src/share/vm/adlc/formssel.cpp

Mon, 12 Aug 2019 18:30:40 +0300

author
apetushkov
date
Mon, 12 Aug 2019 18:30:40 +0300
changeset 9858
b985cbb00e68
parent 9615
c5e1abd2d0af
child 9637
eef07cd490d4
permissions
-rw-r--r--

8223147: JFR Backport
8199712: Flight Recorder
8203346: JFR: Inconsistent signature of jfr_add_string_constant
8195817: JFR.stop should require name of recording
8195818: JFR.start should increase autogenerated name by one
8195819: Remove recording=x from jcmd JFR.check output
8203921: JFR thread sampling is missing fixes from JDK-8194552
8203929: Limit amount of data for JFR.dump
8203664: JFR start failure after AppCDS archive created with JFR StartFlightRecording
8003209: JFR events for network utilization
8207392: [PPC64] Implement JFR profiling
8202835: jfr/event/os/TestSystemProcess.java fails on missing events
Summary: Backport JFR from JDK11. Initial integration
Reviewed-by: neugens

duke@435 1 /*
drchase@6680 2 * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 // FORMS.CPP - Definitions for ADL Parser Forms Classes
duke@435 26 #include "adlc.hpp"
duke@435 27
duke@435 28 //==============================Instructions===================================
duke@435 29 //------------------------------InstructForm-----------------------------------
duke@435 30 InstructForm::InstructForm(const char *id, bool ideal_only)
duke@435 31 : _ident(id), _ideal_only(ideal_only),
duke@435 32 _localNames(cmpstr, hashstr, Form::arena),
twisti@2350 33 _effects(cmpstr, hashstr, Form::arena),
roland@3316 34 _is_mach_constant(false),
goetz@6484 35 _needs_constant_base(false),
roland@3316 36 _has_call(false)
twisti@2350 37 {
duke@435 38 _ftype = Form::INS;
duke@435 39
goetz@6478 40 _matrule = NULL;
goetz@6478 41 _insencode = NULL;
goetz@6478 42 _constant = NULL;
goetz@6478 43 _is_postalloc_expand = false;
goetz@6478 44 _opcode = NULL;
goetz@6478 45 _size = NULL;
goetz@6478 46 _attribs = NULL;
goetz@6478 47 _predicate = NULL;
goetz@6478 48 _exprule = NULL;
goetz@6478 49 _rewrule = NULL;
goetz@6478 50 _format = NULL;
goetz@6478 51 _peephole = NULL;
goetz@6478 52 _ins_pipe = NULL;
goetz@6478 53 _uniq_idx = NULL;
goetz@6478 54 _num_uniq = 0;
goetz@6478 55 _cisc_spill_operand = Not_cisc_spillable;// Which operand may cisc-spill
duke@435 56 _cisc_spill_alternate = NULL; // possible cisc replacement
goetz@6478 57 _cisc_reg_mask_name = NULL;
goetz@6478 58 _is_cisc_alternate = false;
goetz@6478 59 _is_short_branch = false;
goetz@6478 60 _short_branch_form = NULL;
goetz@6478 61 _alignment = 1;
duke@435 62 }
duke@435 63
duke@435 64 InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
duke@435 65 : _ident(id), _ideal_only(false),
duke@435 66 _localNames(instr->_localNames),
twisti@2350 67 _effects(instr->_effects),
roland@3316 68 _is_mach_constant(false),
goetz@6484 69 _needs_constant_base(false),
roland@3316 70 _has_call(false)
twisti@2350 71 {
duke@435 72 _ftype = Form::INS;
duke@435 73
goetz@6478 74 _matrule = rule;
goetz@6478 75 _insencode = instr->_insencode;
goetz@6478 76 _constant = instr->_constant;
goetz@6478 77 _is_postalloc_expand = instr->_is_postalloc_expand;
goetz@6478 78 _opcode = instr->_opcode;
goetz@6478 79 _size = instr->_size;
goetz@6478 80 _attribs = instr->_attribs;
goetz@6478 81 _predicate = instr->_predicate;
goetz@6478 82 _exprule = instr->_exprule;
goetz@6478 83 _rewrule = instr->_rewrule;
goetz@6478 84 _format = instr->_format;
goetz@6478 85 _peephole = instr->_peephole;
goetz@6478 86 _ins_pipe = instr->_ins_pipe;
goetz@6478 87 _uniq_idx = instr->_uniq_idx;
goetz@6478 88 _num_uniq = instr->_num_uniq;
goetz@6478 89 _cisc_spill_operand = Not_cisc_spillable; // Which operand may cisc-spill
goetz@6478 90 _cisc_spill_alternate = NULL; // possible cisc replacement
goetz@6478 91 _cisc_reg_mask_name = NULL;
goetz@6478 92 _is_cisc_alternate = false;
goetz@6478 93 _is_short_branch = false;
goetz@6478 94 _short_branch_form = NULL;
goetz@6478 95 _alignment = 1;
duke@435 96 // Copy parameters
duke@435 97 const char *name;
duke@435 98 instr->_parameters.reset();
duke@435 99 for (; (name = instr->_parameters.iter()) != NULL;)
duke@435 100 _parameters.addName(name);
duke@435 101 }
duke@435 102
duke@435 103 InstructForm::~InstructForm() {
duke@435 104 }
duke@435 105
duke@435 106 InstructForm *InstructForm::is_instruction() const {
duke@435 107 return (InstructForm*)this;
duke@435 108 }
duke@435 109
duke@435 110 bool InstructForm::ideal_only() const {
duke@435 111 return _ideal_only;
duke@435 112 }
duke@435 113
duke@435 114 bool InstructForm::sets_result() const {
duke@435 115 return (_matrule != NULL && _matrule->sets_result());
duke@435 116 }
duke@435 117
duke@435 118 bool InstructForm::needs_projections() {
duke@435 119 _components.reset();
duke@435 120 for( Component *comp; (comp = _components.iter()) != NULL; ) {
duke@435 121 if (comp->isa(Component::KILL)) {
duke@435 122 return true;
duke@435 123 }
duke@435 124 }
duke@435 125 return false;
duke@435 126 }
duke@435 127
duke@435 128
duke@435 129 bool InstructForm::has_temps() {
duke@435 130 if (_matrule) {
duke@435 131 // Examine each component to see if it is a TEMP
duke@435 132 _components.reset();
duke@435 133 // Skip the first component, if already handled as (SET dst (...))
duke@435 134 Component *comp = NULL;
duke@435 135 if (sets_result()) comp = _components.iter();
duke@435 136 while ((comp = _components.iter()) != NULL) {
duke@435 137 if (comp->isa(Component::TEMP)) {
duke@435 138 return true;
duke@435 139 }
duke@435 140 }
duke@435 141 }
duke@435 142
duke@435 143 return false;
duke@435 144 }
duke@435 145
duke@435 146 uint InstructForm::num_defs_or_kills() {
duke@435 147 uint defs_or_kills = 0;
duke@435 148
duke@435 149 _components.reset();
duke@435 150 for( Component *comp; (comp = _components.iter()) != NULL; ) {
duke@435 151 if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
duke@435 152 ++defs_or_kills;
duke@435 153 }
duke@435 154 }
duke@435 155
duke@435 156 return defs_or_kills;
duke@435 157 }
duke@435 158
duke@435 159 // This instruction has an expand rule?
duke@435 160 bool InstructForm::expands() const {
duke@435 161 return ( _exprule != NULL );
duke@435 162 }
duke@435 163
goetz@6478 164 // This instruction has a late expand rule?
goetz@6478 165 bool InstructForm::postalloc_expands() const {
goetz@6478 166 return _is_postalloc_expand;
goetz@6478 167 }
goetz@6478 168
duke@435 169 // This instruction has a peephole rule?
duke@435 170 Peephole *InstructForm::peepholes() const {
duke@435 171 return _peephole;
duke@435 172 }
duke@435 173
duke@435 174 // This instruction has a peephole rule?
duke@435 175 void InstructForm::append_peephole(Peephole *peephole) {
duke@435 176 if( _peephole == NULL ) {
duke@435 177 _peephole = peephole;
duke@435 178 } else {
duke@435 179 _peephole->append_peephole(peephole);
duke@435 180 }
duke@435 181 }
duke@435 182
duke@435 183
duke@435 184 // ideal opcode enumeration
duke@435 185 const char *InstructForm::ideal_Opcode( FormDict &globalNames ) const {
duke@435 186 if( !_matrule ) return "Node"; // Something weird
duke@435 187 // Chain rules do not really have ideal Opcodes; use their source
duke@435 188 // operand ideal Opcode instead.
duke@435 189 if( is_simple_chain_rule(globalNames) ) {
duke@435 190 const char *src = _matrule->_rChild->_opType;
duke@435 191 OperandForm *src_op = globalNames[src]->is_operand();
duke@435 192 assert( src_op, "Not operand class of chain rule" );
duke@435 193 if( !src_op->_matrule ) return "Node";
duke@435 194 return src_op->_matrule->_opType;
duke@435 195 }
duke@435 196 // Operand chain rules do not really have ideal Opcodes
duke@435 197 if( _matrule->is_chain_rule(globalNames) )
duke@435 198 return "Node";
duke@435 199 return strcmp(_matrule->_opType,"Set")
duke@435 200 ? _matrule->_opType
duke@435 201 : _matrule->_rChild->_opType;
duke@435 202 }
duke@435 203
duke@435 204 // Recursive check on all operands' match rules in my match rule
duke@435 205 bool InstructForm::is_pinned(FormDict &globals) {
duke@435 206 if ( ! _matrule) return false;
duke@435 207
duke@435 208 int index = 0;
duke@435 209 if (_matrule->find_type("Goto", index)) return true;
duke@435 210 if (_matrule->find_type("If", index)) return true;
duke@435 211 if (_matrule->find_type("CountedLoopEnd",index)) return true;
duke@435 212 if (_matrule->find_type("Return", index)) return true;
duke@435 213 if (_matrule->find_type("Rethrow", index)) return true;
duke@435 214 if (_matrule->find_type("TailCall", index)) return true;
duke@435 215 if (_matrule->find_type("TailJump", index)) return true;
duke@435 216 if (_matrule->find_type("Halt", index)) return true;
duke@435 217 if (_matrule->find_type("Jump", index)) return true;
duke@435 218
duke@435 219 return is_parm(globals);
duke@435 220 }
duke@435 221
duke@435 222 // Recursive check on all operands' match rules in my match rule
duke@435 223 bool InstructForm::is_projection(FormDict &globals) {
duke@435 224 if ( ! _matrule) return false;
duke@435 225
duke@435 226 int index = 0;
duke@435 227 if (_matrule->find_type("Goto", index)) return true;
duke@435 228 if (_matrule->find_type("Return", index)) return true;
duke@435 229 if (_matrule->find_type("Rethrow", index)) return true;
duke@435 230 if (_matrule->find_type("TailCall",index)) return true;
duke@435 231 if (_matrule->find_type("TailJump",index)) return true;
duke@435 232 if (_matrule->find_type("Halt", index)) return true;
duke@435 233
duke@435 234 return false;
duke@435 235 }
duke@435 236
duke@435 237 // Recursive check on all operands' match rules in my match rule
duke@435 238 bool InstructForm::is_parm(FormDict &globals) {
duke@435 239 if ( ! _matrule) return false;
duke@435 240
duke@435 241 int index = 0;
duke@435 242 if (_matrule->find_type("Parm",index)) return true;
duke@435 243
duke@435 244 return false;
duke@435 245 }
duke@435 246
adlertz@5288 247 bool InstructForm::is_ideal_negD() const {
adlertz@5288 248 return (_matrule && _matrule->_rChild && strcmp(_matrule->_rChild->_opType, "NegD") == 0);
adlertz@5288 249 }
duke@435 250
duke@435 251 // Return 'true' if this instruction matches an ideal 'Copy*' node
duke@435 252 int InstructForm::is_ideal_copy() const {
duke@435 253 return _matrule ? _matrule->is_ideal_copy() : 0;
duke@435 254 }
duke@435 255
duke@435 256 // Return 'true' if this instruction is too complex to rematerialize.
duke@435 257 int InstructForm::is_expensive() const {
duke@435 258 // We can prove it is cheap if it has an empty encoding.
duke@435 259 // This helps with platform-specific nops like ThreadLocal and RoundFloat.
duke@435 260 if (is_empty_encoding())
duke@435 261 return 0;
duke@435 262
duke@435 263 if (is_tls_instruction())
duke@435 264 return 1;
duke@435 265
duke@435 266 if (_matrule == NULL) return 0;
duke@435 267
duke@435 268 return _matrule->is_expensive();
duke@435 269 }
duke@435 270
duke@435 271 // Has an empty encoding if _size is a constant zero or there
duke@435 272 // are no ins_encode tokens.
duke@435 273 int InstructForm::is_empty_encoding() const {
duke@435 274 if (_insencode != NULL) {
duke@435 275 _insencode->reset();
duke@435 276 if (_insencode->encode_class_iter() == NULL) {
duke@435 277 return 1;
duke@435 278 }
duke@435 279 }
duke@435 280 if (_size != NULL && strcmp(_size, "0") == 0) {
duke@435 281 return 1;
duke@435 282 }
duke@435 283 return 0;
duke@435 284 }
duke@435 285
duke@435 286 int InstructForm::is_tls_instruction() const {
duke@435 287 if (_ident != NULL &&
duke@435 288 ( ! strcmp( _ident,"tlsLoadP") ||
duke@435 289 ! strncmp(_ident,"tlsLoadP_",9)) ) {
duke@435 290 return 1;
duke@435 291 }
duke@435 292
duke@435 293 if (_matrule != NULL && _insencode != NULL) {
duke@435 294 const char* opType = _matrule->_opType;
duke@435 295 if (strcmp(opType, "Set")==0)
duke@435 296 opType = _matrule->_rChild->_opType;
duke@435 297 if (strcmp(opType,"ThreadLocal")==0) {
duke@435 298 fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
duke@435 299 (_ident == NULL ? "NULL" : _ident));
duke@435 300 return 1;
duke@435 301 }
duke@435 302 }
duke@435 303
duke@435 304 return 0;
duke@435 305 }
duke@435 306
duke@435 307
duke@435 308 // Return 'true' if this instruction matches an ideal 'If' node
duke@435 309 bool InstructForm::is_ideal_if() const {
duke@435 310 if( _matrule == NULL ) return false;
duke@435 311
duke@435 312 return _matrule->is_ideal_if();
duke@435 313 }
duke@435 314
duke@435 315 // Return 'true' if this instruction matches an ideal 'FastLock' node
duke@435 316 bool InstructForm::is_ideal_fastlock() const {
duke@435 317 if( _matrule == NULL ) return false;
duke@435 318
duke@435 319 return _matrule->is_ideal_fastlock();
duke@435 320 }
duke@435 321
duke@435 322 // Return 'true' if this instruction matches an ideal 'MemBarXXX' node
duke@435 323 bool InstructForm::is_ideal_membar() const {
duke@435 324 if( _matrule == NULL ) return false;
duke@435 325
duke@435 326 return _matrule->is_ideal_membar();
duke@435 327 }
duke@435 328
duke@435 329 // Return 'true' if this instruction matches an ideal 'LoadPC' node
duke@435 330 bool InstructForm::is_ideal_loadPC() const {
duke@435 331 if( _matrule == NULL ) return false;
duke@435 332
duke@435 333 return _matrule->is_ideal_loadPC();
duke@435 334 }
duke@435 335
duke@435 336 // Return 'true' if this instruction matches an ideal 'Box' node
duke@435 337 bool InstructForm::is_ideal_box() const {
duke@435 338 if( _matrule == NULL ) return false;
duke@435 339
duke@435 340 return _matrule->is_ideal_box();
duke@435 341 }
duke@435 342
duke@435 343 // Return 'true' if this instruction matches an ideal 'Goto' node
duke@435 344 bool InstructForm::is_ideal_goto() const {
duke@435 345 if( _matrule == NULL ) return false;
duke@435 346
duke@435 347 return _matrule->is_ideal_goto();
duke@435 348 }
duke@435 349
duke@435 350 // Return 'true' if this instruction matches an ideal 'Jump' node
duke@435 351 bool InstructForm::is_ideal_jump() const {
duke@435 352 if( _matrule == NULL ) return false;
duke@435 353
duke@435 354 return _matrule->is_ideal_jump();
duke@435 355 }
duke@435 356
kvn@3051 357 // Return 'true' if instruction matches ideal 'If' | 'Goto' | 'CountedLoopEnd'
duke@435 358 bool InstructForm::is_ideal_branch() const {
duke@435 359 if( _matrule == NULL ) return false;
duke@435 360
kvn@3051 361 return _matrule->is_ideal_if() || _matrule->is_ideal_goto();
duke@435 362 }
duke@435 363
duke@435 364
duke@435 365 // Return 'true' if this instruction matches an ideal 'Return' node
duke@435 366 bool InstructForm::is_ideal_return() const {
duke@435 367 if( _matrule == NULL ) return false;
duke@435 368
duke@435 369 // Check MatchRule to see if the first entry is the ideal "Return" node
duke@435 370 int index = 0;
duke@435 371 if (_matrule->find_type("Return",index)) return true;
duke@435 372 if (_matrule->find_type("Rethrow",index)) return true;
duke@435 373 if (_matrule->find_type("TailCall",index)) return true;
duke@435 374 if (_matrule->find_type("TailJump",index)) return true;
duke@435 375
duke@435 376 return false;
duke@435 377 }
duke@435 378
duke@435 379 // Return 'true' if this instruction matches an ideal 'Halt' node
duke@435 380 bool InstructForm::is_ideal_halt() const {
duke@435 381 int index = 0;
duke@435 382 return _matrule && _matrule->find_type("Halt",index);
duke@435 383 }
duke@435 384
duke@435 385 // Return 'true' if this instruction matches an ideal 'SafePoint' node
duke@435 386 bool InstructForm::is_ideal_safepoint() const {
duke@435 387 int index = 0;
duke@435 388 return _matrule && _matrule->find_type("SafePoint",index);
duke@435 389 }
duke@435 390
duke@435 391 // Return 'true' if this instruction matches an ideal 'Nop' node
duke@435 392 bool InstructForm::is_ideal_nop() const {
duke@435 393 return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
duke@435 394 }
duke@435 395
duke@435 396 bool InstructForm::is_ideal_control() const {
duke@435 397 if ( ! _matrule) return false;
duke@435 398
kvn@3051 399 return is_ideal_return() || is_ideal_branch() || _matrule->is_ideal_jump() || is_ideal_halt();
duke@435 400 }
duke@435 401
duke@435 402 // Return 'true' if this instruction matches an ideal 'Call' node
duke@435 403 Form::CallType InstructForm::is_ideal_call() const {
duke@435 404 if( _matrule == NULL ) return Form::invalid_type;
duke@435 405
duke@435 406 // Check MatchRule to see if the first entry is the ideal "Call" node
duke@435 407 int idx = 0;
duke@435 408 if(_matrule->find_type("CallStaticJava",idx)) return Form::JAVA_STATIC;
duke@435 409 idx = 0;
duke@435 410 if(_matrule->find_type("Lock",idx)) return Form::JAVA_STATIC;
duke@435 411 idx = 0;
duke@435 412 if(_matrule->find_type("Unlock",idx)) return Form::JAVA_STATIC;
duke@435 413 idx = 0;
duke@435 414 if(_matrule->find_type("CallDynamicJava",idx)) return Form::JAVA_DYNAMIC;
duke@435 415 idx = 0;
duke@435 416 if(_matrule->find_type("CallRuntime",idx)) return Form::JAVA_RUNTIME;
duke@435 417 idx = 0;
duke@435 418 if(_matrule->find_type("CallLeaf",idx)) return Form::JAVA_LEAF;
duke@435 419 idx = 0;
duke@435 420 if(_matrule->find_type("CallLeafNoFP",idx)) return Form::JAVA_LEAF;
duke@435 421 idx = 0;
duke@435 422
duke@435 423 return Form::invalid_type;
duke@435 424 }
duke@435 425
duke@435 426 // Return 'true' if this instruction matches an ideal 'Load?' node
duke@435 427 Form::DataType InstructForm::is_ideal_load() const {
duke@435 428 if( _matrule == NULL ) return Form::none;
duke@435 429
duke@435 430 return _matrule->is_ideal_load();
duke@435 431 }
duke@435 432
never@1290 433 // Return 'true' if this instruction matches an ideal 'LoadKlass' node
never@1290 434 bool InstructForm::skip_antidep_check() const {
never@1290 435 if( _matrule == NULL ) return false;
never@1290 436
never@1290 437 return _matrule->skip_antidep_check();
never@1290 438 }
never@1290 439
duke@435 440 // Return 'true' if this instruction matches an ideal 'Load?' node
duke@435 441 Form::DataType InstructForm::is_ideal_store() const {
duke@435 442 if( _matrule == NULL ) return Form::none;
duke@435 443
duke@435 444 return _matrule->is_ideal_store();
duke@435 445 }
duke@435 446
kvn@3882 447 // Return 'true' if this instruction matches an ideal vector node
kvn@3882 448 bool InstructForm::is_vector() const {
kvn@3882 449 if( _matrule == NULL ) return false;
kvn@3882 450
kvn@3882 451 return _matrule->is_vector();
kvn@3882 452 }
kvn@3882 453
kvn@3882 454
duke@435 455 // Return the input register that must match the output register
duke@435 456 // If this is not required, return 0
duke@435 457 uint InstructForm::two_address(FormDict &globals) {
duke@435 458 uint matching_input = 0;
duke@435 459 if(_components.count() == 0) return 0;
duke@435 460
duke@435 461 _components.reset();
duke@435 462 Component *comp = _components.iter();
duke@435 463 // Check if there is a DEF
duke@435 464 if( comp->isa(Component::DEF) ) {
duke@435 465 // Check that this is a register
duke@435 466 const char *def_type = comp->_type;
duke@435 467 const Form *form = globals[def_type];
duke@435 468 OperandForm *op = form->is_operand();
duke@435 469 if( op ) {
duke@435 470 if( op->constrained_reg_class() != NULL &&
duke@435 471 op->interface_type(globals) == Form::register_interface ) {
duke@435 472 // Remember the local name for equality test later
duke@435 473 const char *def_name = comp->_name;
duke@435 474 // Check if a component has the same name and is a USE
duke@435 475 do {
duke@435 476 if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
duke@435 477 return operand_position_format(def_name);
duke@435 478 }
duke@435 479 } while( (comp = _components.iter()) != NULL);
duke@435 480 }
duke@435 481 }
duke@435 482 }
duke@435 483
duke@435 484 return 0;
duke@435 485 }
duke@435 486
duke@435 487
duke@435 488 // when chaining a constant to an instruction, returns 'true' and sets opType
duke@435 489 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
duke@435 490 const char *dummy = NULL;
duke@435 491 const char *dummy2 = NULL;
duke@435 492 return is_chain_of_constant(globals, dummy, dummy2);
duke@435 493 }
duke@435 494 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
duke@435 495 const char * &opTypeParam) {
duke@435 496 const char *result = NULL;
duke@435 497
duke@435 498 return is_chain_of_constant(globals, opTypeParam, result);
duke@435 499 }
duke@435 500
duke@435 501 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
duke@435 502 const char * &opTypeParam, const char * &resultParam) {
duke@435 503 Form::DataType data_type = Form::none;
duke@435 504 if ( ! _matrule) return data_type;
duke@435 505
duke@435 506 // !!!!!
duke@435 507 // The source of the chain rule is 'position = 1'
duke@435 508 uint position = 1;
duke@435 509 const char *result = NULL;
duke@435 510 const char *name = NULL;
duke@435 511 const char *opType = NULL;
duke@435 512 // Here base_operand is looking for an ideal type to be returned (opType).
duke@435 513 if ( _matrule->is_chain_rule(globals)
duke@435 514 && _matrule->base_operand(position, globals, result, name, opType) ) {
duke@435 515 data_type = ideal_to_const_type(opType);
duke@435 516
duke@435 517 // if it isn't an ideal constant type, just return
duke@435 518 if ( data_type == Form::none ) return data_type;
duke@435 519
duke@435 520 // Ideal constant types also adjust the opType parameter.
duke@435 521 resultParam = result;
duke@435 522 opTypeParam = opType;
duke@435 523 return data_type;
duke@435 524 }
duke@435 525
duke@435 526 return data_type;
duke@435 527 }
duke@435 528
duke@435 529 // Check if a simple chain rule
duke@435 530 bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
duke@435 531 if( _matrule && _matrule->sets_result()
duke@435 532 && _matrule->_rChild->_lChild == NULL
duke@435 533 && globals[_matrule->_rChild->_opType]
duke@435 534 && globals[_matrule->_rChild->_opType]->is_opclass() ) {
duke@435 535 return true;
duke@435 536 }
duke@435 537 return false;
duke@435 538 }
duke@435 539
duke@435 540 // check for structural rematerialization
duke@435 541 bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
duke@435 542 bool rematerialize = false;
duke@435 543
duke@435 544 Form::DataType data_type = is_chain_of_constant(globals);
duke@435 545 if( data_type != Form::none )
duke@435 546 rematerialize = true;
duke@435 547
duke@435 548 // Constants
duke@435 549 if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) )
duke@435 550 rematerialize = true;
duke@435 551
duke@435 552 // Pseudo-constants (values easily available to the runtime)
duke@435 553 if (is_empty_encoding() && is_tls_instruction())
duke@435 554 rematerialize = true;
duke@435 555
duke@435 556 // 1-input, 1-output, such as copies or increments.
duke@435 557 if( _components.count() == 2 &&
duke@435 558 _components[0]->is(Component::DEF) &&
duke@435 559 _components[1]->isa(Component::USE) )
duke@435 560 rematerialize = true;
duke@435 561
duke@435 562 // Check for an ideal 'Load?' and eliminate rematerialize option
duke@435 563 if ( is_ideal_load() != Form::none || // Ideal load? Do not rematerialize
duke@435 564 is_ideal_copy() != Form::none || // Ideal copy? Do not rematerialize
duke@435 565 is_expensive() != Form::none) { // Expensive? Do not rematerialize
duke@435 566 rematerialize = false;
duke@435 567 }
duke@435 568
duke@435 569 // Always rematerialize the flags. They are more expensive to save &
duke@435 570 // restore than to recompute (and possibly spill the compare's inputs).
duke@435 571 if( _components.count() >= 1 ) {
duke@435 572 Component *c = _components[0];
duke@435 573 const Form *form = globals[c->_type];
duke@435 574 OperandForm *opform = form->is_operand();
duke@435 575 if( opform ) {
duke@435 576 // Avoid the special stack_slots register classes
duke@435 577 const char *rc_name = opform->constrained_reg_class();
duke@435 578 if( rc_name ) {
duke@435 579 if( strcmp(rc_name,"stack_slots") ) {
duke@435 580 // Check for ideal_type of RegFlags
duke@435 581 const char *type = opform->ideal_type( globals, registers );
kvn@4161 582 if( (type != NULL) && !strcmp(type, "RegFlags") )
duke@435 583 rematerialize = true;
duke@435 584 } else
duke@435 585 rematerialize = false; // Do not rematerialize things target stk
duke@435 586 }
duke@435 587 }
duke@435 588 }
duke@435 589
duke@435 590 return rematerialize;
duke@435 591 }
duke@435 592
duke@435 593 // loads from memory, so must check for anti-dependence
duke@435 594 bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
never@1290 595 if ( skip_antidep_check() ) return false;
never@1290 596
duke@435 597 // Machine independent loads must be checked for anti-dependences
duke@435 598 if( is_ideal_load() != Form::none ) return true;
duke@435 599
duke@435 600 // !!!!! !!!!! !!!!!
duke@435 601 // TEMPORARY
duke@435 602 // if( is_simple_chain_rule(globals) ) return false;
duke@435 603
cfang@1116 604 // String.(compareTo/equals/indexOf) and Arrays.equals use many memorys edges,
cfang@1116 605 // but writes none
duke@435 606 if( _matrule && _matrule->_rChild &&
cfang@1116 607 ( strcmp(_matrule->_rChild->_opType,"StrComp" )==0 ||
cfang@1116 608 strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 ||
cfang@1116 609 strcmp(_matrule->_rChild->_opType,"StrIndexOf" )==0 ||
cfang@1116 610 strcmp(_matrule->_rChild->_opType,"AryEq" )==0 ))
duke@435 611 return true;
duke@435 612
duke@435 613 // Check if instruction has a USE of a memory operand class, but no defs
duke@435 614 bool USE_of_memory = false;
duke@435 615 bool DEF_of_memory = false;
duke@435 616 Component *comp = NULL;
duke@435 617 ComponentList &components = (ComponentList &)_components;
duke@435 618
duke@435 619 components.reset();
duke@435 620 while( (comp = components.iter()) != NULL ) {
duke@435 621 const Form *form = globals[comp->_type];
duke@435 622 if( !form ) continue;
duke@435 623 OpClassForm *op = form->is_opclass();
duke@435 624 if( !op ) continue;
duke@435 625 if( form->interface_type(globals) == Form::memory_interface ) {
duke@435 626 if( comp->isa(Component::USE) ) USE_of_memory = true;
duke@435 627 if( comp->isa(Component::DEF) ) {
duke@435 628 OperandForm *oper = form->is_operand();
duke@435 629 if( oper && oper->is_user_name_for_sReg() ) {
duke@435 630 // Stack slots are unaliased memory handled by allocator
duke@435 631 oper = oper; // debug stopping point !!!!!
duke@435 632 } else {
duke@435 633 DEF_of_memory = true;
duke@435 634 }
duke@435 635 }
duke@435 636 }
duke@435 637 }
duke@435 638 return (USE_of_memory && !DEF_of_memory);
duke@435 639 }
duke@435 640
duke@435 641
duke@435 642 bool InstructForm::is_wide_memory_kill(FormDict &globals) const {
duke@435 643 if( _matrule == NULL ) return false;
duke@435 644 if( !_matrule->_opType ) return false;
duke@435 645
duke@435 646 if( strcmp(_matrule->_opType,"MemBarRelease") == 0 ) return true;
duke@435 647 if( strcmp(_matrule->_opType,"MemBarAcquire") == 0 ) return true;
roland@3047 648 if( strcmp(_matrule->_opType,"MemBarReleaseLock") == 0 ) return true;
roland@3047 649 if( strcmp(_matrule->_opType,"MemBarAcquireLock") == 0 ) return true;
roland@3392 650 if( strcmp(_matrule->_opType,"MemBarStoreStore") == 0 ) return true;
mdoerr@8670 651 if( strcmp(_matrule->_opType,"MemBarVolatile") == 0 ) return true;
goetz@6489 652 if( strcmp(_matrule->_opType,"StoreFence") == 0 ) return true;
goetz@6489 653 if( strcmp(_matrule->_opType,"LoadFence") == 0 ) return true;
duke@435 654
duke@435 655 return false;
duke@435 656 }
duke@435 657
duke@435 658 int InstructForm::memory_operand(FormDict &globals) const {
duke@435 659 // Machine independent loads must be checked for anti-dependences
duke@435 660 // Check if instruction has a USE of a memory operand class, or a def.
duke@435 661 int USE_of_memory = 0;
duke@435 662 int DEF_of_memory = 0;
duke@435 663 const char* last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
iveresov@6378 664 const char* last_memory_USE = NULL;
duke@435 665 Component *unique = NULL;
duke@435 666 Component *comp = NULL;
duke@435 667 ComponentList &components = (ComponentList &)_components;
duke@435 668
duke@435 669 components.reset();
duke@435 670 while( (comp = components.iter()) != NULL ) {
duke@435 671 const Form *form = globals[comp->_type];
duke@435 672 if( !form ) continue;
duke@435 673 OpClassForm *op = form->is_opclass();
duke@435 674 if( !op ) continue;
duke@435 675 if( op->stack_slots_only(globals) ) continue;
duke@435 676 if( form->interface_type(globals) == Form::memory_interface ) {
duke@435 677 if( comp->isa(Component::DEF) ) {
duke@435 678 last_memory_DEF = comp->_name;
duke@435 679 DEF_of_memory++;
duke@435 680 unique = comp;
duke@435 681 } else if( comp->isa(Component::USE) ) {
duke@435 682 if( last_memory_DEF != NULL ) {
duke@435 683 assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
duke@435 684 last_memory_DEF = NULL;
duke@435 685 }
iveresov@6378 686 // Handles same memory being used multiple times in the case of BMI1 instructions.
iveresov@6378 687 if (last_memory_USE != NULL) {
iveresov@6378 688 if (strcmp(comp->_name, last_memory_USE) != 0) {
iveresov@6378 689 USE_of_memory++;
iveresov@6378 690 }
iveresov@6378 691 } else {
iveresov@6378 692 USE_of_memory++;
iveresov@6378 693 }
iveresov@6378 694 last_memory_USE = comp->_name;
iveresov@6378 695
duke@435 696 if (DEF_of_memory == 0) // defs take precedence
duke@435 697 unique = comp;
duke@435 698 } else {
duke@435 699 assert(last_memory_DEF == NULL, "unpaired memory DEF");
duke@435 700 }
duke@435 701 }
duke@435 702 }
duke@435 703 assert(last_memory_DEF == NULL, "unpaired memory DEF");
duke@435 704 assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
duke@435 705 USE_of_memory -= DEF_of_memory; // treat paired DEF/USE as one occurrence
duke@435 706 if( (USE_of_memory + DEF_of_memory) > 0 ) {
duke@435 707 if( is_simple_chain_rule(globals) ) {
duke@435 708 //fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
duke@435 709 //((InstructForm*)this)->dump();
duke@435 710 // Preceding code prints nothing on sparc and these insns on intel:
duke@435 711 // leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
duke@435 712 // leaPIdxOff leaPIdxScale leaPIdxScaleOff
duke@435 713 return NO_MEMORY_OPERAND;
duke@435 714 }
duke@435 715
duke@435 716 if( DEF_of_memory == 1 ) {
duke@435 717 assert(unique != NULL, "");
duke@435 718 if( USE_of_memory == 0 ) {
duke@435 719 // unique def, no uses
duke@435 720 } else {
duke@435 721 // // unique def, some uses
duke@435 722 // // must return bottom unless all uses match def
duke@435 723 // unique = NULL;
duke@435 724 }
duke@435 725 } else if( DEF_of_memory > 0 ) {
duke@435 726 // multiple defs, don't care about uses
duke@435 727 unique = NULL;
duke@435 728 } else if( USE_of_memory == 1) {
duke@435 729 // unique use, no defs
duke@435 730 assert(unique != NULL, "");
duke@435 731 } else if( USE_of_memory > 0 ) {
duke@435 732 // multiple uses, no defs
duke@435 733 unique = NULL;
duke@435 734 } else {
duke@435 735 assert(false, "bad case analysis");
duke@435 736 }
duke@435 737 // process the unique DEF or USE, if there is one
duke@435 738 if( unique == NULL ) {
duke@435 739 return MANY_MEMORY_OPERANDS;
duke@435 740 } else {
duke@435 741 int pos = components.operand_position(unique->_name);
duke@435 742 if( unique->isa(Component::DEF) ) {
duke@435 743 pos += 1; // get corresponding USE from DEF
duke@435 744 }
duke@435 745 assert(pos >= 1, "I was just looking at it!");
duke@435 746 return pos;
duke@435 747 }
duke@435 748 }
duke@435 749
duke@435 750 // missed the memory op??
duke@435 751 if( true ) { // %%% should not be necessary
duke@435 752 if( is_ideal_store() != Form::none ) {
duke@435 753 fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
duke@435 754 ((InstructForm*)this)->dump();
duke@435 755 // pretend it has multiple defs and uses
duke@435 756 return MANY_MEMORY_OPERANDS;
duke@435 757 }
duke@435 758 if( is_ideal_load() != Form::none ) {
duke@435 759 fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
duke@435 760 ((InstructForm*)this)->dump();
duke@435 761 // pretend it has multiple uses and no defs
duke@435 762 return MANY_MEMORY_OPERANDS;
duke@435 763 }
duke@435 764 }
duke@435 765
duke@435 766 return NO_MEMORY_OPERAND;
duke@435 767 }
duke@435 768
duke@435 769
duke@435 770 // This instruction captures the machine-independent bottom_type
duke@435 771 // Expected use is for pointer vs oop determination for LoadP
never@1896 772 bool InstructForm::captures_bottom_type(FormDict &globals) const {
duke@435 773 if( _matrule && _matrule->_rChild &&
roland@4159 774 (!strcmp(_matrule->_rChild->_opType,"CastPP") || // new result type
roland@4159 775 !strcmp(_matrule->_rChild->_opType,"CastX2P") || // new result type
roland@4159 776 !strcmp(_matrule->_rChild->_opType,"DecodeN") ||
roland@4159 777 !strcmp(_matrule->_rChild->_opType,"EncodeP") ||
roland@4159 778 !strcmp(_matrule->_rChild->_opType,"DecodeNKlass") ||
roland@4159 779 !strcmp(_matrule->_rChild->_opType,"EncodePKlass") ||
roland@4159 780 !strcmp(_matrule->_rChild->_opType,"LoadN") ||
roland@4159 781 !strcmp(_matrule->_rChild->_opType,"LoadNKlass") ||
roland@4159 782 !strcmp(_matrule->_rChild->_opType,"CreateEx") || // type of exception
roland@4658 783 !strcmp(_matrule->_rChild->_opType,"CheckCastPP") ||
roland@4658 784 !strcmp(_matrule->_rChild->_opType,"GetAndSetP") ||
roland@4658 785 !strcmp(_matrule->_rChild->_opType,"GetAndSetN")) ) return true;
duke@435 786 else if ( is_ideal_load() == Form::idealP ) return true;
duke@435 787 else if ( is_ideal_store() != Form::none ) return true;
duke@435 788
never@1896 789 if (needs_base_oop_edge(globals)) return true;
never@1896 790
kvn@3882 791 if (is_vector()) return true;
kvn@3882 792 if (is_mach_constant()) return true;
kvn@3882 793
duke@435 794 return false;
duke@435 795 }
duke@435 796
duke@435 797
duke@435 798 // Access instr_cost attribute or return NULL.
duke@435 799 const char* InstructForm::cost() {
duke@435 800 for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
duke@435 801 if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
duke@435 802 return cur->_val;
duke@435 803 }
duke@435 804 }
duke@435 805 return NULL;
duke@435 806 }
duke@435 807
duke@435 808 // Return count of top-level operands.
duke@435 809 uint InstructForm::num_opnds() {
duke@435 810 int num_opnds = _components.num_operands();
duke@435 811
duke@435 812 // Need special handling for matching some ideal nodes
duke@435 813 // i.e. Matching a return node
duke@435 814 /*
duke@435 815 if( _matrule ) {
duke@435 816 if( strcmp(_matrule->_opType,"Return" )==0 ||
duke@435 817 strcmp(_matrule->_opType,"Halt" )==0 )
duke@435 818 return 3;
duke@435 819 }
duke@435 820 */
duke@435 821 return num_opnds;
duke@435 822 }
duke@435 823
twisti@5221 824 const char* InstructForm::opnd_ident(int idx) {
kvn@4161 825 return _components.at(idx)->_name;
kvn@4161 826 }
kvn@4161 827
twisti@5221 828 const char* InstructForm::unique_opnd_ident(uint idx) {
kvn@4161 829 uint i;
kvn@4161 830 for (i = 1; i < num_opnds(); ++i) {
kvn@4161 831 if (unique_opnds_idx(i) == idx) {
kvn@4161 832 break;
kvn@4161 833 }
kvn@4161 834 }
kvn@4161 835 return (_components.at(i) != NULL) ? _components.at(i)->_name : "";
kvn@4161 836 }
kvn@4161 837
duke@435 838 // Return count of unmatched operands.
duke@435 839 uint InstructForm::num_post_match_opnds() {
duke@435 840 uint num_post_match_opnds = _components.count();
duke@435 841 uint num_match_opnds = _components.match_count();
duke@435 842 num_post_match_opnds = num_post_match_opnds - num_match_opnds;
duke@435 843
duke@435 844 return num_post_match_opnds;
duke@435 845 }
duke@435 846
duke@435 847 // Return the number of leaves below this complex operand
duke@435 848 uint InstructForm::num_consts(FormDict &globals) const {
duke@435 849 if ( ! _matrule) return 0;
duke@435 850
duke@435 851 // This is a recursive invocation on all operands in the matchrule
duke@435 852 return _matrule->num_consts(globals);
duke@435 853 }
duke@435 854
duke@435 855 // Constants in match rule with specified type
duke@435 856 uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
duke@435 857 if ( ! _matrule) return 0;
duke@435 858
duke@435 859 // This is a recursive invocation on all operands in the matchrule
duke@435 860 return _matrule->num_consts(globals, type);
duke@435 861 }
duke@435 862
duke@435 863
duke@435 864 // Return the register class associated with 'leaf'.
duke@435 865 const char *InstructForm::out_reg_class(FormDict &globals) {
duke@435 866 assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");
duke@435 867
duke@435 868 return NULL;
duke@435 869 }
duke@435 870
duke@435 871
duke@435 872
duke@435 873 // Lookup the starting position of inputs we are interested in wrt. ideal nodes
duke@435 874 uint InstructForm::oper_input_base(FormDict &globals) {
duke@435 875 if( !_matrule ) return 1; // Skip control for most nodes
duke@435 876
duke@435 877 // Need special handling for matching some ideal nodes
duke@435 878 // i.e. Matching a return node
duke@435 879 if( strcmp(_matrule->_opType,"Return" )==0 ||
duke@435 880 strcmp(_matrule->_opType,"Rethrow" )==0 ||
duke@435 881 strcmp(_matrule->_opType,"TailCall" )==0 ||
duke@435 882 strcmp(_matrule->_opType,"TailJump" )==0 ||
duke@435 883 strcmp(_matrule->_opType,"SafePoint" )==0 ||
duke@435 884 strcmp(_matrule->_opType,"Halt" )==0 )
duke@435 885 return AdlcVMDeps::Parms; // Skip the machine-state edges
duke@435 886
duke@435 887 if( _matrule->_rChild &&
kvn@1421 888 ( strcmp(_matrule->_rChild->_opType,"AryEq" )==0 ||
kvn@1421 889 strcmp(_matrule->_rChild->_opType,"StrComp" )==0 ||
cfang@1116 890 strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 ||
kvn@4479 891 strcmp(_matrule->_rChild->_opType,"StrIndexOf")==0 ||
kvn@4479 892 strcmp(_matrule->_rChild->_opType,"EncodeISOArray")==0)) {
kvn@1421 893 // String.(compareTo/equals/indexOf) and Arrays.equals
kvn@4479 894 // and sun.nio.cs.iso8859_1$Encoder.EncodeISOArray
kvn@1421 895 // take 1 control and 1 memory edges.
kvn@1421 896 return 2;
duke@435 897 }
duke@435 898
duke@435 899 // Check for handling of 'Memory' input/edge in the ideal world.
duke@435 900 // The AD file writer is shielded from knowledge of these edges.
duke@435 901 int base = 1; // Skip control
duke@435 902 base += _matrule->needs_ideal_memory_edge(globals);
duke@435 903
duke@435 904 // Also skip the base-oop value for uses of derived oops.
duke@435 905 // The AD file writer is shielded from knowledge of these edges.
duke@435 906 base += needs_base_oop_edge(globals);
duke@435 907
duke@435 908 return base;
duke@435 909 }
duke@435 910
kvn@4161 911 // This function determines the order of the MachOper in _opnds[]
kvn@4161 912 // by writing the operand names into the _components list.
kvn@4161 913 //
duke@435 914 // Implementation does not modify state of internal structures
duke@435 915 void InstructForm::build_components() {
duke@435 916 // Add top-level operands to the components
duke@435 917 if (_matrule) _matrule->append_components(_localNames, _components);
duke@435 918
duke@435 919 // Add parameters that "do not appear in match rule".
duke@435 920 bool has_temp = false;
duke@435 921 const char *name;
duke@435 922 const char *kill_name = NULL;
duke@435 923 for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
shade@9615 924 OpClassForm *opForm = _localNames[name]->is_opclass();
shade@9615 925 assert(opForm != NULL, "sanity");
duke@435 926
twisti@1038 927 Effect* e = NULL;
twisti@1038 928 {
twisti@1038 929 const Form* form = _effects[name];
twisti@1038 930 e = form ? form->is_effect() : NULL;
twisti@1038 931 }
twisti@1038 932
duke@435 933 if (e != NULL) {
duke@435 934 has_temp |= e->is(Component::TEMP);
duke@435 935
duke@435 936 // KILLs must be declared after any TEMPs because TEMPs are real
duke@435 937 // uses so their operand numbering must directly follow the real
duke@435 938 // inputs from the match rule. Fixing the numbering seems
duke@435 939 // complex so simply enforce the restriction during parse.
duke@435 940 if (kill_name != NULL &&
duke@435 941 e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
shade@9615 942 OpClassForm* kill = _localNames[kill_name]->is_opclass();
shade@9615 943 assert(kill != NULL, "sanity");
duke@435 944 globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
duke@435 945 _ident, kill->_ident, kill_name);
never@1037 946 } else if (e->isa(Component::KILL) && !e->isa(Component::USE)) {
duke@435 947 kill_name = name;
duke@435 948 }
duke@435 949 }
duke@435 950
duke@435 951 const Component *component = _components.search(name);
duke@435 952 if ( component == NULL ) {
duke@435 953 if (e) {
duke@435 954 _components.insert(name, opForm->_ident, e->_use_def, false);
duke@435 955 component = _components.search(name);
duke@435 956 if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
duke@435 957 const Form *form = globalAD->globalNames()[component->_type];
duke@435 958 assert( form, "component type must be a defined form");
duke@435 959 OperandForm *op = form->is_operand();
duke@435 960 if (op->_interface && op->_interface->is_RegInterface()) {
duke@435 961 globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
duke@435 962 _ident, opForm->_ident, name);
duke@435 963 }
duke@435 964 }
duke@435 965 } else {
duke@435 966 // This would be a nice warning but it triggers in a few places in a benign way
duke@435 967 // if (_matrule != NULL && !expands()) {
duke@435 968 // globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
duke@435 969 // _ident, opForm->_ident, name);
duke@435 970 // }
duke@435 971 _components.insert(name, opForm->_ident, Component::INVALID, false);
duke@435 972 }
duke@435 973 }
duke@435 974 else if (e) {
duke@435 975 // Component was found in the list
duke@435 976 // Check if there is a new effect that requires an extra component.
duke@435 977 // This happens when adding 'USE' to a component that is not yet one.
duke@435 978 if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
duke@435 979 if (component->isa(Component::USE) && _matrule) {
duke@435 980 const Form *form = globalAD->globalNames()[component->_type];
duke@435 981 assert( form, "component type must be a defined form");
duke@435 982 OperandForm *op = form->is_operand();
duke@435 983 if (op->_interface && op->_interface->is_RegInterface()) {
duke@435 984 globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
duke@435 985 _ident, opForm->_ident, name);
duke@435 986 }
duke@435 987 }
duke@435 988 _components.insert(name, opForm->_ident, e->_use_def, false);
duke@435 989 } else {
duke@435 990 Component *comp = (Component*)component;
duke@435 991 comp->promote_use_def_info(e->_use_def);
duke@435 992 }
duke@435 993 // Component positions are zero based.
duke@435 994 int pos = _components.operand_position(name);
duke@435 995 assert( ! (component->isa(Component::DEF) && (pos >= 1)),
duke@435 996 "Component::DEF can only occur in the first position");
duke@435 997 }
duke@435 998 }
duke@435 999
duke@435 1000 // Resolving the interactions between expand rules and TEMPs would
duke@435 1001 // be complex so simply disallow it.
duke@435 1002 if (_matrule == NULL && has_temp) {
duke@435 1003 globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
duke@435 1004 }
duke@435 1005
duke@435 1006 return;
duke@435 1007 }
duke@435 1008
duke@435 1009 // Return zero-based position in component list; -1 if not in list.
duke@435 1010 int InstructForm::operand_position(const char *name, int usedef) {
kvn@4161 1011 return unique_opnds_idx(_components.operand_position(name, usedef, this));
duke@435 1012 }
duke@435 1013
duke@435 1014 int InstructForm::operand_position_format(const char *name) {
kvn@4161 1015 return unique_opnds_idx(_components.operand_position_format(name, this));
duke@435 1016 }
duke@435 1017
duke@435 1018 // Return zero-based position in component list; -1 if not in list.
duke@435 1019 int InstructForm::label_position() {
duke@435 1020 return unique_opnds_idx(_components.label_position());
duke@435 1021 }
duke@435 1022
duke@435 1023 int InstructForm::method_position() {
duke@435 1024 return unique_opnds_idx(_components.method_position());
duke@435 1025 }
duke@435 1026
duke@435 1027 // Return number of relocation entries needed for this instruction.
duke@435 1028 uint InstructForm::reloc(FormDict &globals) {
duke@435 1029 uint reloc_entries = 0;
duke@435 1030 // Check for "Call" nodes
duke@435 1031 if ( is_ideal_call() ) ++reloc_entries;
duke@435 1032 if ( is_ideal_return() ) ++reloc_entries;
duke@435 1033 if ( is_ideal_safepoint() ) ++reloc_entries;
duke@435 1034
duke@435 1035
duke@435 1036 // Check if operands MAYBE oop pointers, by checking for ConP elements
duke@435 1037 // Proceed through the leaves of the match-tree and check for ConPs
duke@435 1038 if ( _matrule != NULL ) {
duke@435 1039 uint position = 0;
duke@435 1040 const char *result = NULL;
duke@435 1041 const char *name = NULL;
duke@435 1042 const char *opType = NULL;
duke@435 1043 while (_matrule->base_operand(position, globals, result, name, opType)) {
duke@435 1044 if ( strcmp(opType,"ConP") == 0 ) {
duke@435 1045 #ifdef SPARC
duke@435 1046 reloc_entries += 2; // 1 for sethi + 1 for setlo
duke@435 1047 #else
duke@435 1048 ++reloc_entries;
duke@435 1049 #endif
duke@435 1050 }
duke@435 1051 ++position;
duke@435 1052 }
duke@435 1053 }
duke@435 1054
duke@435 1055 // Above is only a conservative estimate
duke@435 1056 // because it did not check contents of operand classes.
duke@435 1057 // !!!!! !!!!!
duke@435 1058 // Add 1 to reloc info for each operand class in the component list.
duke@435 1059 Component *comp;
duke@435 1060 _components.reset();
duke@435 1061 while ( (comp = _components.iter()) != NULL ) {
duke@435 1062 const Form *form = globals[comp->_type];
duke@435 1063 assert( form, "Did not find component's type in global names");
duke@435 1064 const OpClassForm *opc = form->is_opclass();
duke@435 1065 const OperandForm *oper = form->is_operand();
duke@435 1066 if ( opc && (oper == NULL) ) {
duke@435 1067 ++reloc_entries;
duke@435 1068 } else if ( oper ) {
duke@435 1069 // floats and doubles loaded out of method's constant pool require reloc info
duke@435 1070 Form::DataType type = oper->is_base_constant(globals);
duke@435 1071 if ( (type == Form::idealF) || (type == Form::idealD) ) {
duke@435 1072 ++reloc_entries;
duke@435 1073 }
duke@435 1074 }
duke@435 1075 }
duke@435 1076
duke@435 1077 // Float and Double constants may come from the CodeBuffer table
duke@435 1078 // and require relocatable addresses for access
duke@435 1079 // !!!!!
duke@435 1080 // Check for any component being an immediate float or double.
duke@435 1081 Form::DataType data_type = is_chain_of_constant(globals);
duke@435 1082 if( data_type==idealD || data_type==idealF ) {
duke@435 1083 #ifdef SPARC
duke@435 1084 // sparc required more relocation entries for floating constants
duke@435 1085 // (expires 9/98)
duke@435 1086 reloc_entries += 6;
duke@435 1087 #else
duke@435 1088 reloc_entries++;
duke@435 1089 #endif
duke@435 1090 }
duke@435 1091
duke@435 1092 return reloc_entries;
duke@435 1093 }
duke@435 1094
duke@435 1095 // Utility function defined in archDesc.cpp
duke@435 1096 extern bool is_def(int usedef);
duke@435 1097
duke@435 1098 // Return the result of reducing an instruction
duke@435 1099 const char *InstructForm::reduce_result() {
duke@435 1100 const char* result = "Universe"; // default
duke@435 1101 _components.reset();
duke@435 1102 Component *comp = _components.iter();
duke@435 1103 if (comp != NULL && comp->isa(Component::DEF)) {
duke@435 1104 result = comp->_type;
duke@435 1105 // Override this if the rule is a store operation:
duke@435 1106 if (_matrule && _matrule->_rChild &&
duke@435 1107 is_store_to_memory(_matrule->_rChild->_opType))
duke@435 1108 result = "Universe";
duke@435 1109 }
duke@435 1110 return result;
duke@435 1111 }
duke@435 1112
duke@435 1113 // Return the name of the operand on the right hand side of the binary match
duke@435 1114 // Return NULL if there is no right hand side
duke@435 1115 const char *InstructForm::reduce_right(FormDict &globals) const {
duke@435 1116 if( _matrule == NULL ) return NULL;
duke@435 1117 return _matrule->reduce_right(globals);
duke@435 1118 }
duke@435 1119
duke@435 1120 // Similar for left
duke@435 1121 const char *InstructForm::reduce_left(FormDict &globals) const {
duke@435 1122 if( _matrule == NULL ) return NULL;
duke@435 1123 return _matrule->reduce_left(globals);
duke@435 1124 }
duke@435 1125
duke@435 1126
duke@435 1127 // Base class for this instruction, MachNode except for calls
never@1896 1128 const char *InstructForm::mach_base_class(FormDict &globals) const {
duke@435 1129 if( is_ideal_call() == Form::JAVA_STATIC ) {
duke@435 1130 return "MachCallStaticJavaNode";
duke@435 1131 }
duke@435 1132 else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
duke@435 1133 return "MachCallDynamicJavaNode";
duke@435 1134 }
duke@435 1135 else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
duke@435 1136 return "MachCallRuntimeNode";
duke@435 1137 }
duke@435 1138 else if( is_ideal_call() == Form::JAVA_LEAF ) {
duke@435 1139 return "MachCallLeafNode";
duke@435 1140 }
duke@435 1141 else if (is_ideal_return()) {
duke@435 1142 return "MachReturnNode";
duke@435 1143 }
duke@435 1144 else if (is_ideal_halt()) {
duke@435 1145 return "MachHaltNode";
duke@435 1146 }
duke@435 1147 else if (is_ideal_safepoint()) {
duke@435 1148 return "MachSafePointNode";
duke@435 1149 }
duke@435 1150 else if (is_ideal_if()) {
duke@435 1151 return "MachIfNode";
duke@435 1152 }
kvn@3040 1153 else if (is_ideal_goto()) {
kvn@3040 1154 return "MachGotoNode";
kvn@3040 1155 }
duke@435 1156 else if (is_ideal_fastlock()) {
duke@435 1157 return "MachFastLockNode";
duke@435 1158 }
duke@435 1159 else if (is_ideal_nop()) {
duke@435 1160 return "MachNopNode";
duke@435 1161 }
twisti@2350 1162 else if (is_mach_constant()) {
twisti@2350 1163 return "MachConstantNode";
twisti@2350 1164 }
never@1896 1165 else if (captures_bottom_type(globals)) {
duke@435 1166 return "MachTypeNode";
duke@435 1167 } else {
duke@435 1168 return "MachNode";
duke@435 1169 }
duke@435 1170 assert( false, "ShouldNotReachHere()");
duke@435 1171 return NULL;
duke@435 1172 }
duke@435 1173
duke@435 1174 // Compare the instruction predicates for textual equality
duke@435 1175 bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
duke@435 1176 const Predicate *pred1 = instr1->_predicate;
duke@435 1177 const Predicate *pred2 = instr2->_predicate;
duke@435 1178 if( pred1 == NULL && pred2 == NULL ) {
duke@435 1179 // no predicates means they are identical
duke@435 1180 return true;
duke@435 1181 }
duke@435 1182 if( pred1 != NULL && pred2 != NULL ) {
duke@435 1183 // compare the predicates
jrose@910 1184 if (ADLParser::equivalent_expressions(pred1->_pred, pred2->_pred)) {
duke@435 1185 return true;
duke@435 1186 }
duke@435 1187 }
duke@435 1188
duke@435 1189 return false;
duke@435 1190 }
duke@435 1191
duke@435 1192 // Check if this instruction can cisc-spill to 'alternate'
duke@435 1193 bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
duke@435 1194 assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
duke@435 1195 // Do not replace if a cisc-version has been found.
duke@435 1196 if( cisc_spill_operand() != Not_cisc_spillable ) return false;
duke@435 1197
duke@435 1198 int cisc_spill_operand = Maybe_cisc_spillable;
duke@435 1199 char *result = NULL;
duke@435 1200 char *result2 = NULL;
duke@435 1201 const char *op_name = NULL;
duke@435 1202 const char *reg_type = NULL;
duke@435 1203 FormDict &globals = AD.globalNames();
twisti@1038 1204 cisc_spill_operand = _matrule->matchrule_cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
duke@435 1205 if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
duke@435 1206 cisc_spill_operand = operand_position(op_name, Component::USE);
duke@435 1207 int def_oper = operand_position(op_name, Component::DEF);
duke@435 1208 if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
duke@435 1209 // Do not support cisc-spilling for destination operands and
duke@435 1210 // make sure they have the same number of operands.
duke@435 1211 _cisc_spill_alternate = instr;
duke@435 1212 instr->set_cisc_alternate(true);
duke@435 1213 if( AD._cisc_spill_debug ) {
duke@435 1214 fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
duke@435 1215 fprintf(stderr, " using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
duke@435 1216 }
duke@435 1217 // Record that a stack-version of the reg_mask is needed
duke@435 1218 // !!!!!
duke@435 1219 OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
duke@435 1220 assert( oper != NULL, "cisc-spilling non operand");
duke@435 1221 const char *reg_class_name = oper->constrained_reg_class();
duke@435 1222 AD.set_stack_or_reg(reg_class_name);
duke@435 1223 const char *reg_mask_name = AD.reg_mask(*oper);
duke@435 1224 set_cisc_reg_mask_name(reg_mask_name);
duke@435 1225 const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
duke@435 1226 } else {
duke@435 1227 cisc_spill_operand = Not_cisc_spillable;
duke@435 1228 }
duke@435 1229 } else {
duke@435 1230 cisc_spill_operand = Not_cisc_spillable;
duke@435 1231 }
duke@435 1232
duke@435 1233 set_cisc_spill_operand(cisc_spill_operand);
duke@435 1234 return (cisc_spill_operand != Not_cisc_spillable);
duke@435 1235 }
duke@435 1236
duke@435 1237 // Check to see if this instruction can be replaced with the short branch
duke@435 1238 // instruction `short-branch'
duke@435 1239 bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
duke@435 1240 if (_matrule != NULL &&
duke@435 1241 this != short_branch && // Don't match myself
duke@435 1242 !is_short_branch() && // Don't match another short branch variant
duke@435 1243 reduce_result() != NULL &&
duke@435 1244 strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
duke@435 1245 _matrule->equivalent(AD.globalNames(), short_branch->_matrule)) {
duke@435 1246 // The instructions are equivalent.
kvn@3049 1247
kvn@3049 1248 // Now verify that both instructions have the same parameters and
kvn@3049 1249 // the same effects. Both branch forms should have the same inputs
kvn@3049 1250 // and resulting projections to correctly replace a long branch node
kvn@3049 1251 // with corresponding short branch node during code generation.
kvn@3049 1252
kvn@3049 1253 bool different = false;
kvn@3049 1254 if (short_branch->_components.count() != _components.count()) {
kvn@3049 1255 different = true;
kvn@3049 1256 } else if (_components.count() > 0) {
kvn@3049 1257 short_branch->_components.reset();
kvn@3049 1258 _components.reset();
kvn@3049 1259 Component *comp;
kvn@3049 1260 while ((comp = _components.iter()) != NULL) {
kvn@3049 1261 Component *short_comp = short_branch->_components.iter();
kvn@3049 1262 if (short_comp == NULL ||
kvn@3049 1263 short_comp->_type != comp->_type ||
kvn@3049 1264 short_comp->_usedef != comp->_usedef) {
kvn@3049 1265 different = true;
kvn@3049 1266 break;
kvn@3049 1267 }
kvn@3049 1268 }
kvn@3049 1269 if (short_branch->_components.iter() != NULL)
kvn@3049 1270 different = true;
kvn@3049 1271 }
kvn@3049 1272 if (different) {
kvn@3049 1273 globalAD->syntax_err(short_branch->_linenum, "Instruction %s and its short form %s have different parameters\n", _ident, short_branch->_ident);
kvn@3049 1274 }
kvn@4161 1275 if (AD._adl_debug > 1 || AD._short_branch_debug) {
duke@435 1276 fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
duke@435 1277 }
duke@435 1278 _short_branch_form = short_branch;
duke@435 1279 return true;
duke@435 1280 }
duke@435 1281 return false;
duke@435 1282 }
duke@435 1283
duke@435 1284
duke@435 1285 // --------------------------- FILE *output_routines
duke@435 1286 //
duke@435 1287 // Generate the format call for the replacement variable
duke@435 1288 void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
twisti@2350 1289 // Handle special constant table variables.
twisti@2350 1290 if (strcmp(rep_var, "constanttablebase") == 0) {
twisti@2350 1291 fprintf(fp, "char reg[128]; ra->dump_register(in(mach_constant_base_node_input()), reg);\n");
roland@3161 1292 fprintf(fp, " st->print(\"%%s\", reg);\n");
twisti@2350 1293 return;
twisti@2350 1294 }
twisti@2350 1295 if (strcmp(rep_var, "constantoffset") == 0) {
goetz@6481 1296 fprintf(fp, "st->print(\"#%%d\", constant_offset_unchecked());\n");
twisti@2350 1297 return;
twisti@2350 1298 }
twisti@2350 1299 if (strcmp(rep_var, "constantaddress") == 0) {
goetz@6481 1300 fprintf(fp, "st->print(\"constant table base + #%%d\", constant_offset_unchecked());\n");
twisti@2350 1301 return;
twisti@2350 1302 }
twisti@2350 1303
duke@435 1304 // Find replacement variable's type
duke@435 1305 const Form *form = _localNames[rep_var];
duke@435 1306 if (form == NULL) {
kvn@4161 1307 globalAD->syntax_err(_linenum, "Unknown replacement variable %s in format statement of %s.",
kvn@4161 1308 rep_var, _ident);
kvn@4161 1309 return;
duke@435 1310 }
duke@435 1311 OpClassForm *opc = form->is_opclass();
duke@435 1312 assert( opc, "replacement variable was not found in local names");
duke@435 1313 // Lookup the index position of the replacement variable
duke@435 1314 int idx = operand_position_format(rep_var);
duke@435 1315 if ( idx == -1 ) {
kvn@4161 1316 globalAD->syntax_err(_linenum, "Could not find replacement variable %s in format statement of %s.\n",
kvn@4161 1317 rep_var, _ident);
kvn@4161 1318 assert(strcmp(opc->_ident, "label") == 0, "Unimplemented");
kvn@4161 1319 return;
duke@435 1320 }
duke@435 1321
duke@435 1322 if (is_noninput_operand(idx)) {
duke@435 1323 // This component isn't in the input array. Print out the static
duke@435 1324 // name of the register.
duke@435 1325 OperandForm* oper = form->is_operand();
duke@435 1326 if (oper != NULL && oper->is_bound_register()) {
duke@435 1327 const RegDef* first = oper->get_RegClass()->find_first_elem();
drchase@6680 1328 fprintf(fp, " st->print_raw(\"%s\");\n", first->_regname);
duke@435 1329 } else {
duke@435 1330 globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
duke@435 1331 }
duke@435 1332 } else {
duke@435 1333 // Output the format call for this operand
duke@435 1334 fprintf(fp,"opnd_array(%d)->",idx);
duke@435 1335 if (idx == 0)
duke@435 1336 fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
duke@435 1337 else
duke@435 1338 fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
duke@435 1339 }
duke@435 1340 }
duke@435 1341
duke@435 1342 // Seach through operands to determine parameters unique positions.
duke@435 1343 void InstructForm::set_unique_opnds() {
duke@435 1344 uint* uniq_idx = NULL;
twisti@5221 1345 uint nopnds = num_opnds();
duke@435 1346 uint num_uniq = nopnds;
twisti@5221 1347 uint i;
never@1034 1348 _uniq_idx_length = 0;
twisti@5221 1349 if (nopnds > 0) {
never@1034 1350 // Allocate index array. Worst case we're mapping from each
never@1034 1351 // component back to an index and any DEF always goes at 0 so the
never@1034 1352 // length of the array has to be the number of components + 1.
never@1034 1353 _uniq_idx_length = _components.count() + 1;
twisti@5221 1354 uniq_idx = (uint*) malloc(sizeof(uint) * _uniq_idx_length);
twisti@5221 1355 for (i = 0; i < _uniq_idx_length; i++) {
duke@435 1356 uniq_idx[i] = i;
duke@435 1357 }
duke@435 1358 }
duke@435 1359 // Do it only if there is a match rule and no expand rule. With an
duke@435 1360 // expand rule it is done by creating new mach node in Expand()
duke@435 1361 // method.
twisti@5221 1362 if (nopnds > 0 && _matrule != NULL && _exprule == NULL) {
duke@435 1363 const char *name;
duke@435 1364 uint count;
duke@435 1365 bool has_dupl_use = false;
duke@435 1366
duke@435 1367 _parameters.reset();
twisti@5221 1368 while ((name = _parameters.iter()) != NULL) {
duke@435 1369 count = 0;
twisti@5221 1370 uint position = 0;
twisti@5221 1371 uint uniq_position = 0;
duke@435 1372 _components.reset();
duke@435 1373 Component *comp = NULL;
twisti@5221 1374 if (sets_result()) {
duke@435 1375 comp = _components.iter();
duke@435 1376 position++;
duke@435 1377 }
duke@435 1378 // The next code is copied from the method operand_position().
duke@435 1379 for (; (comp = _components.iter()) != NULL; ++position) {
duke@435 1380 // When the first component is not a DEF,
duke@435 1381 // leave space for the result operand!
twisti@5221 1382 if (position==0 && (!comp->isa(Component::DEF))) {
duke@435 1383 ++position;
duke@435 1384 }
twisti@5221 1385 if (strcmp(name, comp->_name) == 0) {
twisti@5221 1386 if (++count > 1) {
never@1034 1387 assert(position < _uniq_idx_length, "out of bounds");
duke@435 1388 uniq_idx[position] = uniq_position;
duke@435 1389 has_dupl_use = true;
duke@435 1390 } else {
duke@435 1391 uniq_position = position;
duke@435 1392 }
duke@435 1393 }
twisti@5221 1394 if (comp->isa(Component::DEF) && comp->isa(Component::USE)) {
duke@435 1395 ++position;
twisti@5221 1396 if (position != 1)
duke@435 1397 --position; // only use two slots for the 1st USE_DEF
duke@435 1398 }
duke@435 1399 }
duke@435 1400 }
twisti@5221 1401 if (has_dupl_use) {
twisti@5221 1402 for (i = 1; i < nopnds; i++) {
twisti@5221 1403 if (i != uniq_idx[i]) {
duke@435 1404 break;
twisti@5221 1405 }
twisti@5221 1406 }
twisti@5221 1407 uint j = i;
twisti@5221 1408 for (; i < nopnds; i++) {
twisti@5221 1409 if (i == uniq_idx[i]) {
duke@435 1410 uniq_idx[i] = j++;
twisti@5221 1411 }
twisti@5221 1412 }
duke@435 1413 num_uniq = j;
duke@435 1414 }
duke@435 1415 }
duke@435 1416 _uniq_idx = uniq_idx;
duke@435 1417 _num_uniq = num_uniq;
duke@435 1418 }
duke@435 1419
twisti@1040 1420 // Generate index values needed for determining the operand position
duke@435 1421 void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
duke@435 1422 uint idx = 0; // position of operand in match rule
duke@435 1423 int cur_num_opnds = num_opnds();
duke@435 1424
duke@435 1425 // Compute the index into vector of operand pointers:
duke@435 1426 // idx0=0 is used to indicate that info comes from this same node, not from input edge.
duke@435 1427 // idx1 starts at oper_input_base()
duke@435 1428 if ( cur_num_opnds >= 1 ) {
kvn@4161 1429 fprintf(fp," // Start at oper_input_base() and count operands\n");
kvn@4161 1430 fprintf(fp," unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
kvn@4161 1431 fprintf(fp," unsigned %sidx1 = %d;", prefix, oper_input_base(globals));
kvn@4161 1432 fprintf(fp," \t// %s\n", unique_opnd_ident(1));
duke@435 1433
duke@435 1434 // Generate starting points for other unique operands if they exist
duke@435 1435 for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
duke@435 1436 if( *receiver == 0 ) {
kvn@4161 1437 fprintf(fp," unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();",
duke@435 1438 prefix, idx, prefix, idx-1, idx-1 );
duke@435 1439 } else {
kvn@4161 1440 fprintf(fp," unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();",
duke@435 1441 prefix, idx, prefix, idx-1, receiver, idx-1 );
duke@435 1442 }
kvn@4161 1443 fprintf(fp," \t// %s\n", unique_opnd_ident(idx));
duke@435 1444 }
duke@435 1445 }
duke@435 1446 if( *receiver != 0 ) {
duke@435 1447 // This value is used by generate_peepreplace when copying a node.
duke@435 1448 // Don't emit it in other cases since it can hide bugs with the
duke@435 1449 // use invalid idx's.
kvn@4161 1450 fprintf(fp," unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
duke@435 1451 }
duke@435 1452
duke@435 1453 }
duke@435 1454
duke@435 1455 // ---------------------------
duke@435 1456 bool InstructForm::verify() {
duke@435 1457 // !!!!! !!!!!
duke@435 1458 // Check that a "label" operand occurs last in the operand list, if present
duke@435 1459 return true;
duke@435 1460 }
duke@435 1461
duke@435 1462 void InstructForm::dump() {
duke@435 1463 output(stderr);
duke@435 1464 }
duke@435 1465
duke@435 1466 void InstructForm::output(FILE *fp) {
duke@435 1467 fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
duke@435 1468 if (_matrule) _matrule->output(fp);
duke@435 1469 if (_insencode) _insencode->output(fp);
twisti@2350 1470 if (_constant) _constant->output(fp);
duke@435 1471 if (_opcode) _opcode->output(fp);
duke@435 1472 if (_attribs) _attribs->output(fp);
duke@435 1473 if (_predicate) _predicate->output(fp);
duke@435 1474 if (_effects.Size()) {
duke@435 1475 fprintf(fp,"Effects\n");
duke@435 1476 _effects.dump();
duke@435 1477 }
duke@435 1478 if (_exprule) _exprule->output(fp);
duke@435 1479 if (_rewrule) _rewrule->output(fp);
duke@435 1480 if (_format) _format->output(fp);
duke@435 1481 if (_peephole) _peephole->output(fp);
duke@435 1482 }
duke@435 1483
duke@435 1484 void MachNodeForm::dump() {
duke@435 1485 output(stderr);
duke@435 1486 }
duke@435 1487
duke@435 1488 void MachNodeForm::output(FILE *fp) {
duke@435 1489 fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
duke@435 1490 }
duke@435 1491
duke@435 1492 //------------------------------build_predicate--------------------------------
duke@435 1493 // Build instruction predicates. If the user uses the same operand name
duke@435 1494 // twice, we need to check that the operands are pointer-eequivalent in
duke@435 1495 // the DFA during the labeling process.
duke@435 1496 Predicate *InstructForm::build_predicate() {
duke@435 1497 char buf[1024], *s=buf;
duke@435 1498 Dict names(cmpstr,hashstr,Form::arena); // Map Names to counts
duke@435 1499
duke@435 1500 MatchNode *mnode =
duke@435 1501 strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
duke@435 1502 mnode->count_instr_names(names);
duke@435 1503
duke@435 1504 uint first = 1;
duke@435 1505 // Start with the predicate supplied in the .ad file.
duke@435 1506 if( _predicate ) {
duke@435 1507 if( first ) first=0;
duke@435 1508 strcpy(s,"("); s += strlen(s);
duke@435 1509 strcpy(s,_predicate->_pred);
duke@435 1510 s += strlen(s);
duke@435 1511 strcpy(s,")"); s += strlen(s);
duke@435 1512 }
duke@435 1513 for( DictI i(&names); i.test(); ++i ) {
duke@435 1514 uintptr_t cnt = (uintptr_t)i._value;
duke@435 1515 if( cnt > 1 ) { // Need a predicate at all?
duke@435 1516 assert( cnt == 2, "Unimplemented" );
duke@435 1517 // Handle many pairs
duke@435 1518 if( first ) first=0;
duke@435 1519 else { // All tests must pass, so use '&&'
duke@435 1520 strcpy(s," && ");
duke@435 1521 s += strlen(s);
duke@435 1522 }
duke@435 1523 // Add predicate to working buffer
duke@435 1524 sprintf(s,"/*%s*/(",(char*)i._key);
duke@435 1525 s += strlen(s);
duke@435 1526 mnode->build_instr_pred(s,(char*)i._key,0);
duke@435 1527 s += strlen(s);
duke@435 1528 strcpy(s," == "); s += strlen(s);
duke@435 1529 mnode->build_instr_pred(s,(char*)i._key,1);
duke@435 1530 s += strlen(s);
duke@435 1531 strcpy(s,")"); s += strlen(s);
duke@435 1532 }
duke@435 1533 }
duke@435 1534 if( s == buf ) s = NULL;
duke@435 1535 else {
duke@435 1536 assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
duke@435 1537 s = strdup(buf);
duke@435 1538 }
duke@435 1539 return new Predicate(s);
duke@435 1540 }
duke@435 1541
duke@435 1542 //------------------------------EncodeForm-------------------------------------
duke@435 1543 // Constructor
duke@435 1544 EncodeForm::EncodeForm()
duke@435 1545 : _encClass(cmpstr,hashstr, Form::arena) {
duke@435 1546 }
duke@435 1547 EncodeForm::~EncodeForm() {
duke@435 1548 }
duke@435 1549
duke@435 1550 // record a new register class
duke@435 1551 EncClass *EncodeForm::add_EncClass(const char *className) {
duke@435 1552 EncClass *encClass = new EncClass(className);
duke@435 1553 _eclasses.addName(className);
duke@435 1554 _encClass.Insert(className,encClass);
duke@435 1555 return encClass;
duke@435 1556 }
duke@435 1557
duke@435 1558 // Lookup the function body for an encoding class
duke@435 1559 EncClass *EncodeForm::encClass(const char *className) {
duke@435 1560 assert( className != NULL, "Must provide a defined encoding name");
duke@435 1561
duke@435 1562 EncClass *encClass = (EncClass*)_encClass[className];
duke@435 1563 return encClass;
duke@435 1564 }
duke@435 1565
duke@435 1566 // Lookup the function body for an encoding class
duke@435 1567 const char *EncodeForm::encClassBody(const char *className) {
duke@435 1568 if( className == NULL ) return NULL;
duke@435 1569
duke@435 1570 EncClass *encClass = (EncClass*)_encClass[className];
duke@435 1571 assert( encClass != NULL, "Encode Class is missing.");
duke@435 1572 encClass->_code.reset();
duke@435 1573 const char *code = (const char*)encClass->_code.iter();
duke@435 1574 assert( code != NULL, "Found an empty encode class body.");
duke@435 1575
duke@435 1576 return code;
duke@435 1577 }
duke@435 1578
duke@435 1579 // Lookup the function body for an encoding class
duke@435 1580 const char *EncodeForm::encClassPrototype(const char *className) {
duke@435 1581 assert( className != NULL, "Encode class name must be non NULL.");
duke@435 1582
duke@435 1583 return className;
duke@435 1584 }
duke@435 1585
duke@435 1586 void EncodeForm::dump() { // Debug printer
duke@435 1587 output(stderr);
duke@435 1588 }
duke@435 1589
duke@435 1590 void EncodeForm::output(FILE *fp) { // Write info to output files
duke@435 1591 const char *name;
duke@435 1592 fprintf(fp,"\n");
duke@435 1593 fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
duke@435 1594 for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
duke@435 1595 ((EncClass*)_encClass[name])->output(fp);
duke@435 1596 }
duke@435 1597 fprintf(fp,"-------------------- end EncodeForm --------------------\n");
duke@435 1598 }
duke@435 1599 //------------------------------EncClass---------------------------------------
duke@435 1600 EncClass::EncClass(const char *name)
duke@435 1601 : _localNames(cmpstr,hashstr, Form::arena), _name(name) {
duke@435 1602 }
duke@435 1603 EncClass::~EncClass() {
duke@435 1604 }
duke@435 1605
duke@435 1606 // Add a parameter <type,name> pair
duke@435 1607 void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
duke@435 1608 _parameter_type.addName( parameter_type );
duke@435 1609 _parameter_name.addName( parameter_name );
duke@435 1610 }
duke@435 1611
duke@435 1612 // Verify operand types in parameter list
duke@435 1613 bool EncClass::check_parameter_types(FormDict &globals) {
duke@435 1614 // !!!!!
duke@435 1615 return false;
duke@435 1616 }
duke@435 1617
duke@435 1618 // Add the decomposed "code" sections of an encoding's code-block
duke@435 1619 void EncClass::add_code(const char *code) {
duke@435 1620 _code.addName(code);
duke@435 1621 }
duke@435 1622
duke@435 1623 // Add the decomposed "replacement variables" of an encoding's code-block
duke@435 1624 void EncClass::add_rep_var(char *replacement_var) {
duke@435 1625 _code.addName(NameList::_signal);
duke@435 1626 _rep_vars.addName(replacement_var);
duke@435 1627 }
duke@435 1628
duke@435 1629 // Lookup the function body for an encoding class
duke@435 1630 int EncClass::rep_var_index(const char *rep_var) {
duke@435 1631 uint position = 0;
duke@435 1632 const char *name = NULL;
duke@435 1633
duke@435 1634 _parameter_name.reset();
duke@435 1635 while ( (name = _parameter_name.iter()) != NULL ) {
duke@435 1636 if ( strcmp(rep_var,name) == 0 ) return position;
duke@435 1637 ++position;
duke@435 1638 }
duke@435 1639
duke@435 1640 return -1;
duke@435 1641 }
duke@435 1642
duke@435 1643 // Check after parsing
duke@435 1644 bool EncClass::verify() {
duke@435 1645 // 1!!!!
duke@435 1646 // Check that each replacement variable, '$name' in architecture description
duke@435 1647 // is actually a local variable for this encode class, or a reserved name
duke@435 1648 // "primary, secondary, tertiary"
duke@435 1649 return true;
duke@435 1650 }
duke@435 1651
duke@435 1652 void EncClass::dump() {
duke@435 1653 output(stderr);
duke@435 1654 }
duke@435 1655
duke@435 1656 // Write info to output files
duke@435 1657 void EncClass::output(FILE *fp) {
duke@435 1658 fprintf(fp,"EncClass: %s", (_name ? _name : ""));
duke@435 1659
duke@435 1660 // Output the parameter list
duke@435 1661 _parameter_type.reset();
duke@435 1662 _parameter_name.reset();
duke@435 1663 const char *type = _parameter_type.iter();
duke@435 1664 const char *name = _parameter_name.iter();
duke@435 1665 fprintf(fp, " ( ");
duke@435 1666 for ( ; (type != NULL) && (name != NULL);
duke@435 1667 (type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
duke@435 1668 fprintf(fp, " %s %s,", type, name);
duke@435 1669 }
duke@435 1670 fprintf(fp, " ) ");
duke@435 1671
duke@435 1672 // Output the code block
duke@435 1673 _code.reset();
duke@435 1674 _rep_vars.reset();
duke@435 1675 const char *code;
duke@435 1676 while ( (code = _code.iter()) != NULL ) {
duke@435 1677 if ( _code.is_signal(code) ) {
duke@435 1678 // A replacement variable
duke@435 1679 const char *rep_var = _rep_vars.iter();
duke@435 1680 fprintf(fp,"($%s)", rep_var);
duke@435 1681 } else {
duke@435 1682 // A section of code
duke@435 1683 fprintf(fp,"%s", code);
duke@435 1684 }
duke@435 1685 }
duke@435 1686
duke@435 1687 }
duke@435 1688
duke@435 1689 //------------------------------Opcode-----------------------------------------
duke@435 1690 Opcode::Opcode(char *primary, char *secondary, char *tertiary)
duke@435 1691 : _primary(primary), _secondary(secondary), _tertiary(tertiary) {
duke@435 1692 }
duke@435 1693
duke@435 1694 Opcode::~Opcode() {
duke@435 1695 }
duke@435 1696
duke@435 1697 Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
duke@435 1698 if( strcmp(param,"primary") == 0 ) {
duke@435 1699 return Opcode::PRIMARY;
duke@435 1700 }
duke@435 1701 else if( strcmp(param,"secondary") == 0 ) {
duke@435 1702 return Opcode::SECONDARY;
duke@435 1703 }
duke@435 1704 else if( strcmp(param,"tertiary") == 0 ) {
duke@435 1705 return Opcode::TERTIARY;
duke@435 1706 }
duke@435 1707 return Opcode::NOT_AN_OPCODE;
duke@435 1708 }
duke@435 1709
never@850 1710 bool Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
duke@435 1711 // Default values previously provided by MachNode::primary()...
never@850 1712 const char *description = NULL;
never@850 1713 const char *value = NULL;
duke@435 1714 // Check if user provided any opcode definitions
duke@435 1715 if( this != NULL ) {
duke@435 1716 // Update 'value' if user provided a definition in the instruction
duke@435 1717 switch (desired_opcode) {
duke@435 1718 case PRIMARY:
duke@435 1719 description = "primary()";
duke@435 1720 if( _primary != NULL) { value = _primary; }
duke@435 1721 break;
duke@435 1722 case SECONDARY:
duke@435 1723 description = "secondary()";
duke@435 1724 if( _secondary != NULL ) { value = _secondary; }
duke@435 1725 break;
duke@435 1726 case TERTIARY:
duke@435 1727 description = "tertiary()";
duke@435 1728 if( _tertiary != NULL ) { value = _tertiary; }
duke@435 1729 break;
duke@435 1730 default:
duke@435 1731 assert( false, "ShouldNotReachHere();");
duke@435 1732 break;
duke@435 1733 }
duke@435 1734 }
never@850 1735 if (value != NULL) {
never@850 1736 fprintf(fp, "(%s /*%s*/)", value, description);
never@850 1737 }
never@850 1738 return value != NULL;
duke@435 1739 }
duke@435 1740
duke@435 1741 void Opcode::dump() {
duke@435 1742 output(stderr);
duke@435 1743 }
duke@435 1744
duke@435 1745 // Write info to output files
duke@435 1746 void Opcode::output(FILE *fp) {
duke@435 1747 if (_primary != NULL) fprintf(fp,"Primary opcode: %s\n", _primary);
duke@435 1748 if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
duke@435 1749 if (_tertiary != NULL) fprintf(fp,"Tertiary opcode: %s\n", _tertiary);
duke@435 1750 }
duke@435 1751
duke@435 1752 //------------------------------InsEncode--------------------------------------
duke@435 1753 InsEncode::InsEncode() {
duke@435 1754 }
duke@435 1755 InsEncode::~InsEncode() {
duke@435 1756 }
duke@435 1757
duke@435 1758 // Add "encode class name" and its parameters
duke@435 1759 NameAndList *InsEncode::add_encode(char *encoding) {
duke@435 1760 assert( encoding != NULL, "Must provide name for encoding");
duke@435 1761
duke@435 1762 // add_parameter(NameList::_signal);
duke@435 1763 NameAndList *encode = new NameAndList(encoding);
duke@435 1764 _encoding.addName((char*)encode);
duke@435 1765
duke@435 1766 return encode;
duke@435 1767 }
duke@435 1768
duke@435 1769 // Access the list of encodings
duke@435 1770 void InsEncode::reset() {
duke@435 1771 _encoding.reset();
duke@435 1772 // _parameter.reset();
duke@435 1773 }
duke@435 1774 const char* InsEncode::encode_class_iter() {
duke@435 1775 NameAndList *encode_class = (NameAndList*)_encoding.iter();
duke@435 1776 return ( encode_class != NULL ? encode_class->name() : NULL );
duke@435 1777 }
duke@435 1778 // Obtain parameter name from zero based index
duke@435 1779 const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
duke@435 1780 NameAndList *params = (NameAndList*)_encoding.current();
duke@435 1781 assert( params != NULL, "Internal Error");
duke@435 1782 const char *param = (*params)[param_no];
duke@435 1783
duke@435 1784 // Remove '$' if parser placed it there.
duke@435 1785 return ( param != NULL && *param == '$') ? (param+1) : param;
duke@435 1786 }
duke@435 1787
duke@435 1788 void InsEncode::dump() {
duke@435 1789 output(stderr);
duke@435 1790 }
duke@435 1791
duke@435 1792 // Write info to output files
duke@435 1793 void InsEncode::output(FILE *fp) {
duke@435 1794 NameAndList *encoding = NULL;
duke@435 1795 const char *parameter = NULL;
duke@435 1796
duke@435 1797 fprintf(fp,"InsEncode: ");
duke@435 1798 _encoding.reset();
duke@435 1799
duke@435 1800 while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
duke@435 1801 // Output the encoding being used
duke@435 1802 fprintf(fp,"%s(", encoding->name() );
duke@435 1803
duke@435 1804 // Output its parameter list, if any
duke@435 1805 bool first_param = true;
duke@435 1806 encoding->reset();
duke@435 1807 while ( (parameter = encoding->iter()) != 0 ) {
duke@435 1808 // Output the ',' between parameters
duke@435 1809 if ( ! first_param ) fprintf(fp,", ");
duke@435 1810 first_param = false;
duke@435 1811 // Output the parameter
duke@435 1812 fprintf(fp,"%s", parameter);
duke@435 1813 } // done with parameters
duke@435 1814 fprintf(fp,") ");
duke@435 1815 } // done with encodings
duke@435 1816
duke@435 1817 fprintf(fp,"\n");
duke@435 1818 }
duke@435 1819
duke@435 1820 //------------------------------Effect-----------------------------------------
duke@435 1821 static int effect_lookup(const char *name) {
duke@435 1822 if(!strcmp(name, "USE")) return Component::USE;
duke@435 1823 if(!strcmp(name, "DEF")) return Component::DEF;
duke@435 1824 if(!strcmp(name, "USE_DEF")) return Component::USE_DEF;
duke@435 1825 if(!strcmp(name, "KILL")) return Component::KILL;
duke@435 1826 if(!strcmp(name, "USE_KILL")) return Component::USE_KILL;
duke@435 1827 if(!strcmp(name, "TEMP")) return Component::TEMP;
duke@435 1828 if(!strcmp(name, "INVALID")) return Component::INVALID;
roland@3316 1829 if(!strcmp(name, "CALL")) return Component::CALL;
duke@435 1830 assert( false,"Invalid effect name specified\n");
duke@435 1831 return Component::INVALID;
duke@435 1832 }
duke@435 1833
kvn@4161 1834 const char *Component::getUsedefName() {
kvn@4161 1835 switch (_usedef) {
kvn@4161 1836 case Component::INVALID: return "INVALID"; break;
kvn@4161 1837 case Component::USE: return "USE"; break;
kvn@4161 1838 case Component::USE_DEF: return "USE_DEF"; break;
kvn@4161 1839 case Component::USE_KILL: return "USE_KILL"; break;
kvn@4161 1840 case Component::KILL: return "KILL"; break;
kvn@4161 1841 case Component::TEMP: return "TEMP"; break;
kvn@4161 1842 case Component::DEF: return "DEF"; break;
kvn@4161 1843 case Component::CALL: return "CALL"; break;
kvn@4161 1844 default: assert(false, "unknown effect");
kvn@4161 1845 }
kvn@4161 1846 return "Undefined Use/Def info";
kvn@4161 1847 }
kvn@4161 1848
duke@435 1849 Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
duke@435 1850 _ftype = Form::EFF;
duke@435 1851 }
kvn@4161 1852
duke@435 1853 Effect::~Effect() {
duke@435 1854 }
duke@435 1855
duke@435 1856 // Dynamic type check
duke@435 1857 Effect *Effect::is_effect() const {
duke@435 1858 return (Effect*)this;
duke@435 1859 }
duke@435 1860
duke@435 1861
duke@435 1862 // True if this component is equal to the parameter.
duke@435 1863 bool Effect::is(int use_def_kill_enum) const {
duke@435 1864 return (_use_def == use_def_kill_enum ? true : false);
duke@435 1865 }
duke@435 1866 // True if this component is used/def'd/kill'd as the parameter suggests.
duke@435 1867 bool Effect::isa(int use_def_kill_enum) const {
duke@435 1868 return (_use_def & use_def_kill_enum) == use_def_kill_enum;
duke@435 1869 }
duke@435 1870
duke@435 1871 void Effect::dump() {
duke@435 1872 output(stderr);
duke@435 1873 }
duke@435 1874
duke@435 1875 void Effect::output(FILE *fp) { // Write info to output files
duke@435 1876 fprintf(fp,"Effect: %s\n", (_name?_name:""));
duke@435 1877 }
duke@435 1878
duke@435 1879 //------------------------------ExpandRule-------------------------------------
duke@435 1880 ExpandRule::ExpandRule() : _expand_instrs(),
duke@435 1881 _newopconst(cmpstr, hashstr, Form::arena) {
duke@435 1882 _ftype = Form::EXP;
duke@435 1883 }
duke@435 1884
duke@435 1885 ExpandRule::~ExpandRule() { // Destructor
duke@435 1886 }
duke@435 1887
duke@435 1888 void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
duke@435 1889 _expand_instrs.addName((char*)instruction_name_and_operand_list);
duke@435 1890 }
duke@435 1891
duke@435 1892 void ExpandRule::reset_instructions() {
duke@435 1893 _expand_instrs.reset();
duke@435 1894 }
duke@435 1895
duke@435 1896 NameAndList* ExpandRule::iter_instructions() {
duke@435 1897 return (NameAndList*)_expand_instrs.iter();
duke@435 1898 }
duke@435 1899
duke@435 1900
duke@435 1901 void ExpandRule::dump() {
duke@435 1902 output(stderr);
duke@435 1903 }
duke@435 1904
duke@435 1905 void ExpandRule::output(FILE *fp) { // Write info to output files
duke@435 1906 NameAndList *expand_instr = NULL;
duke@435 1907 const char *opid = NULL;
duke@435 1908
duke@435 1909 fprintf(fp,"\nExpand Rule:\n");
duke@435 1910
duke@435 1911 // Iterate over the instructions 'node' expands into
duke@435 1912 for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
duke@435 1913 fprintf(fp,"%s(", expand_instr->name());
duke@435 1914
duke@435 1915 // iterate over the operand list
duke@435 1916 for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
duke@435 1917 fprintf(fp,"%s ", opid);
duke@435 1918 }
duke@435 1919 fprintf(fp,");\n");
duke@435 1920 }
duke@435 1921 }
duke@435 1922
duke@435 1923 //------------------------------RewriteRule------------------------------------
duke@435 1924 RewriteRule::RewriteRule(char* params, char* block)
duke@435 1925 : _tempParams(params), _tempBlock(block) { }; // Constructor
duke@435 1926 RewriteRule::~RewriteRule() { // Destructor
duke@435 1927 }
duke@435 1928
duke@435 1929 void RewriteRule::dump() {
duke@435 1930 output(stderr);
duke@435 1931 }
duke@435 1932
duke@435 1933 void RewriteRule::output(FILE *fp) { // Write info to output files
duke@435 1934 fprintf(fp,"\nRewrite Rule:\n%s\n%s\n",
duke@435 1935 (_tempParams?_tempParams:""),
duke@435 1936 (_tempBlock?_tempBlock:""));
duke@435 1937 }
duke@435 1938
duke@435 1939
duke@435 1940 //==============================MachNodes======================================
duke@435 1941 //------------------------------MachNodeForm-----------------------------------
duke@435 1942 MachNodeForm::MachNodeForm(char *id)
duke@435 1943 : _ident(id) {
duke@435 1944 }
duke@435 1945
duke@435 1946 MachNodeForm::~MachNodeForm() {
duke@435 1947 }
duke@435 1948
duke@435 1949 MachNodeForm *MachNodeForm::is_machnode() const {
duke@435 1950 return (MachNodeForm*)this;
duke@435 1951 }
duke@435 1952
duke@435 1953 //==============================Operand Classes================================
duke@435 1954 //------------------------------OpClassForm------------------------------------
duke@435 1955 OpClassForm::OpClassForm(const char* id) : _ident(id) {
duke@435 1956 _ftype = Form::OPCLASS;
duke@435 1957 }
duke@435 1958
duke@435 1959 OpClassForm::~OpClassForm() {
duke@435 1960 }
duke@435 1961
duke@435 1962 bool OpClassForm::ideal_only() const { return 0; }
duke@435 1963
duke@435 1964 OpClassForm *OpClassForm::is_opclass() const {
duke@435 1965 return (OpClassForm*)this;
duke@435 1966 }
duke@435 1967
duke@435 1968 Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
duke@435 1969 if( _oplst.count() == 0 ) return Form::no_interface;
duke@435 1970
duke@435 1971 // Check that my operands have the same interface type
duke@435 1972 Form::InterfaceType interface;
duke@435 1973 bool first = true;
duke@435 1974 NameList &op_list = (NameList &)_oplst;
duke@435 1975 op_list.reset();
duke@435 1976 const char *op_name;
duke@435 1977 while( (op_name = op_list.iter()) != NULL ) {
duke@435 1978 const Form *form = globals[op_name];
duke@435 1979 OperandForm *operand = form->is_operand();
duke@435 1980 assert( operand, "Entry in operand class that is not an operand");
duke@435 1981 if( first ) {
duke@435 1982 first = false;
duke@435 1983 interface = operand->interface_type(globals);
duke@435 1984 } else {
duke@435 1985 interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
duke@435 1986 }
duke@435 1987 }
duke@435 1988 return interface;
duke@435 1989 }
duke@435 1990
duke@435 1991 bool OpClassForm::stack_slots_only(FormDict &globals) const {
duke@435 1992 if( _oplst.count() == 0 ) return false; // how?
duke@435 1993
duke@435 1994 NameList &op_list = (NameList &)_oplst;
duke@435 1995 op_list.reset();
duke@435 1996 const char *op_name;
duke@435 1997 while( (op_name = op_list.iter()) != NULL ) {
duke@435 1998 const Form *form = globals[op_name];
duke@435 1999 OperandForm *operand = form->is_operand();
duke@435 2000 assert( operand, "Entry in operand class that is not an operand");
duke@435 2001 if( !operand->stack_slots_only(globals) ) return false;
duke@435 2002 }
duke@435 2003 return true;
duke@435 2004 }
duke@435 2005
duke@435 2006
duke@435 2007 void OpClassForm::dump() {
duke@435 2008 output(stderr);
duke@435 2009 }
duke@435 2010
duke@435 2011 void OpClassForm::output(FILE *fp) {
duke@435 2012 const char *name;
duke@435 2013 fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
duke@435 2014 fprintf(fp,"\nCount = %d\n", _oplst.count());
duke@435 2015 for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
duke@435 2016 fprintf(fp,"%s, ",name);
duke@435 2017 }
duke@435 2018 fprintf(fp,"\n");
duke@435 2019 }
duke@435 2020
duke@435 2021
duke@435 2022 //==============================Operands=======================================
duke@435 2023 //------------------------------OperandForm------------------------------------
duke@435 2024 OperandForm::OperandForm(const char* id)
duke@435 2025 : OpClassForm(id), _ideal_only(false),
duke@435 2026 _localNames(cmpstr, hashstr, Form::arena) {
duke@435 2027 _ftype = Form::OPER;
duke@435 2028
duke@435 2029 _matrule = NULL;
duke@435 2030 _interface = NULL;
duke@435 2031 _attribs = NULL;
duke@435 2032 _predicate = NULL;
duke@435 2033 _constraint= NULL;
duke@435 2034 _construct = NULL;
duke@435 2035 _format = NULL;
duke@435 2036 }
duke@435 2037 OperandForm::OperandForm(const char* id, bool ideal_only)
duke@435 2038 : OpClassForm(id), _ideal_only(ideal_only),
duke@435 2039 _localNames(cmpstr, hashstr, Form::arena) {
duke@435 2040 _ftype = Form::OPER;
duke@435 2041
duke@435 2042 _matrule = NULL;
duke@435 2043 _interface = NULL;
duke@435 2044 _attribs = NULL;
duke@435 2045 _predicate = NULL;
duke@435 2046 _constraint= NULL;
duke@435 2047 _construct = NULL;
duke@435 2048 _format = NULL;
duke@435 2049 }
duke@435 2050 OperandForm::~OperandForm() {
duke@435 2051 }
duke@435 2052
duke@435 2053
duke@435 2054 OperandForm *OperandForm::is_operand() const {
duke@435 2055 return (OperandForm*)this;
duke@435 2056 }
duke@435 2057
duke@435 2058 bool OperandForm::ideal_only() const {
duke@435 2059 return _ideal_only;
duke@435 2060 }
duke@435 2061
duke@435 2062 Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
duke@435 2063 if( _interface == NULL ) return Form::no_interface;
duke@435 2064
duke@435 2065 return _interface->interface_type(globals);
duke@435 2066 }
duke@435 2067
duke@435 2068
duke@435 2069 bool OperandForm::stack_slots_only(FormDict &globals) const {
duke@435 2070 if( _constraint == NULL ) return false;
duke@435 2071 return _constraint->stack_slots_only();
duke@435 2072 }
duke@435 2073
duke@435 2074
duke@435 2075 // Access op_cost attribute or return NULL.
duke@435 2076 const char* OperandForm::cost() {
duke@435 2077 for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
duke@435 2078 if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
duke@435 2079 return cur->_val;
duke@435 2080 }
duke@435 2081 }
duke@435 2082 return NULL;
duke@435 2083 }
duke@435 2084
duke@435 2085 // Return the number of leaves below this complex operand
duke@435 2086 uint OperandForm::num_leaves() const {
duke@435 2087 if ( ! _matrule) return 0;
duke@435 2088
duke@435 2089 int num_leaves = _matrule->_numleaves;
duke@435 2090 return num_leaves;
duke@435 2091 }
duke@435 2092
duke@435 2093 // Return the number of constants contained within this complex operand
duke@435 2094 uint OperandForm::num_consts(FormDict &globals) const {
duke@435 2095 if ( ! _matrule) return 0;
duke@435 2096
duke@435 2097 // This is a recursive invocation on all operands in the matchrule
duke@435 2098 return _matrule->num_consts(globals);
duke@435 2099 }
duke@435 2100
duke@435 2101 // Return the number of constants in match rule with specified type
duke@435 2102 uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
duke@435 2103 if ( ! _matrule) return 0;
duke@435 2104
duke@435 2105 // This is a recursive invocation on all operands in the matchrule
duke@435 2106 return _matrule->num_consts(globals, type);
duke@435 2107 }
duke@435 2108
duke@435 2109 // Return the number of pointer constants contained within this complex operand
duke@435 2110 uint OperandForm::num_const_ptrs(FormDict &globals) const {
duke@435 2111 if ( ! _matrule) return 0;
duke@435 2112
duke@435 2113 // This is a recursive invocation on all operands in the matchrule
duke@435 2114 return _matrule->num_const_ptrs(globals);
duke@435 2115 }
duke@435 2116
duke@435 2117 uint OperandForm::num_edges(FormDict &globals) const {
duke@435 2118 uint edges = 0;
duke@435 2119 uint leaves = num_leaves();
duke@435 2120 uint consts = num_consts(globals);
duke@435 2121
duke@435 2122 // If we are matching a constant directly, there are no leaves.
duke@435 2123 edges = ( leaves > consts ) ? leaves - consts : 0;
duke@435 2124
duke@435 2125 // !!!!!
duke@435 2126 // Special case operands that do not have a corresponding ideal node.
duke@435 2127 if( (edges == 0) && (consts == 0) ) {
duke@435 2128 if( constrained_reg_class() != NULL ) {
duke@435 2129 edges = 1;
duke@435 2130 } else {
duke@435 2131 if( _matrule
duke@435 2132 && (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
duke@435 2133 const Form *form = globals[_matrule->_opType];
duke@435 2134 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 2135 if( oper ) {
duke@435 2136 return oper->num_edges(globals);
duke@435 2137 }
duke@435 2138 }
duke@435 2139 }
duke@435 2140 }
duke@435 2141
duke@435 2142 return edges;
duke@435 2143 }
duke@435 2144
duke@435 2145
duke@435 2146 // Check if this operand is usable for cisc-spilling
duke@435 2147 bool OperandForm::is_cisc_reg(FormDict &globals) const {
duke@435 2148 const char *ideal = ideal_type(globals);
duke@435 2149 bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
duke@435 2150 return is_cisc_reg;
duke@435 2151 }
duke@435 2152
duke@435 2153 bool OpClassForm::is_cisc_mem(FormDict &globals) const {
duke@435 2154 Form::InterfaceType my_interface = interface_type(globals);
duke@435 2155 return (my_interface == memory_interface);
duke@435 2156 }
duke@435 2157
duke@435 2158
duke@435 2159 // node matches ideal 'Bool'
duke@435 2160 bool OperandForm::is_ideal_bool() const {
duke@435 2161 if( _matrule == NULL ) return false;
duke@435 2162
duke@435 2163 return _matrule->is_ideal_bool();
duke@435 2164 }
duke@435 2165
duke@435 2166 // Require user's name for an sRegX to be stackSlotX
duke@435 2167 Form::DataType OperandForm::is_user_name_for_sReg() const {
duke@435 2168 DataType data_type = none;
duke@435 2169 if( _ident != NULL ) {
duke@435 2170 if( strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
duke@435 2171 else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
duke@435 2172 else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
duke@435 2173 else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
duke@435 2174 else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
duke@435 2175 }
duke@435 2176 assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");
duke@435 2177
duke@435 2178 return data_type;
duke@435 2179 }
duke@435 2180
duke@435 2181
duke@435 2182 // Return ideal type, if there is a single ideal type for this operand
duke@435 2183 const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
duke@435 2184 const char *type = NULL;
duke@435 2185 if (ideal_only()) type = _ident;
duke@435 2186 else if( _matrule == NULL ) {
duke@435 2187 // Check for condition code register
duke@435 2188 const char *rc_name = constrained_reg_class();
duke@435 2189 // !!!!!
duke@435 2190 if (rc_name == NULL) return NULL;
duke@435 2191 // !!!!! !!!!!
duke@435 2192 // Check constraints on result's register class
duke@435 2193 if( registers ) {
duke@435 2194 RegClass *reg_class = registers->getRegClass(rc_name);
duke@435 2195 assert( reg_class != NULL, "Register class is not defined");
duke@435 2196
duke@435 2197 // Check for ideal type of entries in register class, all are the same type
duke@435 2198 reg_class->reset();
duke@435 2199 RegDef *reg_def = reg_class->RegDef_iter();
duke@435 2200 assert( reg_def != NULL, "No entries in register class");
duke@435 2201 assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
duke@435 2202 // Return substring that names the register's ideal type
duke@435 2203 type = reg_def->_idealtype + 3;
duke@435 2204 assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
duke@435 2205 assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
duke@435 2206 assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
duke@435 2207 }
duke@435 2208 }
duke@435 2209 else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
duke@435 2210 // This operand matches a single type, at the top level.
duke@435 2211 // Check for ideal type
duke@435 2212 type = _matrule->_opType;
duke@435 2213 if( strcmp(type,"Bool") == 0 )
duke@435 2214 return "Bool";
duke@435 2215 // transitive lookup
duke@435 2216 const Form *frm = globals[type];
duke@435 2217 OperandForm *op = frm->is_operand();
duke@435 2218 type = op->ideal_type(globals, registers);
duke@435 2219 }
duke@435 2220 return type;
duke@435 2221 }
duke@435 2222
duke@435 2223
duke@435 2224 // If there is a single ideal type for this interface field, return it.
duke@435 2225 const char *OperandForm::interface_ideal_type(FormDict &globals,
duke@435 2226 const char *field) const {
duke@435 2227 const char *ideal_type = NULL;
duke@435 2228 const char *value = NULL;
duke@435 2229
duke@435 2230 // Check if "field" is valid for this operand's interface
duke@435 2231 if ( ! is_interface_field(field, value) ) return ideal_type;
duke@435 2232
duke@435 2233 // !!!!! !!!!! !!!!!
duke@435 2234 // If a valid field has a constant value, identify "ConI" or "ConP" or ...
duke@435 2235
duke@435 2236 // Else, lookup type of field's replacement variable
duke@435 2237
duke@435 2238 return ideal_type;
duke@435 2239 }
duke@435 2240
duke@435 2241
duke@435 2242 RegClass* OperandForm::get_RegClass() const {
duke@435 2243 if (_interface && !_interface->is_RegInterface()) return NULL;
duke@435 2244 return globalAD->get_registers()->getRegClass(constrained_reg_class());
duke@435 2245 }
duke@435 2246
duke@435 2247
duke@435 2248 bool OperandForm::is_bound_register() const {
twisti@5221 2249 RegClass* reg_class = get_RegClass();
twisti@5221 2250 if (reg_class == NULL) {
twisti@5221 2251 return false;
twisti@5221 2252 }
twisti@5221 2253
twisti@5221 2254 const char* name = ideal_type(globalAD->globalNames());
twisti@5221 2255 if (name == NULL) {
twisti@5221 2256 return false;
twisti@5221 2257 }
twisti@5221 2258
twisti@5221 2259 uint size = 0;
twisti@5221 2260 if (strcmp(name, "RegFlags") == 0) size = 1;
twisti@5221 2261 if (strcmp(name, "RegI") == 0) size = 1;
twisti@5221 2262 if (strcmp(name, "RegF") == 0) size = 1;
twisti@5221 2263 if (strcmp(name, "RegD") == 0) size = 2;
twisti@5221 2264 if (strcmp(name, "RegL") == 0) size = 2;
twisti@5221 2265 if (strcmp(name, "RegN") == 0) size = 1;
twisti@5221 2266 if (strcmp(name, "RegP") == 0) size = globalAD->get_preproc_def("_LP64") ? 2 : 1;
twisti@5221 2267 if (size == 0) {
twisti@5221 2268 return false;
twisti@5221 2269 }
duke@435 2270 return size == reg_class->size();
duke@435 2271 }
duke@435 2272
duke@435 2273
duke@435 2274 // Check if this is a valid field for this operand,
duke@435 2275 // Return 'true' if valid, and set the value to the string the user provided.
duke@435 2276 bool OperandForm::is_interface_field(const char *field,
duke@435 2277 const char * &value) const {
duke@435 2278 return false;
duke@435 2279 }
duke@435 2280
duke@435 2281
duke@435 2282 // Return register class name if a constraint specifies the register class.
duke@435 2283 const char *OperandForm::constrained_reg_class() const {
duke@435 2284 const char *reg_class = NULL;
duke@435 2285 if ( _constraint ) {
duke@435 2286 // !!!!!
duke@435 2287 Constraint *constraint = _constraint;
duke@435 2288 if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
duke@435 2289 reg_class = _constraint->_arg;
duke@435 2290 }
duke@435 2291 }
duke@435 2292
duke@435 2293 return reg_class;
duke@435 2294 }
duke@435 2295
duke@435 2296
duke@435 2297 // Return the register class associated with 'leaf'.
duke@435 2298 const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
duke@435 2299 const char *reg_class = NULL; // "RegMask::Empty";
duke@435 2300
duke@435 2301 if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
duke@435 2302 reg_class = constrained_reg_class();
duke@435 2303 return reg_class;
duke@435 2304 }
duke@435 2305 const char *result = NULL;
duke@435 2306 const char *name = NULL;
duke@435 2307 const char *type = NULL;
duke@435 2308 // iterate through all base operands
duke@435 2309 // until we reach the register that corresponds to "leaf"
duke@435 2310 // This function is not looking for an ideal type. It needs the first
duke@435 2311 // level user type associated with the leaf.
duke@435 2312 for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
duke@435 2313 const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
duke@435 2314 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 2315 if( oper ) {
duke@435 2316 reg_class = oper->constrained_reg_class();
duke@435 2317 if( reg_class ) {
duke@435 2318 reg_class = reg_class;
duke@435 2319 } else {
duke@435 2320 // ShouldNotReachHere();
duke@435 2321 }
duke@435 2322 } else {
duke@435 2323 // ShouldNotReachHere();
duke@435 2324 }
duke@435 2325
duke@435 2326 // Increment our target leaf position if current leaf is not a candidate.
duke@435 2327 if( reg_class == NULL) ++leaf;
duke@435 2328 // Exit the loop with the value of reg_class when at the correct index
duke@435 2329 if( idx == leaf ) break;
duke@435 2330 // May iterate through all base operands if reg_class for 'leaf' is NULL
duke@435 2331 }
duke@435 2332 return reg_class;
duke@435 2333 }
duke@435 2334
duke@435 2335
duke@435 2336 // Recursive call to construct list of top-level operands.
duke@435 2337 // Implementation does not modify state of internal structures
duke@435 2338 void OperandForm::build_components() {
duke@435 2339 if (_matrule) _matrule->append_components(_localNames, _components);
duke@435 2340
duke@435 2341 // Add parameters that "do not appear in match rule".
duke@435 2342 const char *name;
duke@435 2343 for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
shade@9615 2344 OpClassForm *opForm = _localNames[name]->is_opclass();
shade@9615 2345 assert(opForm != NULL, "sanity");
duke@435 2346
duke@435 2347 if ( _components.operand_position(name) == -1 ) {
duke@435 2348 _components.insert(name, opForm->_ident, Component::INVALID, false);
duke@435 2349 }
duke@435 2350 }
duke@435 2351
duke@435 2352 return;
duke@435 2353 }
duke@435 2354
duke@435 2355 int OperandForm::operand_position(const char *name, int usedef) {
kvn@4161 2356 return _components.operand_position(name, usedef, this);
duke@435 2357 }
duke@435 2358
duke@435 2359
duke@435 2360 // Return zero-based position in component list, only counting constants;
duke@435 2361 // Return -1 if not in list.
duke@435 2362 int OperandForm::constant_position(FormDict &globals, const Component *last) {
twisti@1040 2363 // Iterate through components and count constants preceding 'constant'
twisti@1038 2364 int position = 0;
duke@435 2365 Component *comp;
duke@435 2366 _components.reset();
duke@435 2367 while( (comp = _components.iter()) != NULL && (comp != last) ) {
duke@435 2368 // Special case for operands that take a single user-defined operand
duke@435 2369 // Skip the initial definition in the component list.
duke@435 2370 if( strcmp(comp->_name,this->_ident) == 0 ) continue;
duke@435 2371
duke@435 2372 const char *type = comp->_type;
duke@435 2373 // Lookup operand form for replacement variable's type
duke@435 2374 const Form *form = globals[type];
duke@435 2375 assert( form != NULL, "Component's type not found");
duke@435 2376 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 2377 if( oper ) {
duke@435 2378 if( oper->_matrule->is_base_constant(globals) != Form::none ) {
duke@435 2379 ++position;
duke@435 2380 }
duke@435 2381 }
duke@435 2382 }
duke@435 2383
duke@435 2384 // Check for being passed a component that was not in the list
duke@435 2385 if( comp != last ) position = -1;
duke@435 2386
duke@435 2387 return position;
duke@435 2388 }
duke@435 2389 // Provide position of constant by "name"
duke@435 2390 int OperandForm::constant_position(FormDict &globals, const char *name) {
duke@435 2391 const Component *comp = _components.search(name);
duke@435 2392 int idx = constant_position( globals, comp );
duke@435 2393
duke@435 2394 return idx;
duke@435 2395 }
duke@435 2396
duke@435 2397
duke@435 2398 // Return zero-based position in component list, only counting constants;
duke@435 2399 // Return -1 if not in list.
duke@435 2400 int OperandForm::register_position(FormDict &globals, const char *reg_name) {
twisti@1040 2401 // Iterate through components and count registers preceding 'last'
duke@435 2402 uint position = 0;
duke@435 2403 Component *comp;
duke@435 2404 _components.reset();
duke@435 2405 while( (comp = _components.iter()) != NULL
duke@435 2406 && (strcmp(comp->_name,reg_name) != 0) ) {
duke@435 2407 // Special case for operands that take a single user-defined operand
duke@435 2408 // Skip the initial definition in the component list.
duke@435 2409 if( strcmp(comp->_name,this->_ident) == 0 ) continue;
duke@435 2410
duke@435 2411 const char *type = comp->_type;
duke@435 2412 // Lookup operand form for component's type
duke@435 2413 const Form *form = globals[type];
duke@435 2414 assert( form != NULL, "Component's type not found");
duke@435 2415 OperandForm *oper = form ? form->is_operand() : NULL;
duke@435 2416 if( oper ) {
duke@435 2417 if( oper->_matrule->is_base_register(globals) ) {
duke@435 2418 ++position;
duke@435 2419 }
duke@435 2420 }
duke@435 2421 }
duke@435 2422
duke@435 2423 return position;
duke@435 2424 }
duke@435 2425
duke@435 2426
duke@435 2427 const char *OperandForm::reduce_result() const {
duke@435 2428 return _ident;
duke@435 2429 }
duke@435 2430 // Return the name of the operand on the right hand side of the binary match
duke@435 2431 // Return NULL if there is no right hand side
duke@435 2432 const char *OperandForm::reduce_right(FormDict &globals) const {
duke@435 2433 return ( _matrule ? _matrule->reduce_right(globals) : NULL );
duke@435 2434 }
duke@435 2435
duke@435 2436 // Similar for left
duke@435 2437 const char *OperandForm::reduce_left(FormDict &globals) const {
duke@435 2438 return ( _matrule ? _matrule->reduce_left(globals) : NULL );
duke@435 2439 }
duke@435 2440
duke@435 2441
duke@435 2442 // --------------------------- FILE *output_routines
duke@435 2443 //
duke@435 2444 // Output code for disp_is_oop, if true.
duke@435 2445 void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
duke@435 2446 // Check it is a memory interface with a non-user-constant disp field
duke@435 2447 if ( this->_interface == NULL ) return;
duke@435 2448 MemInterface *mem_interface = this->_interface->is_MemInterface();
duke@435 2449 if ( mem_interface == NULL ) return;
duke@435 2450 const char *disp = mem_interface->_disp;
duke@435 2451 if ( *disp != '$' ) return;
duke@435 2452
duke@435 2453 // Lookup replacement variable in operand's component list
duke@435 2454 const char *rep_var = disp + 1;
duke@435 2455 const Component *comp = this->_components.search(rep_var);
duke@435 2456 assert( comp != NULL, "Replacement variable not found in components");
duke@435 2457 // Lookup operand form for replacement variable's type
duke@435 2458 const char *type = comp->_type;
duke@435 2459 Form *form = (Form*)globals[type];
duke@435 2460 assert( form != NULL, "Replacement variable's type not found");
duke@435 2461 OperandForm *op = form->is_operand();
duke@435 2462 assert( op, "Memory Interface 'disp' can only emit an operand form");
duke@435 2463 // Check if this is a ConP, which may require relocation
duke@435 2464 if ( op->is_base_constant(globals) == Form::idealP ) {
duke@435 2465 // Find the constant's index: _c0, _c1, _c2, ... , _cN
duke@435 2466 uint idx = op->constant_position( globals, rep_var);
coleenp@4037 2467 fprintf(fp," virtual relocInfo::relocType disp_reloc() const {");
coleenp@4037 2468 fprintf(fp, " return _c%d->reloc();", idx);
duke@435 2469 fprintf(fp, " }\n");
duke@435 2470 }
duke@435 2471 }
duke@435 2472
duke@435 2473 // Generate code for internal and external format methods
duke@435 2474 //
duke@435 2475 // internal access to reg# node->_idx
duke@435 2476 // access to subsumed constant _c0, _c1,
duke@435 2477 void OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
duke@435 2478 Form::DataType dtype;
duke@435 2479 if (_matrule && (_matrule->is_base_register(globals) ||
duke@435 2480 strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
duke@435 2481 // !!!!! !!!!!
kvn@4161 2482 fprintf(fp," { char reg_str[128];\n");
kvn@4161 2483 fprintf(fp," ra->dump_register(node,reg_str);\n");
kvn@4161 2484 fprintf(fp," st->print(\"%cs\",reg_str);\n",'%');
kvn@4161 2485 fprintf(fp," }\n");
duke@435 2486 } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
duke@435 2487 format_constant( fp, index, dtype );
duke@435 2488 } else if (ideal_to_sReg_type(_ident) != Form::none) {
duke@435 2489 // Special format for Stack Slot Register
kvn@4161 2490 fprintf(fp," { char reg_str[128];\n");
kvn@4161 2491 fprintf(fp," ra->dump_register(node,reg_str);\n");
kvn@4161 2492 fprintf(fp," st->print(\"%cs\",reg_str);\n",'%');
kvn@4161 2493 fprintf(fp," }\n");
duke@435 2494 } else {
kvn@4161 2495 fprintf(fp," st->print(\"No format defined for %s\n\");\n", _ident);
duke@435 2496 fflush(fp);
duke@435 2497 fprintf(stderr,"No format defined for %s\n", _ident);
duke@435 2498 dump();
duke@435 2499 assert( false,"Internal error:\n output_internal_operand() attempting to output other than a Register or Constant");
duke@435 2500 }
duke@435 2501 }
duke@435 2502
duke@435 2503 // Similar to "int_format" but for cases where data is external to operand
duke@435 2504 // external access to reg# node->in(idx)->_idx,
duke@435 2505 void OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
duke@435 2506 Form::DataType dtype;
duke@435 2507 if (_matrule && (_matrule->is_base_register(globals) ||
duke@435 2508 strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
kvn@4161 2509 fprintf(fp," { char reg_str[128];\n");
kvn@4161 2510 fprintf(fp," ra->dump_register(node->in(idx");
kvn@4161 2511 if ( index != 0 ) fprintf(fp, "+%d",index);
kvn@4161 2512 fprintf(fp, "),reg_str);\n");
kvn@4161 2513 fprintf(fp," st->print(\"%cs\",reg_str);\n",'%');
kvn@4161 2514 fprintf(fp," }\n");
duke@435 2515 } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
duke@435 2516 format_constant( fp, index, dtype );
duke@435 2517 } else if (ideal_to_sReg_type(_ident) != Form::none) {
duke@435 2518 // Special format for Stack Slot Register
kvn@4161 2519 fprintf(fp," { char reg_str[128];\n");
kvn@4161 2520 fprintf(fp," ra->dump_register(node->in(idx");
duke@435 2521 if ( index != 0 ) fprintf(fp, "+%d",index);
duke@435 2522 fprintf(fp, "),reg_str);\n");
kvn@4161 2523 fprintf(fp," st->print(\"%cs\",reg_str);\n",'%');
kvn@4161 2524 fprintf(fp," }\n");
duke@435 2525 } else {
kvn@4161 2526 fprintf(fp," st->print(\"No format defined for %s\n\");\n", _ident);
duke@435 2527 assert( false,"Internal error:\n output_external_operand() attempting to output other than a Register or Constant");
duke@435 2528 }
duke@435 2529 }
duke@435 2530
duke@435 2531 void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
duke@435 2532 switch(const_type) {
kvn@4161 2533 case Form::idealI: fprintf(fp," st->print(\"#%%d\", _c%d);\n", const_index); break;
kvn@4161 2534 case Form::idealP: fprintf(fp," if (_c%d) _c%d->dump_on(st);\n", const_index, const_index); break;
roland@4159 2535 case Form::idealNKlass:
kvn@4161 2536 case Form::idealN: fprintf(fp," if (_c%d) _c%d->dump_on(st);\n", const_index, const_index); break;
drchase@6680 2537 case Form::idealL: fprintf(fp," st->print(\"#\" INT64_FORMAT, (int64_t)_c%d);\n", const_index); break;
kvn@4161 2538 case Form::idealF: fprintf(fp," st->print(\"#%%f\", _c%d);\n", const_index); break;
kvn@4161 2539 case Form::idealD: fprintf(fp," st->print(\"#%%f\", _c%d);\n", const_index); break;
duke@435 2540 default:
duke@435 2541 assert( false, "ShouldNotReachHere()");
duke@435 2542 }
duke@435 2543 }
duke@435 2544
duke@435 2545 // Return the operand form corresponding to the given index, else NULL.
duke@435 2546 OperandForm *OperandForm::constant_operand(FormDict &globals,
duke@435 2547 uint index) {
duke@435 2548 // !!!!!
duke@435 2549 // Check behavior on complex operands
duke@435 2550 uint n_consts = num_consts(globals);
duke@435 2551 if( n_consts > 0 ) {
duke@435 2552 uint i = 0;
duke@435 2553 const char *type;
duke@435 2554 Component *comp;
duke@435 2555 _components.reset();
duke@435 2556 if ((comp = _components.iter()) == NULL) {
duke@435 2557 assert(n_consts == 1, "Bad component list detected.\n");
duke@435 2558 // Current operand is THE operand
duke@435 2559 if ( index == 0 ) {
duke@435 2560 return this;
duke@435 2561 }
duke@435 2562 } // end if NULL
duke@435 2563 else {
duke@435 2564 // Skip the first component, it can not be a DEF of a constant
duke@435 2565 do {
duke@435 2566 type = comp->base_type(globals);
duke@435 2567 // Check that "type" is a 'ConI', 'ConP', ...
duke@435 2568 if ( ideal_to_const_type(type) != Form::none ) {
duke@435 2569 // When at correct component, get corresponding Operand
duke@435 2570 if ( index == 0 ) {
duke@435 2571 return globals[comp->_type]->is_operand();
duke@435 2572 }
duke@435 2573 // Decrement number of constants to go
duke@435 2574 --index;
duke@435 2575 }
duke@435 2576 } while((comp = _components.iter()) != NULL);
duke@435 2577 }
duke@435 2578 }
duke@435 2579
duke@435 2580 // Did not find a constant for this index.
duke@435 2581 return NULL;
duke@435 2582 }
duke@435 2583
duke@435 2584 // If this operand has a single ideal type, return its type
duke@435 2585 Form::DataType OperandForm::simple_type(FormDict &globals) const {
duke@435 2586 const char *type_name = ideal_type(globals);
duke@435 2587 Form::DataType type = type_name ? ideal_to_const_type( type_name )
duke@435 2588 : Form::none;
duke@435 2589 return type;
duke@435 2590 }
duke@435 2591
duke@435 2592 Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
duke@435 2593 if ( _matrule == NULL ) return Form::none;
duke@435 2594
duke@435 2595 return _matrule->is_base_constant(globals);
duke@435 2596 }
duke@435 2597
duke@435 2598 // "true" if this operand is a simple type that is swallowed
duke@435 2599 bool OperandForm::swallowed(FormDict &globals) const {
duke@435 2600 Form::DataType type = simple_type(globals);
duke@435 2601 if( type != Form::none ) {
duke@435 2602 return true;
duke@435 2603 }
duke@435 2604
duke@435 2605 return false;
duke@435 2606 }
duke@435 2607
duke@435 2608 // Output code to access the value of the index'th constant
duke@435 2609 void OperandForm::access_constant(FILE *fp, FormDict &globals,
duke@435 2610 uint const_index) {
duke@435 2611 OperandForm *oper = constant_operand(globals, const_index);
duke@435 2612 assert( oper, "Index exceeds number of constants in operand");
duke@435 2613 Form::DataType dtype = oper->is_base_constant(globals);
duke@435 2614
duke@435 2615 switch(dtype) {
duke@435 2616 case idealI: fprintf(fp,"_c%d", const_index); break;
duke@435 2617 case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
duke@435 2618 case idealL: fprintf(fp,"_c%d", const_index); break;
duke@435 2619 case idealF: fprintf(fp,"_c%d", const_index); break;
duke@435 2620 case idealD: fprintf(fp,"_c%d", const_index); break;
duke@435 2621 default:
duke@435 2622 assert( false, "ShouldNotReachHere()");
duke@435 2623 }
duke@435 2624 }
duke@435 2625
duke@435 2626
duke@435 2627 void OperandForm::dump() {
duke@435 2628 output(stderr);
duke@435 2629 }
duke@435 2630
duke@435 2631 void OperandForm::output(FILE *fp) {
duke@435 2632 fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
duke@435 2633 if (_matrule) _matrule->dump();
duke@435 2634 if (_interface) _interface->dump();
duke@435 2635 if (_attribs) _attribs->dump();
duke@435 2636 if (_predicate) _predicate->dump();
duke@435 2637 if (_constraint) _constraint->dump();
duke@435 2638 if (_construct) _construct->dump();
duke@435 2639 if (_format) _format->dump();
duke@435 2640 }
duke@435 2641
duke@435 2642 //------------------------------Constraint-------------------------------------
duke@435 2643 Constraint::Constraint(const char *func, const char *arg)
duke@435 2644 : _func(func), _arg(arg) {
duke@435 2645 }
duke@435 2646 Constraint::~Constraint() { /* not owner of char* */
duke@435 2647 }
duke@435 2648
duke@435 2649 bool Constraint::stack_slots_only() const {
duke@435 2650 return strcmp(_func, "ALLOC_IN_RC") == 0
duke@435 2651 && strcmp(_arg, "stack_slots") == 0;
duke@435 2652 }
duke@435 2653
duke@435 2654 void Constraint::dump() {
duke@435 2655 output(stderr);
duke@435 2656 }
duke@435 2657
duke@435 2658 void Constraint::output(FILE *fp) { // Write info to output files
duke@435 2659 assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
duke@435 2660 fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg);
duke@435 2661 }
duke@435 2662
duke@435 2663 //------------------------------Predicate--------------------------------------
duke@435 2664 Predicate::Predicate(char *pr)
duke@435 2665 : _pred(pr) {
duke@435 2666 }
duke@435 2667 Predicate::~Predicate() {
duke@435 2668 }
duke@435 2669
duke@435 2670 void Predicate::dump() {
duke@435 2671 output(stderr);
duke@435 2672 }
duke@435 2673
duke@435 2674 void Predicate::output(FILE *fp) {
duke@435 2675 fprintf(fp,"Predicate"); // Write to output files
duke@435 2676 }
duke@435 2677 //------------------------------Interface--------------------------------------
duke@435 2678 Interface::Interface(const char *name) : _name(name) {
duke@435 2679 }
duke@435 2680 Interface::~Interface() {
duke@435 2681 }
duke@435 2682
duke@435 2683 Form::InterfaceType Interface::interface_type(FormDict &globals) const {
duke@435 2684 Interface *thsi = (Interface*)this;
duke@435 2685 if ( thsi->is_RegInterface() ) return Form::register_interface;
duke@435 2686 if ( thsi->is_MemInterface() ) return Form::memory_interface;
duke@435 2687 if ( thsi->is_ConstInterface() ) return Form::constant_interface;
duke@435 2688 if ( thsi->is_CondInterface() ) return Form::conditional_interface;
duke@435 2689
duke@435 2690 return Form::no_interface;
duke@435 2691 }
duke@435 2692
duke@435 2693 RegInterface *Interface::is_RegInterface() {
duke@435 2694 if ( strcmp(_name,"REG_INTER") != 0 )
duke@435 2695 return NULL;
duke@435 2696 return (RegInterface*)this;
duke@435 2697 }
duke@435 2698 MemInterface *Interface::is_MemInterface() {
duke@435 2699 if ( strcmp(_name,"MEMORY_INTER") != 0 ) return NULL;
duke@435 2700 return (MemInterface*)this;
duke@435 2701 }
duke@435 2702 ConstInterface *Interface::is_ConstInterface() {
duke@435 2703 if ( strcmp(_name,"CONST_INTER") != 0 ) return NULL;
duke@435 2704 return (ConstInterface*)this;
duke@435 2705 }
duke@435 2706 CondInterface *Interface::is_CondInterface() {
duke@435 2707 if ( strcmp(_name,"COND_INTER") != 0 ) return NULL;
duke@435 2708 return (CondInterface*)this;
duke@435 2709 }
duke@435 2710
duke@435 2711
duke@435 2712 void Interface::dump() {
duke@435 2713 output(stderr);
duke@435 2714 }
duke@435 2715
duke@435 2716 // Write info to output files
duke@435 2717 void Interface::output(FILE *fp) {
duke@435 2718 fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
duke@435 2719 }
duke@435 2720
duke@435 2721 //------------------------------RegInterface-----------------------------------
duke@435 2722 RegInterface::RegInterface() : Interface("REG_INTER") {
duke@435 2723 }
duke@435 2724 RegInterface::~RegInterface() {
duke@435 2725 }
duke@435 2726
duke@435 2727 void RegInterface::dump() {
duke@435 2728 output(stderr);
duke@435 2729 }
duke@435 2730
duke@435 2731 // Write info to output files
duke@435 2732 void RegInterface::output(FILE *fp) {
duke@435 2733 Interface::output(fp);
duke@435 2734 }
duke@435 2735
duke@435 2736 //------------------------------ConstInterface---------------------------------
duke@435 2737 ConstInterface::ConstInterface() : Interface("CONST_INTER") {
duke@435 2738 }
duke@435 2739 ConstInterface::~ConstInterface() {
duke@435 2740 }
duke@435 2741
duke@435 2742 void ConstInterface::dump() {
duke@435 2743 output(stderr);
duke@435 2744 }
duke@435 2745
duke@435 2746 // Write info to output files
duke@435 2747 void ConstInterface::output(FILE *fp) {
duke@435 2748 Interface::output(fp);
duke@435 2749 }
duke@435 2750
duke@435 2751 //------------------------------MemInterface-----------------------------------
duke@435 2752 MemInterface::MemInterface(char *base, char *index, char *scale, char *disp)
duke@435 2753 : Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
duke@435 2754 }
duke@435 2755 MemInterface::~MemInterface() {
duke@435 2756 // not owner of any character arrays
duke@435 2757 }
duke@435 2758
duke@435 2759 void MemInterface::dump() {
duke@435 2760 output(stderr);
duke@435 2761 }
duke@435 2762
duke@435 2763 // Write info to output files
duke@435 2764 void MemInterface::output(FILE *fp) {
duke@435 2765 Interface::output(fp);
duke@435 2766 if ( _base != NULL ) fprintf(fp," base == %s\n", _base);
duke@435 2767 if ( _index != NULL ) fprintf(fp," index == %s\n", _index);
duke@435 2768 if ( _scale != NULL ) fprintf(fp," scale == %s\n", _scale);
duke@435 2769 if ( _disp != NULL ) fprintf(fp," disp == %s\n", _disp);
duke@435 2770 // fprintf(fp,"\n");
duke@435 2771 }
duke@435 2772
duke@435 2773 //------------------------------CondInterface----------------------------------
never@850 2774 CondInterface::CondInterface(const char* equal, const char* equal_format,
never@850 2775 const char* not_equal, const char* not_equal_format,
never@850 2776 const char* less, const char* less_format,
never@850 2777 const char* greater_equal, const char* greater_equal_format,
never@850 2778 const char* less_equal, const char* less_equal_format,
rbackman@5791 2779 const char* greater, const char* greater_format,
rbackman@5791 2780 const char* overflow, const char* overflow_format,
rbackman@5791 2781 const char* no_overflow, const char* no_overflow_format)
duke@435 2782 : Interface("COND_INTER"),
never@850 2783 _equal(equal), _equal_format(equal_format),
never@850 2784 _not_equal(not_equal), _not_equal_format(not_equal_format),
never@850 2785 _less(less), _less_format(less_format),
never@850 2786 _greater_equal(greater_equal), _greater_equal_format(greater_equal_format),
never@850 2787 _less_equal(less_equal), _less_equal_format(less_equal_format),
rbackman@5791 2788 _greater(greater), _greater_format(greater_format),
rbackman@5791 2789 _overflow(overflow), _overflow_format(overflow_format),
rbackman@5791 2790 _no_overflow(no_overflow), _no_overflow_format(no_overflow_format) {
duke@435 2791 }
duke@435 2792 CondInterface::~CondInterface() {
duke@435 2793 // not owner of any character arrays
duke@435 2794 }
duke@435 2795
duke@435 2796 void CondInterface::dump() {
duke@435 2797 output(stderr);
duke@435 2798 }
duke@435 2799
duke@435 2800 // Write info to output files
duke@435 2801 void CondInterface::output(FILE *fp) {
duke@435 2802 Interface::output(fp);
rbackman@5791 2803 if ( _equal != NULL ) fprintf(fp," equal == %s\n", _equal);
rbackman@5791 2804 if ( _not_equal != NULL ) fprintf(fp," not_equal == %s\n", _not_equal);
rbackman@5791 2805 if ( _less != NULL ) fprintf(fp," less == %s\n", _less);
rbackman@5791 2806 if ( _greater_equal != NULL ) fprintf(fp," greater_equal == %s\n", _greater_equal);
rbackman@5791 2807 if ( _less_equal != NULL ) fprintf(fp," less_equal == %s\n", _less_equal);
rbackman@5791 2808 if ( _greater != NULL ) fprintf(fp," greater == %s\n", _greater);
rbackman@5791 2809 if ( _overflow != NULL ) fprintf(fp," overflow == %s\n", _overflow);
rbackman@5791 2810 if ( _no_overflow != NULL ) fprintf(fp," no_overflow == %s\n", _no_overflow);
duke@435 2811 // fprintf(fp,"\n");
duke@435 2812 }
duke@435 2813
duke@435 2814 //------------------------------ConstructRule----------------------------------
duke@435 2815 ConstructRule::ConstructRule(char *cnstr)
duke@435 2816 : _construct(cnstr) {
duke@435 2817 }
duke@435 2818 ConstructRule::~ConstructRule() {
duke@435 2819 }
duke@435 2820
duke@435 2821 void ConstructRule::dump() {
duke@435 2822 output(stderr);
duke@435 2823 }
duke@435 2824
duke@435 2825 void ConstructRule::output(FILE *fp) {
duke@435 2826 fprintf(fp,"\nConstruct Rule\n"); // Write to output files
duke@435 2827 }
duke@435 2828
duke@435 2829
duke@435 2830 //==============================Shared Forms===================================
duke@435 2831 //------------------------------AttributeForm----------------------------------
duke@435 2832 int AttributeForm::_insId = 0; // start counter at 0
duke@435 2833 int AttributeForm::_opId = 0; // start counter at 0
duke@435 2834 const char* AttributeForm::_ins_cost = "ins_cost"; // required name
duke@435 2835 const char* AttributeForm::_op_cost = "op_cost"; // required name
duke@435 2836
duke@435 2837 AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
duke@435 2838 : Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
duke@435 2839 if (type==OP_ATTR) {
duke@435 2840 id = ++_opId;
duke@435 2841 }
duke@435 2842 else if (type==INS_ATTR) {
duke@435 2843 id = ++_insId;
duke@435 2844 }
duke@435 2845 else assert( false,"");
duke@435 2846 }
duke@435 2847 AttributeForm::~AttributeForm() {
duke@435 2848 }
duke@435 2849
duke@435 2850 // Dynamic type check
duke@435 2851 AttributeForm *AttributeForm::is_attribute() const {
duke@435 2852 return (AttributeForm*)this;
duke@435 2853 }
duke@435 2854
duke@435 2855
duke@435 2856 // inlined // int AttributeForm::type() { return id;}
duke@435 2857
duke@435 2858 void AttributeForm::dump() {
duke@435 2859 output(stderr);
duke@435 2860 }
duke@435 2861
duke@435 2862 void AttributeForm::output(FILE *fp) {
duke@435 2863 if( _attrname && _attrdef ) {
duke@435 2864 fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
duke@435 2865 _attrname, _attrdef);
duke@435 2866 }
duke@435 2867 else {
duke@435 2868 fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
duke@435 2869 (_attrname?_attrname:""), (_attrdef?_attrdef:"") );
duke@435 2870 }
duke@435 2871 }
duke@435 2872
duke@435 2873 //------------------------------Component--------------------------------------
duke@435 2874 Component::Component(const char *name, const char *type, int usedef)
duke@435 2875 : _name(name), _type(type), _usedef(usedef) {
duke@435 2876 _ftype = Form::COMP;
duke@435 2877 }
duke@435 2878 Component::~Component() {
duke@435 2879 }
duke@435 2880
duke@435 2881 // True if this component is equal to the parameter.
duke@435 2882 bool Component::is(int use_def_kill_enum) const {
duke@435 2883 return (_usedef == use_def_kill_enum ? true : false);
duke@435 2884 }
duke@435 2885 // True if this component is used/def'd/kill'd as the parameter suggests.
duke@435 2886 bool Component::isa(int use_def_kill_enum) const {
duke@435 2887 return (_usedef & use_def_kill_enum) == use_def_kill_enum;
duke@435 2888 }
duke@435 2889
duke@435 2890 // Extend this component with additional use/def/kill behavior
duke@435 2891 int Component::promote_use_def_info(int new_use_def) {
duke@435 2892 _usedef |= new_use_def;
duke@435 2893
duke@435 2894 return _usedef;
duke@435 2895 }
duke@435 2896
duke@435 2897 // Check the base type of this component, if it has one
duke@435 2898 const char *Component::base_type(FormDict &globals) {
duke@435 2899 const Form *frm = globals[_type];
duke@435 2900 if (frm == NULL) return NULL;
duke@435 2901 OperandForm *op = frm->is_operand();
duke@435 2902 if (op == NULL) return NULL;
duke@435 2903 if (op->ideal_only()) return op->_ident;
duke@435 2904 return (char *)op->ideal_type(globals);
duke@435 2905 }
duke@435 2906
duke@435 2907 void Component::dump() {
duke@435 2908 output(stderr);
duke@435 2909 }
duke@435 2910
duke@435 2911 void Component::output(FILE *fp) {
duke@435 2912 fprintf(fp,"Component:"); // Write to output files
duke@435 2913 fprintf(fp, " name = %s", _name);
duke@435 2914 fprintf(fp, ", type = %s", _type);
kvn@4161 2915 assert(_usedef != 0, "unknown effect");
kvn@4161 2916 fprintf(fp, ", use/def = %s\n", getUsedefName());
duke@435 2917 }
duke@435 2918
duke@435 2919
duke@435 2920 //------------------------------ComponentList---------------------------------
duke@435 2921 ComponentList::ComponentList() : NameList(), _matchcnt(0) {
duke@435 2922 }
duke@435 2923 ComponentList::~ComponentList() {
duke@435 2924 // // This list may not own its elements if copied via assignment
duke@435 2925 // Component *component;
duke@435 2926 // for (reset(); (component = iter()) != NULL;) {
duke@435 2927 // delete component;
duke@435 2928 // }
duke@435 2929 }
duke@435 2930
duke@435 2931 void ComponentList::insert(Component *component, bool mflag) {
duke@435 2932 NameList::addName((char *)component);
duke@435 2933 if(mflag) _matchcnt++;
duke@435 2934 }
duke@435 2935 void ComponentList::insert(const char *name, const char *opType, int usedef,
duke@435 2936 bool mflag) {
duke@435 2937 Component * component = new Component(name, opType, usedef);
duke@435 2938 insert(component, mflag);
duke@435 2939 }
duke@435 2940 Component *ComponentList::current() { return (Component*)NameList::current(); }
duke@435 2941 Component *ComponentList::iter() { return (Component*)NameList::iter(); }
duke@435 2942 Component *ComponentList::match_iter() {
duke@435 2943 if(_iter < _matchcnt) return (Component*)NameList::iter();
duke@435 2944 return NULL;
duke@435 2945 }
duke@435 2946 Component *ComponentList::post_match_iter() {
duke@435 2947 Component *comp = iter();
duke@435 2948 // At end of list?
duke@435 2949 if ( comp == NULL ) {
duke@435 2950 return comp;
duke@435 2951 }
duke@435 2952 // In post-match components?
duke@435 2953 if (_iter > match_count()-1) {
duke@435 2954 return comp;
duke@435 2955 }
duke@435 2956
duke@435 2957 return post_match_iter();
duke@435 2958 }
duke@435 2959
duke@435 2960 void ComponentList::reset() { NameList::reset(); }
duke@435 2961 int ComponentList::count() { return NameList::count(); }
duke@435 2962
duke@435 2963 Component *ComponentList::operator[](int position) {
duke@435 2964 // Shortcut complete iteration if there are not enough entries
duke@435 2965 if (position >= count()) return NULL;
duke@435 2966
duke@435 2967 int index = 0;
duke@435 2968 Component *component = NULL;
duke@435 2969 for (reset(); (component = iter()) != NULL;) {
duke@435 2970 if (index == position) {
duke@435 2971 return component;
duke@435 2972 }
duke@435 2973 ++index;
duke@435 2974 }
duke@435 2975
duke@435 2976 return NULL;
duke@435 2977 }
duke@435 2978
duke@435 2979 const Component *ComponentList::search(const char *name) {
duke@435 2980 PreserveIter pi(this);
duke@435 2981 reset();
duke@435 2982 for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
duke@435 2983 if( strcmp(comp->_name,name) == 0 ) return comp;
duke@435 2984 }
duke@435 2985
duke@435 2986 return NULL;
duke@435 2987 }
duke@435 2988
duke@435 2989 // Return number of USEs + number of DEFs
duke@435 2990 // When there are no components, or the first component is a USE,
duke@435 2991 // then we add '1' to hold a space for the 'result' operand.
duke@435 2992 int ComponentList::num_operands() {
duke@435 2993 PreserveIter pi(this);
duke@435 2994 uint count = 1; // result operand
duke@435 2995 uint position = 0;
duke@435 2996
duke@435 2997 Component *component = NULL;
duke@435 2998 for( reset(); (component = iter()) != NULL; ++position ) {
duke@435 2999 if( component->isa(Component::USE) ||
duke@435 3000 ( position == 0 && (! component->isa(Component::DEF))) ) {
duke@435 3001 ++count;
duke@435 3002 }
duke@435 3003 }
duke@435 3004
duke@435 3005 return count;
duke@435 3006 }
duke@435 3007
kvn@4161 3008 // Return zero-based position of operand 'name' in list; -1 if not in list.
duke@435 3009 // if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
kvn@4161 3010 int ComponentList::operand_position(const char *name, int usedef, Form *fm) {
duke@435 3011 PreserveIter pi(this);
duke@435 3012 int position = 0;
duke@435 3013 int num_opnds = num_operands();
duke@435 3014 Component *component;
duke@435 3015 Component* preceding_non_use = NULL;
duke@435 3016 Component* first_def = NULL;
duke@435 3017 for (reset(); (component = iter()) != NULL; ++position) {
duke@435 3018 // When the first component is not a DEF,
duke@435 3019 // leave space for the result operand!
duke@435 3020 if ( position==0 && (! component->isa(Component::DEF)) ) {
duke@435 3021 ++position;
duke@435 3022 ++num_opnds;
duke@435 3023 }
duke@435 3024 if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
duke@435 3025 // When the first entry in the component list is a DEF and a USE
duke@435 3026 // Treat them as being separate, a DEF first, then a USE
duke@435 3027 if( position==0
duke@435 3028 && usedef==Component::USE && component->isa(Component::DEF) ) {
duke@435 3029 assert(position+1 < num_opnds, "advertised index in bounds");
duke@435 3030 return position+1;
duke@435 3031 } else {
duke@435 3032 if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
kvn@4161 3033 fprintf(stderr, "the name '%s(%s)' should not precede the name '%s(%s)'",
kvn@4161 3034 preceding_non_use->_name, preceding_non_use->getUsedefName(),
kvn@4161 3035 name, component->getUsedefName());
kvn@4161 3036 if (fm && fm->is_instruction()) fprintf(stderr, "in form '%s'", fm->is_instruction()->_ident);
kvn@4161 3037 if (fm && fm->is_operand()) fprintf(stderr, "in form '%s'", fm->is_operand()->_ident);
kvn@4161 3038 fprintf(stderr, "\n");
duke@435 3039 }
duke@435 3040 if( position >= num_opnds ) {
kvn@4161 3041 fprintf(stderr, "the name '%s' is too late in its name list", name);
kvn@4161 3042 if (fm && fm->is_instruction()) fprintf(stderr, "in form '%s'", fm->is_instruction()->_ident);
kvn@4161 3043 if (fm && fm->is_operand()) fprintf(stderr, "in form '%s'", fm->is_operand()->_ident);
kvn@4161 3044 fprintf(stderr, "\n");
duke@435 3045 }
duke@435 3046 assert(position < num_opnds, "advertised index in bounds");
duke@435 3047 return position;
duke@435 3048 }
duke@435 3049 }
duke@435 3050 if( component->isa(Component::DEF)
duke@435 3051 && component->isa(Component::USE) ) {
duke@435 3052 ++position;
duke@435 3053 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 3054 }
duke@435 3055 if( component->isa(Component::DEF) && !first_def ) {
duke@435 3056 first_def = component;
duke@435 3057 }
duke@435 3058 if( !component->isa(Component::USE) && component != first_def ) {
duke@435 3059 preceding_non_use = component;
duke@435 3060 } else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
duke@435 3061 preceding_non_use = NULL;
duke@435 3062 }
duke@435 3063 }
duke@435 3064 return Not_in_list;
duke@435 3065 }
duke@435 3066
duke@435 3067 // Find position for this name, regardless of use/def information
duke@435 3068 int ComponentList::operand_position(const char *name) {
duke@435 3069 PreserveIter pi(this);
duke@435 3070 int position = 0;
duke@435 3071 Component *component;
duke@435 3072 for (reset(); (component = iter()) != NULL; ++position) {
duke@435 3073 // When the first component is not a DEF,
duke@435 3074 // leave space for the result operand!
duke@435 3075 if ( position==0 && (! component->isa(Component::DEF)) ) {
duke@435 3076 ++position;
duke@435 3077 }
duke@435 3078 if (strcmp(name, component->_name)==0) {
duke@435 3079 return position;
duke@435 3080 }
duke@435 3081 if( component->isa(Component::DEF)
duke@435 3082 && component->isa(Component::USE) ) {
duke@435 3083 ++position;
duke@435 3084 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 3085 }
duke@435 3086 }
duke@435 3087 return Not_in_list;
duke@435 3088 }
duke@435 3089
kvn@4161 3090 int ComponentList::operand_position_format(const char *name, Form *fm) {
duke@435 3091 PreserveIter pi(this);
duke@435 3092 int first_position = operand_position(name);
kvn@4161 3093 int use_position = operand_position(name, Component::USE, fm);
duke@435 3094
duke@435 3095 return ((first_position < use_position) ? use_position : first_position);
duke@435 3096 }
duke@435 3097
duke@435 3098 int ComponentList::label_position() {
duke@435 3099 PreserveIter pi(this);
duke@435 3100 int position = 0;
duke@435 3101 reset();
duke@435 3102 for( Component *comp; (comp = iter()) != NULL; ++position) {
duke@435 3103 // When the first component is not a DEF,
duke@435 3104 // leave space for the result operand!
duke@435 3105 if ( position==0 && (! comp->isa(Component::DEF)) ) {
duke@435 3106 ++position;
duke@435 3107 }
duke@435 3108 if (strcmp(comp->_type, "label")==0) {
duke@435 3109 return position;
duke@435 3110 }
duke@435 3111 if( comp->isa(Component::DEF)
duke@435 3112 && comp->isa(Component::USE) ) {
duke@435 3113 ++position;
duke@435 3114 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 3115 }
duke@435 3116 }
duke@435 3117
duke@435 3118 return -1;
duke@435 3119 }
duke@435 3120
duke@435 3121 int ComponentList::method_position() {
duke@435 3122 PreserveIter pi(this);
duke@435 3123 int position = 0;
duke@435 3124 reset();
duke@435 3125 for( Component *comp; (comp = iter()) != NULL; ++position) {
duke@435 3126 // When the first component is not a DEF,
duke@435 3127 // leave space for the result operand!
duke@435 3128 if ( position==0 && (! comp->isa(Component::DEF)) ) {
duke@435 3129 ++position;
duke@435 3130 }
duke@435 3131 if (strcmp(comp->_type, "method")==0) {
duke@435 3132 return position;
duke@435 3133 }
duke@435 3134 if( comp->isa(Component::DEF)
duke@435 3135 && comp->isa(Component::USE) ) {
duke@435 3136 ++position;
duke@435 3137 if( position != 1 ) --position; // only use two slots for the 1st USE_DEF
duke@435 3138 }
duke@435 3139 }
duke@435 3140
duke@435 3141 return -1;
duke@435 3142 }
duke@435 3143
duke@435 3144 void ComponentList::dump() { output(stderr); }
duke@435 3145
duke@435 3146 void ComponentList::output(FILE *fp) {
duke@435 3147 PreserveIter pi(this);
duke@435 3148 fprintf(fp, "\n");
duke@435 3149 Component *component;
duke@435 3150 for (reset(); (component = iter()) != NULL;) {
duke@435 3151 component->output(fp);
duke@435 3152 }
duke@435 3153 fprintf(fp, "\n");
duke@435 3154 }
duke@435 3155
duke@435 3156 //------------------------------MatchNode--------------------------------------
duke@435 3157 MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
duke@435 3158 const char *opType, MatchNode *lChild, MatchNode *rChild)
duke@435 3159 : _AD(ad), _result(result), _name(mexpr), _opType(opType),
duke@435 3160 _lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0),
duke@435 3161 _commutative_id(0) {
duke@435 3162 _numleaves = (lChild ? lChild->_numleaves : 0)
duke@435 3163 + (rChild ? rChild->_numleaves : 0);
duke@435 3164 }
duke@435 3165
duke@435 3166 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode)
duke@435 3167 : _AD(ad), _result(mnode._result), _name(mnode._name),
duke@435 3168 _opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild),
duke@435 3169 _internalop(0), _numleaves(mnode._numleaves),
duke@435 3170 _commutative_id(mnode._commutative_id) {
duke@435 3171 }
duke@435 3172
duke@435 3173 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone)
duke@435 3174 : _AD(ad), _result(mnode._result), _name(mnode._name),
duke@435 3175 _opType(mnode._opType),
duke@435 3176 _internalop(0), _numleaves(mnode._numleaves),
duke@435 3177 _commutative_id(mnode._commutative_id) {
duke@435 3178 if (mnode._lChild) {
duke@435 3179 _lChild = new MatchNode(ad, *mnode._lChild, clone);
duke@435 3180 } else {
duke@435 3181 _lChild = NULL;
duke@435 3182 }
duke@435 3183 if (mnode._rChild) {
duke@435 3184 _rChild = new MatchNode(ad, *mnode._rChild, clone);
duke@435 3185 } else {
duke@435 3186 _rChild = NULL;
duke@435 3187 }
duke@435 3188 }
duke@435 3189
duke@435 3190 MatchNode::~MatchNode() {
duke@435 3191 // // This node may not own its children if copied via assignment
duke@435 3192 // if( _lChild ) delete _lChild;
duke@435 3193 // if( _rChild ) delete _rChild;
duke@435 3194 }
duke@435 3195
duke@435 3196 bool MatchNode::find_type(const char *type, int &position) const {
duke@435 3197 if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
duke@435 3198 if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;
duke@435 3199
duke@435 3200 if (strcmp(type,_opType)==0) {
duke@435 3201 return true;
duke@435 3202 } else {
duke@435 3203 ++position;
duke@435 3204 }
duke@435 3205 return false;
duke@435 3206 }
duke@435 3207
duke@435 3208 // Recursive call collecting info on top-level operands, not transitive.
duke@435 3209 // Implementation does not modify state of internal structures.
twisti@1038 3210 void MatchNode::append_components(FormDict& locals, ComponentList& components,
twisti@1038 3211 bool def_flag) const {
twisti@1038 3212 int usedef = def_flag ? Component::DEF : Component::USE;
duke@435 3213 FormDict &globals = _AD.globalNames();
duke@435 3214
duke@435 3215 assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
duke@435 3216 // Base case
duke@435 3217 if (_lChild==NULL && _rChild==NULL) {
duke@435 3218 // If _opType is not an operation, do not build a component for it #####
duke@435 3219 const Form *f = globals[_opType];
duke@435 3220 if( f != NULL ) {
duke@435 3221 // Add non-ideals that are operands, operand-classes,
duke@435 3222 if( ! f->ideal_only()
duke@435 3223 && (f->is_opclass() || f->is_operand()) ) {
duke@435 3224 components.insert(_name, _opType, usedef, true);
duke@435 3225 }
duke@435 3226 }
duke@435 3227 return;
duke@435 3228 }
duke@435 3229 // Promote results of "Set" to DEF
twisti@1038 3230 bool tmpdef_flag = (!strcmp(_opType, "Set")) ? true : false;
twisti@1038 3231 if (_lChild) _lChild->append_components(locals, components, tmpdef_flag);
twisti@1038 3232 tmpdef_flag = false; // only applies to component immediately following 'Set'
twisti@1038 3233 if (_rChild) _rChild->append_components(locals, components, tmpdef_flag);
duke@435 3234 }
duke@435 3235
duke@435 3236 // Find the n'th base-operand in the match node,
duke@435 3237 // recursively investigates match rules of user-defined operands.
duke@435 3238 //
duke@435 3239 // Implementation does not modify state of internal structures since they
duke@435 3240 // can be shared.
duke@435 3241 bool MatchNode::base_operand(uint &position, FormDict &globals,
duke@435 3242 const char * &result, const char * &name,
duke@435 3243 const char * &opType) const {
duke@435 3244 assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
duke@435 3245 // Base case
duke@435 3246 if (_lChild==NULL && _rChild==NULL) {
duke@435 3247 // Check for special case: "Universe", "label"
duke@435 3248 if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
duke@435 3249 if (position == 0) {
duke@435 3250 result = _result;
duke@435 3251 name = _name;
duke@435 3252 opType = _opType;
duke@435 3253 return 1;
duke@435 3254 } else {
duke@435 3255 -- position;
duke@435 3256 return 0;
duke@435 3257 }
duke@435 3258 }
duke@435 3259
duke@435 3260 const Form *form = globals[_opType];
duke@435 3261 MatchNode *matchNode = NULL;
duke@435 3262 // Check for user-defined type
duke@435 3263 if (form) {
duke@435 3264 // User operand or instruction?
duke@435 3265 OperandForm *opForm = form->is_operand();
duke@435 3266 InstructForm *inForm = form->is_instruction();
duke@435 3267 if ( opForm ) {
duke@435 3268 matchNode = (MatchNode*)opForm->_matrule;
duke@435 3269 } else if ( inForm ) {
duke@435 3270 matchNode = (MatchNode*)inForm->_matrule;
duke@435 3271 }
duke@435 3272 }
duke@435 3273 // if this is user-defined, recurse on match rule
duke@435 3274 // User-defined operand and instruction forms have a match-rule.
duke@435 3275 if (matchNode) {
duke@435 3276 return (matchNode->base_operand(position,globals,result,name,opType));
duke@435 3277 } else {
duke@435 3278 // Either not a form, or a system-defined form (no match rule).
duke@435 3279 if (position==0) {
duke@435 3280 result = _result;
duke@435 3281 name = _name;
duke@435 3282 opType = _opType;
duke@435 3283 return 1;
duke@435 3284 } else {
duke@435 3285 --position;
duke@435 3286 return 0;
duke@435 3287 }
duke@435 3288 }
duke@435 3289
duke@435 3290 } else {
duke@435 3291 // Examine the left child and right child as well
duke@435 3292 if (_lChild) {
duke@435 3293 if (_lChild->base_operand(position, globals, result, name, opType))
duke@435 3294 return 1;
duke@435 3295 }
duke@435 3296
duke@435 3297 if (_rChild) {
duke@435 3298 if (_rChild->base_operand(position, globals, result, name, opType))
duke@435 3299 return 1;
duke@435 3300 }
duke@435 3301 }
duke@435 3302
duke@435 3303 return 0;
duke@435 3304 }
duke@435 3305
duke@435 3306 // Recursive call on all operands' match rules in my match rule.
duke@435 3307 uint MatchNode::num_consts(FormDict &globals) const {
duke@435 3308 uint index = 0;
duke@435 3309 uint num_consts = 0;
duke@435 3310 const char *result;
duke@435 3311 const char *name;
duke@435 3312 const char *opType;
duke@435 3313
duke@435 3314 for (uint position = index;
duke@435 3315 base_operand(position,globals,result,name,opType); position = index) {
duke@435 3316 ++index;
duke@435 3317 if( ideal_to_const_type(opType) ) num_consts++;
duke@435 3318 }
duke@435 3319
duke@435 3320 return num_consts;
duke@435 3321 }
duke@435 3322
duke@435 3323 // Recursive call on all operands' match rules in my match rule.
duke@435 3324 // Constants in match rule subtree with specified type
duke@435 3325 uint MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
duke@435 3326 uint index = 0;
duke@435 3327 uint num_consts = 0;
duke@435 3328 const char *result;
duke@435 3329 const char *name;
duke@435 3330 const char *opType;
duke@435 3331
duke@435 3332 for (uint position = index;
duke@435 3333 base_operand(position,globals,result,name,opType); position = index) {
duke@435 3334 ++index;
duke@435 3335 if( ideal_to_const_type(opType) == type ) num_consts++;
duke@435 3336 }
duke@435 3337
duke@435 3338 return num_consts;
duke@435 3339 }
duke@435 3340
duke@435 3341 // Recursive call on all operands' match rules in my match rule.
duke@435 3342 uint MatchNode::num_const_ptrs(FormDict &globals) const {
duke@435 3343 return num_consts( globals, Form::idealP );
duke@435 3344 }
duke@435 3345
duke@435 3346 bool MatchNode::sets_result() const {
duke@435 3347 return ( (strcmp(_name,"Set") == 0) ? true : false );
duke@435 3348 }
duke@435 3349
duke@435 3350 const char *MatchNode::reduce_right(FormDict &globals) const {
duke@435 3351 // If there is no right reduction, return NULL.
duke@435 3352 const char *rightStr = NULL;
duke@435 3353
duke@435 3354 // If we are a "Set", start from the right child.
duke@435 3355 const MatchNode *const mnode = sets_result() ?
kvn@4161 3356 (const MatchNode *)this->_rChild :
kvn@4161 3357 (const MatchNode *)this;
duke@435 3358
duke@435 3359 // If our right child exists, it is the right reduction
duke@435 3360 if ( mnode->_rChild ) {
duke@435 3361 rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
duke@435 3362 : mnode->_rChild->_opType;
duke@435 3363 }
duke@435 3364 // Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
duke@435 3365 return rightStr;
duke@435 3366 }
duke@435 3367
duke@435 3368 const char *MatchNode::reduce_left(FormDict &globals) const {
duke@435 3369 // If there is no left reduction, return NULL.
duke@435 3370 const char *leftStr = NULL;
duke@435 3371
duke@435 3372 // If we are a "Set", start from the right child.
duke@435 3373 const MatchNode *const mnode = sets_result() ?
kvn@4161 3374 (const MatchNode *)this->_rChild :
kvn@4161 3375 (const MatchNode *)this;
duke@435 3376
duke@435 3377 // If our left child exists, it is the left reduction
duke@435 3378 if ( mnode->_lChild ) {
duke@435 3379 leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
duke@435 3380 : mnode->_lChild->_opType;
duke@435 3381 } else {
duke@435 3382 // May be simple chain rule: (Set dst operand_form_source)
duke@435 3383 if ( sets_result() ) {
duke@435 3384 OperandForm *oper = globals[mnode->_opType]->is_operand();
duke@435 3385 if( oper ) {
duke@435 3386 leftStr = mnode->_opType;
duke@435 3387 }
duke@435 3388 }
duke@435 3389 }
duke@435 3390 return leftStr;
duke@435 3391 }
duke@435 3392
duke@435 3393 //------------------------------count_instr_names------------------------------
duke@435 3394 // Count occurrences of operands names in the leaves of the instruction
duke@435 3395 // match rule.
duke@435 3396 void MatchNode::count_instr_names( Dict &names ) {
duke@435 3397 if( !this ) return;
duke@435 3398 if( _lChild ) _lChild->count_instr_names(names);
duke@435 3399 if( _rChild ) _rChild->count_instr_names(names);
duke@435 3400 if( !_lChild && !_rChild ) {
duke@435 3401 uintptr_t cnt = (uintptr_t)names[_name];
duke@435 3402 cnt++; // One more name found
duke@435 3403 names.Insert(_name,(void*)cnt);
duke@435 3404 }
duke@435 3405 }
duke@435 3406
duke@435 3407 //------------------------------build_instr_pred-------------------------------
duke@435 3408 // Build a path to 'name' in buf. Actually only build if cnt is zero, so we
duke@435 3409 // can skip some leading instances of 'name'.
duke@435 3410 int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
duke@435 3411 if( _lChild ) {
duke@435 3412 if( !cnt ) strcpy( buf, "_kids[0]->" );
duke@435 3413 cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
duke@435 3414 if( cnt < 0 ) return cnt; // Found it, all done
duke@435 3415 }
duke@435 3416 if( _rChild ) {
duke@435 3417 if( !cnt ) strcpy( buf, "_kids[1]->" );
duke@435 3418 cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
duke@435 3419 if( cnt < 0 ) return cnt; // Found it, all done
duke@435 3420 }
duke@435 3421 if( !_lChild && !_rChild ) { // Found a leaf
duke@435 3422 // Wrong name? Give up...
duke@435 3423 if( strcmp(name,_name) ) return cnt;
duke@435 3424 if( !cnt ) strcpy(buf,"_leaf");
duke@435 3425 return cnt-1;
duke@435 3426 }
duke@435 3427 return cnt;
duke@435 3428 }
duke@435 3429
duke@435 3430
duke@435 3431 //------------------------------build_internalop-------------------------------
duke@435 3432 // Build string representation of subtree
duke@435 3433 void MatchNode::build_internalop( ) {
duke@435 3434 char *iop, *subtree;
duke@435 3435 const char *lstr, *rstr;
duke@435 3436 // Build string representation of subtree
duke@435 3437 // Operation lchildType rchildType
duke@435 3438 int len = (int)strlen(_opType) + 4;
duke@435 3439 lstr = (_lChild) ? ((_lChild->_internalop) ?
duke@435 3440 _lChild->_internalop : _lChild->_opType) : "";
duke@435 3441 rstr = (_rChild) ? ((_rChild->_internalop) ?
duke@435 3442 _rChild->_internalop : _rChild->_opType) : "";
duke@435 3443 len += (int)strlen(lstr) + (int)strlen(rstr);
duke@435 3444 subtree = (char *)malloc(len);
duke@435 3445 sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
duke@435 3446 // Hash the subtree string in _internalOps; if a name exists, use it
duke@435 3447 iop = (char *)_AD._internalOps[subtree];
duke@435 3448 // Else create a unique name, and add it to the hash table
duke@435 3449 if (iop == NULL) {
duke@435 3450 iop = subtree;
duke@435 3451 _AD._internalOps.Insert(subtree, iop);
duke@435 3452 _AD._internalOpNames.addName(iop);
duke@435 3453 _AD._internalMatch.Insert(iop, this);
duke@435 3454 }
duke@435 3455 // Add the internal operand name to the MatchNode
duke@435 3456 _internalop = iop;
duke@435 3457 _result = iop;
duke@435 3458 }
duke@435 3459
duke@435 3460
duke@435 3461 void MatchNode::dump() {
duke@435 3462 output(stderr);
duke@435 3463 }
duke@435 3464
duke@435 3465 void MatchNode::output(FILE *fp) {
duke@435 3466 if (_lChild==0 && _rChild==0) {
duke@435 3467 fprintf(fp," %s",_name); // operand
duke@435 3468 }
duke@435 3469 else {
duke@435 3470 fprintf(fp," (%s ",_name); // " (opcodeName "
duke@435 3471 if(_lChild) _lChild->output(fp); // left operand
duke@435 3472 if(_rChild) _rChild->output(fp); // right operand
duke@435 3473 fprintf(fp,")"); // ")"
duke@435 3474 }
duke@435 3475 }
duke@435 3476
duke@435 3477 int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
duke@435 3478 static const char *needs_ideal_memory_list[] = {
roland@4159 3479 "StoreI","StoreL","StoreP","StoreN","StoreNKlass","StoreD","StoreF" ,
duke@435 3480 "StoreB","StoreC","Store" ,"StoreFP",
vlivanov@4160 3481 "LoadI", "LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF" ,
kvn@3882 3482 "LoadB" , "LoadUB", "LoadUS" ,"LoadS" ,"Load" ,
kvn@3882 3483 "StoreVector", "LoadVector",
kvn@599 3484 "LoadRange", "LoadKlass", "LoadNKlass", "LoadL_unaligned", "LoadD_unaligned",
twisti@3846 3485 "LoadPLocked",
kvn@855 3486 "StorePConditional", "StoreIConditional", "StoreLConditional",
coleenp@548 3487 "CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN",
duke@435 3488 "StoreCM",
roland@4106 3489 "ClearArray",
roland@4106 3490 "GetAndAddI", "GetAndSetI", "GetAndSetP",
roland@4106 3491 "GetAndAddL", "GetAndSetL", "GetAndSetN",
duke@435 3492 };
duke@435 3493 int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
kvn@3052 3494 if( strcmp(_opType,"PrefetchRead")==0 ||
kvn@3052 3495 strcmp(_opType,"PrefetchWrite")==0 ||
kvn@3052 3496 strcmp(_opType,"PrefetchAllocation")==0 )
duke@435 3497 return 1;
duke@435 3498 if( _lChild ) {
duke@435 3499 const char *opType = _lChild->_opType;
duke@435 3500 for( int i=0; i<cnt; i++ )
duke@435 3501 if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
duke@435 3502 return 1;
duke@435 3503 if( _lChild->needs_ideal_memory_edge(globals) )
duke@435 3504 return 1;
duke@435 3505 }
duke@435 3506 if( _rChild ) {
duke@435 3507 const char *opType = _rChild->_opType;
duke@435 3508 for( int i=0; i<cnt; i++ )
duke@435 3509 if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
duke@435 3510 return 1;
duke@435 3511 if( _rChild->needs_ideal_memory_edge(globals) )
duke@435 3512 return 1;
duke@435 3513 }
duke@435 3514
duke@435 3515 return 0;
duke@435 3516 }
duke@435 3517
duke@435 3518 // TRUE if defines a derived oop, and so needs a base oop edge present
duke@435 3519 // post-matching.
duke@435 3520 int MatchNode::needs_base_oop_edge() const {
duke@435 3521 if( !strcmp(_opType,"AddP") ) return 1;
duke@435 3522 if( strcmp(_opType,"Set") ) return 0;
duke@435 3523 return !strcmp(_rChild->_opType,"AddP");
duke@435 3524 }
duke@435 3525
duke@435 3526 int InstructForm::needs_base_oop_edge(FormDict &globals) const {
duke@435 3527 if( is_simple_chain_rule(globals) ) {
duke@435 3528 const char *src = _matrule->_rChild->_opType;
duke@435 3529 OperandForm *src_op = globals[src]->is_operand();
duke@435 3530 assert( src_op, "Not operand class of chain rule" );
duke@435 3531 return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
duke@435 3532 } // Else check instruction
duke@435 3533
duke@435 3534 return _matrule ? _matrule->needs_base_oop_edge() : 0;
duke@435 3535 }
duke@435 3536
duke@435 3537
duke@435 3538 //-------------------------cisc spilling methods-------------------------------
duke@435 3539 // helper routines and methods for detecting cisc-spilling instructions
duke@435 3540 //-------------------------cisc_spill_merge------------------------------------
duke@435 3541 int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
duke@435 3542 int cisc_spillable = Maybe_cisc_spillable;
duke@435 3543
duke@435 3544 // Combine results of left and right checks
duke@435 3545 if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
duke@435 3546 // neither side is spillable, nor prevents cisc spilling
duke@435 3547 cisc_spillable = Maybe_cisc_spillable;
duke@435 3548 }
duke@435 3549 else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
duke@435 3550 // right side is spillable
duke@435 3551 cisc_spillable = right_spillable;
duke@435 3552 }
duke@435 3553 else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
duke@435 3554 // left side is spillable
duke@435 3555 cisc_spillable = left_spillable;
duke@435 3556 }
duke@435 3557 else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
duke@435 3558 // left or right prevents cisc spilling this instruction
duke@435 3559 cisc_spillable = Not_cisc_spillable;
duke@435 3560 }
duke@435 3561 else {
duke@435 3562 // Only allow one to spill
duke@435 3563 cisc_spillable = Not_cisc_spillable;
duke@435 3564 }
duke@435 3565
duke@435 3566 return cisc_spillable;
duke@435 3567 }
duke@435 3568
duke@435 3569 //-------------------------root_ops_match--------------------------------------
duke@435 3570 bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
duke@435 3571 // Base Case: check that the current operands/operations match
duke@435 3572 assert( op1, "Must have op's name");
duke@435 3573 assert( op2, "Must have op's name");
duke@435 3574 const Form *form1 = globals[op1];
duke@435 3575 const Form *form2 = globals[op2];
duke@435 3576
duke@435 3577 return (form1 == form2);
duke@435 3578 }
duke@435 3579
twisti@1038 3580 //-------------------------cisc_spill_match_node-------------------------------
duke@435 3581 // Recursively check two MatchRules for legal conversion via cisc-spilling
twisti@1038 3582 int MatchNode::cisc_spill_match(FormDict& globals, RegisterForm* registers, MatchNode* mRule2, const char* &operand, const char* &reg_type) {
duke@435 3583 int cisc_spillable = Maybe_cisc_spillable;
duke@435 3584 int left_spillable = Maybe_cisc_spillable;
duke@435 3585 int right_spillable = Maybe_cisc_spillable;
duke@435 3586
duke@435 3587 // Check that each has same number of operands at this level
duke@435 3588 if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) )
duke@435 3589 return Not_cisc_spillable;
duke@435 3590
duke@435 3591 // Base Case: check that the current operands/operations match
duke@435 3592 // or are CISC spillable
duke@435 3593 assert( _opType, "Must have _opType");
duke@435 3594 assert( mRule2->_opType, "Must have _opType");
duke@435 3595 const Form *form = globals[_opType];
duke@435 3596 const Form *form2 = globals[mRule2->_opType];
duke@435 3597 if( form == form2 ) {
duke@435 3598 cisc_spillable = Maybe_cisc_spillable;
duke@435 3599 } else {
duke@435 3600 const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
duke@435 3601 const char *name_left = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
duke@435 3602 const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
twisti@1059 3603 DataType data_type = Form::none;
twisti@1059 3604 if (form->is_operand()) {
twisti@1059 3605 // Make sure the loadX matches the type of the reg
twisti@1059 3606 data_type = form->ideal_to_Reg_type(form->is_operand()->ideal_type(globals));
twisti@1059 3607 }
duke@435 3608 // Detect reg vs (loadX memory)
duke@435 3609 if( form->is_cisc_reg(globals)
duke@435 3610 && form2_inst
twisti@1059 3611 && data_type != Form::none
twisti@1059 3612 && (is_load_from_memory(mRule2->_opType) == data_type) // reg vs. (load memory)
duke@435 3613 && (name_left != NULL) // NOT (load)
duke@435 3614 && (name_right == NULL) ) { // NOT (load memory foo)
duke@435 3615 const Form *form2_left = name_left ? globals[name_left] : NULL;
duke@435 3616 if( form2_left && form2_left->is_cisc_mem(globals) ) {
duke@435 3617 cisc_spillable = Is_cisc_spillable;
duke@435 3618 operand = _name;
duke@435 3619 reg_type = _result;
duke@435 3620 return Is_cisc_spillable;
duke@435 3621 } else {
duke@435 3622 cisc_spillable = Not_cisc_spillable;
duke@435 3623 }
duke@435 3624 }
duke@435 3625 // Detect reg vs memory
duke@435 3626 else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) {
duke@435 3627 cisc_spillable = Is_cisc_spillable;
duke@435 3628 operand = _name;
duke@435 3629 reg_type = _result;
duke@435 3630 return Is_cisc_spillable;
duke@435 3631 } else {
duke@435 3632 cisc_spillable = Not_cisc_spillable;
duke@435 3633 }
duke@435 3634 }
duke@435 3635
duke@435 3636 // If cisc is still possible, check rest of tree
duke@435 3637 if( cisc_spillable == Maybe_cisc_spillable ) {
duke@435 3638 // Check that each has same number of operands at this level
duke@435 3639 if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
duke@435 3640
duke@435 3641 // Check left operands
duke@435 3642 if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
duke@435 3643 left_spillable = Maybe_cisc_spillable;
duke@435 3644 } else {
duke@435 3645 left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
duke@435 3646 }
duke@435 3647
duke@435 3648 // Check right operands
duke@435 3649 if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
duke@435 3650 right_spillable = Maybe_cisc_spillable;
duke@435 3651 } else {
duke@435 3652 right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
duke@435 3653 }
duke@435 3654
duke@435 3655 // Combine results of left and right checks
duke@435 3656 cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
duke@435 3657 }
duke@435 3658
duke@435 3659 return cisc_spillable;
duke@435 3660 }
duke@435 3661
twisti@1038 3662 //---------------------------cisc_spill_match_rule------------------------------
duke@435 3663 // Recursively check two MatchRules for legal conversion via cisc-spilling
duke@435 3664 // This method handles the root of Match tree,
duke@435 3665 // general recursive checks done in MatchNode
twisti@1038 3666 int MatchRule::matchrule_cisc_spill_match(FormDict& globals, RegisterForm* registers,
twisti@1038 3667 MatchRule* mRule2, const char* &operand,
twisti@1038 3668 const char* &reg_type) {
duke@435 3669 int cisc_spillable = Maybe_cisc_spillable;
duke@435 3670 int left_spillable = Maybe_cisc_spillable;
duke@435 3671 int right_spillable = Maybe_cisc_spillable;
duke@435 3672
duke@435 3673 // Check that each sets a result
duke@435 3674 if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
duke@435 3675 // Check that each has same number of operands at this level
duke@435 3676 if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
duke@435 3677
duke@435 3678 // Check left operands: at root, must be target of 'Set'
duke@435 3679 if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
duke@435 3680 left_spillable = Not_cisc_spillable;
duke@435 3681 } else {
duke@435 3682 // Do not support cisc-spilling instruction's target location
duke@435 3683 if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
duke@435 3684 left_spillable = Maybe_cisc_spillable;
duke@435 3685 } else {
duke@435 3686 left_spillable = Not_cisc_spillable;
duke@435 3687 }
duke@435 3688 }
duke@435 3689
duke@435 3690 // Check right operands: recursive walk to identify reg->mem operand
duke@435 3691 if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
duke@435 3692 right_spillable = Maybe_cisc_spillable;
duke@435 3693 } else {
duke@435 3694 right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
duke@435 3695 }
duke@435 3696
duke@435 3697 // Combine results of left and right checks
duke@435 3698 cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
duke@435 3699
duke@435 3700 return cisc_spillable;
duke@435 3701 }
duke@435 3702
duke@435 3703 //----------------------------- equivalent ------------------------------------
duke@435 3704 // Recursively check to see if two match rules are equivalent.
duke@435 3705 // This rule handles the root.
twisti@1038 3706 bool MatchRule::equivalent(FormDict &globals, MatchNode *mRule2) {
duke@435 3707 // Check that each sets a result
duke@435 3708 if (sets_result() != mRule2->sets_result()) {
duke@435 3709 return false;
duke@435 3710 }
duke@435 3711
duke@435 3712 // Check that the current operands/operations match
duke@435 3713 assert( _opType, "Must have _opType");
duke@435 3714 assert( mRule2->_opType, "Must have _opType");
duke@435 3715 const Form *form = globals[_opType];
duke@435 3716 const Form *form2 = globals[mRule2->_opType];
duke@435 3717 if( form != form2 ) {
duke@435 3718 return false;
duke@435 3719 }
duke@435 3720
duke@435 3721 if (_lChild ) {
duke@435 3722 if( !_lChild->equivalent(globals, mRule2->_lChild) )
duke@435 3723 return false;
duke@435 3724 } else if (mRule2->_lChild) {
duke@435 3725 return false; // I have NULL left child, mRule2 has non-NULL left child.
duke@435 3726 }
duke@435 3727
duke@435 3728 if (_rChild ) {
duke@435 3729 if( !_rChild->equivalent(globals, mRule2->_rChild) )
duke@435 3730 return false;
duke@435 3731 } else if (mRule2->_rChild) {
duke@435 3732 return false; // I have NULL right child, mRule2 has non-NULL right child.
duke@435 3733 }
duke@435 3734
duke@435 3735 // We've made it through the gauntlet.
duke@435 3736 return true;
duke@435 3737 }
duke@435 3738
duke@435 3739 //----------------------------- equivalent ------------------------------------
duke@435 3740 // Recursively check to see if two match rules are equivalent.
duke@435 3741 // This rule handles the operands.
duke@435 3742 bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
duke@435 3743 if( !mNode2 )
duke@435 3744 return false;
duke@435 3745
duke@435 3746 // Check that the current operands/operations match
duke@435 3747 assert( _opType, "Must have _opType");
duke@435 3748 assert( mNode2->_opType, "Must have _opType");
duke@435 3749 const Form *form = globals[_opType];
duke@435 3750 const Form *form2 = globals[mNode2->_opType];
kvn@3037 3751 if( form != form2 ) {
kvn@3037 3752 return false;
kvn@3037 3753 }
kvn@3037 3754
kvn@3037 3755 // Check that their children also match
kvn@3037 3756 if (_lChild ) {
kvn@3037 3757 if( !_lChild->equivalent(globals, mNode2->_lChild) )
kvn@3037 3758 return false;
kvn@3037 3759 } else if (mNode2->_lChild) {
kvn@3037 3760 return false; // I have NULL left child, mNode2 has non-NULL left child.
kvn@3037 3761 }
kvn@3037 3762
kvn@3037 3763 if (_rChild ) {
kvn@3037 3764 if( !_rChild->equivalent(globals, mNode2->_rChild) )
kvn@3037 3765 return false;
kvn@3037 3766 } else if (mNode2->_rChild) {
kvn@3037 3767 return false; // I have NULL right child, mNode2 has non-NULL right child.
kvn@3037 3768 }
kvn@3037 3769
kvn@3037 3770 // We've made it through the gauntlet.
kvn@3037 3771 return true;
duke@435 3772 }
duke@435 3773
duke@435 3774 //-------------------------- has_commutative_op -------------------------------
duke@435 3775 // Recursively check for commutative operations with subtree operands
duke@435 3776 // which could be swapped.
duke@435 3777 void MatchNode::count_commutative_op(int& count) {
duke@435 3778 static const char *commut_op_list[] = {
duke@435 3779 "AddI","AddL","AddF","AddD",
duke@435 3780 "AndI","AndL",
duke@435 3781 "MaxI","MinI",
duke@435 3782 "MulI","MulL","MulF","MulD",
duke@435 3783 "OrI" ,"OrL" ,
duke@435 3784 "XorI","XorL"
duke@435 3785 };
duke@435 3786 int cnt = sizeof(commut_op_list)/sizeof(char*);
duke@435 3787
duke@435 3788 if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
duke@435 3789 // Don't swap if right operand is an immediate constant.
duke@435 3790 bool is_const = false;
duke@435 3791 if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
duke@435 3792 FormDict &globals = _AD.globalNames();
duke@435 3793 const Form *form = globals[_rChild->_opType];
duke@435 3794 if ( form ) {
duke@435 3795 OperandForm *oper = form->is_operand();
duke@435 3796 if( oper && oper->interface_type(globals) == Form::constant_interface )
duke@435 3797 is_const = true;
duke@435 3798 }
duke@435 3799 }
duke@435 3800 if( !is_const ) {
duke@435 3801 for( int i=0; i<cnt; i++ ) {
duke@435 3802 if( strcmp(_opType, commut_op_list[i]) == 0 ) {
duke@435 3803 count++;
duke@435 3804 _commutative_id = count; // id should be > 0
duke@435 3805 break;
duke@435 3806 }
duke@435 3807 }
duke@435 3808 }
duke@435 3809 }
duke@435 3810 if( _lChild )
duke@435 3811 _lChild->count_commutative_op(count);
duke@435 3812 if( _rChild )
duke@435 3813 _rChild->count_commutative_op(count);
duke@435 3814 }
duke@435 3815
duke@435 3816 //-------------------------- swap_commutative_op ------------------------------
duke@435 3817 // Recursively swap specified commutative operation with subtree operands.
duke@435 3818 void MatchNode::swap_commutative_op(bool atroot, int id) {
duke@435 3819 if( _commutative_id == id ) { // id should be > 0
duke@435 3820 assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ),
duke@435 3821 "not swappable operation");
duke@435 3822 MatchNode* tmp = _lChild;
duke@435 3823 _lChild = _rChild;
duke@435 3824 _rChild = tmp;
duke@435 3825 // Don't exit here since we need to build internalop.
duke@435 3826 }
duke@435 3827
duke@435 3828 bool is_set = ( strcmp(_opType, "Set") == 0 );
duke@435 3829 if( _lChild )
duke@435 3830 _lChild->swap_commutative_op(is_set, id);
duke@435 3831 if( _rChild )
duke@435 3832 _rChild->swap_commutative_op(is_set, id);
duke@435 3833
duke@435 3834 // If not the root, reduce this subtree to an internal operand
duke@435 3835 if( !atroot && (_lChild || _rChild) ) {
duke@435 3836 build_internalop();
duke@435 3837 }
duke@435 3838 }
duke@435 3839
duke@435 3840 //-------------------------- swap_commutative_op ------------------------------
duke@435 3841 // Recursively swap specified commutative operation with subtree operands.
twisti@1038 3842 void MatchRule::matchrule_swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
duke@435 3843 assert(match_rules_cnt < 100," too many match rule clones");
duke@435 3844 // Clone
duke@435 3845 MatchRule* clone = new MatchRule(_AD, this);
duke@435 3846 // Swap operands of commutative operation
duke@435 3847 ((MatchNode*)clone)->swap_commutative_op(true, count);
duke@435 3848 char* buf = (char*) malloc(strlen(instr_ident) + 4);
duke@435 3849 sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
duke@435 3850 clone->_result = buf;
duke@435 3851
duke@435 3852 clone->_next = this->_next;
duke@435 3853 this-> _next = clone;
duke@435 3854 if( (--count) > 0 ) {
twisti@1038 3855 this-> matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
twisti@1038 3856 clone->matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
duke@435 3857 }
duke@435 3858 }
duke@435 3859
duke@435 3860 //------------------------------MatchRule--------------------------------------
duke@435 3861 MatchRule::MatchRule(ArchDesc &ad)
duke@435 3862 : MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
duke@435 3863 _next = NULL;
duke@435 3864 }
duke@435 3865
duke@435 3866 MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
duke@435 3867 : MatchNode(ad, *mRule, 0), _depth(mRule->_depth),
duke@435 3868 _construct(mRule->_construct), _numchilds(mRule->_numchilds) {
duke@435 3869 _next = NULL;
duke@435 3870 }
duke@435 3871
duke@435 3872 MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
duke@435 3873 int numleaves)
duke@435 3874 : MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
duke@435 3875 _numchilds(0) {
duke@435 3876 _next = NULL;
duke@435 3877 mroot->_lChild = NULL;
duke@435 3878 mroot->_rChild = NULL;
duke@435 3879 delete mroot;
duke@435 3880 _numleaves = numleaves;
duke@435 3881 _numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
duke@435 3882 }
duke@435 3883 MatchRule::~MatchRule() {
duke@435 3884 }
duke@435 3885
duke@435 3886 // Recursive call collecting info on top-level operands, not transitive.
duke@435 3887 // Implementation does not modify state of internal structures.
twisti@1038 3888 void MatchRule::append_components(FormDict& locals, ComponentList& components, bool def_flag) const {
duke@435 3889 assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
duke@435 3890
duke@435 3891 MatchNode::append_components(locals, components,
duke@435 3892 false /* not necessarily a def */);
duke@435 3893 }
duke@435 3894
duke@435 3895 // Recursive call on all operands' match rules in my match rule.
duke@435 3896 // Implementation does not modify state of internal structures since they
duke@435 3897 // can be shared.
duke@435 3898 // The MatchNode that is called first treats its
duke@435 3899 bool MatchRule::base_operand(uint &position0, FormDict &globals,
duke@435 3900 const char *&result, const char * &name,
duke@435 3901 const char * &opType)const{
duke@435 3902 uint position = position0;
duke@435 3903
duke@435 3904 return (MatchNode::base_operand( position, globals, result, name, opType));
duke@435 3905 }
duke@435 3906
duke@435 3907
duke@435 3908 bool MatchRule::is_base_register(FormDict &globals) const {
duke@435 3909 uint position = 1;
duke@435 3910 const char *result = NULL;
duke@435 3911 const char *name = NULL;
duke@435 3912 const char *opType = NULL;
duke@435 3913 if (!base_operand(position, globals, result, name, opType)) {
duke@435 3914 position = 0;
duke@435 3915 if( base_operand(position, globals, result, name, opType) &&
duke@435 3916 (strcmp(opType,"RegI")==0 ||
duke@435 3917 strcmp(opType,"RegP")==0 ||
coleenp@548 3918 strcmp(opType,"RegN")==0 ||
duke@435 3919 strcmp(opType,"RegL")==0 ||
duke@435 3920 strcmp(opType,"RegF")==0 ||
duke@435 3921 strcmp(opType,"RegD")==0 ||
kvn@3882 3922 strcmp(opType,"VecS")==0 ||
kvn@3882 3923 strcmp(opType,"VecD")==0 ||
kvn@3882 3924 strcmp(opType,"VecX")==0 ||
kvn@3882 3925 strcmp(opType,"VecY")==0 ||
duke@435 3926 strcmp(opType,"Reg" )==0) ) {
duke@435 3927 return 1;
duke@435 3928 }
duke@435 3929 }
duke@435 3930 return 0;
duke@435 3931 }
duke@435 3932
duke@435 3933 Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
duke@435 3934 uint position = 1;
duke@435 3935 const char *result = NULL;
duke@435 3936 const char *name = NULL;
duke@435 3937 const char *opType = NULL;
duke@435 3938 if (!base_operand(position, globals, result, name, opType)) {
duke@435 3939 position = 0;
duke@435 3940 if (base_operand(position, globals, result, name, opType)) {
duke@435 3941 return ideal_to_const_type(opType);
duke@435 3942 }
duke@435 3943 }
duke@435 3944 return Form::none;
duke@435 3945 }
duke@435 3946
duke@435 3947 bool MatchRule::is_chain_rule(FormDict &globals) const {
duke@435 3948
duke@435 3949 // Check for chain rule, and do not generate a match list for it
duke@435 3950 if ((_lChild == NULL) && (_rChild == NULL) ) {
duke@435 3951 const Form *form = globals[_opType];
duke@435 3952 // If this is ideal, then it is a base match, not a chain rule.
duke@435 3953 if ( form && form->is_operand() && (!form->ideal_only())) {
duke@435 3954 return true;
duke@435 3955 }
duke@435 3956 }
duke@435 3957 // Check for "Set" form of chain rule, and do not generate a match list
duke@435 3958 if (_rChild) {
duke@435 3959 const char *rch = _rChild->_opType;
duke@435 3960 const Form *form = globals[rch];
duke@435 3961 if ((!strcmp(_opType,"Set") &&
duke@435 3962 ((form) && form->is_operand()))) {
duke@435 3963 return true;
duke@435 3964 }
duke@435 3965 }
duke@435 3966 return false;
duke@435 3967 }
duke@435 3968
duke@435 3969 int MatchRule::is_ideal_copy() const {
duke@435 3970 if( _rChild ) {
duke@435 3971 const char *opType = _rChild->_opType;
ysr@777 3972 #if 1
ysr@777 3973 if( strcmp(opType,"CastIP")==0 )
ysr@777 3974 return 1;
ysr@777 3975 #else
duke@435 3976 if( strcmp(opType,"CastII")==0 )
duke@435 3977 return 1;
duke@435 3978 // Do not treat *CastPP this way, because it
duke@435 3979 // may transfer a raw pointer to an oop.
duke@435 3980 // If the register allocator were to coalesce this
duke@435 3981 // into a single LRG, the GC maps would be incorrect.
duke@435 3982 //if( strcmp(opType,"CastPP")==0 )
duke@435 3983 // return 1;
duke@435 3984 //if( strcmp(opType,"CheckCastPP")==0 )
duke@435 3985 // return 1;
duke@435 3986 //
duke@435 3987 // Do not treat CastX2P or CastP2X this way, because
duke@435 3988 // raw pointers and int types are treated differently
duke@435 3989 // when saving local & stack info for safepoints in
duke@435 3990 // Output().
duke@435 3991 //if( strcmp(opType,"CastX2P")==0 )
duke@435 3992 // return 1;
duke@435 3993 //if( strcmp(opType,"CastP2X")==0 )
duke@435 3994 // return 1;
ysr@777 3995 #endif
duke@435 3996 }
duke@435 3997 if( is_chain_rule(_AD.globalNames()) &&
duke@435 3998 _lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 )
duke@435 3999 return 1;
duke@435 4000 return 0;
duke@435 4001 }
duke@435 4002
duke@435 4003
duke@435 4004 int MatchRule::is_expensive() const {
duke@435 4005 if( _rChild ) {
duke@435 4006 const char *opType = _rChild->_opType;
duke@435 4007 if( strcmp(opType,"AtanD")==0 ||
duke@435 4008 strcmp(opType,"CosD")==0 ||
duke@435 4009 strcmp(opType,"DivD")==0 ||
duke@435 4010 strcmp(opType,"DivF")==0 ||
duke@435 4011 strcmp(opType,"DivI")==0 ||
duke@435 4012 strcmp(opType,"ExpD")==0 ||
duke@435 4013 strcmp(opType,"LogD")==0 ||
duke@435 4014 strcmp(opType,"Log10D")==0 ||
duke@435 4015 strcmp(opType,"ModD")==0 ||
duke@435 4016 strcmp(opType,"ModF")==0 ||
duke@435 4017 strcmp(opType,"ModI")==0 ||
duke@435 4018 strcmp(opType,"PowD")==0 ||
duke@435 4019 strcmp(opType,"SinD")==0 ||
duke@435 4020 strcmp(opType,"SqrtD")==0 ||
duke@435 4021 strcmp(opType,"TanD")==0 ||
duke@435 4022 strcmp(opType,"ConvD2F")==0 ||
duke@435 4023 strcmp(opType,"ConvD2I")==0 ||
duke@435 4024 strcmp(opType,"ConvD2L")==0 ||
duke@435 4025 strcmp(opType,"ConvF2D")==0 ||
duke@435 4026 strcmp(opType,"ConvF2I")==0 ||
duke@435 4027 strcmp(opType,"ConvF2L")==0 ||
duke@435 4028 strcmp(opType,"ConvI2D")==0 ||
duke@435 4029 strcmp(opType,"ConvI2F")==0 ||
duke@435 4030 strcmp(opType,"ConvI2L")==0 ||
duke@435 4031 strcmp(opType,"ConvL2D")==0 ||
duke@435 4032 strcmp(opType,"ConvL2F")==0 ||
duke@435 4033 strcmp(opType,"ConvL2I")==0 ||
kvn@682 4034 strcmp(opType,"DecodeN")==0 ||
kvn@682 4035 strcmp(opType,"EncodeP")==0 ||
roland@4159 4036 strcmp(opType,"EncodePKlass")==0 ||
roland@4159 4037 strcmp(opType,"DecodeNKlass")==0 ||
duke@435 4038 strcmp(opType,"RoundDouble")==0 ||
duke@435 4039 strcmp(opType,"RoundFloat")==0 ||
duke@435 4040 strcmp(opType,"ReverseBytesI")==0 ||
duke@435 4041 strcmp(opType,"ReverseBytesL")==0 ||
never@1831 4042 strcmp(opType,"ReverseBytesUS")==0 ||
never@1831 4043 strcmp(opType,"ReverseBytesS")==0 ||
kvn@3882 4044 strcmp(opType,"ReplicateB")==0 ||
kvn@3882 4045 strcmp(opType,"ReplicateS")==0 ||
kvn@3882 4046 strcmp(opType,"ReplicateI")==0 ||
kvn@3882 4047 strcmp(opType,"ReplicateL")==0 ||
kvn@3882 4048 strcmp(opType,"ReplicateF")==0 ||
kvn@3882 4049 strcmp(opType,"ReplicateD")==0 ||
duke@435 4050 0 /* 0 to line up columns nicely */ )
duke@435 4051 return 1;
duke@435 4052 }
duke@435 4053 return 0;
duke@435 4054 }
duke@435 4055
duke@435 4056 bool MatchRule::is_ideal_if() const {
duke@435 4057 if( !_opType ) return false;
duke@435 4058 return
duke@435 4059 !strcmp(_opType,"If" ) ||
duke@435 4060 !strcmp(_opType,"CountedLoopEnd");
duke@435 4061 }
duke@435 4062
duke@435 4063 bool MatchRule::is_ideal_fastlock() const {
duke@435 4064 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 4065 return (strcmp(_rChild->_opType,"FastLock") == 0);
duke@435 4066 }
duke@435 4067 return false;
duke@435 4068 }
duke@435 4069
duke@435 4070 bool MatchRule::is_ideal_membar() const {
duke@435 4071 if( !_opType ) return false;
duke@435 4072 return
goetz@6489 4073 !strcmp(_opType,"MemBarAcquire") ||
goetz@6489 4074 !strcmp(_opType,"MemBarRelease") ||
roland@3047 4075 !strcmp(_opType,"MemBarAcquireLock") ||
roland@3047 4076 !strcmp(_opType,"MemBarReleaseLock") ||
goetz@6489 4077 !strcmp(_opType,"LoadFence" ) ||
goetz@6489 4078 !strcmp(_opType,"StoreFence") ||
goetz@6489 4079 !strcmp(_opType,"MemBarVolatile") ||
goetz@6489 4080 !strcmp(_opType,"MemBarCPUOrder") ||
goetz@6489 4081 !strcmp(_opType,"MemBarStoreStore");
duke@435 4082 }
duke@435 4083
duke@435 4084 bool MatchRule::is_ideal_loadPC() const {
duke@435 4085 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 4086 return (strcmp(_rChild->_opType,"LoadPC") == 0);
duke@435 4087 }
duke@435 4088 return false;
duke@435 4089 }
duke@435 4090
duke@435 4091 bool MatchRule::is_ideal_box() const {
duke@435 4092 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 4093 return (strcmp(_rChild->_opType,"Box") == 0);
duke@435 4094 }
duke@435 4095 return false;
duke@435 4096 }
duke@435 4097
duke@435 4098 bool MatchRule::is_ideal_goto() const {
duke@435 4099 bool ideal_goto = false;
duke@435 4100
duke@435 4101 if( _opType && (strcmp(_opType,"Goto") == 0) ) {
duke@435 4102 ideal_goto = true;
duke@435 4103 }
duke@435 4104 return ideal_goto;
duke@435 4105 }
duke@435 4106
duke@435 4107 bool MatchRule::is_ideal_jump() const {
duke@435 4108 if( _opType ) {
duke@435 4109 if( !strcmp(_opType,"Jump") )
duke@435 4110 return true;
duke@435 4111 }
duke@435 4112 return false;
duke@435 4113 }
duke@435 4114
duke@435 4115 bool MatchRule::is_ideal_bool() const {
duke@435 4116 if( _opType ) {
duke@435 4117 if( !strcmp(_opType,"Bool") )
duke@435 4118 return true;
duke@435 4119 }
duke@435 4120 return false;
duke@435 4121 }
duke@435 4122
duke@435 4123
duke@435 4124 Form::DataType MatchRule::is_ideal_load() const {
duke@435 4125 Form::DataType ideal_load = Form::none;
duke@435 4126
duke@435 4127 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 4128 const char *opType = _rChild->_opType;
duke@435 4129 ideal_load = is_load_from_memory(opType);
duke@435 4130 }
duke@435 4131
duke@435 4132 return ideal_load;
duke@435 4133 }
duke@435 4134
kvn@3882 4135 bool MatchRule::is_vector() const {
kvn@4113 4136 static const char *vector_list[] = {
kvn@4113 4137 "AddVB","AddVS","AddVI","AddVL","AddVF","AddVD",
kvn@4113 4138 "SubVB","SubVS","SubVI","SubVL","SubVF","SubVD",
kvn@4113 4139 "MulVS","MulVI","MulVF","MulVD",
kvn@4113 4140 "DivVF","DivVD",
kvn@4113 4141 "AndV" ,"XorV" ,"OrV",
kvn@4134 4142 "LShiftCntV","RShiftCntV",
kvn@4113 4143 "LShiftVB","LShiftVS","LShiftVI","LShiftVL",
kvn@4113 4144 "RShiftVB","RShiftVS","RShiftVI","RShiftVL",
kvn@4113 4145 "URShiftVB","URShiftVS","URShiftVI","URShiftVL",
kvn@4113 4146 "ReplicateB","ReplicateS","ReplicateI","ReplicateL","ReplicateF","ReplicateD",
kvn@4113 4147 "LoadVector","StoreVector",
kvn@4113 4148 // Next are not supported currently.
kvn@4113 4149 "PackB","PackS","PackI","PackL","PackF","PackD","Pack2L","Pack2D",
kvn@4113 4150 "ExtractB","ExtractUB","ExtractC","ExtractS","ExtractI","ExtractL","ExtractF","ExtractD"
kvn@4113 4151 };
kvn@4113 4152 int cnt = sizeof(vector_list)/sizeof(char*);
kvn@4113 4153 if (_rChild) {
kvn@3882 4154 const char *opType = _rChild->_opType;
kvn@4113 4155 for (int i=0; i<cnt; i++)
kvn@4113 4156 if (strcmp(opType,vector_list[i]) == 0)
kvn@4113 4157 return true;
kvn@3882 4158 }
kvn@3882 4159 return false;
kvn@3882 4160 }
kvn@3882 4161
duke@435 4162
never@1290 4163 bool MatchRule::skip_antidep_check() const {
never@1290 4164 // Some loads operate on what is effectively immutable memory so we
never@1290 4165 // should skip the anti dep computations. For some of these nodes
never@1290 4166 // the rewritable field keeps the anti dep logic from triggering but
never@1290 4167 // for certain kinds of LoadKlass it does not since they are
never@1290 4168 // actually reading memory which could be rewritten by the runtime,
never@1290 4169 // though never by generated code. This disables it uniformly for
never@1290 4170 // the nodes that behave like this: LoadKlass, LoadNKlass and
never@1290 4171 // LoadRange.
never@1290 4172 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
never@1290 4173 const char *opType = _rChild->_opType;
never@1290 4174 if (strcmp("LoadKlass", opType) == 0 ||
never@1290 4175 strcmp("LoadNKlass", opType) == 0 ||
never@1290 4176 strcmp("LoadRange", opType) == 0) {
never@1290 4177 return true;
never@1290 4178 }
never@1290 4179 }
never@1290 4180
never@1290 4181 return false;
never@1290 4182 }
never@1290 4183
never@1290 4184
duke@435 4185 Form::DataType MatchRule::is_ideal_store() const {
duke@435 4186 Form::DataType ideal_store = Form::none;
duke@435 4187
duke@435 4188 if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
duke@435 4189 const char *opType = _rChild->_opType;
duke@435 4190 ideal_store = is_store_to_memory(opType);
duke@435 4191 }
duke@435 4192
duke@435 4193 return ideal_store;
duke@435 4194 }
duke@435 4195
duke@435 4196
duke@435 4197 void MatchRule::dump() {
duke@435 4198 output(stderr);
duke@435 4199 }
duke@435 4200
kvn@4161 4201 // Write just one line.
kvn@4161 4202 void MatchRule::output_short(FILE *fp) {
duke@435 4203 fprintf(fp,"MatchRule: ( %s",_name);
duke@435 4204 if (_lChild) _lChild->output(fp);
duke@435 4205 if (_rChild) _rChild->output(fp);
kvn@4161 4206 fprintf(fp," )");
kvn@4161 4207 }
kvn@4161 4208
kvn@4161 4209 void MatchRule::output(FILE *fp) {
kvn@4161 4210 output_short(fp);
kvn@4161 4211 fprintf(fp,"\n nesting depth = %d\n", _depth);
duke@435 4212 if (_result) fprintf(fp," Result Type = %s", _result);
duke@435 4213 fprintf(fp,"\n");
duke@435 4214 }
duke@435 4215
duke@435 4216 //------------------------------Attribute--------------------------------------
duke@435 4217 Attribute::Attribute(char *id, char* val, int type)
duke@435 4218 : _ident(id), _val(val), _atype(type) {
duke@435 4219 }
duke@435 4220 Attribute::~Attribute() {
duke@435 4221 }
duke@435 4222
duke@435 4223 int Attribute::int_val(ArchDesc &ad) {
duke@435 4224 // Make sure it is an integer constant:
duke@435 4225 int result = 0;
duke@435 4226 if (!_val || !ADLParser::is_int_token(_val, result)) {
duke@435 4227 ad.syntax_err(0, "Attribute %s must have an integer value: %s",
duke@435 4228 _ident, _val ? _val : "");
duke@435 4229 }
duke@435 4230 return result;
duke@435 4231 }
duke@435 4232
duke@435 4233 void Attribute::dump() {
duke@435 4234 output(stderr);
duke@435 4235 } // Debug printer
duke@435 4236
duke@435 4237 // Write to output files
duke@435 4238 void Attribute::output(FILE *fp) {
duke@435 4239 fprintf(fp,"Attribute: %s %s\n", (_ident?_ident:""), (_val?_val:""));
duke@435 4240 }
duke@435 4241
duke@435 4242 //------------------------------FormatRule----------------------------------
duke@435 4243 FormatRule::FormatRule(char *temp)
duke@435 4244 : _temp(temp) {
duke@435 4245 }
duke@435 4246 FormatRule::~FormatRule() {
duke@435 4247 }
duke@435 4248
duke@435 4249 void FormatRule::dump() {
duke@435 4250 output(stderr);
duke@435 4251 }
duke@435 4252
duke@435 4253 // Write to output files
duke@435 4254 void FormatRule::output(FILE *fp) {
duke@435 4255 fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
duke@435 4256 fprintf(fp,"\n");
duke@435 4257 }

mercurial