src/cpu/sparc/vm/interp_masm_sparc.cpp

Fri, 27 Feb 2009 13:27:09 -0800

author
twisti
date
Fri, 27 Feb 2009 13:27:09 -0800
changeset 1040
98cb887364d3
parent 857
05db98ed59ba
child 1049
3db67f76d308
permissions
-rw-r--r--

6810672: Comment typos
Summary: I have collected some typos I have found while looking at the code.
Reviewed-by: kvn, never

duke@435 1 /*
xdono@631 2 * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_interp_masm_sparc.cpp.incl"
duke@435 27
duke@435 28 #ifndef CC_INTERP
duke@435 29 #ifndef FAST_DISPATCH
duke@435 30 #define FAST_DISPATCH 1
duke@435 31 #endif
duke@435 32 #undef FAST_DISPATCH
duke@435 33
duke@435 34 // Implementation of InterpreterMacroAssembler
duke@435 35
duke@435 36 // This file specializes the assember with interpreter-specific macros
duke@435 37
duke@435 38 const Address InterpreterMacroAssembler::l_tmp( FP, 0, (frame::interpreter_frame_l_scratch_fp_offset * wordSize ) + STACK_BIAS);
duke@435 39 const Address InterpreterMacroAssembler::d_tmp( FP, 0, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
duke@435 40
duke@435 41 #else // CC_INTERP
duke@435 42 #ifndef STATE
duke@435 43 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
duke@435 44 #endif // STATE
duke@435 45
duke@435 46 #endif // CC_INTERP
duke@435 47
duke@435 48 void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
duke@435 49 // Note: this algorithm is also used by C1's OSR entry sequence.
duke@435 50 // Any changes should also be applied to CodeEmitter::emit_osr_entry().
duke@435 51 assert_different_registers(args_size, locals_size);
duke@435 52 // max_locals*2 for TAGS. Assumes that args_size has already been adjusted.
duke@435 53 if (TaggedStackInterpreter) sll(locals_size, 1, locals_size);
duke@435 54 subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
duke@435 55 // Use br/mov combination because it works on both V8 and V9 and is
duke@435 56 // faster.
duke@435 57 Label skip_move;
duke@435 58 br(Assembler::negative, true, Assembler::pt, skip_move);
duke@435 59 delayed()->mov(G0, delta);
duke@435 60 bind(skip_move);
duke@435 61 round_to(delta, WordsPerLong); // make multiple of 2 (SP must be 2-word aligned)
duke@435 62 sll(delta, LogBytesPerWord, delta); // extra space for locals in bytes
duke@435 63 }
duke@435 64
duke@435 65 #ifndef CC_INTERP
duke@435 66
duke@435 67 // Dispatch code executed in the prolog of a bytecode which does not do it's
duke@435 68 // own dispatch. The dispatch address is computed and placed in IdispatchAddress
duke@435 69 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
duke@435 70 assert_not_delayed();
duke@435 71 #ifdef FAST_DISPATCH
duke@435 72 // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
duke@435 73 // they both use I2.
duke@435 74 assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
duke@435 75 ldub(Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 76 add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
duke@435 77 // add offset to correct dispatch table
duke@435 78 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
duke@435 79 ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
duke@435 80 #else
duke@435 81 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 82 // dispatch table to use
duke@435 83 Address tbl(G3_scratch, (address)Interpreter::dispatch_table(state));
duke@435 84
duke@435 85 sethi(tbl);
duke@435 86 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
duke@435 87 add(tbl, tbl.base(), 0);
duke@435 88 ld_ptr( G3_scratch, Lbyte_code, IdispatchAddress); // get entry addr
duke@435 89 #endif
duke@435 90 }
duke@435 91
duke@435 92
duke@435 93 // Dispatch code executed in the epilog of a bytecode which does not do it's
duke@435 94 // own dispatch. The dispatch address in IdispatchAddress is used for the
duke@435 95 // dispatch.
duke@435 96 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
duke@435 97 assert_not_delayed();
duke@435 98 verify_FPU(1, state);
duke@435 99 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 100 jmp( IdispatchAddress, 0 );
duke@435 101 if (bcp_incr != 0) delayed()->inc(Lbcp, bcp_incr);
duke@435 102 else delayed()->nop();
duke@435 103 }
duke@435 104
duke@435 105
duke@435 106 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
duke@435 107 // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
duke@435 108 assert_not_delayed();
duke@435 109 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 110 dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
duke@435 111 }
duke@435 112
duke@435 113
duke@435 114 void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
duke@435 115 // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
duke@435 116 assert_not_delayed();
duke@435 117 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 118 dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
duke@435 119 }
duke@435 120
duke@435 121
duke@435 122 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
duke@435 123 // load current bytecode
duke@435 124 assert_not_delayed();
duke@435 125 ldub( Lbcp, 0, Lbyte_code); // load next bytecode
duke@435 126 dispatch_base(state, table);
duke@435 127 }
duke@435 128
duke@435 129
duke@435 130 void InterpreterMacroAssembler::call_VM_leaf_base(
duke@435 131 Register java_thread,
duke@435 132 address entry_point,
duke@435 133 int number_of_arguments
duke@435 134 ) {
duke@435 135 if (!java_thread->is_valid())
duke@435 136 java_thread = L7_thread_cache;
duke@435 137 // super call
duke@435 138 MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
duke@435 139 }
duke@435 140
duke@435 141
duke@435 142 void InterpreterMacroAssembler::call_VM_base(
duke@435 143 Register oop_result,
duke@435 144 Register java_thread,
duke@435 145 Register last_java_sp,
duke@435 146 address entry_point,
duke@435 147 int number_of_arguments,
duke@435 148 bool check_exception
duke@435 149 ) {
duke@435 150 if (!java_thread->is_valid())
duke@435 151 java_thread = L7_thread_cache;
duke@435 152 // See class ThreadInVMfromInterpreter, which assumes that the interpreter
duke@435 153 // takes responsibility for setting its own thread-state on call-out.
duke@435 154 // However, ThreadInVMfromInterpreter resets the state to "in_Java".
duke@435 155
duke@435 156 //save_bcp(); // save bcp
duke@435 157 MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
duke@435 158 //restore_bcp(); // restore bcp
duke@435 159 //restore_locals(); // restore locals pointer
duke@435 160 }
duke@435 161
duke@435 162
duke@435 163 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
duke@435 164 if (JvmtiExport::can_pop_frame()) {
duke@435 165 Label L;
duke@435 166
duke@435 167 // Check the "pending popframe condition" flag in the current thread
duke@435 168 Address popframe_condition_addr(G2_thread, 0, in_bytes(JavaThread::popframe_condition_offset()));
duke@435 169 ld(popframe_condition_addr, scratch_reg);
duke@435 170
duke@435 171 // Initiate popframe handling only if it is not already being processed. If the flag
duke@435 172 // has the popframe_processing bit set, it means that this code is called *during* popframe
duke@435 173 // handling - we don't want to reenter.
duke@435 174 btst(JavaThread::popframe_pending_bit, scratch_reg);
duke@435 175 br(zero, false, pt, L);
duke@435 176 delayed()->nop();
duke@435 177 btst(JavaThread::popframe_processing_bit, scratch_reg);
duke@435 178 br(notZero, false, pt, L);
duke@435 179 delayed()->nop();
duke@435 180
duke@435 181 // Call Interpreter::remove_activation_preserving_args_entry() to get the
duke@435 182 // address of the same-named entrypoint in the generated interpreter code.
duke@435 183 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
duke@435 184
duke@435 185 // Jump to Interpreter::_remove_activation_preserving_args_entry
duke@435 186 jmpl(O0, G0, G0);
duke@435 187 delayed()->nop();
duke@435 188 bind(L);
duke@435 189 }
duke@435 190 }
duke@435 191
duke@435 192
duke@435 193 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
duke@435 194 Register thr_state = G4_scratch;
duke@435 195 ld_ptr(Address(G2_thread, 0, in_bytes(JavaThread::jvmti_thread_state_offset())),
duke@435 196 thr_state);
duke@435 197 const Address tos_addr(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_tos_offset()));
duke@435 198 const Address oop_addr(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_oop_offset()));
duke@435 199 const Address val_addr(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_value_offset()));
duke@435 200 switch (state) {
duke@435 201 case ltos: ld_long(val_addr, Otos_l); break;
duke@435 202 case atos: ld_ptr(oop_addr, Otos_l);
duke@435 203 st_ptr(G0, oop_addr); break;
duke@435 204 case btos: // fall through
duke@435 205 case ctos: // fall through
duke@435 206 case stos: // fall through
duke@435 207 case itos: ld(val_addr, Otos_l1); break;
duke@435 208 case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
duke@435 209 case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
duke@435 210 case vtos: /* nothing to do */ break;
duke@435 211 default : ShouldNotReachHere();
duke@435 212 }
duke@435 213 // Clean up tos value in the jvmti thread state
duke@435 214 or3(G0, ilgl, G3_scratch);
duke@435 215 stw(G3_scratch, tos_addr);
duke@435 216 st_long(G0, val_addr);
duke@435 217 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 218 }
duke@435 219
duke@435 220
duke@435 221 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
duke@435 222 if (JvmtiExport::can_force_early_return()) {
duke@435 223 Label L;
duke@435 224 Register thr_state = G3_scratch;
duke@435 225 ld_ptr(Address(G2_thread, 0, in_bytes(JavaThread::jvmti_thread_state_offset())),
duke@435 226 thr_state);
duke@435 227 tst(thr_state);
duke@435 228 br(zero, false, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
duke@435 229 delayed()->nop();
duke@435 230
duke@435 231 // Initiate earlyret handling only if it is not already being processed.
duke@435 232 // If the flag has the earlyret_processing bit set, it means that this code
duke@435 233 // is called *during* earlyret handling - we don't want to reenter.
duke@435 234 ld(Address(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_state_offset())),
duke@435 235 G4_scratch);
duke@435 236 cmp(G4_scratch, JvmtiThreadState::earlyret_pending);
duke@435 237 br(Assembler::notEqual, false, pt, L);
duke@435 238 delayed()->nop();
duke@435 239
duke@435 240 // Call Interpreter::remove_activation_early_entry() to get the address of the
duke@435 241 // same-named entrypoint in the generated interpreter code
duke@435 242 Address tos_addr(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_tos_offset()));
duke@435 243 ld(tos_addr, Otos_l1);
duke@435 244 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
duke@435 245
duke@435 246 // Jump to Interpreter::_remove_activation_early_entry
duke@435 247 jmpl(O0, G0, G0);
duke@435 248 delayed()->nop();
duke@435 249 bind(L);
duke@435 250 }
duke@435 251 }
duke@435 252
duke@435 253
duke@435 254 void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
duke@435 255 mov(arg_1, O0);
duke@435 256 MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 1);
duke@435 257 }
duke@435 258 #endif /* CC_INTERP */
duke@435 259
duke@435 260
duke@435 261 #ifndef CC_INTERP
duke@435 262
duke@435 263 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
duke@435 264 assert_not_delayed();
duke@435 265 dispatch_Lbyte_code(state, table);
duke@435 266 }
duke@435 267
duke@435 268
duke@435 269 void InterpreterMacroAssembler::dispatch_normal(TosState state) {
duke@435 270 dispatch_base(state, Interpreter::normal_table(state));
duke@435 271 }
duke@435 272
duke@435 273
duke@435 274 void InterpreterMacroAssembler::dispatch_only(TosState state) {
duke@435 275 dispatch_base(state, Interpreter::dispatch_table(state));
duke@435 276 }
duke@435 277
duke@435 278
duke@435 279 // common code to dispatch and dispatch_only
duke@435 280 // dispatch value in Lbyte_code and increment Lbcp
duke@435 281
duke@435 282 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
duke@435 283 verify_FPU(1, state);
duke@435 284 // %%%%% maybe implement +VerifyActivationFrameSize here
duke@435 285 //verify_thread(); //too slow; we will just verify on method entry & exit
duke@435 286 if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 287 #ifdef FAST_DISPATCH
duke@435 288 if (table == Interpreter::dispatch_table(state)) {
duke@435 289 // use IdispatchTables
duke@435 290 add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
duke@435 291 // add offset to correct dispatch table
duke@435 292 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
duke@435 293 ld_ptr(IdispatchTables, Lbyte_code, G3_scratch); // get entry addr
duke@435 294 } else {
duke@435 295 #endif
duke@435 296 // dispatch table to use
duke@435 297 Address tbl(G3_scratch, (address)table);
duke@435 298
duke@435 299 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
duke@435 300 load_address(tbl); // compute addr of table
duke@435 301 ld_ptr(G3_scratch, Lbyte_code, G3_scratch); // get entry addr
duke@435 302 #ifdef FAST_DISPATCH
duke@435 303 }
duke@435 304 #endif
duke@435 305 jmp( G3_scratch, 0 );
duke@435 306 if (bcp_incr != 0) delayed()->inc(Lbcp, bcp_incr);
duke@435 307 else delayed()->nop();
duke@435 308 }
duke@435 309
duke@435 310
duke@435 311 // Helpers for expression stack
duke@435 312
duke@435 313 // Longs and doubles are Category 2 computational types in the
duke@435 314 // JVM specification (section 3.11.1) and take 2 expression stack or
duke@435 315 // local slots.
duke@435 316 // Aligning them on 32 bit with tagged stacks is hard because the code generated
duke@435 317 // for the dup* bytecodes depends on what types are already on the stack.
duke@435 318 // If the types are split into the two stack/local slots, that is much easier
duke@435 319 // (and we can use 0 for non-reference tags).
duke@435 320
duke@435 321 // Known good alignment in _LP64 but unknown otherwise
duke@435 322 void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
duke@435 323 assert_not_delayed();
duke@435 324
duke@435 325 #ifdef _LP64
duke@435 326 ldf(FloatRegisterImpl::D, r1, offset, d);
duke@435 327 #else
duke@435 328 ldf(FloatRegisterImpl::S, r1, offset, d);
duke@435 329 ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize(), d->successor());
duke@435 330 #endif
duke@435 331 }
duke@435 332
duke@435 333 // Known good alignment in _LP64 but unknown otherwise
duke@435 334 void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
duke@435 335 assert_not_delayed();
duke@435 336
duke@435 337 #ifdef _LP64
duke@435 338 stf(FloatRegisterImpl::D, d, r1, offset);
duke@435 339 // store something more useful here
duke@435 340 debug_only(stx(G0, r1, offset+Interpreter::stackElementSize());)
duke@435 341 #else
duke@435 342 stf(FloatRegisterImpl::S, d, r1, offset);
duke@435 343 stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize());
duke@435 344 #endif
duke@435 345 }
duke@435 346
duke@435 347
duke@435 348 // Known good alignment in _LP64 but unknown otherwise
duke@435 349 void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
duke@435 350 assert_not_delayed();
duke@435 351 #ifdef _LP64
duke@435 352 ldx(r1, offset, rd);
duke@435 353 #else
duke@435 354 ld(r1, offset, rd);
duke@435 355 ld(r1, offset + Interpreter::stackElementSize(), rd->successor());
duke@435 356 #endif
duke@435 357 }
duke@435 358
duke@435 359 // Known good alignment in _LP64 but unknown otherwise
duke@435 360 void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
duke@435 361 assert_not_delayed();
duke@435 362
duke@435 363 #ifdef _LP64
duke@435 364 stx(l, r1, offset);
duke@435 365 // store something more useful here
duke@435 366 debug_only(stx(G0, r1, offset+Interpreter::stackElementSize());)
duke@435 367 #else
duke@435 368 st(l, r1, offset);
duke@435 369 st(l->successor(), r1, offset + Interpreter::stackElementSize());
duke@435 370 #endif
duke@435 371 }
duke@435 372
duke@435 373 #ifdef ASSERT
duke@435 374 void InterpreterMacroAssembler::verify_stack_tag(frame::Tag t,
duke@435 375 Register r,
duke@435 376 Register scratch) {
duke@435 377 if (TaggedStackInterpreter) {
duke@435 378 Label ok, long_ok;
duke@435 379 ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(0), r);
duke@435 380 if (t == frame::TagCategory2) {
duke@435 381 cmp(r, G0);
duke@435 382 brx(Assembler::equal, false, Assembler::pt, long_ok);
duke@435 383 delayed()->ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(1), r);
duke@435 384 stop("stack long/double tag value bad");
duke@435 385 bind(long_ok);
duke@435 386 cmp(r, G0);
duke@435 387 } else if (t == frame::TagValue) {
duke@435 388 cmp(r, G0);
duke@435 389 } else {
duke@435 390 assert_different_registers(r, scratch);
duke@435 391 mov(t, scratch);
duke@435 392 cmp(r, scratch);
duke@435 393 }
duke@435 394 brx(Assembler::equal, false, Assembler::pt, ok);
duke@435 395 delayed()->nop();
duke@435 396 // Also compare if the stack value is zero, then the tag might
duke@435 397 // not have been set coming from deopt.
duke@435 398 ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
duke@435 399 cmp(r, G0);
duke@435 400 brx(Assembler::equal, false, Assembler::pt, ok);
duke@435 401 delayed()->nop();
duke@435 402 stop("Stack tag value is bad");
duke@435 403 bind(ok);
duke@435 404 }
duke@435 405 }
duke@435 406 #endif // ASSERT
duke@435 407
duke@435 408 void InterpreterMacroAssembler::pop_i(Register r) {
duke@435 409 assert_not_delayed();
duke@435 410 // Uses destination register r for scratch
duke@435 411 debug_only(verify_stack_tag(frame::TagValue, r));
duke@435 412 ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
duke@435 413 inc(Lesp, Interpreter::stackElementSize());
duke@435 414 debug_only(verify_esp(Lesp));
duke@435 415 }
duke@435 416
duke@435 417 void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
duke@435 418 assert_not_delayed();
duke@435 419 // Uses destination register r for scratch
duke@435 420 debug_only(verify_stack_tag(frame::TagReference, r, scratch));
duke@435 421 ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
duke@435 422 inc(Lesp, Interpreter::stackElementSize());
duke@435 423 debug_only(verify_esp(Lesp));
duke@435 424 }
duke@435 425
duke@435 426 void InterpreterMacroAssembler::pop_l(Register r) {
duke@435 427 assert_not_delayed();
duke@435 428 // Uses destination register r for scratch
duke@435 429 debug_only(verify_stack_tag(frame::TagCategory2, r));
duke@435 430 load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
duke@435 431 inc(Lesp, 2*Interpreter::stackElementSize());
duke@435 432 debug_only(verify_esp(Lesp));
duke@435 433 }
duke@435 434
duke@435 435
duke@435 436 void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
duke@435 437 assert_not_delayed();
duke@435 438 debug_only(verify_stack_tag(frame::TagValue, scratch));
duke@435 439 ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
duke@435 440 inc(Lesp, Interpreter::stackElementSize());
duke@435 441 debug_only(verify_esp(Lesp));
duke@435 442 }
duke@435 443
duke@435 444
duke@435 445 void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
duke@435 446 assert_not_delayed();
duke@435 447 debug_only(verify_stack_tag(frame::TagCategory2, scratch));
duke@435 448 load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
duke@435 449 inc(Lesp, 2*Interpreter::stackElementSize());
duke@435 450 debug_only(verify_esp(Lesp));
duke@435 451 }
duke@435 452
duke@435 453
duke@435 454 // (Note use register first, then decrement so dec can be done during store stall)
duke@435 455 void InterpreterMacroAssembler::tag_stack(Register r) {
duke@435 456 if (TaggedStackInterpreter) {
duke@435 457 st_ptr(r, Lesp, Interpreter::tag_offset_in_bytes());
duke@435 458 }
duke@435 459 }
duke@435 460
duke@435 461 void InterpreterMacroAssembler::tag_stack(frame::Tag t, Register r) {
duke@435 462 if (TaggedStackInterpreter) {
duke@435 463 assert (frame::TagValue == 0, "TagValue must be zero");
duke@435 464 if (t == frame::TagValue) {
duke@435 465 st_ptr(G0, Lesp, Interpreter::tag_offset_in_bytes());
duke@435 466 } else if (t == frame::TagCategory2) {
duke@435 467 st_ptr(G0, Lesp, Interpreter::tag_offset_in_bytes());
duke@435 468 // Tag next slot down too
duke@435 469 st_ptr(G0, Lesp, -Interpreter::stackElementSize() + Interpreter::tag_offset_in_bytes());
duke@435 470 } else {
duke@435 471 assert_different_registers(r, O3);
duke@435 472 mov(t, O3);
duke@435 473 st_ptr(O3, Lesp, Interpreter::tag_offset_in_bytes());
duke@435 474 }
duke@435 475 }
duke@435 476 }
duke@435 477
duke@435 478 void InterpreterMacroAssembler::push_i(Register r) {
duke@435 479 assert_not_delayed();
duke@435 480 debug_only(verify_esp(Lesp));
duke@435 481 tag_stack(frame::TagValue, r);
duke@435 482 st( r, Lesp, Interpreter::value_offset_in_bytes());
duke@435 483 dec( Lesp, Interpreter::stackElementSize());
duke@435 484 }
duke@435 485
duke@435 486 void InterpreterMacroAssembler::push_ptr(Register r) {
duke@435 487 assert_not_delayed();
duke@435 488 tag_stack(frame::TagReference, r);
duke@435 489 st_ptr( r, Lesp, Interpreter::value_offset_in_bytes());
duke@435 490 dec( Lesp, Interpreter::stackElementSize());
duke@435 491 }
duke@435 492
duke@435 493 void InterpreterMacroAssembler::push_ptr(Register r, Register tag) {
duke@435 494 assert_not_delayed();
duke@435 495 tag_stack(tag);
duke@435 496 st_ptr(r, Lesp, Interpreter::value_offset_in_bytes());
duke@435 497 dec( Lesp, Interpreter::stackElementSize());
duke@435 498 }
duke@435 499
duke@435 500 // remember: our convention for longs in SPARC is:
duke@435 501 // O0 (Otos_l1) has high-order part in first word,
duke@435 502 // O1 (Otos_l2) has low-order part in second word
duke@435 503
duke@435 504 void InterpreterMacroAssembler::push_l(Register r) {
duke@435 505 assert_not_delayed();
duke@435 506 debug_only(verify_esp(Lesp));
duke@435 507 tag_stack(frame::TagCategory2, r);
duke@435 508 // Longs are in stored in memory-correct order, even if unaligned.
duke@435 509 // and may be separated by stack tags.
duke@435 510 int offset = -Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
duke@435 511 store_unaligned_long(r, Lesp, offset);
duke@435 512 dec(Lesp, 2 * Interpreter::stackElementSize());
duke@435 513 }
duke@435 514
duke@435 515
duke@435 516 void InterpreterMacroAssembler::push_f(FloatRegister f) {
duke@435 517 assert_not_delayed();
duke@435 518 debug_only(verify_esp(Lesp));
duke@435 519 tag_stack(frame::TagValue, Otos_i);
duke@435 520 stf(FloatRegisterImpl::S, f, Lesp, Interpreter::value_offset_in_bytes());
duke@435 521 dec(Lesp, Interpreter::stackElementSize());
duke@435 522 }
duke@435 523
duke@435 524
duke@435 525 void InterpreterMacroAssembler::push_d(FloatRegister d) {
duke@435 526 assert_not_delayed();
duke@435 527 debug_only(verify_esp(Lesp));
duke@435 528 tag_stack(frame::TagCategory2, Otos_i);
duke@435 529 // Longs are in stored in memory-correct order, even if unaligned.
duke@435 530 // and may be separated by stack tags.
duke@435 531 int offset = -Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
duke@435 532 store_unaligned_double(d, Lesp, offset);
duke@435 533 dec(Lesp, 2 * Interpreter::stackElementSize());
duke@435 534 }
duke@435 535
duke@435 536
duke@435 537 void InterpreterMacroAssembler::push(TosState state) {
duke@435 538 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 539 switch (state) {
duke@435 540 case atos: push_ptr(); break;
duke@435 541 case btos: push_i(); break;
duke@435 542 case ctos:
duke@435 543 case stos: push_i(); break;
duke@435 544 case itos: push_i(); break;
duke@435 545 case ltos: push_l(); break;
duke@435 546 case ftos: push_f(); break;
duke@435 547 case dtos: push_d(); break;
duke@435 548 case vtos: /* nothing to do */ break;
duke@435 549 default : ShouldNotReachHere();
duke@435 550 }
duke@435 551 }
duke@435 552
duke@435 553
duke@435 554 void InterpreterMacroAssembler::pop(TosState state) {
duke@435 555 switch (state) {
duke@435 556 case atos: pop_ptr(); break;
duke@435 557 case btos: pop_i(); break;
duke@435 558 case ctos:
duke@435 559 case stos: pop_i(); break;
duke@435 560 case itos: pop_i(); break;
duke@435 561 case ltos: pop_l(); break;
duke@435 562 case ftos: pop_f(); break;
duke@435 563 case dtos: pop_d(); break;
duke@435 564 case vtos: /* nothing to do */ break;
duke@435 565 default : ShouldNotReachHere();
duke@435 566 }
duke@435 567 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 568 }
duke@435 569
duke@435 570
duke@435 571 // Tagged stack helpers for swap and dup
duke@435 572 void InterpreterMacroAssembler::load_ptr_and_tag(int n, Register val,
duke@435 573 Register tag) {
duke@435 574 ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
duke@435 575 if (TaggedStackInterpreter) {
duke@435 576 ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(n), tag);
duke@435 577 }
duke@435 578 }
duke@435 579 void InterpreterMacroAssembler::store_ptr_and_tag(int n, Register val,
duke@435 580 Register tag) {
duke@435 581 st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
duke@435 582 if (TaggedStackInterpreter) {
duke@435 583 st_ptr(tag, Lesp, Interpreter::expr_tag_offset_in_bytes(n));
duke@435 584 }
duke@435 585 }
duke@435 586
duke@435 587
duke@435 588 void InterpreterMacroAssembler::load_receiver(Register param_count,
duke@435 589 Register recv) {
duke@435 590
duke@435 591 sll(param_count, Interpreter::logStackElementSize(), param_count);
duke@435 592 if (TaggedStackInterpreter) {
duke@435 593 add(param_count, Interpreter::value_offset_in_bytes(), param_count); // get obj address
duke@435 594 }
duke@435 595 ld_ptr(Lesp, param_count, recv); // gets receiver Oop
duke@435 596 }
duke@435 597
duke@435 598 void InterpreterMacroAssembler::empty_expression_stack() {
duke@435 599 // Reset Lesp.
duke@435 600 sub( Lmonitors, wordSize, Lesp );
duke@435 601
duke@435 602 // Reset SP by subtracting more space from Lesp.
duke@435 603 Label done;
duke@435 604
duke@435 605 const Address max_stack (Lmethod, 0, in_bytes(methodOopDesc::max_stack_offset()));
duke@435 606 const Address access_flags(Lmethod, 0, in_bytes(methodOopDesc::access_flags_offset()));
duke@435 607
duke@435 608 verify_oop(Lmethod);
duke@435 609
duke@435 610
duke@435 611 assert( G4_scratch != Gframe_size,
duke@435 612 "Only you can prevent register aliasing!");
duke@435 613
duke@435 614 // A native does not need to do this, since its callee does not change SP.
duke@435 615 ld(access_flags, Gframe_size);
duke@435 616 btst(JVM_ACC_NATIVE, Gframe_size);
duke@435 617 br(Assembler::notZero, false, Assembler::pt, done);
duke@435 618 delayed()->nop();
duke@435 619
duke@435 620 //
duke@435 621 // Compute max expression stack+register save area
duke@435 622 //
duke@435 623 lduh( max_stack, Gframe_size );
duke@435 624 if (TaggedStackInterpreter) sll ( Gframe_size, 1, Gframe_size); // max_stack * 2 for TAGS
duke@435 625 add( Gframe_size, frame::memory_parameter_word_sp_offset, Gframe_size );
duke@435 626
duke@435 627 //
duke@435 628 // now set up a stack frame with the size computed above
duke@435 629 //
duke@435 630 //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
duke@435 631 sll( Gframe_size, LogBytesPerWord, Gframe_size );
duke@435 632 sub( Lesp, Gframe_size, Gframe_size );
duke@435 633 and3( Gframe_size, -(2 * wordSize), Gframe_size ); // align SP (downwards) to an 8/16-byte boundary
duke@435 634 debug_only(verify_sp(Gframe_size, G4_scratch));
duke@435 635 #ifdef _LP64
duke@435 636 sub(Gframe_size, STACK_BIAS, Gframe_size );
duke@435 637 #endif
duke@435 638 mov(Gframe_size, SP);
duke@435 639
duke@435 640 bind(done);
duke@435 641 }
duke@435 642
duke@435 643
duke@435 644 #ifdef ASSERT
duke@435 645 void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
duke@435 646 Label Bad, OK;
duke@435 647
duke@435 648 // Saved SP must be aligned.
duke@435 649 #ifdef _LP64
duke@435 650 btst(2*BytesPerWord-1, Rsp);
duke@435 651 #else
duke@435 652 btst(LongAlignmentMask, Rsp);
duke@435 653 #endif
duke@435 654 br(Assembler::notZero, false, Assembler::pn, Bad);
duke@435 655 delayed()->nop();
duke@435 656
duke@435 657 // Saved SP, plus register window size, must not be above FP.
duke@435 658 add(Rsp, frame::register_save_words * wordSize, Rtemp);
duke@435 659 #ifdef _LP64
duke@435 660 sub(Rtemp, STACK_BIAS, Rtemp); // Bias Rtemp before cmp to FP
duke@435 661 #endif
duke@435 662 cmp(Rtemp, FP);
duke@435 663 brx(Assembler::greaterUnsigned, false, Assembler::pn, Bad);
duke@435 664 delayed()->nop();
duke@435 665
duke@435 666 // Saved SP must not be ridiculously below current SP.
duke@435 667 size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
duke@435 668 set(maxstack, Rtemp);
duke@435 669 sub(SP, Rtemp, Rtemp);
duke@435 670 #ifdef _LP64
duke@435 671 add(Rtemp, STACK_BIAS, Rtemp); // Unbias Rtemp before cmp to Rsp
duke@435 672 #endif
duke@435 673 cmp(Rsp, Rtemp);
duke@435 674 brx(Assembler::lessUnsigned, false, Assembler::pn, Bad);
duke@435 675 delayed()->nop();
duke@435 676
duke@435 677 br(Assembler::always, false, Assembler::pn, OK);
duke@435 678 delayed()->nop();
duke@435 679
duke@435 680 bind(Bad);
duke@435 681 stop("on return to interpreted call, restored SP is corrupted");
duke@435 682
duke@435 683 bind(OK);
duke@435 684 }
duke@435 685
duke@435 686
duke@435 687 void InterpreterMacroAssembler::verify_esp(Register Resp) {
duke@435 688 // about to read or write Resp[0]
duke@435 689 // make sure it is not in the monitors or the register save area
duke@435 690 Label OK1, OK2;
duke@435 691
duke@435 692 cmp(Resp, Lmonitors);
duke@435 693 brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
duke@435 694 delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
duke@435 695 stop("too many pops: Lesp points into monitor area");
duke@435 696 bind(OK1);
duke@435 697 #ifdef _LP64
duke@435 698 sub(Resp, STACK_BIAS, Resp);
duke@435 699 #endif
duke@435 700 cmp(Resp, SP);
duke@435 701 brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
duke@435 702 delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
duke@435 703 stop("too many pushes: Lesp points into register window");
duke@435 704 bind(OK2);
duke@435 705 }
duke@435 706 #endif // ASSERT
duke@435 707
duke@435 708 // Load compiled (i2c) or interpreter entry when calling from interpreted and
duke@435 709 // do the call. Centralized so that all interpreter calls will do the same actions.
duke@435 710 // If jvmti single stepping is on for a thread we must not call compiled code.
duke@435 711 void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
duke@435 712
duke@435 713 // Assume we want to go compiled if available
duke@435 714
duke@435 715 ld_ptr(G5_method, in_bytes(methodOopDesc::from_interpreted_offset()), target);
duke@435 716
duke@435 717 if (JvmtiExport::can_post_interpreter_events()) {
duke@435 718 // JVMTI events, such as single-stepping, are implemented partly by avoiding running
duke@435 719 // compiled code in threads for which the event is enabled. Check here for
duke@435 720 // interp_only_mode if these events CAN be enabled.
duke@435 721 verify_thread();
duke@435 722 Label skip_compiled_code;
duke@435 723
duke@435 724 const Address interp_only (G2_thread, 0, in_bytes(JavaThread::interp_only_mode_offset()));
duke@435 725
duke@435 726 ld(interp_only, scratch);
duke@435 727 tst(scratch);
duke@435 728 br(Assembler::notZero, true, Assembler::pn, skip_compiled_code);
duke@435 729 delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), target);
duke@435 730 bind(skip_compiled_code);
duke@435 731 }
duke@435 732
duke@435 733 // the i2c_adapters need methodOop in G5_method (right? %%%)
duke@435 734 // do the call
duke@435 735 #ifdef ASSERT
duke@435 736 {
duke@435 737 Label ok;
duke@435 738 br_notnull(target, false, Assembler::pt, ok);
duke@435 739 delayed()->nop();
duke@435 740 stop("null entry point");
duke@435 741 bind(ok);
duke@435 742 }
duke@435 743 #endif // ASSERT
duke@435 744
duke@435 745 // Adjust Rret first so Llast_SP can be same as Rret
duke@435 746 add(Rret, -frame::pc_return_offset, O7);
duke@435 747 add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
duke@435 748 // Record SP so we can remove any stack space allocated by adapter transition
duke@435 749 jmp(target, 0);
duke@435 750 delayed()->mov(SP, Llast_SP);
duke@435 751 }
duke@435 752
duke@435 753 void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
duke@435 754 assert_not_delayed();
duke@435 755
duke@435 756 Label not_taken;
duke@435 757 if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
duke@435 758 else br (cc, false, Assembler::pn, not_taken);
duke@435 759 delayed()->nop();
duke@435 760
duke@435 761 TemplateTable::branch(false,false);
duke@435 762
duke@435 763 bind(not_taken);
duke@435 764
duke@435 765 profile_not_taken_branch(G3_scratch);
duke@435 766 }
duke@435 767
duke@435 768
duke@435 769 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
duke@435 770 int bcp_offset,
duke@435 771 Register Rtmp,
duke@435 772 Register Rdst,
duke@435 773 signedOrNot is_signed,
duke@435 774 setCCOrNot should_set_CC ) {
duke@435 775 assert(Rtmp != Rdst, "need separate temp register");
duke@435 776 assert_not_delayed();
duke@435 777 switch (is_signed) {
duke@435 778 default: ShouldNotReachHere();
duke@435 779
duke@435 780 case Signed: ldsb( Lbcp, bcp_offset, Rdst ); break; // high byte
duke@435 781 case Unsigned: ldub( Lbcp, bcp_offset, Rdst ); break; // high byte
duke@435 782 }
duke@435 783 ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
duke@435 784 sll( Rdst, BitsPerByte, Rdst);
duke@435 785 switch (should_set_CC ) {
duke@435 786 default: ShouldNotReachHere();
duke@435 787
duke@435 788 case set_CC: orcc( Rdst, Rtmp, Rdst ); break;
duke@435 789 case dont_set_CC: or3( Rdst, Rtmp, Rdst ); break;
duke@435 790 }
duke@435 791 }
duke@435 792
duke@435 793
duke@435 794 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
duke@435 795 int bcp_offset,
duke@435 796 Register Rtmp,
duke@435 797 Register Rdst,
duke@435 798 setCCOrNot should_set_CC ) {
duke@435 799 assert(Rtmp != Rdst, "need separate temp register");
duke@435 800 assert_not_delayed();
duke@435 801 add( Lbcp, bcp_offset, Rtmp);
duke@435 802 andcc( Rtmp, 3, G0);
duke@435 803 Label aligned;
duke@435 804 switch (should_set_CC ) {
duke@435 805 default: ShouldNotReachHere();
duke@435 806
duke@435 807 case set_CC: break;
duke@435 808 case dont_set_CC: break;
duke@435 809 }
duke@435 810
duke@435 811 br(Assembler::zero, true, Assembler::pn, aligned);
duke@435 812 #ifdef _LP64
duke@435 813 delayed()->ldsw(Rtmp, 0, Rdst);
duke@435 814 #else
duke@435 815 delayed()->ld(Rtmp, 0, Rdst);
duke@435 816 #endif
duke@435 817
duke@435 818 ldub(Lbcp, bcp_offset + 3, Rdst);
duke@435 819 ldub(Lbcp, bcp_offset + 2, Rtmp); sll(Rtmp, 8, Rtmp); or3(Rtmp, Rdst, Rdst);
duke@435 820 ldub(Lbcp, bcp_offset + 1, Rtmp); sll(Rtmp, 16, Rtmp); or3(Rtmp, Rdst, Rdst);
duke@435 821 #ifdef _LP64
duke@435 822 ldsb(Lbcp, bcp_offset + 0, Rtmp); sll(Rtmp, 24, Rtmp);
duke@435 823 #else
duke@435 824 // Unsigned load is faster than signed on some implementations
duke@435 825 ldub(Lbcp, bcp_offset + 0, Rtmp); sll(Rtmp, 24, Rtmp);
duke@435 826 #endif
duke@435 827 or3(Rtmp, Rdst, Rdst );
duke@435 828
duke@435 829 bind(aligned);
duke@435 830 if (should_set_CC == set_CC) tst(Rdst);
duke@435 831 }
duke@435 832
duke@435 833
duke@435 834 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp, int bcp_offset) {
duke@435 835 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
duke@435 836 assert_different_registers(cache, tmp);
duke@435 837 assert_not_delayed();
duke@435 838 get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
duke@435 839 // convert from field index to ConstantPoolCacheEntry index
duke@435 840 // and from word index to byte offset
duke@435 841 sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
duke@435 842 add(LcpoolCache, tmp, cache);
duke@435 843 }
duke@435 844
duke@435 845
duke@435 846 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp, int bcp_offset) {
duke@435 847 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
duke@435 848 assert_different_registers(cache, tmp);
duke@435 849 assert_not_delayed();
duke@435 850 get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
duke@435 851 // convert from field index to ConstantPoolCacheEntry index
duke@435 852 // and from word index to byte offset
duke@435 853 sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
duke@435 854 // skip past the header
duke@435 855 add(tmp, in_bytes(constantPoolCacheOopDesc::base_offset()), tmp);
duke@435 856 // construct pointer to cache entry
duke@435 857 add(LcpoolCache, tmp, cache);
duke@435 858 }
duke@435 859
duke@435 860
duke@435 861 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
coleenp@548 862 // a subtype of super_klass. Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
duke@435 863 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
duke@435 864 Register Rsuper_klass,
duke@435 865 Register Rtmp1,
duke@435 866 Register Rtmp2,
duke@435 867 Register Rtmp3,
duke@435 868 Label &ok_is_subtype ) {
duke@435 869 Label not_subtype, loop;
duke@435 870
duke@435 871 // Profile the not-null value's klass.
duke@435 872 profile_typecheck(Rsub_klass, Rtmp1);
duke@435 873
duke@435 874 // Load the super-klass's check offset into Rtmp1
duke@435 875 ld( Rsuper_klass, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes(), Rtmp1 );
duke@435 876 // Load from the sub-klass's super-class display list, or a 1-word cache of
duke@435 877 // the secondary superclass list, or a failing value with a sentinel offset
duke@435 878 // if the super-klass is an interface or exceptionally deep in the Java
duke@435 879 // hierarchy and we have to scan the secondary superclass list the hard way.
duke@435 880 ld_ptr( Rsub_klass, Rtmp1, Rtmp2 );
duke@435 881 // See if we get an immediate positive hit
duke@435 882 cmp( Rtmp2, Rsuper_klass );
duke@435 883 brx( Assembler::equal, false, Assembler::pt, ok_is_subtype );
duke@435 884 // In the delay slot, check for immediate negative hit
duke@435 885 delayed()->cmp( Rtmp1, sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() );
duke@435 886 br( Assembler::notEqual, false, Assembler::pt, not_subtype );
duke@435 887 // In the delay slot, check for self
duke@435 888 delayed()->cmp( Rsub_klass, Rsuper_klass );
duke@435 889 brx( Assembler::equal, false, Assembler::pt, ok_is_subtype );
duke@435 890
duke@435 891 // Now do a linear scan of the secondary super-klass chain.
duke@435 892 delayed()->ld_ptr( Rsub_klass, sizeof(oopDesc) + Klass::secondary_supers_offset_in_bytes(), Rtmp2 );
duke@435 893
coleenp@548 894 // compress superclass
coleenp@548 895 if (UseCompressedOops) encode_heap_oop(Rsuper_klass);
coleenp@548 896
duke@435 897 // Rtmp2 holds the objArrayOop of secondary supers.
duke@435 898 ld( Rtmp2, arrayOopDesc::length_offset_in_bytes(), Rtmp1 );// Load the array length
duke@435 899 // Check for empty secondary super list
duke@435 900 tst(Rtmp1);
duke@435 901
duke@435 902 // Top of search loop
duke@435 903 bind( loop );
duke@435 904 br( Assembler::equal, false, Assembler::pn, not_subtype );
duke@435 905 delayed()->nop();
coleenp@548 906
duke@435 907 // load next super to check
coleenp@548 908 if (UseCompressedOops) {
coleenp@857 909 lduw( Rtmp2, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Rtmp3);
coleenp@548 910 // Bump array pointer forward one oop
coleenp@548 911 add( Rtmp2, 4, Rtmp2 );
coleenp@548 912 } else {
coleenp@548 913 ld_ptr( Rtmp2, arrayOopDesc::base_offset_in_bytes(T_OBJECT), Rtmp3);
coleenp@548 914 // Bump array pointer forward one oop
coleenp@548 915 add( Rtmp2, wordSize, Rtmp2);
coleenp@548 916 }
duke@435 917 // Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
duke@435 918 cmp( Rtmp3, Rsuper_klass );
duke@435 919 // A miss means we are NOT a subtype and need to keep looping
duke@435 920 brx( Assembler::notEqual, false, Assembler::pt, loop );
duke@435 921 delayed()->deccc( Rtmp1 ); // dec trip counter in delay slot
duke@435 922 // Falling out the bottom means we found a hit; we ARE a subtype
coleenp@548 923 if (UseCompressedOops) decode_heap_oop(Rsuper_klass);
duke@435 924 br( Assembler::always, false, Assembler::pt, ok_is_subtype );
duke@435 925 // Update the cache
coleenp@548 926 delayed()->st_ptr( Rsuper_klass, Rsub_klass,
coleenp@548 927 sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes() );
duke@435 928
duke@435 929 bind(not_subtype);
duke@435 930 profile_typecheck_failed(Rtmp1);
duke@435 931 }
duke@435 932
duke@435 933 // Separate these two to allow for delay slot in middle
duke@435 934 // These are used to do a test and full jump to exception-throwing code.
duke@435 935
duke@435 936 // %%%%% Could possibly reoptimize this by testing to see if could use
duke@435 937 // a single conditional branch (i.e. if span is small enough.
duke@435 938 // If you go that route, than get rid of the split and give up
duke@435 939 // on the delay-slot hack.
duke@435 940
duke@435 941 void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
duke@435 942 Label& ok ) {
duke@435 943 assert_not_delayed();
duke@435 944 br(ok_condition, true, pt, ok);
duke@435 945 // DELAY SLOT
duke@435 946 }
duke@435 947
duke@435 948 void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
duke@435 949 Label& ok ) {
duke@435 950 assert_not_delayed();
duke@435 951 bp( ok_condition, true, Assembler::xcc, pt, ok);
duke@435 952 // DELAY SLOT
duke@435 953 }
duke@435 954
duke@435 955 void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
duke@435 956 Label& ok ) {
duke@435 957 assert_not_delayed();
duke@435 958 brx(ok_condition, true, pt, ok);
duke@435 959 // DELAY SLOT
duke@435 960 }
duke@435 961
duke@435 962 void InterpreterMacroAssembler::throw_if_not_2( address throw_entry_point,
duke@435 963 Register Rscratch,
duke@435 964 Label& ok ) {
duke@435 965 assert(throw_entry_point != NULL, "entry point must be generated by now");
duke@435 966 Address dest(Rscratch, throw_entry_point);
duke@435 967 jump_to(dest);
duke@435 968 delayed()->nop();
duke@435 969 bind(ok);
duke@435 970 }
duke@435 971
duke@435 972
duke@435 973 // And if you cannot use the delay slot, here is a shorthand:
duke@435 974
duke@435 975 void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
duke@435 976 address throw_entry_point,
duke@435 977 Register Rscratch ) {
duke@435 978 Label ok;
duke@435 979 if (ok_condition != never) {
duke@435 980 throw_if_not_1_icc( ok_condition, ok);
duke@435 981 delayed()->nop();
duke@435 982 }
duke@435 983 throw_if_not_2( throw_entry_point, Rscratch, ok);
duke@435 984 }
duke@435 985 void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
duke@435 986 address throw_entry_point,
duke@435 987 Register Rscratch ) {
duke@435 988 Label ok;
duke@435 989 if (ok_condition != never) {
duke@435 990 throw_if_not_1_xcc( ok_condition, ok);
duke@435 991 delayed()->nop();
duke@435 992 }
duke@435 993 throw_if_not_2( throw_entry_point, Rscratch, ok);
duke@435 994 }
duke@435 995 void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
duke@435 996 address throw_entry_point,
duke@435 997 Register Rscratch ) {
duke@435 998 Label ok;
duke@435 999 if (ok_condition != never) {
duke@435 1000 throw_if_not_1_x( ok_condition, ok);
duke@435 1001 delayed()->nop();
duke@435 1002 }
duke@435 1003 throw_if_not_2( throw_entry_point, Rscratch, ok);
duke@435 1004 }
duke@435 1005
duke@435 1006 // Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
duke@435 1007 // Note: res is still shy of address by array offset into object.
duke@435 1008
duke@435 1009 void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
duke@435 1010 assert_not_delayed();
duke@435 1011
duke@435 1012 verify_oop(array);
duke@435 1013 #ifdef _LP64
duke@435 1014 // sign extend since tos (index) can be a 32bit value
duke@435 1015 sra(index, G0, index);
duke@435 1016 #endif // _LP64
duke@435 1017
duke@435 1018 // check array
duke@435 1019 Label ptr_ok;
duke@435 1020 tst(array);
duke@435 1021 throw_if_not_1_x( notZero, ptr_ok );
duke@435 1022 delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
duke@435 1023 throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
duke@435 1024
duke@435 1025 Label index_ok;
duke@435 1026 cmp(index, tmp);
duke@435 1027 throw_if_not_1_icc( lessUnsigned, index_ok );
duke@435 1028 if (index_shift > 0) delayed()->sll(index, index_shift, index);
duke@435 1029 else delayed()->add(array, index, res); // addr - const offset in index
duke@435 1030 // convention: move aberrant index into G3_scratch for exception message
duke@435 1031 mov(index, G3_scratch);
duke@435 1032 throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
duke@435 1033
duke@435 1034 // add offset if didn't do it in delay slot
duke@435 1035 if (index_shift > 0) add(array, index, res); // addr - const offset in index
duke@435 1036 }
duke@435 1037
duke@435 1038
duke@435 1039 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
duke@435 1040 assert_not_delayed();
duke@435 1041
duke@435 1042 // pop array
duke@435 1043 pop_ptr(array);
duke@435 1044
duke@435 1045 // check array
duke@435 1046 index_check_without_pop(array, index, index_shift, tmp, res);
duke@435 1047 }
duke@435 1048
duke@435 1049
duke@435 1050 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
duke@435 1051 ld_ptr(Lmethod, in_bytes(methodOopDesc::constants_offset()), Rdst);
duke@435 1052 }
duke@435 1053
duke@435 1054
duke@435 1055 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
duke@435 1056 get_constant_pool(Rdst);
duke@435 1057 ld_ptr(Rdst, constantPoolOopDesc::cache_offset_in_bytes(), Rdst);
duke@435 1058 }
duke@435 1059
duke@435 1060
duke@435 1061 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
duke@435 1062 get_constant_pool(Rcpool);
duke@435 1063 ld_ptr(Rcpool, constantPoolOopDesc::tags_offset_in_bytes(), Rtags);
duke@435 1064 }
duke@435 1065
duke@435 1066
duke@435 1067 // unlock if synchronized method
duke@435 1068 //
duke@435 1069 // Unlock the receiver if this is a synchronized method.
duke@435 1070 // Unlock any Java monitors from syncronized blocks.
duke@435 1071 //
duke@435 1072 // If there are locked Java monitors
duke@435 1073 // If throw_monitor_exception
duke@435 1074 // throws IllegalMonitorStateException
duke@435 1075 // Else if install_monitor_exception
duke@435 1076 // installs IllegalMonitorStateException
duke@435 1077 // Else
duke@435 1078 // no error processing
duke@435 1079 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
duke@435 1080 bool throw_monitor_exception,
duke@435 1081 bool install_monitor_exception) {
duke@435 1082 Label unlocked, unlock, no_unlock;
duke@435 1083
duke@435 1084 // get the value of _do_not_unlock_if_synchronized into G1_scratch
duke@435 1085 const Address do_not_unlock_if_synchronized(G2_thread, 0,
duke@435 1086 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
duke@435 1087 ldbool(do_not_unlock_if_synchronized, G1_scratch);
duke@435 1088 stbool(G0, do_not_unlock_if_synchronized); // reset the flag
duke@435 1089
duke@435 1090 // check if synchronized method
duke@435 1091 const Address access_flags(Lmethod, 0, in_bytes(methodOopDesc::access_flags_offset()));
duke@435 1092 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 1093 push(state); // save tos
duke@435 1094 ld(access_flags, G3_scratch);
duke@435 1095 btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
duke@435 1096 br( zero, false, pt, unlocked);
duke@435 1097 delayed()->nop();
duke@435 1098
duke@435 1099 // Don't unlock anything if the _do_not_unlock_if_synchronized flag
duke@435 1100 // is set.
duke@435 1101 tstbool(G1_scratch);
duke@435 1102 br(Assembler::notZero, false, pn, no_unlock);
duke@435 1103 delayed()->nop();
duke@435 1104
duke@435 1105 // BasicObjectLock will be first in list, since this is a synchronized method. However, need
duke@435 1106 // to check that the object has not been unlocked by an explicit monitorexit bytecode.
duke@435 1107
duke@435 1108 //Intel: if (throw_monitor_exception) ... else ...
duke@435 1109 // Entry already unlocked, need to throw exception
duke@435 1110 //...
duke@435 1111
duke@435 1112 // pass top-most monitor elem
duke@435 1113 add( top_most_monitor(), O1 );
duke@435 1114
duke@435 1115 ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
duke@435 1116 br_notnull(G3_scratch, false, pt, unlock);
duke@435 1117 delayed()->nop();
duke@435 1118
duke@435 1119 if (throw_monitor_exception) {
duke@435 1120 // Entry already unlocked need to throw an exception
duke@435 1121 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
duke@435 1122 should_not_reach_here();
duke@435 1123 } else {
duke@435 1124 // Monitor already unlocked during a stack unroll.
duke@435 1125 // If requested, install an illegal_monitor_state_exception.
duke@435 1126 // Continue with stack unrolling.
duke@435 1127 if (install_monitor_exception) {
duke@435 1128 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
duke@435 1129 }
duke@435 1130 ba(false, unlocked);
duke@435 1131 delayed()->nop();
duke@435 1132 }
duke@435 1133
duke@435 1134 bind(unlock);
duke@435 1135
duke@435 1136 unlock_object(O1);
duke@435 1137
duke@435 1138 bind(unlocked);
duke@435 1139
duke@435 1140 // I0, I1: Might contain return value
duke@435 1141
duke@435 1142 // Check that all monitors are unlocked
duke@435 1143 { Label loop, exception, entry, restart;
duke@435 1144
duke@435 1145 Register Rmptr = O0;
duke@435 1146 Register Rtemp = O1;
duke@435 1147 Register Rlimit = Lmonitors;
duke@435 1148 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 1149 assert( (delta & LongAlignmentMask) == 0,
duke@435 1150 "sizeof BasicObjectLock must be even number of doublewords");
duke@435 1151
duke@435 1152 #ifdef ASSERT
duke@435 1153 add(top_most_monitor(), Rmptr, delta);
duke@435 1154 { Label L;
duke@435 1155 // ensure that Rmptr starts out above (or at) Rlimit
duke@435 1156 cmp(Rmptr, Rlimit);
duke@435 1157 brx(Assembler::greaterEqualUnsigned, false, pn, L);
duke@435 1158 delayed()->nop();
duke@435 1159 stop("monitor stack has negative size");
duke@435 1160 bind(L);
duke@435 1161 }
duke@435 1162 #endif
duke@435 1163 bind(restart);
duke@435 1164 ba(false, entry);
duke@435 1165 delayed()->
duke@435 1166 add(top_most_monitor(), Rmptr, delta); // points to current entry, starting with bottom-most entry
duke@435 1167
duke@435 1168 // Entry is still locked, need to throw exception
duke@435 1169 bind(exception);
duke@435 1170 if (throw_monitor_exception) {
duke@435 1171 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
duke@435 1172 should_not_reach_here();
duke@435 1173 } else {
duke@435 1174 // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
duke@435 1175 // Unlock does not block, so don't have to worry about the frame
duke@435 1176 unlock_object(Rmptr);
duke@435 1177 if (install_monitor_exception) {
duke@435 1178 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
duke@435 1179 }
duke@435 1180 ba(false, restart);
duke@435 1181 delayed()->nop();
duke@435 1182 }
duke@435 1183
duke@435 1184 bind(loop);
duke@435 1185 cmp(Rtemp, G0); // check if current entry is used
duke@435 1186 brx(Assembler::notEqual, false, pn, exception);
duke@435 1187 delayed()->
duke@435 1188 dec(Rmptr, delta); // otherwise advance to next entry
duke@435 1189 #ifdef ASSERT
duke@435 1190 { Label L;
duke@435 1191 // ensure that Rmptr has not somehow stepped below Rlimit
duke@435 1192 cmp(Rmptr, Rlimit);
duke@435 1193 brx(Assembler::greaterEqualUnsigned, false, pn, L);
duke@435 1194 delayed()->nop();
duke@435 1195 stop("ran off the end of the monitor stack");
duke@435 1196 bind(L);
duke@435 1197 }
duke@435 1198 #endif
duke@435 1199 bind(entry);
duke@435 1200 cmp(Rmptr, Rlimit); // check if bottom reached
duke@435 1201 brx(Assembler::notEqual, true, pn, loop); // if not at bottom then check this entry
duke@435 1202 delayed()->
duke@435 1203 ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
duke@435 1204 }
duke@435 1205
duke@435 1206 bind(no_unlock);
duke@435 1207 pop(state);
duke@435 1208 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 1209 }
duke@435 1210
duke@435 1211
duke@435 1212 // remove activation
duke@435 1213 //
duke@435 1214 // Unlock the receiver if this is a synchronized method.
duke@435 1215 // Unlock any Java monitors from syncronized blocks.
duke@435 1216 // Remove the activation from the stack.
duke@435 1217 //
duke@435 1218 // If there are locked Java monitors
duke@435 1219 // If throw_monitor_exception
duke@435 1220 // throws IllegalMonitorStateException
duke@435 1221 // Else if install_monitor_exception
duke@435 1222 // installs IllegalMonitorStateException
duke@435 1223 // Else
duke@435 1224 // no error processing
duke@435 1225 void InterpreterMacroAssembler::remove_activation(TosState state,
duke@435 1226 bool throw_monitor_exception,
duke@435 1227 bool install_monitor_exception) {
duke@435 1228
duke@435 1229 unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
duke@435 1230
duke@435 1231 // save result (push state before jvmti call and pop it afterwards) and notify jvmti
duke@435 1232 notify_method_exit(false, state, NotifyJVMTI);
duke@435 1233
duke@435 1234 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 1235 verify_oop(Lmethod);
duke@435 1236 verify_thread();
duke@435 1237
duke@435 1238 // return tos
duke@435 1239 assert(Otos_l1 == Otos_i, "adjust code below");
duke@435 1240 switch (state) {
duke@435 1241 #ifdef _LP64
duke@435 1242 case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
duke@435 1243 #else
duke@435 1244 case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through // O1 -> I1
duke@435 1245 #endif
duke@435 1246 case btos: // fall through
duke@435 1247 case ctos:
duke@435 1248 case stos: // fall through
duke@435 1249 case atos: // fall through
duke@435 1250 case itos: mov(Otos_l1, Otos_l1->after_save()); break; // O0 -> I0
duke@435 1251 case ftos: // fall through
duke@435 1252 case dtos: // fall through
duke@435 1253 case vtos: /* nothing to do */ break;
duke@435 1254 default : ShouldNotReachHere();
duke@435 1255 }
duke@435 1256
duke@435 1257 #if defined(COMPILER2) && !defined(_LP64)
duke@435 1258 if (state == ltos) {
duke@435 1259 // C2 expects long results in G1 we can't tell if we're returning to interpreted
duke@435 1260 // or compiled so just be safe use G1 and O0/O1
duke@435 1261
duke@435 1262 // Shift bits into high (msb) of G1
duke@435 1263 sllx(Otos_l1->after_save(), 32, G1);
duke@435 1264 // Zero extend low bits
duke@435 1265 srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
duke@435 1266 or3 (Otos_l2->after_save(), G1, G1);
duke@435 1267 }
duke@435 1268 #endif /* COMPILER2 */
duke@435 1269
duke@435 1270 }
duke@435 1271 #endif /* CC_INTERP */
duke@435 1272
duke@435 1273
duke@435 1274 // Lock object
duke@435 1275 //
duke@435 1276 // Argument - lock_reg points to the BasicObjectLock to be used for locking,
duke@435 1277 // it must be initialized with the object to lock
duke@435 1278 void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
duke@435 1279 if (UseHeavyMonitors) {
duke@435 1280 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
duke@435 1281 }
duke@435 1282 else {
duke@435 1283 Register obj_reg = Object;
duke@435 1284 Register mark_reg = G4_scratch;
duke@435 1285 Register temp_reg = G1_scratch;
duke@435 1286 Address lock_addr = Address(lock_reg, 0, BasicObjectLock::lock_offset_in_bytes());
duke@435 1287 Address mark_addr = Address(obj_reg, 0, oopDesc::mark_offset_in_bytes());
duke@435 1288 Label done;
duke@435 1289
duke@435 1290 Label slow_case;
duke@435 1291
duke@435 1292 assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
duke@435 1293
duke@435 1294 // load markOop from object into mark_reg
duke@435 1295 ld_ptr(mark_addr, mark_reg);
duke@435 1296
duke@435 1297 if (UseBiasedLocking) {
duke@435 1298 biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
duke@435 1299 }
duke@435 1300
duke@435 1301 // get the address of basicLock on stack that will be stored in the object
duke@435 1302 // we need a temporary register here as we do not want to clobber lock_reg
duke@435 1303 // (cas clobbers the destination register)
duke@435 1304 mov(lock_reg, temp_reg);
duke@435 1305 // set mark reg to be (markOop of object | UNLOCK_VALUE)
duke@435 1306 or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
duke@435 1307 // initialize the box (Must happen before we update the object mark!)
duke@435 1308 st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
duke@435 1309 // compare and exchange object_addr, markOop | 1, stack address of basicLock
duke@435 1310 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 1311 casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
duke@435 1312 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 1313
duke@435 1314 // if the compare and exchange succeeded we are done (we saw an unlocked object)
duke@435 1315 cmp(mark_reg, temp_reg);
duke@435 1316 brx(Assembler::equal, true, Assembler::pt, done);
duke@435 1317 delayed()->nop();
duke@435 1318
duke@435 1319 // We did not see an unlocked object so try the fast recursive case
duke@435 1320
duke@435 1321 // Check if owner is self by comparing the value in the markOop of object
duke@435 1322 // with the stack pointer
duke@435 1323 sub(temp_reg, SP, temp_reg);
duke@435 1324 #ifdef _LP64
duke@435 1325 sub(temp_reg, STACK_BIAS, temp_reg);
duke@435 1326 #endif
duke@435 1327 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
duke@435 1328
duke@435 1329 // Composite "andcc" test:
duke@435 1330 // (a) %sp -vs- markword proximity check, and,
duke@435 1331 // (b) verify mark word LSBs == 0 (Stack-locked).
duke@435 1332 //
duke@435 1333 // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
duke@435 1334 // Note that the page size used for %sp proximity testing is arbitrary and is
duke@435 1335 // unrelated to the actual MMU page size. We use a 'logical' page size of
duke@435 1336 // 4096 bytes. F..FFF003 is designed to fit conveniently in the SIMM13 immediate
duke@435 1337 // field of the andcc instruction.
duke@435 1338 andcc (temp_reg, 0xFFFFF003, G0) ;
duke@435 1339
duke@435 1340 // if condition is true we are done and hence we can store 0 in the displaced
duke@435 1341 // header indicating it is a recursive lock and be done
duke@435 1342 brx(Assembler::zero, true, Assembler::pt, done);
duke@435 1343 delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
duke@435 1344
duke@435 1345 // none of the above fast optimizations worked so we have to get into the
duke@435 1346 // slow case of monitor enter
duke@435 1347 bind(slow_case);
duke@435 1348 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
duke@435 1349
duke@435 1350 bind(done);
duke@435 1351 }
duke@435 1352 }
duke@435 1353
duke@435 1354 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
duke@435 1355 //
duke@435 1356 // Argument - lock_reg points to the BasicObjectLock for lock
duke@435 1357 // Throw IllegalMonitorException if object is not locked by current thread
duke@435 1358 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
duke@435 1359 if (UseHeavyMonitors) {
duke@435 1360 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
duke@435 1361 } else {
duke@435 1362 Register obj_reg = G3_scratch;
duke@435 1363 Register mark_reg = G4_scratch;
duke@435 1364 Register displaced_header_reg = G1_scratch;
duke@435 1365 Address lock_addr = Address(lock_reg, 0, BasicObjectLock::lock_offset_in_bytes());
duke@435 1366 Address lockobj_addr = Address(lock_reg, 0, BasicObjectLock::obj_offset_in_bytes());
duke@435 1367 Address mark_addr = Address(obj_reg, 0, oopDesc::mark_offset_in_bytes());
duke@435 1368 Label done;
duke@435 1369
duke@435 1370 if (UseBiasedLocking) {
duke@435 1371 // load the object out of the BasicObjectLock
duke@435 1372 ld_ptr(lockobj_addr, obj_reg);
duke@435 1373 biased_locking_exit(mark_addr, mark_reg, done, true);
duke@435 1374 st_ptr(G0, lockobj_addr); // free entry
duke@435 1375 }
duke@435 1376
duke@435 1377 // Test first if we are in the fast recursive case
duke@435 1378 ld_ptr(lock_addr, displaced_header_reg, BasicLock::displaced_header_offset_in_bytes());
duke@435 1379 br_null(displaced_header_reg, true, Assembler::pn, done);
duke@435 1380 delayed()->st_ptr(G0, lockobj_addr); // free entry
duke@435 1381
duke@435 1382 // See if it is still a light weight lock, if so we just unlock
duke@435 1383 // the object and we are done
duke@435 1384
duke@435 1385 if (!UseBiasedLocking) {
duke@435 1386 // load the object out of the BasicObjectLock
duke@435 1387 ld_ptr(lockobj_addr, obj_reg);
duke@435 1388 }
duke@435 1389
duke@435 1390 // we have the displaced header in displaced_header_reg
duke@435 1391 // we expect to see the stack address of the basicLock in case the
duke@435 1392 // lock is still a light weight lock (lock_reg)
duke@435 1393 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 1394 casx_under_lock(mark_addr.base(), lock_reg, displaced_header_reg,
duke@435 1395 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 1396 cmp(lock_reg, displaced_header_reg);
duke@435 1397 brx(Assembler::equal, true, Assembler::pn, done);
duke@435 1398 delayed()->st_ptr(G0, lockobj_addr); // free entry
duke@435 1399
duke@435 1400 // The lock has been converted into a heavy lock and hence
duke@435 1401 // we need to get into the slow case
duke@435 1402
duke@435 1403 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
duke@435 1404
duke@435 1405 bind(done);
duke@435 1406 }
duke@435 1407 }
duke@435 1408
duke@435 1409 #ifndef CC_INTERP
duke@435 1410
duke@435 1411 // Get the method data pointer from the methodOop and set the
duke@435 1412 // specified register to its value.
duke@435 1413
duke@435 1414 void InterpreterMacroAssembler::set_method_data_pointer_offset(Register Roff) {
duke@435 1415 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1416 Label get_continue;
duke@435 1417
duke@435 1418 ld_ptr(Lmethod, in_bytes(methodOopDesc::method_data_offset()), ImethodDataPtr);
duke@435 1419 test_method_data_pointer(get_continue);
duke@435 1420 add(ImethodDataPtr, in_bytes(methodDataOopDesc::data_offset()), ImethodDataPtr);
duke@435 1421 if (Roff != noreg)
duke@435 1422 // Roff contains a method data index ("mdi"). It defaults to zero.
duke@435 1423 add(ImethodDataPtr, Roff, ImethodDataPtr);
duke@435 1424 bind(get_continue);
duke@435 1425 }
duke@435 1426
duke@435 1427 // Set the method data pointer for the current bcp.
duke@435 1428
duke@435 1429 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
duke@435 1430 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1431 Label zero_continue;
duke@435 1432
duke@435 1433 // Test MDO to avoid the call if it is NULL.
duke@435 1434 ld_ptr(Lmethod, in_bytes(methodOopDesc::method_data_offset()), ImethodDataPtr);
duke@435 1435 test_method_data_pointer(zero_continue);
duke@435 1436 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
duke@435 1437 set_method_data_pointer_offset(O0);
duke@435 1438 bind(zero_continue);
duke@435 1439 }
duke@435 1440
duke@435 1441 // Test ImethodDataPtr. If it is null, continue at the specified label
duke@435 1442
duke@435 1443 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
duke@435 1444 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1445 #ifdef _LP64
duke@435 1446 bpr(Assembler::rc_z, false, Assembler::pn, ImethodDataPtr, zero_continue);
duke@435 1447 #else
duke@435 1448 tst(ImethodDataPtr);
duke@435 1449 br(Assembler::zero, false, Assembler::pn, zero_continue);
duke@435 1450 #endif
duke@435 1451 delayed()->nop();
duke@435 1452 }
duke@435 1453
duke@435 1454 void InterpreterMacroAssembler::verify_method_data_pointer() {
duke@435 1455 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1456 #ifdef ASSERT
duke@435 1457 Label verify_continue;
duke@435 1458 test_method_data_pointer(verify_continue);
duke@435 1459
duke@435 1460 // If the mdp is valid, it will point to a DataLayout header which is
duke@435 1461 // consistent with the bcp. The converse is highly probable also.
duke@435 1462 lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
duke@435 1463 ld_ptr(Address(Lmethod, 0, in_bytes(methodOopDesc::const_offset())), O5);
duke@435 1464 add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), G3_scratch);
duke@435 1465 add(G3_scratch, O5, G3_scratch);
duke@435 1466 cmp(Lbcp, G3_scratch);
duke@435 1467 brx(Assembler::equal, false, Assembler::pt, verify_continue);
duke@435 1468
duke@435 1469 Register temp_reg = O5;
duke@435 1470 delayed()->mov(ImethodDataPtr, temp_reg);
duke@435 1471 // %%% should use call_VM_leaf here?
duke@435 1472 //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
duke@435 1473 save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
duke@435 1474 Address d_save(FP, 0, -sizeof(jdouble) + STACK_BIAS);
duke@435 1475 stf(FloatRegisterImpl::D, Ftos_d, d_save);
duke@435 1476 mov(temp_reg->after_save(), O2);
duke@435 1477 save_thread(L7_thread_cache);
duke@435 1478 call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
duke@435 1479 delayed()->nop();
duke@435 1480 restore_thread(L7_thread_cache);
duke@435 1481 ldf(FloatRegisterImpl::D, d_save, Ftos_d);
duke@435 1482 restore();
duke@435 1483 bind(verify_continue);
duke@435 1484 #endif // ASSERT
duke@435 1485 }
duke@435 1486
duke@435 1487 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
duke@435 1488 Register cur_bcp,
duke@435 1489 Register Rtmp,
duke@435 1490 Label &profile_continue) {
duke@435 1491 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1492 // Control will flow to "profile_continue" if the counter is less than the
duke@435 1493 // limit or if we call profile_method()
duke@435 1494
duke@435 1495 Label done;
duke@435 1496
duke@435 1497 // if no method data exists, and the counter is high enough, make one
duke@435 1498 #ifdef _LP64
duke@435 1499 bpr(Assembler::rc_nz, false, Assembler::pn, ImethodDataPtr, done);
duke@435 1500 #else
duke@435 1501 tst(ImethodDataPtr);
duke@435 1502 br(Assembler::notZero, false, Assembler::pn, done);
duke@435 1503 #endif
duke@435 1504
duke@435 1505 // Test to see if we should create a method data oop
duke@435 1506 Address profile_limit(Rtmp, (address)&InvocationCounter::InterpreterProfileLimit);
duke@435 1507 #ifdef _LP64
duke@435 1508 delayed()->nop();
duke@435 1509 sethi(profile_limit);
duke@435 1510 #else
duke@435 1511 delayed()->sethi(profile_limit);
duke@435 1512 #endif
duke@435 1513 ld(profile_limit, Rtmp);
duke@435 1514 cmp(invocation_count, Rtmp);
duke@435 1515 br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
duke@435 1516 delayed()->nop();
duke@435 1517
duke@435 1518 // Build it now.
duke@435 1519 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), cur_bcp);
duke@435 1520 set_method_data_pointer_offset(O0);
duke@435 1521 ba(false, profile_continue);
duke@435 1522 delayed()->nop();
duke@435 1523 bind(done);
duke@435 1524 }
duke@435 1525
duke@435 1526 // Store a value at some constant offset from the method data pointer.
duke@435 1527
duke@435 1528 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
duke@435 1529 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1530 st_ptr(value, ImethodDataPtr, constant);
duke@435 1531 }
duke@435 1532
duke@435 1533 void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
duke@435 1534 Register bumped_count,
duke@435 1535 bool decrement) {
duke@435 1536 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1537
duke@435 1538 // Load the counter.
duke@435 1539 ld_ptr(counter, bumped_count);
duke@435 1540
duke@435 1541 if (decrement) {
duke@435 1542 // Decrement the register. Set condition codes.
duke@435 1543 subcc(bumped_count, DataLayout::counter_increment, bumped_count);
duke@435 1544
duke@435 1545 // If the decrement causes the counter to overflow, stay negative
duke@435 1546 Label L;
duke@435 1547 brx(Assembler::negative, true, Assembler::pn, L);
duke@435 1548
duke@435 1549 // Store the decremented counter, if it is still negative.
duke@435 1550 delayed()->st_ptr(bumped_count, counter);
duke@435 1551 bind(L);
duke@435 1552 } else {
duke@435 1553 // Increment the register. Set carry flag.
duke@435 1554 addcc(bumped_count, DataLayout::counter_increment, bumped_count);
duke@435 1555
duke@435 1556 // If the increment causes the counter to overflow, pull back by 1.
duke@435 1557 assert(DataLayout::counter_increment == 1, "subc works");
duke@435 1558 subc(bumped_count, G0, bumped_count);
duke@435 1559
duke@435 1560 // Store the incremented counter.
duke@435 1561 st_ptr(bumped_count, counter);
duke@435 1562 }
duke@435 1563 }
duke@435 1564
duke@435 1565 // Increment the value at some constant offset from the method data pointer.
duke@435 1566
duke@435 1567 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
duke@435 1568 Register bumped_count,
duke@435 1569 bool decrement) {
duke@435 1570 // Locate the counter at a fixed offset from the mdp:
duke@435 1571 Address counter(ImethodDataPtr, 0, constant);
duke@435 1572 increment_mdp_data_at(counter, bumped_count, decrement);
duke@435 1573 }
duke@435 1574
duke@435 1575 // Increment the value at some non-fixed (reg + constant) offset from
duke@435 1576 // the method data pointer.
duke@435 1577
duke@435 1578 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
duke@435 1579 int constant,
duke@435 1580 Register bumped_count,
duke@435 1581 Register scratch2,
duke@435 1582 bool decrement) {
duke@435 1583 // Add the constant to reg to get the offset.
duke@435 1584 add(ImethodDataPtr, reg, scratch2);
duke@435 1585 Address counter(scratch2, 0, constant);
duke@435 1586 increment_mdp_data_at(counter, bumped_count, decrement);
duke@435 1587 }
duke@435 1588
duke@435 1589 // Set a flag value at the current method data pointer position.
duke@435 1590 // Updates a single byte of the header, to avoid races with other header bits.
duke@435 1591
duke@435 1592 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
duke@435 1593 Register scratch) {
duke@435 1594 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1595 // Load the data header
duke@435 1596 ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
duke@435 1597
duke@435 1598 // Set the flag
duke@435 1599 or3(scratch, flag_constant, scratch);
duke@435 1600
duke@435 1601 // Store the modified header.
duke@435 1602 stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
duke@435 1603 }
duke@435 1604
duke@435 1605 // Test the location at some offset from the method data pointer.
duke@435 1606 // If it is not equal to value, branch to the not_equal_continue Label.
duke@435 1607 // Set condition codes to match the nullness of the loaded value.
duke@435 1608
duke@435 1609 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
duke@435 1610 Register value,
duke@435 1611 Label& not_equal_continue,
duke@435 1612 Register scratch) {
duke@435 1613 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1614 ld_ptr(ImethodDataPtr, offset, scratch);
duke@435 1615 cmp(value, scratch);
duke@435 1616 brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
duke@435 1617 delayed()->tst(scratch);
duke@435 1618 }
duke@435 1619
duke@435 1620 // Update the method data pointer by the displacement located at some fixed
duke@435 1621 // offset from the method data pointer.
duke@435 1622
duke@435 1623 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
duke@435 1624 Register scratch) {
duke@435 1625 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1626 ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
duke@435 1627 add(ImethodDataPtr, scratch, ImethodDataPtr);
duke@435 1628 }
duke@435 1629
duke@435 1630 // Update the method data pointer by the displacement located at the
duke@435 1631 // offset (reg + offset_of_disp).
duke@435 1632
duke@435 1633 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
duke@435 1634 int offset_of_disp,
duke@435 1635 Register scratch) {
duke@435 1636 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1637 add(reg, offset_of_disp, scratch);
duke@435 1638 ld_ptr(ImethodDataPtr, scratch, scratch);
duke@435 1639 add(ImethodDataPtr, scratch, ImethodDataPtr);
duke@435 1640 }
duke@435 1641
duke@435 1642 // Update the method data pointer by a simple constant displacement.
duke@435 1643
duke@435 1644 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
duke@435 1645 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1646 add(ImethodDataPtr, constant, ImethodDataPtr);
duke@435 1647 }
duke@435 1648
duke@435 1649 // Update the method data pointer for a _ret bytecode whose target
duke@435 1650 // was not among our cached targets.
duke@435 1651
duke@435 1652 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
duke@435 1653 Register return_bci) {
duke@435 1654 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1655 push(state);
duke@435 1656 st_ptr(return_bci, l_tmp); // protect return_bci, in case it is volatile
duke@435 1657 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
duke@435 1658 ld_ptr(l_tmp, return_bci);
duke@435 1659 pop(state);
duke@435 1660 }
duke@435 1661
duke@435 1662 // Count a taken branch in the bytecodes.
duke@435 1663
duke@435 1664 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
duke@435 1665 if (ProfileInterpreter) {
duke@435 1666 Label profile_continue;
duke@435 1667
duke@435 1668 // If no method data exists, go to profile_continue.
duke@435 1669 test_method_data_pointer(profile_continue);
duke@435 1670
duke@435 1671 // We are taking a branch. Increment the taken count.
duke@435 1672 increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
duke@435 1673
duke@435 1674 // The method data pointer needs to be updated to reflect the new target.
duke@435 1675 update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
duke@435 1676 bind (profile_continue);
duke@435 1677 }
duke@435 1678 }
duke@435 1679
duke@435 1680
duke@435 1681 // Count a not-taken branch in the bytecodes.
duke@435 1682
duke@435 1683 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
duke@435 1684 if (ProfileInterpreter) {
duke@435 1685 Label profile_continue;
duke@435 1686
duke@435 1687 // If no method data exists, go to profile_continue.
duke@435 1688 test_method_data_pointer(profile_continue);
duke@435 1689
duke@435 1690 // We are taking a branch. Increment the not taken count.
duke@435 1691 increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
duke@435 1692
duke@435 1693 // The method data pointer needs to be updated to correspond to the
duke@435 1694 // next bytecode.
duke@435 1695 update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
duke@435 1696 bind (profile_continue);
duke@435 1697 }
duke@435 1698 }
duke@435 1699
duke@435 1700
duke@435 1701 // Count a non-virtual call in the bytecodes.
duke@435 1702
duke@435 1703 void InterpreterMacroAssembler::profile_call(Register scratch) {
duke@435 1704 if (ProfileInterpreter) {
duke@435 1705 Label profile_continue;
duke@435 1706
duke@435 1707 // If no method data exists, go to profile_continue.
duke@435 1708 test_method_data_pointer(profile_continue);
duke@435 1709
duke@435 1710 // We are making a call. Increment the count.
duke@435 1711 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
duke@435 1712
duke@435 1713 // The method data pointer needs to be updated to reflect the new target.
duke@435 1714 update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
duke@435 1715 bind (profile_continue);
duke@435 1716 }
duke@435 1717 }
duke@435 1718
duke@435 1719
duke@435 1720 // Count a final call in the bytecodes.
duke@435 1721
duke@435 1722 void InterpreterMacroAssembler::profile_final_call(Register scratch) {
duke@435 1723 if (ProfileInterpreter) {
duke@435 1724 Label profile_continue;
duke@435 1725
duke@435 1726 // If no method data exists, go to profile_continue.
duke@435 1727 test_method_data_pointer(profile_continue);
duke@435 1728
duke@435 1729 // We are making a call. Increment the count.
duke@435 1730 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
duke@435 1731
duke@435 1732 // The method data pointer needs to be updated to reflect the new target.
duke@435 1733 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
duke@435 1734 bind (profile_continue);
duke@435 1735 }
duke@435 1736 }
duke@435 1737
duke@435 1738
duke@435 1739 // Count a virtual call in the bytecodes.
duke@435 1740
duke@435 1741 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
duke@435 1742 Register scratch) {
duke@435 1743 if (ProfileInterpreter) {
duke@435 1744 Label profile_continue;
duke@435 1745
duke@435 1746 // If no method data exists, go to profile_continue.
duke@435 1747 test_method_data_pointer(profile_continue);
duke@435 1748
duke@435 1749 // We are making a call. Increment the count.
duke@435 1750 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
duke@435 1751
duke@435 1752 // Record the receiver type.
duke@435 1753 record_klass_in_profile(receiver, scratch);
duke@435 1754
duke@435 1755 // The method data pointer needs to be updated to reflect the new target.
duke@435 1756 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
duke@435 1757 bind (profile_continue);
duke@435 1758 }
duke@435 1759 }
duke@435 1760
duke@435 1761 void InterpreterMacroAssembler::record_klass_in_profile_helper(
duke@435 1762 Register receiver, Register scratch,
duke@435 1763 int start_row, Label& done) {
duke@435 1764 int last_row = VirtualCallData::row_limit() - 1;
duke@435 1765 assert(start_row <= last_row, "must be work left to do");
duke@435 1766 // Test this row for both the receiver and for null.
duke@435 1767 // Take any of three different outcomes:
duke@435 1768 // 1. found receiver => increment count and goto done
duke@435 1769 // 2. found null => keep looking for case 1, maybe allocate this cell
duke@435 1770 // 3. found something else => keep looking for cases 1 and 2
duke@435 1771 // Case 3 is handled by a recursive call.
duke@435 1772 for (int row = start_row; row <= last_row; row++) {
duke@435 1773 Label next_test;
duke@435 1774 bool test_for_null_also = (row == start_row);
duke@435 1775
duke@435 1776 // See if the receiver is receiver[n].
duke@435 1777 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
duke@435 1778 test_mdp_data_at(recvr_offset, receiver, next_test, scratch);
duke@435 1779
duke@435 1780 // The receiver is receiver[n]. Increment count[n].
duke@435 1781 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
duke@435 1782 increment_mdp_data_at(count_offset, scratch);
duke@435 1783 ba(false, done);
duke@435 1784 delayed()->nop();
duke@435 1785 bind(next_test);
duke@435 1786
duke@435 1787 if (test_for_null_also) {
duke@435 1788 // Failed the equality check on receiver[n]... Test for null.
duke@435 1789 if (start_row == last_row) {
duke@435 1790 // The only thing left to do is handle the null case.
duke@435 1791 brx(Assembler::notZero, false, Assembler::pt, done);
duke@435 1792 delayed()->nop();
duke@435 1793 break;
duke@435 1794 }
duke@435 1795 // Since null is rare, make it be the branch-taken case.
duke@435 1796 Label found_null;
duke@435 1797 brx(Assembler::zero, false, Assembler::pn, found_null);
duke@435 1798 delayed()->nop();
duke@435 1799
duke@435 1800 // Put all the "Case 3" tests here.
duke@435 1801 record_klass_in_profile_helper(receiver, scratch, start_row + 1, done);
duke@435 1802
duke@435 1803 // Found a null. Keep searching for a matching receiver,
duke@435 1804 // but remember that this is an empty (unused) slot.
duke@435 1805 bind(found_null);
duke@435 1806 }
duke@435 1807 }
duke@435 1808
duke@435 1809 // In the fall-through case, we found no matching receiver, but we
duke@435 1810 // observed the receiver[start_row] is NULL.
duke@435 1811
duke@435 1812 // Fill in the receiver field and increment the count.
duke@435 1813 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
duke@435 1814 set_mdp_data_at(recvr_offset, receiver);
duke@435 1815 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
duke@435 1816 mov(DataLayout::counter_increment, scratch);
duke@435 1817 set_mdp_data_at(count_offset, scratch);
duke@435 1818 ba(false, done);
duke@435 1819 delayed()->nop();
duke@435 1820 }
duke@435 1821
duke@435 1822 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
duke@435 1823 Register scratch) {
duke@435 1824 assert(ProfileInterpreter, "must be profiling");
duke@435 1825 Label done;
duke@435 1826
duke@435 1827 record_klass_in_profile_helper(receiver, scratch, 0, done);
duke@435 1828
duke@435 1829 bind (done);
duke@435 1830 }
duke@435 1831
duke@435 1832
duke@435 1833 // Count a ret in the bytecodes.
duke@435 1834
duke@435 1835 void InterpreterMacroAssembler::profile_ret(TosState state,
duke@435 1836 Register return_bci,
duke@435 1837 Register scratch) {
duke@435 1838 if (ProfileInterpreter) {
duke@435 1839 Label profile_continue;
duke@435 1840 uint row;
duke@435 1841
duke@435 1842 // If no method data exists, go to profile_continue.
duke@435 1843 test_method_data_pointer(profile_continue);
duke@435 1844
duke@435 1845 // Update the total ret count.
duke@435 1846 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
duke@435 1847
duke@435 1848 for (row = 0; row < RetData::row_limit(); row++) {
duke@435 1849 Label next_test;
duke@435 1850
duke@435 1851 // See if return_bci is equal to bci[n]:
duke@435 1852 test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
duke@435 1853 return_bci, next_test, scratch);
duke@435 1854
duke@435 1855 // return_bci is equal to bci[n]. Increment the count.
duke@435 1856 increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
duke@435 1857
duke@435 1858 // The method data pointer needs to be updated to reflect the new target.
duke@435 1859 update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
duke@435 1860 ba(false, profile_continue);
duke@435 1861 delayed()->nop();
duke@435 1862 bind(next_test);
duke@435 1863 }
duke@435 1864
duke@435 1865 update_mdp_for_ret(state, return_bci);
duke@435 1866
duke@435 1867 bind (profile_continue);
duke@435 1868 }
duke@435 1869 }
duke@435 1870
duke@435 1871 // Profile an unexpected null in the bytecodes.
duke@435 1872 void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
duke@435 1873 if (ProfileInterpreter) {
duke@435 1874 Label profile_continue;
duke@435 1875
duke@435 1876 // If no method data exists, go to profile_continue.
duke@435 1877 test_method_data_pointer(profile_continue);
duke@435 1878
duke@435 1879 set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
duke@435 1880
duke@435 1881 // The method data pointer needs to be updated.
duke@435 1882 int mdp_delta = in_bytes(BitData::bit_data_size());
duke@435 1883 if (TypeProfileCasts) {
duke@435 1884 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
duke@435 1885 }
duke@435 1886 update_mdp_by_constant(mdp_delta);
duke@435 1887
duke@435 1888 bind (profile_continue);
duke@435 1889 }
duke@435 1890 }
duke@435 1891
duke@435 1892 void InterpreterMacroAssembler::profile_typecheck(Register klass,
duke@435 1893 Register scratch) {
duke@435 1894 if (ProfileInterpreter) {
duke@435 1895 Label profile_continue;
duke@435 1896
duke@435 1897 // If no method data exists, go to profile_continue.
duke@435 1898 test_method_data_pointer(profile_continue);
duke@435 1899
duke@435 1900 int mdp_delta = in_bytes(BitData::bit_data_size());
duke@435 1901 if (TypeProfileCasts) {
duke@435 1902 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
duke@435 1903
duke@435 1904 // Record the object type.
duke@435 1905 record_klass_in_profile(klass, scratch);
duke@435 1906 }
duke@435 1907
duke@435 1908 // The method data pointer needs to be updated.
duke@435 1909 update_mdp_by_constant(mdp_delta);
duke@435 1910
duke@435 1911 bind (profile_continue);
duke@435 1912 }
duke@435 1913 }
duke@435 1914
duke@435 1915 void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
duke@435 1916 if (ProfileInterpreter && TypeProfileCasts) {
duke@435 1917 Label profile_continue;
duke@435 1918
duke@435 1919 // If no method data exists, go to profile_continue.
duke@435 1920 test_method_data_pointer(profile_continue);
duke@435 1921
duke@435 1922 int count_offset = in_bytes(CounterData::count_offset());
duke@435 1923 // Back up the address, since we have already bumped the mdp.
duke@435 1924 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
duke@435 1925
duke@435 1926 // *Decrement* the counter. We expect to see zero or small negatives.
duke@435 1927 increment_mdp_data_at(count_offset, scratch, true);
duke@435 1928
duke@435 1929 bind (profile_continue);
duke@435 1930 }
duke@435 1931 }
duke@435 1932
duke@435 1933 // Count the default case of a switch construct.
duke@435 1934
duke@435 1935 void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
duke@435 1936 if (ProfileInterpreter) {
duke@435 1937 Label profile_continue;
duke@435 1938
duke@435 1939 // If no method data exists, go to profile_continue.
duke@435 1940 test_method_data_pointer(profile_continue);
duke@435 1941
duke@435 1942 // Update the default case count
duke@435 1943 increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
duke@435 1944 scratch);
duke@435 1945
duke@435 1946 // The method data pointer needs to be updated.
duke@435 1947 update_mdp_by_offset(
duke@435 1948 in_bytes(MultiBranchData::default_displacement_offset()),
duke@435 1949 scratch);
duke@435 1950
duke@435 1951 bind (profile_continue);
duke@435 1952 }
duke@435 1953 }
duke@435 1954
duke@435 1955 // Count the index'th case of a switch construct.
duke@435 1956
duke@435 1957 void InterpreterMacroAssembler::profile_switch_case(Register index,
duke@435 1958 Register scratch,
duke@435 1959 Register scratch2,
duke@435 1960 Register scratch3) {
duke@435 1961 if (ProfileInterpreter) {
duke@435 1962 Label profile_continue;
duke@435 1963
duke@435 1964 // If no method data exists, go to profile_continue.
duke@435 1965 test_method_data_pointer(profile_continue);
duke@435 1966
duke@435 1967 // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
duke@435 1968 set(in_bytes(MultiBranchData::per_case_size()), scratch);
duke@435 1969 smul(index, scratch, scratch);
duke@435 1970 add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
duke@435 1971
duke@435 1972 // Update the case count
duke@435 1973 increment_mdp_data_at(scratch,
duke@435 1974 in_bytes(MultiBranchData::relative_count_offset()),
duke@435 1975 scratch2,
duke@435 1976 scratch3);
duke@435 1977
duke@435 1978 // The method data pointer needs to be updated.
duke@435 1979 update_mdp_by_offset(scratch,
duke@435 1980 in_bytes(MultiBranchData::relative_displacement_offset()),
duke@435 1981 scratch2);
duke@435 1982
duke@435 1983 bind (profile_continue);
duke@435 1984 }
duke@435 1985 }
duke@435 1986
duke@435 1987 // add a InterpMonitorElem to stack (see frame_sparc.hpp)
duke@435 1988
duke@435 1989 void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
duke@435 1990 Register Rtemp,
duke@435 1991 Register Rtemp2 ) {
duke@435 1992
duke@435 1993 Register Rlimit = Lmonitors;
duke@435 1994 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 1995 assert( (delta & LongAlignmentMask) == 0,
duke@435 1996 "sizeof BasicObjectLock must be even number of doublewords");
duke@435 1997
duke@435 1998 sub( SP, delta, SP);
duke@435 1999 sub( Lesp, delta, Lesp);
duke@435 2000 sub( Lmonitors, delta, Lmonitors);
duke@435 2001
duke@435 2002 if (!stack_is_empty) {
duke@435 2003
duke@435 2004 // must copy stack contents down
duke@435 2005
duke@435 2006 Label start_copying, next;
duke@435 2007
duke@435 2008 // untested("monitor stack expansion");
duke@435 2009 compute_stack_base(Rtemp);
duke@435 2010 ba( false, start_copying );
duke@435 2011 delayed()->cmp( Rtemp, Rlimit); // done? duplicated below
duke@435 2012
duke@435 2013 // note: must copy from low memory upwards
duke@435 2014 // On entry to loop,
duke@435 2015 // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
duke@435 2016 // Loop mutates Rtemp
duke@435 2017
duke@435 2018 bind( next);
duke@435 2019
duke@435 2020 st_ptr(Rtemp2, Rtemp, 0);
duke@435 2021 inc(Rtemp, wordSize);
duke@435 2022 cmp(Rtemp, Rlimit); // are we done? (duplicated above)
duke@435 2023
duke@435 2024 bind( start_copying );
duke@435 2025
duke@435 2026 brx( notEqual, true, pn, next );
duke@435 2027 delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
duke@435 2028
duke@435 2029 // done copying stack
duke@435 2030 }
duke@435 2031 }
duke@435 2032
duke@435 2033 // Locals
duke@435 2034 #ifdef ASSERT
duke@435 2035 void InterpreterMacroAssembler::verify_local_tag(frame::Tag t,
duke@435 2036 Register base,
duke@435 2037 Register scratch,
duke@435 2038 int n) {
duke@435 2039 if (TaggedStackInterpreter) {
duke@435 2040 Label ok, long_ok;
duke@435 2041 // Use dst for scratch
duke@435 2042 assert_different_registers(base, scratch);
duke@435 2043 ld_ptr(base, Interpreter::local_tag_offset_in_bytes(n), scratch);
duke@435 2044 if (t == frame::TagCategory2) {
duke@435 2045 cmp(scratch, G0);
duke@435 2046 brx(Assembler::equal, false, Assembler::pt, long_ok);
duke@435 2047 delayed()->ld_ptr(base, Interpreter::local_tag_offset_in_bytes(n+1), scratch);
duke@435 2048 stop("local long/double tag value bad");
duke@435 2049 bind(long_ok);
duke@435 2050 // compare second half tag
duke@435 2051 cmp(scratch, G0);
duke@435 2052 } else if (t == frame::TagValue) {
duke@435 2053 cmp(scratch, G0);
duke@435 2054 } else {
duke@435 2055 assert_different_registers(O3, base, scratch);
duke@435 2056 mov(t, O3);
duke@435 2057 cmp(scratch, O3);
duke@435 2058 }
duke@435 2059 brx(Assembler::equal, false, Assembler::pt, ok);
duke@435 2060 delayed()->nop();
duke@435 2061 // Also compare if the local value is zero, then the tag might
duke@435 2062 // not have been set coming from deopt.
duke@435 2063 ld_ptr(base, Interpreter::local_offset_in_bytes(n), scratch);
duke@435 2064 cmp(scratch, G0);
duke@435 2065 brx(Assembler::equal, false, Assembler::pt, ok);
duke@435 2066 delayed()->nop();
duke@435 2067 stop("Local tag value is bad");
duke@435 2068 bind(ok);
duke@435 2069 }
duke@435 2070 }
duke@435 2071 #endif // ASSERT
duke@435 2072
duke@435 2073 void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
duke@435 2074 assert_not_delayed();
duke@435 2075 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2076 sub(Llocals, index, index);
duke@435 2077 debug_only(verify_local_tag(frame::TagReference, index, dst));
duke@435 2078 ld_ptr(index, Interpreter::value_offset_in_bytes(), dst);
duke@435 2079 // Note: index must hold the effective address--the iinc template uses it
duke@435 2080 }
duke@435 2081
duke@435 2082 // Just like access_local_ptr but the tag is a returnAddress
duke@435 2083 void InterpreterMacroAssembler::access_local_returnAddress(Register index,
duke@435 2084 Register dst ) {
duke@435 2085 assert_not_delayed();
duke@435 2086 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2087 sub(Llocals, index, index);
duke@435 2088 debug_only(verify_local_tag(frame::TagValue, index, dst));
duke@435 2089 ld_ptr(index, Interpreter::value_offset_in_bytes(), dst);
duke@435 2090 }
duke@435 2091
duke@435 2092 void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
duke@435 2093 assert_not_delayed();
duke@435 2094 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2095 sub(Llocals, index, index);
duke@435 2096 debug_only(verify_local_tag(frame::TagValue, index, dst));
duke@435 2097 ld(index, Interpreter::value_offset_in_bytes(), dst);
duke@435 2098 // Note: index must hold the effective address--the iinc template uses it
duke@435 2099 }
duke@435 2100
duke@435 2101
duke@435 2102 void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
duke@435 2103 assert_not_delayed();
duke@435 2104 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2105 sub(Llocals, index, index);
duke@435 2106 debug_only(verify_local_tag(frame::TagCategory2, index, dst));
duke@435 2107 // First half stored at index n+1 (which grows down from Llocals[n])
duke@435 2108 load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
duke@435 2109 }
duke@435 2110
duke@435 2111
duke@435 2112 void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
duke@435 2113 assert_not_delayed();
duke@435 2114 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2115 sub(Llocals, index, index);
duke@435 2116 debug_only(verify_local_tag(frame::TagValue, index, G1_scratch));
duke@435 2117 ldf(FloatRegisterImpl::S, index, Interpreter::value_offset_in_bytes(), dst);
duke@435 2118 }
duke@435 2119
duke@435 2120
duke@435 2121 void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
duke@435 2122 assert_not_delayed();
duke@435 2123 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2124 sub(Llocals, index, index);
duke@435 2125 debug_only(verify_local_tag(frame::TagCategory2, index, G1_scratch));
duke@435 2126 load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
duke@435 2127 }
duke@435 2128
duke@435 2129
duke@435 2130 #ifdef ASSERT
duke@435 2131 void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
duke@435 2132 Label L;
duke@435 2133
duke@435 2134 assert(Rindex != Rscratch, "Registers cannot be same");
duke@435 2135 assert(Rindex != Rscratch1, "Registers cannot be same");
duke@435 2136 assert(Rlimit != Rscratch, "Registers cannot be same");
duke@435 2137 assert(Rlimit != Rscratch1, "Registers cannot be same");
duke@435 2138 assert(Rscratch1 != Rscratch, "Registers cannot be same");
duke@435 2139
duke@435 2140 // untested("reg area corruption");
duke@435 2141 add(Rindex, offset, Rscratch);
duke@435 2142 add(Rlimit, 64 + STACK_BIAS, Rscratch1);
duke@435 2143 cmp(Rscratch, Rscratch1);
duke@435 2144 brx(Assembler::greaterEqualUnsigned, false, pn, L);
duke@435 2145 delayed()->nop();
duke@435 2146 stop("regsave area is being clobbered");
duke@435 2147 bind(L);
duke@435 2148 }
duke@435 2149 #endif // ASSERT
duke@435 2150
duke@435 2151 void InterpreterMacroAssembler::tag_local(frame::Tag t,
duke@435 2152 Register base,
duke@435 2153 Register src,
duke@435 2154 int n) {
duke@435 2155 if (TaggedStackInterpreter) {
duke@435 2156 // have to store zero because local slots can be reused (rats!)
duke@435 2157 if (t == frame::TagValue) {
duke@435 2158 st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n));
duke@435 2159 } else if (t == frame::TagCategory2) {
duke@435 2160 st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n));
duke@435 2161 st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n+1));
duke@435 2162 } else {
duke@435 2163 // assert that we don't stomp the value in 'src'
duke@435 2164 // O3 is arbitrary because it's not used.
duke@435 2165 assert_different_registers(src, base, O3);
duke@435 2166 mov( t, O3);
duke@435 2167 st_ptr(O3, base, Interpreter::local_tag_offset_in_bytes(n));
duke@435 2168 }
duke@435 2169 }
duke@435 2170 }
duke@435 2171
duke@435 2172
duke@435 2173 void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
duke@435 2174 assert_not_delayed();
duke@435 2175 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2176 sub(Llocals, index, index);
duke@435 2177 debug_only(check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);)
duke@435 2178 tag_local(frame::TagValue, index, src);
duke@435 2179 st(src, index, Interpreter::value_offset_in_bytes());
duke@435 2180 }
duke@435 2181
duke@435 2182 void InterpreterMacroAssembler::store_local_ptr( Register index, Register src,
duke@435 2183 Register tag ) {
duke@435 2184 assert_not_delayed();
duke@435 2185 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2186 sub(Llocals, index, index);
duke@435 2187 #ifdef ASSERT
duke@435 2188 check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);
duke@435 2189 #endif
duke@435 2190 st_ptr(src, index, Interpreter::value_offset_in_bytes());
duke@435 2191 // Store tag register directly
duke@435 2192 if (TaggedStackInterpreter) {
duke@435 2193 st_ptr(tag, index, Interpreter::tag_offset_in_bytes());
duke@435 2194 }
duke@435 2195 }
duke@435 2196
duke@435 2197
duke@435 2198
duke@435 2199 void InterpreterMacroAssembler::store_local_ptr( int n, Register src,
duke@435 2200 Register tag ) {
duke@435 2201 st_ptr(src, Llocals, Interpreter::local_offset_in_bytes(n));
duke@435 2202 if (TaggedStackInterpreter) {
duke@435 2203 st_ptr(tag, Llocals, Interpreter::local_tag_offset_in_bytes(n));
duke@435 2204 }
duke@435 2205 }
duke@435 2206
duke@435 2207 void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
duke@435 2208 assert_not_delayed();
duke@435 2209 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2210 sub(Llocals, index, index);
duke@435 2211 #ifdef ASSERT
duke@435 2212 check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
duke@435 2213 #endif
duke@435 2214 tag_local(frame::TagCategory2, index, src);
duke@435 2215 store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
duke@435 2216 }
duke@435 2217
duke@435 2218
duke@435 2219 void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
duke@435 2220 assert_not_delayed();
duke@435 2221 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2222 sub(Llocals, index, index);
duke@435 2223 #ifdef ASSERT
duke@435 2224 check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);
duke@435 2225 #endif
duke@435 2226 tag_local(frame::TagValue, index, G1_scratch);
duke@435 2227 stf(FloatRegisterImpl::S, src, index, Interpreter::value_offset_in_bytes());
duke@435 2228 }
duke@435 2229
duke@435 2230
duke@435 2231 void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
duke@435 2232 assert_not_delayed();
duke@435 2233 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2234 sub(Llocals, index, index);
duke@435 2235 #ifdef ASSERT
duke@435 2236 check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
duke@435 2237 #endif
duke@435 2238 tag_local(frame::TagCategory2, index, G1_scratch);
duke@435 2239 store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
duke@435 2240 }
duke@435 2241
duke@435 2242
duke@435 2243 int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
duke@435 2244 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 2245 int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
duke@435 2246 return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
duke@435 2247 }
duke@435 2248
duke@435 2249
duke@435 2250 Address InterpreterMacroAssembler::top_most_monitor() {
duke@435 2251 return Address(FP, 0, top_most_monitor_byte_offset());
duke@435 2252 }
duke@435 2253
duke@435 2254
duke@435 2255 void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
duke@435 2256 add( Lesp, wordSize, Rdest );
duke@435 2257 }
duke@435 2258
duke@435 2259 #endif /* CC_INTERP */
duke@435 2260
duke@435 2261 void InterpreterMacroAssembler::increment_invocation_counter( Register Rtmp, Register Rtmp2 ) {
duke@435 2262 assert(UseCompiler, "incrementing must be useful");
duke@435 2263 #ifdef CC_INTERP
duke@435 2264 Address inv_counter(G5_method, 0, in_bytes(methodOopDesc::invocation_counter_offset()
duke@435 2265 + InvocationCounter::counter_offset()));
duke@435 2266 Address be_counter(G5_method, 0, in_bytes(methodOopDesc::backedge_counter_offset()
duke@435 2267 + InvocationCounter::counter_offset()));
duke@435 2268 #else
duke@435 2269 Address inv_counter(Lmethod, 0, in_bytes(methodOopDesc::invocation_counter_offset()
duke@435 2270 + InvocationCounter::counter_offset()));
duke@435 2271 Address be_counter(Lmethod, 0, in_bytes(methodOopDesc::backedge_counter_offset()
duke@435 2272 + InvocationCounter::counter_offset()));
duke@435 2273 #endif /* CC_INTERP */
duke@435 2274 int delta = InvocationCounter::count_increment;
duke@435 2275
duke@435 2276 // Load each counter in a register
duke@435 2277 ld( inv_counter, Rtmp );
duke@435 2278 ld( be_counter, Rtmp2 );
duke@435 2279
duke@435 2280 assert( is_simm13( delta ), " delta too large.");
duke@435 2281
duke@435 2282 // Add the delta to the invocation counter and store the result
duke@435 2283 add( Rtmp, delta, Rtmp );
duke@435 2284
duke@435 2285 // Mask the backedge counter
duke@435 2286 and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
duke@435 2287
duke@435 2288 // Store value
duke@435 2289 st( Rtmp, inv_counter);
duke@435 2290
duke@435 2291 // Add invocation counter + backedge counter
duke@435 2292 add( Rtmp, Rtmp2, Rtmp);
duke@435 2293
duke@435 2294 // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
duke@435 2295 }
duke@435 2296
duke@435 2297 void InterpreterMacroAssembler::increment_backedge_counter( Register Rtmp, Register Rtmp2 ) {
duke@435 2298 assert(UseCompiler, "incrementing must be useful");
duke@435 2299 #ifdef CC_INTERP
duke@435 2300 Address be_counter(G5_method, 0, in_bytes(methodOopDesc::backedge_counter_offset()
duke@435 2301 + InvocationCounter::counter_offset()));
duke@435 2302 Address inv_counter(G5_method, 0, in_bytes(methodOopDesc::invocation_counter_offset()
duke@435 2303 + InvocationCounter::counter_offset()));
duke@435 2304 #else
duke@435 2305 Address be_counter(Lmethod, 0, in_bytes(methodOopDesc::backedge_counter_offset()
duke@435 2306 + InvocationCounter::counter_offset()));
duke@435 2307 Address inv_counter(Lmethod, 0, in_bytes(methodOopDesc::invocation_counter_offset()
duke@435 2308 + InvocationCounter::counter_offset()));
duke@435 2309 #endif /* CC_INTERP */
duke@435 2310 int delta = InvocationCounter::count_increment;
duke@435 2311 // Load each counter in a register
duke@435 2312 ld( be_counter, Rtmp );
duke@435 2313 ld( inv_counter, Rtmp2 );
duke@435 2314
duke@435 2315 // Add the delta to the backedge counter
duke@435 2316 add( Rtmp, delta, Rtmp );
duke@435 2317
duke@435 2318 // Mask the invocation counter, add to backedge counter
duke@435 2319 and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
duke@435 2320
duke@435 2321 // and store the result to memory
duke@435 2322 st( Rtmp, be_counter );
duke@435 2323
duke@435 2324 // Add backedge + invocation counter
duke@435 2325 add( Rtmp, Rtmp2, Rtmp );
duke@435 2326
duke@435 2327 // Note that this macro must leave backedge_count + invocation_count in Rtmp!
duke@435 2328 }
duke@435 2329
duke@435 2330 #ifndef CC_INTERP
duke@435 2331 void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
duke@435 2332 Register branch_bcp,
duke@435 2333 Register Rtmp ) {
duke@435 2334 Label did_not_overflow;
duke@435 2335 Label overflow_with_error;
duke@435 2336 assert_different_registers(backedge_count, Rtmp, branch_bcp);
duke@435 2337 assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
duke@435 2338
duke@435 2339 Address limit(Rtmp, address(&InvocationCounter::InterpreterBackwardBranchLimit));
duke@435 2340 load_contents(limit, Rtmp);
duke@435 2341 cmp(backedge_count, Rtmp);
duke@435 2342 br(Assembler::lessUnsigned, false, Assembler::pt, did_not_overflow);
duke@435 2343 delayed()->nop();
duke@435 2344
duke@435 2345 // When ProfileInterpreter is on, the backedge_count comes from the
duke@435 2346 // methodDataOop, which value does not get reset on the call to
duke@435 2347 // frequency_counter_overflow(). To avoid excessive calls to the overflow
duke@435 2348 // routine while the method is being compiled, add a second test to make sure
duke@435 2349 // the overflow function is called only once every overflow_frequency.
duke@435 2350 if (ProfileInterpreter) {
duke@435 2351 const int overflow_frequency = 1024;
duke@435 2352 andcc(backedge_count, overflow_frequency-1, Rtmp);
duke@435 2353 brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
duke@435 2354 delayed()->nop();
duke@435 2355 }
duke@435 2356
duke@435 2357 // overflow in loop, pass branch bytecode
duke@435 2358 set(6,Rtmp);
duke@435 2359 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
duke@435 2360
duke@435 2361 // Was an OSR adapter generated?
duke@435 2362 // O0 = osr nmethod
duke@435 2363 tst(O0);
duke@435 2364 brx(Assembler::zero, false, Assembler::pn, overflow_with_error);
duke@435 2365 delayed()->nop();
duke@435 2366
duke@435 2367 // Has the nmethod been invalidated already?
duke@435 2368 ld(O0, nmethod::entry_bci_offset(), O2);
duke@435 2369 cmp(O2, InvalidOSREntryBci);
duke@435 2370 br(Assembler::equal, false, Assembler::pn, overflow_with_error);
duke@435 2371 delayed()->nop();
duke@435 2372
duke@435 2373 // migrate the interpreter frame off of the stack
duke@435 2374
duke@435 2375 mov(G2_thread, L7);
duke@435 2376 // save nmethod
duke@435 2377 mov(O0, L6);
duke@435 2378 set_last_Java_frame(SP, noreg);
duke@435 2379 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
duke@435 2380 reset_last_Java_frame();
duke@435 2381 mov(L7, G2_thread);
duke@435 2382
duke@435 2383 // move OSR nmethod to I1
duke@435 2384 mov(L6, I1);
duke@435 2385
duke@435 2386 // OSR buffer to I0
duke@435 2387 mov(O0, I0);
duke@435 2388
duke@435 2389 // remove the interpreter frame
duke@435 2390 restore(I5_savedSP, 0, SP);
duke@435 2391
duke@435 2392 // Jump to the osr code.
duke@435 2393 ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
duke@435 2394 jmp(O2, G0);
duke@435 2395 delayed()->nop();
duke@435 2396
duke@435 2397 bind(overflow_with_error);
duke@435 2398
duke@435 2399 bind(did_not_overflow);
duke@435 2400 }
duke@435 2401
duke@435 2402
duke@435 2403
duke@435 2404 void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
duke@435 2405 if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
duke@435 2406 }
duke@435 2407
duke@435 2408
duke@435 2409 // local helper function for the verify_oop_or_return_address macro
duke@435 2410 static bool verify_return_address(methodOopDesc* m, int bci) {
duke@435 2411 #ifndef PRODUCT
duke@435 2412 address pc = (address)(m->constMethod())
duke@435 2413 + in_bytes(constMethodOopDesc::codes_offset()) + bci;
duke@435 2414 // assume it is a valid return address if it is inside m and is preceded by a jsr
duke@435 2415 if (!m->contains(pc)) return false;
duke@435 2416 address jsr_pc;
duke@435 2417 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
duke@435 2418 if (*jsr_pc == Bytecodes::_jsr && jsr_pc >= m->code_base()) return true;
duke@435 2419 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
duke@435 2420 if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base()) return true;
duke@435 2421 #endif // PRODUCT
duke@435 2422 return false;
duke@435 2423 }
duke@435 2424
duke@435 2425
duke@435 2426 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
duke@435 2427 if (!VerifyOops) return;
duke@435 2428 // the VM documentation for the astore[_wide] bytecode allows
duke@435 2429 // the TOS to be not only an oop but also a return address
duke@435 2430 Label test;
duke@435 2431 Label skip;
duke@435 2432 // See if it is an address (in the current method):
duke@435 2433
duke@435 2434 mov(reg, Rtmp);
duke@435 2435 const int log2_bytecode_size_limit = 16;
duke@435 2436 srl(Rtmp, log2_bytecode_size_limit, Rtmp);
duke@435 2437 br_notnull( Rtmp, false, pt, test );
duke@435 2438 delayed()->nop();
duke@435 2439
duke@435 2440 // %%% should use call_VM_leaf here?
duke@435 2441 save_frame_and_mov(0, Lmethod, O0, reg, O1);
duke@435 2442 save_thread(L7_thread_cache);
duke@435 2443 call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
duke@435 2444 delayed()->nop();
duke@435 2445 restore_thread(L7_thread_cache);
duke@435 2446 br_notnull( O0, false, pt, skip );
duke@435 2447 delayed()->restore();
duke@435 2448
duke@435 2449 // Perform a more elaborate out-of-line call
duke@435 2450 // Not an address; verify it:
duke@435 2451 bind(test);
duke@435 2452 verify_oop(reg);
duke@435 2453 bind(skip);
duke@435 2454 }
duke@435 2455
duke@435 2456
duke@435 2457 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
duke@435 2458 if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
duke@435 2459 }
duke@435 2460 #endif /* CC_INTERP */
duke@435 2461
duke@435 2462 // Inline assembly for:
duke@435 2463 //
duke@435 2464 // if (thread is in interp_only_mode) {
duke@435 2465 // InterpreterRuntime::post_method_entry();
duke@435 2466 // }
duke@435 2467 // if (DTraceMethodProbes) {
twisti@1040 2468 // SharedRuntime::dtrace_method_entry(method, receiver);
duke@435 2469 // }
duke@435 2470
duke@435 2471 void InterpreterMacroAssembler::notify_method_entry() {
duke@435 2472
duke@435 2473 // C++ interpreter only uses this for native methods.
duke@435 2474
duke@435 2475 // Whenever JVMTI puts a thread in interp_only_mode, method
duke@435 2476 // entry/exit events are sent for that thread to track stack
duke@435 2477 // depth. If it is possible to enter interp_only_mode we add
duke@435 2478 // the code to check if the event should be sent.
duke@435 2479 if (JvmtiExport::can_post_interpreter_events()) {
duke@435 2480 Label L;
duke@435 2481 Register temp_reg = O5;
duke@435 2482
duke@435 2483 const Address interp_only (G2_thread, 0, in_bytes(JavaThread::interp_only_mode_offset()));
duke@435 2484
duke@435 2485 ld(interp_only, temp_reg);
duke@435 2486 tst(temp_reg);
duke@435 2487 br(zero, false, pt, L);
duke@435 2488 delayed()->nop();
duke@435 2489 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
duke@435 2490 bind(L);
duke@435 2491 }
duke@435 2492
duke@435 2493 {
duke@435 2494 Register temp_reg = O5;
duke@435 2495 SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
duke@435 2496 call_VM_leaf(noreg,
duke@435 2497 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
duke@435 2498 G2_thread, Lmethod);
duke@435 2499 }
duke@435 2500 }
duke@435 2501
duke@435 2502
duke@435 2503 // Inline assembly for:
duke@435 2504 //
duke@435 2505 // if (thread is in interp_only_mode) {
duke@435 2506 // // save result
duke@435 2507 // InterpreterRuntime::post_method_exit();
duke@435 2508 // // restore result
duke@435 2509 // }
duke@435 2510 // if (DTraceMethodProbes) {
duke@435 2511 // SharedRuntime::dtrace_method_exit(thread, method);
duke@435 2512 // }
duke@435 2513 //
duke@435 2514 // Native methods have their result stored in d_tmp and l_tmp
duke@435 2515 // Java methods have their result stored in the expression stack
duke@435 2516
duke@435 2517 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
duke@435 2518 TosState state,
duke@435 2519 NotifyMethodExitMode mode) {
duke@435 2520 // C++ interpreter only uses this for native methods.
duke@435 2521
duke@435 2522 // Whenever JVMTI puts a thread in interp_only_mode, method
duke@435 2523 // entry/exit events are sent for that thread to track stack
duke@435 2524 // depth. If it is possible to enter interp_only_mode we add
duke@435 2525 // the code to check if the event should be sent.
duke@435 2526 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
duke@435 2527 Label L;
duke@435 2528 Register temp_reg = O5;
duke@435 2529
duke@435 2530 const Address interp_only (G2_thread, 0, in_bytes(JavaThread::interp_only_mode_offset()));
duke@435 2531
duke@435 2532 ld(interp_only, temp_reg);
duke@435 2533 tst(temp_reg);
duke@435 2534 br(zero, false, pt, L);
duke@435 2535 delayed()->nop();
duke@435 2536
duke@435 2537 // Note: frame::interpreter_frame_result has a dependency on how the
duke@435 2538 // method result is saved across the call to post_method_exit. For
duke@435 2539 // native methods it assumes the result registers are saved to
duke@435 2540 // l_scratch and d_scratch. If this changes then the interpreter_frame_result
duke@435 2541 // implementation will need to be updated too.
duke@435 2542
duke@435 2543 save_return_value(state, is_native_method);
duke@435 2544 call_VM(noreg,
duke@435 2545 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
duke@435 2546 restore_return_value(state, is_native_method);
duke@435 2547 bind(L);
duke@435 2548 }
duke@435 2549
duke@435 2550 {
duke@435 2551 Register temp_reg = O5;
duke@435 2552 // Dtrace notification
duke@435 2553 SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
duke@435 2554 save_return_value(state, is_native_method);
duke@435 2555 call_VM_leaf(
duke@435 2556 noreg,
duke@435 2557 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
duke@435 2558 G2_thread, Lmethod);
duke@435 2559 restore_return_value(state, is_native_method);
duke@435 2560 }
duke@435 2561 }
duke@435 2562
duke@435 2563 void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
duke@435 2564 #ifdef CC_INTERP
duke@435 2565 // result potentially in O0/O1: save it across calls
duke@435 2566 stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
duke@435 2567 #ifdef _LP64
duke@435 2568 stx(O0, STATE(_native_lresult));
duke@435 2569 #else
duke@435 2570 std(O0, STATE(_native_lresult));
duke@435 2571 #endif
duke@435 2572 #else // CC_INTERP
duke@435 2573 if (is_native_call) {
duke@435 2574 stf(FloatRegisterImpl::D, F0, d_tmp);
duke@435 2575 #ifdef _LP64
duke@435 2576 stx(O0, l_tmp);
duke@435 2577 #else
duke@435 2578 std(O0, l_tmp);
duke@435 2579 #endif
duke@435 2580 } else {
duke@435 2581 push(state);
duke@435 2582 }
duke@435 2583 #endif // CC_INTERP
duke@435 2584 }
duke@435 2585
duke@435 2586 void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
duke@435 2587 #ifdef CC_INTERP
duke@435 2588 ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
duke@435 2589 #ifdef _LP64
duke@435 2590 ldx(STATE(_native_lresult), O0);
duke@435 2591 #else
duke@435 2592 ldd(STATE(_native_lresult), O0);
duke@435 2593 #endif
duke@435 2594 #else // CC_INTERP
duke@435 2595 if (is_native_call) {
duke@435 2596 ldf(FloatRegisterImpl::D, d_tmp, F0);
duke@435 2597 #ifdef _LP64
duke@435 2598 ldx(l_tmp, O0);
duke@435 2599 #else
duke@435 2600 ldd(l_tmp, O0);
duke@435 2601 #endif
duke@435 2602 } else {
duke@435 2603 pop(state);
duke@435 2604 }
duke@435 2605 #endif // CC_INTERP
duke@435 2606 }

mercurial