchNode::~MatchNode() {
duke@435 3021 // // This node may not own its children if copied via assignment
duke@435 3022 // if( _lChild ) delete _lChild;
duke@435 3023 // if( _rChild ) delete _rChild;
duke@435 3024 }
duke@435 3025
duke@435 3026 bool MatchNode::find_type(const char *type, int &position) const {
duke@435 3027 if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
duke@435 3028 if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;
duke@435 3029
duke@435 3030 if (strcmp(type,_opType)==0) {
duke@435 3031 return true;
duke@435 3032 } else {
duke@435 3033 ++position;
duke@435 3034 }
duke@435 3035 return false;
duke@435 3036 }
duke@435 3037
duke@435 3038 // Recursive call collecting info on top-level operands, not transitive.
duke@435 3039 // Implementation does not modify state of internal structures.
duke@435 3040 void MatchNode::append_components(FormDict &locals, ComponentList &components,
duke@435 3041 bool deflag) const {
duke@435 3042 int usedef = deflag ? Component::DEF : Component::USE;
duke@435 3043 FormDict &globals = _AD.globalNames();
duke@435 3044
duke@435 3045 assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
duke@435 3046 // Base case
duke@435 3047 if (_lChild==NULL && _rChild==NULL) {
duke@435 3048 // If _opType is not an operation, do not build a component for it #####
duke@435 3049 const Form *f = globals[_opType];
duke@435 3050 if( f != NULL ) {
duke@435 3051 // Add non-ideals that are operands, operand-classes,
duke@435 3052 if( ! f->ideal_only()
duke@435 3053 && (f->is_opclass() || f->is_operand()) ) {
duke@435 3054 components.insert(_name, _opType, usedef, true);
duke@435 3055 }
duke@435 3056 }
duke@435 3057 return;
duke@435 3058 }
duke@435 3059 // Promote results of "Set" to DEF
duke@435 3060 bool def_flag = (!strcmp(_opType, "Set")) ? true : false;
duke@435 3061 if (_lChild) _lChild->append_components(locals, components, def_flag);
duke@435 3062 def_flag = false; // only applies to component immediately following 'Set'
duke@435 3063 if (_rChild) _rChild->append_components(locals, components, def_flag);
duke@435 3064 }
duke@435 3065
duke@435 3066 // Find the n'th base-operand in the match node,
duke@435 3067 // recursively investigates match rules of user-defined operands.
duke@435 3068 //
duke@435 3069 // Implementation does not modify state of internal structures since they
duke@435 3070 // can be shared.
duke@435 3071 bool MatchNode::base_operand(uint &position, FormDict &globals,
duke@435 3072 const char * &result, const char * &name,
duke@435 3073 const char * &opType) const {
duke@435 3074 assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
duke@435 3075 // Base case
duke@435 3076 if (_lChild==NULL && _rChild==NULL) {
duke@435 3077 // Check for special case: "Universe", "label"
duke@435 3078 if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
duke@435 3079 if (position == 0) {
duke@435 3080 result = _result;
duke@435 3081 name = _name;
duke@435 3082 opType = _opType;
duke@435 3083 return 1;
duke@435 3084 } else {
duke@435 3085 -- position;
duke@435 3086 return 0;
duke@435 3087 }
duke@435 3088 }
duke@435 3089
duke@435 3090 const Form *form = globals[_opType];
duke@435 3091 MatchNode *matchNode = NULL;
duke@435 3092 // Check for user-defined type
duke@435 3093 if (form) {
duke@435 3094 // User operand or instruction?
duke@435 3095 OperandForm *opForm = form->is_operand();
duke@435 3096 InstructForm *inForm = form->is_instruction();
duke@435 3097 if ( opForm ) {
duke@435 3098 matchNode = (MatchNode*)opForm->_matrule;
duke@435 3099 } else if ( inForm ) {
duke@435 3100 matchNode = (MatchNode*)inForm->_matrule;
duke@435 3101 }
duke@435 3102 }
duke@435 3103 // if this is user-defined, recurse on match rule
duke@435 3104 // User-defined operand and instruction forms have a match-rule.
duke@435 3105 if (matchNode) {
duke@435 3106 return (matchNode->base_operand(position,globals,result,name,opType));
duke@435 3107 } else {
duke@435 3108 // Either not a form, or a system-defined form (no match rule).
duke@435 3109 if (position==0) {
duke@435 3110 result = _result;
duke@435 3111 name = _name;
duke@435 3112 opType = _opType;
duke@435 3113 return 1;
duke@435 3114 } else {
duke@435 3115 --position;
duke@435 3116 return 0;
duke@435 3117 }
duke@435 3118 }
duke@435 3119
duke@435 3120 } else {
duke@435 3121 // Examine the left child and right child as well
duke@435 3122 if (_lChild) {
duke@435 3123 if (_lChild->base_operand(position, globals, result, name, opType))
duke@435 3124 return 1;
duke@435 3125 }
duke@435 3126
duke@435 3127 if (_rChild) {
duke@435 3128 if (_rChild->base_operand(position, globals, result, name, opType))
duke@435 3129 return 1;
duke@435 3130 }
duke@435 3131 }
duke@435 3132
duke@435 3133 return 0;
duke@435 3134 }
duke@435 3135
duke@435 3136 // Recursive call on all operands' match rules in my match rule.
duke@435 3137 uint MatchNode::num_consts(FormDict &globals) const {
duke@435 3138 uint index = 0;
duke@435 3139 uint num_consts = 0;
duke@435 3140 const char *result;
duke@435 3141 const char *name;
duke@435 3142 const char *opType;
duke@435 3143
duke@435 3144 for (uint position = index;
duke@435 3145 base_operand(position,globals,result,name,opType); position = index) {
duke@435 3146 ++index;
duke@435 3147 if( ideal_to_const_type(opType) ) num_consts++;
duke@435 3148 }
duke@435 3149
duke@435 3150 return num_consts;
duke@435 3151 }
duke@435 3152
duke@435 3153 // Recursive call on all operands' match rules in my match rule.
duke@435 3154 // Constants in match rule subtree with specified type
duke@435 3155 uint MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
duke@435 3156 uint index = 0;
duke@435 3157 uint num_consts = 0;
duke@435 3158 const char *result;
duke@435 3159 const char *name;
duke@435 3160 const char *opType;
duke@435 3161
duke@435 3162 for (uint position = index;
duke@435 3163 base_operand(position,globals,result,name,opType); position = index) {
duke@435 3164 ++index;
duke@435 3165 if( ideal_to_const_type(opType) == type ) num_consts++;
duke@435 3166 }
duke@435 3167
duke@435 3168 return num_consts;
duke@435 3169 }
duke@435 3170
duke@435 3171 // Recursive call on all operands' match rules in my match rule.
duke@435 3172 uint MatchNode::num_const_ptrs(FormDict &globals) const {
duke@435 3173 return num_consts( globals, Form::idealP );
duke@435 3174 }
duke@435 3175
duke@435 3176 bool MatchNode::sets_result() const {
duke@435 3177 return ( (strcmp(_name,"Set") == 0) ? true : false );
duke@435 3178 }
duke@435 3179
duke@435 3180 const char *MatchNode::reduce_right(FormDict &globals) const {
duke@435 3181 // If there is no right reduction, return NULL.
duke@435 3182 const char *rightStr = NULL;
duke@435 3183
duke@435 3184 // If we are a "Set", start from the right child.
duke@435 3185 const MatchNode *const mnode = sets_result() ?
duke@435 3186 (const MatchNode *const)this->_rChild :
duke@435 3187 (const MatchNode *const)this;
duke@435 3188
duke@435 3189 // If our right child exists, it is the right reduction
duke@435 3190 if ( mnode->_rChild ) {
duke@435 3191 rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
duke@435 3192 : mnode->_rChild->_opType;
duke@435 3193 }
duke@435 3194 // Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
duke@435 3195 return rightStr;
duke@435 3196 }
duke@435 3197
duke@435 3198 const char *MatchNode::reduce_left(FormDict &globals) const {
duke@435 3199 // If there is no left reduction, return NULL.
duke@435 3200 const char *leftStr = NULL;
duke@435 3201
duke@435 3202 // If we are a "Set", start from the right child.
duke@435 3203 const MatchNode *const mnode = sets_result() ?
duke@435 3204 (const MatchNode *const)this->_rChild :
duke@435 3205 (const MatchNode *const)this;
duke@435 3206
duke@435 3207 // If our left child exists, it is the left reduction
duke@435 3208 if ( mnode->_lChild ) {
duke@435 3209 leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
duke@435 3210 : mnode->_lChild->_opType;
duke@435 3211 } else {
duke@435 3212 // May be simple chain rule: (Set dst operand_form_source)
duke@435 3213 if ( sets_result() ) {
duke@435 3214 OperandForm *oper = globals[mnode->_opType]->is_operand();
duke@435 3215 if( oper ) {
duke@435 3216 leftStr = mnode->_opType;
duke@435 3217 }
duke@435 3218 }
duke@435 3219 }
duke@435 3220 return leftStr;
duke@435 3221 }
duke@435 3222
duke@435 3223 //------------------------------count_instr_names------------------------------
duke@435 3224 // Count occurrences of operands names in the leaves of the instruction
duke@435 3225 // match rule.
duke@435 3226 void MatchNode::count_instr_names( Dict &names ) {
duke@435 3227 if( !this ) return;
duke@435 3228 if( _lChild ) _lChild->count_instr_names(names);
duke@435 3229 if( _rChild ) _rChild->count_instr_names(names);
duke@435 3230 if( !_lChild && !_rChild ) {
duke@435 3231 uintptr_t cnt = (uintptr_t)names[_name];
duke@435 3232 cnt++; // One more name found
duke@435 3233 names.Insert(_name,(void*)cnt);
duke@435 3234 }
duke@435 3235 }
duke@435 3236
duke@435 3237 //------------------------------build_instr_pred-------------------------------
duke@435 3238 // Build a path to 'name' in buf. Actually only build if cnt is zero, so we
duke@435 3239 // can skip some leading instances of 'name'.
duke@435 3240 int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
duke@435 3241 if( _lChild ) {
duke@435 3242 if( !cnt ) strcpy( buf, "_kids[0]->" );
duke@435 3243 cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
duke@435 3244 if( cnt < 0 ) return cnt; // Found it, all done
duke@435 3245 }
duke@435 3246 if( _rChild ) {
duke@435 3247 if( !cnt ) strcpy( buf, "_kids[1]->" );
duke@435 3248 cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
duke@435 3249 if( cnt < 0 ) return cnt; // Found it, all done
duke@435 3250 }
duke@435 3251 if( !_lChild && !_rChild ) { // Found a leaf
duke@435 3252 // Wrong name? Give up...
duke@435 3253 if( strcmp(name,_name) ) return cnt;
duke@435 3254 if( !cnt ) strcpy(buf,"_leaf");
duke@435 3255 return cnt-1;
duke@435 3256 }
duke@435 3257 return cnt;
duke@435 3258 }
duke@435 3259
duke@435 3260
duke@435 3261 //------------------------------build_internalop-------------------------------
duke@435 3262 // Build string representation of subtree
duke@435 3263 void MatchNode::build_internalop( ) {
duke@435 3264 char *iop, *subtree;
duke@435 3265 const char *lstr, *rstr;
duke@435 3266 // Build string representation of subtree
duke@435 3267 // Operation lchildType rchildType
duke@435 3268 int len = (int)strlen(_opType) + 4;
duke@435 3269 lstr = (_lChild) ? ((_lChild->_internalop) ?
duke@435 3270 _lChild->_internalop : _lChild->_opType) : "";
duke@435 3271 rstr = (_rChild) ? ((_rChild->_internalop) ?
duke@435 3272 _rChild->_internalop : _rChild->_opType) : "";
duke@435 3273 len += (int)strlen(lstr) + (int)strlen(rstr);
duke@435 3274 subtree = (char *)malloc(len);
duke@435 3275 sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
duke@435 3276 // Hash the subtree string in _internalOps; if a name exists, use it
duke@435 3277 iop = (char *)_AD._internalOps[subtree];
duke@435 3278 // Else create a unique name, and add it to the hash table
duke@435 3279 if (iop == NULL) {
duke@435 3280 iop = subtree;
duke@435 3281 _AD._internalOps.Insert(subtree, iop);
duke@435 3282 _AD._internalOpNames.addName(iop);
duke@435 3283 _AD._internalMatch.Insert(iop, this);
duke@435 3284 }
duke@435 3285 // Add the internal operand name to the MatchNode
duke@435 3286 _internalop = iop;
duke@435 3287 _result = iop;
duke@435 3288 }
duke@435 3289
duke@435 3290
duke@435 3291 void MatchNode::dump() {
duke@435 3292 output(stderr);
duke@435 3293 }
duke@435 3294
duke@435 3295 void MatchNode::output(FILE *fp) {
duke@435 3296 if (_lChild==0 && _rChild==0) {
duke@435 3297 fprintf(fp," %s",_name); // operand
duke@435 3298 }
duke@435 3299 else {
duke@435 3300 fprintf(fp," (%s ",_name); // " (opcodeName "
duke@435 3301 if(_lChild) _lChild->output(fp); // left operand
duke@435 3302 if(_rChild) _rChild->output(fp); // right operand
duke@435 3303 fprintf(fp,")"); // ")"
duke@435 3304 }
duke@435 3305 }
duke@435 3306
duke@435 3307 int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
duke@435 3308 static const char *needs_ideal_memory_list[] = {
coleenp@548 3309 "StoreI","StoreL","StoreP","StoreN","StoreD","StoreF" ,
duke@435 3310 "StoreB","StoreC","Store" ,"StoreFP",
coleenp@548 3311 "LoadI" ,"LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF" ,
duke@435 3312 "LoadB" ,"LoadC" ,"LoadS" ,"Load" ,
duke@435 3313 "Store4I","Store2I","Store2L","Store2D","Store4F","Store2F","Store16B",
duke@435 3314 "Store8B","Store4B","Store8C","Store4C","Store2C",
duke@435 3315 "Load4I" ,"Load2I" ,"Load2L" ,"Load2D" ,"Load4F" ,"Load2F" ,"Load16B" ,
duke@435 3316 "Load8B" ,"Load4B" ,"Load8C" ,"Load4C" ,"Load2C" ,"Load8S", "Load4S","Load2S",
kvn@599 3317 "LoadRange", "LoadKlass", "LoadNKlass", "LoadL_unaligned", "LoadD_unaligned",
duke@435 3318 "LoadPLocked", "LoadLLocked",
duke@435 3319 "StorePConditional", "StoreLConditional",
coleenp@548 3320 "CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN",
duke@435 3321 "StoreCM",
duke@435 3322 "ClearArray"
duke@435 3323 };
duke@435 3324 int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
duke@435 3325 if( strcmp(_opType,"PrefetchRead")==0 || strcmp(_opType,"PrefetchWrite")==0 )
duke@435 3326 return 1;
duke@435 3327 if( _lChild ) {
duke@435 3328 const char *opType = _lChild->_opType;
duke@435 3329 for( int i=0; i<cnt; i++ )
duke@435 3330 if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
duke@435 3331 return 1;
duke@435 3332 if( _lChild->needs_ideal_memory_edge(globals) )
duke@435 3333 return 1;
duke@435 3334 }
duke@435 3335 if( _rChild ) {
duke@435 3336 const char *opType = _rChild->_opType;
duke@435 3337 for( int i=0; i<cnt; i++ )
duke@435 3338 if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
duke@435 3339 return 1;
duke@435 3340 if( _rChild->needs_ideal_memory_edge(globals) )
duke@435 3341 return 1;
duke@435 3342 }
duke@435 3343
duke@435 3344 return 0;
duke@435 3345 }
duke@435 3346
duke@435 3347 // TRUE if defines a derived oop, and so needs a base oop edge present
duke@435 3348 // post-matching.
duke@435 3349 int MatchNode::needs_base_oop_edge() const {
duke@435 3350 if( !strcmp(_opType,"AddP") ) return 1;
duke@435 3351 if( strcmp(_opType,"Set") ) return 0;
duke@435 3352 return !strcmp(_rChild->_opType,"AddP");
duke@435 3353 }
duke@435 3354
duke@435 3355 int InstructForm::needs_base_oop_edge(FormDict &globals) const {
duke@435 3356 if( is_simple_chain_rule(globals) ) {
duke@435 3357 const char *src = _matrule->_rChild->_opType;
duke@435 3358 OperandForm *src_op = globals[src]->is_operand();
duke@435 3359 assert( src_op, "Not operand class of chain rule" );
duke@435 3360 return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
duke@435 3361 } // Else check instruction
duke@435 3362
duke@435 3363 return _matrule ? _matrule->needs_base_oop_edge() : 0;
duke@435 3364 }
duke@435 3365
duke@435 3366
duke@435 3367 //-------------------------cisc spilling methods-------------------------------
duke@435 3368 // helper routines and methods for detecting cisc-spilling instructions
duke@435 3369 //-------------------------cisc_spill_merge------------------------------------
duke@435 3370 int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
duke@435 3371 int cisc_spillable = Maybe_cisc_spillable;
duke@435 3372
duke@435 3373 // Combine results of left and right checks
duke@435 3374 if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
duke@435 3375 // neither side is spillable, nor prevents cisc spilling
duke@435 3376 cisc_spillable = Maybe_cisc_spillable;
duke@435 3377 }
duke@435 3378 else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
duke@435 3379 // right side is spillable
duke@435 3380 cisc_spillable = right_spillable;
duke@435 3381 }
duke@435 3382 else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
duke@435 3383 // left side is spillable
duke@435 3384 cisc_spillable = left_spillable;
duke@435 3385 }
duke@435 3386 else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
duke@435 3387 // left or right prevents cisc spilling this instruction
duke@435 3388 cisc_spillable = Not_cisc_spillable;
duke@435 3389 }
duke@435 3390 else {
duke@435 3391 // Only allow one to spill
duke@435 3392 cisc_spillable = Not_cisc_spillable;
duke@435 3393 }
duke@435 3394
duke@435 3395 return cisc_spillable;
duke@435 3396 }
duke@435 3397
duke@435 3398 //-------------------------root_ops_match--------------------------------------
duke@435 3399 bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
duke@435 3400 // Base Case: check that the current operands/operations match
duke@435 3401 assert( op1, "Must have op's name");
duke@435 3402 assert( op2, "Must have op's name");
duke@435 3403 const Form *form1 = globals[op1];
duke@435 3404 const Form *form2 = globals[op2];
duke@435 3405
duke@435 3406 return (form1 == form2);
duke@435 3407 }
duke@435 3408
duke@435 3409 //-------------------------cisc_spill_match------------------------------------
duke@435 3410 // Recursively check two MatchRules for legal conversion via cisc-spilling
duke@435 3411 int MatchNode::cisc_spill_match(FormDict &globals, RegisterForm *registers, MatchNode *mRule2, const char * &operand, const char * &reg_type) {
duke@435 3412 int cisc_spillable = Maybe_cisc_spillable;
duke@435 3413 int left_spillable = Maybe_cisc_spillable;
duke@435 3414 int right_spillable = Maybe_cisc_spillable;
duke@435 3415
duke@435 3416 // Check that each has same number of operands at this level
duke@435 3417 if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) )
duke@435 3418 return Not_cisc_spillable;
duke@435 3419
duke@435 3420 // Base Case: check that the current operands/operations match
duke@435 3421 // or are CISC spillable
duke@435 3422 assert( _opType, "Must have _opType");
duke@435 3423 assert( mRule2->_opType, "Must have _opType");
duke@435 3424 const Form *form = globals[_opType];
duke@435 3425 const Form *form2 = globals[mRule2->_opType];
duke@435 3426 if( form == form2 ) {
duke@435 3427 cisc_spillable = Maybe_cisc_spillable;
duke@435 3428 } else {
duke@435 3429 const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
duke@435 3430 const char *name_left = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
duke@435 3431 const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
duke@435 3432 // Detect reg vs (loadX memory)
duke@435 3433 if( form->is_cisc_reg(globals)
duke@435 3434 && form2_inst
duke@435 3435 && (is_load_from_memory(mRule2->_opType) != Form::none) // reg vs. (load memory)
duke@435 3436 && (name_left != NULL) // NOT (load)
duke@435 3437 && (name_right == NULL) ) { // NOT (load memory foo)
duke@435 3438 const Form *form2_left = name_left ? globals[name_left] : NULL;
duke@435 3439 if( form2_left && form2_left->is_cisc_mem(globals) ) {
duke@435 3440 cisc_spillable = Is_cisc_spillable;
duke@435 3441 operand = _name;
duke@435 3442 reg_type = _result;
duke@435 3443 return Is_cisc_spillable;
duke@435 3444 } else {
duke@435 3445 cisc_spillable = Not_cisc_spillable;
duke@435 3446 }
duke@435 3447 }
duke@435 3448 // Detect reg vs memory
duke@435 3449 else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) {
duke@435 3450 cisc_spillable = Is_cisc_spillable;
duke@435 3451 operand = _name;
duke@435 3452 reg_type = _result;
duke@435 3453 return Is_cisc_spillable;
duke@435 3454 } else {
duke@435 3455 cisc_spillable = Not_cisc_spillable;
duke@435 3456 }
duke@435 3457 }
duke@435 3458
duke@435 3459 // If cisc is still possible, check rest of tree
duke@435 3460 if( cisc_spillable == Maybe_cisc_spillable ) {
duke@435 3461 // Check that each has same number of operands at this level
duke@435 3462 if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
duke@435 3463
duke@435 3464 // Check left operands
duke@435 3465 if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
duke@435 3466 left_spillable = Maybe_cisc_spillable;
duke@435 3467 } else {
duke@435 3468 left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
duke@435 3469 }
duke@435 3470
duke@435 3471 // Check right operands
duke@435 3472 if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
duke@435 3473 right_spillable = Maybe_cisc_spillable;
duke@435 3474 } else {
duke@435 3475 right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
duke@435 3476 }
duke@435 3477
duke@435 3478 // Combine results of left and right checks
duke@435 3479 cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
duke@435 3480 }
duke@435 3481
duke@435 3482 return cisc_spillable;
duke@435 3483 }
duke@435 3484
duke@435 3485 //---------------------------cisc_spill_match----------------------------------
duke@435 3486 // Recursively check two MatchRules for legal conversion via cisc-spilling
duke@435 3487 // This method handles the root of Match tree,
duke@435 3488 // general recursive checks done in MatchNode
duke@435 3489 int MatchRule::cisc_spill_match(FormDict &globals, RegisterForm *registers,
duke@435 3490 MatchRule *mRule2, const char * &operand,
duke@435 3491 const char * &reg_type) {
duke@435 3492 int cisc_spillable = Maybe_cisc_spillable;
duke@435 3493 int left_spillable = Maybe_cisc_spillable;
duke@435 3494 int right_spillable = Maybe_cisc_spillable;
duke@435 3495
duke@435 3496 // Check that each sets a result
duke@435 3497 if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
duke@435 3498 // Check that each has same number of operands at this level
duke@435 3499 if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
duke@435 3500
duke@435 3501 // Check left operands: at root, must be target of 'Set'
duke@435 3502 if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
duke@435 3503 left_spillable = Not_cisc_spillable;
duke@435 3504 } else {
duke@435 3505 // Do not support cisc-spilling instruction's target location
duke@435 3506 if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
duke@435 3507 left_spillable = Maybe_cisc_spillable;
duke@435 3508 } else {
duke@435 3509 left_spillable = Not_cisc_spillable;
duke@435 3510 }
duke@435 3511 }
duke@435 3512
duke@435 3513 // Check right operands: recursive walk to identify reg->mem operand
duke@435 3514 if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
duke@435 3515 right_spillable = Maybe_cisc_spillable;
duke@435 3516 } else {
duke@435 3517 right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
duke@435 3518 }
duke@435 3519
duke@435 3520 // Combine results of left and right checks
duke@435 3521 cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
duke@435 3522
duke@435 3523 return cisc_spillable;
duke@435 3524 }
duke@435 3525
duke@435 3526 //----------------------------- equivalent ------------------------------------
duke@435 3527 // Recursively check to see if two match rules are equivalent.
duke@435 3528 // This rule handles the root.
duke@435 3529 bool MatchRule::equivalent(FormDict &globals, MatchRule *mRule2) {
duke@435 3530 // Check that each sets a result
duke@435 3531 if (sets_result() != mRule2->sets_result()) {
duke@435 3532 return false;
duke@435 3533 }
duke@435 3534
duke@435 3535 // Check that the current operands/operations match
duke@435 3536 assert( _opType, "Must have _opType");
duke@435 3537 assert( mRule2->_opType, "Must have _opType");
duke@435 3538 const Form *form = globals[_opType];
duke@435 3539 const Form *form2 = globals[mRule2->_opType];
duke@435 3540 if( form != form2 ) {
duke@435 3541 return false;
duke@435 3542 }
duke@435 3543
duke@435 3544 if (_lChild ) {
duke@435 3545 if( !_lChild->equivalent(globals, mRule2->_lChild) )
duke@435 3546 return false;
duke@435 3547 } else if (mRule2->_lChild) {
duke@435 3548 return false; // I have NULL left child, mRule2 has non-NULL left child.
duke@435 3549 }
duke@435 3550
duke@435 3551 if (_rChild ) {
duke@435 3552 if( !_rChild->equivalent(globals, mRule2->_rChild) )
duke@435 3553 return false;
duke@435 3554 } else if (mRule2->_rChild) {
duke@435 3555 return false; // I have NULL right child, mRule2 has non-NULL right child.
duke@435 3556 }
duke@435 3557
duke@435 3558 // We've made it through the gauntlet.
duke@435 3559 return true;
duke@435 3560 }
duke@435 3561
duke@435 3562 //----------------------------- equivalent ------------------------------------
duke@435 3563 // Recursively check to see if two match rules are equivalent.
duke@435 3564 // This rule handles the operands.
duke@435 3565 bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
duke@435 3566 if( !mNode2 )
duke@435 3567 return false;
duke@435 3568
duke@435 3569 // Check that the current operands/operations match
duke@435 3570 assert( _opType, "Must have _opType");
duke@435 3571 assert( mNode2->_opType, "Must have _opType");
duke@435 3572 const Form *form = globals[_opType];
duke@435 3573 const Form *form2 = globals[mNode2->_opType];
duke@435 3574 return (form == form2);
duke@435 3575 }
duke@435 3576
duke@435 3577 //-------------------------- has_commutative_op -------------------------------
duke@435 3578 // Recursively check for commutative operations with subtree operands
duke@435 3579 // which could be swapped.
duke@435 3580 void MatchNode::count_commutative_op(int& count) {
duke@435 3581 static const char *commut_op_list[] = {
duke@435 3582 "AddI","AddL","AddF","AddD",
duke@435 3583 "AndI","AndL",
duke@435 3584 "MaxI","MinI",
duke@435 3585 "MulI","MulL","MulF","MulD",
duke@435 3586 "OrI" ,"OrL" ,
duke@435 3587 "XorI","XorL"
duke@435 3588 };
duke@435 3589 int cnt = sizeof(commut_op_list)/sizeof(char*);
duke@435 3590
duke@435 3591 if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
duke@435 3592 // Don't swap if right operand is an immediate constant.
duke@435 3593 bool is_const = false;
duke@435 3594 if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
duke@435 3595 FormDict &globals = _AD.globalNames();
duke@435 3596 const Form *form = globals[_rChild->_opType];
duke@435 3597 if ( form ) {
duke@435 3598 OperandForm *oper = form->is_operand();
duke@435 3599 if( oper && oper->interface_type(globals) == Form::constant_interface )
duke@435 3600 is_const = true;
duke@435 3601 }
duke@435 3602 }
duke@435 3603 if( !is_const ) {
duke@435 3604 for( int i=0; i<cnt; i++ ) {
duke@435 3605 if( strcmp(_opType, commut_op_list[i]) == 0 ) {
duke@435 3606 count++;
duke@435 3607 _commutative_id = count; // id should be > 0
duke@435 3608 break;
duke@435 3609 }
duke@435 3610 }
duke@435 3611 }
duke@435 3612 }
duke@435 3613 if( _lChild )
duke@435 3614 _lChild->count_commutative_op(count);
duke@435 3615 if( _rChild )
duke@435 3616 _rChild->count_commutative_op(count);
duke@435 3617 }
duke@435 3618
duke@435 3619 //-------------------------- swap_commutative_op ------------------------------
duke@435 3620 // Recursively swap specified commutative operation with subtree operands.
duke@435 3621 void MatchNode::swap_commutative_op(bool atroot, int id) {
duke@435 3622 if( _commutative_id == id ) { // id should be > 0
duke@435 3623 assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ),
duke@435 3624 "not swappable operation");
duke@435 3625 MatchNode* tmp = _lChild;
duke@435 3626 _lChild = _rChild;
duke@435 3627 _rChild = tmp;
duke@435 3628 // Don't exit here since we need to build internalop.
duke@435 3629 }
duke@435 3630
duke@435 3631 bool is_set = ( strcmp(_opType, "Set") == 0 );
duke@435 3632 if( _lChild )
duke@435 3633 _lChild->swap_commutative_op(is_set, id);
duke@435 3634 if( _rChild )
duke@435 3635 _rChild->swap_commutative_op(is_set, id);
duke@435 3636
duke@435 3637 // If not the root, reduce this subtree to an internal operand
duke@435 3638 if( !atroot && (_lChild || _rChild) ) {
duke@435 3639 build_internalop();
duke@435 3640 }
duke@435 3641 }
duke@435 3642
duke@435 3643 //-------------------------- swap_commutative_op ------------------------------
duke@435 3644 // Recursively swap specified commutative operation with subtree operands.
duke@435 3645 void MatchRule::swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
duke@435 3646 assert(match_rules_cnt < 100," too many match rule clones");
duke@435 3647 // Clone
duke@435 3648 MatchRule* clone = new MatchRule(_AD, this);
duke@435 3649 // Swap operands of commutative operation
duke@435 3650 ((MatchNode*)clone)->swap_commutative_op(true, count);
duke@435 3651 char* buf = (char*) malloc(strlen(instr_ident) + 4);
duke@435 3652 sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
duke@435 3653 clone->_result = buf;
duke@435 3654
duke@435 3655 clone->_next = this->_next;
duke@435 3656 this-> _next = clone;
duke@435 3657 if( (--count) > 0 ) {
duke@435 3658 this-> swap_commutative_op(instr_ident, count, match_rules_cnt);
duke@435 3659 clone->swap_commutative_op(instr_ident, count, match_rules_cnt);
duke@435 3660 }
duke@435 3661 }
duke@435 3662
duke@435 3663 //------------------------------MatchRule--------------------------------------
duke@435 3664 MatchRule::MatchRule(ArchDesc &ad)
duke@435 3665 : MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
duke@435 3666 _next = NULL;
duke@435 3667 }
duke@435 3668
duke@435 3669 MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
duke@435 3670 : MatchNode(ad, *mRule, 0), _depth(mRule->_depth),
duke@435 3671 _construct(mRule->_construct), _numchilds(mRule->_numchilds) {
duke@435 3672 _next = NULL;
duke@435 3673 }
duke@435 3674
duke@435 3675 MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
duke@435 3676 int numleaves)
duke@435 3677 : MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
duke@435 3678 _numchilds(0) {
duke@435 3679 _next = NULL;
duke@435 3680 mroot->_lChild = NULL;
duke@435 3681 mroot->_rChild = NULL;
duke@435 3682 delete mroot;
duke@435 3683 _numleaves = numleaves;
duke@435 3684 _numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
duke@435 3685 }
duke@435 3686 MatchRule::~MatchRule() {
duke@435 3687 }
duke@435 3688
duke@435 3689 // Recursive call collecting info on top-level operands, not transitive.
duke@435 3690 // Implementation does not modify state of internal structures.
duke@435 3691 void MatchRule::append_components(FormDict &locals, ComponentList &components) const {
duke@435 3692 assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
duke@435 3693
duke@435 3694 MatchNode::append_components(locals, components,
duke@435 3695 false /* not necessarily a def */);
duke@435 3696 }
duke@435 3697
duke@435 3698 // Recursive call on all operands' match rules in my match rule.
duke@435 3699 // Implementation does not modify state of internal structures since they
duke@435 3700 // can be shared.
duke@435 3701 // The MatchNode that is called first treats its
duke@435 3702 bool MatchRule::base_operand(uint &position0, FormDict &globals,
duke@435 3703 const char *&result, const char * &name,
duke@435 3704 const char * &opType)const{
duke@435 3705 uint position = position0;
duke@435 3706
duke@435 3707 return (MatchNode::base_operand( position, globals, result, name, opType));
duke@435 3708 }
duke@435 3709
duke@435 3710
duke@435 3711 bool MatchRule::is_base_register(FormDict &globals) const {
duke@435 3712 uint position = 1;
duke@435 3713 const char *result = NULL;
duke@435 3714 const char *name = NULL;
duke@435 3715 const char *opType = NULL;
duke@435 3716 if (!base_operand(position, globals, result, name, opType)) {
duke@435 3717 position = 0;
duke@435 3718 if( base_operand(position, globals, result, name, opType) &&
duke@435 3719 (strcmp(opType,"RegI")==0 ||
duke@435 3720 strcmp(opType,"RegP")==0 ||
coleenp@548 3721 strcmp(opType,"RegN")==0 ||
duke@435 3722 strcmp(opType,"RegL")==0 ||
duke@435 3723 strcmp(opType,"RegF")==0 ||
duke@435 3724 strcmp(opType,"RegD")==0 ||
duke@435 3725 strcmp(opType,"Reg" )==0) ) {
duke@435 3726 return 1;
duke@435 3727 }
duke@435 3728 }
duke@435 3729 return 0;
duke@435 3730 }
duke@435 3731
duke@435 3732 Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
duke@435 3733 uint position = 1;
duke@435 3734 const char *result = NULL;
duke@435 3735 const char *name = NULL;
duke@435 3736 const char *opType = NULL;
duke@435 3737 if (!base_operand(position, globals, result, name, opType)) {
duke@435 3738 position = 0;
duke@435 3739 if (base_operand(position, globals, result, name, opType)) {
duke@435 3740 return ideal_to_const_type(opType);
duke@435 3741 }
duke@435 3742 }
duke@435 3743 return Form::none;
duke@435 3744 }
duke@435 3745
duke@435 3746 bool MatchRule::is_chain_rule(FormDict &globals) const {
duke@435 3747
duke@435 3748 // Check for chain rule, and do not generate a match list for it
duke@435 3749 if ((_lChild == NULL) && (_rChild == NULL) ) {
duke@435 3750 const Form *form = globals[_opType];
duke@435 3751 // If this is ideal, then it is a base match, not a chain rule.
duke@435 3752 if ( form && form->is_operand() && (!form->ideal_only())) {
duke@435 3753 return true;
duke@435 3754 }
duke@435 3755 }
duke@435 3756 // Check for "Set" form of chain rule, and do not generate a match list
duke@435 3757 if (_rChild) {
duke@435 3758 const char *rch = _rChild->_opType;
duke@435 3759 const Form *form = globals[rch];
duke@435 3760 if ((!strcmp(_opType,"Set") &&
duke@435 3761 ((form) && form->is_operand()))) {
duke@435 3762 return true;
duke@435 3763 }
duke@435 3764 }
duke@435 3765 return false;
duke@435 3766 }
duke@435 3767
duke@435 3768 int MatchRule::is_ideal_copy() const {
duke@435 3769 if( _rChild ) {
duke@435 3770 const char *opType = _rChild->_opType;
duke@435 3771 if( strcmp(opType,"CastII")==0 )
duke@435 3772 return 1;
duke@435 3773 // Do not treat *CastPP this way, because it
duke@435 3774 // may transfer a raw pointer to an oop.
duke@435 3775 // If the register allocator were to coalesce this
duke@435 3776 // into a single LRG, the GC maps would be incorrect.
duke@435 3777 //if( strcmp(opType,"CastPP")==0 )
duke@435 3778 // return 1;
duke@435 3779 //if( strcmp(opType,"CheckCastPP")==0 )
duke@435 3780 // return 1;
duke@435 3781 //
duke@435 3782 // Do not treat CastX2P or CastP2X this way, because
duke@435 3783 // raw pointers and int types are treated differently
duke@435 3784 // when saving local & stack info for safepoints in
duke@435 3785 // Output().
duke@435 3786 //if( strcmp(opType,"CastX2P")==0 )
duke@435 3787 // return 1;
duke@435 3788 //if( strcmp(opType,"CastP2X")==0 )
duke@435 3789 // return 1;
duke@435 3790 }
duke@435 3791 if( is_chain_rule(_AD.globalNames()) &&
duke@435 3792 _lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 )
duke@435 3793 return 1;
duke@435 3794 return 0;
duke@435 3795 }
duke@435 3796
duke@435 3797
duke@435 3798 int MatchRule::is_expensive() const {
duke@435 3799 if( _rChild ) {
duke@435 3800 const char *opType = _rChild->_opType;
duke@435 3801 if( strcmp(opType,"AtanD")==0 ||
duke@435 3802 strcmp(opType,"CosD")==0 ||
duke@435 3803 strcmp(opType,"DivD")==0 ||
duke@435 3804 strcmp(opType,"DivF")==0 ||
duke@435 3805 strcmp(opType,"DivI")==0 ||
duke@435 3806 strcmp(opType,"ExpD")==0 ||
duke@435 3807 strcmp(opType,"LogD")==0 ||
duke@435 3808 strcmp(opType,"Log10D")==0 ||
duke@435 3809 strcmp(opType,"ModD")==0 ||
duke@435 3810 strcmp(opType,"ModF")==0 ||
duke@435 3811 strcmp(opType,"ModI")==0 ||
duke@435 3812 strcmp(opType,"PowD")==0 ||
duke@435 3813 strcmp(opType,"SinD")==0 ||
duke@435 3814 strcmp(opType,"SqrtD")==0 ||
duke@435 3815 strcmp(opType,"TanD")==0 ||
duke@435 3816 strcmp(opType,"ConvD2F")==0 ||
duke@435 3817 strcmp(opType,"ConvD2I")==0 ||
duke@435 3818 strcmp(opType,"ConvD2L")==0 ||
duke@435 3819 strcmp(opType,"ConvF2D")==0 ||
duke@435 3820 strcmp(opType,"ConvF2I")==0 ||
duke@435 3821 strcmp(opType,"ConvF2L")==0 ||
duke@435 3822 strcmp(opType,"ConvI2D")==0 ||
duke@435 3823 strcmp(opType,"ConvI2F")==0 ||
duke@435 3824 strcmp(opType,"ConvI2L")==0 ||
duke@435 3825 strcmp(opType,"ConvL2D")==0 ||
duke@435 3826 strcmp(opType,"ConvL2F")==0 ||
duke@435 3827 strcmp(opType,"ConvL2I")==0 ||
kvn@682 3828 strcmp(opType,"DecodeN")==0 ||
kvn@682 3829 strcmp(opType,"EncodeP")==0 ||
duke@435 3830 strcmp(opType,"RoundDouble")==0 ||
duke@435 3831 strcmp(opType,"RoundFloat")==0 ||
duke@435 3832 strcmp(opType,"ReverseBytesI")==0 ||
duke@435 3833 strcmp(opType,"ReverseBytesL")==0 ||
duke@435 3834 strcmp(opType,"Replicate16B")==0 ||
duke@435 3835 strcmp(opType,"Replicate8B")==0 ||
duke@435 3836 strcmp(opType,"Replicate4B")==0 ||
duke@435 3837 strcmp(opType,"Replicate8C")==0 ||
duke@435 3838 strcmp(opType,"Replicate4C")==0 ||
duke@435 3839 strcmp(opType,"Replicate8S")==0 ||
duke@435 3840 strcmp(opType,"Replicate4S")==0 ||
duke@435 3841 strcmp(opType,"Replicate4I")==0 ||
duke@435 3842 strcmp(opType,"Replicate2I")==0 ||
duke@435 3843 strcmp(opType,"Replicate2L")==0 ||
duke@435 3844 strcmp(opType,"Replicate4F")==0 ||
duke@435 3845 strcmp(opType,"Replicate2F")==0 ||
duke@435 3846 strcmp(opType,"Replicate2D")==0 ||
duke@435 3847 0 /* 0 to line up columns nicely */ )
duke@435 3848 return 1;
duke@435 3849 }
duke@435 3850 return 0;
duke@435 3851 }
duke@435 3852
duke@435 3853 bool MatchRule::is_ideal_unlock() const {
duke@435 3854 if( !_opType ) return false;
duke@435 3855 return !strcmp(_opType,"Unlock") || !strcmp(_opType,"FastUnlock");
duke@435 3856 }
duke@435 3857
duke@435 3858
duke@435 3859 bool MatchRule::is_ideal_call_leaf() const {
duke@435 3860 if( !_opType ) return false;
duke@435 3861 return !strcmp(_opType,"CallLeaf") ||
duke@435 3862 !strcmp(_opType,"CallLeafNoFP");
duke@435 3863 }
duke@435 3864
duke@435 3865
duke@435 3866 bool MatchRule::is_ideal_if() const {
duke@435 3867 if( !_opType ) return false;
duke@435 3868 return
duke@435 3869 !strcmp(_opType,"If" ) ||
duke@435 3870 !strcmp(_opType,"CountedLoopEnd");
duke@435 3871 }
duke@435 3872
duke@435 3873 bool MatchRule::is_ideal_fastlock() const {
duke@435 3874 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 3875 return (strcmp(_rChild->_opType,"FastLock") == 0);
duke@435 3876 }
duke@435 3877 return false;
duke@435 3878 }
duke@435 3879
duke@435 3880 bool MatchRule::is_ideal_membar() const {
duke@435 3881 if( !_opType ) return false;
duke@435 3882 return
duke@435 3883 !strcmp(_opType,"MemBarAcquire" ) ||
duke@435 3884 !strcmp(_opType,"MemBarRelease" ) ||
duke@435 3885 !strcmp(_opType,"MemBarVolatile" ) ||
duke@435 3886 !strcmp(_opType,"MemBarCPUOrder" ) ;
duke@435 3887 }
duke@435 3888
duke@435 3889 bool MatchRule::is_ideal_loadPC() const {
duke@435 3890 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 3891 return (strcmp(_rChild->_opType,"LoadPC") == 0);
duke@435 3892 }
duke@435 3893 return false;
duke@435 3894 }
duke@435 3895
duke@435 3896 bool MatchRule::is_ideal_box() const {
duke@435 3897 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 3898 return (strcmp(_rChild->_opType,"Box") == 0);
duke@435 3899 }
duke@435 3900 return false;
duke@435 3901 }
duke@435 3902
duke@435 3903 bool MatchRule::is_ideal_goto() const {
duke@435 3904 bool ideal_goto = false;
duke@435 3905
duke@435 3906 if( _opType && (strcmp(_opType,"Goto") == 0) ) {
duke@435 3907 ideal_goto = true;
duke@435 3908 }
duke@435 3909 return ideal_goto;
duke@435 3910 }
duke@435 3911
duke@435 3912 bool MatchRule::is_ideal_jump() const {
duke@435 3913 if( _opType ) {
duke@435 3914 if( !strcmp(_opType,"Jump") )
duke@435 3915 return true;
duke@435 3916 }
duke@435 3917 return false;
duke@435 3918 }
duke@435 3919
duke@435 3920 bool MatchRule::is_ideal_bool() const {
duke@435 3921 if( _opType ) {
duke@435 3922 if( !strcmp(_opType,"Bool") )
duke@435 3923 return true;
duke@435 3924 }
duke@435 3925 return false;
duke@435 3926 }
duke@435 3927
duke@435 3928
duke@435 3929 Form::DataType MatchRule::is_ideal_load() const {
duke@435 3930 Form::DataType ideal_load = Form::none;
duke@435 3931
duke@435 3932 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 3933 const char *opType = _rChild->_opType;
duke@435 3934 ideal_load = is_load_from_memory(opType);
duke@435 3935 }
duke@435 3936
duke@435 3937 return ideal_load;
duke@435 3938 }
duke@435 3939
duke@435 3940
duke@435 3941 Form::DataType MatchRule::is_ideal_store() const {
duke@435 3942 Form::DataType ideal_store = Form::none;
duke@435 3943
duke@435 3944 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 3945 const char *opType = _rChild->_opType;
duke@435 3946 ideal_store = is_store_to_memory(opType);
duke@435 3947 }
duke@435 3948
duke@435 3949 return ideal_store;
duke@435 3950 }
duke@435 3951
duke@435 3952
duke@435 3953 void MatchRule::dump() {
duke@435 3954 output(stderr);
duke@435 3955 }
duke@435 3956
duke@435 3957 void MatchRule::output(FILE *fp) {
duke@435 3958 fprintf(fp,"MatchRule: ( %s",_name);
duke@435 3959 if (_lChild) _lChild->output(fp);
duke@435 3960 if (_rChild) _rChild->output(fp);
duke@435 3961 fprintf(fp," )\n");
duke@435 3962 fprintf(fp," nesting depth = %d\n", _depth);
duke@435 3963 if (_result) fprintf(fp," Result Type = %s", _result);
duke@435 3964 fprintf(fp,"\n");
duke@435 3965 }
duke@435 3966
duke@435 3967 //------------------------------Attribute--------------------------------------
duke@435 3968 Attribute::Attribute(char *id, char* val, int type)
duke@435 3969 : _ident(id), _val(val), _atype(type) {
duke@435 3970 }
duke@435 3971 Attribute::~Attribute() {
duke@435 3972 }
duke@435 3973
duke@435 3974 int Attribute::int_val(ArchDesc &ad) {
duke@435 3975 // Make sure it is an integer constant:
duke@435 3976 int result = 0;
duke@435 3977 if (!_val || !ADLParser::is_int_token(_val, result)) {
duke@435 3978 ad.syntax_err(0, "Attribute %s must have an integer value: %s",
duke@435 3979 _ident, _val ? _val : "");
duke@435 3980 }
duke@435 3981 return result;
duke@435 3982 }
duke@435 3983
duke@435 3984 void Attribute::dump() {
duke@435 3985 output(stderr);
duke@435 3986 } // Debug printer
duke@435 3987
duke@435 3988 // Write to output files
duke@435 3989 void Attribute::output(FILE *fp) {
duke@435 3990 fprintf(fp,"Attribute: %s %s\n", (_ident?_ident:""), (_val?_val:""));
duke@435 3991 }
duke@435 3992
duke@435 3993 //------------------------------FormatRule----------------------------------
duke@435 3994 FormatRule::FormatRule(char *temp)
duke@435 3995 : _temp(temp) {
duke@435 3996 }
duke@435 3997 FormatRule::~FormatRule() {
duke@435 3998 }
duke@435 3999
duke@435 4000 void FormatRule::dump() {
duke@435 4001 output(stderr);
duke@435 4002 }
duke@435 4003
duke@435 4004 // Write to output files
duke@435 4005 void FormatRule::output(FILE *fp) {
duke@435 4006 fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
duke@435 4007 fprintf(fp,"\n");
duke@435 4008 }

mercurial