src/cpu/sparc/vm/interp_masm_sparc.cpp

Tue, 09 Mar 2010 20:16:19 +0100

author
twisti
date
Tue, 09 Mar 2010 20:16:19 +0100
changeset 1730
3cf667df43ef
parent 1686
576e77447e3c
child 1858
c640000b7cc1
permissions
-rw-r--r--

6919934: JSR 292 needs to support x86 C1
Summary: This implements JSR 292 support for C1 x86.
Reviewed-by: never, jrose, kvn

duke@435 1 /*
kvn@1686 2 * Copyright 1997-2010 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_interp_masm_sparc.cpp.incl"
duke@435 27
duke@435 28 #ifndef CC_INTERP
duke@435 29 #ifndef FAST_DISPATCH
duke@435 30 #define FAST_DISPATCH 1
duke@435 31 #endif
duke@435 32 #undef FAST_DISPATCH
duke@435 33
duke@435 34 // Implementation of InterpreterMacroAssembler
duke@435 35
duke@435 36 // This file specializes the assember with interpreter-specific macros
duke@435 37
twisti@1162 38 const Address InterpreterMacroAssembler::l_tmp(FP, (frame::interpreter_frame_l_scratch_fp_offset * wordSize) + STACK_BIAS);
twisti@1162 39 const Address InterpreterMacroAssembler::d_tmp(FP, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
duke@435 40
duke@435 41 #else // CC_INTERP
duke@435 42 #ifndef STATE
duke@435 43 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
duke@435 44 #endif // STATE
duke@435 45
duke@435 46 #endif // CC_INTERP
duke@435 47
duke@435 48 void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
duke@435 49 // Note: this algorithm is also used by C1's OSR entry sequence.
duke@435 50 // Any changes should also be applied to CodeEmitter::emit_osr_entry().
duke@435 51 assert_different_registers(args_size, locals_size);
duke@435 52 // max_locals*2 for TAGS. Assumes that args_size has already been adjusted.
duke@435 53 if (TaggedStackInterpreter) sll(locals_size, 1, locals_size);
duke@435 54 subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
duke@435 55 // Use br/mov combination because it works on both V8 and V9 and is
duke@435 56 // faster.
duke@435 57 Label skip_move;
duke@435 58 br(Assembler::negative, true, Assembler::pt, skip_move);
duke@435 59 delayed()->mov(G0, delta);
duke@435 60 bind(skip_move);
duke@435 61 round_to(delta, WordsPerLong); // make multiple of 2 (SP must be 2-word aligned)
duke@435 62 sll(delta, LogBytesPerWord, delta); // extra space for locals in bytes
duke@435 63 }
duke@435 64
duke@435 65 #ifndef CC_INTERP
duke@435 66
duke@435 67 // Dispatch code executed in the prolog of a bytecode which does not do it's
duke@435 68 // own dispatch. The dispatch address is computed and placed in IdispatchAddress
duke@435 69 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
duke@435 70 assert_not_delayed();
duke@435 71 #ifdef FAST_DISPATCH
duke@435 72 // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
duke@435 73 // they both use I2.
duke@435 74 assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
duke@435 75 ldub(Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 76 add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
duke@435 77 // add offset to correct dispatch table
duke@435 78 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
duke@435 79 ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
duke@435 80 #else
twisti@1162 81 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 82 // dispatch table to use
twisti@1162 83 AddressLiteral tbl(Interpreter::dispatch_table(state));
twisti@1162 84 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
twisti@1162 85 set(tbl, G3_scratch); // compute addr of table
twisti@1162 86 ld_ptr(G3_scratch, Lbyte_code, IdispatchAddress); // get entry addr
duke@435 87 #endif
duke@435 88 }
duke@435 89
duke@435 90
duke@435 91 // Dispatch code executed in the epilog of a bytecode which does not do it's
duke@435 92 // own dispatch. The dispatch address in IdispatchAddress is used for the
duke@435 93 // dispatch.
duke@435 94 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
duke@435 95 assert_not_delayed();
duke@435 96 verify_FPU(1, state);
duke@435 97 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 98 jmp( IdispatchAddress, 0 );
duke@435 99 if (bcp_incr != 0) delayed()->inc(Lbcp, bcp_incr);
duke@435 100 else delayed()->nop();
duke@435 101 }
duke@435 102
duke@435 103
duke@435 104 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
duke@435 105 // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
duke@435 106 assert_not_delayed();
duke@435 107 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 108 dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
duke@435 109 }
duke@435 110
duke@435 111
duke@435 112 void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
duke@435 113 // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
duke@435 114 assert_not_delayed();
duke@435 115 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 116 dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
duke@435 117 }
duke@435 118
duke@435 119
duke@435 120 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
duke@435 121 // load current bytecode
duke@435 122 assert_not_delayed();
duke@435 123 ldub( Lbcp, 0, Lbyte_code); // load next bytecode
duke@435 124 dispatch_base(state, table);
duke@435 125 }
duke@435 126
duke@435 127
duke@435 128 void InterpreterMacroAssembler::call_VM_leaf_base(
duke@435 129 Register java_thread,
duke@435 130 address entry_point,
duke@435 131 int number_of_arguments
duke@435 132 ) {
duke@435 133 if (!java_thread->is_valid())
duke@435 134 java_thread = L7_thread_cache;
duke@435 135 // super call
duke@435 136 MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
duke@435 137 }
duke@435 138
duke@435 139
duke@435 140 void InterpreterMacroAssembler::call_VM_base(
duke@435 141 Register oop_result,
duke@435 142 Register java_thread,
duke@435 143 Register last_java_sp,
duke@435 144 address entry_point,
duke@435 145 int number_of_arguments,
duke@435 146 bool check_exception
duke@435 147 ) {
duke@435 148 if (!java_thread->is_valid())
duke@435 149 java_thread = L7_thread_cache;
duke@435 150 // See class ThreadInVMfromInterpreter, which assumes that the interpreter
duke@435 151 // takes responsibility for setting its own thread-state on call-out.
duke@435 152 // However, ThreadInVMfromInterpreter resets the state to "in_Java".
duke@435 153
duke@435 154 //save_bcp(); // save bcp
duke@435 155 MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
duke@435 156 //restore_bcp(); // restore bcp
duke@435 157 //restore_locals(); // restore locals pointer
duke@435 158 }
duke@435 159
duke@435 160
duke@435 161 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
duke@435 162 if (JvmtiExport::can_pop_frame()) {
duke@435 163 Label L;
duke@435 164
duke@435 165 // Check the "pending popframe condition" flag in the current thread
twisti@1162 166 ld(G2_thread, JavaThread::popframe_condition_offset(), scratch_reg);
duke@435 167
duke@435 168 // Initiate popframe handling only if it is not already being processed. If the flag
duke@435 169 // has the popframe_processing bit set, it means that this code is called *during* popframe
duke@435 170 // handling - we don't want to reenter.
duke@435 171 btst(JavaThread::popframe_pending_bit, scratch_reg);
duke@435 172 br(zero, false, pt, L);
duke@435 173 delayed()->nop();
duke@435 174 btst(JavaThread::popframe_processing_bit, scratch_reg);
duke@435 175 br(notZero, false, pt, L);
duke@435 176 delayed()->nop();
duke@435 177
duke@435 178 // Call Interpreter::remove_activation_preserving_args_entry() to get the
duke@435 179 // address of the same-named entrypoint in the generated interpreter code.
duke@435 180 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
duke@435 181
duke@435 182 // Jump to Interpreter::_remove_activation_preserving_args_entry
duke@435 183 jmpl(O0, G0, G0);
duke@435 184 delayed()->nop();
duke@435 185 bind(L);
duke@435 186 }
duke@435 187 }
duke@435 188
duke@435 189
duke@435 190 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
duke@435 191 Register thr_state = G4_scratch;
twisti@1162 192 ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
twisti@1162 193 const Address tos_addr(thr_state, JvmtiThreadState::earlyret_tos_offset());
twisti@1162 194 const Address oop_addr(thr_state, JvmtiThreadState::earlyret_oop_offset());
twisti@1162 195 const Address val_addr(thr_state, JvmtiThreadState::earlyret_value_offset());
duke@435 196 switch (state) {
duke@435 197 case ltos: ld_long(val_addr, Otos_l); break;
duke@435 198 case atos: ld_ptr(oop_addr, Otos_l);
duke@435 199 st_ptr(G0, oop_addr); break;
duke@435 200 case btos: // fall through
duke@435 201 case ctos: // fall through
duke@435 202 case stos: // fall through
duke@435 203 case itos: ld(val_addr, Otos_l1); break;
duke@435 204 case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
duke@435 205 case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
duke@435 206 case vtos: /* nothing to do */ break;
duke@435 207 default : ShouldNotReachHere();
duke@435 208 }
duke@435 209 // Clean up tos value in the jvmti thread state
duke@435 210 or3(G0, ilgl, G3_scratch);
duke@435 211 stw(G3_scratch, tos_addr);
duke@435 212 st_long(G0, val_addr);
duke@435 213 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 214 }
duke@435 215
duke@435 216
duke@435 217 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
duke@435 218 if (JvmtiExport::can_force_early_return()) {
duke@435 219 Label L;
duke@435 220 Register thr_state = G3_scratch;
twisti@1162 221 ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
duke@435 222 tst(thr_state);
duke@435 223 br(zero, false, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
duke@435 224 delayed()->nop();
duke@435 225
duke@435 226 // Initiate earlyret handling only if it is not already being processed.
duke@435 227 // If the flag has the earlyret_processing bit set, it means that this code
duke@435 228 // is called *during* earlyret handling - we don't want to reenter.
twisti@1162 229 ld(thr_state, JvmtiThreadState::earlyret_state_offset(), G4_scratch);
duke@435 230 cmp(G4_scratch, JvmtiThreadState::earlyret_pending);
duke@435 231 br(Assembler::notEqual, false, pt, L);
duke@435 232 delayed()->nop();
duke@435 233
duke@435 234 // Call Interpreter::remove_activation_early_entry() to get the address of the
duke@435 235 // same-named entrypoint in the generated interpreter code
twisti@1162 236 ld(thr_state, JvmtiThreadState::earlyret_tos_offset(), Otos_l1);
duke@435 237 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
duke@435 238
duke@435 239 // Jump to Interpreter::_remove_activation_early_entry
duke@435 240 jmpl(O0, G0, G0);
duke@435 241 delayed()->nop();
duke@435 242 bind(L);
duke@435 243 }
duke@435 244 }
duke@435 245
duke@435 246
twisti@1730 247 void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
duke@435 248 mov(arg_1, O0);
twisti@1730 249 mov(arg_2, O1);
twisti@1730 250 MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 2);
duke@435 251 }
duke@435 252 #endif /* CC_INTERP */
duke@435 253
duke@435 254
duke@435 255 #ifndef CC_INTERP
duke@435 256
duke@435 257 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
duke@435 258 assert_not_delayed();
duke@435 259 dispatch_Lbyte_code(state, table);
duke@435 260 }
duke@435 261
duke@435 262
duke@435 263 void InterpreterMacroAssembler::dispatch_normal(TosState state) {
duke@435 264 dispatch_base(state, Interpreter::normal_table(state));
duke@435 265 }
duke@435 266
duke@435 267
duke@435 268 void InterpreterMacroAssembler::dispatch_only(TosState state) {
duke@435 269 dispatch_base(state, Interpreter::dispatch_table(state));
duke@435 270 }
duke@435 271
duke@435 272
duke@435 273 // common code to dispatch and dispatch_only
duke@435 274 // dispatch value in Lbyte_code and increment Lbcp
duke@435 275
duke@435 276 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
duke@435 277 verify_FPU(1, state);
duke@435 278 // %%%%% maybe implement +VerifyActivationFrameSize here
duke@435 279 //verify_thread(); //too slow; we will just verify on method entry & exit
duke@435 280 if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 281 #ifdef FAST_DISPATCH
duke@435 282 if (table == Interpreter::dispatch_table(state)) {
duke@435 283 // use IdispatchTables
duke@435 284 add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
duke@435 285 // add offset to correct dispatch table
duke@435 286 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
duke@435 287 ld_ptr(IdispatchTables, Lbyte_code, G3_scratch); // get entry addr
duke@435 288 } else {
duke@435 289 #endif
duke@435 290 // dispatch table to use
twisti@1162 291 AddressLiteral tbl(table);
duke@435 292 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
twisti@1162 293 set(tbl, G3_scratch); // compute addr of table
duke@435 294 ld_ptr(G3_scratch, Lbyte_code, G3_scratch); // get entry addr
duke@435 295 #ifdef FAST_DISPATCH
duke@435 296 }
duke@435 297 #endif
duke@435 298 jmp( G3_scratch, 0 );
duke@435 299 if (bcp_incr != 0) delayed()->inc(Lbcp, bcp_incr);
duke@435 300 else delayed()->nop();
duke@435 301 }
duke@435 302
duke@435 303
duke@435 304 // Helpers for expression stack
duke@435 305
duke@435 306 // Longs and doubles are Category 2 computational types in the
duke@435 307 // JVM specification (section 3.11.1) and take 2 expression stack or
duke@435 308 // local slots.
duke@435 309 // Aligning them on 32 bit with tagged stacks is hard because the code generated
duke@435 310 // for the dup* bytecodes depends on what types are already on the stack.
duke@435 311 // If the types are split into the two stack/local slots, that is much easier
duke@435 312 // (and we can use 0 for non-reference tags).
duke@435 313
duke@435 314 // Known good alignment in _LP64 but unknown otherwise
duke@435 315 void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
duke@435 316 assert_not_delayed();
duke@435 317
duke@435 318 #ifdef _LP64
duke@435 319 ldf(FloatRegisterImpl::D, r1, offset, d);
duke@435 320 #else
duke@435 321 ldf(FloatRegisterImpl::S, r1, offset, d);
duke@435 322 ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize(), d->successor());
duke@435 323 #endif
duke@435 324 }
duke@435 325
duke@435 326 // Known good alignment in _LP64 but unknown otherwise
duke@435 327 void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
duke@435 328 assert_not_delayed();
duke@435 329
duke@435 330 #ifdef _LP64
duke@435 331 stf(FloatRegisterImpl::D, d, r1, offset);
duke@435 332 // store something more useful here
duke@435 333 debug_only(stx(G0, r1, offset+Interpreter::stackElementSize());)
duke@435 334 #else
duke@435 335 stf(FloatRegisterImpl::S, d, r1, offset);
duke@435 336 stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize());
duke@435 337 #endif
duke@435 338 }
duke@435 339
duke@435 340
duke@435 341 // Known good alignment in _LP64 but unknown otherwise
duke@435 342 void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
duke@435 343 assert_not_delayed();
duke@435 344 #ifdef _LP64
duke@435 345 ldx(r1, offset, rd);
duke@435 346 #else
duke@435 347 ld(r1, offset, rd);
duke@435 348 ld(r1, offset + Interpreter::stackElementSize(), rd->successor());
duke@435 349 #endif
duke@435 350 }
duke@435 351
duke@435 352 // Known good alignment in _LP64 but unknown otherwise
duke@435 353 void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
duke@435 354 assert_not_delayed();
duke@435 355
duke@435 356 #ifdef _LP64
duke@435 357 stx(l, r1, offset);
duke@435 358 // store something more useful here
duke@435 359 debug_only(stx(G0, r1, offset+Interpreter::stackElementSize());)
duke@435 360 #else
duke@435 361 st(l, r1, offset);
duke@435 362 st(l->successor(), r1, offset + Interpreter::stackElementSize());
duke@435 363 #endif
duke@435 364 }
duke@435 365
duke@435 366 #ifdef ASSERT
duke@435 367 void InterpreterMacroAssembler::verify_stack_tag(frame::Tag t,
duke@435 368 Register r,
duke@435 369 Register scratch) {
duke@435 370 if (TaggedStackInterpreter) {
duke@435 371 Label ok, long_ok;
duke@435 372 ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(0), r);
duke@435 373 if (t == frame::TagCategory2) {
duke@435 374 cmp(r, G0);
duke@435 375 brx(Assembler::equal, false, Assembler::pt, long_ok);
duke@435 376 delayed()->ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(1), r);
duke@435 377 stop("stack long/double tag value bad");
duke@435 378 bind(long_ok);
duke@435 379 cmp(r, G0);
duke@435 380 } else if (t == frame::TagValue) {
duke@435 381 cmp(r, G0);
duke@435 382 } else {
duke@435 383 assert_different_registers(r, scratch);
duke@435 384 mov(t, scratch);
duke@435 385 cmp(r, scratch);
duke@435 386 }
duke@435 387 brx(Assembler::equal, false, Assembler::pt, ok);
duke@435 388 delayed()->nop();
duke@435 389 // Also compare if the stack value is zero, then the tag might
duke@435 390 // not have been set coming from deopt.
duke@435 391 ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
duke@435 392 cmp(r, G0);
duke@435 393 brx(Assembler::equal, false, Assembler::pt, ok);
duke@435 394 delayed()->nop();
duke@435 395 stop("Stack tag value is bad");
duke@435 396 bind(ok);
duke@435 397 }
duke@435 398 }
duke@435 399 #endif // ASSERT
duke@435 400
duke@435 401 void InterpreterMacroAssembler::pop_i(Register r) {
duke@435 402 assert_not_delayed();
duke@435 403 // Uses destination register r for scratch
duke@435 404 debug_only(verify_stack_tag(frame::TagValue, r));
duke@435 405 ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
duke@435 406 inc(Lesp, Interpreter::stackElementSize());
duke@435 407 debug_only(verify_esp(Lesp));
duke@435 408 }
duke@435 409
duke@435 410 void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
duke@435 411 assert_not_delayed();
duke@435 412 // Uses destination register r for scratch
duke@435 413 debug_only(verify_stack_tag(frame::TagReference, r, scratch));
duke@435 414 ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
duke@435 415 inc(Lesp, Interpreter::stackElementSize());
duke@435 416 debug_only(verify_esp(Lesp));
duke@435 417 }
duke@435 418
duke@435 419 void InterpreterMacroAssembler::pop_l(Register r) {
duke@435 420 assert_not_delayed();
duke@435 421 // Uses destination register r for scratch
duke@435 422 debug_only(verify_stack_tag(frame::TagCategory2, r));
duke@435 423 load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
duke@435 424 inc(Lesp, 2*Interpreter::stackElementSize());
duke@435 425 debug_only(verify_esp(Lesp));
duke@435 426 }
duke@435 427
duke@435 428
duke@435 429 void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
duke@435 430 assert_not_delayed();
duke@435 431 debug_only(verify_stack_tag(frame::TagValue, scratch));
duke@435 432 ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
duke@435 433 inc(Lesp, Interpreter::stackElementSize());
duke@435 434 debug_only(verify_esp(Lesp));
duke@435 435 }
duke@435 436
duke@435 437
duke@435 438 void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
duke@435 439 assert_not_delayed();
duke@435 440 debug_only(verify_stack_tag(frame::TagCategory2, scratch));
duke@435 441 load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
duke@435 442 inc(Lesp, 2*Interpreter::stackElementSize());
duke@435 443 debug_only(verify_esp(Lesp));
duke@435 444 }
duke@435 445
duke@435 446
duke@435 447 // (Note use register first, then decrement so dec can be done during store stall)
duke@435 448 void InterpreterMacroAssembler::tag_stack(Register r) {
duke@435 449 if (TaggedStackInterpreter) {
duke@435 450 st_ptr(r, Lesp, Interpreter::tag_offset_in_bytes());
duke@435 451 }
duke@435 452 }
duke@435 453
duke@435 454 void InterpreterMacroAssembler::tag_stack(frame::Tag t, Register r) {
duke@435 455 if (TaggedStackInterpreter) {
duke@435 456 assert (frame::TagValue == 0, "TagValue must be zero");
duke@435 457 if (t == frame::TagValue) {
duke@435 458 st_ptr(G0, Lesp, Interpreter::tag_offset_in_bytes());
duke@435 459 } else if (t == frame::TagCategory2) {
duke@435 460 st_ptr(G0, Lesp, Interpreter::tag_offset_in_bytes());
duke@435 461 // Tag next slot down too
duke@435 462 st_ptr(G0, Lesp, -Interpreter::stackElementSize() + Interpreter::tag_offset_in_bytes());
duke@435 463 } else {
duke@435 464 assert_different_registers(r, O3);
duke@435 465 mov(t, O3);
duke@435 466 st_ptr(O3, Lesp, Interpreter::tag_offset_in_bytes());
duke@435 467 }
duke@435 468 }
duke@435 469 }
duke@435 470
duke@435 471 void InterpreterMacroAssembler::push_i(Register r) {
duke@435 472 assert_not_delayed();
duke@435 473 debug_only(verify_esp(Lesp));
duke@435 474 tag_stack(frame::TagValue, r);
duke@435 475 st( r, Lesp, Interpreter::value_offset_in_bytes());
duke@435 476 dec( Lesp, Interpreter::stackElementSize());
duke@435 477 }
duke@435 478
duke@435 479 void InterpreterMacroAssembler::push_ptr(Register r) {
duke@435 480 assert_not_delayed();
duke@435 481 tag_stack(frame::TagReference, r);
duke@435 482 st_ptr( r, Lesp, Interpreter::value_offset_in_bytes());
duke@435 483 dec( Lesp, Interpreter::stackElementSize());
duke@435 484 }
duke@435 485
duke@435 486 void InterpreterMacroAssembler::push_ptr(Register r, Register tag) {
duke@435 487 assert_not_delayed();
duke@435 488 tag_stack(tag);
duke@435 489 st_ptr(r, Lesp, Interpreter::value_offset_in_bytes());
duke@435 490 dec( Lesp, Interpreter::stackElementSize());
duke@435 491 }
duke@435 492
duke@435 493 // remember: our convention for longs in SPARC is:
duke@435 494 // O0 (Otos_l1) has high-order part in first word,
duke@435 495 // O1 (Otos_l2) has low-order part in second word
duke@435 496
duke@435 497 void InterpreterMacroAssembler::push_l(Register r) {
duke@435 498 assert_not_delayed();
duke@435 499 debug_only(verify_esp(Lesp));
duke@435 500 tag_stack(frame::TagCategory2, r);
duke@435 501 // Longs are in stored in memory-correct order, even if unaligned.
duke@435 502 // and may be separated by stack tags.
duke@435 503 int offset = -Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
duke@435 504 store_unaligned_long(r, Lesp, offset);
duke@435 505 dec(Lesp, 2 * Interpreter::stackElementSize());
duke@435 506 }
duke@435 507
duke@435 508
duke@435 509 void InterpreterMacroAssembler::push_f(FloatRegister f) {
duke@435 510 assert_not_delayed();
duke@435 511 debug_only(verify_esp(Lesp));
duke@435 512 tag_stack(frame::TagValue, Otos_i);
duke@435 513 stf(FloatRegisterImpl::S, f, Lesp, Interpreter::value_offset_in_bytes());
duke@435 514 dec(Lesp, Interpreter::stackElementSize());
duke@435 515 }
duke@435 516
duke@435 517
duke@435 518 void InterpreterMacroAssembler::push_d(FloatRegister d) {
duke@435 519 assert_not_delayed();
duke@435 520 debug_only(verify_esp(Lesp));
duke@435 521 tag_stack(frame::TagCategory2, Otos_i);
duke@435 522 // Longs are in stored in memory-correct order, even if unaligned.
duke@435 523 // and may be separated by stack tags.
duke@435 524 int offset = -Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
duke@435 525 store_unaligned_double(d, Lesp, offset);
duke@435 526 dec(Lesp, 2 * Interpreter::stackElementSize());
duke@435 527 }
duke@435 528
duke@435 529
duke@435 530 void InterpreterMacroAssembler::push(TosState state) {
duke@435 531 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 532 switch (state) {
duke@435 533 case atos: push_ptr(); break;
duke@435 534 case btos: push_i(); break;
duke@435 535 case ctos:
duke@435 536 case stos: push_i(); break;
duke@435 537 case itos: push_i(); break;
duke@435 538 case ltos: push_l(); break;
duke@435 539 case ftos: push_f(); break;
duke@435 540 case dtos: push_d(); break;
duke@435 541 case vtos: /* nothing to do */ break;
duke@435 542 default : ShouldNotReachHere();
duke@435 543 }
duke@435 544 }
duke@435 545
duke@435 546
duke@435 547 void InterpreterMacroAssembler::pop(TosState state) {
duke@435 548 switch (state) {
duke@435 549 case atos: pop_ptr(); break;
duke@435 550 case btos: pop_i(); break;
duke@435 551 case ctos:
duke@435 552 case stos: pop_i(); break;
duke@435 553 case itos: pop_i(); break;
duke@435 554 case ltos: pop_l(); break;
duke@435 555 case ftos: pop_f(); break;
duke@435 556 case dtos: pop_d(); break;
duke@435 557 case vtos: /* nothing to do */ break;
duke@435 558 default : ShouldNotReachHere();
duke@435 559 }
duke@435 560 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 561 }
duke@435 562
duke@435 563
duke@435 564 // Tagged stack helpers for swap and dup
duke@435 565 void InterpreterMacroAssembler::load_ptr_and_tag(int n, Register val,
duke@435 566 Register tag) {
duke@435 567 ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
duke@435 568 if (TaggedStackInterpreter) {
duke@435 569 ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(n), tag);
duke@435 570 }
duke@435 571 }
duke@435 572 void InterpreterMacroAssembler::store_ptr_and_tag(int n, Register val,
duke@435 573 Register tag) {
duke@435 574 st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
duke@435 575 if (TaggedStackInterpreter) {
duke@435 576 st_ptr(tag, Lesp, Interpreter::expr_tag_offset_in_bytes(n));
duke@435 577 }
duke@435 578 }
duke@435 579
duke@435 580
duke@435 581 void InterpreterMacroAssembler::load_receiver(Register param_count,
duke@435 582 Register recv) {
duke@435 583
duke@435 584 sll(param_count, Interpreter::logStackElementSize(), param_count);
duke@435 585 if (TaggedStackInterpreter) {
duke@435 586 add(param_count, Interpreter::value_offset_in_bytes(), param_count); // get obj address
duke@435 587 }
duke@435 588 ld_ptr(Lesp, param_count, recv); // gets receiver Oop
duke@435 589 }
duke@435 590
duke@435 591 void InterpreterMacroAssembler::empty_expression_stack() {
duke@435 592 // Reset Lesp.
duke@435 593 sub( Lmonitors, wordSize, Lesp );
duke@435 594
duke@435 595 // Reset SP by subtracting more space from Lesp.
duke@435 596 Label done;
duke@435 597 verify_oop(Lmethod);
twisti@1162 598 assert(G4_scratch != Gframe_size, "Only you can prevent register aliasing!");
duke@435 599
duke@435 600 // A native does not need to do this, since its callee does not change SP.
twisti@1162 601 ld(Lmethod, methodOopDesc::access_flags_offset(), Gframe_size); // Load access flags.
duke@435 602 btst(JVM_ACC_NATIVE, Gframe_size);
duke@435 603 br(Assembler::notZero, false, Assembler::pt, done);
duke@435 604 delayed()->nop();
duke@435 605
duke@435 606 // Compute max expression stack+register save area
twisti@1162 607 lduh(Lmethod, in_bytes(methodOopDesc::max_stack_offset()), Gframe_size); // Load max stack.
duke@435 608 if (TaggedStackInterpreter) sll ( Gframe_size, 1, Gframe_size); // max_stack * 2 for TAGS
duke@435 609 add( Gframe_size, frame::memory_parameter_word_sp_offset, Gframe_size );
duke@435 610
duke@435 611 //
duke@435 612 // now set up a stack frame with the size computed above
duke@435 613 //
duke@435 614 //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
duke@435 615 sll( Gframe_size, LogBytesPerWord, Gframe_size );
duke@435 616 sub( Lesp, Gframe_size, Gframe_size );
duke@435 617 and3( Gframe_size, -(2 * wordSize), Gframe_size ); // align SP (downwards) to an 8/16-byte boundary
duke@435 618 debug_only(verify_sp(Gframe_size, G4_scratch));
duke@435 619 #ifdef _LP64
duke@435 620 sub(Gframe_size, STACK_BIAS, Gframe_size );
duke@435 621 #endif
duke@435 622 mov(Gframe_size, SP);
duke@435 623
duke@435 624 bind(done);
duke@435 625 }
duke@435 626
duke@435 627
duke@435 628 #ifdef ASSERT
duke@435 629 void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
duke@435 630 Label Bad, OK;
duke@435 631
duke@435 632 // Saved SP must be aligned.
duke@435 633 #ifdef _LP64
duke@435 634 btst(2*BytesPerWord-1, Rsp);
duke@435 635 #else
duke@435 636 btst(LongAlignmentMask, Rsp);
duke@435 637 #endif
duke@435 638 br(Assembler::notZero, false, Assembler::pn, Bad);
duke@435 639 delayed()->nop();
duke@435 640
duke@435 641 // Saved SP, plus register window size, must not be above FP.
duke@435 642 add(Rsp, frame::register_save_words * wordSize, Rtemp);
duke@435 643 #ifdef _LP64
duke@435 644 sub(Rtemp, STACK_BIAS, Rtemp); // Bias Rtemp before cmp to FP
duke@435 645 #endif
duke@435 646 cmp(Rtemp, FP);
duke@435 647 brx(Assembler::greaterUnsigned, false, Assembler::pn, Bad);
duke@435 648 delayed()->nop();
duke@435 649
duke@435 650 // Saved SP must not be ridiculously below current SP.
duke@435 651 size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
duke@435 652 set(maxstack, Rtemp);
duke@435 653 sub(SP, Rtemp, Rtemp);
duke@435 654 #ifdef _LP64
duke@435 655 add(Rtemp, STACK_BIAS, Rtemp); // Unbias Rtemp before cmp to Rsp
duke@435 656 #endif
duke@435 657 cmp(Rsp, Rtemp);
duke@435 658 brx(Assembler::lessUnsigned, false, Assembler::pn, Bad);
duke@435 659 delayed()->nop();
duke@435 660
duke@435 661 br(Assembler::always, false, Assembler::pn, OK);
duke@435 662 delayed()->nop();
duke@435 663
duke@435 664 bind(Bad);
duke@435 665 stop("on return to interpreted call, restored SP is corrupted");
duke@435 666
duke@435 667 bind(OK);
duke@435 668 }
duke@435 669
duke@435 670
duke@435 671 void InterpreterMacroAssembler::verify_esp(Register Resp) {
duke@435 672 // about to read or write Resp[0]
duke@435 673 // make sure it is not in the monitors or the register save area
duke@435 674 Label OK1, OK2;
duke@435 675
duke@435 676 cmp(Resp, Lmonitors);
duke@435 677 brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
duke@435 678 delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
duke@435 679 stop("too many pops: Lesp points into monitor area");
duke@435 680 bind(OK1);
duke@435 681 #ifdef _LP64
duke@435 682 sub(Resp, STACK_BIAS, Resp);
duke@435 683 #endif
duke@435 684 cmp(Resp, SP);
duke@435 685 brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
duke@435 686 delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
duke@435 687 stop("too many pushes: Lesp points into register window");
duke@435 688 bind(OK2);
duke@435 689 }
duke@435 690 #endif // ASSERT
duke@435 691
duke@435 692 // Load compiled (i2c) or interpreter entry when calling from interpreted and
duke@435 693 // do the call. Centralized so that all interpreter calls will do the same actions.
duke@435 694 // If jvmti single stepping is on for a thread we must not call compiled code.
duke@435 695 void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
duke@435 696
duke@435 697 // Assume we want to go compiled if available
duke@435 698
duke@435 699 ld_ptr(G5_method, in_bytes(methodOopDesc::from_interpreted_offset()), target);
duke@435 700
duke@435 701 if (JvmtiExport::can_post_interpreter_events()) {
duke@435 702 // JVMTI events, such as single-stepping, are implemented partly by avoiding running
duke@435 703 // compiled code in threads for which the event is enabled. Check here for
duke@435 704 // interp_only_mode if these events CAN be enabled.
duke@435 705 verify_thread();
duke@435 706 Label skip_compiled_code;
duke@435 707
twisti@1162 708 const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
duke@435 709 ld(interp_only, scratch);
duke@435 710 tst(scratch);
duke@435 711 br(Assembler::notZero, true, Assembler::pn, skip_compiled_code);
duke@435 712 delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), target);
duke@435 713 bind(skip_compiled_code);
duke@435 714 }
duke@435 715
duke@435 716 // the i2c_adapters need methodOop in G5_method (right? %%%)
duke@435 717 // do the call
duke@435 718 #ifdef ASSERT
duke@435 719 {
duke@435 720 Label ok;
duke@435 721 br_notnull(target, false, Assembler::pt, ok);
duke@435 722 delayed()->nop();
duke@435 723 stop("null entry point");
duke@435 724 bind(ok);
duke@435 725 }
duke@435 726 #endif // ASSERT
duke@435 727
duke@435 728 // Adjust Rret first so Llast_SP can be same as Rret
duke@435 729 add(Rret, -frame::pc_return_offset, O7);
duke@435 730 add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
duke@435 731 // Record SP so we can remove any stack space allocated by adapter transition
duke@435 732 jmp(target, 0);
duke@435 733 delayed()->mov(SP, Llast_SP);
duke@435 734 }
duke@435 735
duke@435 736 void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
duke@435 737 assert_not_delayed();
duke@435 738
duke@435 739 Label not_taken;
duke@435 740 if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
duke@435 741 else br (cc, false, Assembler::pn, not_taken);
duke@435 742 delayed()->nop();
duke@435 743
duke@435 744 TemplateTable::branch(false,false);
duke@435 745
duke@435 746 bind(not_taken);
duke@435 747
duke@435 748 profile_not_taken_branch(G3_scratch);
duke@435 749 }
duke@435 750
duke@435 751
duke@435 752 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
duke@435 753 int bcp_offset,
duke@435 754 Register Rtmp,
duke@435 755 Register Rdst,
duke@435 756 signedOrNot is_signed,
duke@435 757 setCCOrNot should_set_CC ) {
duke@435 758 assert(Rtmp != Rdst, "need separate temp register");
duke@435 759 assert_not_delayed();
duke@435 760 switch (is_signed) {
duke@435 761 default: ShouldNotReachHere();
duke@435 762
duke@435 763 case Signed: ldsb( Lbcp, bcp_offset, Rdst ); break; // high byte
duke@435 764 case Unsigned: ldub( Lbcp, bcp_offset, Rdst ); break; // high byte
duke@435 765 }
duke@435 766 ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
duke@435 767 sll( Rdst, BitsPerByte, Rdst);
duke@435 768 switch (should_set_CC ) {
duke@435 769 default: ShouldNotReachHere();
duke@435 770
duke@435 771 case set_CC: orcc( Rdst, Rtmp, Rdst ); break;
duke@435 772 case dont_set_CC: or3( Rdst, Rtmp, Rdst ); break;
duke@435 773 }
duke@435 774 }
duke@435 775
duke@435 776
duke@435 777 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
duke@435 778 int bcp_offset,
duke@435 779 Register Rtmp,
duke@435 780 Register Rdst,
duke@435 781 setCCOrNot should_set_CC ) {
duke@435 782 assert(Rtmp != Rdst, "need separate temp register");
duke@435 783 assert_not_delayed();
duke@435 784 add( Lbcp, bcp_offset, Rtmp);
duke@435 785 andcc( Rtmp, 3, G0);
duke@435 786 Label aligned;
duke@435 787 switch (should_set_CC ) {
duke@435 788 default: ShouldNotReachHere();
duke@435 789
duke@435 790 case set_CC: break;
duke@435 791 case dont_set_CC: break;
duke@435 792 }
duke@435 793
duke@435 794 br(Assembler::zero, true, Assembler::pn, aligned);
duke@435 795 #ifdef _LP64
duke@435 796 delayed()->ldsw(Rtmp, 0, Rdst);
duke@435 797 #else
duke@435 798 delayed()->ld(Rtmp, 0, Rdst);
duke@435 799 #endif
duke@435 800
duke@435 801 ldub(Lbcp, bcp_offset + 3, Rdst);
duke@435 802 ldub(Lbcp, bcp_offset + 2, Rtmp); sll(Rtmp, 8, Rtmp); or3(Rtmp, Rdst, Rdst);
duke@435 803 ldub(Lbcp, bcp_offset + 1, Rtmp); sll(Rtmp, 16, Rtmp); or3(Rtmp, Rdst, Rdst);
duke@435 804 #ifdef _LP64
duke@435 805 ldsb(Lbcp, bcp_offset + 0, Rtmp); sll(Rtmp, 24, Rtmp);
duke@435 806 #else
duke@435 807 // Unsigned load is faster than signed on some implementations
duke@435 808 ldub(Lbcp, bcp_offset + 0, Rtmp); sll(Rtmp, 24, Rtmp);
duke@435 809 #endif
duke@435 810 or3(Rtmp, Rdst, Rdst );
duke@435 811
duke@435 812 bind(aligned);
duke@435 813 if (should_set_CC == set_CC) tst(Rdst);
duke@435 814 }
duke@435 815
duke@435 816
duke@435 817 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp, int bcp_offset) {
duke@435 818 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
duke@435 819 assert_different_registers(cache, tmp);
duke@435 820 assert_not_delayed();
duke@435 821 get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
duke@435 822 // convert from field index to ConstantPoolCacheEntry index
duke@435 823 // and from word index to byte offset
duke@435 824 sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
duke@435 825 add(LcpoolCache, tmp, cache);
duke@435 826 }
duke@435 827
duke@435 828
duke@435 829 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp, int bcp_offset) {
duke@435 830 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
duke@435 831 assert_different_registers(cache, tmp);
duke@435 832 assert_not_delayed();
duke@435 833 get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
duke@435 834 // convert from field index to ConstantPoolCacheEntry index
duke@435 835 // and from word index to byte offset
duke@435 836 sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
duke@435 837 // skip past the header
duke@435 838 add(tmp, in_bytes(constantPoolCacheOopDesc::base_offset()), tmp);
duke@435 839 // construct pointer to cache entry
duke@435 840 add(LcpoolCache, tmp, cache);
duke@435 841 }
duke@435 842
duke@435 843
duke@435 844 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
coleenp@548 845 // a subtype of super_klass. Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
duke@435 846 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
duke@435 847 Register Rsuper_klass,
duke@435 848 Register Rtmp1,
duke@435 849 Register Rtmp2,
duke@435 850 Register Rtmp3,
duke@435 851 Label &ok_is_subtype ) {
jrose@1079 852 Label not_subtype;
duke@435 853
duke@435 854 // Profile the not-null value's klass.
duke@435 855 profile_typecheck(Rsub_klass, Rtmp1);
duke@435 856
jrose@1079 857 check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass,
jrose@1079 858 Rtmp1, Rtmp2,
jrose@1079 859 &ok_is_subtype, &not_subtype, NULL);
jrose@1079 860
jrose@1079 861 check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass,
jrose@1079 862 Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg,
jrose@1079 863 &ok_is_subtype, NULL);
duke@435 864
duke@435 865 bind(not_subtype);
duke@435 866 profile_typecheck_failed(Rtmp1);
duke@435 867 }
duke@435 868
duke@435 869 // Separate these two to allow for delay slot in middle
duke@435 870 // These are used to do a test and full jump to exception-throwing code.
duke@435 871
duke@435 872 // %%%%% Could possibly reoptimize this by testing to see if could use
duke@435 873 // a single conditional branch (i.e. if span is small enough.
duke@435 874 // If you go that route, than get rid of the split and give up
duke@435 875 // on the delay-slot hack.
duke@435 876
duke@435 877 void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
duke@435 878 Label& ok ) {
duke@435 879 assert_not_delayed();
duke@435 880 br(ok_condition, true, pt, ok);
duke@435 881 // DELAY SLOT
duke@435 882 }
duke@435 883
duke@435 884 void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
duke@435 885 Label& ok ) {
duke@435 886 assert_not_delayed();
duke@435 887 bp( ok_condition, true, Assembler::xcc, pt, ok);
duke@435 888 // DELAY SLOT
duke@435 889 }
duke@435 890
duke@435 891 void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
duke@435 892 Label& ok ) {
duke@435 893 assert_not_delayed();
duke@435 894 brx(ok_condition, true, pt, ok);
duke@435 895 // DELAY SLOT
duke@435 896 }
duke@435 897
duke@435 898 void InterpreterMacroAssembler::throw_if_not_2( address throw_entry_point,
duke@435 899 Register Rscratch,
duke@435 900 Label& ok ) {
duke@435 901 assert(throw_entry_point != NULL, "entry point must be generated by now");
twisti@1162 902 AddressLiteral dest(throw_entry_point);
twisti@1162 903 jump_to(dest, Rscratch);
duke@435 904 delayed()->nop();
duke@435 905 bind(ok);
duke@435 906 }
duke@435 907
duke@435 908
duke@435 909 // And if you cannot use the delay slot, here is a shorthand:
duke@435 910
duke@435 911 void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
duke@435 912 address throw_entry_point,
duke@435 913 Register Rscratch ) {
duke@435 914 Label ok;
duke@435 915 if (ok_condition != never) {
duke@435 916 throw_if_not_1_icc( ok_condition, ok);
duke@435 917 delayed()->nop();
duke@435 918 }
duke@435 919 throw_if_not_2( throw_entry_point, Rscratch, ok);
duke@435 920 }
duke@435 921 void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
duke@435 922 address throw_entry_point,
duke@435 923 Register Rscratch ) {
duke@435 924 Label ok;
duke@435 925 if (ok_condition != never) {
duke@435 926 throw_if_not_1_xcc( ok_condition, ok);
duke@435 927 delayed()->nop();
duke@435 928 }
duke@435 929 throw_if_not_2( throw_entry_point, Rscratch, ok);
duke@435 930 }
duke@435 931 void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
duke@435 932 address throw_entry_point,
duke@435 933 Register Rscratch ) {
duke@435 934 Label ok;
duke@435 935 if (ok_condition != never) {
duke@435 936 throw_if_not_1_x( ok_condition, ok);
duke@435 937 delayed()->nop();
duke@435 938 }
duke@435 939 throw_if_not_2( throw_entry_point, Rscratch, ok);
duke@435 940 }
duke@435 941
duke@435 942 // Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
duke@435 943 // Note: res is still shy of address by array offset into object.
duke@435 944
duke@435 945 void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
duke@435 946 assert_not_delayed();
duke@435 947
duke@435 948 verify_oop(array);
duke@435 949 #ifdef _LP64
duke@435 950 // sign extend since tos (index) can be a 32bit value
duke@435 951 sra(index, G0, index);
duke@435 952 #endif // _LP64
duke@435 953
duke@435 954 // check array
duke@435 955 Label ptr_ok;
duke@435 956 tst(array);
duke@435 957 throw_if_not_1_x( notZero, ptr_ok );
duke@435 958 delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
duke@435 959 throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
duke@435 960
duke@435 961 Label index_ok;
duke@435 962 cmp(index, tmp);
duke@435 963 throw_if_not_1_icc( lessUnsigned, index_ok );
duke@435 964 if (index_shift > 0) delayed()->sll(index, index_shift, index);
duke@435 965 else delayed()->add(array, index, res); // addr - const offset in index
duke@435 966 // convention: move aberrant index into G3_scratch for exception message
duke@435 967 mov(index, G3_scratch);
duke@435 968 throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
duke@435 969
duke@435 970 // add offset if didn't do it in delay slot
duke@435 971 if (index_shift > 0) add(array, index, res); // addr - const offset in index
duke@435 972 }
duke@435 973
duke@435 974
duke@435 975 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
duke@435 976 assert_not_delayed();
duke@435 977
duke@435 978 // pop array
duke@435 979 pop_ptr(array);
duke@435 980
duke@435 981 // check array
duke@435 982 index_check_without_pop(array, index, index_shift, tmp, res);
duke@435 983 }
duke@435 984
duke@435 985
duke@435 986 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
duke@435 987 ld_ptr(Lmethod, in_bytes(methodOopDesc::constants_offset()), Rdst);
duke@435 988 }
duke@435 989
duke@435 990
duke@435 991 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
duke@435 992 get_constant_pool(Rdst);
duke@435 993 ld_ptr(Rdst, constantPoolOopDesc::cache_offset_in_bytes(), Rdst);
duke@435 994 }
duke@435 995
duke@435 996
duke@435 997 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
duke@435 998 get_constant_pool(Rcpool);
duke@435 999 ld_ptr(Rcpool, constantPoolOopDesc::tags_offset_in_bytes(), Rtags);
duke@435 1000 }
duke@435 1001
duke@435 1002
duke@435 1003 // unlock if synchronized method
duke@435 1004 //
duke@435 1005 // Unlock the receiver if this is a synchronized method.
duke@435 1006 // Unlock any Java monitors from syncronized blocks.
duke@435 1007 //
duke@435 1008 // If there are locked Java monitors
duke@435 1009 // If throw_monitor_exception
duke@435 1010 // throws IllegalMonitorStateException
duke@435 1011 // Else if install_monitor_exception
duke@435 1012 // installs IllegalMonitorStateException
duke@435 1013 // Else
duke@435 1014 // no error processing
duke@435 1015 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
duke@435 1016 bool throw_monitor_exception,
duke@435 1017 bool install_monitor_exception) {
duke@435 1018 Label unlocked, unlock, no_unlock;
duke@435 1019
duke@435 1020 // get the value of _do_not_unlock_if_synchronized into G1_scratch
twisti@1162 1021 const Address do_not_unlock_if_synchronized(G2_thread,
twisti@1162 1022 JavaThread::do_not_unlock_if_synchronized_offset());
duke@435 1023 ldbool(do_not_unlock_if_synchronized, G1_scratch);
duke@435 1024 stbool(G0, do_not_unlock_if_synchronized); // reset the flag
duke@435 1025
duke@435 1026 // check if synchronized method
twisti@1162 1027 const Address access_flags(Lmethod, methodOopDesc::access_flags_offset());
duke@435 1028 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 1029 push(state); // save tos
twisti@1162 1030 ld(access_flags, G3_scratch); // Load access flags.
duke@435 1031 btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
twisti@1162 1032 br(zero, false, pt, unlocked);
duke@435 1033 delayed()->nop();
duke@435 1034
duke@435 1035 // Don't unlock anything if the _do_not_unlock_if_synchronized flag
duke@435 1036 // is set.
duke@435 1037 tstbool(G1_scratch);
duke@435 1038 br(Assembler::notZero, false, pn, no_unlock);
duke@435 1039 delayed()->nop();
duke@435 1040
duke@435 1041 // BasicObjectLock will be first in list, since this is a synchronized method. However, need
duke@435 1042 // to check that the object has not been unlocked by an explicit monitorexit bytecode.
duke@435 1043
duke@435 1044 //Intel: if (throw_monitor_exception) ... else ...
duke@435 1045 // Entry already unlocked, need to throw exception
duke@435 1046 //...
duke@435 1047
duke@435 1048 // pass top-most monitor elem
duke@435 1049 add( top_most_monitor(), O1 );
duke@435 1050
duke@435 1051 ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
duke@435 1052 br_notnull(G3_scratch, false, pt, unlock);
duke@435 1053 delayed()->nop();
duke@435 1054
duke@435 1055 if (throw_monitor_exception) {
duke@435 1056 // Entry already unlocked need to throw an exception
duke@435 1057 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
duke@435 1058 should_not_reach_here();
duke@435 1059 } else {
duke@435 1060 // Monitor already unlocked during a stack unroll.
duke@435 1061 // If requested, install an illegal_monitor_state_exception.
duke@435 1062 // Continue with stack unrolling.
duke@435 1063 if (install_monitor_exception) {
duke@435 1064 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
duke@435 1065 }
duke@435 1066 ba(false, unlocked);
duke@435 1067 delayed()->nop();
duke@435 1068 }
duke@435 1069
duke@435 1070 bind(unlock);
duke@435 1071
duke@435 1072 unlock_object(O1);
duke@435 1073
duke@435 1074 bind(unlocked);
duke@435 1075
duke@435 1076 // I0, I1: Might contain return value
duke@435 1077
duke@435 1078 // Check that all monitors are unlocked
duke@435 1079 { Label loop, exception, entry, restart;
duke@435 1080
duke@435 1081 Register Rmptr = O0;
duke@435 1082 Register Rtemp = O1;
duke@435 1083 Register Rlimit = Lmonitors;
duke@435 1084 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 1085 assert( (delta & LongAlignmentMask) == 0,
duke@435 1086 "sizeof BasicObjectLock must be even number of doublewords");
duke@435 1087
duke@435 1088 #ifdef ASSERT
duke@435 1089 add(top_most_monitor(), Rmptr, delta);
duke@435 1090 { Label L;
duke@435 1091 // ensure that Rmptr starts out above (or at) Rlimit
duke@435 1092 cmp(Rmptr, Rlimit);
duke@435 1093 brx(Assembler::greaterEqualUnsigned, false, pn, L);
duke@435 1094 delayed()->nop();
duke@435 1095 stop("monitor stack has negative size");
duke@435 1096 bind(L);
duke@435 1097 }
duke@435 1098 #endif
duke@435 1099 bind(restart);
duke@435 1100 ba(false, entry);
duke@435 1101 delayed()->
duke@435 1102 add(top_most_monitor(), Rmptr, delta); // points to current entry, starting with bottom-most entry
duke@435 1103
duke@435 1104 // Entry is still locked, need to throw exception
duke@435 1105 bind(exception);
duke@435 1106 if (throw_monitor_exception) {
duke@435 1107 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
duke@435 1108 should_not_reach_here();
duke@435 1109 } else {
duke@435 1110 // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
duke@435 1111 // Unlock does not block, so don't have to worry about the frame
duke@435 1112 unlock_object(Rmptr);
duke@435 1113 if (install_monitor_exception) {
duke@435 1114 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
duke@435 1115 }
duke@435 1116 ba(false, restart);
duke@435 1117 delayed()->nop();
duke@435 1118 }
duke@435 1119
duke@435 1120 bind(loop);
duke@435 1121 cmp(Rtemp, G0); // check if current entry is used
duke@435 1122 brx(Assembler::notEqual, false, pn, exception);
duke@435 1123 delayed()->
duke@435 1124 dec(Rmptr, delta); // otherwise advance to next entry
duke@435 1125 #ifdef ASSERT
duke@435 1126 { Label L;
duke@435 1127 // ensure that Rmptr has not somehow stepped below Rlimit
duke@435 1128 cmp(Rmptr, Rlimit);
duke@435 1129 brx(Assembler::greaterEqualUnsigned, false, pn, L);
duke@435 1130 delayed()->nop();
duke@435 1131 stop("ran off the end of the monitor stack");
duke@435 1132 bind(L);
duke@435 1133 }
duke@435 1134 #endif
duke@435 1135 bind(entry);
duke@435 1136 cmp(Rmptr, Rlimit); // check if bottom reached
duke@435 1137 brx(Assembler::notEqual, true, pn, loop); // if not at bottom then check this entry
duke@435 1138 delayed()->
duke@435 1139 ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
duke@435 1140 }
duke@435 1141
duke@435 1142 bind(no_unlock);
duke@435 1143 pop(state);
duke@435 1144 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 1145 }
duke@435 1146
duke@435 1147
duke@435 1148 // remove activation
duke@435 1149 //
duke@435 1150 // Unlock the receiver if this is a synchronized method.
duke@435 1151 // Unlock any Java monitors from syncronized blocks.
duke@435 1152 // Remove the activation from the stack.
duke@435 1153 //
duke@435 1154 // If there are locked Java monitors
duke@435 1155 // If throw_monitor_exception
duke@435 1156 // throws IllegalMonitorStateException
duke@435 1157 // Else if install_monitor_exception
duke@435 1158 // installs IllegalMonitorStateException
duke@435 1159 // Else
duke@435 1160 // no error processing
duke@435 1161 void InterpreterMacroAssembler::remove_activation(TosState state,
duke@435 1162 bool throw_monitor_exception,
duke@435 1163 bool install_monitor_exception) {
duke@435 1164
duke@435 1165 unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
duke@435 1166
duke@435 1167 // save result (push state before jvmti call and pop it afterwards) and notify jvmti
duke@435 1168 notify_method_exit(false, state, NotifyJVMTI);
duke@435 1169
duke@435 1170 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 1171 verify_oop(Lmethod);
duke@435 1172 verify_thread();
duke@435 1173
duke@435 1174 // return tos
duke@435 1175 assert(Otos_l1 == Otos_i, "adjust code below");
duke@435 1176 switch (state) {
duke@435 1177 #ifdef _LP64
duke@435 1178 case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
duke@435 1179 #else
duke@435 1180 case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through // O1 -> I1
duke@435 1181 #endif
duke@435 1182 case btos: // fall through
duke@435 1183 case ctos:
duke@435 1184 case stos: // fall through
duke@435 1185 case atos: // fall through
duke@435 1186 case itos: mov(Otos_l1, Otos_l1->after_save()); break; // O0 -> I0
duke@435 1187 case ftos: // fall through
duke@435 1188 case dtos: // fall through
duke@435 1189 case vtos: /* nothing to do */ break;
duke@435 1190 default : ShouldNotReachHere();
duke@435 1191 }
duke@435 1192
duke@435 1193 #if defined(COMPILER2) && !defined(_LP64)
duke@435 1194 if (state == ltos) {
duke@435 1195 // C2 expects long results in G1 we can't tell if we're returning to interpreted
duke@435 1196 // or compiled so just be safe use G1 and O0/O1
duke@435 1197
duke@435 1198 // Shift bits into high (msb) of G1
duke@435 1199 sllx(Otos_l1->after_save(), 32, G1);
duke@435 1200 // Zero extend low bits
duke@435 1201 srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
duke@435 1202 or3 (Otos_l2->after_save(), G1, G1);
duke@435 1203 }
duke@435 1204 #endif /* COMPILER2 */
duke@435 1205
duke@435 1206 }
duke@435 1207 #endif /* CC_INTERP */
duke@435 1208
duke@435 1209
duke@435 1210 // Lock object
duke@435 1211 //
duke@435 1212 // Argument - lock_reg points to the BasicObjectLock to be used for locking,
duke@435 1213 // it must be initialized with the object to lock
duke@435 1214 void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
duke@435 1215 if (UseHeavyMonitors) {
duke@435 1216 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
duke@435 1217 }
duke@435 1218 else {
duke@435 1219 Register obj_reg = Object;
duke@435 1220 Register mark_reg = G4_scratch;
duke@435 1221 Register temp_reg = G1_scratch;
twisti@1162 1222 Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes());
twisti@1162 1223 Address mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
duke@435 1224 Label done;
duke@435 1225
duke@435 1226 Label slow_case;
duke@435 1227
duke@435 1228 assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
duke@435 1229
duke@435 1230 // load markOop from object into mark_reg
duke@435 1231 ld_ptr(mark_addr, mark_reg);
duke@435 1232
duke@435 1233 if (UseBiasedLocking) {
duke@435 1234 biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
duke@435 1235 }
duke@435 1236
duke@435 1237 // get the address of basicLock on stack that will be stored in the object
duke@435 1238 // we need a temporary register here as we do not want to clobber lock_reg
duke@435 1239 // (cas clobbers the destination register)
duke@435 1240 mov(lock_reg, temp_reg);
duke@435 1241 // set mark reg to be (markOop of object | UNLOCK_VALUE)
duke@435 1242 or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
duke@435 1243 // initialize the box (Must happen before we update the object mark!)
duke@435 1244 st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
duke@435 1245 // compare and exchange object_addr, markOop | 1, stack address of basicLock
duke@435 1246 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 1247 casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
duke@435 1248 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 1249
duke@435 1250 // if the compare and exchange succeeded we are done (we saw an unlocked object)
duke@435 1251 cmp(mark_reg, temp_reg);
duke@435 1252 brx(Assembler::equal, true, Assembler::pt, done);
duke@435 1253 delayed()->nop();
duke@435 1254
duke@435 1255 // We did not see an unlocked object so try the fast recursive case
duke@435 1256
duke@435 1257 // Check if owner is self by comparing the value in the markOop of object
duke@435 1258 // with the stack pointer
duke@435 1259 sub(temp_reg, SP, temp_reg);
duke@435 1260 #ifdef _LP64
duke@435 1261 sub(temp_reg, STACK_BIAS, temp_reg);
duke@435 1262 #endif
duke@435 1263 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
duke@435 1264
duke@435 1265 // Composite "andcc" test:
duke@435 1266 // (a) %sp -vs- markword proximity check, and,
duke@435 1267 // (b) verify mark word LSBs == 0 (Stack-locked).
duke@435 1268 //
duke@435 1269 // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
duke@435 1270 // Note that the page size used for %sp proximity testing is arbitrary and is
duke@435 1271 // unrelated to the actual MMU page size. We use a 'logical' page size of
duke@435 1272 // 4096 bytes. F..FFF003 is designed to fit conveniently in the SIMM13 immediate
duke@435 1273 // field of the andcc instruction.
duke@435 1274 andcc (temp_reg, 0xFFFFF003, G0) ;
duke@435 1275
duke@435 1276 // if condition is true we are done and hence we can store 0 in the displaced
duke@435 1277 // header indicating it is a recursive lock and be done
duke@435 1278 brx(Assembler::zero, true, Assembler::pt, done);
duke@435 1279 delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
duke@435 1280
duke@435 1281 // none of the above fast optimizations worked so we have to get into the
duke@435 1282 // slow case of monitor enter
duke@435 1283 bind(slow_case);
duke@435 1284 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
duke@435 1285
duke@435 1286 bind(done);
duke@435 1287 }
duke@435 1288 }
duke@435 1289
duke@435 1290 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
duke@435 1291 //
duke@435 1292 // Argument - lock_reg points to the BasicObjectLock for lock
duke@435 1293 // Throw IllegalMonitorException if object is not locked by current thread
duke@435 1294 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
duke@435 1295 if (UseHeavyMonitors) {
duke@435 1296 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
duke@435 1297 } else {
duke@435 1298 Register obj_reg = G3_scratch;
duke@435 1299 Register mark_reg = G4_scratch;
duke@435 1300 Register displaced_header_reg = G1_scratch;
twisti@1162 1301 Address lockobj_addr(lock_reg, BasicObjectLock::obj_offset_in_bytes());
twisti@1162 1302 Address mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
duke@435 1303 Label done;
duke@435 1304
duke@435 1305 if (UseBiasedLocking) {
duke@435 1306 // load the object out of the BasicObjectLock
duke@435 1307 ld_ptr(lockobj_addr, obj_reg);
duke@435 1308 biased_locking_exit(mark_addr, mark_reg, done, true);
duke@435 1309 st_ptr(G0, lockobj_addr); // free entry
duke@435 1310 }
duke@435 1311
duke@435 1312 // Test first if we are in the fast recursive case
twisti@1162 1313 Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes());
twisti@1162 1314 ld_ptr(lock_addr, displaced_header_reg);
duke@435 1315 br_null(displaced_header_reg, true, Assembler::pn, done);
duke@435 1316 delayed()->st_ptr(G0, lockobj_addr); // free entry
duke@435 1317
duke@435 1318 // See if it is still a light weight lock, if so we just unlock
duke@435 1319 // the object and we are done
duke@435 1320
duke@435 1321 if (!UseBiasedLocking) {
duke@435 1322 // load the object out of the BasicObjectLock
duke@435 1323 ld_ptr(lockobj_addr, obj_reg);
duke@435 1324 }
duke@435 1325
duke@435 1326 // we have the displaced header in displaced_header_reg
duke@435 1327 // we expect to see the stack address of the basicLock in case the
duke@435 1328 // lock is still a light weight lock (lock_reg)
duke@435 1329 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 1330 casx_under_lock(mark_addr.base(), lock_reg, displaced_header_reg,
duke@435 1331 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 1332 cmp(lock_reg, displaced_header_reg);
duke@435 1333 brx(Assembler::equal, true, Assembler::pn, done);
duke@435 1334 delayed()->st_ptr(G0, lockobj_addr); // free entry
duke@435 1335
duke@435 1336 // The lock has been converted into a heavy lock and hence
duke@435 1337 // we need to get into the slow case
duke@435 1338
duke@435 1339 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
duke@435 1340
duke@435 1341 bind(done);
duke@435 1342 }
duke@435 1343 }
duke@435 1344
duke@435 1345 #ifndef CC_INTERP
duke@435 1346
duke@435 1347 // Get the method data pointer from the methodOop and set the
duke@435 1348 // specified register to its value.
duke@435 1349
duke@435 1350 void InterpreterMacroAssembler::set_method_data_pointer_offset(Register Roff) {
duke@435 1351 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1352 Label get_continue;
duke@435 1353
duke@435 1354 ld_ptr(Lmethod, in_bytes(methodOopDesc::method_data_offset()), ImethodDataPtr);
duke@435 1355 test_method_data_pointer(get_continue);
duke@435 1356 add(ImethodDataPtr, in_bytes(methodDataOopDesc::data_offset()), ImethodDataPtr);
duke@435 1357 if (Roff != noreg)
duke@435 1358 // Roff contains a method data index ("mdi"). It defaults to zero.
duke@435 1359 add(ImethodDataPtr, Roff, ImethodDataPtr);
duke@435 1360 bind(get_continue);
duke@435 1361 }
duke@435 1362
duke@435 1363 // Set the method data pointer for the current bcp.
duke@435 1364
duke@435 1365 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
duke@435 1366 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1367 Label zero_continue;
duke@435 1368
duke@435 1369 // Test MDO to avoid the call if it is NULL.
twisti@1162 1370 ld_ptr(Lmethod, methodOopDesc::method_data_offset(), ImethodDataPtr);
duke@435 1371 test_method_data_pointer(zero_continue);
duke@435 1372 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
duke@435 1373 set_method_data_pointer_offset(O0);
duke@435 1374 bind(zero_continue);
duke@435 1375 }
duke@435 1376
duke@435 1377 // Test ImethodDataPtr. If it is null, continue at the specified label
duke@435 1378
duke@435 1379 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
duke@435 1380 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1381 #ifdef _LP64
duke@435 1382 bpr(Assembler::rc_z, false, Assembler::pn, ImethodDataPtr, zero_continue);
duke@435 1383 #else
duke@435 1384 tst(ImethodDataPtr);
duke@435 1385 br(Assembler::zero, false, Assembler::pn, zero_continue);
duke@435 1386 #endif
duke@435 1387 delayed()->nop();
duke@435 1388 }
duke@435 1389
duke@435 1390 void InterpreterMacroAssembler::verify_method_data_pointer() {
duke@435 1391 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1392 #ifdef ASSERT
duke@435 1393 Label verify_continue;
duke@435 1394 test_method_data_pointer(verify_continue);
duke@435 1395
duke@435 1396 // If the mdp is valid, it will point to a DataLayout header which is
duke@435 1397 // consistent with the bcp. The converse is highly probable also.
duke@435 1398 lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
twisti@1162 1399 ld_ptr(Lmethod, methodOopDesc::const_offset(), O5);
duke@435 1400 add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), G3_scratch);
duke@435 1401 add(G3_scratch, O5, G3_scratch);
duke@435 1402 cmp(Lbcp, G3_scratch);
duke@435 1403 brx(Assembler::equal, false, Assembler::pt, verify_continue);
duke@435 1404
duke@435 1405 Register temp_reg = O5;
duke@435 1406 delayed()->mov(ImethodDataPtr, temp_reg);
duke@435 1407 // %%% should use call_VM_leaf here?
duke@435 1408 //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
duke@435 1409 save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
twisti@1162 1410 Address d_save(FP, -sizeof(jdouble) + STACK_BIAS);
duke@435 1411 stf(FloatRegisterImpl::D, Ftos_d, d_save);
duke@435 1412 mov(temp_reg->after_save(), O2);
duke@435 1413 save_thread(L7_thread_cache);
duke@435 1414 call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
duke@435 1415 delayed()->nop();
duke@435 1416 restore_thread(L7_thread_cache);
duke@435 1417 ldf(FloatRegisterImpl::D, d_save, Ftos_d);
duke@435 1418 restore();
duke@435 1419 bind(verify_continue);
duke@435 1420 #endif // ASSERT
duke@435 1421 }
duke@435 1422
duke@435 1423 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
duke@435 1424 Register cur_bcp,
duke@435 1425 Register Rtmp,
duke@435 1426 Label &profile_continue) {
duke@435 1427 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1428 // Control will flow to "profile_continue" if the counter is less than the
duke@435 1429 // limit or if we call profile_method()
duke@435 1430
duke@435 1431 Label done;
duke@435 1432
duke@435 1433 // if no method data exists, and the counter is high enough, make one
duke@435 1434 #ifdef _LP64
duke@435 1435 bpr(Assembler::rc_nz, false, Assembler::pn, ImethodDataPtr, done);
duke@435 1436 #else
duke@435 1437 tst(ImethodDataPtr);
duke@435 1438 br(Assembler::notZero, false, Assembler::pn, done);
duke@435 1439 #endif
duke@435 1440
duke@435 1441 // Test to see if we should create a method data oop
twisti@1162 1442 AddressLiteral profile_limit((address) &InvocationCounter::InterpreterProfileLimit);
duke@435 1443 #ifdef _LP64
duke@435 1444 delayed()->nop();
twisti@1162 1445 sethi(profile_limit, Rtmp);
duke@435 1446 #else
twisti@1162 1447 delayed()->sethi(profile_limit, Rtmp);
duke@435 1448 #endif
twisti@1162 1449 ld(Rtmp, profile_limit.low10(), Rtmp);
duke@435 1450 cmp(invocation_count, Rtmp);
duke@435 1451 br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
duke@435 1452 delayed()->nop();
duke@435 1453
duke@435 1454 // Build it now.
duke@435 1455 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), cur_bcp);
duke@435 1456 set_method_data_pointer_offset(O0);
duke@435 1457 ba(false, profile_continue);
duke@435 1458 delayed()->nop();
duke@435 1459 bind(done);
duke@435 1460 }
duke@435 1461
duke@435 1462 // Store a value at some constant offset from the method data pointer.
duke@435 1463
duke@435 1464 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
duke@435 1465 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1466 st_ptr(value, ImethodDataPtr, constant);
duke@435 1467 }
duke@435 1468
duke@435 1469 void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
duke@435 1470 Register bumped_count,
duke@435 1471 bool decrement) {
duke@435 1472 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1473
duke@435 1474 // Load the counter.
duke@435 1475 ld_ptr(counter, bumped_count);
duke@435 1476
duke@435 1477 if (decrement) {
duke@435 1478 // Decrement the register. Set condition codes.
duke@435 1479 subcc(bumped_count, DataLayout::counter_increment, bumped_count);
duke@435 1480
duke@435 1481 // If the decrement causes the counter to overflow, stay negative
duke@435 1482 Label L;
duke@435 1483 brx(Assembler::negative, true, Assembler::pn, L);
duke@435 1484
duke@435 1485 // Store the decremented counter, if it is still negative.
duke@435 1486 delayed()->st_ptr(bumped_count, counter);
duke@435 1487 bind(L);
duke@435 1488 } else {
duke@435 1489 // Increment the register. Set carry flag.
duke@435 1490 addcc(bumped_count, DataLayout::counter_increment, bumped_count);
duke@435 1491
duke@435 1492 // If the increment causes the counter to overflow, pull back by 1.
duke@435 1493 assert(DataLayout::counter_increment == 1, "subc works");
duke@435 1494 subc(bumped_count, G0, bumped_count);
duke@435 1495
duke@435 1496 // Store the incremented counter.
duke@435 1497 st_ptr(bumped_count, counter);
duke@435 1498 }
duke@435 1499 }
duke@435 1500
duke@435 1501 // Increment the value at some constant offset from the method data pointer.
duke@435 1502
duke@435 1503 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
duke@435 1504 Register bumped_count,
duke@435 1505 bool decrement) {
duke@435 1506 // Locate the counter at a fixed offset from the mdp:
twisti@1162 1507 Address counter(ImethodDataPtr, constant);
duke@435 1508 increment_mdp_data_at(counter, bumped_count, decrement);
duke@435 1509 }
duke@435 1510
duke@435 1511 // Increment the value at some non-fixed (reg + constant) offset from
duke@435 1512 // the method data pointer.
duke@435 1513
duke@435 1514 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
duke@435 1515 int constant,
duke@435 1516 Register bumped_count,
duke@435 1517 Register scratch2,
duke@435 1518 bool decrement) {
duke@435 1519 // Add the constant to reg to get the offset.
duke@435 1520 add(ImethodDataPtr, reg, scratch2);
twisti@1162 1521 Address counter(scratch2, constant);
duke@435 1522 increment_mdp_data_at(counter, bumped_count, decrement);
duke@435 1523 }
duke@435 1524
duke@435 1525 // Set a flag value at the current method data pointer position.
duke@435 1526 // Updates a single byte of the header, to avoid races with other header bits.
duke@435 1527
duke@435 1528 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
duke@435 1529 Register scratch) {
duke@435 1530 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1531 // Load the data header
duke@435 1532 ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
duke@435 1533
duke@435 1534 // Set the flag
duke@435 1535 or3(scratch, flag_constant, scratch);
duke@435 1536
duke@435 1537 // Store the modified header.
duke@435 1538 stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
duke@435 1539 }
duke@435 1540
duke@435 1541 // Test the location at some offset from the method data pointer.
duke@435 1542 // If it is not equal to value, branch to the not_equal_continue Label.
duke@435 1543 // Set condition codes to match the nullness of the loaded value.
duke@435 1544
duke@435 1545 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
duke@435 1546 Register value,
duke@435 1547 Label& not_equal_continue,
duke@435 1548 Register scratch) {
duke@435 1549 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1550 ld_ptr(ImethodDataPtr, offset, scratch);
duke@435 1551 cmp(value, scratch);
duke@435 1552 brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
duke@435 1553 delayed()->tst(scratch);
duke@435 1554 }
duke@435 1555
duke@435 1556 // Update the method data pointer by the displacement located at some fixed
duke@435 1557 // offset from the method data pointer.
duke@435 1558
duke@435 1559 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
duke@435 1560 Register scratch) {
duke@435 1561 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1562 ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
duke@435 1563 add(ImethodDataPtr, scratch, ImethodDataPtr);
duke@435 1564 }
duke@435 1565
duke@435 1566 // Update the method data pointer by the displacement located at the
duke@435 1567 // offset (reg + offset_of_disp).
duke@435 1568
duke@435 1569 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
duke@435 1570 int offset_of_disp,
duke@435 1571 Register scratch) {
duke@435 1572 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1573 add(reg, offset_of_disp, scratch);
duke@435 1574 ld_ptr(ImethodDataPtr, scratch, scratch);
duke@435 1575 add(ImethodDataPtr, scratch, ImethodDataPtr);
duke@435 1576 }
duke@435 1577
duke@435 1578 // Update the method data pointer by a simple constant displacement.
duke@435 1579
duke@435 1580 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
duke@435 1581 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1582 add(ImethodDataPtr, constant, ImethodDataPtr);
duke@435 1583 }
duke@435 1584
duke@435 1585 // Update the method data pointer for a _ret bytecode whose target
duke@435 1586 // was not among our cached targets.
duke@435 1587
duke@435 1588 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
duke@435 1589 Register return_bci) {
duke@435 1590 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1591 push(state);
duke@435 1592 st_ptr(return_bci, l_tmp); // protect return_bci, in case it is volatile
duke@435 1593 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
duke@435 1594 ld_ptr(l_tmp, return_bci);
duke@435 1595 pop(state);
duke@435 1596 }
duke@435 1597
duke@435 1598 // Count a taken branch in the bytecodes.
duke@435 1599
duke@435 1600 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
duke@435 1601 if (ProfileInterpreter) {
duke@435 1602 Label profile_continue;
duke@435 1603
duke@435 1604 // If no method data exists, go to profile_continue.
duke@435 1605 test_method_data_pointer(profile_continue);
duke@435 1606
duke@435 1607 // We are taking a branch. Increment the taken count.
duke@435 1608 increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
duke@435 1609
duke@435 1610 // The method data pointer needs to be updated to reflect the new target.
duke@435 1611 update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
duke@435 1612 bind (profile_continue);
duke@435 1613 }
duke@435 1614 }
duke@435 1615
duke@435 1616
duke@435 1617 // Count a not-taken branch in the bytecodes.
duke@435 1618
duke@435 1619 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
duke@435 1620 if (ProfileInterpreter) {
duke@435 1621 Label profile_continue;
duke@435 1622
duke@435 1623 // If no method data exists, go to profile_continue.
duke@435 1624 test_method_data_pointer(profile_continue);
duke@435 1625
duke@435 1626 // We are taking a branch. Increment the not taken count.
duke@435 1627 increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
duke@435 1628
duke@435 1629 // The method data pointer needs to be updated to correspond to the
duke@435 1630 // next bytecode.
duke@435 1631 update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
duke@435 1632 bind (profile_continue);
duke@435 1633 }
duke@435 1634 }
duke@435 1635
duke@435 1636
duke@435 1637 // Count a non-virtual call in the bytecodes.
duke@435 1638
duke@435 1639 void InterpreterMacroAssembler::profile_call(Register scratch) {
duke@435 1640 if (ProfileInterpreter) {
duke@435 1641 Label profile_continue;
duke@435 1642
duke@435 1643 // If no method data exists, go to profile_continue.
duke@435 1644 test_method_data_pointer(profile_continue);
duke@435 1645
duke@435 1646 // We are making a call. Increment the count.
duke@435 1647 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
duke@435 1648
duke@435 1649 // The method data pointer needs to be updated to reflect the new target.
duke@435 1650 update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
duke@435 1651 bind (profile_continue);
duke@435 1652 }
duke@435 1653 }
duke@435 1654
duke@435 1655
duke@435 1656 // Count a final call in the bytecodes.
duke@435 1657
duke@435 1658 void InterpreterMacroAssembler::profile_final_call(Register scratch) {
duke@435 1659 if (ProfileInterpreter) {
duke@435 1660 Label profile_continue;
duke@435 1661
duke@435 1662 // If no method data exists, go to profile_continue.
duke@435 1663 test_method_data_pointer(profile_continue);
duke@435 1664
duke@435 1665 // We are making a call. Increment the count.
duke@435 1666 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
duke@435 1667
duke@435 1668 // The method data pointer needs to be updated to reflect the new target.
duke@435 1669 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
duke@435 1670 bind (profile_continue);
duke@435 1671 }
duke@435 1672 }
duke@435 1673
duke@435 1674
duke@435 1675 // Count a virtual call in the bytecodes.
duke@435 1676
duke@435 1677 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
duke@435 1678 Register scratch) {
duke@435 1679 if (ProfileInterpreter) {
duke@435 1680 Label profile_continue;
duke@435 1681
duke@435 1682 // If no method data exists, go to profile_continue.
duke@435 1683 test_method_data_pointer(profile_continue);
duke@435 1684
duke@435 1685 // Record the receiver type.
kvn@1641 1686 record_klass_in_profile(receiver, scratch, true);
duke@435 1687
duke@435 1688 // The method data pointer needs to be updated to reflect the new target.
duke@435 1689 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
duke@435 1690 bind (profile_continue);
duke@435 1691 }
duke@435 1692 }
duke@435 1693
duke@435 1694 void InterpreterMacroAssembler::record_klass_in_profile_helper(
duke@435 1695 Register receiver, Register scratch,
kvn@1641 1696 int start_row, Label& done, bool is_virtual_call) {
kvn@1641 1697 if (TypeProfileWidth == 0) {
kvn@1641 1698 if (is_virtual_call) {
kvn@1641 1699 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
kvn@1641 1700 }
poonam@1402 1701 return;
kvn@1641 1702 }
poonam@1402 1703
duke@435 1704 int last_row = VirtualCallData::row_limit() - 1;
duke@435 1705 assert(start_row <= last_row, "must be work left to do");
duke@435 1706 // Test this row for both the receiver and for null.
duke@435 1707 // Take any of three different outcomes:
duke@435 1708 // 1. found receiver => increment count and goto done
duke@435 1709 // 2. found null => keep looking for case 1, maybe allocate this cell
duke@435 1710 // 3. found something else => keep looking for cases 1 and 2
duke@435 1711 // Case 3 is handled by a recursive call.
duke@435 1712 for (int row = start_row; row <= last_row; row++) {
duke@435 1713 Label next_test;
duke@435 1714 bool test_for_null_also = (row == start_row);
duke@435 1715
duke@435 1716 // See if the receiver is receiver[n].
duke@435 1717 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
duke@435 1718 test_mdp_data_at(recvr_offset, receiver, next_test, scratch);
kvn@1641 1719 // delayed()->tst(scratch);
duke@435 1720
duke@435 1721 // The receiver is receiver[n]. Increment count[n].
duke@435 1722 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
duke@435 1723 increment_mdp_data_at(count_offset, scratch);
duke@435 1724 ba(false, done);
duke@435 1725 delayed()->nop();
duke@435 1726 bind(next_test);
duke@435 1727
duke@435 1728 if (test_for_null_also) {
kvn@1641 1729 Label found_null;
duke@435 1730 // Failed the equality check on receiver[n]... Test for null.
duke@435 1731 if (start_row == last_row) {
duke@435 1732 // The only thing left to do is handle the null case.
kvn@1641 1733 if (is_virtual_call) {
kvn@1641 1734 brx(Assembler::zero, false, Assembler::pn, found_null);
kvn@1641 1735 delayed()->nop();
kvn@1641 1736 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1686 1737 // Increment total counter to indicate polymorphic case.
kvn@1641 1738 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
kvn@1641 1739 ba(false, done);
kvn@1641 1740 delayed()->nop();
kvn@1641 1741 bind(found_null);
kvn@1641 1742 } else {
kvn@1641 1743 brx(Assembler::notZero, false, Assembler::pt, done);
kvn@1641 1744 delayed()->nop();
kvn@1641 1745 }
duke@435 1746 break;
duke@435 1747 }
duke@435 1748 // Since null is rare, make it be the branch-taken case.
duke@435 1749 brx(Assembler::zero, false, Assembler::pn, found_null);
duke@435 1750 delayed()->nop();
duke@435 1751
duke@435 1752 // Put all the "Case 3" tests here.
kvn@1641 1753 record_klass_in_profile_helper(receiver, scratch, start_row + 1, done, is_virtual_call);
duke@435 1754
duke@435 1755 // Found a null. Keep searching for a matching receiver,
duke@435 1756 // but remember that this is an empty (unused) slot.
duke@435 1757 bind(found_null);
duke@435 1758 }
duke@435 1759 }
duke@435 1760
duke@435 1761 // In the fall-through case, we found no matching receiver, but we
duke@435 1762 // observed the receiver[start_row] is NULL.
duke@435 1763
duke@435 1764 // Fill in the receiver field and increment the count.
duke@435 1765 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
duke@435 1766 set_mdp_data_at(recvr_offset, receiver);
duke@435 1767 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
duke@435 1768 mov(DataLayout::counter_increment, scratch);
duke@435 1769 set_mdp_data_at(count_offset, scratch);
kvn@1641 1770 if (start_row > 0) {
kvn@1641 1771 ba(false, done);
kvn@1641 1772 delayed()->nop();
kvn@1641 1773 }
duke@435 1774 }
duke@435 1775
duke@435 1776 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
kvn@1641 1777 Register scratch, bool is_virtual_call) {
duke@435 1778 assert(ProfileInterpreter, "must be profiling");
duke@435 1779 Label done;
duke@435 1780
kvn@1641 1781 record_klass_in_profile_helper(receiver, scratch, 0, done, is_virtual_call);
duke@435 1782
duke@435 1783 bind (done);
duke@435 1784 }
duke@435 1785
duke@435 1786
duke@435 1787 // Count a ret in the bytecodes.
duke@435 1788
duke@435 1789 void InterpreterMacroAssembler::profile_ret(TosState state,
duke@435 1790 Register return_bci,
duke@435 1791 Register scratch) {
duke@435 1792 if (ProfileInterpreter) {
duke@435 1793 Label profile_continue;
duke@435 1794 uint row;
duke@435 1795
duke@435 1796 // If no method data exists, go to profile_continue.
duke@435 1797 test_method_data_pointer(profile_continue);
duke@435 1798
duke@435 1799 // Update the total ret count.
duke@435 1800 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
duke@435 1801
duke@435 1802 for (row = 0; row < RetData::row_limit(); row++) {
duke@435 1803 Label next_test;
duke@435 1804
duke@435 1805 // See if return_bci is equal to bci[n]:
duke@435 1806 test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
duke@435 1807 return_bci, next_test, scratch);
duke@435 1808
duke@435 1809 // return_bci is equal to bci[n]. Increment the count.
duke@435 1810 increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
duke@435 1811
duke@435 1812 // The method data pointer needs to be updated to reflect the new target.
duke@435 1813 update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
duke@435 1814 ba(false, profile_continue);
duke@435 1815 delayed()->nop();
duke@435 1816 bind(next_test);
duke@435 1817 }
duke@435 1818
duke@435 1819 update_mdp_for_ret(state, return_bci);
duke@435 1820
duke@435 1821 bind (profile_continue);
duke@435 1822 }
duke@435 1823 }
duke@435 1824
duke@435 1825 // Profile an unexpected null in the bytecodes.
duke@435 1826 void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
duke@435 1827 if (ProfileInterpreter) {
duke@435 1828 Label profile_continue;
duke@435 1829
duke@435 1830 // If no method data exists, go to profile_continue.
duke@435 1831 test_method_data_pointer(profile_continue);
duke@435 1832
duke@435 1833 set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
duke@435 1834
duke@435 1835 // The method data pointer needs to be updated.
duke@435 1836 int mdp_delta = in_bytes(BitData::bit_data_size());
duke@435 1837 if (TypeProfileCasts) {
duke@435 1838 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
duke@435 1839 }
duke@435 1840 update_mdp_by_constant(mdp_delta);
duke@435 1841
duke@435 1842 bind (profile_continue);
duke@435 1843 }
duke@435 1844 }
duke@435 1845
duke@435 1846 void InterpreterMacroAssembler::profile_typecheck(Register klass,
duke@435 1847 Register scratch) {
duke@435 1848 if (ProfileInterpreter) {
duke@435 1849 Label profile_continue;
duke@435 1850
duke@435 1851 // If no method data exists, go to profile_continue.
duke@435 1852 test_method_data_pointer(profile_continue);
duke@435 1853
duke@435 1854 int mdp_delta = in_bytes(BitData::bit_data_size());
duke@435 1855 if (TypeProfileCasts) {
duke@435 1856 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
duke@435 1857
duke@435 1858 // Record the object type.
kvn@1641 1859 record_klass_in_profile(klass, scratch, false);
duke@435 1860 }
duke@435 1861
duke@435 1862 // The method data pointer needs to be updated.
duke@435 1863 update_mdp_by_constant(mdp_delta);
duke@435 1864
duke@435 1865 bind (profile_continue);
duke@435 1866 }
duke@435 1867 }
duke@435 1868
duke@435 1869 void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
duke@435 1870 if (ProfileInterpreter && TypeProfileCasts) {
duke@435 1871 Label profile_continue;
duke@435 1872
duke@435 1873 // If no method data exists, go to profile_continue.
duke@435 1874 test_method_data_pointer(profile_continue);
duke@435 1875
duke@435 1876 int count_offset = in_bytes(CounterData::count_offset());
duke@435 1877 // Back up the address, since we have already bumped the mdp.
duke@435 1878 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
duke@435 1879
duke@435 1880 // *Decrement* the counter. We expect to see zero or small negatives.
duke@435 1881 increment_mdp_data_at(count_offset, scratch, true);
duke@435 1882
duke@435 1883 bind (profile_continue);
duke@435 1884 }
duke@435 1885 }
duke@435 1886
duke@435 1887 // Count the default case of a switch construct.
duke@435 1888
duke@435 1889 void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
duke@435 1890 if (ProfileInterpreter) {
duke@435 1891 Label profile_continue;
duke@435 1892
duke@435 1893 // If no method data exists, go to profile_continue.
duke@435 1894 test_method_data_pointer(profile_continue);
duke@435 1895
duke@435 1896 // Update the default case count
duke@435 1897 increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
duke@435 1898 scratch);
duke@435 1899
duke@435 1900 // The method data pointer needs to be updated.
duke@435 1901 update_mdp_by_offset(
duke@435 1902 in_bytes(MultiBranchData::default_displacement_offset()),
duke@435 1903 scratch);
duke@435 1904
duke@435 1905 bind (profile_continue);
duke@435 1906 }
duke@435 1907 }
duke@435 1908
duke@435 1909 // Count the index'th case of a switch construct.
duke@435 1910
duke@435 1911 void InterpreterMacroAssembler::profile_switch_case(Register index,
duke@435 1912 Register scratch,
duke@435 1913 Register scratch2,
duke@435 1914 Register scratch3) {
duke@435 1915 if (ProfileInterpreter) {
duke@435 1916 Label profile_continue;
duke@435 1917
duke@435 1918 // If no method data exists, go to profile_continue.
duke@435 1919 test_method_data_pointer(profile_continue);
duke@435 1920
duke@435 1921 // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
duke@435 1922 set(in_bytes(MultiBranchData::per_case_size()), scratch);
duke@435 1923 smul(index, scratch, scratch);
duke@435 1924 add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
duke@435 1925
duke@435 1926 // Update the case count
duke@435 1927 increment_mdp_data_at(scratch,
duke@435 1928 in_bytes(MultiBranchData::relative_count_offset()),
duke@435 1929 scratch2,
duke@435 1930 scratch3);
duke@435 1931
duke@435 1932 // The method data pointer needs to be updated.
duke@435 1933 update_mdp_by_offset(scratch,
duke@435 1934 in_bytes(MultiBranchData::relative_displacement_offset()),
duke@435 1935 scratch2);
duke@435 1936
duke@435 1937 bind (profile_continue);
duke@435 1938 }
duke@435 1939 }
duke@435 1940
duke@435 1941 // add a InterpMonitorElem to stack (see frame_sparc.hpp)
duke@435 1942
duke@435 1943 void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
duke@435 1944 Register Rtemp,
duke@435 1945 Register Rtemp2 ) {
duke@435 1946
duke@435 1947 Register Rlimit = Lmonitors;
duke@435 1948 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 1949 assert( (delta & LongAlignmentMask) == 0,
duke@435 1950 "sizeof BasicObjectLock must be even number of doublewords");
duke@435 1951
duke@435 1952 sub( SP, delta, SP);
duke@435 1953 sub( Lesp, delta, Lesp);
duke@435 1954 sub( Lmonitors, delta, Lmonitors);
duke@435 1955
duke@435 1956 if (!stack_is_empty) {
duke@435 1957
duke@435 1958 // must copy stack contents down
duke@435 1959
duke@435 1960 Label start_copying, next;
duke@435 1961
duke@435 1962 // untested("monitor stack expansion");
duke@435 1963 compute_stack_base(Rtemp);
duke@435 1964 ba( false, start_copying );
duke@435 1965 delayed()->cmp( Rtemp, Rlimit); // done? duplicated below
duke@435 1966
duke@435 1967 // note: must copy from low memory upwards
duke@435 1968 // On entry to loop,
duke@435 1969 // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
duke@435 1970 // Loop mutates Rtemp
duke@435 1971
duke@435 1972 bind( next);
duke@435 1973
duke@435 1974 st_ptr(Rtemp2, Rtemp, 0);
duke@435 1975 inc(Rtemp, wordSize);
duke@435 1976 cmp(Rtemp, Rlimit); // are we done? (duplicated above)
duke@435 1977
duke@435 1978 bind( start_copying );
duke@435 1979
duke@435 1980 brx( notEqual, true, pn, next );
duke@435 1981 delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
duke@435 1982
duke@435 1983 // done copying stack
duke@435 1984 }
duke@435 1985 }
duke@435 1986
duke@435 1987 // Locals
duke@435 1988 #ifdef ASSERT
duke@435 1989 void InterpreterMacroAssembler::verify_local_tag(frame::Tag t,
duke@435 1990 Register base,
duke@435 1991 Register scratch,
duke@435 1992 int n) {
duke@435 1993 if (TaggedStackInterpreter) {
duke@435 1994 Label ok, long_ok;
duke@435 1995 // Use dst for scratch
duke@435 1996 assert_different_registers(base, scratch);
duke@435 1997 ld_ptr(base, Interpreter::local_tag_offset_in_bytes(n), scratch);
duke@435 1998 if (t == frame::TagCategory2) {
duke@435 1999 cmp(scratch, G0);
duke@435 2000 brx(Assembler::equal, false, Assembler::pt, long_ok);
duke@435 2001 delayed()->ld_ptr(base, Interpreter::local_tag_offset_in_bytes(n+1), scratch);
duke@435 2002 stop("local long/double tag value bad");
duke@435 2003 bind(long_ok);
duke@435 2004 // compare second half tag
duke@435 2005 cmp(scratch, G0);
duke@435 2006 } else if (t == frame::TagValue) {
duke@435 2007 cmp(scratch, G0);
duke@435 2008 } else {
duke@435 2009 assert_different_registers(O3, base, scratch);
duke@435 2010 mov(t, O3);
duke@435 2011 cmp(scratch, O3);
duke@435 2012 }
duke@435 2013 brx(Assembler::equal, false, Assembler::pt, ok);
duke@435 2014 delayed()->nop();
duke@435 2015 // Also compare if the local value is zero, then the tag might
duke@435 2016 // not have been set coming from deopt.
duke@435 2017 ld_ptr(base, Interpreter::local_offset_in_bytes(n), scratch);
duke@435 2018 cmp(scratch, G0);
duke@435 2019 brx(Assembler::equal, false, Assembler::pt, ok);
duke@435 2020 delayed()->nop();
duke@435 2021 stop("Local tag value is bad");
duke@435 2022 bind(ok);
duke@435 2023 }
duke@435 2024 }
duke@435 2025 #endif // ASSERT
duke@435 2026
duke@435 2027 void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
duke@435 2028 assert_not_delayed();
duke@435 2029 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2030 sub(Llocals, index, index);
duke@435 2031 debug_only(verify_local_tag(frame::TagReference, index, dst));
duke@435 2032 ld_ptr(index, Interpreter::value_offset_in_bytes(), dst);
duke@435 2033 // Note: index must hold the effective address--the iinc template uses it
duke@435 2034 }
duke@435 2035
duke@435 2036 // Just like access_local_ptr but the tag is a returnAddress
duke@435 2037 void InterpreterMacroAssembler::access_local_returnAddress(Register index,
duke@435 2038 Register dst ) {
duke@435 2039 assert_not_delayed();
duke@435 2040 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2041 sub(Llocals, index, index);
duke@435 2042 debug_only(verify_local_tag(frame::TagValue, index, dst));
duke@435 2043 ld_ptr(index, Interpreter::value_offset_in_bytes(), dst);
duke@435 2044 }
duke@435 2045
duke@435 2046 void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
duke@435 2047 assert_not_delayed();
duke@435 2048 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2049 sub(Llocals, index, index);
duke@435 2050 debug_only(verify_local_tag(frame::TagValue, index, dst));
duke@435 2051 ld(index, Interpreter::value_offset_in_bytes(), dst);
duke@435 2052 // Note: index must hold the effective address--the iinc template uses it
duke@435 2053 }
duke@435 2054
duke@435 2055
duke@435 2056 void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
duke@435 2057 assert_not_delayed();
duke@435 2058 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2059 sub(Llocals, index, index);
duke@435 2060 debug_only(verify_local_tag(frame::TagCategory2, index, dst));
duke@435 2061 // First half stored at index n+1 (which grows down from Llocals[n])
duke@435 2062 load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
duke@435 2063 }
duke@435 2064
duke@435 2065
duke@435 2066 void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
duke@435 2067 assert_not_delayed();
duke@435 2068 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2069 sub(Llocals, index, index);
duke@435 2070 debug_only(verify_local_tag(frame::TagValue, index, G1_scratch));
duke@435 2071 ldf(FloatRegisterImpl::S, index, Interpreter::value_offset_in_bytes(), dst);
duke@435 2072 }
duke@435 2073
duke@435 2074
duke@435 2075 void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
duke@435 2076 assert_not_delayed();
duke@435 2077 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2078 sub(Llocals, index, index);
duke@435 2079 debug_only(verify_local_tag(frame::TagCategory2, index, G1_scratch));
duke@435 2080 load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
duke@435 2081 }
duke@435 2082
duke@435 2083
duke@435 2084 #ifdef ASSERT
duke@435 2085 void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
duke@435 2086 Label L;
duke@435 2087
duke@435 2088 assert(Rindex != Rscratch, "Registers cannot be same");
duke@435 2089 assert(Rindex != Rscratch1, "Registers cannot be same");
duke@435 2090 assert(Rlimit != Rscratch, "Registers cannot be same");
duke@435 2091 assert(Rlimit != Rscratch1, "Registers cannot be same");
duke@435 2092 assert(Rscratch1 != Rscratch, "Registers cannot be same");
duke@435 2093
duke@435 2094 // untested("reg area corruption");
duke@435 2095 add(Rindex, offset, Rscratch);
duke@435 2096 add(Rlimit, 64 + STACK_BIAS, Rscratch1);
duke@435 2097 cmp(Rscratch, Rscratch1);
duke@435 2098 brx(Assembler::greaterEqualUnsigned, false, pn, L);
duke@435 2099 delayed()->nop();
duke@435 2100 stop("regsave area is being clobbered");
duke@435 2101 bind(L);
duke@435 2102 }
duke@435 2103 #endif // ASSERT
duke@435 2104
duke@435 2105 void InterpreterMacroAssembler::tag_local(frame::Tag t,
duke@435 2106 Register base,
duke@435 2107 Register src,
duke@435 2108 int n) {
duke@435 2109 if (TaggedStackInterpreter) {
duke@435 2110 // have to store zero because local slots can be reused (rats!)
duke@435 2111 if (t == frame::TagValue) {
duke@435 2112 st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n));
duke@435 2113 } else if (t == frame::TagCategory2) {
duke@435 2114 st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n));
duke@435 2115 st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n+1));
duke@435 2116 } else {
duke@435 2117 // assert that we don't stomp the value in 'src'
duke@435 2118 // O3 is arbitrary because it's not used.
duke@435 2119 assert_different_registers(src, base, O3);
duke@435 2120 mov( t, O3);
duke@435 2121 st_ptr(O3, base, Interpreter::local_tag_offset_in_bytes(n));
duke@435 2122 }
duke@435 2123 }
duke@435 2124 }
duke@435 2125
duke@435 2126
duke@435 2127 void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
duke@435 2128 assert_not_delayed();
duke@435 2129 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2130 sub(Llocals, index, index);
duke@435 2131 debug_only(check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);)
duke@435 2132 tag_local(frame::TagValue, index, src);
duke@435 2133 st(src, index, Interpreter::value_offset_in_bytes());
duke@435 2134 }
duke@435 2135
duke@435 2136 void InterpreterMacroAssembler::store_local_ptr( Register index, Register src,
duke@435 2137 Register tag ) {
duke@435 2138 assert_not_delayed();
duke@435 2139 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2140 sub(Llocals, index, index);
duke@435 2141 #ifdef ASSERT
duke@435 2142 check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);
duke@435 2143 #endif
duke@435 2144 st_ptr(src, index, Interpreter::value_offset_in_bytes());
duke@435 2145 // Store tag register directly
duke@435 2146 if (TaggedStackInterpreter) {
duke@435 2147 st_ptr(tag, index, Interpreter::tag_offset_in_bytes());
duke@435 2148 }
duke@435 2149 }
duke@435 2150
duke@435 2151
duke@435 2152
duke@435 2153 void InterpreterMacroAssembler::store_local_ptr( int n, Register src,
duke@435 2154 Register tag ) {
duke@435 2155 st_ptr(src, Llocals, Interpreter::local_offset_in_bytes(n));
duke@435 2156 if (TaggedStackInterpreter) {
duke@435 2157 st_ptr(tag, Llocals, Interpreter::local_tag_offset_in_bytes(n));
duke@435 2158 }
duke@435 2159 }
duke@435 2160
duke@435 2161 void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
duke@435 2162 assert_not_delayed();
duke@435 2163 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2164 sub(Llocals, index, index);
duke@435 2165 #ifdef ASSERT
duke@435 2166 check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
duke@435 2167 #endif
duke@435 2168 tag_local(frame::TagCategory2, index, src);
duke@435 2169 store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
duke@435 2170 }
duke@435 2171
duke@435 2172
duke@435 2173 void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
duke@435 2174 assert_not_delayed();
duke@435 2175 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2176 sub(Llocals, index, index);
duke@435 2177 #ifdef ASSERT
duke@435 2178 check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);
duke@435 2179 #endif
duke@435 2180 tag_local(frame::TagValue, index, G1_scratch);
duke@435 2181 stf(FloatRegisterImpl::S, src, index, Interpreter::value_offset_in_bytes());
duke@435 2182 }
duke@435 2183
duke@435 2184
duke@435 2185 void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
duke@435 2186 assert_not_delayed();
duke@435 2187 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2188 sub(Llocals, index, index);
duke@435 2189 #ifdef ASSERT
duke@435 2190 check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
duke@435 2191 #endif
duke@435 2192 tag_local(frame::TagCategory2, index, G1_scratch);
duke@435 2193 store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
duke@435 2194 }
duke@435 2195
duke@435 2196
duke@435 2197 int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
duke@435 2198 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 2199 int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
duke@435 2200 return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
duke@435 2201 }
duke@435 2202
duke@435 2203
duke@435 2204 Address InterpreterMacroAssembler::top_most_monitor() {
twisti@1162 2205 return Address(FP, top_most_monitor_byte_offset());
duke@435 2206 }
duke@435 2207
duke@435 2208
duke@435 2209 void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
duke@435 2210 add( Lesp, wordSize, Rdest );
duke@435 2211 }
duke@435 2212
duke@435 2213 #endif /* CC_INTERP */
duke@435 2214
duke@435 2215 void InterpreterMacroAssembler::increment_invocation_counter( Register Rtmp, Register Rtmp2 ) {
duke@435 2216 assert(UseCompiler, "incrementing must be useful");
duke@435 2217 #ifdef CC_INTERP
twisti@1162 2218 Address inv_counter(G5_method, methodOopDesc::invocation_counter_offset() +
twisti@1162 2219 InvocationCounter::counter_offset());
twisti@1162 2220 Address be_counter (G5_method, methodOopDesc::backedge_counter_offset() +
twisti@1162 2221 InvocationCounter::counter_offset());
duke@435 2222 #else
twisti@1162 2223 Address inv_counter(Lmethod, methodOopDesc::invocation_counter_offset() +
twisti@1162 2224 InvocationCounter::counter_offset());
twisti@1162 2225 Address be_counter (Lmethod, methodOopDesc::backedge_counter_offset() +
twisti@1162 2226 InvocationCounter::counter_offset());
duke@435 2227 #endif /* CC_INTERP */
duke@435 2228 int delta = InvocationCounter::count_increment;
duke@435 2229
duke@435 2230 // Load each counter in a register
duke@435 2231 ld( inv_counter, Rtmp );
duke@435 2232 ld( be_counter, Rtmp2 );
duke@435 2233
duke@435 2234 assert( is_simm13( delta ), " delta too large.");
duke@435 2235
duke@435 2236 // Add the delta to the invocation counter and store the result
duke@435 2237 add( Rtmp, delta, Rtmp );
duke@435 2238
duke@435 2239 // Mask the backedge counter
duke@435 2240 and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
duke@435 2241
duke@435 2242 // Store value
duke@435 2243 st( Rtmp, inv_counter);
duke@435 2244
duke@435 2245 // Add invocation counter + backedge counter
duke@435 2246 add( Rtmp, Rtmp2, Rtmp);
duke@435 2247
duke@435 2248 // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
duke@435 2249 }
duke@435 2250
duke@435 2251 void InterpreterMacroAssembler::increment_backedge_counter( Register Rtmp, Register Rtmp2 ) {
duke@435 2252 assert(UseCompiler, "incrementing must be useful");
duke@435 2253 #ifdef CC_INTERP
twisti@1162 2254 Address be_counter (G5_method, methodOopDesc::backedge_counter_offset() +
twisti@1162 2255 InvocationCounter::counter_offset());
twisti@1162 2256 Address inv_counter(G5_method, methodOopDesc::invocation_counter_offset() +
twisti@1162 2257 InvocationCounter::counter_offset());
duke@435 2258 #else
twisti@1162 2259 Address be_counter (Lmethod, methodOopDesc::backedge_counter_offset() +
twisti@1162 2260 InvocationCounter::counter_offset());
twisti@1162 2261 Address inv_counter(Lmethod, methodOopDesc::invocation_counter_offset() +
twisti@1162 2262 InvocationCounter::counter_offset());
duke@435 2263 #endif /* CC_INTERP */
duke@435 2264 int delta = InvocationCounter::count_increment;
duke@435 2265 // Load each counter in a register
duke@435 2266 ld( be_counter, Rtmp );
duke@435 2267 ld( inv_counter, Rtmp2 );
duke@435 2268
duke@435 2269 // Add the delta to the backedge counter
duke@435 2270 add( Rtmp, delta, Rtmp );
duke@435 2271
duke@435 2272 // Mask the invocation counter, add to backedge counter
duke@435 2273 and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
duke@435 2274
duke@435 2275 // and store the result to memory
duke@435 2276 st( Rtmp, be_counter );
duke@435 2277
duke@435 2278 // Add backedge + invocation counter
duke@435 2279 add( Rtmp, Rtmp2, Rtmp );
duke@435 2280
duke@435 2281 // Note that this macro must leave backedge_count + invocation_count in Rtmp!
duke@435 2282 }
duke@435 2283
duke@435 2284 #ifndef CC_INTERP
duke@435 2285 void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
duke@435 2286 Register branch_bcp,
duke@435 2287 Register Rtmp ) {
duke@435 2288 Label did_not_overflow;
duke@435 2289 Label overflow_with_error;
duke@435 2290 assert_different_registers(backedge_count, Rtmp, branch_bcp);
duke@435 2291 assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
duke@435 2292
twisti@1162 2293 AddressLiteral limit(&InvocationCounter::InterpreterBackwardBranchLimit);
duke@435 2294 load_contents(limit, Rtmp);
duke@435 2295 cmp(backedge_count, Rtmp);
duke@435 2296 br(Assembler::lessUnsigned, false, Assembler::pt, did_not_overflow);
duke@435 2297 delayed()->nop();
duke@435 2298
duke@435 2299 // When ProfileInterpreter is on, the backedge_count comes from the
duke@435 2300 // methodDataOop, which value does not get reset on the call to
duke@435 2301 // frequency_counter_overflow(). To avoid excessive calls to the overflow
duke@435 2302 // routine while the method is being compiled, add a second test to make sure
duke@435 2303 // the overflow function is called only once every overflow_frequency.
duke@435 2304 if (ProfileInterpreter) {
duke@435 2305 const int overflow_frequency = 1024;
duke@435 2306 andcc(backedge_count, overflow_frequency-1, Rtmp);
duke@435 2307 brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
duke@435 2308 delayed()->nop();
duke@435 2309 }
duke@435 2310
duke@435 2311 // overflow in loop, pass branch bytecode
duke@435 2312 set(6,Rtmp);
duke@435 2313 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
duke@435 2314
duke@435 2315 // Was an OSR adapter generated?
duke@435 2316 // O0 = osr nmethod
duke@435 2317 tst(O0);
duke@435 2318 brx(Assembler::zero, false, Assembler::pn, overflow_with_error);
duke@435 2319 delayed()->nop();
duke@435 2320
duke@435 2321 // Has the nmethod been invalidated already?
duke@435 2322 ld(O0, nmethod::entry_bci_offset(), O2);
duke@435 2323 cmp(O2, InvalidOSREntryBci);
duke@435 2324 br(Assembler::equal, false, Assembler::pn, overflow_with_error);
duke@435 2325 delayed()->nop();
duke@435 2326
duke@435 2327 // migrate the interpreter frame off of the stack
duke@435 2328
duke@435 2329 mov(G2_thread, L7);
duke@435 2330 // save nmethod
duke@435 2331 mov(O0, L6);
duke@435 2332 set_last_Java_frame(SP, noreg);
duke@435 2333 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
duke@435 2334 reset_last_Java_frame();
duke@435 2335 mov(L7, G2_thread);
duke@435 2336
duke@435 2337 // move OSR nmethod to I1
duke@435 2338 mov(L6, I1);
duke@435 2339
duke@435 2340 // OSR buffer to I0
duke@435 2341 mov(O0, I0);
duke@435 2342
duke@435 2343 // remove the interpreter frame
duke@435 2344 restore(I5_savedSP, 0, SP);
duke@435 2345
duke@435 2346 // Jump to the osr code.
duke@435 2347 ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
duke@435 2348 jmp(O2, G0);
duke@435 2349 delayed()->nop();
duke@435 2350
duke@435 2351 bind(overflow_with_error);
duke@435 2352
duke@435 2353 bind(did_not_overflow);
duke@435 2354 }
duke@435 2355
duke@435 2356
duke@435 2357
duke@435 2358 void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
duke@435 2359 if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
duke@435 2360 }
duke@435 2361
duke@435 2362
duke@435 2363 // local helper function for the verify_oop_or_return_address macro
duke@435 2364 static bool verify_return_address(methodOopDesc* m, int bci) {
duke@435 2365 #ifndef PRODUCT
duke@435 2366 address pc = (address)(m->constMethod())
duke@435 2367 + in_bytes(constMethodOopDesc::codes_offset()) + bci;
duke@435 2368 // assume it is a valid return address if it is inside m and is preceded by a jsr
duke@435 2369 if (!m->contains(pc)) return false;
duke@435 2370 address jsr_pc;
duke@435 2371 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
duke@435 2372 if (*jsr_pc == Bytecodes::_jsr && jsr_pc >= m->code_base()) return true;
duke@435 2373 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
duke@435 2374 if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base()) return true;
duke@435 2375 #endif // PRODUCT
duke@435 2376 return false;
duke@435 2377 }
duke@435 2378
duke@435 2379
duke@435 2380 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
duke@435 2381 if (!VerifyOops) return;
duke@435 2382 // the VM documentation for the astore[_wide] bytecode allows
duke@435 2383 // the TOS to be not only an oop but also a return address
duke@435 2384 Label test;
duke@435 2385 Label skip;
duke@435 2386 // See if it is an address (in the current method):
duke@435 2387
duke@435 2388 mov(reg, Rtmp);
duke@435 2389 const int log2_bytecode_size_limit = 16;
duke@435 2390 srl(Rtmp, log2_bytecode_size_limit, Rtmp);
duke@435 2391 br_notnull( Rtmp, false, pt, test );
duke@435 2392 delayed()->nop();
duke@435 2393
duke@435 2394 // %%% should use call_VM_leaf here?
duke@435 2395 save_frame_and_mov(0, Lmethod, O0, reg, O1);
duke@435 2396 save_thread(L7_thread_cache);
duke@435 2397 call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
duke@435 2398 delayed()->nop();
duke@435 2399 restore_thread(L7_thread_cache);
duke@435 2400 br_notnull( O0, false, pt, skip );
duke@435 2401 delayed()->restore();
duke@435 2402
duke@435 2403 // Perform a more elaborate out-of-line call
duke@435 2404 // Not an address; verify it:
duke@435 2405 bind(test);
duke@435 2406 verify_oop(reg);
duke@435 2407 bind(skip);
duke@435 2408 }
duke@435 2409
duke@435 2410
duke@435 2411 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
duke@435 2412 if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
duke@435 2413 }
duke@435 2414 #endif /* CC_INTERP */
duke@435 2415
duke@435 2416 // Inline assembly for:
duke@435 2417 //
duke@435 2418 // if (thread is in interp_only_mode) {
duke@435 2419 // InterpreterRuntime::post_method_entry();
duke@435 2420 // }
duke@435 2421 // if (DTraceMethodProbes) {
twisti@1040 2422 // SharedRuntime::dtrace_method_entry(method, receiver);
duke@435 2423 // }
dcubed@1045 2424 // if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
dcubed@1045 2425 // SharedRuntime::rc_trace_method_entry(method, receiver);
coleenp@857 2426 // }
duke@435 2427
duke@435 2428 void InterpreterMacroAssembler::notify_method_entry() {
duke@435 2429
duke@435 2430 // C++ interpreter only uses this for native methods.
duke@435 2431
duke@435 2432 // Whenever JVMTI puts a thread in interp_only_mode, method
duke@435 2433 // entry/exit events are sent for that thread to track stack
duke@435 2434 // depth. If it is possible to enter interp_only_mode we add
duke@435 2435 // the code to check if the event should be sent.
duke@435 2436 if (JvmtiExport::can_post_interpreter_events()) {
duke@435 2437 Label L;
duke@435 2438 Register temp_reg = O5;
twisti@1162 2439 const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
duke@435 2440 ld(interp_only, temp_reg);
duke@435 2441 tst(temp_reg);
duke@435 2442 br(zero, false, pt, L);
duke@435 2443 delayed()->nop();
duke@435 2444 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
duke@435 2445 bind(L);
duke@435 2446 }
duke@435 2447
duke@435 2448 {
duke@435 2449 Register temp_reg = O5;
duke@435 2450 SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
duke@435 2451 call_VM_leaf(noreg,
duke@435 2452 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
duke@435 2453 G2_thread, Lmethod);
duke@435 2454 }
dcubed@1045 2455
dcubed@1045 2456 // RedefineClasses() tracing support for obsolete method entry
dcubed@1045 2457 if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
dcubed@1045 2458 call_VM_leaf(noreg,
dcubed@1045 2459 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
dcubed@1045 2460 G2_thread, Lmethod);
dcubed@1045 2461 }
duke@435 2462 }
duke@435 2463
duke@435 2464
duke@435 2465 // Inline assembly for:
duke@435 2466 //
duke@435 2467 // if (thread is in interp_only_mode) {
duke@435 2468 // // save result
duke@435 2469 // InterpreterRuntime::post_method_exit();
duke@435 2470 // // restore result
duke@435 2471 // }
duke@435 2472 // if (DTraceMethodProbes) {
duke@435 2473 // SharedRuntime::dtrace_method_exit(thread, method);
duke@435 2474 // }
duke@435 2475 //
duke@435 2476 // Native methods have their result stored in d_tmp and l_tmp
duke@435 2477 // Java methods have their result stored in the expression stack
duke@435 2478
duke@435 2479 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
duke@435 2480 TosState state,
duke@435 2481 NotifyMethodExitMode mode) {
duke@435 2482 // C++ interpreter only uses this for native methods.
duke@435 2483
duke@435 2484 // Whenever JVMTI puts a thread in interp_only_mode, method
duke@435 2485 // entry/exit events are sent for that thread to track stack
duke@435 2486 // depth. If it is possible to enter interp_only_mode we add
duke@435 2487 // the code to check if the event should be sent.
duke@435 2488 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
duke@435 2489 Label L;
duke@435 2490 Register temp_reg = O5;
twisti@1162 2491 const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
duke@435 2492 ld(interp_only, temp_reg);
duke@435 2493 tst(temp_reg);
duke@435 2494 br(zero, false, pt, L);
duke@435 2495 delayed()->nop();
duke@435 2496
duke@435 2497 // Note: frame::interpreter_frame_result has a dependency on how the
duke@435 2498 // method result is saved across the call to post_method_exit. For
duke@435 2499 // native methods it assumes the result registers are saved to
duke@435 2500 // l_scratch and d_scratch. If this changes then the interpreter_frame_result
duke@435 2501 // implementation will need to be updated too.
duke@435 2502
duke@435 2503 save_return_value(state, is_native_method);
duke@435 2504 call_VM(noreg,
duke@435 2505 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
duke@435 2506 restore_return_value(state, is_native_method);
duke@435 2507 bind(L);
duke@435 2508 }
duke@435 2509
duke@435 2510 {
duke@435 2511 Register temp_reg = O5;
duke@435 2512 // Dtrace notification
duke@435 2513 SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
duke@435 2514 save_return_value(state, is_native_method);
duke@435 2515 call_VM_leaf(
duke@435 2516 noreg,
duke@435 2517 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
duke@435 2518 G2_thread, Lmethod);
duke@435 2519 restore_return_value(state, is_native_method);
duke@435 2520 }
duke@435 2521 }
duke@435 2522
duke@435 2523 void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
duke@435 2524 #ifdef CC_INTERP
duke@435 2525 // result potentially in O0/O1: save it across calls
duke@435 2526 stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
duke@435 2527 #ifdef _LP64
duke@435 2528 stx(O0, STATE(_native_lresult));
duke@435 2529 #else
duke@435 2530 std(O0, STATE(_native_lresult));
duke@435 2531 #endif
duke@435 2532 #else // CC_INTERP
duke@435 2533 if (is_native_call) {
duke@435 2534 stf(FloatRegisterImpl::D, F0, d_tmp);
duke@435 2535 #ifdef _LP64
duke@435 2536 stx(O0, l_tmp);
duke@435 2537 #else
duke@435 2538 std(O0, l_tmp);
duke@435 2539 #endif
duke@435 2540 } else {
duke@435 2541 push(state);
duke@435 2542 }
duke@435 2543 #endif // CC_INTERP
duke@435 2544 }
duke@435 2545
duke@435 2546 void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
duke@435 2547 #ifdef CC_INTERP
duke@435 2548 ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
duke@435 2549 #ifdef _LP64
duke@435 2550 ldx(STATE(_native_lresult), O0);
duke@435 2551 #else
duke@435 2552 ldd(STATE(_native_lresult), O0);
duke@435 2553 #endif
duke@435 2554 #else // CC_INTERP
duke@435 2555 if (is_native_call) {
duke@435 2556 ldf(FloatRegisterImpl::D, d_tmp, F0);
duke@435 2557 #ifdef _LP64
duke@435 2558 ldx(l_tmp, O0);
duke@435 2559 #else
duke@435 2560 ldd(l_tmp, O0);
duke@435 2561 #endif
duke@435 2562 } else {
duke@435 2563 pop(state);
duke@435 2564 }
duke@435 2565 #endif // CC_INTERP
duke@435 2566 }

mercurial