src/cpu/sparc/vm/interp_masm_sparc.cpp

Thu, 27 Sep 2012 15:49:48 -0700

author
kvn
date
Thu, 27 Sep 2012 15:49:48 -0700
changeset 4116
69fb89ec6fa7
parent 4037
da91efe96a93
child 4299
f34d701e952e
child 4302
b2dbd323c668
permissions
-rw-r--r--

7198084: NPG: distance is too big for short branches in test_invocation_counter_for_mdp()
Summary: use long branches in test_invocation_counter_for_mdp()
Reviewed-by: twisti

duke@435 1 /*
jiangli@3826 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "interp_masm_sparc.hpp"
stefank@2314 27 #include "interpreter/interpreter.hpp"
stefank@2314 28 #include "interpreter/interpreterRuntime.hpp"
stefank@2314 29 #include "oops/arrayOop.hpp"
stefank@2314 30 #include "oops/markOop.hpp"
coleenp@4037 31 #include "oops/methodData.hpp"
coleenp@4037 32 #include "oops/method.hpp"
stefank@2314 33 #include "prims/jvmtiExport.hpp"
stefank@2314 34 #include "prims/jvmtiRedefineClassesTrace.hpp"
stefank@2314 35 #include "prims/jvmtiThreadState.hpp"
stefank@2314 36 #include "runtime/basicLock.hpp"
stefank@2314 37 #include "runtime/biasedLocking.hpp"
stefank@2314 38 #include "runtime/sharedRuntime.hpp"
stefank@2314 39 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 40 # include "thread_linux.inline.hpp"
stefank@2314 41 #endif
stefank@2314 42 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 43 # include "thread_solaris.inline.hpp"
stefank@2314 44 #endif
duke@435 45
duke@435 46 #ifndef CC_INTERP
duke@435 47 #ifndef FAST_DISPATCH
duke@435 48 #define FAST_DISPATCH 1
duke@435 49 #endif
duke@435 50 #undef FAST_DISPATCH
duke@435 51
duke@435 52 // Implementation of InterpreterMacroAssembler
duke@435 53
duke@435 54 // This file specializes the assember with interpreter-specific macros
duke@435 55
twisti@1162 56 const Address InterpreterMacroAssembler::l_tmp(FP, (frame::interpreter_frame_l_scratch_fp_offset * wordSize) + STACK_BIAS);
twisti@1162 57 const Address InterpreterMacroAssembler::d_tmp(FP, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
duke@435 58
duke@435 59 #else // CC_INTERP
duke@435 60 #ifndef STATE
duke@435 61 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
duke@435 62 #endif // STATE
duke@435 63
duke@435 64 #endif // CC_INTERP
duke@435 65
duke@435 66 void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
duke@435 67 // Note: this algorithm is also used by C1's OSR entry sequence.
duke@435 68 // Any changes should also be applied to CodeEmitter::emit_osr_entry().
duke@435 69 assert_different_registers(args_size, locals_size);
duke@435 70 // max_locals*2 for TAGS. Assumes that args_size has already been adjusted.
duke@435 71 subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
duke@435 72 // Use br/mov combination because it works on both V8 and V9 and is
duke@435 73 // faster.
duke@435 74 Label skip_move;
duke@435 75 br(Assembler::negative, true, Assembler::pt, skip_move);
duke@435 76 delayed()->mov(G0, delta);
duke@435 77 bind(skip_move);
duke@435 78 round_to(delta, WordsPerLong); // make multiple of 2 (SP must be 2-word aligned)
duke@435 79 sll(delta, LogBytesPerWord, delta); // extra space for locals in bytes
duke@435 80 }
duke@435 81
duke@435 82 #ifndef CC_INTERP
duke@435 83
duke@435 84 // Dispatch code executed in the prolog of a bytecode which does not do it's
duke@435 85 // own dispatch. The dispatch address is computed and placed in IdispatchAddress
duke@435 86 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
duke@435 87 assert_not_delayed();
duke@435 88 #ifdef FAST_DISPATCH
duke@435 89 // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
duke@435 90 // they both use I2.
duke@435 91 assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
duke@435 92 ldub(Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 93 add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
duke@435 94 // add offset to correct dispatch table
duke@435 95 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
duke@435 96 ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
duke@435 97 #else
twisti@1162 98 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 99 // dispatch table to use
twisti@1162 100 AddressLiteral tbl(Interpreter::dispatch_table(state));
twisti@1162 101 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
twisti@1162 102 set(tbl, G3_scratch); // compute addr of table
twisti@1162 103 ld_ptr(G3_scratch, Lbyte_code, IdispatchAddress); // get entry addr
duke@435 104 #endif
duke@435 105 }
duke@435 106
duke@435 107
duke@435 108 // Dispatch code executed in the epilog of a bytecode which does not do it's
duke@435 109 // own dispatch. The dispatch address in IdispatchAddress is used for the
duke@435 110 // dispatch.
duke@435 111 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
duke@435 112 assert_not_delayed();
duke@435 113 verify_FPU(1, state);
duke@435 114 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 115 jmp( IdispatchAddress, 0 );
duke@435 116 if (bcp_incr != 0) delayed()->inc(Lbcp, bcp_incr);
duke@435 117 else delayed()->nop();
duke@435 118 }
duke@435 119
duke@435 120
duke@435 121 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
duke@435 122 // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
duke@435 123 assert_not_delayed();
duke@435 124 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 125 dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
duke@435 126 }
duke@435 127
duke@435 128
duke@435 129 void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
duke@435 130 // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
duke@435 131 assert_not_delayed();
duke@435 132 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 133 dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
duke@435 134 }
duke@435 135
duke@435 136
duke@435 137 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
duke@435 138 // load current bytecode
duke@435 139 assert_not_delayed();
duke@435 140 ldub( Lbcp, 0, Lbyte_code); // load next bytecode
duke@435 141 dispatch_base(state, table);
duke@435 142 }
duke@435 143
duke@435 144
duke@435 145 void InterpreterMacroAssembler::call_VM_leaf_base(
duke@435 146 Register java_thread,
duke@435 147 address entry_point,
duke@435 148 int number_of_arguments
duke@435 149 ) {
duke@435 150 if (!java_thread->is_valid())
duke@435 151 java_thread = L7_thread_cache;
duke@435 152 // super call
duke@435 153 MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
duke@435 154 }
duke@435 155
duke@435 156
duke@435 157 void InterpreterMacroAssembler::call_VM_base(
duke@435 158 Register oop_result,
duke@435 159 Register java_thread,
duke@435 160 Register last_java_sp,
duke@435 161 address entry_point,
duke@435 162 int number_of_arguments,
duke@435 163 bool check_exception
duke@435 164 ) {
duke@435 165 if (!java_thread->is_valid())
duke@435 166 java_thread = L7_thread_cache;
duke@435 167 // See class ThreadInVMfromInterpreter, which assumes that the interpreter
duke@435 168 // takes responsibility for setting its own thread-state on call-out.
duke@435 169 // However, ThreadInVMfromInterpreter resets the state to "in_Java".
duke@435 170
duke@435 171 //save_bcp(); // save bcp
duke@435 172 MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
duke@435 173 //restore_bcp(); // restore bcp
duke@435 174 //restore_locals(); // restore locals pointer
duke@435 175 }
duke@435 176
duke@435 177
duke@435 178 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
duke@435 179 if (JvmtiExport::can_pop_frame()) {
duke@435 180 Label L;
duke@435 181
duke@435 182 // Check the "pending popframe condition" flag in the current thread
twisti@1162 183 ld(G2_thread, JavaThread::popframe_condition_offset(), scratch_reg);
duke@435 184
duke@435 185 // Initiate popframe handling only if it is not already being processed. If the flag
duke@435 186 // has the popframe_processing bit set, it means that this code is called *during* popframe
duke@435 187 // handling - we don't want to reenter.
duke@435 188 btst(JavaThread::popframe_pending_bit, scratch_reg);
duke@435 189 br(zero, false, pt, L);
duke@435 190 delayed()->nop();
duke@435 191 btst(JavaThread::popframe_processing_bit, scratch_reg);
duke@435 192 br(notZero, false, pt, L);
duke@435 193 delayed()->nop();
duke@435 194
duke@435 195 // Call Interpreter::remove_activation_preserving_args_entry() to get the
duke@435 196 // address of the same-named entrypoint in the generated interpreter code.
duke@435 197 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
duke@435 198
duke@435 199 // Jump to Interpreter::_remove_activation_preserving_args_entry
duke@435 200 jmpl(O0, G0, G0);
duke@435 201 delayed()->nop();
duke@435 202 bind(L);
duke@435 203 }
duke@435 204 }
duke@435 205
duke@435 206
duke@435 207 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
duke@435 208 Register thr_state = G4_scratch;
twisti@1162 209 ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
twisti@1162 210 const Address tos_addr(thr_state, JvmtiThreadState::earlyret_tos_offset());
twisti@1162 211 const Address oop_addr(thr_state, JvmtiThreadState::earlyret_oop_offset());
twisti@1162 212 const Address val_addr(thr_state, JvmtiThreadState::earlyret_value_offset());
duke@435 213 switch (state) {
duke@435 214 case ltos: ld_long(val_addr, Otos_l); break;
duke@435 215 case atos: ld_ptr(oop_addr, Otos_l);
duke@435 216 st_ptr(G0, oop_addr); break;
duke@435 217 case btos: // fall through
duke@435 218 case ctos: // fall through
duke@435 219 case stos: // fall through
duke@435 220 case itos: ld(val_addr, Otos_l1); break;
duke@435 221 case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
duke@435 222 case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
duke@435 223 case vtos: /* nothing to do */ break;
duke@435 224 default : ShouldNotReachHere();
duke@435 225 }
duke@435 226 // Clean up tos value in the jvmti thread state
duke@435 227 or3(G0, ilgl, G3_scratch);
duke@435 228 stw(G3_scratch, tos_addr);
duke@435 229 st_long(G0, val_addr);
duke@435 230 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 231 }
duke@435 232
duke@435 233
duke@435 234 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
duke@435 235 if (JvmtiExport::can_force_early_return()) {
duke@435 236 Label L;
duke@435 237 Register thr_state = G3_scratch;
twisti@1162 238 ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
kvn@3037 239 br_null_short(thr_state, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
duke@435 240
duke@435 241 // Initiate earlyret handling only if it is not already being processed.
duke@435 242 // If the flag has the earlyret_processing bit set, it means that this code
duke@435 243 // is called *during* earlyret handling - we don't want to reenter.
twisti@1162 244 ld(thr_state, JvmtiThreadState::earlyret_state_offset(), G4_scratch);
kvn@3037 245 cmp_and_br_short(G4_scratch, JvmtiThreadState::earlyret_pending, Assembler::notEqual, pt, L);
duke@435 246
duke@435 247 // Call Interpreter::remove_activation_early_entry() to get the address of the
duke@435 248 // same-named entrypoint in the generated interpreter code
twisti@1162 249 ld(thr_state, JvmtiThreadState::earlyret_tos_offset(), Otos_l1);
duke@435 250 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
duke@435 251
duke@435 252 // Jump to Interpreter::_remove_activation_early_entry
duke@435 253 jmpl(O0, G0, G0);
duke@435 254 delayed()->nop();
duke@435 255 bind(L);
duke@435 256 }
duke@435 257 }
duke@435 258
duke@435 259
twisti@1730 260 void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
duke@435 261 mov(arg_1, O0);
twisti@1730 262 mov(arg_2, O1);
twisti@1730 263 MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 2);
duke@435 264 }
duke@435 265 #endif /* CC_INTERP */
duke@435 266
duke@435 267
duke@435 268 #ifndef CC_INTERP
duke@435 269
duke@435 270 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
duke@435 271 assert_not_delayed();
duke@435 272 dispatch_Lbyte_code(state, table);
duke@435 273 }
duke@435 274
duke@435 275
duke@435 276 void InterpreterMacroAssembler::dispatch_normal(TosState state) {
duke@435 277 dispatch_base(state, Interpreter::normal_table(state));
duke@435 278 }
duke@435 279
duke@435 280
duke@435 281 void InterpreterMacroAssembler::dispatch_only(TosState state) {
duke@435 282 dispatch_base(state, Interpreter::dispatch_table(state));
duke@435 283 }
duke@435 284
duke@435 285
duke@435 286 // common code to dispatch and dispatch_only
duke@435 287 // dispatch value in Lbyte_code and increment Lbcp
duke@435 288
duke@435 289 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
duke@435 290 verify_FPU(1, state);
duke@435 291 // %%%%% maybe implement +VerifyActivationFrameSize here
duke@435 292 //verify_thread(); //too slow; we will just verify on method entry & exit
duke@435 293 if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 294 #ifdef FAST_DISPATCH
duke@435 295 if (table == Interpreter::dispatch_table(state)) {
duke@435 296 // use IdispatchTables
duke@435 297 add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
duke@435 298 // add offset to correct dispatch table
duke@435 299 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
duke@435 300 ld_ptr(IdispatchTables, Lbyte_code, G3_scratch); // get entry addr
duke@435 301 } else {
duke@435 302 #endif
duke@435 303 // dispatch table to use
twisti@1162 304 AddressLiteral tbl(table);
duke@435 305 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
twisti@1162 306 set(tbl, G3_scratch); // compute addr of table
duke@435 307 ld_ptr(G3_scratch, Lbyte_code, G3_scratch); // get entry addr
duke@435 308 #ifdef FAST_DISPATCH
duke@435 309 }
duke@435 310 #endif
duke@435 311 jmp( G3_scratch, 0 );
duke@435 312 if (bcp_incr != 0) delayed()->inc(Lbcp, bcp_incr);
duke@435 313 else delayed()->nop();
duke@435 314 }
duke@435 315
duke@435 316
duke@435 317 // Helpers for expression stack
duke@435 318
duke@435 319 // Longs and doubles are Category 2 computational types in the
duke@435 320 // JVM specification (section 3.11.1) and take 2 expression stack or
duke@435 321 // local slots.
duke@435 322 // Aligning them on 32 bit with tagged stacks is hard because the code generated
duke@435 323 // for the dup* bytecodes depends on what types are already on the stack.
duke@435 324 // If the types are split into the two stack/local slots, that is much easier
duke@435 325 // (and we can use 0 for non-reference tags).
duke@435 326
duke@435 327 // Known good alignment in _LP64 but unknown otherwise
duke@435 328 void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
duke@435 329 assert_not_delayed();
duke@435 330
duke@435 331 #ifdef _LP64
duke@435 332 ldf(FloatRegisterImpl::D, r1, offset, d);
duke@435 333 #else
duke@435 334 ldf(FloatRegisterImpl::S, r1, offset, d);
twisti@1861 335 ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize, d->successor());
duke@435 336 #endif
duke@435 337 }
duke@435 338
duke@435 339 // Known good alignment in _LP64 but unknown otherwise
duke@435 340 void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
duke@435 341 assert_not_delayed();
duke@435 342
duke@435 343 #ifdef _LP64
duke@435 344 stf(FloatRegisterImpl::D, d, r1, offset);
duke@435 345 // store something more useful here
twisti@1861 346 debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
duke@435 347 #else
duke@435 348 stf(FloatRegisterImpl::S, d, r1, offset);
twisti@1861 349 stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize);
duke@435 350 #endif
duke@435 351 }
duke@435 352
duke@435 353
duke@435 354 // Known good alignment in _LP64 but unknown otherwise
duke@435 355 void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
duke@435 356 assert_not_delayed();
duke@435 357 #ifdef _LP64
duke@435 358 ldx(r1, offset, rd);
duke@435 359 #else
duke@435 360 ld(r1, offset, rd);
twisti@1861 361 ld(r1, offset + Interpreter::stackElementSize, rd->successor());
duke@435 362 #endif
duke@435 363 }
duke@435 364
duke@435 365 // Known good alignment in _LP64 but unknown otherwise
duke@435 366 void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
duke@435 367 assert_not_delayed();
duke@435 368
duke@435 369 #ifdef _LP64
duke@435 370 stx(l, r1, offset);
duke@435 371 // store something more useful here
twisti@1861 372 debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
duke@435 373 #else
duke@435 374 st(l, r1, offset);
twisti@1861 375 st(l->successor(), r1, offset + Interpreter::stackElementSize);
duke@435 376 #endif
duke@435 377 }
duke@435 378
duke@435 379 void InterpreterMacroAssembler::pop_i(Register r) {
duke@435 380 assert_not_delayed();
duke@435 381 ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
twisti@1861 382 inc(Lesp, Interpreter::stackElementSize);
duke@435 383 debug_only(verify_esp(Lesp));
duke@435 384 }
duke@435 385
duke@435 386 void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
duke@435 387 assert_not_delayed();
duke@435 388 ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
twisti@1861 389 inc(Lesp, Interpreter::stackElementSize);
duke@435 390 debug_only(verify_esp(Lesp));
duke@435 391 }
duke@435 392
duke@435 393 void InterpreterMacroAssembler::pop_l(Register r) {
duke@435 394 assert_not_delayed();
duke@435 395 load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
twisti@1861 396 inc(Lesp, 2*Interpreter::stackElementSize);
duke@435 397 debug_only(verify_esp(Lesp));
duke@435 398 }
duke@435 399
duke@435 400
duke@435 401 void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
duke@435 402 assert_not_delayed();
duke@435 403 ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
twisti@1861 404 inc(Lesp, Interpreter::stackElementSize);
duke@435 405 debug_only(verify_esp(Lesp));
duke@435 406 }
duke@435 407
duke@435 408
duke@435 409 void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
duke@435 410 assert_not_delayed();
duke@435 411 load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
twisti@1861 412 inc(Lesp, 2*Interpreter::stackElementSize);
duke@435 413 debug_only(verify_esp(Lesp));
duke@435 414 }
duke@435 415
duke@435 416
duke@435 417 void InterpreterMacroAssembler::push_i(Register r) {
duke@435 418 assert_not_delayed();
duke@435 419 debug_only(verify_esp(Lesp));
twisti@1861 420 st(r, Lesp, 0);
twisti@1861 421 dec(Lesp, Interpreter::stackElementSize);
duke@435 422 }
duke@435 423
duke@435 424 void InterpreterMacroAssembler::push_ptr(Register r) {
duke@435 425 assert_not_delayed();
twisti@1861 426 st_ptr(r, Lesp, 0);
twisti@1861 427 dec(Lesp, Interpreter::stackElementSize);
duke@435 428 }
duke@435 429
duke@435 430 // remember: our convention for longs in SPARC is:
duke@435 431 // O0 (Otos_l1) has high-order part in first word,
duke@435 432 // O1 (Otos_l2) has low-order part in second word
duke@435 433
duke@435 434 void InterpreterMacroAssembler::push_l(Register r) {
duke@435 435 assert_not_delayed();
duke@435 436 debug_only(verify_esp(Lesp));
twisti@1861 437 // Longs are stored in memory-correct order, even if unaligned.
twisti@1861 438 int offset = -Interpreter::stackElementSize;
duke@435 439 store_unaligned_long(r, Lesp, offset);
twisti@1861 440 dec(Lesp, 2 * Interpreter::stackElementSize);
duke@435 441 }
duke@435 442
duke@435 443
duke@435 444 void InterpreterMacroAssembler::push_f(FloatRegister f) {
duke@435 445 assert_not_delayed();
duke@435 446 debug_only(verify_esp(Lesp));
twisti@1861 447 stf(FloatRegisterImpl::S, f, Lesp, 0);
twisti@1861 448 dec(Lesp, Interpreter::stackElementSize);
duke@435 449 }
duke@435 450
duke@435 451
duke@435 452 void InterpreterMacroAssembler::push_d(FloatRegister d) {
duke@435 453 assert_not_delayed();
duke@435 454 debug_only(verify_esp(Lesp));
twisti@1861 455 // Longs are stored in memory-correct order, even if unaligned.
twisti@1861 456 int offset = -Interpreter::stackElementSize;
duke@435 457 store_unaligned_double(d, Lesp, offset);
twisti@1861 458 dec(Lesp, 2 * Interpreter::stackElementSize);
duke@435 459 }
duke@435 460
duke@435 461
duke@435 462 void InterpreterMacroAssembler::push(TosState state) {
duke@435 463 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 464 switch (state) {
duke@435 465 case atos: push_ptr(); break;
duke@435 466 case btos: push_i(); break;
duke@435 467 case ctos:
duke@435 468 case stos: push_i(); break;
duke@435 469 case itos: push_i(); break;
duke@435 470 case ltos: push_l(); break;
duke@435 471 case ftos: push_f(); break;
duke@435 472 case dtos: push_d(); break;
duke@435 473 case vtos: /* nothing to do */ break;
duke@435 474 default : ShouldNotReachHere();
duke@435 475 }
duke@435 476 }
duke@435 477
duke@435 478
duke@435 479 void InterpreterMacroAssembler::pop(TosState state) {
duke@435 480 switch (state) {
duke@435 481 case atos: pop_ptr(); break;
duke@435 482 case btos: pop_i(); break;
duke@435 483 case ctos:
duke@435 484 case stos: pop_i(); break;
duke@435 485 case itos: pop_i(); break;
duke@435 486 case ltos: pop_l(); break;
duke@435 487 case ftos: pop_f(); break;
duke@435 488 case dtos: pop_d(); break;
duke@435 489 case vtos: /* nothing to do */ break;
duke@435 490 default : ShouldNotReachHere();
duke@435 491 }
duke@435 492 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 493 }
duke@435 494
duke@435 495
twisti@1861 496 // Helpers for swap and dup
twisti@1861 497 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
duke@435 498 ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
duke@435 499 }
twisti@1861 500 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
duke@435 501 st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
duke@435 502 }
duke@435 503
duke@435 504
duke@435 505 void InterpreterMacroAssembler::load_receiver(Register param_count,
duke@435 506 Register recv) {
twisti@1861 507 sll(param_count, Interpreter::logStackElementSize, param_count);
twisti@3969 508 ld_ptr(Lesp, param_count, recv); // gets receiver oop
duke@435 509 }
duke@435 510
duke@435 511 void InterpreterMacroAssembler::empty_expression_stack() {
duke@435 512 // Reset Lesp.
duke@435 513 sub( Lmonitors, wordSize, Lesp );
duke@435 514
duke@435 515 // Reset SP by subtracting more space from Lesp.
duke@435 516 Label done;
twisti@1162 517 assert(G4_scratch != Gframe_size, "Only you can prevent register aliasing!");
duke@435 518
duke@435 519 // A native does not need to do this, since its callee does not change SP.
coleenp@4037 520 ld(Lmethod, Method::access_flags_offset(), Gframe_size); // Load access flags.
duke@435 521 btst(JVM_ACC_NATIVE, Gframe_size);
duke@435 522 br(Assembler::notZero, false, Assembler::pt, done);
duke@435 523 delayed()->nop();
duke@435 524
duke@435 525 // Compute max expression stack+register save area
coleenp@4037 526 lduh(Lmethod, in_bytes(Method::max_stack_offset()), Gframe_size); // Load max stack.
duke@435 527 add( Gframe_size, frame::memory_parameter_word_sp_offset, Gframe_size );
duke@435 528
duke@435 529 //
duke@435 530 // now set up a stack frame with the size computed above
duke@435 531 //
duke@435 532 //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
duke@435 533 sll( Gframe_size, LogBytesPerWord, Gframe_size );
duke@435 534 sub( Lesp, Gframe_size, Gframe_size );
duke@435 535 and3( Gframe_size, -(2 * wordSize), Gframe_size ); // align SP (downwards) to an 8/16-byte boundary
duke@435 536 debug_only(verify_sp(Gframe_size, G4_scratch));
duke@435 537 #ifdef _LP64
duke@435 538 sub(Gframe_size, STACK_BIAS, Gframe_size );
duke@435 539 #endif
duke@435 540 mov(Gframe_size, SP);
duke@435 541
duke@435 542 bind(done);
duke@435 543 }
duke@435 544
duke@435 545
duke@435 546 #ifdef ASSERT
duke@435 547 void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
duke@435 548 Label Bad, OK;
duke@435 549
duke@435 550 // Saved SP must be aligned.
duke@435 551 #ifdef _LP64
duke@435 552 btst(2*BytesPerWord-1, Rsp);
duke@435 553 #else
duke@435 554 btst(LongAlignmentMask, Rsp);
duke@435 555 #endif
duke@435 556 br(Assembler::notZero, false, Assembler::pn, Bad);
duke@435 557 delayed()->nop();
duke@435 558
duke@435 559 // Saved SP, plus register window size, must not be above FP.
duke@435 560 add(Rsp, frame::register_save_words * wordSize, Rtemp);
duke@435 561 #ifdef _LP64
duke@435 562 sub(Rtemp, STACK_BIAS, Rtemp); // Bias Rtemp before cmp to FP
duke@435 563 #endif
kvn@3037 564 cmp_and_brx_short(Rtemp, FP, Assembler::greaterUnsigned, Assembler::pn, Bad);
duke@435 565
duke@435 566 // Saved SP must not be ridiculously below current SP.
duke@435 567 size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
duke@435 568 set(maxstack, Rtemp);
duke@435 569 sub(SP, Rtemp, Rtemp);
duke@435 570 #ifdef _LP64
duke@435 571 add(Rtemp, STACK_BIAS, Rtemp); // Unbias Rtemp before cmp to Rsp
duke@435 572 #endif
kvn@3037 573 cmp_and_brx_short(Rsp, Rtemp, Assembler::lessUnsigned, Assembler::pn, Bad);
kvn@3037 574
kvn@3037 575 ba_short(OK);
duke@435 576
duke@435 577 bind(Bad);
duke@435 578 stop("on return to interpreted call, restored SP is corrupted");
duke@435 579
duke@435 580 bind(OK);
duke@435 581 }
duke@435 582
duke@435 583
duke@435 584 void InterpreterMacroAssembler::verify_esp(Register Resp) {
duke@435 585 // about to read or write Resp[0]
duke@435 586 // make sure it is not in the monitors or the register save area
duke@435 587 Label OK1, OK2;
duke@435 588
duke@435 589 cmp(Resp, Lmonitors);
duke@435 590 brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
duke@435 591 delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
duke@435 592 stop("too many pops: Lesp points into monitor area");
duke@435 593 bind(OK1);
duke@435 594 #ifdef _LP64
duke@435 595 sub(Resp, STACK_BIAS, Resp);
duke@435 596 #endif
duke@435 597 cmp(Resp, SP);
duke@435 598 brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
duke@435 599 delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
duke@435 600 stop("too many pushes: Lesp points into register window");
duke@435 601 bind(OK2);
duke@435 602 }
duke@435 603 #endif // ASSERT
duke@435 604
duke@435 605 // Load compiled (i2c) or interpreter entry when calling from interpreted and
duke@435 606 // do the call. Centralized so that all interpreter calls will do the same actions.
duke@435 607 // If jvmti single stepping is on for a thread we must not call compiled code.
duke@435 608 void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
duke@435 609
duke@435 610 // Assume we want to go compiled if available
duke@435 611
coleenp@4037 612 ld_ptr(G5_method, in_bytes(Method::from_interpreted_offset()), target);
duke@435 613
duke@435 614 if (JvmtiExport::can_post_interpreter_events()) {
duke@435 615 // JVMTI events, such as single-stepping, are implemented partly by avoiding running
duke@435 616 // compiled code in threads for which the event is enabled. Check here for
duke@435 617 // interp_only_mode if these events CAN be enabled.
duke@435 618 verify_thread();
duke@435 619 Label skip_compiled_code;
duke@435 620
twisti@1162 621 const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
duke@435 622 ld(interp_only, scratch);
kvn@3037 623 cmp_zero_and_br(Assembler::notZero, scratch, skip_compiled_code, true, Assembler::pn);
coleenp@4037 624 delayed()->ld_ptr(G5_method, in_bytes(Method::interpreter_entry_offset()), target);
duke@435 625 bind(skip_compiled_code);
duke@435 626 }
duke@435 627
coleenp@4037 628 // the i2c_adapters need Method* in G5_method (right? %%%)
duke@435 629 // do the call
duke@435 630 #ifdef ASSERT
duke@435 631 {
duke@435 632 Label ok;
kvn@3037 633 br_notnull_short(target, Assembler::pt, ok);
duke@435 634 stop("null entry point");
duke@435 635 bind(ok);
duke@435 636 }
duke@435 637 #endif // ASSERT
duke@435 638
duke@435 639 // Adjust Rret first so Llast_SP can be same as Rret
duke@435 640 add(Rret, -frame::pc_return_offset, O7);
duke@435 641 add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
duke@435 642 // Record SP so we can remove any stack space allocated by adapter transition
duke@435 643 jmp(target, 0);
duke@435 644 delayed()->mov(SP, Llast_SP);
duke@435 645 }
duke@435 646
duke@435 647 void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
duke@435 648 assert_not_delayed();
duke@435 649
duke@435 650 Label not_taken;
duke@435 651 if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
duke@435 652 else br (cc, false, Assembler::pn, not_taken);
duke@435 653 delayed()->nop();
duke@435 654
duke@435 655 TemplateTable::branch(false,false);
duke@435 656
duke@435 657 bind(not_taken);
duke@435 658
duke@435 659 profile_not_taken_branch(G3_scratch);
duke@435 660 }
duke@435 661
duke@435 662
duke@435 663 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
duke@435 664 int bcp_offset,
duke@435 665 Register Rtmp,
duke@435 666 Register Rdst,
duke@435 667 signedOrNot is_signed,
duke@435 668 setCCOrNot should_set_CC ) {
duke@435 669 assert(Rtmp != Rdst, "need separate temp register");
duke@435 670 assert_not_delayed();
duke@435 671 switch (is_signed) {
duke@435 672 default: ShouldNotReachHere();
duke@435 673
duke@435 674 case Signed: ldsb( Lbcp, bcp_offset, Rdst ); break; // high byte
duke@435 675 case Unsigned: ldub( Lbcp, bcp_offset, Rdst ); break; // high byte
duke@435 676 }
duke@435 677 ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
duke@435 678 sll( Rdst, BitsPerByte, Rdst);
duke@435 679 switch (should_set_CC ) {
duke@435 680 default: ShouldNotReachHere();
duke@435 681
duke@435 682 case set_CC: orcc( Rdst, Rtmp, Rdst ); break;
duke@435 683 case dont_set_CC: or3( Rdst, Rtmp, Rdst ); break;
duke@435 684 }
duke@435 685 }
duke@435 686
duke@435 687
duke@435 688 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
duke@435 689 int bcp_offset,
duke@435 690 Register Rtmp,
duke@435 691 Register Rdst,
duke@435 692 setCCOrNot should_set_CC ) {
duke@435 693 assert(Rtmp != Rdst, "need separate temp register");
duke@435 694 assert_not_delayed();
duke@435 695 add( Lbcp, bcp_offset, Rtmp);
duke@435 696 andcc( Rtmp, 3, G0);
duke@435 697 Label aligned;
duke@435 698 switch (should_set_CC ) {
duke@435 699 default: ShouldNotReachHere();
duke@435 700
duke@435 701 case set_CC: break;
duke@435 702 case dont_set_CC: break;
duke@435 703 }
duke@435 704
duke@435 705 br(Assembler::zero, true, Assembler::pn, aligned);
duke@435 706 #ifdef _LP64
duke@435 707 delayed()->ldsw(Rtmp, 0, Rdst);
duke@435 708 #else
duke@435 709 delayed()->ld(Rtmp, 0, Rdst);
duke@435 710 #endif
duke@435 711
duke@435 712 ldub(Lbcp, bcp_offset + 3, Rdst);
duke@435 713 ldub(Lbcp, bcp_offset + 2, Rtmp); sll(Rtmp, 8, Rtmp); or3(Rtmp, Rdst, Rdst);
duke@435 714 ldub(Lbcp, bcp_offset + 1, Rtmp); sll(Rtmp, 16, Rtmp); or3(Rtmp, Rdst, Rdst);
duke@435 715 #ifdef _LP64
duke@435 716 ldsb(Lbcp, bcp_offset + 0, Rtmp); sll(Rtmp, 24, Rtmp);
duke@435 717 #else
duke@435 718 // Unsigned load is faster than signed on some implementations
duke@435 719 ldub(Lbcp, bcp_offset + 0, Rtmp); sll(Rtmp, 24, Rtmp);
duke@435 720 #endif
duke@435 721 or3(Rtmp, Rdst, Rdst );
duke@435 722
duke@435 723 bind(aligned);
duke@435 724 if (should_set_CC == set_CC) tst(Rdst);
duke@435 725 }
duke@435 726
coleenp@4037 727 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register temp, Register index,
jrose@1920 728 int bcp_offset, size_t index_size) {
twisti@1858 729 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
jrose@1920 730 if (index_size == sizeof(u2)) {
coleenp@4037 731 get_2_byte_integer_at_bcp(bcp_offset, temp, index, Unsigned);
jrose@1920 732 } else if (index_size == sizeof(u4)) {
twisti@2698 733 assert(EnableInvokeDynamic, "giant index used only for JSR 292");
coleenp@4037 734 get_4_byte_integer_at_bcp(bcp_offset, temp, index);
coleenp@4037 735 assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
coleenp@4037 736 xor3(index, -1, index); // convert to plain index
jrose@1920 737 } else if (index_size == sizeof(u1)) {
coleenp@4037 738 ldub(Lbcp, bcp_offset, index);
jrose@1920 739 } else {
jrose@1920 740 ShouldNotReachHere();
twisti@1858 741 }
twisti@1858 742 }
twisti@1858 743
twisti@1858 744
twisti@1858 745 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp,
jrose@1920 746 int bcp_offset, size_t index_size) {
duke@435 747 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
duke@435 748 assert_different_registers(cache, tmp);
duke@435 749 assert_not_delayed();
jrose@1920 750 get_cache_index_at_bcp(cache, tmp, bcp_offset, index_size);
twisti@1858 751 // convert from field index to ConstantPoolCacheEntry index and from
twisti@1858 752 // word index to byte offset
duke@435 753 sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
duke@435 754 add(LcpoolCache, tmp, cache);
duke@435 755 }
duke@435 756
duke@435 757
twisti@3050 758 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
twisti@3050 759 Register temp,
twisti@3050 760 Register bytecode,
twisti@3050 761 int byte_no,
twisti@3050 762 int bcp_offset,
twisti@3050 763 size_t index_size) {
twisti@3050 764 get_cache_and_index_at_bcp(cache, temp, bcp_offset, index_size);
coleenp@4037 765 ld_ptr(cache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset(), bytecode);
twisti@3050 766 const int shift_count = (1 + byte_no) * BitsPerByte;
twisti@3969 767 assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
twisti@3969 768 (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
twisti@3969 769 "correct shift count");
twisti@3969 770 srl(bytecode, shift_count, bytecode);
twisti@3969 771 assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
twisti@3969 772 and3(bytecode, ConstantPoolCacheEntry::bytecode_1_mask, bytecode);
twisti@3050 773 }
twisti@3050 774
twisti@3050 775
twisti@1858 776 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
jrose@1920 777 int bcp_offset, size_t index_size) {
duke@435 778 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
duke@435 779 assert_different_registers(cache, tmp);
duke@435 780 assert_not_delayed();
jrose@1920 781 if (index_size == sizeof(u2)) {
jrose@1920 782 get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
jrose@1920 783 } else {
jrose@1920 784 ShouldNotReachHere(); // other sizes not supported here
jrose@1920 785 }
duke@435 786 // convert from field index to ConstantPoolCacheEntry index
duke@435 787 // and from word index to byte offset
duke@435 788 sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
duke@435 789 // skip past the header
coleenp@4037 790 add(tmp, in_bytes(ConstantPoolCache::base_offset()), tmp);
duke@435 791 // construct pointer to cache entry
duke@435 792 add(LcpoolCache, tmp, cache);
duke@435 793 }
duke@435 794
duke@435 795
coleenp@4037 796 // Load object from cpool->resolved_references(index)
coleenp@4037 797 void InterpreterMacroAssembler::load_resolved_reference_at_index(
coleenp@4037 798 Register result, Register index) {
coleenp@4037 799 assert_different_registers(result, index);
coleenp@4037 800 assert_not_delayed();
coleenp@4037 801 // convert from field index to resolved_references() index and from
coleenp@4037 802 // word index to byte offset. Since this is a java object, it can be compressed
coleenp@4037 803 Register tmp = index; // reuse
coleenp@4037 804 sll(index, LogBytesPerHeapOop, tmp);
coleenp@4037 805 get_constant_pool(result);
coleenp@4037 806 // load pointer for resolved_references[] objArray
coleenp@4037 807 ld_ptr(result, ConstantPool::resolved_references_offset_in_bytes(), result);
coleenp@4037 808 // JNIHandles::resolve(result)
coleenp@4037 809 ld_ptr(result, 0, result);
coleenp@4037 810 // Add in the index
coleenp@4037 811 add(result, tmp, result);
coleenp@4037 812 load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result);
coleenp@4037 813 }
coleenp@4037 814
coleenp@4037 815
duke@435 816 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
coleenp@548 817 // a subtype of super_klass. Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
duke@435 818 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
duke@435 819 Register Rsuper_klass,
duke@435 820 Register Rtmp1,
duke@435 821 Register Rtmp2,
duke@435 822 Register Rtmp3,
duke@435 823 Label &ok_is_subtype ) {
jrose@1079 824 Label not_subtype;
duke@435 825
duke@435 826 // Profile the not-null value's klass.
duke@435 827 profile_typecheck(Rsub_klass, Rtmp1);
duke@435 828
jrose@1079 829 check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass,
jrose@1079 830 Rtmp1, Rtmp2,
jrose@1079 831 &ok_is_subtype, &not_subtype, NULL);
jrose@1079 832
jrose@1079 833 check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass,
jrose@1079 834 Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg,
jrose@1079 835 &ok_is_subtype, NULL);
duke@435 836
duke@435 837 bind(not_subtype);
duke@435 838 profile_typecheck_failed(Rtmp1);
duke@435 839 }
duke@435 840
duke@435 841 // Separate these two to allow for delay slot in middle
duke@435 842 // These are used to do a test and full jump to exception-throwing code.
duke@435 843
duke@435 844 // %%%%% Could possibly reoptimize this by testing to see if could use
duke@435 845 // a single conditional branch (i.e. if span is small enough.
duke@435 846 // If you go that route, than get rid of the split and give up
duke@435 847 // on the delay-slot hack.
duke@435 848
duke@435 849 void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
duke@435 850 Label& ok ) {
duke@435 851 assert_not_delayed();
duke@435 852 br(ok_condition, true, pt, ok);
duke@435 853 // DELAY SLOT
duke@435 854 }
duke@435 855
duke@435 856 void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
duke@435 857 Label& ok ) {
duke@435 858 assert_not_delayed();
duke@435 859 bp( ok_condition, true, Assembler::xcc, pt, ok);
duke@435 860 // DELAY SLOT
duke@435 861 }
duke@435 862
duke@435 863 void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
duke@435 864 Label& ok ) {
duke@435 865 assert_not_delayed();
duke@435 866 brx(ok_condition, true, pt, ok);
duke@435 867 // DELAY SLOT
duke@435 868 }
duke@435 869
duke@435 870 void InterpreterMacroAssembler::throw_if_not_2( address throw_entry_point,
duke@435 871 Register Rscratch,
duke@435 872 Label& ok ) {
duke@435 873 assert(throw_entry_point != NULL, "entry point must be generated by now");
twisti@1162 874 AddressLiteral dest(throw_entry_point);
twisti@1162 875 jump_to(dest, Rscratch);
duke@435 876 delayed()->nop();
duke@435 877 bind(ok);
duke@435 878 }
duke@435 879
duke@435 880
duke@435 881 // And if you cannot use the delay slot, here is a shorthand:
duke@435 882
duke@435 883 void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
duke@435 884 address throw_entry_point,
duke@435 885 Register Rscratch ) {
duke@435 886 Label ok;
duke@435 887 if (ok_condition != never) {
duke@435 888 throw_if_not_1_icc( ok_condition, ok);
duke@435 889 delayed()->nop();
duke@435 890 }
duke@435 891 throw_if_not_2( throw_entry_point, Rscratch, ok);
duke@435 892 }
duke@435 893 void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
duke@435 894 address throw_entry_point,
duke@435 895 Register Rscratch ) {
duke@435 896 Label ok;
duke@435 897 if (ok_condition != never) {
duke@435 898 throw_if_not_1_xcc( ok_condition, ok);
duke@435 899 delayed()->nop();
duke@435 900 }
duke@435 901 throw_if_not_2( throw_entry_point, Rscratch, ok);
duke@435 902 }
duke@435 903 void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
duke@435 904 address throw_entry_point,
duke@435 905 Register Rscratch ) {
duke@435 906 Label ok;
duke@435 907 if (ok_condition != never) {
duke@435 908 throw_if_not_1_x( ok_condition, ok);
duke@435 909 delayed()->nop();
duke@435 910 }
duke@435 911 throw_if_not_2( throw_entry_point, Rscratch, ok);
duke@435 912 }
duke@435 913
duke@435 914 // Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
duke@435 915 // Note: res is still shy of address by array offset into object.
duke@435 916
duke@435 917 void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
duke@435 918 assert_not_delayed();
duke@435 919
duke@435 920 verify_oop(array);
duke@435 921 #ifdef _LP64
duke@435 922 // sign extend since tos (index) can be a 32bit value
duke@435 923 sra(index, G0, index);
duke@435 924 #endif // _LP64
duke@435 925
duke@435 926 // check array
duke@435 927 Label ptr_ok;
duke@435 928 tst(array);
duke@435 929 throw_if_not_1_x( notZero, ptr_ok );
duke@435 930 delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
duke@435 931 throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
duke@435 932
duke@435 933 Label index_ok;
duke@435 934 cmp(index, tmp);
duke@435 935 throw_if_not_1_icc( lessUnsigned, index_ok );
duke@435 936 if (index_shift > 0) delayed()->sll(index, index_shift, index);
duke@435 937 else delayed()->add(array, index, res); // addr - const offset in index
duke@435 938 // convention: move aberrant index into G3_scratch for exception message
duke@435 939 mov(index, G3_scratch);
duke@435 940 throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
duke@435 941
duke@435 942 // add offset if didn't do it in delay slot
duke@435 943 if (index_shift > 0) add(array, index, res); // addr - const offset in index
duke@435 944 }
duke@435 945
duke@435 946
duke@435 947 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
duke@435 948 assert_not_delayed();
duke@435 949
duke@435 950 // pop array
duke@435 951 pop_ptr(array);
duke@435 952
duke@435 953 // check array
duke@435 954 index_check_without_pop(array, index, index_shift, tmp, res);
duke@435 955 }
duke@435 956
duke@435 957
jiangli@3826 958 void InterpreterMacroAssembler::get_const(Register Rdst) {
coleenp@4037 959 ld_ptr(Lmethod, in_bytes(Method::const_offset()), Rdst);
jiangli@3826 960 }
jiangli@3826 961
jiangli@3826 962
duke@435 963 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
jiangli@3826 964 get_const(Rdst);
coleenp@4037 965 ld_ptr(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst);
duke@435 966 }
duke@435 967
duke@435 968
duke@435 969 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
duke@435 970 get_constant_pool(Rdst);
coleenp@4037 971 ld_ptr(Rdst, ConstantPool::cache_offset_in_bytes(), Rdst);
duke@435 972 }
duke@435 973
duke@435 974
duke@435 975 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
duke@435 976 get_constant_pool(Rcpool);
coleenp@4037 977 ld_ptr(Rcpool, ConstantPool::tags_offset_in_bytes(), Rtags);
duke@435 978 }
duke@435 979
duke@435 980
duke@435 981 // unlock if synchronized method
duke@435 982 //
duke@435 983 // Unlock the receiver if this is a synchronized method.
duke@435 984 // Unlock any Java monitors from syncronized blocks.
duke@435 985 //
duke@435 986 // If there are locked Java monitors
duke@435 987 // If throw_monitor_exception
duke@435 988 // throws IllegalMonitorStateException
duke@435 989 // Else if install_monitor_exception
duke@435 990 // installs IllegalMonitorStateException
duke@435 991 // Else
duke@435 992 // no error processing
duke@435 993 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
duke@435 994 bool throw_monitor_exception,
duke@435 995 bool install_monitor_exception) {
duke@435 996 Label unlocked, unlock, no_unlock;
duke@435 997
duke@435 998 // get the value of _do_not_unlock_if_synchronized into G1_scratch
twisti@1162 999 const Address do_not_unlock_if_synchronized(G2_thread,
twisti@1162 1000 JavaThread::do_not_unlock_if_synchronized_offset());
duke@435 1001 ldbool(do_not_unlock_if_synchronized, G1_scratch);
duke@435 1002 stbool(G0, do_not_unlock_if_synchronized); // reset the flag
duke@435 1003
duke@435 1004 // check if synchronized method
coleenp@4037 1005 const Address access_flags(Lmethod, Method::access_flags_offset());
duke@435 1006 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 1007 push(state); // save tos
twisti@1162 1008 ld(access_flags, G3_scratch); // Load access flags.
duke@435 1009 btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
twisti@1162 1010 br(zero, false, pt, unlocked);
duke@435 1011 delayed()->nop();
duke@435 1012
duke@435 1013 // Don't unlock anything if the _do_not_unlock_if_synchronized flag
duke@435 1014 // is set.
kvn@3037 1015 cmp_zero_and_br(Assembler::notZero, G1_scratch, no_unlock);
duke@435 1016 delayed()->nop();
duke@435 1017
duke@435 1018 // BasicObjectLock will be first in list, since this is a synchronized method. However, need
duke@435 1019 // to check that the object has not been unlocked by an explicit monitorexit bytecode.
duke@435 1020
duke@435 1021 //Intel: if (throw_monitor_exception) ... else ...
duke@435 1022 // Entry already unlocked, need to throw exception
duke@435 1023 //...
duke@435 1024
duke@435 1025 // pass top-most monitor elem
duke@435 1026 add( top_most_monitor(), O1 );
duke@435 1027
duke@435 1028 ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
kvn@3037 1029 br_notnull_short(G3_scratch, pt, unlock);
duke@435 1030
duke@435 1031 if (throw_monitor_exception) {
duke@435 1032 // Entry already unlocked need to throw an exception
duke@435 1033 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
duke@435 1034 should_not_reach_here();
duke@435 1035 } else {
duke@435 1036 // Monitor already unlocked during a stack unroll.
duke@435 1037 // If requested, install an illegal_monitor_state_exception.
duke@435 1038 // Continue with stack unrolling.
duke@435 1039 if (install_monitor_exception) {
duke@435 1040 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
duke@435 1041 }
kvn@3037 1042 ba_short(unlocked);
duke@435 1043 }
duke@435 1044
duke@435 1045 bind(unlock);
duke@435 1046
duke@435 1047 unlock_object(O1);
duke@435 1048
duke@435 1049 bind(unlocked);
duke@435 1050
duke@435 1051 // I0, I1: Might contain return value
duke@435 1052
duke@435 1053 // Check that all monitors are unlocked
duke@435 1054 { Label loop, exception, entry, restart;
duke@435 1055
duke@435 1056 Register Rmptr = O0;
duke@435 1057 Register Rtemp = O1;
duke@435 1058 Register Rlimit = Lmonitors;
duke@435 1059 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 1060 assert( (delta & LongAlignmentMask) == 0,
duke@435 1061 "sizeof BasicObjectLock must be even number of doublewords");
duke@435 1062
duke@435 1063 #ifdef ASSERT
duke@435 1064 add(top_most_monitor(), Rmptr, delta);
duke@435 1065 { Label L;
duke@435 1066 // ensure that Rmptr starts out above (or at) Rlimit
kvn@3037 1067 cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
duke@435 1068 stop("monitor stack has negative size");
duke@435 1069 bind(L);
duke@435 1070 }
duke@435 1071 #endif
duke@435 1072 bind(restart);
kvn@3037 1073 ba(entry);
duke@435 1074 delayed()->
duke@435 1075 add(top_most_monitor(), Rmptr, delta); // points to current entry, starting with bottom-most entry
duke@435 1076
duke@435 1077 // Entry is still locked, need to throw exception
duke@435 1078 bind(exception);
duke@435 1079 if (throw_monitor_exception) {
duke@435 1080 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
duke@435 1081 should_not_reach_here();
duke@435 1082 } else {
duke@435 1083 // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
duke@435 1084 // Unlock does not block, so don't have to worry about the frame
duke@435 1085 unlock_object(Rmptr);
duke@435 1086 if (install_monitor_exception) {
duke@435 1087 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
duke@435 1088 }
kvn@3037 1089 ba_short(restart);
duke@435 1090 }
duke@435 1091
duke@435 1092 bind(loop);
duke@435 1093 cmp(Rtemp, G0); // check if current entry is used
duke@435 1094 brx(Assembler::notEqual, false, pn, exception);
duke@435 1095 delayed()->
duke@435 1096 dec(Rmptr, delta); // otherwise advance to next entry
duke@435 1097 #ifdef ASSERT
duke@435 1098 { Label L;
duke@435 1099 // ensure that Rmptr has not somehow stepped below Rlimit
kvn@3037 1100 cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
duke@435 1101 stop("ran off the end of the monitor stack");
duke@435 1102 bind(L);
duke@435 1103 }
duke@435 1104 #endif
duke@435 1105 bind(entry);
duke@435 1106 cmp(Rmptr, Rlimit); // check if bottom reached
duke@435 1107 brx(Assembler::notEqual, true, pn, loop); // if not at bottom then check this entry
duke@435 1108 delayed()->
duke@435 1109 ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
duke@435 1110 }
duke@435 1111
duke@435 1112 bind(no_unlock);
duke@435 1113 pop(state);
duke@435 1114 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 1115 }
duke@435 1116
duke@435 1117
duke@435 1118 // remove activation
duke@435 1119 //
duke@435 1120 // Unlock the receiver if this is a synchronized method.
duke@435 1121 // Unlock any Java monitors from syncronized blocks.
duke@435 1122 // Remove the activation from the stack.
duke@435 1123 //
duke@435 1124 // If there are locked Java monitors
duke@435 1125 // If throw_monitor_exception
duke@435 1126 // throws IllegalMonitorStateException
duke@435 1127 // Else if install_monitor_exception
duke@435 1128 // installs IllegalMonitorStateException
duke@435 1129 // Else
duke@435 1130 // no error processing
duke@435 1131 void InterpreterMacroAssembler::remove_activation(TosState state,
duke@435 1132 bool throw_monitor_exception,
duke@435 1133 bool install_monitor_exception) {
duke@435 1134
duke@435 1135 unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
duke@435 1136
duke@435 1137 // save result (push state before jvmti call and pop it afterwards) and notify jvmti
duke@435 1138 notify_method_exit(false, state, NotifyJVMTI);
duke@435 1139
duke@435 1140 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 1141 verify_thread();
duke@435 1142
duke@435 1143 // return tos
duke@435 1144 assert(Otos_l1 == Otos_i, "adjust code below");
duke@435 1145 switch (state) {
duke@435 1146 #ifdef _LP64
duke@435 1147 case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
duke@435 1148 #else
duke@435 1149 case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through // O1 -> I1
duke@435 1150 #endif
duke@435 1151 case btos: // fall through
duke@435 1152 case ctos:
duke@435 1153 case stos: // fall through
duke@435 1154 case atos: // fall through
duke@435 1155 case itos: mov(Otos_l1, Otos_l1->after_save()); break; // O0 -> I0
duke@435 1156 case ftos: // fall through
duke@435 1157 case dtos: // fall through
duke@435 1158 case vtos: /* nothing to do */ break;
duke@435 1159 default : ShouldNotReachHere();
duke@435 1160 }
duke@435 1161
duke@435 1162 #if defined(COMPILER2) && !defined(_LP64)
duke@435 1163 if (state == ltos) {
duke@435 1164 // C2 expects long results in G1 we can't tell if we're returning to interpreted
duke@435 1165 // or compiled so just be safe use G1 and O0/O1
duke@435 1166
duke@435 1167 // Shift bits into high (msb) of G1
duke@435 1168 sllx(Otos_l1->after_save(), 32, G1);
duke@435 1169 // Zero extend low bits
duke@435 1170 srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
duke@435 1171 or3 (Otos_l2->after_save(), G1, G1);
duke@435 1172 }
duke@435 1173 #endif /* COMPILER2 */
duke@435 1174
duke@435 1175 }
duke@435 1176 #endif /* CC_INTERP */
duke@435 1177
duke@435 1178
duke@435 1179 // Lock object
duke@435 1180 //
duke@435 1181 // Argument - lock_reg points to the BasicObjectLock to be used for locking,
duke@435 1182 // it must be initialized with the object to lock
duke@435 1183 void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
duke@435 1184 if (UseHeavyMonitors) {
duke@435 1185 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
duke@435 1186 }
duke@435 1187 else {
duke@435 1188 Register obj_reg = Object;
duke@435 1189 Register mark_reg = G4_scratch;
duke@435 1190 Register temp_reg = G1_scratch;
twisti@1162 1191 Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes());
twisti@1162 1192 Address mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
duke@435 1193 Label done;
duke@435 1194
duke@435 1195 Label slow_case;
duke@435 1196
duke@435 1197 assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
duke@435 1198
duke@435 1199 // load markOop from object into mark_reg
duke@435 1200 ld_ptr(mark_addr, mark_reg);
duke@435 1201
duke@435 1202 if (UseBiasedLocking) {
duke@435 1203 biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
duke@435 1204 }
duke@435 1205
duke@435 1206 // get the address of basicLock on stack that will be stored in the object
duke@435 1207 // we need a temporary register here as we do not want to clobber lock_reg
duke@435 1208 // (cas clobbers the destination register)
duke@435 1209 mov(lock_reg, temp_reg);
duke@435 1210 // set mark reg to be (markOop of object | UNLOCK_VALUE)
duke@435 1211 or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
duke@435 1212 // initialize the box (Must happen before we update the object mark!)
duke@435 1213 st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
duke@435 1214 // compare and exchange object_addr, markOop | 1, stack address of basicLock
duke@435 1215 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 1216 casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
duke@435 1217 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 1218
duke@435 1219 // if the compare and exchange succeeded we are done (we saw an unlocked object)
kvn@3037 1220 cmp_and_brx_short(mark_reg, temp_reg, Assembler::equal, Assembler::pt, done);
duke@435 1221
duke@435 1222 // We did not see an unlocked object so try the fast recursive case
duke@435 1223
duke@435 1224 // Check if owner is self by comparing the value in the markOop of object
duke@435 1225 // with the stack pointer
duke@435 1226 sub(temp_reg, SP, temp_reg);
duke@435 1227 #ifdef _LP64
duke@435 1228 sub(temp_reg, STACK_BIAS, temp_reg);
duke@435 1229 #endif
duke@435 1230 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
duke@435 1231
duke@435 1232 // Composite "andcc" test:
duke@435 1233 // (a) %sp -vs- markword proximity check, and,
duke@435 1234 // (b) verify mark word LSBs == 0 (Stack-locked).
duke@435 1235 //
duke@435 1236 // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
duke@435 1237 // Note that the page size used for %sp proximity testing is arbitrary and is
duke@435 1238 // unrelated to the actual MMU page size. We use a 'logical' page size of
duke@435 1239 // 4096 bytes. F..FFF003 is designed to fit conveniently in the SIMM13 immediate
duke@435 1240 // field of the andcc instruction.
duke@435 1241 andcc (temp_reg, 0xFFFFF003, G0) ;
duke@435 1242
duke@435 1243 // if condition is true we are done and hence we can store 0 in the displaced
duke@435 1244 // header indicating it is a recursive lock and be done
duke@435 1245 brx(Assembler::zero, true, Assembler::pt, done);
duke@435 1246 delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
duke@435 1247
duke@435 1248 // none of the above fast optimizations worked so we have to get into the
duke@435 1249 // slow case of monitor enter
duke@435 1250 bind(slow_case);
duke@435 1251 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
duke@435 1252
duke@435 1253 bind(done);
duke@435 1254 }
duke@435 1255 }
duke@435 1256
duke@435 1257 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
duke@435 1258 //
duke@435 1259 // Argument - lock_reg points to the BasicObjectLock for lock
duke@435 1260 // Throw IllegalMonitorException if object is not locked by current thread
duke@435 1261 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
duke@435 1262 if (UseHeavyMonitors) {
duke@435 1263 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
duke@435 1264 } else {
duke@435 1265 Register obj_reg = G3_scratch;
duke@435 1266 Register mark_reg = G4_scratch;
duke@435 1267 Register displaced_header_reg = G1_scratch;
twisti@1162 1268 Address lockobj_addr(lock_reg, BasicObjectLock::obj_offset_in_bytes());
twisti@1162 1269 Address mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
duke@435 1270 Label done;
duke@435 1271
duke@435 1272 if (UseBiasedLocking) {
duke@435 1273 // load the object out of the BasicObjectLock
duke@435 1274 ld_ptr(lockobj_addr, obj_reg);
duke@435 1275 biased_locking_exit(mark_addr, mark_reg, done, true);
duke@435 1276 st_ptr(G0, lockobj_addr); // free entry
duke@435 1277 }
duke@435 1278
duke@435 1279 // Test first if we are in the fast recursive case
twisti@1162 1280 Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes());
twisti@1162 1281 ld_ptr(lock_addr, displaced_header_reg);
duke@435 1282 br_null(displaced_header_reg, true, Assembler::pn, done);
duke@435 1283 delayed()->st_ptr(G0, lockobj_addr); // free entry
duke@435 1284
duke@435 1285 // See if it is still a light weight lock, if so we just unlock
duke@435 1286 // the object and we are done
duke@435 1287
duke@435 1288 if (!UseBiasedLocking) {
duke@435 1289 // load the object out of the BasicObjectLock
duke@435 1290 ld_ptr(lockobj_addr, obj_reg);
duke@435 1291 }
duke@435 1292
duke@435 1293 // we have the displaced header in displaced_header_reg
duke@435 1294 // we expect to see the stack address of the basicLock in case the
duke@435 1295 // lock is still a light weight lock (lock_reg)
duke@435 1296 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 1297 casx_under_lock(mark_addr.base(), lock_reg, displaced_header_reg,
duke@435 1298 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 1299 cmp(lock_reg, displaced_header_reg);
duke@435 1300 brx(Assembler::equal, true, Assembler::pn, done);
duke@435 1301 delayed()->st_ptr(G0, lockobj_addr); // free entry
duke@435 1302
duke@435 1303 // The lock has been converted into a heavy lock and hence
duke@435 1304 // we need to get into the slow case
duke@435 1305
duke@435 1306 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
duke@435 1307
duke@435 1308 bind(done);
duke@435 1309 }
duke@435 1310 }
duke@435 1311
duke@435 1312 #ifndef CC_INTERP
duke@435 1313
coleenp@4037 1314 // Get the method data pointer from the Method* and set the
duke@435 1315 // specified register to its value.
duke@435 1316
iveresov@2438 1317 void InterpreterMacroAssembler::set_method_data_pointer() {
duke@435 1318 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1319 Label get_continue;
duke@435 1320
coleenp@4037 1321 ld_ptr(Lmethod, in_bytes(Method::method_data_offset()), ImethodDataPtr);
duke@435 1322 test_method_data_pointer(get_continue);
coleenp@4037 1323 add(ImethodDataPtr, in_bytes(MethodData::data_offset()), ImethodDataPtr);
duke@435 1324 bind(get_continue);
duke@435 1325 }
duke@435 1326
duke@435 1327 // Set the method data pointer for the current bcp.
duke@435 1328
duke@435 1329 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
duke@435 1330 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1331 Label zero_continue;
duke@435 1332
duke@435 1333 // Test MDO to avoid the call if it is NULL.
coleenp@4037 1334 ld_ptr(Lmethod, in_bytes(Method::method_data_offset()), ImethodDataPtr);
duke@435 1335 test_method_data_pointer(zero_continue);
duke@435 1336 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
coleenp@4037 1337 add(ImethodDataPtr, in_bytes(MethodData::data_offset()), ImethodDataPtr);
iveresov@2438 1338 add(ImethodDataPtr, O0, ImethodDataPtr);
duke@435 1339 bind(zero_continue);
duke@435 1340 }
duke@435 1341
duke@435 1342 // Test ImethodDataPtr. If it is null, continue at the specified label
duke@435 1343
duke@435 1344 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
duke@435 1345 assert(ProfileInterpreter, "must be profiling interpreter");
kvn@3037 1346 br_null_short(ImethodDataPtr, Assembler::pn, zero_continue);
duke@435 1347 }
duke@435 1348
duke@435 1349 void InterpreterMacroAssembler::verify_method_data_pointer() {
duke@435 1350 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1351 #ifdef ASSERT
duke@435 1352 Label verify_continue;
duke@435 1353 test_method_data_pointer(verify_continue);
duke@435 1354
duke@435 1355 // If the mdp is valid, it will point to a DataLayout header which is
duke@435 1356 // consistent with the bcp. The converse is highly probable also.
duke@435 1357 lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
coleenp@4037 1358 ld_ptr(Lmethod, Method::const_offset(), O5);
coleenp@4037 1359 add(G3_scratch, in_bytes(ConstMethod::codes_offset()), G3_scratch);
duke@435 1360 add(G3_scratch, O5, G3_scratch);
duke@435 1361 cmp(Lbcp, G3_scratch);
duke@435 1362 brx(Assembler::equal, false, Assembler::pt, verify_continue);
duke@435 1363
duke@435 1364 Register temp_reg = O5;
duke@435 1365 delayed()->mov(ImethodDataPtr, temp_reg);
duke@435 1366 // %%% should use call_VM_leaf here?
duke@435 1367 //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
duke@435 1368 save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
twisti@1162 1369 Address d_save(FP, -sizeof(jdouble) + STACK_BIAS);
duke@435 1370 stf(FloatRegisterImpl::D, Ftos_d, d_save);
duke@435 1371 mov(temp_reg->after_save(), O2);
duke@435 1372 save_thread(L7_thread_cache);
duke@435 1373 call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
duke@435 1374 delayed()->nop();
duke@435 1375 restore_thread(L7_thread_cache);
duke@435 1376 ldf(FloatRegisterImpl::D, d_save, Ftos_d);
duke@435 1377 restore();
duke@435 1378 bind(verify_continue);
duke@435 1379 #endif // ASSERT
duke@435 1380 }
duke@435 1381
duke@435 1382 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
duke@435 1383 Register Rtmp,
duke@435 1384 Label &profile_continue) {
duke@435 1385 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1386 // Control will flow to "profile_continue" if the counter is less than the
duke@435 1387 // limit or if we call profile_method()
duke@435 1388
duke@435 1389 Label done;
duke@435 1390
duke@435 1391 // if no method data exists, and the counter is high enough, make one
kvn@3037 1392 br_notnull_short(ImethodDataPtr, Assembler::pn, done);
duke@435 1393
duke@435 1394 // Test to see if we should create a method data oop
twisti@1162 1395 AddressLiteral profile_limit((address) &InvocationCounter::InterpreterProfileLimit);
twisti@1162 1396 sethi(profile_limit, Rtmp);
twisti@1162 1397 ld(Rtmp, profile_limit.low10(), Rtmp);
kvn@4116 1398 cmp(invocation_count, Rtmp);
kvn@4116 1399 // Use long branches because call_VM() code and following code generated by
kvn@4116 1400 // test_backedge_count_for_osr() is large in debug VM.
kvn@4116 1401 br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
kvn@4116 1402 delayed()->nop();
duke@435 1403
duke@435 1404 // Build it now.
iveresov@2438 1405 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
iveresov@2438 1406 set_method_data_pointer_for_bcp();
kvn@4116 1407 ba(profile_continue);
kvn@4116 1408 delayed()->nop();
duke@435 1409 bind(done);
duke@435 1410 }
duke@435 1411
duke@435 1412 // Store a value at some constant offset from the method data pointer.
duke@435 1413
duke@435 1414 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
duke@435 1415 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1416 st_ptr(value, ImethodDataPtr, constant);
duke@435 1417 }
duke@435 1418
duke@435 1419 void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
duke@435 1420 Register bumped_count,
duke@435 1421 bool decrement) {
duke@435 1422 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1423
duke@435 1424 // Load the counter.
duke@435 1425 ld_ptr(counter, bumped_count);
duke@435 1426
duke@435 1427 if (decrement) {
duke@435 1428 // Decrement the register. Set condition codes.
duke@435 1429 subcc(bumped_count, DataLayout::counter_increment, bumped_count);
duke@435 1430
duke@435 1431 // If the decrement causes the counter to overflow, stay negative
duke@435 1432 Label L;
duke@435 1433 brx(Assembler::negative, true, Assembler::pn, L);
duke@435 1434
duke@435 1435 // Store the decremented counter, if it is still negative.
duke@435 1436 delayed()->st_ptr(bumped_count, counter);
duke@435 1437 bind(L);
duke@435 1438 } else {
duke@435 1439 // Increment the register. Set carry flag.
duke@435 1440 addcc(bumped_count, DataLayout::counter_increment, bumped_count);
duke@435 1441
duke@435 1442 // If the increment causes the counter to overflow, pull back by 1.
duke@435 1443 assert(DataLayout::counter_increment == 1, "subc works");
duke@435 1444 subc(bumped_count, G0, bumped_count);
duke@435 1445
duke@435 1446 // Store the incremented counter.
duke@435 1447 st_ptr(bumped_count, counter);
duke@435 1448 }
duke@435 1449 }
duke@435 1450
duke@435 1451 // Increment the value at some constant offset from the method data pointer.
duke@435 1452
duke@435 1453 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
duke@435 1454 Register bumped_count,
duke@435 1455 bool decrement) {
duke@435 1456 // Locate the counter at a fixed offset from the mdp:
twisti@1162 1457 Address counter(ImethodDataPtr, constant);
duke@435 1458 increment_mdp_data_at(counter, bumped_count, decrement);
duke@435 1459 }
duke@435 1460
duke@435 1461 // Increment the value at some non-fixed (reg + constant) offset from
duke@435 1462 // the method data pointer.
duke@435 1463
duke@435 1464 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
duke@435 1465 int constant,
duke@435 1466 Register bumped_count,
duke@435 1467 Register scratch2,
duke@435 1468 bool decrement) {
duke@435 1469 // Add the constant to reg to get the offset.
duke@435 1470 add(ImethodDataPtr, reg, scratch2);
twisti@1162 1471 Address counter(scratch2, constant);
duke@435 1472 increment_mdp_data_at(counter, bumped_count, decrement);
duke@435 1473 }
duke@435 1474
duke@435 1475 // Set a flag value at the current method data pointer position.
duke@435 1476 // Updates a single byte of the header, to avoid races with other header bits.
duke@435 1477
duke@435 1478 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
duke@435 1479 Register scratch) {
duke@435 1480 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1481 // Load the data header
duke@435 1482 ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
duke@435 1483
duke@435 1484 // Set the flag
duke@435 1485 or3(scratch, flag_constant, scratch);
duke@435 1486
duke@435 1487 // Store the modified header.
duke@435 1488 stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
duke@435 1489 }
duke@435 1490
duke@435 1491 // Test the location at some offset from the method data pointer.
duke@435 1492 // If it is not equal to value, branch to the not_equal_continue Label.
duke@435 1493 // Set condition codes to match the nullness of the loaded value.
duke@435 1494
duke@435 1495 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
duke@435 1496 Register value,
duke@435 1497 Label& not_equal_continue,
duke@435 1498 Register scratch) {
duke@435 1499 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1500 ld_ptr(ImethodDataPtr, offset, scratch);
duke@435 1501 cmp(value, scratch);
duke@435 1502 brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
duke@435 1503 delayed()->tst(scratch);
duke@435 1504 }
duke@435 1505
duke@435 1506 // Update the method data pointer by the displacement located at some fixed
duke@435 1507 // offset from the method data pointer.
duke@435 1508
duke@435 1509 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
duke@435 1510 Register scratch) {
duke@435 1511 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1512 ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
duke@435 1513 add(ImethodDataPtr, scratch, ImethodDataPtr);
duke@435 1514 }
duke@435 1515
duke@435 1516 // Update the method data pointer by the displacement located at the
duke@435 1517 // offset (reg + offset_of_disp).
duke@435 1518
duke@435 1519 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
duke@435 1520 int offset_of_disp,
duke@435 1521 Register scratch) {
duke@435 1522 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1523 add(reg, offset_of_disp, scratch);
duke@435 1524 ld_ptr(ImethodDataPtr, scratch, scratch);
duke@435 1525 add(ImethodDataPtr, scratch, ImethodDataPtr);
duke@435 1526 }
duke@435 1527
duke@435 1528 // Update the method data pointer by a simple constant displacement.
duke@435 1529
duke@435 1530 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
duke@435 1531 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1532 add(ImethodDataPtr, constant, ImethodDataPtr);
duke@435 1533 }
duke@435 1534
duke@435 1535 // Update the method data pointer for a _ret bytecode whose target
duke@435 1536 // was not among our cached targets.
duke@435 1537
duke@435 1538 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
duke@435 1539 Register return_bci) {
duke@435 1540 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1541 push(state);
duke@435 1542 st_ptr(return_bci, l_tmp); // protect return_bci, in case it is volatile
duke@435 1543 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
duke@435 1544 ld_ptr(l_tmp, return_bci);
duke@435 1545 pop(state);
duke@435 1546 }
duke@435 1547
duke@435 1548 // Count a taken branch in the bytecodes.
duke@435 1549
duke@435 1550 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
duke@435 1551 if (ProfileInterpreter) {
duke@435 1552 Label profile_continue;
duke@435 1553
duke@435 1554 // If no method data exists, go to profile_continue.
duke@435 1555 test_method_data_pointer(profile_continue);
duke@435 1556
duke@435 1557 // We are taking a branch. Increment the taken count.
duke@435 1558 increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
duke@435 1559
duke@435 1560 // The method data pointer needs to be updated to reflect the new target.
duke@435 1561 update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
duke@435 1562 bind (profile_continue);
duke@435 1563 }
duke@435 1564 }
duke@435 1565
duke@435 1566
duke@435 1567 // Count a not-taken branch in the bytecodes.
duke@435 1568
duke@435 1569 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
duke@435 1570 if (ProfileInterpreter) {
duke@435 1571 Label profile_continue;
duke@435 1572
duke@435 1573 // If no method data exists, go to profile_continue.
duke@435 1574 test_method_data_pointer(profile_continue);
duke@435 1575
duke@435 1576 // We are taking a branch. Increment the not taken count.
duke@435 1577 increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
duke@435 1578
duke@435 1579 // The method data pointer needs to be updated to correspond to the
duke@435 1580 // next bytecode.
duke@435 1581 update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
duke@435 1582 bind (profile_continue);
duke@435 1583 }
duke@435 1584 }
duke@435 1585
duke@435 1586
duke@435 1587 // Count a non-virtual call in the bytecodes.
duke@435 1588
duke@435 1589 void InterpreterMacroAssembler::profile_call(Register scratch) {
duke@435 1590 if (ProfileInterpreter) {
duke@435 1591 Label profile_continue;
duke@435 1592
duke@435 1593 // If no method data exists, go to profile_continue.
duke@435 1594 test_method_data_pointer(profile_continue);
duke@435 1595
duke@435 1596 // We are making a call. Increment the count.
duke@435 1597 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
duke@435 1598
duke@435 1599 // The method data pointer needs to be updated to reflect the new target.
duke@435 1600 update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
duke@435 1601 bind (profile_continue);
duke@435 1602 }
duke@435 1603 }
duke@435 1604
duke@435 1605
duke@435 1606 // Count a final call in the bytecodes.
duke@435 1607
duke@435 1608 void InterpreterMacroAssembler::profile_final_call(Register scratch) {
duke@435 1609 if (ProfileInterpreter) {
duke@435 1610 Label profile_continue;
duke@435 1611
duke@435 1612 // If no method data exists, go to profile_continue.
duke@435 1613 test_method_data_pointer(profile_continue);
duke@435 1614
duke@435 1615 // We are making a call. Increment the count.
duke@435 1616 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
duke@435 1617
duke@435 1618 // The method data pointer needs to be updated to reflect the new target.
duke@435 1619 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
duke@435 1620 bind (profile_continue);
duke@435 1621 }
duke@435 1622 }
duke@435 1623
duke@435 1624
duke@435 1625 // Count a virtual call in the bytecodes.
duke@435 1626
duke@435 1627 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
twisti@1858 1628 Register scratch,
twisti@1858 1629 bool receiver_can_be_null) {
duke@435 1630 if (ProfileInterpreter) {
duke@435 1631 Label profile_continue;
duke@435 1632
duke@435 1633 // If no method data exists, go to profile_continue.
duke@435 1634 test_method_data_pointer(profile_continue);
duke@435 1635
twisti@1858 1636
twisti@1858 1637 Label skip_receiver_profile;
twisti@1858 1638 if (receiver_can_be_null) {
twisti@1858 1639 Label not_null;
kvn@3037 1640 br_notnull_short(receiver, Assembler::pt, not_null);
twisti@1858 1641 // We are making a call. Increment the count for null receiver.
twisti@1858 1642 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
kvn@3037 1643 ba_short(skip_receiver_profile);
twisti@1858 1644 bind(not_null);
twisti@1858 1645 }
twisti@1858 1646
duke@435 1647 // Record the receiver type.
kvn@1641 1648 record_klass_in_profile(receiver, scratch, true);
twisti@1858 1649 bind(skip_receiver_profile);
duke@435 1650
duke@435 1651 // The method data pointer needs to be updated to reflect the new target.
duke@435 1652 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
duke@435 1653 bind (profile_continue);
duke@435 1654 }
duke@435 1655 }
duke@435 1656
duke@435 1657 void InterpreterMacroAssembler::record_klass_in_profile_helper(
duke@435 1658 Register receiver, Register scratch,
kvn@1641 1659 int start_row, Label& done, bool is_virtual_call) {
kvn@1641 1660 if (TypeProfileWidth == 0) {
kvn@1641 1661 if (is_virtual_call) {
kvn@1641 1662 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
kvn@1641 1663 }
poonam@1402 1664 return;
kvn@1641 1665 }
poonam@1402 1666
duke@435 1667 int last_row = VirtualCallData::row_limit() - 1;
duke@435 1668 assert(start_row <= last_row, "must be work left to do");
duke@435 1669 // Test this row for both the receiver and for null.
duke@435 1670 // Take any of three different outcomes:
duke@435 1671 // 1. found receiver => increment count and goto done
duke@435 1672 // 2. found null => keep looking for case 1, maybe allocate this cell
duke@435 1673 // 3. found something else => keep looking for cases 1 and 2
duke@435 1674 // Case 3 is handled by a recursive call.
duke@435 1675 for (int row = start_row; row <= last_row; row++) {
duke@435 1676 Label next_test;
duke@435 1677 bool test_for_null_also = (row == start_row);
duke@435 1678
duke@435 1679 // See if the receiver is receiver[n].
duke@435 1680 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
duke@435 1681 test_mdp_data_at(recvr_offset, receiver, next_test, scratch);
kvn@1641 1682 // delayed()->tst(scratch);
duke@435 1683
duke@435 1684 // The receiver is receiver[n]. Increment count[n].
duke@435 1685 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
duke@435 1686 increment_mdp_data_at(count_offset, scratch);
kvn@3037 1687 ba_short(done);
duke@435 1688 bind(next_test);
duke@435 1689
duke@435 1690 if (test_for_null_also) {
kvn@1641 1691 Label found_null;
duke@435 1692 // Failed the equality check on receiver[n]... Test for null.
duke@435 1693 if (start_row == last_row) {
duke@435 1694 // The only thing left to do is handle the null case.
kvn@1641 1695 if (is_virtual_call) {
kvn@1641 1696 brx(Assembler::zero, false, Assembler::pn, found_null);
kvn@1641 1697 delayed()->nop();
kvn@1641 1698 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1686 1699 // Increment total counter to indicate polymorphic case.
kvn@1641 1700 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
kvn@3037 1701 ba_short(done);
kvn@1641 1702 bind(found_null);
kvn@1641 1703 } else {
kvn@1641 1704 brx(Assembler::notZero, false, Assembler::pt, done);
kvn@1641 1705 delayed()->nop();
kvn@1641 1706 }
duke@435 1707 break;
duke@435 1708 }
duke@435 1709 // Since null is rare, make it be the branch-taken case.
duke@435 1710 brx(Assembler::zero, false, Assembler::pn, found_null);
duke@435 1711 delayed()->nop();
duke@435 1712
duke@435 1713 // Put all the "Case 3" tests here.
kvn@1641 1714 record_klass_in_profile_helper(receiver, scratch, start_row + 1, done, is_virtual_call);
duke@435 1715
duke@435 1716 // Found a null. Keep searching for a matching receiver,
duke@435 1717 // but remember that this is an empty (unused) slot.
duke@435 1718 bind(found_null);
duke@435 1719 }
duke@435 1720 }
duke@435 1721
duke@435 1722 // In the fall-through case, we found no matching receiver, but we
duke@435 1723 // observed the receiver[start_row] is NULL.
duke@435 1724
duke@435 1725 // Fill in the receiver field and increment the count.
duke@435 1726 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
duke@435 1727 set_mdp_data_at(recvr_offset, receiver);
duke@435 1728 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
duke@435 1729 mov(DataLayout::counter_increment, scratch);
duke@435 1730 set_mdp_data_at(count_offset, scratch);
kvn@1641 1731 if (start_row > 0) {
kvn@3037 1732 ba_short(done);
kvn@1641 1733 }
duke@435 1734 }
duke@435 1735
duke@435 1736 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
kvn@1641 1737 Register scratch, bool is_virtual_call) {
duke@435 1738 assert(ProfileInterpreter, "must be profiling");
duke@435 1739 Label done;
duke@435 1740
kvn@1641 1741 record_klass_in_profile_helper(receiver, scratch, 0, done, is_virtual_call);
duke@435 1742
duke@435 1743 bind (done);
duke@435 1744 }
duke@435 1745
duke@435 1746
duke@435 1747 // Count a ret in the bytecodes.
duke@435 1748
duke@435 1749 void InterpreterMacroAssembler::profile_ret(TosState state,
duke@435 1750 Register return_bci,
duke@435 1751 Register scratch) {
duke@435 1752 if (ProfileInterpreter) {
duke@435 1753 Label profile_continue;
duke@435 1754 uint row;
duke@435 1755
duke@435 1756 // If no method data exists, go to profile_continue.
duke@435 1757 test_method_data_pointer(profile_continue);
duke@435 1758
duke@435 1759 // Update the total ret count.
duke@435 1760 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
duke@435 1761
duke@435 1762 for (row = 0; row < RetData::row_limit(); row++) {
duke@435 1763 Label next_test;
duke@435 1764
duke@435 1765 // See if return_bci is equal to bci[n]:
duke@435 1766 test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
duke@435 1767 return_bci, next_test, scratch);
duke@435 1768
duke@435 1769 // return_bci is equal to bci[n]. Increment the count.
duke@435 1770 increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
duke@435 1771
duke@435 1772 // The method data pointer needs to be updated to reflect the new target.
duke@435 1773 update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
kvn@3037 1774 ba_short(profile_continue);
duke@435 1775 bind(next_test);
duke@435 1776 }
duke@435 1777
duke@435 1778 update_mdp_for_ret(state, return_bci);
duke@435 1779
duke@435 1780 bind (profile_continue);
duke@435 1781 }
duke@435 1782 }
duke@435 1783
duke@435 1784 // Profile an unexpected null in the bytecodes.
duke@435 1785 void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
duke@435 1786 if (ProfileInterpreter) {
duke@435 1787 Label profile_continue;
duke@435 1788
duke@435 1789 // If no method data exists, go to profile_continue.
duke@435 1790 test_method_data_pointer(profile_continue);
duke@435 1791
duke@435 1792 set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
duke@435 1793
duke@435 1794 // The method data pointer needs to be updated.
duke@435 1795 int mdp_delta = in_bytes(BitData::bit_data_size());
duke@435 1796 if (TypeProfileCasts) {
duke@435 1797 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
duke@435 1798 }
duke@435 1799 update_mdp_by_constant(mdp_delta);
duke@435 1800
duke@435 1801 bind (profile_continue);
duke@435 1802 }
duke@435 1803 }
duke@435 1804
duke@435 1805 void InterpreterMacroAssembler::profile_typecheck(Register klass,
duke@435 1806 Register scratch) {
duke@435 1807 if (ProfileInterpreter) {
duke@435 1808 Label profile_continue;
duke@435 1809
duke@435 1810 // If no method data exists, go to profile_continue.
duke@435 1811 test_method_data_pointer(profile_continue);
duke@435 1812
duke@435 1813 int mdp_delta = in_bytes(BitData::bit_data_size());
duke@435 1814 if (TypeProfileCasts) {
duke@435 1815 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
duke@435 1816
duke@435 1817 // Record the object type.
kvn@1641 1818 record_klass_in_profile(klass, scratch, false);
duke@435 1819 }
duke@435 1820
duke@435 1821 // The method data pointer needs to be updated.
duke@435 1822 update_mdp_by_constant(mdp_delta);
duke@435 1823
duke@435 1824 bind (profile_continue);
duke@435 1825 }
duke@435 1826 }
duke@435 1827
duke@435 1828 void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
duke@435 1829 if (ProfileInterpreter && TypeProfileCasts) {
duke@435 1830 Label profile_continue;
duke@435 1831
duke@435 1832 // If no method data exists, go to profile_continue.
duke@435 1833 test_method_data_pointer(profile_continue);
duke@435 1834
duke@435 1835 int count_offset = in_bytes(CounterData::count_offset());
duke@435 1836 // Back up the address, since we have already bumped the mdp.
duke@435 1837 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
duke@435 1838
duke@435 1839 // *Decrement* the counter. We expect to see zero or small negatives.
duke@435 1840 increment_mdp_data_at(count_offset, scratch, true);
duke@435 1841
duke@435 1842 bind (profile_continue);
duke@435 1843 }
duke@435 1844 }
duke@435 1845
duke@435 1846 // Count the default case of a switch construct.
duke@435 1847
duke@435 1848 void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
duke@435 1849 if (ProfileInterpreter) {
duke@435 1850 Label profile_continue;
duke@435 1851
duke@435 1852 // If no method data exists, go to profile_continue.
duke@435 1853 test_method_data_pointer(profile_continue);
duke@435 1854
duke@435 1855 // Update the default case count
duke@435 1856 increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
duke@435 1857 scratch);
duke@435 1858
duke@435 1859 // The method data pointer needs to be updated.
duke@435 1860 update_mdp_by_offset(
duke@435 1861 in_bytes(MultiBranchData::default_displacement_offset()),
duke@435 1862 scratch);
duke@435 1863
duke@435 1864 bind (profile_continue);
duke@435 1865 }
duke@435 1866 }
duke@435 1867
duke@435 1868 // Count the index'th case of a switch construct.
duke@435 1869
duke@435 1870 void InterpreterMacroAssembler::profile_switch_case(Register index,
duke@435 1871 Register scratch,
duke@435 1872 Register scratch2,
duke@435 1873 Register scratch3) {
duke@435 1874 if (ProfileInterpreter) {
duke@435 1875 Label profile_continue;
duke@435 1876
duke@435 1877 // If no method data exists, go to profile_continue.
duke@435 1878 test_method_data_pointer(profile_continue);
duke@435 1879
duke@435 1880 // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
duke@435 1881 set(in_bytes(MultiBranchData::per_case_size()), scratch);
duke@435 1882 smul(index, scratch, scratch);
duke@435 1883 add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
duke@435 1884
duke@435 1885 // Update the case count
duke@435 1886 increment_mdp_data_at(scratch,
duke@435 1887 in_bytes(MultiBranchData::relative_count_offset()),
duke@435 1888 scratch2,
duke@435 1889 scratch3);
duke@435 1890
duke@435 1891 // The method data pointer needs to be updated.
duke@435 1892 update_mdp_by_offset(scratch,
duke@435 1893 in_bytes(MultiBranchData::relative_displacement_offset()),
duke@435 1894 scratch2);
duke@435 1895
duke@435 1896 bind (profile_continue);
duke@435 1897 }
duke@435 1898 }
duke@435 1899
duke@435 1900 // add a InterpMonitorElem to stack (see frame_sparc.hpp)
duke@435 1901
duke@435 1902 void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
duke@435 1903 Register Rtemp,
duke@435 1904 Register Rtemp2 ) {
duke@435 1905
duke@435 1906 Register Rlimit = Lmonitors;
duke@435 1907 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 1908 assert( (delta & LongAlignmentMask) == 0,
duke@435 1909 "sizeof BasicObjectLock must be even number of doublewords");
duke@435 1910
duke@435 1911 sub( SP, delta, SP);
duke@435 1912 sub( Lesp, delta, Lesp);
duke@435 1913 sub( Lmonitors, delta, Lmonitors);
duke@435 1914
duke@435 1915 if (!stack_is_empty) {
duke@435 1916
duke@435 1917 // must copy stack contents down
duke@435 1918
duke@435 1919 Label start_copying, next;
duke@435 1920
duke@435 1921 // untested("monitor stack expansion");
duke@435 1922 compute_stack_base(Rtemp);
kvn@3037 1923 ba(start_copying);
kvn@3037 1924 delayed()->cmp(Rtemp, Rlimit); // done? duplicated below
duke@435 1925
duke@435 1926 // note: must copy from low memory upwards
duke@435 1927 // On entry to loop,
duke@435 1928 // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
duke@435 1929 // Loop mutates Rtemp
duke@435 1930
duke@435 1931 bind( next);
duke@435 1932
duke@435 1933 st_ptr(Rtemp2, Rtemp, 0);
duke@435 1934 inc(Rtemp, wordSize);
duke@435 1935 cmp(Rtemp, Rlimit); // are we done? (duplicated above)
duke@435 1936
duke@435 1937 bind( start_copying );
duke@435 1938
duke@435 1939 brx( notEqual, true, pn, next );
duke@435 1940 delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
duke@435 1941
duke@435 1942 // done copying stack
duke@435 1943 }
duke@435 1944 }
duke@435 1945
duke@435 1946 // Locals
duke@435 1947 void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
duke@435 1948 assert_not_delayed();
twisti@1861 1949 sll(index, Interpreter::logStackElementSize, index);
duke@435 1950 sub(Llocals, index, index);
twisti@1861 1951 ld_ptr(index, 0, dst);
duke@435 1952 // Note: index must hold the effective address--the iinc template uses it
duke@435 1953 }
duke@435 1954
duke@435 1955 // Just like access_local_ptr but the tag is a returnAddress
duke@435 1956 void InterpreterMacroAssembler::access_local_returnAddress(Register index,
duke@435 1957 Register dst ) {
duke@435 1958 assert_not_delayed();
twisti@1861 1959 sll(index, Interpreter::logStackElementSize, index);
duke@435 1960 sub(Llocals, index, index);
twisti@1861 1961 ld_ptr(index, 0, dst);
duke@435 1962 }
duke@435 1963
duke@435 1964 void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
duke@435 1965 assert_not_delayed();
twisti@1861 1966 sll(index, Interpreter::logStackElementSize, index);
duke@435 1967 sub(Llocals, index, index);
twisti@1861 1968 ld(index, 0, dst);
duke@435 1969 // Note: index must hold the effective address--the iinc template uses it
duke@435 1970 }
duke@435 1971
duke@435 1972
duke@435 1973 void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
duke@435 1974 assert_not_delayed();
twisti@1861 1975 sll(index, Interpreter::logStackElementSize, index);
duke@435 1976 sub(Llocals, index, index);
duke@435 1977 // First half stored at index n+1 (which grows down from Llocals[n])
duke@435 1978 load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
duke@435 1979 }
duke@435 1980
duke@435 1981
duke@435 1982 void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
duke@435 1983 assert_not_delayed();
twisti@1861 1984 sll(index, Interpreter::logStackElementSize, index);
duke@435 1985 sub(Llocals, index, index);
twisti@1861 1986 ldf(FloatRegisterImpl::S, index, 0, dst);
duke@435 1987 }
duke@435 1988
duke@435 1989
duke@435 1990 void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
duke@435 1991 assert_not_delayed();
twisti@1861 1992 sll(index, Interpreter::logStackElementSize, index);
duke@435 1993 sub(Llocals, index, index);
duke@435 1994 load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
duke@435 1995 }
duke@435 1996
duke@435 1997
duke@435 1998 #ifdef ASSERT
duke@435 1999 void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
duke@435 2000 Label L;
duke@435 2001
duke@435 2002 assert(Rindex != Rscratch, "Registers cannot be same");
duke@435 2003 assert(Rindex != Rscratch1, "Registers cannot be same");
duke@435 2004 assert(Rlimit != Rscratch, "Registers cannot be same");
duke@435 2005 assert(Rlimit != Rscratch1, "Registers cannot be same");
duke@435 2006 assert(Rscratch1 != Rscratch, "Registers cannot be same");
duke@435 2007
duke@435 2008 // untested("reg area corruption");
duke@435 2009 add(Rindex, offset, Rscratch);
duke@435 2010 add(Rlimit, 64 + STACK_BIAS, Rscratch1);
kvn@3037 2011 cmp_and_brx_short(Rscratch, Rscratch1, Assembler::greaterEqualUnsigned, pn, L);
duke@435 2012 stop("regsave area is being clobbered");
duke@435 2013 bind(L);
duke@435 2014 }
duke@435 2015 #endif // ASSERT
duke@435 2016
duke@435 2017
duke@435 2018 void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
duke@435 2019 assert_not_delayed();
twisti@1861 2020 sll(index, Interpreter::logStackElementSize, index);
duke@435 2021 sub(Llocals, index, index);
twisti@1861 2022 debug_only(check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);)
twisti@1861 2023 st(src, index, 0);
duke@435 2024 }
duke@435 2025
twisti@1861 2026 void InterpreterMacroAssembler::store_local_ptr( Register index, Register src ) {
duke@435 2027 assert_not_delayed();
twisti@1861 2028 sll(index, Interpreter::logStackElementSize, index);
duke@435 2029 sub(Llocals, index, index);
twisti@1861 2030 #ifdef ASSERT
twisti@1861 2031 check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
twisti@1861 2032 #endif
twisti@1861 2033 st_ptr(src, index, 0);
duke@435 2034 }
duke@435 2035
duke@435 2036
duke@435 2037
twisti@1861 2038 void InterpreterMacroAssembler::store_local_ptr( int n, Register src ) {
twisti@1861 2039 st_ptr(src, Llocals, Interpreter::local_offset_in_bytes(n));
duke@435 2040 }
duke@435 2041
duke@435 2042 void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
duke@435 2043 assert_not_delayed();
twisti@1861 2044 sll(index, Interpreter::logStackElementSize, index);
duke@435 2045 sub(Llocals, index, index);
twisti@1861 2046 #ifdef ASSERT
duke@435 2047 check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
twisti@1861 2048 #endif
duke@435 2049 store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
duke@435 2050 }
duke@435 2051
duke@435 2052
duke@435 2053 void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
duke@435 2054 assert_not_delayed();
twisti@1861 2055 sll(index, Interpreter::logStackElementSize, index);
duke@435 2056 sub(Llocals, index, index);
twisti@1861 2057 #ifdef ASSERT
twisti@1861 2058 check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
twisti@1861 2059 #endif
twisti@1861 2060 stf(FloatRegisterImpl::S, src, index, 0);
duke@435 2061 }
duke@435 2062
duke@435 2063
duke@435 2064 void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
duke@435 2065 assert_not_delayed();
twisti@1861 2066 sll(index, Interpreter::logStackElementSize, index);
duke@435 2067 sub(Llocals, index, index);
twisti@1861 2068 #ifdef ASSERT
duke@435 2069 check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
twisti@1861 2070 #endif
duke@435 2071 store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
duke@435 2072 }
duke@435 2073
duke@435 2074
duke@435 2075 int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
duke@435 2076 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 2077 int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
duke@435 2078 return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
duke@435 2079 }
duke@435 2080
duke@435 2081
duke@435 2082 Address InterpreterMacroAssembler::top_most_monitor() {
twisti@1162 2083 return Address(FP, top_most_monitor_byte_offset());
duke@435 2084 }
duke@435 2085
duke@435 2086
duke@435 2087 void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
duke@435 2088 add( Lesp, wordSize, Rdest );
duke@435 2089 }
duke@435 2090
duke@435 2091 #endif /* CC_INTERP */
duke@435 2092
duke@435 2093 void InterpreterMacroAssembler::increment_invocation_counter( Register Rtmp, Register Rtmp2 ) {
duke@435 2094 assert(UseCompiler, "incrementing must be useful");
duke@435 2095 #ifdef CC_INTERP
coleenp@4037 2096 Address inv_counter(G5_method, Method::invocation_counter_offset() +
twisti@1162 2097 InvocationCounter::counter_offset());
coleenp@4037 2098 Address be_counter (G5_method, Method::backedge_counter_offset() +
twisti@1162 2099 InvocationCounter::counter_offset());
duke@435 2100 #else
coleenp@4037 2101 Address inv_counter(Lmethod, Method::invocation_counter_offset() +
twisti@1162 2102 InvocationCounter::counter_offset());
coleenp@4037 2103 Address be_counter (Lmethod, Method::backedge_counter_offset() +
twisti@1162 2104 InvocationCounter::counter_offset());
duke@435 2105 #endif /* CC_INTERP */
duke@435 2106 int delta = InvocationCounter::count_increment;
duke@435 2107
duke@435 2108 // Load each counter in a register
duke@435 2109 ld( inv_counter, Rtmp );
duke@435 2110 ld( be_counter, Rtmp2 );
duke@435 2111
duke@435 2112 assert( is_simm13( delta ), " delta too large.");
duke@435 2113
duke@435 2114 // Add the delta to the invocation counter and store the result
duke@435 2115 add( Rtmp, delta, Rtmp );
duke@435 2116
duke@435 2117 // Mask the backedge counter
duke@435 2118 and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
duke@435 2119
duke@435 2120 // Store value
duke@435 2121 st( Rtmp, inv_counter);
duke@435 2122
duke@435 2123 // Add invocation counter + backedge counter
duke@435 2124 add( Rtmp, Rtmp2, Rtmp);
duke@435 2125
duke@435 2126 // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
duke@435 2127 }
duke@435 2128
duke@435 2129 void InterpreterMacroAssembler::increment_backedge_counter( Register Rtmp, Register Rtmp2 ) {
duke@435 2130 assert(UseCompiler, "incrementing must be useful");
duke@435 2131 #ifdef CC_INTERP
coleenp@4037 2132 Address be_counter (G5_method, Method::backedge_counter_offset() +
twisti@1162 2133 InvocationCounter::counter_offset());
coleenp@4037 2134 Address inv_counter(G5_method, Method::invocation_counter_offset() +
twisti@1162 2135 InvocationCounter::counter_offset());
duke@435 2136 #else
coleenp@4037 2137 Address be_counter (Lmethod, Method::backedge_counter_offset() +
twisti@1162 2138 InvocationCounter::counter_offset());
coleenp@4037 2139 Address inv_counter(Lmethod, Method::invocation_counter_offset() +
twisti@1162 2140 InvocationCounter::counter_offset());
duke@435 2141 #endif /* CC_INTERP */
duke@435 2142 int delta = InvocationCounter::count_increment;
duke@435 2143 // Load each counter in a register
duke@435 2144 ld( be_counter, Rtmp );
duke@435 2145 ld( inv_counter, Rtmp2 );
duke@435 2146
duke@435 2147 // Add the delta to the backedge counter
duke@435 2148 add( Rtmp, delta, Rtmp );
duke@435 2149
duke@435 2150 // Mask the invocation counter, add to backedge counter
duke@435 2151 and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
duke@435 2152
duke@435 2153 // and store the result to memory
duke@435 2154 st( Rtmp, be_counter );
duke@435 2155
duke@435 2156 // Add backedge + invocation counter
duke@435 2157 add( Rtmp, Rtmp2, Rtmp );
duke@435 2158
duke@435 2159 // Note that this macro must leave backedge_count + invocation_count in Rtmp!
duke@435 2160 }
duke@435 2161
duke@435 2162 #ifndef CC_INTERP
duke@435 2163 void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
duke@435 2164 Register branch_bcp,
duke@435 2165 Register Rtmp ) {
duke@435 2166 Label did_not_overflow;
duke@435 2167 Label overflow_with_error;
duke@435 2168 assert_different_registers(backedge_count, Rtmp, branch_bcp);
duke@435 2169 assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
duke@435 2170
twisti@1162 2171 AddressLiteral limit(&InvocationCounter::InterpreterBackwardBranchLimit);
duke@435 2172 load_contents(limit, Rtmp);
kvn@3037 2173 cmp_and_br_short(backedge_count, Rtmp, Assembler::lessUnsigned, Assembler::pt, did_not_overflow);
duke@435 2174
duke@435 2175 // When ProfileInterpreter is on, the backedge_count comes from the
coleenp@4037 2176 // MethodData*, which value does not get reset on the call to
duke@435 2177 // frequency_counter_overflow(). To avoid excessive calls to the overflow
duke@435 2178 // routine while the method is being compiled, add a second test to make sure
duke@435 2179 // the overflow function is called only once every overflow_frequency.
duke@435 2180 if (ProfileInterpreter) {
duke@435 2181 const int overflow_frequency = 1024;
duke@435 2182 andcc(backedge_count, overflow_frequency-1, Rtmp);
duke@435 2183 brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
duke@435 2184 delayed()->nop();
duke@435 2185 }
duke@435 2186
duke@435 2187 // overflow in loop, pass branch bytecode
duke@435 2188 set(6,Rtmp);
duke@435 2189 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
duke@435 2190
duke@435 2191 // Was an OSR adapter generated?
duke@435 2192 // O0 = osr nmethod
kvn@3037 2193 br_null_short(O0, Assembler::pn, overflow_with_error);
duke@435 2194
duke@435 2195 // Has the nmethod been invalidated already?
duke@435 2196 ld(O0, nmethod::entry_bci_offset(), O2);
kvn@3037 2197 cmp_and_br_short(O2, InvalidOSREntryBci, Assembler::equal, Assembler::pn, overflow_with_error);
duke@435 2198
duke@435 2199 // migrate the interpreter frame off of the stack
duke@435 2200
duke@435 2201 mov(G2_thread, L7);
duke@435 2202 // save nmethod
duke@435 2203 mov(O0, L6);
duke@435 2204 set_last_Java_frame(SP, noreg);
duke@435 2205 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
duke@435 2206 reset_last_Java_frame();
duke@435 2207 mov(L7, G2_thread);
duke@435 2208
duke@435 2209 // move OSR nmethod to I1
duke@435 2210 mov(L6, I1);
duke@435 2211
duke@435 2212 // OSR buffer to I0
duke@435 2213 mov(O0, I0);
duke@435 2214
duke@435 2215 // remove the interpreter frame
duke@435 2216 restore(I5_savedSP, 0, SP);
duke@435 2217
duke@435 2218 // Jump to the osr code.
duke@435 2219 ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
duke@435 2220 jmp(O2, G0);
duke@435 2221 delayed()->nop();
duke@435 2222
duke@435 2223 bind(overflow_with_error);
duke@435 2224
duke@435 2225 bind(did_not_overflow);
duke@435 2226 }
duke@435 2227
duke@435 2228
duke@435 2229
duke@435 2230 void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
duke@435 2231 if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
duke@435 2232 }
duke@435 2233
duke@435 2234
duke@435 2235 // local helper function for the verify_oop_or_return_address macro
coleenp@4037 2236 static bool verify_return_address(Method* m, int bci) {
duke@435 2237 #ifndef PRODUCT
duke@435 2238 address pc = (address)(m->constMethod())
coleenp@4037 2239 + in_bytes(ConstMethod::codes_offset()) + bci;
duke@435 2240 // assume it is a valid return address if it is inside m and is preceded by a jsr
duke@435 2241 if (!m->contains(pc)) return false;
duke@435 2242 address jsr_pc;
duke@435 2243 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
duke@435 2244 if (*jsr_pc == Bytecodes::_jsr && jsr_pc >= m->code_base()) return true;
duke@435 2245 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
duke@435 2246 if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base()) return true;
duke@435 2247 #endif // PRODUCT
duke@435 2248 return false;
duke@435 2249 }
duke@435 2250
duke@435 2251
duke@435 2252 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
duke@435 2253 if (!VerifyOops) return;
duke@435 2254 // the VM documentation for the astore[_wide] bytecode allows
duke@435 2255 // the TOS to be not only an oop but also a return address
duke@435 2256 Label test;
duke@435 2257 Label skip;
duke@435 2258 // See if it is an address (in the current method):
duke@435 2259
duke@435 2260 mov(reg, Rtmp);
duke@435 2261 const int log2_bytecode_size_limit = 16;
duke@435 2262 srl(Rtmp, log2_bytecode_size_limit, Rtmp);
kvn@3037 2263 br_notnull_short( Rtmp, pt, test );
duke@435 2264
duke@435 2265 // %%% should use call_VM_leaf here?
duke@435 2266 save_frame_and_mov(0, Lmethod, O0, reg, O1);
duke@435 2267 save_thread(L7_thread_cache);
duke@435 2268 call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
duke@435 2269 delayed()->nop();
duke@435 2270 restore_thread(L7_thread_cache);
duke@435 2271 br_notnull( O0, false, pt, skip );
duke@435 2272 delayed()->restore();
duke@435 2273
duke@435 2274 // Perform a more elaborate out-of-line call
duke@435 2275 // Not an address; verify it:
duke@435 2276 bind(test);
duke@435 2277 verify_oop(reg);
duke@435 2278 bind(skip);
duke@435 2279 }
duke@435 2280
duke@435 2281
duke@435 2282 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
duke@435 2283 if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
duke@435 2284 }
duke@435 2285 #endif /* CC_INTERP */
duke@435 2286
duke@435 2287 // Inline assembly for:
duke@435 2288 //
duke@435 2289 // if (thread is in interp_only_mode) {
duke@435 2290 // InterpreterRuntime::post_method_entry();
duke@435 2291 // }
duke@435 2292 // if (DTraceMethodProbes) {
twisti@1040 2293 // SharedRuntime::dtrace_method_entry(method, receiver);
duke@435 2294 // }
dcubed@1045 2295 // if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
dcubed@1045 2296 // SharedRuntime::rc_trace_method_entry(method, receiver);
coleenp@857 2297 // }
duke@435 2298
duke@435 2299 void InterpreterMacroAssembler::notify_method_entry() {
duke@435 2300
duke@435 2301 // C++ interpreter only uses this for native methods.
duke@435 2302
duke@435 2303 // Whenever JVMTI puts a thread in interp_only_mode, method
duke@435 2304 // entry/exit events are sent for that thread to track stack
duke@435 2305 // depth. If it is possible to enter interp_only_mode we add
duke@435 2306 // the code to check if the event should be sent.
duke@435 2307 if (JvmtiExport::can_post_interpreter_events()) {
duke@435 2308 Label L;
duke@435 2309 Register temp_reg = O5;
twisti@1162 2310 const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
duke@435 2311 ld(interp_only, temp_reg);
kvn@3037 2312 cmp_and_br_short(temp_reg, 0, equal, pt, L);
duke@435 2313 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
duke@435 2314 bind(L);
duke@435 2315 }
duke@435 2316
duke@435 2317 {
duke@435 2318 Register temp_reg = O5;
duke@435 2319 SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
duke@435 2320 call_VM_leaf(noreg,
duke@435 2321 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
duke@435 2322 G2_thread, Lmethod);
duke@435 2323 }
dcubed@1045 2324
dcubed@1045 2325 // RedefineClasses() tracing support for obsolete method entry
dcubed@1045 2326 if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
dcubed@1045 2327 call_VM_leaf(noreg,
dcubed@1045 2328 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
dcubed@1045 2329 G2_thread, Lmethod);
dcubed@1045 2330 }
duke@435 2331 }
duke@435 2332
duke@435 2333
duke@435 2334 // Inline assembly for:
duke@435 2335 //
duke@435 2336 // if (thread is in interp_only_mode) {
duke@435 2337 // // save result
duke@435 2338 // InterpreterRuntime::post_method_exit();
duke@435 2339 // // restore result
duke@435 2340 // }
duke@435 2341 // if (DTraceMethodProbes) {
duke@435 2342 // SharedRuntime::dtrace_method_exit(thread, method);
duke@435 2343 // }
duke@435 2344 //
duke@435 2345 // Native methods have their result stored in d_tmp and l_tmp
duke@435 2346 // Java methods have their result stored in the expression stack
duke@435 2347
duke@435 2348 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
duke@435 2349 TosState state,
duke@435 2350 NotifyMethodExitMode mode) {
duke@435 2351 // C++ interpreter only uses this for native methods.
duke@435 2352
duke@435 2353 // Whenever JVMTI puts a thread in interp_only_mode, method
duke@435 2354 // entry/exit events are sent for that thread to track stack
duke@435 2355 // depth. If it is possible to enter interp_only_mode we add
duke@435 2356 // the code to check if the event should be sent.
duke@435 2357 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
duke@435 2358 Label L;
duke@435 2359 Register temp_reg = O5;
twisti@1162 2360 const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
duke@435 2361 ld(interp_only, temp_reg);
kvn@3037 2362 cmp_and_br_short(temp_reg, 0, equal, pt, L);
duke@435 2363
duke@435 2364 // Note: frame::interpreter_frame_result has a dependency on how the
duke@435 2365 // method result is saved across the call to post_method_exit. For
duke@435 2366 // native methods it assumes the result registers are saved to
duke@435 2367 // l_scratch and d_scratch. If this changes then the interpreter_frame_result
duke@435 2368 // implementation will need to be updated too.
duke@435 2369
duke@435 2370 save_return_value(state, is_native_method);
duke@435 2371 call_VM(noreg,
duke@435 2372 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
duke@435 2373 restore_return_value(state, is_native_method);
duke@435 2374 bind(L);
duke@435 2375 }
duke@435 2376
duke@435 2377 {
duke@435 2378 Register temp_reg = O5;
duke@435 2379 // Dtrace notification
duke@435 2380 SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
duke@435 2381 save_return_value(state, is_native_method);
duke@435 2382 call_VM_leaf(
duke@435 2383 noreg,
duke@435 2384 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
duke@435 2385 G2_thread, Lmethod);
duke@435 2386 restore_return_value(state, is_native_method);
duke@435 2387 }
duke@435 2388 }
duke@435 2389
duke@435 2390 void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
duke@435 2391 #ifdef CC_INTERP
duke@435 2392 // result potentially in O0/O1: save it across calls
duke@435 2393 stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
duke@435 2394 #ifdef _LP64
duke@435 2395 stx(O0, STATE(_native_lresult));
duke@435 2396 #else
duke@435 2397 std(O0, STATE(_native_lresult));
duke@435 2398 #endif
duke@435 2399 #else // CC_INTERP
duke@435 2400 if (is_native_call) {
duke@435 2401 stf(FloatRegisterImpl::D, F0, d_tmp);
duke@435 2402 #ifdef _LP64
duke@435 2403 stx(O0, l_tmp);
duke@435 2404 #else
duke@435 2405 std(O0, l_tmp);
duke@435 2406 #endif
duke@435 2407 } else {
duke@435 2408 push(state);
duke@435 2409 }
duke@435 2410 #endif // CC_INTERP
duke@435 2411 }
duke@435 2412
duke@435 2413 void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
duke@435 2414 #ifdef CC_INTERP
duke@435 2415 ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
duke@435 2416 #ifdef _LP64
duke@435 2417 ldx(STATE(_native_lresult), O0);
duke@435 2418 #else
duke@435 2419 ldd(STATE(_native_lresult), O0);
duke@435 2420 #endif
duke@435 2421 #else // CC_INTERP
duke@435 2422 if (is_native_call) {
duke@435 2423 ldf(FloatRegisterImpl::D, d_tmp, F0);
duke@435 2424 #ifdef _LP64
duke@435 2425 ldx(l_tmp, O0);
duke@435 2426 #else
duke@435 2427 ldd(l_tmp, O0);
duke@435 2428 #endif
duke@435 2429 } else {
duke@435 2430 pop(state);
duke@435 2431 }
duke@435 2432 #endif // CC_INTERP
duke@435 2433 }
iveresov@2138 2434
iveresov@2138 2435 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
iveresov@2138 2436 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
iveresov@2138 2437 int increment, int mask,
iveresov@2138 2438 Register scratch1, Register scratch2,
iveresov@2138 2439 Condition cond, Label *where) {
iveresov@2138 2440 ld(counter_addr, scratch1);
iveresov@2138 2441 add(scratch1, increment, scratch1);
iveresov@2138 2442 if (is_simm13(mask)) {
iveresov@2138 2443 andcc(scratch1, mask, G0);
iveresov@2138 2444 } else {
iveresov@2138 2445 set(mask, scratch2);
iveresov@2138 2446 andcc(scratch1, scratch2, G0);
iveresov@2138 2447 }
iveresov@2138 2448 br(cond, false, Assembler::pn, *where);
iveresov@2138 2449 delayed()->st(scratch1, counter_addr);
iveresov@2138 2450 }

mercurial