src/share/vm/adlc/formssel.cpp

Mon, 12 Aug 2019 18:30:40 +0300

author
apetushkov
date
Mon, 12 Aug 2019 18:30:40 +0300
changeset 9858
b985cbb00e68
parent 9615
c5e1abd2d0af
child 9637
eef07cd490d4
permissions
-rw-r--r--

8223147: JFR Backport
8199712: Flight Recorder
8203346: JFR: Inconsistent signature of jfr_add_string_constant
8195817: JFR.stop should require name of recording
8195818: JFR.start should increase autogenerated name by one
8195819: Remove recording=x from jcmd JFR.check output
8203921: JFR thread sampling is missing fixes from JDK-8194552
8203929: Limit amount of data for JFR.dump
8203664: JFR start failure after AppCDS archive created with JFR StartFlightRecording
8003209: JFR events for network utilization
8207392: [PPC64] Implement JFR profiling
8202835: jfr/event/os/TestSystemProcess.java fails on missing events
Summary: Backport JFR from JDK11. Initial integration
Reviewed-by: neugens

     1 /*
     2  * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // FORMS.CPP - Definitions for ADL Parser Forms Classes
    26 #include "adlc.hpp"
    28 //==============================Instructions===================================
    29 //------------------------------InstructForm-----------------------------------
    30 InstructForm::InstructForm(const char *id, bool ideal_only)
    31   : _ident(id), _ideal_only(ideal_only),
    32     _localNames(cmpstr, hashstr, Form::arena),
    33     _effects(cmpstr, hashstr, Form::arena),
    34     _is_mach_constant(false),
    35     _needs_constant_base(false),
    36     _has_call(false)
    37 {
    38       _ftype = Form::INS;
    40       _matrule              = NULL;
    41       _insencode            = NULL;
    42       _constant             = NULL;
    43       _is_postalloc_expand  = false;
    44       _opcode               = NULL;
    45       _size                 = NULL;
    46       _attribs              = NULL;
    47       _predicate            = NULL;
    48       _exprule              = NULL;
    49       _rewrule              = NULL;
    50       _format               = NULL;
    51       _peephole             = NULL;
    52       _ins_pipe             = NULL;
    53       _uniq_idx             = NULL;
    54       _num_uniq             = 0;
    55       _cisc_spill_operand   = Not_cisc_spillable;// Which operand may cisc-spill
    56       _cisc_spill_alternate = NULL;            // possible cisc replacement
    57       _cisc_reg_mask_name   = NULL;
    58       _is_cisc_alternate    = false;
    59       _is_short_branch      = false;
    60       _short_branch_form    = NULL;
    61       _alignment            = 1;
    62 }
    64 InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
    65   : _ident(id), _ideal_only(false),
    66     _localNames(instr->_localNames),
    67     _effects(instr->_effects),
    68     _is_mach_constant(false),
    69     _needs_constant_base(false),
    70     _has_call(false)
    71 {
    72       _ftype = Form::INS;
    74       _matrule               = rule;
    75       _insencode             = instr->_insencode;
    76       _constant              = instr->_constant;
    77       _is_postalloc_expand   = instr->_is_postalloc_expand;
    78       _opcode                = instr->_opcode;
    79       _size                  = instr->_size;
    80       _attribs               = instr->_attribs;
    81       _predicate             = instr->_predicate;
    82       _exprule               = instr->_exprule;
    83       _rewrule               = instr->_rewrule;
    84       _format                = instr->_format;
    85       _peephole              = instr->_peephole;
    86       _ins_pipe              = instr->_ins_pipe;
    87       _uniq_idx              = instr->_uniq_idx;
    88       _num_uniq              = instr->_num_uniq;
    89       _cisc_spill_operand    = Not_cisc_spillable; // Which operand may cisc-spill
    90       _cisc_spill_alternate  = NULL;               // possible cisc replacement
    91       _cisc_reg_mask_name    = NULL;
    92       _is_cisc_alternate     = false;
    93       _is_short_branch       = false;
    94       _short_branch_form     = NULL;
    95       _alignment             = 1;
    96      // Copy parameters
    97      const char *name;
    98      instr->_parameters.reset();
    99      for (; (name = instr->_parameters.iter()) != NULL;)
   100        _parameters.addName(name);
   101 }
   103 InstructForm::~InstructForm() {
   104 }
   106 InstructForm *InstructForm::is_instruction() const {
   107   return (InstructForm*)this;
   108 }
   110 bool InstructForm::ideal_only() const {
   111   return _ideal_only;
   112 }
   114 bool InstructForm::sets_result() const {
   115   return (_matrule != NULL && _matrule->sets_result());
   116 }
   118 bool InstructForm::needs_projections() {
   119   _components.reset();
   120   for( Component *comp; (comp = _components.iter()) != NULL; ) {
   121     if (comp->isa(Component::KILL)) {
   122       return true;
   123     }
   124   }
   125   return false;
   126 }
   129 bool InstructForm::has_temps() {
   130   if (_matrule) {
   131     // Examine each component to see if it is a TEMP
   132     _components.reset();
   133     // Skip the first component, if already handled as (SET dst (...))
   134     Component *comp = NULL;
   135     if (sets_result())  comp = _components.iter();
   136     while ((comp = _components.iter()) != NULL) {
   137       if (comp->isa(Component::TEMP)) {
   138         return true;
   139       }
   140     }
   141   }
   143   return false;
   144 }
   146 uint InstructForm::num_defs_or_kills() {
   147   uint   defs_or_kills = 0;
   149   _components.reset();
   150   for( Component *comp; (comp = _components.iter()) != NULL; ) {
   151     if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
   152       ++defs_or_kills;
   153     }
   154   }
   156   return  defs_or_kills;
   157 }
   159 // This instruction has an expand rule?
   160 bool InstructForm::expands() const {
   161   return ( _exprule != NULL );
   162 }
   164 // This instruction has a late expand rule?
   165 bool InstructForm::postalloc_expands() const {
   166   return _is_postalloc_expand;
   167 }
   169 // This instruction has a peephole rule?
   170 Peephole *InstructForm::peepholes() const {
   171   return _peephole;
   172 }
   174 // This instruction has a peephole rule?
   175 void InstructForm::append_peephole(Peephole *peephole) {
   176   if( _peephole == NULL ) {
   177     _peephole = peephole;
   178   } else {
   179     _peephole->append_peephole(peephole);
   180   }
   181 }
   184 // ideal opcode enumeration
   185 const char *InstructForm::ideal_Opcode( FormDict &globalNames )  const {
   186   if( !_matrule ) return "Node"; // Something weird
   187   // Chain rules do not really have ideal Opcodes; use their source
   188   // operand ideal Opcode instead.
   189   if( is_simple_chain_rule(globalNames) ) {
   190     const char *src = _matrule->_rChild->_opType;
   191     OperandForm *src_op = globalNames[src]->is_operand();
   192     assert( src_op, "Not operand class of chain rule" );
   193     if( !src_op->_matrule ) return "Node";
   194     return src_op->_matrule->_opType;
   195   }
   196   // Operand chain rules do not really have ideal Opcodes
   197   if( _matrule->is_chain_rule(globalNames) )
   198     return "Node";
   199   return strcmp(_matrule->_opType,"Set")
   200     ? _matrule->_opType
   201     : _matrule->_rChild->_opType;
   202 }
   204 // Recursive check on all operands' match rules in my match rule
   205 bool InstructForm::is_pinned(FormDict &globals) {
   206   if ( ! _matrule)  return false;
   208   int  index   = 0;
   209   if (_matrule->find_type("Goto",          index)) return true;
   210   if (_matrule->find_type("If",            index)) return true;
   211   if (_matrule->find_type("CountedLoopEnd",index)) return true;
   212   if (_matrule->find_type("Return",        index)) return true;
   213   if (_matrule->find_type("Rethrow",       index)) return true;
   214   if (_matrule->find_type("TailCall",      index)) return true;
   215   if (_matrule->find_type("TailJump",      index)) return true;
   216   if (_matrule->find_type("Halt",          index)) return true;
   217   if (_matrule->find_type("Jump",          index)) return true;
   219   return is_parm(globals);
   220 }
   222 // Recursive check on all operands' match rules in my match rule
   223 bool InstructForm::is_projection(FormDict &globals) {
   224   if ( ! _matrule)  return false;
   226   int  index   = 0;
   227   if (_matrule->find_type("Goto",    index)) return true;
   228   if (_matrule->find_type("Return",  index)) return true;
   229   if (_matrule->find_type("Rethrow", index)) return true;
   230   if (_matrule->find_type("TailCall",index)) return true;
   231   if (_matrule->find_type("TailJump",index)) return true;
   232   if (_matrule->find_type("Halt",    index)) return true;
   234   return false;
   235 }
   237 // Recursive check on all operands' match rules in my match rule
   238 bool InstructForm::is_parm(FormDict &globals) {
   239   if ( ! _matrule)  return false;
   241   int  index   = 0;
   242   if (_matrule->find_type("Parm",index)) return true;
   244   return false;
   245 }
   247 bool InstructForm::is_ideal_negD() const {
   248   return (_matrule && _matrule->_rChild && strcmp(_matrule->_rChild->_opType, "NegD") == 0);
   249 }
   251 // Return 'true' if this instruction matches an ideal 'Copy*' node
   252 int InstructForm::is_ideal_copy() const {
   253   return _matrule ? _matrule->is_ideal_copy() : 0;
   254 }
   256 // Return 'true' if this instruction is too complex to rematerialize.
   257 int InstructForm::is_expensive() const {
   258   // We can prove it is cheap if it has an empty encoding.
   259   // This helps with platform-specific nops like ThreadLocal and RoundFloat.
   260   if (is_empty_encoding())
   261     return 0;
   263   if (is_tls_instruction())
   264     return 1;
   266   if (_matrule == NULL)  return 0;
   268   return _matrule->is_expensive();
   269 }
   271 // Has an empty encoding if _size is a constant zero or there
   272 // are no ins_encode tokens.
   273 int InstructForm::is_empty_encoding() const {
   274   if (_insencode != NULL) {
   275     _insencode->reset();
   276     if (_insencode->encode_class_iter() == NULL) {
   277       return 1;
   278     }
   279   }
   280   if (_size != NULL && strcmp(_size, "0") == 0) {
   281     return 1;
   282   }
   283   return 0;
   284 }
   286 int InstructForm::is_tls_instruction() const {
   287   if (_ident != NULL &&
   288       ( ! strcmp( _ident,"tlsLoadP") ||
   289         ! strncmp(_ident,"tlsLoadP_",9)) ) {
   290     return 1;
   291   }
   293   if (_matrule != NULL && _insencode != NULL) {
   294     const char* opType = _matrule->_opType;
   295     if (strcmp(opType, "Set")==0)
   296       opType = _matrule->_rChild->_opType;
   297     if (strcmp(opType,"ThreadLocal")==0) {
   298       fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
   299               (_ident == NULL ? "NULL" : _ident));
   300       return 1;
   301     }
   302   }
   304   return 0;
   305 }
   308 // Return 'true' if this instruction matches an ideal 'If' node
   309 bool InstructForm::is_ideal_if() const {
   310   if( _matrule == NULL ) return false;
   312   return _matrule->is_ideal_if();
   313 }
   315 // Return 'true' if this instruction matches an ideal 'FastLock' node
   316 bool InstructForm::is_ideal_fastlock() const {
   317   if( _matrule == NULL ) return false;
   319   return _matrule->is_ideal_fastlock();
   320 }
   322 // Return 'true' if this instruction matches an ideal 'MemBarXXX' node
   323 bool InstructForm::is_ideal_membar() const {
   324   if( _matrule == NULL ) return false;
   326   return _matrule->is_ideal_membar();
   327 }
   329 // Return 'true' if this instruction matches an ideal 'LoadPC' node
   330 bool InstructForm::is_ideal_loadPC() const {
   331   if( _matrule == NULL ) return false;
   333   return _matrule->is_ideal_loadPC();
   334 }
   336 // Return 'true' if this instruction matches an ideal 'Box' node
   337 bool InstructForm::is_ideal_box() const {
   338   if( _matrule == NULL ) return false;
   340   return _matrule->is_ideal_box();
   341 }
   343 // Return 'true' if this instruction matches an ideal 'Goto' node
   344 bool InstructForm::is_ideal_goto() const {
   345   if( _matrule == NULL ) return false;
   347   return _matrule->is_ideal_goto();
   348 }
   350 // Return 'true' if this instruction matches an ideal 'Jump' node
   351 bool InstructForm::is_ideal_jump() const {
   352   if( _matrule == NULL ) return false;
   354   return _matrule->is_ideal_jump();
   355 }
   357 // Return 'true' if instruction matches ideal 'If' | 'Goto' | 'CountedLoopEnd'
   358 bool InstructForm::is_ideal_branch() const {
   359   if( _matrule == NULL ) return false;
   361   return _matrule->is_ideal_if() || _matrule->is_ideal_goto();
   362 }
   365 // Return 'true' if this instruction matches an ideal 'Return' node
   366 bool InstructForm::is_ideal_return() const {
   367   if( _matrule == NULL ) return false;
   369   // Check MatchRule to see if the first entry is the ideal "Return" node
   370   int  index   = 0;
   371   if (_matrule->find_type("Return",index)) return true;
   372   if (_matrule->find_type("Rethrow",index)) return true;
   373   if (_matrule->find_type("TailCall",index)) return true;
   374   if (_matrule->find_type("TailJump",index)) return true;
   376   return false;
   377 }
   379 // Return 'true' if this instruction matches an ideal 'Halt' node
   380 bool InstructForm::is_ideal_halt() const {
   381   int  index   = 0;
   382   return _matrule && _matrule->find_type("Halt",index);
   383 }
   385 // Return 'true' if this instruction matches an ideal 'SafePoint' node
   386 bool InstructForm::is_ideal_safepoint() const {
   387   int  index   = 0;
   388   return _matrule && _matrule->find_type("SafePoint",index);
   389 }
   391 // Return 'true' if this instruction matches an ideal 'Nop' node
   392 bool InstructForm::is_ideal_nop() const {
   393   return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
   394 }
   396 bool InstructForm::is_ideal_control() const {
   397   if ( ! _matrule)  return false;
   399   return is_ideal_return() || is_ideal_branch() || _matrule->is_ideal_jump() || is_ideal_halt();
   400 }
   402 // Return 'true' if this instruction matches an ideal 'Call' node
   403 Form::CallType InstructForm::is_ideal_call() const {
   404   if( _matrule == NULL ) return Form::invalid_type;
   406   // Check MatchRule to see if the first entry is the ideal "Call" node
   407   int  idx   = 0;
   408   if(_matrule->find_type("CallStaticJava",idx))   return Form::JAVA_STATIC;
   409   idx = 0;
   410   if(_matrule->find_type("Lock",idx))             return Form::JAVA_STATIC;
   411   idx = 0;
   412   if(_matrule->find_type("Unlock",idx))           return Form::JAVA_STATIC;
   413   idx = 0;
   414   if(_matrule->find_type("CallDynamicJava",idx))  return Form::JAVA_DYNAMIC;
   415   idx = 0;
   416   if(_matrule->find_type("CallRuntime",idx))      return Form::JAVA_RUNTIME;
   417   idx = 0;
   418   if(_matrule->find_type("CallLeaf",idx))         return Form::JAVA_LEAF;
   419   idx = 0;
   420   if(_matrule->find_type("CallLeafNoFP",idx))     return Form::JAVA_LEAF;
   421   idx = 0;
   423   return Form::invalid_type;
   424 }
   426 // Return 'true' if this instruction matches an ideal 'Load?' node
   427 Form::DataType InstructForm::is_ideal_load() const {
   428   if( _matrule == NULL ) return Form::none;
   430   return  _matrule->is_ideal_load();
   431 }
   433 // Return 'true' if this instruction matches an ideal 'LoadKlass' node
   434 bool InstructForm::skip_antidep_check() const {
   435   if( _matrule == NULL ) return false;
   437   return  _matrule->skip_antidep_check();
   438 }
   440 // Return 'true' if this instruction matches an ideal 'Load?' node
   441 Form::DataType InstructForm::is_ideal_store() const {
   442   if( _matrule == NULL ) return Form::none;
   444   return  _matrule->is_ideal_store();
   445 }
   447 // Return 'true' if this instruction matches an ideal vector node
   448 bool InstructForm::is_vector() const {
   449   if( _matrule == NULL ) return false;
   451   return _matrule->is_vector();
   452 }
   455 // Return the input register that must match the output register
   456 // If this is not required, return 0
   457 uint InstructForm::two_address(FormDict &globals) {
   458   uint  matching_input = 0;
   459   if(_components.count() == 0) return 0;
   461   _components.reset();
   462   Component *comp = _components.iter();
   463   // Check if there is a DEF
   464   if( comp->isa(Component::DEF) ) {
   465     // Check that this is a register
   466     const char  *def_type = comp->_type;
   467     const Form  *form     = globals[def_type];
   468     OperandForm *op       = form->is_operand();
   469     if( op ) {
   470       if( op->constrained_reg_class() != NULL &&
   471           op->interface_type(globals) == Form::register_interface ) {
   472         // Remember the local name for equality test later
   473         const char *def_name = comp->_name;
   474         // Check if a component has the same name and is a USE
   475         do {
   476           if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
   477             return operand_position_format(def_name);
   478           }
   479         } while( (comp = _components.iter()) != NULL);
   480       }
   481     }
   482   }
   484   return 0;
   485 }
   488 // when chaining a constant to an instruction, returns 'true' and sets opType
   489 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
   490   const char *dummy  = NULL;
   491   const char *dummy2 = NULL;
   492   return is_chain_of_constant(globals, dummy, dummy2);
   493 }
   494 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
   495                 const char * &opTypeParam) {
   496   const char *result = NULL;
   498   return is_chain_of_constant(globals, opTypeParam, result);
   499 }
   501 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
   502                 const char * &opTypeParam, const char * &resultParam) {
   503   Form::DataType  data_type = Form::none;
   504   if ( ! _matrule)  return data_type;
   506   // !!!!!
   507   // The source of the chain rule is 'position = 1'
   508   uint         position = 1;
   509   const char  *result   = NULL;
   510   const char  *name     = NULL;
   511   const char  *opType   = NULL;
   512   // Here base_operand is looking for an ideal type to be returned (opType).
   513   if ( _matrule->is_chain_rule(globals)
   514        && _matrule->base_operand(position, globals, result, name, opType) ) {
   515     data_type = ideal_to_const_type(opType);
   517     // if it isn't an ideal constant type, just return
   518     if ( data_type == Form::none ) return data_type;
   520     // Ideal constant types also adjust the opType parameter.
   521     resultParam = result;
   522     opTypeParam = opType;
   523     return data_type;
   524   }
   526   return data_type;
   527 }
   529 // Check if a simple chain rule
   530 bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
   531   if( _matrule && _matrule->sets_result()
   532       && _matrule->_rChild->_lChild == NULL
   533       && globals[_matrule->_rChild->_opType]
   534       && globals[_matrule->_rChild->_opType]->is_opclass() ) {
   535     return true;
   536   }
   537   return false;
   538 }
   540 // check for structural rematerialization
   541 bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
   542   bool   rematerialize = false;
   544   Form::DataType data_type = is_chain_of_constant(globals);
   545   if( data_type != Form::none )
   546     rematerialize = true;
   548   // Constants
   549   if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) )
   550     rematerialize = true;
   552   // Pseudo-constants (values easily available to the runtime)
   553   if (is_empty_encoding() && is_tls_instruction())
   554     rematerialize = true;
   556   // 1-input, 1-output, such as copies or increments.
   557   if( _components.count() == 2 &&
   558       _components[0]->is(Component::DEF) &&
   559       _components[1]->isa(Component::USE) )
   560     rematerialize = true;
   562   // Check for an ideal 'Load?' and eliminate rematerialize option
   563   if ( is_ideal_load() != Form::none || // Ideal load?  Do not rematerialize
   564        is_ideal_copy() != Form::none || // Ideal copy?  Do not rematerialize
   565        is_expensive()  != Form::none) { // Expensive?   Do not rematerialize
   566     rematerialize = false;
   567   }
   569   // Always rematerialize the flags.  They are more expensive to save &
   570   // restore than to recompute (and possibly spill the compare's inputs).
   571   if( _components.count() >= 1 ) {
   572     Component *c = _components[0];
   573     const Form *form = globals[c->_type];
   574     OperandForm *opform = form->is_operand();
   575     if( opform ) {
   576       // Avoid the special stack_slots register classes
   577       const char *rc_name = opform->constrained_reg_class();
   578       if( rc_name ) {
   579         if( strcmp(rc_name,"stack_slots") ) {
   580           // Check for ideal_type of RegFlags
   581           const char *type = opform->ideal_type( globals, registers );
   582           if( (type != NULL) && !strcmp(type, "RegFlags") )
   583             rematerialize = true;
   584         } else
   585           rematerialize = false; // Do not rematerialize things target stk
   586       }
   587     }
   588   }
   590   return rematerialize;
   591 }
   593 // loads from memory, so must check for anti-dependence
   594 bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
   595   if ( skip_antidep_check() ) return false;
   597   // Machine independent loads must be checked for anti-dependences
   598   if( is_ideal_load() != Form::none )  return true;
   600   // !!!!! !!!!! !!!!!
   601   // TEMPORARY
   602   // if( is_simple_chain_rule(globals) )  return false;
   604   // String.(compareTo/equals/indexOf) and Arrays.equals use many memorys edges,
   605   // but writes none
   606   if( _matrule && _matrule->_rChild &&
   607       ( strcmp(_matrule->_rChild->_opType,"StrComp"    )==0 ||
   608         strcmp(_matrule->_rChild->_opType,"StrEquals"  )==0 ||
   609         strcmp(_matrule->_rChild->_opType,"StrIndexOf" )==0 ||
   610         strcmp(_matrule->_rChild->_opType,"AryEq"      )==0 ))
   611     return true;
   613   // Check if instruction has a USE of a memory operand class, but no defs
   614   bool USE_of_memory  = false;
   615   bool DEF_of_memory  = false;
   616   Component     *comp = NULL;
   617   ComponentList &components = (ComponentList &)_components;
   619   components.reset();
   620   while( (comp = components.iter()) != NULL ) {
   621     const Form  *form = globals[comp->_type];
   622     if( !form ) continue;
   623     OpClassForm *op   = form->is_opclass();
   624     if( !op ) continue;
   625     if( form->interface_type(globals) == Form::memory_interface ) {
   626       if( comp->isa(Component::USE) ) USE_of_memory = true;
   627       if( comp->isa(Component::DEF) ) {
   628         OperandForm *oper = form->is_operand();
   629         if( oper && oper->is_user_name_for_sReg() ) {
   630           // Stack slots are unaliased memory handled by allocator
   631           oper = oper;  // debug stopping point !!!!!
   632         } else {
   633           DEF_of_memory = true;
   634         }
   635       }
   636     }
   637   }
   638   return (USE_of_memory && !DEF_of_memory);
   639 }
   642 bool InstructForm::is_wide_memory_kill(FormDict &globals) const {
   643   if( _matrule == NULL ) return false;
   644   if( !_matrule->_opType ) return false;
   646   if( strcmp(_matrule->_opType,"MemBarRelease") == 0 ) return true;
   647   if( strcmp(_matrule->_opType,"MemBarAcquire") == 0 ) return true;
   648   if( strcmp(_matrule->_opType,"MemBarReleaseLock") == 0 ) return true;
   649   if( strcmp(_matrule->_opType,"MemBarAcquireLock") == 0 ) return true;
   650   if( strcmp(_matrule->_opType,"MemBarStoreStore") == 0 ) return true;
   651   if( strcmp(_matrule->_opType,"MemBarVolatile") == 0 ) return true;
   652   if( strcmp(_matrule->_opType,"StoreFence") == 0 ) return true;
   653   if( strcmp(_matrule->_opType,"LoadFence") == 0 ) return true;
   655   return false;
   656 }
   658 int InstructForm::memory_operand(FormDict &globals) const {
   659   // Machine independent loads must be checked for anti-dependences
   660   // Check if instruction has a USE of a memory operand class, or a def.
   661   int USE_of_memory  = 0;
   662   int DEF_of_memory  = 0;
   663   const char*    last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
   664   const char*    last_memory_USE = NULL;
   665   Component     *unique          = NULL;
   666   Component     *comp            = NULL;
   667   ComponentList &components      = (ComponentList &)_components;
   669   components.reset();
   670   while( (comp = components.iter()) != NULL ) {
   671     const Form  *form = globals[comp->_type];
   672     if( !form ) continue;
   673     OpClassForm *op   = form->is_opclass();
   674     if( !op ) continue;
   675     if( op->stack_slots_only(globals) )  continue;
   676     if( form->interface_type(globals) == Form::memory_interface ) {
   677       if( comp->isa(Component::DEF) ) {
   678         last_memory_DEF = comp->_name;
   679         DEF_of_memory++;
   680         unique = comp;
   681       } else if( comp->isa(Component::USE) ) {
   682         if( last_memory_DEF != NULL ) {
   683           assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
   684           last_memory_DEF = NULL;
   685         }
   686         // Handles same memory being used multiple times in the case of BMI1 instructions.
   687         if (last_memory_USE != NULL) {
   688           if (strcmp(comp->_name, last_memory_USE) != 0) {
   689             USE_of_memory++;
   690           }
   691         } else {
   692           USE_of_memory++;
   693         }
   694         last_memory_USE = comp->_name;
   696         if (DEF_of_memory == 0)  // defs take precedence
   697           unique = comp;
   698       } else {
   699         assert(last_memory_DEF == NULL, "unpaired memory DEF");
   700       }
   701     }
   702   }
   703   assert(last_memory_DEF == NULL, "unpaired memory DEF");
   704   assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
   705   USE_of_memory -= DEF_of_memory;   // treat paired DEF/USE as one occurrence
   706   if( (USE_of_memory + DEF_of_memory) > 0 ) {
   707     if( is_simple_chain_rule(globals) ) {
   708       //fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
   709       //((InstructForm*)this)->dump();
   710       // Preceding code prints nothing on sparc and these insns on intel:
   711       // leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
   712       // leaPIdxOff leaPIdxScale leaPIdxScaleOff
   713       return NO_MEMORY_OPERAND;
   714     }
   716     if( DEF_of_memory == 1 ) {
   717       assert(unique != NULL, "");
   718       if( USE_of_memory == 0 ) {
   719         // unique def, no uses
   720       } else {
   721         // // unique def, some uses
   722         // // must return bottom unless all uses match def
   723         // unique = NULL;
   724       }
   725     } else if( DEF_of_memory > 0 ) {
   726       // multiple defs, don't care about uses
   727       unique = NULL;
   728     } else if( USE_of_memory == 1) {
   729       // unique use, no defs
   730       assert(unique != NULL, "");
   731     } else if( USE_of_memory > 0 ) {
   732       // multiple uses, no defs
   733       unique = NULL;
   734     } else {
   735       assert(false, "bad case analysis");
   736     }
   737     // process the unique DEF or USE, if there is one
   738     if( unique == NULL ) {
   739       return MANY_MEMORY_OPERANDS;
   740     } else {
   741       int pos = components.operand_position(unique->_name);
   742       if( unique->isa(Component::DEF) ) {
   743         pos += 1;                // get corresponding USE from DEF
   744       }
   745       assert(pos >= 1, "I was just looking at it!");
   746       return pos;
   747     }
   748   }
   750   // missed the memory op??
   751   if( true ) {  // %%% should not be necessary
   752     if( is_ideal_store() != Form::none ) {
   753       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
   754       ((InstructForm*)this)->dump();
   755       // pretend it has multiple defs and uses
   756       return MANY_MEMORY_OPERANDS;
   757     }
   758     if( is_ideal_load()  != Form::none ) {
   759       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
   760       ((InstructForm*)this)->dump();
   761       // pretend it has multiple uses and no defs
   762       return MANY_MEMORY_OPERANDS;
   763     }
   764   }
   766   return NO_MEMORY_OPERAND;
   767 }
   770 // This instruction captures the machine-independent bottom_type
   771 // Expected use is for pointer vs oop determination for LoadP
   772 bool InstructForm::captures_bottom_type(FormDict &globals) const {
   773   if( _matrule && _matrule->_rChild &&
   774        (!strcmp(_matrule->_rChild->_opType,"CastPP")       ||  // new result type
   775         !strcmp(_matrule->_rChild->_opType,"CastX2P")      ||  // new result type
   776         !strcmp(_matrule->_rChild->_opType,"DecodeN")      ||
   777         !strcmp(_matrule->_rChild->_opType,"EncodeP")      ||
   778         !strcmp(_matrule->_rChild->_opType,"DecodeNKlass") ||
   779         !strcmp(_matrule->_rChild->_opType,"EncodePKlass") ||
   780         !strcmp(_matrule->_rChild->_opType,"LoadN")        ||
   781         !strcmp(_matrule->_rChild->_opType,"LoadNKlass")   ||
   782         !strcmp(_matrule->_rChild->_opType,"CreateEx")     ||  // type of exception
   783         !strcmp(_matrule->_rChild->_opType,"CheckCastPP")  ||
   784         !strcmp(_matrule->_rChild->_opType,"GetAndSetP")   ||
   785         !strcmp(_matrule->_rChild->_opType,"GetAndSetN")) )  return true;
   786   else if ( is_ideal_load() == Form::idealP )                return true;
   787   else if ( is_ideal_store() != Form::none  )                return true;
   789   if (needs_base_oop_edge(globals)) return true;
   791   if (is_vector()) return true;
   792   if (is_mach_constant()) return true;
   794   return  false;
   795 }
   798 // Access instr_cost attribute or return NULL.
   799 const char* InstructForm::cost() {
   800   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
   801     if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
   802       return cur->_val;
   803     }
   804   }
   805   return NULL;
   806 }
   808 // Return count of top-level operands.
   809 uint InstructForm::num_opnds() {
   810   int  num_opnds = _components.num_operands();
   812   // Need special handling for matching some ideal nodes
   813   // i.e. Matching a return node
   814   /*
   815   if( _matrule ) {
   816     if( strcmp(_matrule->_opType,"Return"   )==0 ||
   817         strcmp(_matrule->_opType,"Halt"     )==0 )
   818       return 3;
   819   }
   820     */
   821   return num_opnds;
   822 }
   824 const char* InstructForm::opnd_ident(int idx) {
   825   return _components.at(idx)->_name;
   826 }
   828 const char* InstructForm::unique_opnd_ident(uint idx) {
   829   uint i;
   830   for (i = 1; i < num_opnds(); ++i) {
   831     if (unique_opnds_idx(i) == idx) {
   832       break;
   833     }
   834   }
   835   return (_components.at(i) != NULL) ? _components.at(i)->_name : "";
   836 }
   838 // Return count of unmatched operands.
   839 uint InstructForm::num_post_match_opnds() {
   840   uint  num_post_match_opnds = _components.count();
   841   uint  num_match_opnds = _components.match_count();
   842   num_post_match_opnds = num_post_match_opnds - num_match_opnds;
   844   return num_post_match_opnds;
   845 }
   847 // Return the number of leaves below this complex operand
   848 uint InstructForm::num_consts(FormDict &globals) const {
   849   if ( ! _matrule) return 0;
   851   // This is a recursive invocation on all operands in the matchrule
   852   return _matrule->num_consts(globals);
   853 }
   855 // Constants in match rule with specified type
   856 uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
   857   if ( ! _matrule) return 0;
   859   // This is a recursive invocation on all operands in the matchrule
   860   return _matrule->num_consts(globals, type);
   861 }
   864 // Return the register class associated with 'leaf'.
   865 const char *InstructForm::out_reg_class(FormDict &globals) {
   866   assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");
   868   return NULL;
   869 }
   873 // Lookup the starting position of inputs we are interested in wrt. ideal nodes
   874 uint InstructForm::oper_input_base(FormDict &globals) {
   875   if( !_matrule ) return 1;     // Skip control for most nodes
   877   // Need special handling for matching some ideal nodes
   878   // i.e. Matching a return node
   879   if( strcmp(_matrule->_opType,"Return"    )==0 ||
   880       strcmp(_matrule->_opType,"Rethrow"   )==0 ||
   881       strcmp(_matrule->_opType,"TailCall"  )==0 ||
   882       strcmp(_matrule->_opType,"TailJump"  )==0 ||
   883       strcmp(_matrule->_opType,"SafePoint" )==0 ||
   884       strcmp(_matrule->_opType,"Halt"      )==0 )
   885     return AdlcVMDeps::Parms;   // Skip the machine-state edges
   887   if( _matrule->_rChild &&
   888       ( strcmp(_matrule->_rChild->_opType,"AryEq"     )==0 ||
   889         strcmp(_matrule->_rChild->_opType,"StrComp"   )==0 ||
   890         strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 ||
   891         strcmp(_matrule->_rChild->_opType,"StrIndexOf")==0 ||
   892         strcmp(_matrule->_rChild->_opType,"EncodeISOArray")==0)) {
   893         // String.(compareTo/equals/indexOf) and Arrays.equals
   894         // and sun.nio.cs.iso8859_1$Encoder.EncodeISOArray
   895         // take 1 control and 1 memory edges.
   896     return 2;
   897   }
   899   // Check for handling of 'Memory' input/edge in the ideal world.
   900   // The AD file writer is shielded from knowledge of these edges.
   901   int base = 1;                 // Skip control
   902   base += _matrule->needs_ideal_memory_edge(globals);
   904   // Also skip the base-oop value for uses of derived oops.
   905   // The AD file writer is shielded from knowledge of these edges.
   906   base += needs_base_oop_edge(globals);
   908   return base;
   909 }
   911 // This function determines the order of the MachOper in _opnds[]
   912 // by writing the operand names into the _components list.
   913 //
   914 // Implementation does not modify state of internal structures
   915 void InstructForm::build_components() {
   916   // Add top-level operands to the components
   917   if (_matrule)  _matrule->append_components(_localNames, _components);
   919   // Add parameters that "do not appear in match rule".
   920   bool has_temp = false;
   921   const char *name;
   922   const char *kill_name = NULL;
   923   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
   924     OpClassForm *opForm = _localNames[name]->is_opclass();
   925     assert(opForm != NULL, "sanity");
   927     Effect* e = NULL;
   928     {
   929       const Form* form = _effects[name];
   930       e = form ? form->is_effect() : NULL;
   931     }
   933     if (e != NULL) {
   934       has_temp |= e->is(Component::TEMP);
   936       // KILLs must be declared after any TEMPs because TEMPs are real
   937       // uses so their operand numbering must directly follow the real
   938       // inputs from the match rule.  Fixing the numbering seems
   939       // complex so simply enforce the restriction during parse.
   940       if (kill_name != NULL &&
   941           e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
   942         OpClassForm* kill = _localNames[kill_name]->is_opclass();
   943         assert(kill != NULL, "sanity");
   944         globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
   945                              _ident, kill->_ident, kill_name);
   946       } else if (e->isa(Component::KILL) && !e->isa(Component::USE)) {
   947         kill_name = name;
   948       }
   949     }
   951     const Component *component  = _components.search(name);
   952     if ( component  == NULL ) {
   953       if (e) {
   954         _components.insert(name, opForm->_ident, e->_use_def, false);
   955         component = _components.search(name);
   956         if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
   957           const Form *form = globalAD->globalNames()[component->_type];
   958           assert( form, "component type must be a defined form");
   959           OperandForm *op   = form->is_operand();
   960           if (op->_interface && op->_interface->is_RegInterface()) {
   961             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
   962                                  _ident, opForm->_ident, name);
   963           }
   964         }
   965       } else {
   966         // This would be a nice warning but it triggers in a few places in a benign way
   967         // if (_matrule != NULL && !expands()) {
   968         //   globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
   969         //                        _ident, opForm->_ident, name);
   970         // }
   971         _components.insert(name, opForm->_ident, Component::INVALID, false);
   972       }
   973     }
   974     else if (e) {
   975       // Component was found in the list
   976       // Check if there is a new effect that requires an extra component.
   977       // This happens when adding 'USE' to a component that is not yet one.
   978       if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
   979         if (component->isa(Component::USE) && _matrule) {
   980           const Form *form = globalAD->globalNames()[component->_type];
   981           assert( form, "component type must be a defined form");
   982           OperandForm *op   = form->is_operand();
   983           if (op->_interface && op->_interface->is_RegInterface()) {
   984             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
   985                                  _ident, opForm->_ident, name);
   986           }
   987         }
   988         _components.insert(name, opForm->_ident, e->_use_def, false);
   989       } else {
   990         Component  *comp = (Component*)component;
   991         comp->promote_use_def_info(e->_use_def);
   992       }
   993       // Component positions are zero based.
   994       int  pos  = _components.operand_position(name);
   995       assert( ! (component->isa(Component::DEF) && (pos >= 1)),
   996               "Component::DEF can only occur in the first position");
   997     }
   998   }
  1000   // Resolving the interactions between expand rules and TEMPs would
  1001   // be complex so simply disallow it.
  1002   if (_matrule == NULL && has_temp) {
  1003     globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
  1006   return;
  1009 // Return zero-based position in component list;  -1 if not in list.
  1010 int   InstructForm::operand_position(const char *name, int usedef) {
  1011   return unique_opnds_idx(_components.operand_position(name, usedef, this));
  1014 int   InstructForm::operand_position_format(const char *name) {
  1015   return unique_opnds_idx(_components.operand_position_format(name, this));
  1018 // Return zero-based position in component list; -1 if not in list.
  1019 int   InstructForm::label_position() {
  1020   return unique_opnds_idx(_components.label_position());
  1023 int   InstructForm::method_position() {
  1024   return unique_opnds_idx(_components.method_position());
  1027 // Return number of relocation entries needed for this instruction.
  1028 uint  InstructForm::reloc(FormDict &globals) {
  1029   uint reloc_entries  = 0;
  1030   // Check for "Call" nodes
  1031   if ( is_ideal_call() )      ++reloc_entries;
  1032   if ( is_ideal_return() )    ++reloc_entries;
  1033   if ( is_ideal_safepoint() ) ++reloc_entries;
  1036   // Check if operands MAYBE oop pointers, by checking for ConP elements
  1037   // Proceed through the leaves of the match-tree and check for ConPs
  1038   if ( _matrule != NULL ) {
  1039     uint         position = 0;
  1040     const char  *result   = NULL;
  1041     const char  *name     = NULL;
  1042     const char  *opType   = NULL;
  1043     while (_matrule->base_operand(position, globals, result, name, opType)) {
  1044       if ( strcmp(opType,"ConP") == 0 ) {
  1045 #ifdef SPARC
  1046         reloc_entries += 2; // 1 for sethi + 1 for setlo
  1047 #else
  1048         ++reloc_entries;
  1049 #endif
  1051       ++position;
  1055   // Above is only a conservative estimate
  1056   // because it did not check contents of operand classes.
  1057   // !!!!! !!!!!
  1058   // Add 1 to reloc info for each operand class in the component list.
  1059   Component  *comp;
  1060   _components.reset();
  1061   while ( (comp = _components.iter()) != NULL ) {
  1062     const Form        *form = globals[comp->_type];
  1063     assert( form, "Did not find component's type in global names");
  1064     const OpClassForm *opc  = form->is_opclass();
  1065     const OperandForm *oper = form->is_operand();
  1066     if ( opc && (oper == NULL) ) {
  1067       ++reloc_entries;
  1068     } else if ( oper ) {
  1069       // floats and doubles loaded out of method's constant pool require reloc info
  1070       Form::DataType type = oper->is_base_constant(globals);
  1071       if ( (type == Form::idealF) || (type == Form::idealD) ) {
  1072         ++reloc_entries;
  1077   // Float and Double constants may come from the CodeBuffer table
  1078   // and require relocatable addresses for access
  1079   // !!!!!
  1080   // Check for any component being an immediate float or double.
  1081   Form::DataType data_type = is_chain_of_constant(globals);
  1082   if( data_type==idealD || data_type==idealF ) {
  1083 #ifdef SPARC
  1084     // sparc required more relocation entries for floating constants
  1085     // (expires 9/98)
  1086     reloc_entries += 6;
  1087 #else
  1088     reloc_entries++;
  1089 #endif
  1092   return reloc_entries;
  1095 // Utility function defined in archDesc.cpp
  1096 extern bool is_def(int usedef);
  1098 // Return the result of reducing an instruction
  1099 const char *InstructForm::reduce_result() {
  1100   const char* result = "Universe";  // default
  1101   _components.reset();
  1102   Component *comp = _components.iter();
  1103   if (comp != NULL && comp->isa(Component::DEF)) {
  1104     result = comp->_type;
  1105     // Override this if the rule is a store operation:
  1106     if (_matrule && _matrule->_rChild &&
  1107         is_store_to_memory(_matrule->_rChild->_opType))
  1108       result = "Universe";
  1110   return result;
  1113 // Return the name of the operand on the right hand side of the binary match
  1114 // Return NULL if there is no right hand side
  1115 const char *InstructForm::reduce_right(FormDict &globals)  const {
  1116   if( _matrule == NULL ) return NULL;
  1117   return  _matrule->reduce_right(globals);
  1120 // Similar for left
  1121 const char *InstructForm::reduce_left(FormDict &globals)   const {
  1122   if( _matrule == NULL ) return NULL;
  1123   return  _matrule->reduce_left(globals);
  1127 // Base class for this instruction, MachNode except for calls
  1128 const char *InstructForm::mach_base_class(FormDict &globals)  const {
  1129   if( is_ideal_call() == Form::JAVA_STATIC ) {
  1130     return "MachCallStaticJavaNode";
  1132   else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
  1133     return "MachCallDynamicJavaNode";
  1135   else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
  1136     return "MachCallRuntimeNode";
  1138   else if( is_ideal_call() == Form::JAVA_LEAF ) {
  1139     return "MachCallLeafNode";
  1141   else if (is_ideal_return()) {
  1142     return "MachReturnNode";
  1144   else if (is_ideal_halt()) {
  1145     return "MachHaltNode";
  1147   else if (is_ideal_safepoint()) {
  1148     return "MachSafePointNode";
  1150   else if (is_ideal_if()) {
  1151     return "MachIfNode";
  1153   else if (is_ideal_goto()) {
  1154     return "MachGotoNode";
  1156   else if (is_ideal_fastlock()) {
  1157     return "MachFastLockNode";
  1159   else if (is_ideal_nop()) {
  1160     return "MachNopNode";
  1162   else if (is_mach_constant()) {
  1163     return "MachConstantNode";
  1165   else if (captures_bottom_type(globals)) {
  1166     return "MachTypeNode";
  1167   } else {
  1168     return "MachNode";
  1170   assert( false, "ShouldNotReachHere()");
  1171   return NULL;
  1174 // Compare the instruction predicates for textual equality
  1175 bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
  1176   const Predicate *pred1  = instr1->_predicate;
  1177   const Predicate *pred2  = instr2->_predicate;
  1178   if( pred1 == NULL && pred2 == NULL ) {
  1179     // no predicates means they are identical
  1180     return true;
  1182   if( pred1 != NULL && pred2 != NULL ) {
  1183     // compare the predicates
  1184     if (ADLParser::equivalent_expressions(pred1->_pred, pred2->_pred)) {
  1185       return true;
  1189   return false;
  1192 // Check if this instruction can cisc-spill to 'alternate'
  1193 bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
  1194   assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
  1195   // Do not replace if a cisc-version has been found.
  1196   if( cisc_spill_operand() != Not_cisc_spillable ) return false;
  1198   int         cisc_spill_operand = Maybe_cisc_spillable;
  1199   char       *result             = NULL;
  1200   char       *result2            = NULL;
  1201   const char *op_name            = NULL;
  1202   const char *reg_type           = NULL;
  1203   FormDict   &globals            = AD.globalNames();
  1204   cisc_spill_operand = _matrule->matchrule_cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
  1205   if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
  1206     cisc_spill_operand = operand_position(op_name, Component::USE);
  1207     int def_oper  = operand_position(op_name, Component::DEF);
  1208     if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
  1209       // Do not support cisc-spilling for destination operands and
  1210       // make sure they have the same number of operands.
  1211       _cisc_spill_alternate = instr;
  1212       instr->set_cisc_alternate(true);
  1213       if( AD._cisc_spill_debug ) {
  1214         fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
  1215         fprintf(stderr, "   using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
  1217       // Record that a stack-version of the reg_mask is needed
  1218       // !!!!!
  1219       OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
  1220       assert( oper != NULL, "cisc-spilling non operand");
  1221       const char *reg_class_name = oper->constrained_reg_class();
  1222       AD.set_stack_or_reg(reg_class_name);
  1223       const char *reg_mask_name  = AD.reg_mask(*oper);
  1224       set_cisc_reg_mask_name(reg_mask_name);
  1225       const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
  1226     } else {
  1227       cisc_spill_operand = Not_cisc_spillable;
  1229   } else {
  1230     cisc_spill_operand = Not_cisc_spillable;
  1233   set_cisc_spill_operand(cisc_spill_operand);
  1234   return (cisc_spill_operand != Not_cisc_spillable);
  1237 // Check to see if this instruction can be replaced with the short branch
  1238 // instruction `short-branch'
  1239 bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
  1240   if (_matrule != NULL &&
  1241       this != short_branch &&   // Don't match myself
  1242       !is_short_branch() &&     // Don't match another short branch variant
  1243       reduce_result() != NULL &&
  1244       strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
  1245       _matrule->equivalent(AD.globalNames(), short_branch->_matrule)) {
  1246     // The instructions are equivalent.
  1248     // Now verify that both instructions have the same parameters and
  1249     // the same effects. Both branch forms should have the same inputs
  1250     // and resulting projections to correctly replace a long branch node
  1251     // with corresponding short branch node during code generation.
  1253     bool different = false;
  1254     if (short_branch->_components.count() != _components.count()) {
  1255        different = true;
  1256     } else if (_components.count() > 0) {
  1257       short_branch->_components.reset();
  1258       _components.reset();
  1259       Component *comp;
  1260       while ((comp = _components.iter()) != NULL) {
  1261         Component *short_comp = short_branch->_components.iter();
  1262         if (short_comp == NULL ||
  1263             short_comp->_type != comp->_type ||
  1264             short_comp->_usedef != comp->_usedef) {
  1265           different = true;
  1266           break;
  1269       if (short_branch->_components.iter() != NULL)
  1270         different = true;
  1272     if (different) {
  1273       globalAD->syntax_err(short_branch->_linenum, "Instruction %s and its short form %s have different parameters\n", _ident, short_branch->_ident);
  1275     if (AD._adl_debug > 1 || AD._short_branch_debug) {
  1276       fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
  1278     _short_branch_form = short_branch;
  1279     return true;
  1281   return false;
  1285 // --------------------------- FILE *output_routines
  1286 //
  1287 // Generate the format call for the replacement variable
  1288 void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
  1289   // Handle special constant table variables.
  1290   if (strcmp(rep_var, "constanttablebase") == 0) {
  1291     fprintf(fp, "char reg[128];  ra->dump_register(in(mach_constant_base_node_input()), reg);\n");
  1292     fprintf(fp, "    st->print(\"%%s\", reg);\n");
  1293     return;
  1295   if (strcmp(rep_var, "constantoffset") == 0) {
  1296     fprintf(fp, "st->print(\"#%%d\", constant_offset_unchecked());\n");
  1297     return;
  1299   if (strcmp(rep_var, "constantaddress") == 0) {
  1300     fprintf(fp, "st->print(\"constant table base + #%%d\", constant_offset_unchecked());\n");
  1301     return;
  1304   // Find replacement variable's type
  1305   const Form *form   = _localNames[rep_var];
  1306   if (form == NULL) {
  1307     globalAD->syntax_err(_linenum, "Unknown replacement variable %s in format statement of %s.",
  1308                          rep_var, _ident);
  1309     return;
  1311   OpClassForm *opc   = form->is_opclass();
  1312   assert( opc, "replacement variable was not found in local names");
  1313   // Lookup the index position of the replacement variable
  1314   int idx  = operand_position_format(rep_var);
  1315   if ( idx == -1 ) {
  1316     globalAD->syntax_err(_linenum, "Could not find replacement variable %s in format statement of %s.\n",
  1317                          rep_var, _ident);
  1318     assert(strcmp(opc->_ident, "label") == 0, "Unimplemented");
  1319     return;
  1322   if (is_noninput_operand(idx)) {
  1323     // This component isn't in the input array.  Print out the static
  1324     // name of the register.
  1325     OperandForm* oper = form->is_operand();
  1326     if (oper != NULL && oper->is_bound_register()) {
  1327       const RegDef* first = oper->get_RegClass()->find_first_elem();
  1328       fprintf(fp, "    st->print_raw(\"%s\");\n", first->_regname);
  1329     } else {
  1330       globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
  1332   } else {
  1333     // Output the format call for this operand
  1334     fprintf(fp,"opnd_array(%d)->",idx);
  1335     if (idx == 0)
  1336       fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
  1337     else
  1338       fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
  1342 // Seach through operands to determine parameters unique positions.
  1343 void InstructForm::set_unique_opnds() {
  1344   uint* uniq_idx = NULL;
  1345   uint  nopnds = num_opnds();
  1346   uint  num_uniq = nopnds;
  1347   uint i;
  1348   _uniq_idx_length = 0;
  1349   if (nopnds > 0) {
  1350     // Allocate index array.  Worst case we're mapping from each
  1351     // component back to an index and any DEF always goes at 0 so the
  1352     // length of the array has to be the number of components + 1.
  1353     _uniq_idx_length = _components.count() + 1;
  1354     uniq_idx = (uint*) malloc(sizeof(uint) * _uniq_idx_length);
  1355     for (i = 0; i < _uniq_idx_length; i++) {
  1356       uniq_idx[i] = i;
  1359   // Do it only if there is a match rule and no expand rule.  With an
  1360   // expand rule it is done by creating new mach node in Expand()
  1361   // method.
  1362   if (nopnds > 0 && _matrule != NULL && _exprule == NULL) {
  1363     const char *name;
  1364     uint count;
  1365     bool has_dupl_use = false;
  1367     _parameters.reset();
  1368     while ((name = _parameters.iter()) != NULL) {
  1369       count = 0;
  1370       uint position = 0;
  1371       uint uniq_position = 0;
  1372       _components.reset();
  1373       Component *comp = NULL;
  1374       if (sets_result()) {
  1375         comp = _components.iter();
  1376         position++;
  1378       // The next code is copied from the method operand_position().
  1379       for (; (comp = _components.iter()) != NULL; ++position) {
  1380         // When the first component is not a DEF,
  1381         // leave space for the result operand!
  1382         if (position==0 && (!comp->isa(Component::DEF))) {
  1383           ++position;
  1385         if (strcmp(name, comp->_name) == 0) {
  1386           if (++count > 1) {
  1387             assert(position < _uniq_idx_length, "out of bounds");
  1388             uniq_idx[position] = uniq_position;
  1389             has_dupl_use = true;
  1390           } else {
  1391             uniq_position = position;
  1394         if (comp->isa(Component::DEF) && comp->isa(Component::USE)) {
  1395           ++position;
  1396           if (position != 1)
  1397             --position;   // only use two slots for the 1st USE_DEF
  1401     if (has_dupl_use) {
  1402       for (i = 1; i < nopnds; i++) {
  1403         if (i != uniq_idx[i]) {
  1404           break;
  1407       uint j = i;
  1408       for (; i < nopnds; i++) {
  1409         if (i == uniq_idx[i]) {
  1410           uniq_idx[i] = j++;
  1413       num_uniq = j;
  1416   _uniq_idx = uniq_idx;
  1417   _num_uniq = num_uniq;
  1420 // Generate index values needed for determining the operand position
  1421 void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
  1422   uint  idx = 0;                  // position of operand in match rule
  1423   int   cur_num_opnds = num_opnds();
  1425   // Compute the index into vector of operand pointers:
  1426   // idx0=0 is used to indicate that info comes from this same node, not from input edge.
  1427   // idx1 starts at oper_input_base()
  1428   if ( cur_num_opnds >= 1 ) {
  1429     fprintf(fp,"  // Start at oper_input_base() and count operands\n");
  1430     fprintf(fp,"  unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
  1431     fprintf(fp,"  unsigned %sidx1 = %d;", prefix, oper_input_base(globals));
  1432     fprintf(fp," \t// %s\n", unique_opnd_ident(1));
  1434     // Generate starting points for other unique operands if they exist
  1435     for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
  1436       if( *receiver == 0 ) {
  1437         fprintf(fp,"  unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();",
  1438                 prefix, idx, prefix, idx-1, idx-1 );
  1439       } else {
  1440         fprintf(fp,"  unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();",
  1441                 prefix, idx, prefix, idx-1, receiver, idx-1 );
  1443       fprintf(fp," \t// %s\n", unique_opnd_ident(idx));
  1446   if( *receiver != 0 ) {
  1447     // This value is used by generate_peepreplace when copying a node.
  1448     // Don't emit it in other cases since it can hide bugs with the
  1449     // use invalid idx's.
  1450     fprintf(fp,"  unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
  1455 // ---------------------------
  1456 bool InstructForm::verify() {
  1457   // !!!!! !!!!!
  1458   // Check that a "label" operand occurs last in the operand list, if present
  1459   return true;
  1462 void InstructForm::dump() {
  1463   output(stderr);
  1466 void InstructForm::output(FILE *fp) {
  1467   fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
  1468   if (_matrule)   _matrule->output(fp);
  1469   if (_insencode) _insencode->output(fp);
  1470   if (_constant)  _constant->output(fp);
  1471   if (_opcode)    _opcode->output(fp);
  1472   if (_attribs)   _attribs->output(fp);
  1473   if (_predicate) _predicate->output(fp);
  1474   if (_effects.Size()) {
  1475     fprintf(fp,"Effects\n");
  1476     _effects.dump();
  1478   if (_exprule)   _exprule->output(fp);
  1479   if (_rewrule)   _rewrule->output(fp);
  1480   if (_format)    _format->output(fp);
  1481   if (_peephole)  _peephole->output(fp);
  1484 void MachNodeForm::dump() {
  1485   output(stderr);
  1488 void MachNodeForm::output(FILE *fp) {
  1489   fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
  1492 //------------------------------build_predicate--------------------------------
  1493 // Build instruction predicates.  If the user uses the same operand name
  1494 // twice, we need to check that the operands are pointer-eequivalent in
  1495 // the DFA during the labeling process.
  1496 Predicate *InstructForm::build_predicate() {
  1497   char buf[1024], *s=buf;
  1498   Dict names(cmpstr,hashstr,Form::arena);       // Map Names to counts
  1500   MatchNode *mnode =
  1501     strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
  1502   mnode->count_instr_names(names);
  1504   uint first = 1;
  1505   // Start with the predicate supplied in the .ad file.
  1506   if( _predicate ) {
  1507     if( first ) first=0;
  1508     strcpy(s,"("); s += strlen(s);
  1509     strcpy(s,_predicate->_pred);
  1510     s += strlen(s);
  1511     strcpy(s,")"); s += strlen(s);
  1513   for( DictI i(&names); i.test(); ++i ) {
  1514     uintptr_t cnt = (uintptr_t)i._value;
  1515     if( cnt > 1 ) {             // Need a predicate at all?
  1516       assert( cnt == 2, "Unimplemented" );
  1517       // Handle many pairs
  1518       if( first ) first=0;
  1519       else {                    // All tests must pass, so use '&&'
  1520         strcpy(s," && ");
  1521         s += strlen(s);
  1523       // Add predicate to working buffer
  1524       sprintf(s,"/*%s*/(",(char*)i._key);
  1525       s += strlen(s);
  1526       mnode->build_instr_pred(s,(char*)i._key,0);
  1527       s += strlen(s);
  1528       strcpy(s," == "); s += strlen(s);
  1529       mnode->build_instr_pred(s,(char*)i._key,1);
  1530       s += strlen(s);
  1531       strcpy(s,")"); s += strlen(s);
  1534   if( s == buf ) s = NULL;
  1535   else {
  1536     assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
  1537     s = strdup(buf);
  1539   return new Predicate(s);
  1542 //------------------------------EncodeForm-------------------------------------
  1543 // Constructor
  1544 EncodeForm::EncodeForm()
  1545   : _encClass(cmpstr,hashstr, Form::arena) {
  1547 EncodeForm::~EncodeForm() {
  1550 // record a new register class
  1551 EncClass *EncodeForm::add_EncClass(const char *className) {
  1552   EncClass *encClass = new EncClass(className);
  1553   _eclasses.addName(className);
  1554   _encClass.Insert(className,encClass);
  1555   return encClass;
  1558 // Lookup the function body for an encoding class
  1559 EncClass  *EncodeForm::encClass(const char *className) {
  1560   assert( className != NULL, "Must provide a defined encoding name");
  1562   EncClass *encClass = (EncClass*)_encClass[className];
  1563   return encClass;
  1566 // Lookup the function body for an encoding class
  1567 const char *EncodeForm::encClassBody(const char *className) {
  1568   if( className == NULL ) return NULL;
  1570   EncClass *encClass = (EncClass*)_encClass[className];
  1571   assert( encClass != NULL, "Encode Class is missing.");
  1572   encClass->_code.reset();
  1573   const char *code = (const char*)encClass->_code.iter();
  1574   assert( code != NULL, "Found an empty encode class body.");
  1576   return code;
  1579 // Lookup the function body for an encoding class
  1580 const char *EncodeForm::encClassPrototype(const char *className) {
  1581   assert( className != NULL, "Encode class name must be non NULL.");
  1583   return className;
  1586 void EncodeForm::dump() {                  // Debug printer
  1587   output(stderr);
  1590 void EncodeForm::output(FILE *fp) {          // Write info to output files
  1591   const char *name;
  1592   fprintf(fp,"\n");
  1593   fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
  1594   for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
  1595     ((EncClass*)_encClass[name])->output(fp);
  1597   fprintf(fp,"-------------------- end  EncodeForm --------------------\n");
  1599 //------------------------------EncClass---------------------------------------
  1600 EncClass::EncClass(const char *name)
  1601   : _localNames(cmpstr,hashstr, Form::arena), _name(name) {
  1603 EncClass::~EncClass() {
  1606 // Add a parameter <type,name> pair
  1607 void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
  1608   _parameter_type.addName( parameter_type );
  1609   _parameter_name.addName( parameter_name );
  1612 // Verify operand types in parameter list
  1613 bool EncClass::check_parameter_types(FormDict &globals) {
  1614   // !!!!!
  1615   return false;
  1618 // Add the decomposed "code" sections of an encoding's code-block
  1619 void EncClass::add_code(const char *code) {
  1620   _code.addName(code);
  1623 // Add the decomposed "replacement variables" of an encoding's code-block
  1624 void EncClass::add_rep_var(char *replacement_var) {
  1625   _code.addName(NameList::_signal);
  1626   _rep_vars.addName(replacement_var);
  1629 // Lookup the function body for an encoding class
  1630 int EncClass::rep_var_index(const char *rep_var) {
  1631   uint        position = 0;
  1632   const char *name     = NULL;
  1634   _parameter_name.reset();
  1635   while ( (name = _parameter_name.iter()) != NULL ) {
  1636     if ( strcmp(rep_var,name) == 0 ) return position;
  1637     ++position;
  1640   return -1;
  1643 // Check after parsing
  1644 bool EncClass::verify() {
  1645   // 1!!!!
  1646   // Check that each replacement variable, '$name' in architecture description
  1647   // is actually a local variable for this encode class, or a reserved name
  1648   // "primary, secondary, tertiary"
  1649   return true;
  1652 void EncClass::dump() {
  1653   output(stderr);
  1656 // Write info to output files
  1657 void EncClass::output(FILE *fp) {
  1658   fprintf(fp,"EncClass: %s", (_name ? _name : ""));
  1660   // Output the parameter list
  1661   _parameter_type.reset();
  1662   _parameter_name.reset();
  1663   const char *type = _parameter_type.iter();
  1664   const char *name = _parameter_name.iter();
  1665   fprintf(fp, " ( ");
  1666   for ( ; (type != NULL) && (name != NULL);
  1667         (type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
  1668     fprintf(fp, " %s %s,", type, name);
  1670   fprintf(fp, " ) ");
  1672   // Output the code block
  1673   _code.reset();
  1674   _rep_vars.reset();
  1675   const char *code;
  1676   while ( (code = _code.iter()) != NULL ) {
  1677     if ( _code.is_signal(code) ) {
  1678       // A replacement variable
  1679       const char *rep_var = _rep_vars.iter();
  1680       fprintf(fp,"($%s)", rep_var);
  1681     } else {
  1682       // A section of code
  1683       fprintf(fp,"%s", code);
  1689 //------------------------------Opcode-----------------------------------------
  1690 Opcode::Opcode(char *primary, char *secondary, char *tertiary)
  1691   : _primary(primary), _secondary(secondary), _tertiary(tertiary) {
  1694 Opcode::~Opcode() {
  1697 Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
  1698   if( strcmp(param,"primary") == 0 ) {
  1699     return Opcode::PRIMARY;
  1701   else if( strcmp(param,"secondary") == 0 ) {
  1702     return Opcode::SECONDARY;
  1704   else if( strcmp(param,"tertiary") == 0 ) {
  1705     return Opcode::TERTIARY;
  1707   return Opcode::NOT_AN_OPCODE;
  1710 bool Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
  1711   // Default values previously provided by MachNode::primary()...
  1712   const char *description = NULL;
  1713   const char *value       = NULL;
  1714   // Check if user provided any opcode definitions
  1715   if( this != NULL ) {
  1716     // Update 'value' if user provided a definition in the instruction
  1717     switch (desired_opcode) {
  1718     case PRIMARY:
  1719       description = "primary()";
  1720       if( _primary   != NULL)  { value = _primary;     }
  1721       break;
  1722     case SECONDARY:
  1723       description = "secondary()";
  1724       if( _secondary != NULL ) { value = _secondary;   }
  1725       break;
  1726     case TERTIARY:
  1727       description = "tertiary()";
  1728       if( _tertiary  != NULL ) { value = _tertiary;    }
  1729       break;
  1730     default:
  1731       assert( false, "ShouldNotReachHere();");
  1732       break;
  1735   if (value != NULL) {
  1736     fprintf(fp, "(%s /*%s*/)", value, description);
  1738   return value != NULL;
  1741 void Opcode::dump() {
  1742   output(stderr);
  1745 // Write info to output files
  1746 void Opcode::output(FILE *fp) {
  1747   if (_primary   != NULL) fprintf(fp,"Primary   opcode: %s\n", _primary);
  1748   if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
  1749   if (_tertiary  != NULL) fprintf(fp,"Tertiary  opcode: %s\n", _tertiary);
  1752 //------------------------------InsEncode--------------------------------------
  1753 InsEncode::InsEncode() {
  1755 InsEncode::~InsEncode() {
  1758 // Add "encode class name" and its parameters
  1759 NameAndList *InsEncode::add_encode(char *encoding) {
  1760   assert( encoding != NULL, "Must provide name for encoding");
  1762   // add_parameter(NameList::_signal);
  1763   NameAndList *encode = new NameAndList(encoding);
  1764   _encoding.addName((char*)encode);
  1766   return encode;
  1769 // Access the list of encodings
  1770 void InsEncode::reset() {
  1771   _encoding.reset();
  1772   // _parameter.reset();
  1774 const char* InsEncode::encode_class_iter() {
  1775   NameAndList  *encode_class = (NameAndList*)_encoding.iter();
  1776   return  ( encode_class != NULL ? encode_class->name() : NULL );
  1778 // Obtain parameter name from zero based index
  1779 const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
  1780   NameAndList *params = (NameAndList*)_encoding.current();
  1781   assert( params != NULL, "Internal Error");
  1782   const char *param = (*params)[param_no];
  1784   // Remove '$' if parser placed it there.
  1785   return ( param != NULL && *param == '$') ? (param+1) : param;
  1788 void InsEncode::dump() {
  1789   output(stderr);
  1792 // Write info to output files
  1793 void InsEncode::output(FILE *fp) {
  1794   NameAndList *encoding  = NULL;
  1795   const char  *parameter = NULL;
  1797   fprintf(fp,"InsEncode: ");
  1798   _encoding.reset();
  1800   while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
  1801     // Output the encoding being used
  1802     fprintf(fp,"%s(", encoding->name() );
  1804     // Output its parameter list, if any
  1805     bool first_param = true;
  1806     encoding->reset();
  1807     while (  (parameter = encoding->iter()) != 0 ) {
  1808       // Output the ',' between parameters
  1809       if ( ! first_param )  fprintf(fp,", ");
  1810       first_param = false;
  1811       // Output the parameter
  1812       fprintf(fp,"%s", parameter);
  1813     } // done with parameters
  1814     fprintf(fp,")  ");
  1815   } // done with encodings
  1817   fprintf(fp,"\n");
  1820 //------------------------------Effect-----------------------------------------
  1821 static int effect_lookup(const char *name) {
  1822   if(!strcmp(name, "USE")) return Component::USE;
  1823   if(!strcmp(name, "DEF")) return Component::DEF;
  1824   if(!strcmp(name, "USE_DEF")) return Component::USE_DEF;
  1825   if(!strcmp(name, "KILL")) return Component::KILL;
  1826   if(!strcmp(name, "USE_KILL")) return Component::USE_KILL;
  1827   if(!strcmp(name, "TEMP")) return Component::TEMP;
  1828   if(!strcmp(name, "INVALID")) return Component::INVALID;
  1829   if(!strcmp(name, "CALL")) return Component::CALL;
  1830   assert( false,"Invalid effect name specified\n");
  1831   return Component::INVALID;
  1834 const char *Component::getUsedefName() {
  1835   switch (_usedef) {
  1836     case Component::INVALID:  return "INVALID";  break;
  1837     case Component::USE:      return "USE";      break;
  1838     case Component::USE_DEF:  return "USE_DEF";  break;
  1839     case Component::USE_KILL: return "USE_KILL"; break;
  1840     case Component::KILL:     return "KILL";     break;
  1841     case Component::TEMP:     return "TEMP";     break;
  1842     case Component::DEF:      return "DEF";      break;
  1843     case Component::CALL:     return "CALL";     break;
  1844     default: assert(false, "unknown effect");
  1846   return "Undefined Use/Def info";
  1849 Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
  1850   _ftype = Form::EFF;
  1853 Effect::~Effect() {
  1856 // Dynamic type check
  1857 Effect *Effect::is_effect() const {
  1858   return (Effect*)this;
  1862 // True if this component is equal to the parameter.
  1863 bool Effect::is(int use_def_kill_enum) const {
  1864   return (_use_def == use_def_kill_enum ? true : false);
  1866 // True if this component is used/def'd/kill'd as the parameter suggests.
  1867 bool Effect::isa(int use_def_kill_enum) const {
  1868   return (_use_def & use_def_kill_enum) == use_def_kill_enum;
  1871 void Effect::dump() {
  1872   output(stderr);
  1875 void Effect::output(FILE *fp) {          // Write info to output files
  1876   fprintf(fp,"Effect: %s\n", (_name?_name:""));
  1879 //------------------------------ExpandRule-------------------------------------
  1880 ExpandRule::ExpandRule() : _expand_instrs(),
  1881                            _newopconst(cmpstr, hashstr, Form::arena) {
  1882   _ftype = Form::EXP;
  1885 ExpandRule::~ExpandRule() {                  // Destructor
  1888 void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
  1889   _expand_instrs.addName((char*)instruction_name_and_operand_list);
  1892 void ExpandRule::reset_instructions() {
  1893   _expand_instrs.reset();
  1896 NameAndList* ExpandRule::iter_instructions() {
  1897   return (NameAndList*)_expand_instrs.iter();
  1901 void ExpandRule::dump() {
  1902   output(stderr);
  1905 void ExpandRule::output(FILE *fp) {         // Write info to output files
  1906   NameAndList *expand_instr = NULL;
  1907   const char *opid = NULL;
  1909   fprintf(fp,"\nExpand Rule:\n");
  1911   // Iterate over the instructions 'node' expands into
  1912   for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
  1913     fprintf(fp,"%s(", expand_instr->name());
  1915     // iterate over the operand list
  1916     for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
  1917       fprintf(fp,"%s ", opid);
  1919     fprintf(fp,");\n");
  1923 //------------------------------RewriteRule------------------------------------
  1924 RewriteRule::RewriteRule(char* params, char* block)
  1925   : _tempParams(params), _tempBlock(block) { };  // Constructor
  1926 RewriteRule::~RewriteRule() {                 // Destructor
  1929 void RewriteRule::dump() {
  1930   output(stderr);
  1933 void RewriteRule::output(FILE *fp) {         // Write info to output files
  1934   fprintf(fp,"\nRewrite Rule:\n%s\n%s\n",
  1935           (_tempParams?_tempParams:""),
  1936           (_tempBlock?_tempBlock:""));
  1940 //==============================MachNodes======================================
  1941 //------------------------------MachNodeForm-----------------------------------
  1942 MachNodeForm::MachNodeForm(char *id)
  1943   : _ident(id) {
  1946 MachNodeForm::~MachNodeForm() {
  1949 MachNodeForm *MachNodeForm::is_machnode() const {
  1950   return (MachNodeForm*)this;
  1953 //==============================Operand Classes================================
  1954 //------------------------------OpClassForm------------------------------------
  1955 OpClassForm::OpClassForm(const char* id) : _ident(id) {
  1956   _ftype = Form::OPCLASS;
  1959 OpClassForm::~OpClassForm() {
  1962 bool OpClassForm::ideal_only() const { return 0; }
  1964 OpClassForm *OpClassForm::is_opclass() const {
  1965   return (OpClassForm*)this;
  1968 Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
  1969   if( _oplst.count() == 0 ) return Form::no_interface;
  1971   // Check that my operands have the same interface type
  1972   Form::InterfaceType  interface;
  1973   bool  first = true;
  1974   NameList &op_list = (NameList &)_oplst;
  1975   op_list.reset();
  1976   const char *op_name;
  1977   while( (op_name = op_list.iter()) != NULL ) {
  1978     const Form  *form    = globals[op_name];
  1979     OperandForm *operand = form->is_operand();
  1980     assert( operand, "Entry in operand class that is not an operand");
  1981     if( first ) {
  1982       first     = false;
  1983       interface = operand->interface_type(globals);
  1984     } else {
  1985       interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
  1988   return interface;
  1991 bool OpClassForm::stack_slots_only(FormDict &globals) const {
  1992   if( _oplst.count() == 0 ) return false;  // how?
  1994   NameList &op_list = (NameList &)_oplst;
  1995   op_list.reset();
  1996   const char *op_name;
  1997   while( (op_name = op_list.iter()) != NULL ) {
  1998     const Form  *form    = globals[op_name];
  1999     OperandForm *operand = form->is_operand();
  2000     assert( operand, "Entry in operand class that is not an operand");
  2001     if( !operand->stack_slots_only(globals) )  return false;
  2003   return true;
  2007 void OpClassForm::dump() {
  2008   output(stderr);
  2011 void OpClassForm::output(FILE *fp) {
  2012   const char *name;
  2013   fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
  2014   fprintf(fp,"\nCount = %d\n", _oplst.count());
  2015   for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
  2016     fprintf(fp,"%s, ",name);
  2018   fprintf(fp,"\n");
  2022 //==============================Operands=======================================
  2023 //------------------------------OperandForm------------------------------------
  2024 OperandForm::OperandForm(const char* id)
  2025   : OpClassForm(id), _ideal_only(false),
  2026     _localNames(cmpstr, hashstr, Form::arena) {
  2027       _ftype = Form::OPER;
  2029       _matrule   = NULL;
  2030       _interface = NULL;
  2031       _attribs   = NULL;
  2032       _predicate = NULL;
  2033       _constraint= NULL;
  2034       _construct = NULL;
  2035       _format    = NULL;
  2037 OperandForm::OperandForm(const char* id, bool ideal_only)
  2038   : OpClassForm(id), _ideal_only(ideal_only),
  2039     _localNames(cmpstr, hashstr, Form::arena) {
  2040       _ftype = Form::OPER;
  2042       _matrule   = NULL;
  2043       _interface = NULL;
  2044       _attribs   = NULL;
  2045       _predicate = NULL;
  2046       _constraint= NULL;
  2047       _construct = NULL;
  2048       _format    = NULL;
  2050 OperandForm::~OperandForm() {
  2054 OperandForm *OperandForm::is_operand() const {
  2055   return (OperandForm*)this;
  2058 bool OperandForm::ideal_only() const {
  2059   return _ideal_only;
  2062 Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
  2063   if( _interface == NULL )  return Form::no_interface;
  2065   return _interface->interface_type(globals);
  2069 bool OperandForm::stack_slots_only(FormDict &globals) const {
  2070   if( _constraint == NULL )  return false;
  2071   return _constraint->stack_slots_only();
  2075 // Access op_cost attribute or return NULL.
  2076 const char* OperandForm::cost() {
  2077   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
  2078     if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
  2079       return cur->_val;
  2082   return NULL;
  2085 // Return the number of leaves below this complex operand
  2086 uint OperandForm::num_leaves() const {
  2087   if ( ! _matrule) return 0;
  2089   int num_leaves = _matrule->_numleaves;
  2090   return num_leaves;
  2093 // Return the number of constants contained within this complex operand
  2094 uint OperandForm::num_consts(FormDict &globals) const {
  2095   if ( ! _matrule) return 0;
  2097   // This is a recursive invocation on all operands in the matchrule
  2098   return _matrule->num_consts(globals);
  2101 // Return the number of constants in match rule with specified type
  2102 uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
  2103   if ( ! _matrule) return 0;
  2105   // This is a recursive invocation on all operands in the matchrule
  2106   return _matrule->num_consts(globals, type);
  2109 // Return the number of pointer constants contained within this complex operand
  2110 uint OperandForm::num_const_ptrs(FormDict &globals) const {
  2111   if ( ! _matrule) return 0;
  2113   // This is a recursive invocation on all operands in the matchrule
  2114   return _matrule->num_const_ptrs(globals);
  2117 uint OperandForm::num_edges(FormDict &globals) const {
  2118   uint edges  = 0;
  2119   uint leaves = num_leaves();
  2120   uint consts = num_consts(globals);
  2122   // If we are matching a constant directly, there are no leaves.
  2123   edges = ( leaves > consts ) ? leaves - consts : 0;
  2125   // !!!!!
  2126   // Special case operands that do not have a corresponding ideal node.
  2127   if( (edges == 0) && (consts == 0) ) {
  2128     if( constrained_reg_class() != NULL ) {
  2129       edges = 1;
  2130     } else {
  2131       if( _matrule
  2132           && (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
  2133         const Form *form = globals[_matrule->_opType];
  2134         OperandForm *oper = form ? form->is_operand() : NULL;
  2135         if( oper ) {
  2136           return oper->num_edges(globals);
  2142   return edges;
  2146 // Check if this operand is usable for cisc-spilling
  2147 bool  OperandForm::is_cisc_reg(FormDict &globals) const {
  2148   const char *ideal = ideal_type(globals);
  2149   bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
  2150   return is_cisc_reg;
  2153 bool  OpClassForm::is_cisc_mem(FormDict &globals) const {
  2154   Form::InterfaceType my_interface = interface_type(globals);
  2155   return (my_interface == memory_interface);
  2159 // node matches ideal 'Bool'
  2160 bool OperandForm::is_ideal_bool() const {
  2161   if( _matrule == NULL ) return false;
  2163   return _matrule->is_ideal_bool();
  2166 // Require user's name for an sRegX to be stackSlotX
  2167 Form::DataType OperandForm::is_user_name_for_sReg() const {
  2168   DataType data_type = none;
  2169   if( _ident != NULL ) {
  2170     if(      strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
  2171     else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
  2172     else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
  2173     else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
  2174     else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
  2176   assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");
  2178   return data_type;
  2182 // Return ideal type, if there is a single ideal type for this operand
  2183 const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
  2184   const char *type = NULL;
  2185   if (ideal_only()) type = _ident;
  2186   else if( _matrule == NULL ) {
  2187     // Check for condition code register
  2188     const char *rc_name = constrained_reg_class();
  2189     // !!!!!
  2190     if (rc_name == NULL) return NULL;
  2191     // !!!!! !!!!!
  2192     // Check constraints on result's register class
  2193     if( registers ) {
  2194       RegClass *reg_class  = registers->getRegClass(rc_name);
  2195       assert( reg_class != NULL, "Register class is not defined");
  2197       // Check for ideal type of entries in register class, all are the same type
  2198       reg_class->reset();
  2199       RegDef *reg_def = reg_class->RegDef_iter();
  2200       assert( reg_def != NULL, "No entries in register class");
  2201       assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
  2202       // Return substring that names the register's ideal type
  2203       type = reg_def->_idealtype + 3;
  2204       assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
  2205       assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
  2206       assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
  2209   else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
  2210     // This operand matches a single type, at the top level.
  2211     // Check for ideal type
  2212     type = _matrule->_opType;
  2213     if( strcmp(type,"Bool") == 0 )
  2214       return "Bool";
  2215     // transitive lookup
  2216     const Form *frm = globals[type];
  2217     OperandForm *op = frm->is_operand();
  2218     type = op->ideal_type(globals, registers);
  2220   return type;
  2224 // If there is a single ideal type for this interface field, return it.
  2225 const char *OperandForm::interface_ideal_type(FormDict &globals,
  2226                                               const char *field) const {
  2227   const char  *ideal_type = NULL;
  2228   const char  *value      = NULL;
  2230   // Check if "field" is valid for this operand's interface
  2231   if ( ! is_interface_field(field, value) )   return ideal_type;
  2233   // !!!!! !!!!! !!!!!
  2234   // If a valid field has a constant value, identify "ConI" or "ConP" or ...
  2236   // Else, lookup type of field's replacement variable
  2238   return ideal_type;
  2242 RegClass* OperandForm::get_RegClass() const {
  2243   if (_interface && !_interface->is_RegInterface()) return NULL;
  2244   return globalAD->get_registers()->getRegClass(constrained_reg_class());
  2248 bool OperandForm::is_bound_register() const {
  2249   RegClass* reg_class = get_RegClass();
  2250   if (reg_class == NULL) {
  2251     return false;
  2254   const char* name = ideal_type(globalAD->globalNames());
  2255   if (name == NULL) {
  2256     return false;
  2259   uint size = 0;
  2260   if (strcmp(name, "RegFlags") == 0) size = 1;
  2261   if (strcmp(name, "RegI") == 0) size = 1;
  2262   if (strcmp(name, "RegF") == 0) size = 1;
  2263   if (strcmp(name, "RegD") == 0) size = 2;
  2264   if (strcmp(name, "RegL") == 0) size = 2;
  2265   if (strcmp(name, "RegN") == 0) size = 1;
  2266   if (strcmp(name, "RegP") == 0) size = globalAD->get_preproc_def("_LP64") ? 2 : 1;
  2267   if (size == 0) {
  2268     return false;
  2270   return size == reg_class->size();
  2274 // Check if this is a valid field for this operand,
  2275 // Return 'true' if valid, and set the value to the string the user provided.
  2276 bool  OperandForm::is_interface_field(const char *field,
  2277                                       const char * &value) const {
  2278   return false;
  2282 // Return register class name if a constraint specifies the register class.
  2283 const char *OperandForm::constrained_reg_class() const {
  2284   const char *reg_class  = NULL;
  2285   if ( _constraint ) {
  2286     // !!!!!
  2287     Constraint *constraint = _constraint;
  2288     if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
  2289       reg_class = _constraint->_arg;
  2293   return reg_class;
  2297 // Return the register class associated with 'leaf'.
  2298 const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
  2299   const char *reg_class = NULL; // "RegMask::Empty";
  2301   if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
  2302     reg_class = constrained_reg_class();
  2303     return reg_class;
  2305   const char *result   = NULL;
  2306   const char *name     = NULL;
  2307   const char *type     = NULL;
  2308   // iterate through all base operands
  2309   // until we reach the register that corresponds to "leaf"
  2310   // This function is not looking for an ideal type.  It needs the first
  2311   // level user type associated with the leaf.
  2312   for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
  2313     const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
  2314     OperandForm *oper = form ? form->is_operand() : NULL;
  2315     if( oper ) {
  2316       reg_class = oper->constrained_reg_class();
  2317       if( reg_class ) {
  2318         reg_class = reg_class;
  2319       } else {
  2320         // ShouldNotReachHere();
  2322     } else {
  2323       // ShouldNotReachHere();
  2326     // Increment our target leaf position if current leaf is not a candidate.
  2327     if( reg_class == NULL)    ++leaf;
  2328     // Exit the loop with the value of reg_class when at the correct index
  2329     if( idx == leaf )         break;
  2330     // May iterate through all base operands if reg_class for 'leaf' is NULL
  2332   return reg_class;
  2336 // Recursive call to construct list of top-level operands.
  2337 // Implementation does not modify state of internal structures
  2338 void OperandForm::build_components() {
  2339   if (_matrule)  _matrule->append_components(_localNames, _components);
  2341   // Add parameters that "do not appear in match rule".
  2342   const char *name;
  2343   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
  2344     OpClassForm *opForm = _localNames[name]->is_opclass();
  2345     assert(opForm != NULL, "sanity");
  2347     if ( _components.operand_position(name) == -1 ) {
  2348       _components.insert(name, opForm->_ident, Component::INVALID, false);
  2352   return;
  2355 int OperandForm::operand_position(const char *name, int usedef) {
  2356   return _components.operand_position(name, usedef, this);
  2360 // Return zero-based position in component list, only counting constants;
  2361 // Return -1 if not in list.
  2362 int OperandForm::constant_position(FormDict &globals, const Component *last) {
  2363   // Iterate through components and count constants preceding 'constant'
  2364   int position = 0;
  2365   Component *comp;
  2366   _components.reset();
  2367   while( (comp = _components.iter()) != NULL  && (comp != last) ) {
  2368     // Special case for operands that take a single user-defined operand
  2369     // Skip the initial definition in the component list.
  2370     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
  2372     const char *type = comp->_type;
  2373     // Lookup operand form for replacement variable's type
  2374     const Form *form = globals[type];
  2375     assert( form != NULL, "Component's type not found");
  2376     OperandForm *oper = form ? form->is_operand() : NULL;
  2377     if( oper ) {
  2378       if( oper->_matrule->is_base_constant(globals) != Form::none ) {
  2379         ++position;
  2384   // Check for being passed a component that was not in the list
  2385   if( comp != last )  position = -1;
  2387   return position;
  2389 // Provide position of constant by "name"
  2390 int OperandForm::constant_position(FormDict &globals, const char *name) {
  2391   const Component *comp = _components.search(name);
  2392   int idx = constant_position( globals, comp );
  2394   return idx;
  2398 // Return zero-based position in component list, only counting constants;
  2399 // Return -1 if not in list.
  2400 int OperandForm::register_position(FormDict &globals, const char *reg_name) {
  2401   // Iterate through components and count registers preceding 'last'
  2402   uint  position = 0;
  2403   Component *comp;
  2404   _components.reset();
  2405   while( (comp = _components.iter()) != NULL
  2406          && (strcmp(comp->_name,reg_name) != 0) ) {
  2407     // Special case for operands that take a single user-defined operand
  2408     // Skip the initial definition in the component list.
  2409     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
  2411     const char *type = comp->_type;
  2412     // Lookup operand form for component's type
  2413     const Form *form = globals[type];
  2414     assert( form != NULL, "Component's type not found");
  2415     OperandForm *oper = form ? form->is_operand() : NULL;
  2416     if( oper ) {
  2417       if( oper->_matrule->is_base_register(globals) ) {
  2418         ++position;
  2423   return position;
  2427 const char *OperandForm::reduce_result()  const {
  2428   return _ident;
  2430 // Return the name of the operand on the right hand side of the binary match
  2431 // Return NULL if there is no right hand side
  2432 const char *OperandForm::reduce_right(FormDict &globals)  const {
  2433   return  ( _matrule ? _matrule->reduce_right(globals) : NULL );
  2436 // Similar for left
  2437 const char *OperandForm::reduce_left(FormDict &globals)   const {
  2438   return  ( _matrule ? _matrule->reduce_left(globals) : NULL );
  2442 // --------------------------- FILE *output_routines
  2443 //
  2444 // Output code for disp_is_oop, if true.
  2445 void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
  2446   //  Check it is a memory interface with a non-user-constant disp field
  2447   if ( this->_interface == NULL ) return;
  2448   MemInterface *mem_interface = this->_interface->is_MemInterface();
  2449   if ( mem_interface == NULL )    return;
  2450   const char   *disp  = mem_interface->_disp;
  2451   if ( *disp != '$' )             return;
  2453   // Lookup replacement variable in operand's component list
  2454   const char   *rep_var = disp + 1;
  2455   const Component *comp = this->_components.search(rep_var);
  2456   assert( comp != NULL, "Replacement variable not found in components");
  2457   // Lookup operand form for replacement variable's type
  2458   const char      *type = comp->_type;
  2459   Form            *form = (Form*)globals[type];
  2460   assert( form != NULL, "Replacement variable's type not found");
  2461   OperandForm     *op   = form->is_operand();
  2462   assert( op, "Memory Interface 'disp' can only emit an operand form");
  2463   // Check if this is a ConP, which may require relocation
  2464   if ( op->is_base_constant(globals) == Form::idealP ) {
  2465     // Find the constant's index:  _c0, _c1, _c2, ... , _cN
  2466     uint idx  = op->constant_position( globals, rep_var);
  2467     fprintf(fp,"  virtual relocInfo::relocType disp_reloc() const {");
  2468     fprintf(fp,  "  return _c%d->reloc();", idx);
  2469     fprintf(fp, " }\n");
  2473 // Generate code for internal and external format methods
  2474 //
  2475 // internal access to reg# node->_idx
  2476 // access to subsumed constant _c0, _c1,
  2477 void  OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
  2478   Form::DataType dtype;
  2479   if (_matrule && (_matrule->is_base_register(globals) ||
  2480                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
  2481     // !!!!! !!!!!
  2482     fprintf(fp,"  { char reg_str[128];\n");
  2483     fprintf(fp,"    ra->dump_register(node,reg_str);\n");
  2484     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
  2485     fprintf(fp,"  }\n");
  2486   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
  2487     format_constant( fp, index, dtype );
  2488   } else if (ideal_to_sReg_type(_ident) != Form::none) {
  2489     // Special format for Stack Slot Register
  2490     fprintf(fp,"  { char reg_str[128];\n");
  2491     fprintf(fp,"    ra->dump_register(node,reg_str);\n");
  2492     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
  2493     fprintf(fp,"  }\n");
  2494   } else {
  2495     fprintf(fp,"  st->print(\"No format defined for %s\n\");\n", _ident);
  2496     fflush(fp);
  2497     fprintf(stderr,"No format defined for %s\n", _ident);
  2498     dump();
  2499     assert( false,"Internal error:\n  output_internal_operand() attempting to output other than a Register or Constant");
  2503 // Similar to "int_format" but for cases where data is external to operand
  2504 // external access to reg# node->in(idx)->_idx,
  2505 void  OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
  2506   Form::DataType dtype;
  2507   if (_matrule && (_matrule->is_base_register(globals) ||
  2508                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
  2509     fprintf(fp,"  { char reg_str[128];\n");
  2510     fprintf(fp,"    ra->dump_register(node->in(idx");
  2511     if ( index != 0 ) fprintf(fp,              "+%d",index);
  2512     fprintf(fp,                                      "),reg_str);\n");
  2513     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
  2514     fprintf(fp,"  }\n");
  2515   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
  2516     format_constant( fp, index, dtype );
  2517   } else if (ideal_to_sReg_type(_ident) != Form::none) {
  2518     // Special format for Stack Slot Register
  2519     fprintf(fp,"  { char reg_str[128];\n");
  2520     fprintf(fp,"    ra->dump_register(node->in(idx");
  2521     if ( index != 0 ) fprintf(fp,                  "+%d",index);
  2522     fprintf(fp,                                       "),reg_str);\n");
  2523     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
  2524     fprintf(fp,"  }\n");
  2525   } else {
  2526     fprintf(fp,"  st->print(\"No format defined for %s\n\");\n", _ident);
  2527     assert( false,"Internal error:\n  output_external_operand() attempting to output other than a Register or Constant");
  2531 void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
  2532   switch(const_type) {
  2533   case Form::idealI: fprintf(fp,"  st->print(\"#%%d\", _c%d);\n", const_index); break;
  2534   case Form::idealP: fprintf(fp,"  if (_c%d) _c%d->dump_on(st);\n", const_index, const_index); break;
  2535   case Form::idealNKlass:
  2536   case Form::idealN: fprintf(fp,"  if (_c%d) _c%d->dump_on(st);\n", const_index, const_index); break;
  2537   case Form::idealL: fprintf(fp,"  st->print(\"#\" INT64_FORMAT, (int64_t)_c%d);\n", const_index); break;
  2538   case Form::idealF: fprintf(fp,"  st->print(\"#%%f\", _c%d);\n", const_index); break;
  2539   case Form::idealD: fprintf(fp,"  st->print(\"#%%f\", _c%d);\n", const_index); break;
  2540   default:
  2541     assert( false, "ShouldNotReachHere()");
  2545 // Return the operand form corresponding to the given index, else NULL.
  2546 OperandForm *OperandForm::constant_operand(FormDict &globals,
  2547                                            uint      index) {
  2548   // !!!!!
  2549   // Check behavior on complex operands
  2550   uint n_consts = num_consts(globals);
  2551   if( n_consts > 0 ) {
  2552     uint i = 0;
  2553     const char *type;
  2554     Component  *comp;
  2555     _components.reset();
  2556     if ((comp = _components.iter()) == NULL) {
  2557       assert(n_consts == 1, "Bad component list detected.\n");
  2558       // Current operand is THE operand
  2559       if ( index == 0 ) {
  2560         return this;
  2562     } // end if NULL
  2563     else {
  2564       // Skip the first component, it can not be a DEF of a constant
  2565       do {
  2566         type = comp->base_type(globals);
  2567         // Check that "type" is a 'ConI', 'ConP', ...
  2568         if ( ideal_to_const_type(type) != Form::none ) {
  2569           // When at correct component, get corresponding Operand
  2570           if ( index == 0 ) {
  2571             return globals[comp->_type]->is_operand();
  2573           // Decrement number of constants to go
  2574           --index;
  2576       } while((comp = _components.iter()) != NULL);
  2580   // Did not find a constant for this index.
  2581   return NULL;
  2584 // If this operand has a single ideal type, return its type
  2585 Form::DataType OperandForm::simple_type(FormDict &globals) const {
  2586   const char *type_name = ideal_type(globals);
  2587   Form::DataType type   = type_name ? ideal_to_const_type( type_name )
  2588                                     : Form::none;
  2589   return type;
  2592 Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
  2593   if ( _matrule == NULL )    return Form::none;
  2595   return _matrule->is_base_constant(globals);
  2598 // "true" if this operand is a simple type that is swallowed
  2599 bool  OperandForm::swallowed(FormDict &globals) const {
  2600   Form::DataType type   = simple_type(globals);
  2601   if( type != Form::none ) {
  2602     return true;
  2605   return false;
  2608 // Output code to access the value of the index'th constant
  2609 void OperandForm::access_constant(FILE *fp, FormDict &globals,
  2610                                   uint const_index) {
  2611   OperandForm *oper = constant_operand(globals, const_index);
  2612   assert( oper, "Index exceeds number of constants in operand");
  2613   Form::DataType dtype = oper->is_base_constant(globals);
  2615   switch(dtype) {
  2616   case idealI: fprintf(fp,"_c%d",           const_index); break;
  2617   case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
  2618   case idealL: fprintf(fp,"_c%d",           const_index); break;
  2619   case idealF: fprintf(fp,"_c%d",           const_index); break;
  2620   case idealD: fprintf(fp,"_c%d",           const_index); break;
  2621   default:
  2622     assert( false, "ShouldNotReachHere()");
  2627 void OperandForm::dump() {
  2628   output(stderr);
  2631 void OperandForm::output(FILE *fp) {
  2632   fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
  2633   if (_matrule)    _matrule->dump();
  2634   if (_interface)  _interface->dump();
  2635   if (_attribs)    _attribs->dump();
  2636   if (_predicate)  _predicate->dump();
  2637   if (_constraint) _constraint->dump();
  2638   if (_construct)  _construct->dump();
  2639   if (_format)     _format->dump();
  2642 //------------------------------Constraint-------------------------------------
  2643 Constraint::Constraint(const char *func, const char *arg)
  2644   : _func(func), _arg(arg) {
  2646 Constraint::~Constraint() { /* not owner of char* */
  2649 bool Constraint::stack_slots_only() const {
  2650   return strcmp(_func, "ALLOC_IN_RC") == 0
  2651       && strcmp(_arg,  "stack_slots") == 0;
  2654 void Constraint::dump() {
  2655   output(stderr);
  2658 void Constraint::output(FILE *fp) {           // Write info to output files
  2659   assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
  2660   fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg);
  2663 //------------------------------Predicate--------------------------------------
  2664 Predicate::Predicate(char *pr)
  2665   : _pred(pr) {
  2667 Predicate::~Predicate() {
  2670 void Predicate::dump() {
  2671   output(stderr);
  2674 void Predicate::output(FILE *fp) {
  2675   fprintf(fp,"Predicate");  // Write to output files
  2677 //------------------------------Interface--------------------------------------
  2678 Interface::Interface(const char *name) : _name(name) {
  2680 Interface::~Interface() {
  2683 Form::InterfaceType Interface::interface_type(FormDict &globals) const {
  2684   Interface *thsi = (Interface*)this;
  2685   if ( thsi->is_RegInterface()   ) return Form::register_interface;
  2686   if ( thsi->is_MemInterface()   ) return Form::memory_interface;
  2687   if ( thsi->is_ConstInterface() ) return Form::constant_interface;
  2688   if ( thsi->is_CondInterface()  ) return Form::conditional_interface;
  2690   return Form::no_interface;
  2693 RegInterface   *Interface::is_RegInterface() {
  2694   if ( strcmp(_name,"REG_INTER") != 0 )
  2695     return NULL;
  2696   return (RegInterface*)this;
  2698 MemInterface   *Interface::is_MemInterface() {
  2699   if ( strcmp(_name,"MEMORY_INTER") != 0 )  return NULL;
  2700   return (MemInterface*)this;
  2702 ConstInterface *Interface::is_ConstInterface() {
  2703   if ( strcmp(_name,"CONST_INTER") != 0 )  return NULL;
  2704   return (ConstInterface*)this;
  2706 CondInterface  *Interface::is_CondInterface() {
  2707   if ( strcmp(_name,"COND_INTER") != 0 )  return NULL;
  2708   return (CondInterface*)this;
  2712 void Interface::dump() {
  2713   output(stderr);
  2716 // Write info to output files
  2717 void Interface::output(FILE *fp) {
  2718   fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
  2721 //------------------------------RegInterface-----------------------------------
  2722 RegInterface::RegInterface() : Interface("REG_INTER") {
  2724 RegInterface::~RegInterface() {
  2727 void RegInterface::dump() {
  2728   output(stderr);
  2731 // Write info to output files
  2732 void RegInterface::output(FILE *fp) {
  2733   Interface::output(fp);
  2736 //------------------------------ConstInterface---------------------------------
  2737 ConstInterface::ConstInterface() : Interface("CONST_INTER") {
  2739 ConstInterface::~ConstInterface() {
  2742 void ConstInterface::dump() {
  2743   output(stderr);
  2746 // Write info to output files
  2747 void ConstInterface::output(FILE *fp) {
  2748   Interface::output(fp);
  2751 //------------------------------MemInterface-----------------------------------
  2752 MemInterface::MemInterface(char *base, char *index, char *scale, char *disp)
  2753   : Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
  2755 MemInterface::~MemInterface() {
  2756   // not owner of any character arrays
  2759 void MemInterface::dump() {
  2760   output(stderr);
  2763 // Write info to output files
  2764 void MemInterface::output(FILE *fp) {
  2765   Interface::output(fp);
  2766   if ( _base  != NULL ) fprintf(fp,"  base  == %s\n", _base);
  2767   if ( _index != NULL ) fprintf(fp,"  index == %s\n", _index);
  2768   if ( _scale != NULL ) fprintf(fp,"  scale == %s\n", _scale);
  2769   if ( _disp  != NULL ) fprintf(fp,"  disp  == %s\n", _disp);
  2770   // fprintf(fp,"\n");
  2773 //------------------------------CondInterface----------------------------------
  2774 CondInterface::CondInterface(const char* equal,         const char* equal_format,
  2775                              const char* not_equal,     const char* not_equal_format,
  2776                              const char* less,          const char* less_format,
  2777                              const char* greater_equal, const char* greater_equal_format,
  2778                              const char* less_equal,    const char* less_equal_format,
  2779                              const char* greater,       const char* greater_format,
  2780                              const char* overflow,      const char* overflow_format,
  2781                              const char* no_overflow,   const char* no_overflow_format)
  2782   : Interface("COND_INTER"),
  2783     _equal(equal),                 _equal_format(equal_format),
  2784     _not_equal(not_equal),         _not_equal_format(not_equal_format),
  2785     _less(less),                   _less_format(less_format),
  2786     _greater_equal(greater_equal), _greater_equal_format(greater_equal_format),
  2787     _less_equal(less_equal),       _less_equal_format(less_equal_format),
  2788     _greater(greater),             _greater_format(greater_format),
  2789     _overflow(overflow),           _overflow_format(overflow_format),
  2790     _no_overflow(no_overflow),     _no_overflow_format(no_overflow_format) {
  2792 CondInterface::~CondInterface() {
  2793   // not owner of any character arrays
  2796 void CondInterface::dump() {
  2797   output(stderr);
  2800 // Write info to output files
  2801 void CondInterface::output(FILE *fp) {
  2802   Interface::output(fp);
  2803   if ( _equal  != NULL )     fprintf(fp," equal        == %s\n", _equal);
  2804   if ( _not_equal  != NULL ) fprintf(fp," not_equal    == %s\n", _not_equal);
  2805   if ( _less  != NULL )      fprintf(fp," less         == %s\n", _less);
  2806   if ( _greater_equal  != NULL ) fprintf(fp," greater_equal    == %s\n", _greater_equal);
  2807   if ( _less_equal  != NULL ) fprintf(fp," less_equal   == %s\n", _less_equal);
  2808   if ( _greater  != NULL )    fprintf(fp," greater      == %s\n", _greater);
  2809   if ( _overflow != NULL )    fprintf(fp," overflow     == %s\n", _overflow);
  2810   if ( _no_overflow != NULL ) fprintf(fp," no_overflow  == %s\n", _no_overflow);
  2811   // fprintf(fp,"\n");
  2814 //------------------------------ConstructRule----------------------------------
  2815 ConstructRule::ConstructRule(char *cnstr)
  2816   : _construct(cnstr) {
  2818 ConstructRule::~ConstructRule() {
  2821 void ConstructRule::dump() {
  2822   output(stderr);
  2825 void ConstructRule::output(FILE *fp) {
  2826   fprintf(fp,"\nConstruct Rule\n");  // Write to output files
  2830 //==============================Shared Forms===================================
  2831 //------------------------------AttributeForm----------------------------------
  2832 int         AttributeForm::_insId   = 0;           // start counter at 0
  2833 int         AttributeForm::_opId    = 0;           // start counter at 0
  2834 const char* AttributeForm::_ins_cost = "ins_cost"; // required name
  2835 const char* AttributeForm::_op_cost  = "op_cost";  // required name
  2837 AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
  2838   : Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
  2839     if (type==OP_ATTR) {
  2840       id = ++_opId;
  2842     else if (type==INS_ATTR) {
  2843       id = ++_insId;
  2845     else assert( false,"");
  2847 AttributeForm::~AttributeForm() {
  2850 // Dynamic type check
  2851 AttributeForm *AttributeForm::is_attribute() const {
  2852   return (AttributeForm*)this;
  2856 // inlined  // int  AttributeForm::type() { return id;}
  2858 void AttributeForm::dump() {
  2859   output(stderr);
  2862 void AttributeForm::output(FILE *fp) {
  2863   if( _attrname && _attrdef ) {
  2864     fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
  2865             _attrname, _attrdef);
  2867   else {
  2868     fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
  2869             (_attrname?_attrname:""), (_attrdef?_attrdef:"") );
  2873 //------------------------------Component--------------------------------------
  2874 Component::Component(const char *name, const char *type, int usedef)
  2875   : _name(name), _type(type), _usedef(usedef) {
  2876     _ftype = Form::COMP;
  2878 Component::~Component() {
  2881 // True if this component is equal to the parameter.
  2882 bool Component::is(int use_def_kill_enum) const {
  2883   return (_usedef == use_def_kill_enum ? true : false);
  2885 // True if this component is used/def'd/kill'd as the parameter suggests.
  2886 bool Component::isa(int use_def_kill_enum) const {
  2887   return (_usedef & use_def_kill_enum) == use_def_kill_enum;
  2890 // Extend this component with additional use/def/kill behavior
  2891 int Component::promote_use_def_info(int new_use_def) {
  2892   _usedef |= new_use_def;
  2894   return _usedef;
  2897 // Check the base type of this component, if it has one
  2898 const char *Component::base_type(FormDict &globals) {
  2899   const Form *frm = globals[_type];
  2900   if (frm == NULL) return NULL;
  2901   OperandForm *op = frm->is_operand();
  2902   if (op == NULL) return NULL;
  2903   if (op->ideal_only()) return op->_ident;
  2904   return (char *)op->ideal_type(globals);
  2907 void Component::dump() {
  2908   output(stderr);
  2911 void Component::output(FILE *fp) {
  2912   fprintf(fp,"Component:");  // Write to output files
  2913   fprintf(fp, "  name = %s", _name);
  2914   fprintf(fp, ", type = %s", _type);
  2915   assert(_usedef != 0, "unknown effect");
  2916   fprintf(fp, ", use/def = %s\n", getUsedefName());
  2920 //------------------------------ComponentList---------------------------------
  2921 ComponentList::ComponentList() : NameList(), _matchcnt(0) {
  2923 ComponentList::~ComponentList() {
  2924   // // This list may not own its elements if copied via assignment
  2925   // Component *component;
  2926   // for (reset(); (component = iter()) != NULL;) {
  2927   //   delete component;
  2928   // }
  2931 void   ComponentList::insert(Component *component, bool mflag) {
  2932   NameList::addName((char *)component);
  2933   if(mflag) _matchcnt++;
  2935 void   ComponentList::insert(const char *name, const char *opType, int usedef,
  2936                              bool mflag) {
  2937   Component * component = new Component(name, opType, usedef);
  2938   insert(component, mflag);
  2940 Component *ComponentList::current() { return (Component*)NameList::current(); }
  2941 Component *ComponentList::iter()    { return (Component*)NameList::iter(); }
  2942 Component *ComponentList::match_iter() {
  2943   if(_iter < _matchcnt) return (Component*)NameList::iter();
  2944   return NULL;
  2946 Component *ComponentList::post_match_iter() {
  2947   Component *comp = iter();
  2948   // At end of list?
  2949   if ( comp == NULL ) {
  2950     return comp;
  2952   // In post-match components?
  2953   if (_iter > match_count()-1) {
  2954     return comp;
  2957   return post_match_iter();
  2960 void       ComponentList::reset()   { NameList::reset(); }
  2961 int        ComponentList::count()   { return NameList::count(); }
  2963 Component *ComponentList::operator[](int position) {
  2964   // Shortcut complete iteration if there are not enough entries
  2965   if (position >= count()) return NULL;
  2967   int        index     = 0;
  2968   Component *component = NULL;
  2969   for (reset(); (component = iter()) != NULL;) {
  2970     if (index == position) {
  2971       return component;
  2973     ++index;
  2976   return NULL;
  2979 const Component *ComponentList::search(const char *name) {
  2980   PreserveIter pi(this);
  2981   reset();
  2982   for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
  2983     if( strcmp(comp->_name,name) == 0 ) return comp;
  2986   return NULL;
  2989 // Return number of USEs + number of DEFs
  2990 // When there are no components, or the first component is a USE,
  2991 // then we add '1' to hold a space for the 'result' operand.
  2992 int ComponentList::num_operands() {
  2993   PreserveIter pi(this);
  2994   uint       count = 1;           // result operand
  2995   uint       position = 0;
  2997   Component *component  = NULL;
  2998   for( reset(); (component = iter()) != NULL; ++position ) {
  2999     if( component->isa(Component::USE) ||
  3000         ( position == 0 && (! component->isa(Component::DEF))) ) {
  3001       ++count;
  3005   return count;
  3008 // Return zero-based position of operand 'name' in list;  -1 if not in list.
  3009 // if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
  3010 int ComponentList::operand_position(const char *name, int usedef, Form *fm) {
  3011   PreserveIter pi(this);
  3012   int position = 0;
  3013   int num_opnds = num_operands();
  3014   Component *component;
  3015   Component* preceding_non_use = NULL;
  3016   Component* first_def = NULL;
  3017   for (reset(); (component = iter()) != NULL; ++position) {
  3018     // When the first component is not a DEF,
  3019     // leave space for the result operand!
  3020     if ( position==0 && (! component->isa(Component::DEF)) ) {
  3021       ++position;
  3022       ++num_opnds;
  3024     if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
  3025       // When the first entry in the component list is a DEF and a USE
  3026       // Treat them as being separate, a DEF first, then a USE
  3027       if( position==0
  3028           && usedef==Component::USE && component->isa(Component::DEF) ) {
  3029         assert(position+1 < num_opnds, "advertised index in bounds");
  3030         return position+1;
  3031       } else {
  3032         if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
  3033           fprintf(stderr, "the name '%s(%s)' should not precede the name '%s(%s)'",
  3034                   preceding_non_use->_name, preceding_non_use->getUsedefName(),
  3035                   name, component->getUsedefName());
  3036           if (fm && fm->is_instruction()) fprintf(stderr,  "in form '%s'", fm->is_instruction()->_ident);
  3037           if (fm && fm->is_operand()) fprintf(stderr,  "in form '%s'", fm->is_operand()->_ident);
  3038           fprintf(stderr,  "\n");
  3040         if( position >= num_opnds ) {
  3041           fprintf(stderr, "the name '%s' is too late in its name list", name);
  3042           if (fm && fm->is_instruction()) fprintf(stderr,  "in form '%s'", fm->is_instruction()->_ident);
  3043           if (fm && fm->is_operand()) fprintf(stderr,  "in form '%s'", fm->is_operand()->_ident);
  3044           fprintf(stderr,  "\n");
  3046         assert(position < num_opnds, "advertised index in bounds");
  3047         return position;
  3050     if( component->isa(Component::DEF)
  3051         && component->isa(Component::USE) ) {
  3052       ++position;
  3053       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  3055     if( component->isa(Component::DEF) && !first_def ) {
  3056       first_def = component;
  3058     if( !component->isa(Component::USE) && component != first_def ) {
  3059       preceding_non_use = component;
  3060     } else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
  3061       preceding_non_use = NULL;
  3064   return Not_in_list;
  3067 // Find position for this name, regardless of use/def information
  3068 int ComponentList::operand_position(const char *name) {
  3069   PreserveIter pi(this);
  3070   int position = 0;
  3071   Component *component;
  3072   for (reset(); (component = iter()) != NULL; ++position) {
  3073     // When the first component is not a DEF,
  3074     // leave space for the result operand!
  3075     if ( position==0 && (! component->isa(Component::DEF)) ) {
  3076       ++position;
  3078     if (strcmp(name, component->_name)==0) {
  3079       return position;
  3081     if( component->isa(Component::DEF)
  3082         && component->isa(Component::USE) ) {
  3083       ++position;
  3084       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  3087   return Not_in_list;
  3090 int ComponentList::operand_position_format(const char *name, Form *fm) {
  3091   PreserveIter pi(this);
  3092   int  first_position = operand_position(name);
  3093   int  use_position   = operand_position(name, Component::USE, fm);
  3095   return ((first_position < use_position) ? use_position : first_position);
  3098 int ComponentList::label_position() {
  3099   PreserveIter pi(this);
  3100   int position = 0;
  3101   reset();
  3102   for( Component *comp; (comp = iter()) != NULL; ++position) {
  3103     // When the first component is not a DEF,
  3104     // leave space for the result operand!
  3105     if ( position==0 && (! comp->isa(Component::DEF)) ) {
  3106       ++position;
  3108     if (strcmp(comp->_type, "label")==0) {
  3109       return position;
  3111     if( comp->isa(Component::DEF)
  3112         && comp->isa(Component::USE) ) {
  3113       ++position;
  3114       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  3118   return -1;
  3121 int ComponentList::method_position() {
  3122   PreserveIter pi(this);
  3123   int position = 0;
  3124   reset();
  3125   for( Component *comp; (comp = iter()) != NULL; ++position) {
  3126     // When the first component is not a DEF,
  3127     // leave space for the result operand!
  3128     if ( position==0 && (! comp->isa(Component::DEF)) ) {
  3129       ++position;
  3131     if (strcmp(comp->_type, "method")==0) {
  3132       return position;
  3134     if( comp->isa(Component::DEF)
  3135         && comp->isa(Component::USE) ) {
  3136       ++position;
  3137       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  3141   return -1;
  3144 void ComponentList::dump() { output(stderr); }
  3146 void ComponentList::output(FILE *fp) {
  3147   PreserveIter pi(this);
  3148   fprintf(fp, "\n");
  3149   Component *component;
  3150   for (reset(); (component = iter()) != NULL;) {
  3151     component->output(fp);
  3153   fprintf(fp, "\n");
  3156 //------------------------------MatchNode--------------------------------------
  3157 MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
  3158                      const char *opType, MatchNode *lChild, MatchNode *rChild)
  3159   : _AD(ad), _result(result), _name(mexpr), _opType(opType),
  3160     _lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0),
  3161     _commutative_id(0) {
  3162   _numleaves = (lChild ? lChild->_numleaves : 0)
  3163                + (rChild ? rChild->_numleaves : 0);
  3166 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode)
  3167   : _AD(ad), _result(mnode._result), _name(mnode._name),
  3168     _opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild),
  3169     _internalop(0), _numleaves(mnode._numleaves),
  3170     _commutative_id(mnode._commutative_id) {
  3173 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone)
  3174   : _AD(ad), _result(mnode._result), _name(mnode._name),
  3175     _opType(mnode._opType),
  3176     _internalop(0), _numleaves(mnode._numleaves),
  3177     _commutative_id(mnode._commutative_id) {
  3178   if (mnode._lChild) {
  3179     _lChild = new MatchNode(ad, *mnode._lChild, clone);
  3180   } else {
  3181     _lChild = NULL;
  3183   if (mnode._rChild) {
  3184     _rChild = new MatchNode(ad, *mnode._rChild, clone);
  3185   } else {
  3186     _rChild = NULL;
  3190 MatchNode::~MatchNode() {
  3191   // // This node may not own its children if copied via assignment
  3192   // if( _lChild ) delete _lChild;
  3193   // if( _rChild ) delete _rChild;
  3196 bool  MatchNode::find_type(const char *type, int &position) const {
  3197   if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
  3198   if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;
  3200   if (strcmp(type,_opType)==0)  {
  3201     return true;
  3202   } else {
  3203     ++position;
  3205   return false;
  3208 // Recursive call collecting info on top-level operands, not transitive.
  3209 // Implementation does not modify state of internal structures.
  3210 void MatchNode::append_components(FormDict& locals, ComponentList& components,
  3211                                   bool def_flag) const {
  3212   int usedef = def_flag ? Component::DEF : Component::USE;
  3213   FormDict &globals = _AD.globalNames();
  3215   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
  3216   // Base case
  3217   if (_lChild==NULL && _rChild==NULL) {
  3218     // If _opType is not an operation, do not build a component for it #####
  3219     const Form *f = globals[_opType];
  3220     if( f != NULL ) {
  3221       // Add non-ideals that are operands, operand-classes,
  3222       if( ! f->ideal_only()
  3223           && (f->is_opclass() || f->is_operand()) ) {
  3224         components.insert(_name, _opType, usedef, true);
  3227     return;
  3229   // Promote results of "Set" to DEF
  3230   bool tmpdef_flag = (!strcmp(_opType, "Set")) ? true : false;
  3231   if (_lChild) _lChild->append_components(locals, components, tmpdef_flag);
  3232   tmpdef_flag = false;   // only applies to component immediately following 'Set'
  3233   if (_rChild) _rChild->append_components(locals, components, tmpdef_flag);
  3236 // Find the n'th base-operand in the match node,
  3237 // recursively investigates match rules of user-defined operands.
  3238 //
  3239 // Implementation does not modify state of internal structures since they
  3240 // can be shared.
  3241 bool MatchNode::base_operand(uint &position, FormDict &globals,
  3242                              const char * &result, const char * &name,
  3243                              const char * &opType) const {
  3244   assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
  3245   // Base case
  3246   if (_lChild==NULL && _rChild==NULL) {
  3247     // Check for special case: "Universe", "label"
  3248     if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
  3249       if (position == 0) {
  3250         result = _result;
  3251         name   = _name;
  3252         opType = _opType;
  3253         return 1;
  3254       } else {
  3255         -- position;
  3256         return 0;
  3260     const Form *form = globals[_opType];
  3261     MatchNode *matchNode = NULL;
  3262     // Check for user-defined type
  3263     if (form) {
  3264       // User operand or instruction?
  3265       OperandForm  *opForm = form->is_operand();
  3266       InstructForm *inForm = form->is_instruction();
  3267       if ( opForm ) {
  3268         matchNode = (MatchNode*)opForm->_matrule;
  3269       } else if ( inForm ) {
  3270         matchNode = (MatchNode*)inForm->_matrule;
  3273     // if this is user-defined, recurse on match rule
  3274     // User-defined operand and instruction forms have a match-rule.
  3275     if (matchNode) {
  3276       return (matchNode->base_operand(position,globals,result,name,opType));
  3277     } else {
  3278       // Either not a form, or a system-defined form (no match rule).
  3279       if (position==0) {
  3280         result = _result;
  3281         name   = _name;
  3282         opType = _opType;
  3283         return 1;
  3284       } else {
  3285         --position;
  3286         return 0;
  3290   } else {
  3291     // Examine the left child and right child as well
  3292     if (_lChild) {
  3293       if (_lChild->base_operand(position, globals, result, name, opType))
  3294         return 1;
  3297     if (_rChild) {
  3298       if (_rChild->base_operand(position, globals, result, name, opType))
  3299         return 1;
  3303   return 0;
  3306 // Recursive call on all operands' match rules in my match rule.
  3307 uint  MatchNode::num_consts(FormDict &globals) const {
  3308   uint        index      = 0;
  3309   uint        num_consts = 0;
  3310   const char *result;
  3311   const char *name;
  3312   const char *opType;
  3314   for (uint position = index;
  3315        base_operand(position,globals,result,name,opType); position = index) {
  3316     ++index;
  3317     if( ideal_to_const_type(opType) )        num_consts++;
  3320   return num_consts;
  3323 // Recursive call on all operands' match rules in my match rule.
  3324 // Constants in match rule subtree with specified type
  3325 uint  MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
  3326   uint        index      = 0;
  3327   uint        num_consts = 0;
  3328   const char *result;
  3329   const char *name;
  3330   const char *opType;
  3332   for (uint position = index;
  3333        base_operand(position,globals,result,name,opType); position = index) {
  3334     ++index;
  3335     if( ideal_to_const_type(opType) == type ) num_consts++;
  3338   return num_consts;
  3341 // Recursive call on all operands' match rules in my match rule.
  3342 uint  MatchNode::num_const_ptrs(FormDict &globals) const {
  3343   return  num_consts( globals, Form::idealP );
  3346 bool  MatchNode::sets_result() const {
  3347   return   ( (strcmp(_name,"Set") == 0) ? true : false );
  3350 const char *MatchNode::reduce_right(FormDict &globals) const {
  3351   // If there is no right reduction, return NULL.
  3352   const char      *rightStr    = NULL;
  3354   // If we are a "Set", start from the right child.
  3355   const MatchNode *const mnode = sets_result() ?
  3356     (const MatchNode *)this->_rChild :
  3357     (const MatchNode *)this;
  3359   // If our right child exists, it is the right reduction
  3360   if ( mnode->_rChild ) {
  3361     rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
  3362       : mnode->_rChild->_opType;
  3364   // Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
  3365   return rightStr;
  3368 const char *MatchNode::reduce_left(FormDict &globals) const {
  3369   // If there is no left reduction, return NULL.
  3370   const char  *leftStr  = NULL;
  3372   // If we are a "Set", start from the right child.
  3373   const MatchNode *const mnode = sets_result() ?
  3374     (const MatchNode *)this->_rChild :
  3375     (const MatchNode *)this;
  3377   // If our left child exists, it is the left reduction
  3378   if ( mnode->_lChild ) {
  3379     leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
  3380       : mnode->_lChild->_opType;
  3381   } else {
  3382     // May be simple chain rule: (Set dst operand_form_source)
  3383     if ( sets_result() ) {
  3384       OperandForm *oper = globals[mnode->_opType]->is_operand();
  3385       if( oper ) {
  3386         leftStr = mnode->_opType;
  3390   return leftStr;
  3393 //------------------------------count_instr_names------------------------------
  3394 // Count occurrences of operands names in the leaves of the instruction
  3395 // match rule.
  3396 void MatchNode::count_instr_names( Dict &names ) {
  3397   if( !this ) return;
  3398   if( _lChild ) _lChild->count_instr_names(names);
  3399   if( _rChild ) _rChild->count_instr_names(names);
  3400   if( !_lChild && !_rChild ) {
  3401     uintptr_t cnt = (uintptr_t)names[_name];
  3402     cnt++;                      // One more name found
  3403     names.Insert(_name,(void*)cnt);
  3407 //------------------------------build_instr_pred-------------------------------
  3408 // Build a path to 'name' in buf.  Actually only build if cnt is zero, so we
  3409 // can skip some leading instances of 'name'.
  3410 int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
  3411   if( _lChild ) {
  3412     if( !cnt ) strcpy( buf, "_kids[0]->" );
  3413     cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
  3414     if( cnt < 0 ) return cnt;   // Found it, all done
  3416   if( _rChild ) {
  3417     if( !cnt ) strcpy( buf, "_kids[1]->" );
  3418     cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
  3419     if( cnt < 0 ) return cnt;   // Found it, all done
  3421   if( !_lChild && !_rChild ) {  // Found a leaf
  3422     // Wrong name?  Give up...
  3423     if( strcmp(name,_name) ) return cnt;
  3424     if( !cnt ) strcpy(buf,"_leaf");
  3425     return cnt-1;
  3427   return cnt;
  3431 //------------------------------build_internalop-------------------------------
  3432 // Build string representation of subtree
  3433 void MatchNode::build_internalop( ) {
  3434   char *iop, *subtree;
  3435   const char *lstr, *rstr;
  3436   // Build string representation of subtree
  3437   // Operation lchildType rchildType
  3438   int len = (int)strlen(_opType) + 4;
  3439   lstr = (_lChild) ? ((_lChild->_internalop) ?
  3440                        _lChild->_internalop : _lChild->_opType) : "";
  3441   rstr = (_rChild) ? ((_rChild->_internalop) ?
  3442                        _rChild->_internalop : _rChild->_opType) : "";
  3443   len += (int)strlen(lstr) + (int)strlen(rstr);
  3444   subtree = (char *)malloc(len);
  3445   sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
  3446   // Hash the subtree string in _internalOps; if a name exists, use it
  3447   iop = (char *)_AD._internalOps[subtree];
  3448   // Else create a unique name, and add it to the hash table
  3449   if (iop == NULL) {
  3450     iop = subtree;
  3451     _AD._internalOps.Insert(subtree, iop);
  3452     _AD._internalOpNames.addName(iop);
  3453     _AD._internalMatch.Insert(iop, this);
  3455   // Add the internal operand name to the MatchNode
  3456   _internalop = iop;
  3457   _result = iop;
  3461 void MatchNode::dump() {
  3462   output(stderr);
  3465 void MatchNode::output(FILE *fp) {
  3466   if (_lChild==0 && _rChild==0) {
  3467     fprintf(fp," %s",_name);    // operand
  3469   else {
  3470     fprintf(fp," (%s ",_name);  // " (opcodeName "
  3471     if(_lChild) _lChild->output(fp); //               left operand
  3472     if(_rChild) _rChild->output(fp); //                    right operand
  3473     fprintf(fp,")");                 //                                 ")"
  3477 int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
  3478   static const char *needs_ideal_memory_list[] = {
  3479     "StoreI","StoreL","StoreP","StoreN","StoreNKlass","StoreD","StoreF" ,
  3480     "StoreB","StoreC","Store" ,"StoreFP",
  3481     "LoadI", "LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF"  ,
  3482     "LoadB" , "LoadUB", "LoadUS" ,"LoadS" ,"Load" ,
  3483     "StoreVector", "LoadVector",
  3484     "LoadRange", "LoadKlass", "LoadNKlass", "LoadL_unaligned", "LoadD_unaligned",
  3485     "LoadPLocked",
  3486     "StorePConditional", "StoreIConditional", "StoreLConditional",
  3487     "CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN",
  3488     "StoreCM",
  3489     "ClearArray",
  3490     "GetAndAddI", "GetAndSetI", "GetAndSetP",
  3491     "GetAndAddL", "GetAndSetL", "GetAndSetN",
  3492   };
  3493   int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
  3494   if( strcmp(_opType,"PrefetchRead")==0 ||
  3495       strcmp(_opType,"PrefetchWrite")==0 ||
  3496       strcmp(_opType,"PrefetchAllocation")==0 )
  3497     return 1;
  3498   if( _lChild ) {
  3499     const char *opType = _lChild->_opType;
  3500     for( int i=0; i<cnt; i++ )
  3501       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
  3502         return 1;
  3503     if( _lChild->needs_ideal_memory_edge(globals) )
  3504       return 1;
  3506   if( _rChild ) {
  3507     const char *opType = _rChild->_opType;
  3508     for( int i=0; i<cnt; i++ )
  3509       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
  3510         return 1;
  3511     if( _rChild->needs_ideal_memory_edge(globals) )
  3512       return 1;
  3515   return 0;
  3518 // TRUE if defines a derived oop, and so needs a base oop edge present
  3519 // post-matching.
  3520 int MatchNode::needs_base_oop_edge() const {
  3521   if( !strcmp(_opType,"AddP") ) return 1;
  3522   if( strcmp(_opType,"Set") ) return 0;
  3523   return !strcmp(_rChild->_opType,"AddP");
  3526 int InstructForm::needs_base_oop_edge(FormDict &globals) const {
  3527   if( is_simple_chain_rule(globals) ) {
  3528     const char *src = _matrule->_rChild->_opType;
  3529     OperandForm *src_op = globals[src]->is_operand();
  3530     assert( src_op, "Not operand class of chain rule" );
  3531     return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
  3532   }                             // Else check instruction
  3534   return _matrule ? _matrule->needs_base_oop_edge() : 0;
  3538 //-------------------------cisc spilling methods-------------------------------
  3539 // helper routines and methods for detecting cisc-spilling instructions
  3540 //-------------------------cisc_spill_merge------------------------------------
  3541 int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
  3542   int cisc_spillable  = Maybe_cisc_spillable;
  3544   // Combine results of left and right checks
  3545   if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
  3546     // neither side is spillable, nor prevents cisc spilling
  3547     cisc_spillable = Maybe_cisc_spillable;
  3549   else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
  3550     // right side is spillable
  3551     cisc_spillable = right_spillable;
  3553   else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
  3554     // left side is spillable
  3555     cisc_spillable = left_spillable;
  3557   else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
  3558     // left or right prevents cisc spilling this instruction
  3559     cisc_spillable = Not_cisc_spillable;
  3561   else {
  3562     // Only allow one to spill
  3563     cisc_spillable = Not_cisc_spillable;
  3566   return cisc_spillable;
  3569 //-------------------------root_ops_match--------------------------------------
  3570 bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
  3571   // Base Case: check that the current operands/operations match
  3572   assert( op1, "Must have op's name");
  3573   assert( op2, "Must have op's name");
  3574   const Form *form1 = globals[op1];
  3575   const Form *form2 = globals[op2];
  3577   return (form1 == form2);
  3580 //-------------------------cisc_spill_match_node-------------------------------
  3581 // Recursively check two MatchRules for legal conversion via cisc-spilling
  3582 int MatchNode::cisc_spill_match(FormDict& globals, RegisterForm* registers, MatchNode* mRule2, const char* &operand, const char* &reg_type) {
  3583   int cisc_spillable  = Maybe_cisc_spillable;
  3584   int left_spillable  = Maybe_cisc_spillable;
  3585   int right_spillable = Maybe_cisc_spillable;
  3587   // Check that each has same number of operands at this level
  3588   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) )
  3589     return Not_cisc_spillable;
  3591   // Base Case: check that the current operands/operations match
  3592   // or are CISC spillable
  3593   assert( _opType, "Must have _opType");
  3594   assert( mRule2->_opType, "Must have _opType");
  3595   const Form *form  = globals[_opType];
  3596   const Form *form2 = globals[mRule2->_opType];
  3597   if( form == form2 ) {
  3598     cisc_spillable = Maybe_cisc_spillable;
  3599   } else {
  3600     const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
  3601     const char *name_left  = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
  3602     const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
  3603     DataType data_type = Form::none;
  3604     if (form->is_operand()) {
  3605       // Make sure the loadX matches the type of the reg
  3606       data_type = form->ideal_to_Reg_type(form->is_operand()->ideal_type(globals));
  3608     // Detect reg vs (loadX memory)
  3609     if( form->is_cisc_reg(globals)
  3610         && form2_inst
  3611         && data_type != Form::none
  3612         && (is_load_from_memory(mRule2->_opType) == data_type) // reg vs. (load memory)
  3613         && (name_left != NULL)       // NOT (load)
  3614         && (name_right == NULL) ) {  // NOT (load memory foo)
  3615       const Form *form2_left = name_left ? globals[name_left] : NULL;
  3616       if( form2_left && form2_left->is_cisc_mem(globals) ) {
  3617         cisc_spillable = Is_cisc_spillable;
  3618         operand        = _name;
  3619         reg_type       = _result;
  3620         return Is_cisc_spillable;
  3621       } else {
  3622         cisc_spillable = Not_cisc_spillable;
  3625     // Detect reg vs memory
  3626     else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) {
  3627       cisc_spillable = Is_cisc_spillable;
  3628       operand        = _name;
  3629       reg_type       = _result;
  3630       return Is_cisc_spillable;
  3631     } else {
  3632       cisc_spillable = Not_cisc_spillable;
  3636   // If cisc is still possible, check rest of tree
  3637   if( cisc_spillable == Maybe_cisc_spillable ) {
  3638     // Check that each has same number of operands at this level
  3639     if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
  3641     // Check left operands
  3642     if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
  3643       left_spillable = Maybe_cisc_spillable;
  3644     } else {
  3645       left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
  3648     // Check right operands
  3649     if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
  3650       right_spillable =  Maybe_cisc_spillable;
  3651     } else {
  3652       right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
  3655     // Combine results of left and right checks
  3656     cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
  3659   return cisc_spillable;
  3662 //---------------------------cisc_spill_match_rule------------------------------
  3663 // Recursively check two MatchRules for legal conversion via cisc-spilling
  3664 // This method handles the root of Match tree,
  3665 // general recursive checks done in MatchNode
  3666 int  MatchRule::matchrule_cisc_spill_match(FormDict& globals, RegisterForm* registers,
  3667                                            MatchRule* mRule2, const char* &operand,
  3668                                            const char* &reg_type) {
  3669   int cisc_spillable  = Maybe_cisc_spillable;
  3670   int left_spillable  = Maybe_cisc_spillable;
  3671   int right_spillable = Maybe_cisc_spillable;
  3673   // Check that each sets a result
  3674   if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
  3675   // Check that each has same number of operands at this level
  3676   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
  3678   // Check left operands: at root, must be target of 'Set'
  3679   if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
  3680     left_spillable = Not_cisc_spillable;
  3681   } else {
  3682     // Do not support cisc-spilling instruction's target location
  3683     if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
  3684       left_spillable = Maybe_cisc_spillable;
  3685     } else {
  3686       left_spillable = Not_cisc_spillable;
  3690   // Check right operands: recursive walk to identify reg->mem operand
  3691   if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
  3692     right_spillable =  Maybe_cisc_spillable;
  3693   } else {
  3694     right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
  3697   // Combine results of left and right checks
  3698   cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
  3700   return cisc_spillable;
  3703 //----------------------------- equivalent ------------------------------------
  3704 // Recursively check to see if two match rules are equivalent.
  3705 // This rule handles the root.
  3706 bool MatchRule::equivalent(FormDict &globals, MatchNode *mRule2) {
  3707   // Check that each sets a result
  3708   if (sets_result() != mRule2->sets_result()) {
  3709     return false;
  3712   // Check that the current operands/operations match
  3713   assert( _opType, "Must have _opType");
  3714   assert( mRule2->_opType, "Must have _opType");
  3715   const Form *form  = globals[_opType];
  3716   const Form *form2 = globals[mRule2->_opType];
  3717   if( form != form2 ) {
  3718     return false;
  3721   if (_lChild ) {
  3722     if( !_lChild->equivalent(globals, mRule2->_lChild) )
  3723       return false;
  3724   } else if (mRule2->_lChild) {
  3725     return false; // I have NULL left child, mRule2 has non-NULL left child.
  3728   if (_rChild ) {
  3729     if( !_rChild->equivalent(globals, mRule2->_rChild) )
  3730       return false;
  3731   } else if (mRule2->_rChild) {
  3732     return false; // I have NULL right child, mRule2 has non-NULL right child.
  3735   // We've made it through the gauntlet.
  3736   return true;
  3739 //----------------------------- equivalent ------------------------------------
  3740 // Recursively check to see if two match rules are equivalent.
  3741 // This rule handles the operands.
  3742 bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
  3743   if( !mNode2 )
  3744     return false;
  3746   // Check that the current operands/operations match
  3747   assert( _opType, "Must have _opType");
  3748   assert( mNode2->_opType, "Must have _opType");
  3749   const Form *form  = globals[_opType];
  3750   const Form *form2 = globals[mNode2->_opType];
  3751   if( form != form2 ) {
  3752     return false;
  3755   // Check that their children also match
  3756   if (_lChild ) {
  3757     if( !_lChild->equivalent(globals, mNode2->_lChild) )
  3758       return false;
  3759   } else if (mNode2->_lChild) {
  3760     return false; // I have NULL left child, mNode2 has non-NULL left child.
  3763   if (_rChild ) {
  3764     if( !_rChild->equivalent(globals, mNode2->_rChild) )
  3765       return false;
  3766   } else if (mNode2->_rChild) {
  3767     return false; // I have NULL right child, mNode2 has non-NULL right child.
  3770   // We've made it through the gauntlet.
  3771   return true;
  3774 //-------------------------- has_commutative_op -------------------------------
  3775 // Recursively check for commutative operations with subtree operands
  3776 // which could be swapped.
  3777 void MatchNode::count_commutative_op(int& count) {
  3778   static const char *commut_op_list[] = {
  3779     "AddI","AddL","AddF","AddD",
  3780     "AndI","AndL",
  3781     "MaxI","MinI",
  3782     "MulI","MulL","MulF","MulD",
  3783     "OrI" ,"OrL" ,
  3784     "XorI","XorL"
  3785   };
  3786   int cnt = sizeof(commut_op_list)/sizeof(char*);
  3788   if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
  3789     // Don't swap if right operand is an immediate constant.
  3790     bool is_const = false;
  3791     if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
  3792       FormDict &globals = _AD.globalNames();
  3793       const Form *form = globals[_rChild->_opType];
  3794       if ( form ) {
  3795         OperandForm  *oper = form->is_operand();
  3796         if( oper && oper->interface_type(globals) == Form::constant_interface )
  3797           is_const = true;
  3800     if( !is_const ) {
  3801       for( int i=0; i<cnt; i++ ) {
  3802         if( strcmp(_opType, commut_op_list[i]) == 0 ) {
  3803           count++;
  3804           _commutative_id = count; // id should be > 0
  3805           break;
  3810   if( _lChild )
  3811     _lChild->count_commutative_op(count);
  3812   if( _rChild )
  3813     _rChild->count_commutative_op(count);
  3816 //-------------------------- swap_commutative_op ------------------------------
  3817 // Recursively swap specified commutative operation with subtree operands.
  3818 void MatchNode::swap_commutative_op(bool atroot, int id) {
  3819   if( _commutative_id == id ) { // id should be > 0
  3820     assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ),
  3821             "not swappable operation");
  3822     MatchNode* tmp = _lChild;
  3823     _lChild = _rChild;
  3824     _rChild = tmp;
  3825     // Don't exit here since we need to build internalop.
  3828   bool is_set = ( strcmp(_opType, "Set") == 0 );
  3829   if( _lChild )
  3830     _lChild->swap_commutative_op(is_set, id);
  3831   if( _rChild )
  3832     _rChild->swap_commutative_op(is_set, id);
  3834   // If not the root, reduce this subtree to an internal operand
  3835   if( !atroot && (_lChild || _rChild) ) {
  3836     build_internalop();
  3840 //-------------------------- swap_commutative_op ------------------------------
  3841 // Recursively swap specified commutative operation with subtree operands.
  3842 void MatchRule::matchrule_swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
  3843   assert(match_rules_cnt < 100," too many match rule clones");
  3844   // Clone
  3845   MatchRule* clone = new MatchRule(_AD, this);
  3846   // Swap operands of commutative operation
  3847   ((MatchNode*)clone)->swap_commutative_op(true, count);
  3848   char* buf = (char*) malloc(strlen(instr_ident) + 4);
  3849   sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
  3850   clone->_result = buf;
  3852   clone->_next = this->_next;
  3853   this-> _next = clone;
  3854   if( (--count) > 0 ) {
  3855     this-> matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
  3856     clone->matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
  3860 //------------------------------MatchRule--------------------------------------
  3861 MatchRule::MatchRule(ArchDesc &ad)
  3862   : MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
  3863     _next = NULL;
  3866 MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
  3867   : MatchNode(ad, *mRule, 0), _depth(mRule->_depth),
  3868     _construct(mRule->_construct), _numchilds(mRule->_numchilds) {
  3869     _next = NULL;
  3872 MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
  3873                      int numleaves)
  3874   : MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
  3875     _numchilds(0) {
  3876       _next = NULL;
  3877       mroot->_lChild = NULL;
  3878       mroot->_rChild = NULL;
  3879       delete mroot;
  3880       _numleaves = numleaves;
  3881       _numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
  3883 MatchRule::~MatchRule() {
  3886 // Recursive call collecting info on top-level operands, not transitive.
  3887 // Implementation does not modify state of internal structures.
  3888 void MatchRule::append_components(FormDict& locals, ComponentList& components, bool def_flag) const {
  3889   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
  3891   MatchNode::append_components(locals, components,
  3892                                false /* not necessarily a def */);
  3895 // Recursive call on all operands' match rules in my match rule.
  3896 // Implementation does not modify state of internal structures  since they
  3897 // can be shared.
  3898 // The MatchNode that is called first treats its
  3899 bool MatchRule::base_operand(uint &position0, FormDict &globals,
  3900                              const char *&result, const char * &name,
  3901                              const char * &opType)const{
  3902   uint position = position0;
  3904   return (MatchNode::base_operand( position, globals, result, name, opType));
  3908 bool MatchRule::is_base_register(FormDict &globals) const {
  3909   uint   position = 1;
  3910   const char  *result   = NULL;
  3911   const char  *name     = NULL;
  3912   const char  *opType   = NULL;
  3913   if (!base_operand(position, globals, result, name, opType)) {
  3914     position = 0;
  3915     if( base_operand(position, globals, result, name, opType) &&
  3916         (strcmp(opType,"RegI")==0 ||
  3917          strcmp(opType,"RegP")==0 ||
  3918          strcmp(opType,"RegN")==0 ||
  3919          strcmp(opType,"RegL")==0 ||
  3920          strcmp(opType,"RegF")==0 ||
  3921          strcmp(opType,"RegD")==0 ||
  3922          strcmp(opType,"VecS")==0 ||
  3923          strcmp(opType,"VecD")==0 ||
  3924          strcmp(opType,"VecX")==0 ||
  3925          strcmp(opType,"VecY")==0 ||
  3926          strcmp(opType,"Reg" )==0) ) {
  3927       return 1;
  3930   return 0;
  3933 Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
  3934   uint         position = 1;
  3935   const char  *result   = NULL;
  3936   const char  *name     = NULL;
  3937   const char  *opType   = NULL;
  3938   if (!base_operand(position, globals, result, name, opType)) {
  3939     position = 0;
  3940     if (base_operand(position, globals, result, name, opType)) {
  3941       return ideal_to_const_type(opType);
  3944   return Form::none;
  3947 bool MatchRule::is_chain_rule(FormDict &globals) const {
  3949   // Check for chain rule, and do not generate a match list for it
  3950   if ((_lChild == NULL) && (_rChild == NULL) ) {
  3951     const Form *form = globals[_opType];
  3952     // If this is ideal, then it is a base match, not a chain rule.
  3953     if ( form && form->is_operand() && (!form->ideal_only())) {
  3954       return true;
  3957   // Check for "Set" form of chain rule, and do not generate a match list
  3958   if (_rChild) {
  3959     const char *rch = _rChild->_opType;
  3960     const Form *form = globals[rch];
  3961     if ((!strcmp(_opType,"Set") &&
  3962          ((form) && form->is_operand()))) {
  3963       return true;
  3966   return false;
  3969 int MatchRule::is_ideal_copy() const {
  3970   if( _rChild ) {
  3971     const char  *opType = _rChild->_opType;
  3972 #if 1
  3973     if( strcmp(opType,"CastIP")==0 )
  3974       return 1;
  3975 #else
  3976     if( strcmp(opType,"CastII")==0 )
  3977       return 1;
  3978     // Do not treat *CastPP this way, because it
  3979     // may transfer a raw pointer to an oop.
  3980     // If the register allocator were to coalesce this
  3981     // into a single LRG, the GC maps would be incorrect.
  3982     //if( strcmp(opType,"CastPP")==0 )
  3983     //  return 1;
  3984     //if( strcmp(opType,"CheckCastPP")==0 )
  3985     //  return 1;
  3986     //
  3987     // Do not treat CastX2P or CastP2X this way, because
  3988     // raw pointers and int types are treated differently
  3989     // when saving local & stack info for safepoints in
  3990     // Output().
  3991     //if( strcmp(opType,"CastX2P")==0 )
  3992     //  return 1;
  3993     //if( strcmp(opType,"CastP2X")==0 )
  3994     //  return 1;
  3995 #endif
  3997   if( is_chain_rule(_AD.globalNames()) &&
  3998       _lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 )
  3999     return 1;
  4000   return 0;
  4004 int MatchRule::is_expensive() const {
  4005   if( _rChild ) {
  4006     const char  *opType = _rChild->_opType;
  4007     if( strcmp(opType,"AtanD")==0 ||
  4008         strcmp(opType,"CosD")==0 ||
  4009         strcmp(opType,"DivD")==0 ||
  4010         strcmp(opType,"DivF")==0 ||
  4011         strcmp(opType,"DivI")==0 ||
  4012         strcmp(opType,"ExpD")==0 ||
  4013         strcmp(opType,"LogD")==0 ||
  4014         strcmp(opType,"Log10D")==0 ||
  4015         strcmp(opType,"ModD")==0 ||
  4016         strcmp(opType,"ModF")==0 ||
  4017         strcmp(opType,"ModI")==0 ||
  4018         strcmp(opType,"PowD")==0 ||
  4019         strcmp(opType,"SinD")==0 ||
  4020         strcmp(opType,"SqrtD")==0 ||
  4021         strcmp(opType,"TanD")==0 ||
  4022         strcmp(opType,"ConvD2F")==0 ||
  4023         strcmp(opType,"ConvD2I")==0 ||
  4024         strcmp(opType,"ConvD2L")==0 ||
  4025         strcmp(opType,"ConvF2D")==0 ||
  4026         strcmp(opType,"ConvF2I")==0 ||
  4027         strcmp(opType,"ConvF2L")==0 ||
  4028         strcmp(opType,"ConvI2D")==0 ||
  4029         strcmp(opType,"ConvI2F")==0 ||
  4030         strcmp(opType,"ConvI2L")==0 ||
  4031         strcmp(opType,"ConvL2D")==0 ||
  4032         strcmp(opType,"ConvL2F")==0 ||
  4033         strcmp(opType,"ConvL2I")==0 ||
  4034         strcmp(opType,"DecodeN")==0 ||
  4035         strcmp(opType,"EncodeP")==0 ||
  4036         strcmp(opType,"EncodePKlass")==0 ||
  4037         strcmp(opType,"DecodeNKlass")==0 ||
  4038         strcmp(opType,"RoundDouble")==0 ||
  4039         strcmp(opType,"RoundFloat")==0 ||
  4040         strcmp(opType,"ReverseBytesI")==0 ||
  4041         strcmp(opType,"ReverseBytesL")==0 ||
  4042         strcmp(opType,"ReverseBytesUS")==0 ||
  4043         strcmp(opType,"ReverseBytesS")==0 ||
  4044         strcmp(opType,"ReplicateB")==0 ||
  4045         strcmp(opType,"ReplicateS")==0 ||
  4046         strcmp(opType,"ReplicateI")==0 ||
  4047         strcmp(opType,"ReplicateL")==0 ||
  4048         strcmp(opType,"ReplicateF")==0 ||
  4049         strcmp(opType,"ReplicateD")==0 ||
  4050         0 /* 0 to line up columns nicely */ )
  4051       return 1;
  4053   return 0;
  4056 bool MatchRule::is_ideal_if() const {
  4057   if( !_opType ) return false;
  4058   return
  4059     !strcmp(_opType,"If"            ) ||
  4060     !strcmp(_opType,"CountedLoopEnd");
  4063 bool MatchRule::is_ideal_fastlock() const {
  4064   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  4065     return (strcmp(_rChild->_opType,"FastLock") == 0);
  4067   return false;
  4070 bool MatchRule::is_ideal_membar() const {
  4071   if( !_opType ) return false;
  4072   return
  4073     !strcmp(_opType,"MemBarAcquire") ||
  4074     !strcmp(_opType,"MemBarRelease") ||
  4075     !strcmp(_opType,"MemBarAcquireLock") ||
  4076     !strcmp(_opType,"MemBarReleaseLock") ||
  4077     !strcmp(_opType,"LoadFence" ) ||
  4078     !strcmp(_opType,"StoreFence") ||
  4079     !strcmp(_opType,"MemBarVolatile") ||
  4080     !strcmp(_opType,"MemBarCPUOrder") ||
  4081     !strcmp(_opType,"MemBarStoreStore");
  4084 bool MatchRule::is_ideal_loadPC() const {
  4085   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  4086     return (strcmp(_rChild->_opType,"LoadPC") == 0);
  4088   return false;
  4091 bool MatchRule::is_ideal_box() const {
  4092   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  4093     return (strcmp(_rChild->_opType,"Box") == 0);
  4095   return false;
  4098 bool MatchRule::is_ideal_goto() const {
  4099   bool   ideal_goto = false;
  4101   if( _opType && (strcmp(_opType,"Goto") == 0) ) {
  4102     ideal_goto = true;
  4104   return ideal_goto;
  4107 bool MatchRule::is_ideal_jump() const {
  4108   if( _opType ) {
  4109     if( !strcmp(_opType,"Jump") )
  4110       return true;
  4112   return false;
  4115 bool MatchRule::is_ideal_bool() const {
  4116   if( _opType ) {
  4117     if( !strcmp(_opType,"Bool") )
  4118       return true;
  4120   return false;
  4124 Form::DataType MatchRule::is_ideal_load() const {
  4125   Form::DataType ideal_load = Form::none;
  4127   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  4128     const char *opType = _rChild->_opType;
  4129     ideal_load = is_load_from_memory(opType);
  4132   return ideal_load;
  4135 bool MatchRule::is_vector() const {
  4136   static const char *vector_list[] = {
  4137     "AddVB","AddVS","AddVI","AddVL","AddVF","AddVD",
  4138     "SubVB","SubVS","SubVI","SubVL","SubVF","SubVD",
  4139     "MulVS","MulVI","MulVF","MulVD",
  4140     "DivVF","DivVD",
  4141     "AndV" ,"XorV" ,"OrV",
  4142     "LShiftCntV","RShiftCntV",
  4143     "LShiftVB","LShiftVS","LShiftVI","LShiftVL",
  4144     "RShiftVB","RShiftVS","RShiftVI","RShiftVL",
  4145     "URShiftVB","URShiftVS","URShiftVI","URShiftVL",
  4146     "ReplicateB","ReplicateS","ReplicateI","ReplicateL","ReplicateF","ReplicateD",
  4147     "LoadVector","StoreVector",
  4148     // Next are not supported currently.
  4149     "PackB","PackS","PackI","PackL","PackF","PackD","Pack2L","Pack2D",
  4150     "ExtractB","ExtractUB","ExtractC","ExtractS","ExtractI","ExtractL","ExtractF","ExtractD"
  4151   };
  4152   int cnt = sizeof(vector_list)/sizeof(char*);
  4153   if (_rChild) {
  4154     const char  *opType = _rChild->_opType;
  4155     for (int i=0; i<cnt; i++)
  4156       if (strcmp(opType,vector_list[i]) == 0)
  4157         return true;
  4159   return false;
  4163 bool MatchRule::skip_antidep_check() const {
  4164   // Some loads operate on what is effectively immutable memory so we
  4165   // should skip the anti dep computations.  For some of these nodes
  4166   // the rewritable field keeps the anti dep logic from triggering but
  4167   // for certain kinds of LoadKlass it does not since they are
  4168   // actually reading memory which could be rewritten by the runtime,
  4169   // though never by generated code.  This disables it uniformly for
  4170   // the nodes that behave like this: LoadKlass, LoadNKlass and
  4171   // LoadRange.
  4172   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  4173     const char *opType = _rChild->_opType;
  4174     if (strcmp("LoadKlass", opType) == 0 ||
  4175         strcmp("LoadNKlass", opType) == 0 ||
  4176         strcmp("LoadRange", opType) == 0) {
  4177       return true;
  4181   return false;
  4185 Form::DataType MatchRule::is_ideal_store() const {
  4186   Form::DataType ideal_store = Form::none;
  4188   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  4189     const char *opType = _rChild->_opType;
  4190     ideal_store = is_store_to_memory(opType);
  4193   return ideal_store;
  4197 void MatchRule::dump() {
  4198   output(stderr);
  4201 // Write just one line.
  4202 void MatchRule::output_short(FILE *fp) {
  4203   fprintf(fp,"MatchRule: ( %s",_name);
  4204   if (_lChild) _lChild->output(fp);
  4205   if (_rChild) _rChild->output(fp);
  4206   fprintf(fp," )");
  4209 void MatchRule::output(FILE *fp) {
  4210   output_short(fp);
  4211   fprintf(fp,"\n   nesting depth = %d\n", _depth);
  4212   if (_result) fprintf(fp,"   Result Type = %s", _result);
  4213   fprintf(fp,"\n");
  4216 //------------------------------Attribute--------------------------------------
  4217 Attribute::Attribute(char *id, char* val, int type)
  4218   : _ident(id), _val(val), _atype(type) {
  4220 Attribute::~Attribute() {
  4223 int Attribute::int_val(ArchDesc &ad) {
  4224   // Make sure it is an integer constant:
  4225   int result = 0;
  4226   if (!_val || !ADLParser::is_int_token(_val, result)) {
  4227     ad.syntax_err(0, "Attribute %s must have an integer value: %s",
  4228                   _ident, _val ? _val : "");
  4230   return result;
  4233 void Attribute::dump() {
  4234   output(stderr);
  4235 } // Debug printer
  4237 // Write to output files
  4238 void Attribute::output(FILE *fp) {
  4239   fprintf(fp,"Attribute: %s  %s\n", (_ident?_ident:""), (_val?_val:""));
  4242 //------------------------------FormatRule----------------------------------
  4243 FormatRule::FormatRule(char *temp)
  4244   : _temp(temp) {
  4246 FormatRule::~FormatRule() {
  4249 void FormatRule::dump() {
  4250   output(stderr);
  4253 // Write to output files
  4254 void FormatRule::output(FILE *fp) {
  4255   fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
  4256   fprintf(fp,"\n");

mercurial