src/cpu/sparc/vm/interp_masm_sparc.cpp

Wed, 06 Jun 2012 14:33:43 -0400

author
jiangli
date
Wed, 06 Jun 2012 14:33:43 -0400
changeset 3826
2fe087c3e814
parent 3050
fdb992d83a87
child 3969
1d7922586cf6
permissions
-rw-r--r--

7172967: Eliminate constMethod's _method backpointer to methodOop.
Summary: Eliminate constMethod's _method backpointer to methodOop, and move the _constant field from methodOop to constMethod.
Reviewed-by: roland, bdelsart, kamg

duke@435 1 /*
jiangli@3826 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "interp_masm_sparc.hpp"
stefank@2314 27 #include "interpreter/interpreter.hpp"
stefank@2314 28 #include "interpreter/interpreterRuntime.hpp"
stefank@2314 29 #include "oops/arrayOop.hpp"
stefank@2314 30 #include "oops/markOop.hpp"
stefank@2314 31 #include "oops/methodDataOop.hpp"
stefank@2314 32 #include "oops/methodOop.hpp"
stefank@2314 33 #include "prims/jvmtiExport.hpp"
stefank@2314 34 #include "prims/jvmtiRedefineClassesTrace.hpp"
stefank@2314 35 #include "prims/jvmtiThreadState.hpp"
stefank@2314 36 #include "runtime/basicLock.hpp"
stefank@2314 37 #include "runtime/biasedLocking.hpp"
stefank@2314 38 #include "runtime/sharedRuntime.hpp"
stefank@2314 39 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 40 # include "thread_linux.inline.hpp"
stefank@2314 41 #endif
stefank@2314 42 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 43 # include "thread_solaris.inline.hpp"
stefank@2314 44 #endif
duke@435 45
duke@435 46 #ifndef CC_INTERP
duke@435 47 #ifndef FAST_DISPATCH
duke@435 48 #define FAST_DISPATCH 1
duke@435 49 #endif
duke@435 50 #undef FAST_DISPATCH
duke@435 51
duke@435 52 // Implementation of InterpreterMacroAssembler
duke@435 53
duke@435 54 // This file specializes the assember with interpreter-specific macros
duke@435 55
twisti@1162 56 const Address InterpreterMacroAssembler::l_tmp(FP, (frame::interpreter_frame_l_scratch_fp_offset * wordSize) + STACK_BIAS);
twisti@1162 57 const Address InterpreterMacroAssembler::d_tmp(FP, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
duke@435 58
duke@435 59 #else // CC_INTERP
duke@435 60 #ifndef STATE
duke@435 61 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
duke@435 62 #endif // STATE
duke@435 63
duke@435 64 #endif // CC_INTERP
duke@435 65
duke@435 66 void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
duke@435 67 // Note: this algorithm is also used by C1's OSR entry sequence.
duke@435 68 // Any changes should also be applied to CodeEmitter::emit_osr_entry().
duke@435 69 assert_different_registers(args_size, locals_size);
duke@435 70 // max_locals*2 for TAGS. Assumes that args_size has already been adjusted.
duke@435 71 subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
duke@435 72 // Use br/mov combination because it works on both V8 and V9 and is
duke@435 73 // faster.
duke@435 74 Label skip_move;
duke@435 75 br(Assembler::negative, true, Assembler::pt, skip_move);
duke@435 76 delayed()->mov(G0, delta);
duke@435 77 bind(skip_move);
duke@435 78 round_to(delta, WordsPerLong); // make multiple of 2 (SP must be 2-word aligned)
duke@435 79 sll(delta, LogBytesPerWord, delta); // extra space for locals in bytes
duke@435 80 }
duke@435 81
duke@435 82 #ifndef CC_INTERP
duke@435 83
duke@435 84 // Dispatch code executed in the prolog of a bytecode which does not do it's
duke@435 85 // own dispatch. The dispatch address is computed and placed in IdispatchAddress
duke@435 86 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
duke@435 87 assert_not_delayed();
duke@435 88 #ifdef FAST_DISPATCH
duke@435 89 // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
duke@435 90 // they both use I2.
duke@435 91 assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
duke@435 92 ldub(Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 93 add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
duke@435 94 // add offset to correct dispatch table
duke@435 95 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
duke@435 96 ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
duke@435 97 #else
twisti@1162 98 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 99 // dispatch table to use
twisti@1162 100 AddressLiteral tbl(Interpreter::dispatch_table(state));
twisti@1162 101 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
twisti@1162 102 set(tbl, G3_scratch); // compute addr of table
twisti@1162 103 ld_ptr(G3_scratch, Lbyte_code, IdispatchAddress); // get entry addr
duke@435 104 #endif
duke@435 105 }
duke@435 106
duke@435 107
duke@435 108 // Dispatch code executed in the epilog of a bytecode which does not do it's
duke@435 109 // own dispatch. The dispatch address in IdispatchAddress is used for the
duke@435 110 // dispatch.
duke@435 111 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
duke@435 112 assert_not_delayed();
duke@435 113 verify_FPU(1, state);
duke@435 114 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 115 jmp( IdispatchAddress, 0 );
duke@435 116 if (bcp_incr != 0) delayed()->inc(Lbcp, bcp_incr);
duke@435 117 else delayed()->nop();
duke@435 118 }
duke@435 119
duke@435 120
duke@435 121 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
duke@435 122 // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
duke@435 123 assert_not_delayed();
duke@435 124 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 125 dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
duke@435 126 }
duke@435 127
duke@435 128
duke@435 129 void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
duke@435 130 // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
duke@435 131 assert_not_delayed();
duke@435 132 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 133 dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
duke@435 134 }
duke@435 135
duke@435 136
duke@435 137 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
duke@435 138 // load current bytecode
duke@435 139 assert_not_delayed();
duke@435 140 ldub( Lbcp, 0, Lbyte_code); // load next bytecode
duke@435 141 dispatch_base(state, table);
duke@435 142 }
duke@435 143
duke@435 144
duke@435 145 void InterpreterMacroAssembler::call_VM_leaf_base(
duke@435 146 Register java_thread,
duke@435 147 address entry_point,
duke@435 148 int number_of_arguments
duke@435 149 ) {
duke@435 150 if (!java_thread->is_valid())
duke@435 151 java_thread = L7_thread_cache;
duke@435 152 // super call
duke@435 153 MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
duke@435 154 }
duke@435 155
duke@435 156
duke@435 157 void InterpreterMacroAssembler::call_VM_base(
duke@435 158 Register oop_result,
duke@435 159 Register java_thread,
duke@435 160 Register last_java_sp,
duke@435 161 address entry_point,
duke@435 162 int number_of_arguments,
duke@435 163 bool check_exception
duke@435 164 ) {
duke@435 165 if (!java_thread->is_valid())
duke@435 166 java_thread = L7_thread_cache;
duke@435 167 // See class ThreadInVMfromInterpreter, which assumes that the interpreter
duke@435 168 // takes responsibility for setting its own thread-state on call-out.
duke@435 169 // However, ThreadInVMfromInterpreter resets the state to "in_Java".
duke@435 170
duke@435 171 //save_bcp(); // save bcp
duke@435 172 MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
duke@435 173 //restore_bcp(); // restore bcp
duke@435 174 //restore_locals(); // restore locals pointer
duke@435 175 }
duke@435 176
duke@435 177
duke@435 178 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
duke@435 179 if (JvmtiExport::can_pop_frame()) {
duke@435 180 Label L;
duke@435 181
duke@435 182 // Check the "pending popframe condition" flag in the current thread
twisti@1162 183 ld(G2_thread, JavaThread::popframe_condition_offset(), scratch_reg);
duke@435 184
duke@435 185 // Initiate popframe handling only if it is not already being processed. If the flag
duke@435 186 // has the popframe_processing bit set, it means that this code is called *during* popframe
duke@435 187 // handling - we don't want to reenter.
duke@435 188 btst(JavaThread::popframe_pending_bit, scratch_reg);
duke@435 189 br(zero, false, pt, L);
duke@435 190 delayed()->nop();
duke@435 191 btst(JavaThread::popframe_processing_bit, scratch_reg);
duke@435 192 br(notZero, false, pt, L);
duke@435 193 delayed()->nop();
duke@435 194
duke@435 195 // Call Interpreter::remove_activation_preserving_args_entry() to get the
duke@435 196 // address of the same-named entrypoint in the generated interpreter code.
duke@435 197 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
duke@435 198
duke@435 199 // Jump to Interpreter::_remove_activation_preserving_args_entry
duke@435 200 jmpl(O0, G0, G0);
duke@435 201 delayed()->nop();
duke@435 202 bind(L);
duke@435 203 }
duke@435 204 }
duke@435 205
duke@435 206
duke@435 207 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
duke@435 208 Register thr_state = G4_scratch;
twisti@1162 209 ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
twisti@1162 210 const Address tos_addr(thr_state, JvmtiThreadState::earlyret_tos_offset());
twisti@1162 211 const Address oop_addr(thr_state, JvmtiThreadState::earlyret_oop_offset());
twisti@1162 212 const Address val_addr(thr_state, JvmtiThreadState::earlyret_value_offset());
duke@435 213 switch (state) {
duke@435 214 case ltos: ld_long(val_addr, Otos_l); break;
duke@435 215 case atos: ld_ptr(oop_addr, Otos_l);
duke@435 216 st_ptr(G0, oop_addr); break;
duke@435 217 case btos: // fall through
duke@435 218 case ctos: // fall through
duke@435 219 case stos: // fall through
duke@435 220 case itos: ld(val_addr, Otos_l1); break;
duke@435 221 case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
duke@435 222 case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
duke@435 223 case vtos: /* nothing to do */ break;
duke@435 224 default : ShouldNotReachHere();
duke@435 225 }
duke@435 226 // Clean up tos value in the jvmti thread state
duke@435 227 or3(G0, ilgl, G3_scratch);
duke@435 228 stw(G3_scratch, tos_addr);
duke@435 229 st_long(G0, val_addr);
duke@435 230 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 231 }
duke@435 232
duke@435 233
duke@435 234 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
duke@435 235 if (JvmtiExport::can_force_early_return()) {
duke@435 236 Label L;
duke@435 237 Register thr_state = G3_scratch;
twisti@1162 238 ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
kvn@3037 239 br_null_short(thr_state, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
duke@435 240
duke@435 241 // Initiate earlyret handling only if it is not already being processed.
duke@435 242 // If the flag has the earlyret_processing bit set, it means that this code
duke@435 243 // is called *during* earlyret handling - we don't want to reenter.
twisti@1162 244 ld(thr_state, JvmtiThreadState::earlyret_state_offset(), G4_scratch);
kvn@3037 245 cmp_and_br_short(G4_scratch, JvmtiThreadState::earlyret_pending, Assembler::notEqual, pt, L);
duke@435 246
duke@435 247 // Call Interpreter::remove_activation_early_entry() to get the address of the
duke@435 248 // same-named entrypoint in the generated interpreter code
twisti@1162 249 ld(thr_state, JvmtiThreadState::earlyret_tos_offset(), Otos_l1);
duke@435 250 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
duke@435 251
duke@435 252 // Jump to Interpreter::_remove_activation_early_entry
duke@435 253 jmpl(O0, G0, G0);
duke@435 254 delayed()->nop();
duke@435 255 bind(L);
duke@435 256 }
duke@435 257 }
duke@435 258
duke@435 259
twisti@1730 260 void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
duke@435 261 mov(arg_1, O0);
twisti@1730 262 mov(arg_2, O1);
twisti@1730 263 MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 2);
duke@435 264 }
duke@435 265 #endif /* CC_INTERP */
duke@435 266
duke@435 267
duke@435 268 #ifndef CC_INTERP
duke@435 269
duke@435 270 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
duke@435 271 assert_not_delayed();
duke@435 272 dispatch_Lbyte_code(state, table);
duke@435 273 }
duke@435 274
duke@435 275
duke@435 276 void InterpreterMacroAssembler::dispatch_normal(TosState state) {
duke@435 277 dispatch_base(state, Interpreter::normal_table(state));
duke@435 278 }
duke@435 279
duke@435 280
duke@435 281 void InterpreterMacroAssembler::dispatch_only(TosState state) {
duke@435 282 dispatch_base(state, Interpreter::dispatch_table(state));
duke@435 283 }
duke@435 284
duke@435 285
duke@435 286 // common code to dispatch and dispatch_only
duke@435 287 // dispatch value in Lbyte_code and increment Lbcp
duke@435 288
duke@435 289 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
duke@435 290 verify_FPU(1, state);
duke@435 291 // %%%%% maybe implement +VerifyActivationFrameSize here
duke@435 292 //verify_thread(); //too slow; we will just verify on method entry & exit
duke@435 293 if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 294 #ifdef FAST_DISPATCH
duke@435 295 if (table == Interpreter::dispatch_table(state)) {
duke@435 296 // use IdispatchTables
duke@435 297 add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
duke@435 298 // add offset to correct dispatch table
duke@435 299 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
duke@435 300 ld_ptr(IdispatchTables, Lbyte_code, G3_scratch); // get entry addr
duke@435 301 } else {
duke@435 302 #endif
duke@435 303 // dispatch table to use
twisti@1162 304 AddressLiteral tbl(table);
duke@435 305 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
twisti@1162 306 set(tbl, G3_scratch); // compute addr of table
duke@435 307 ld_ptr(G3_scratch, Lbyte_code, G3_scratch); // get entry addr
duke@435 308 #ifdef FAST_DISPATCH
duke@435 309 }
duke@435 310 #endif
duke@435 311 jmp( G3_scratch, 0 );
duke@435 312 if (bcp_incr != 0) delayed()->inc(Lbcp, bcp_incr);
duke@435 313 else delayed()->nop();
duke@435 314 }
duke@435 315
duke@435 316
duke@435 317 // Helpers for expression stack
duke@435 318
duke@435 319 // Longs and doubles are Category 2 computational types in the
duke@435 320 // JVM specification (section 3.11.1) and take 2 expression stack or
duke@435 321 // local slots.
duke@435 322 // Aligning them on 32 bit with tagged stacks is hard because the code generated
duke@435 323 // for the dup* bytecodes depends on what types are already on the stack.
duke@435 324 // If the types are split into the two stack/local slots, that is much easier
duke@435 325 // (and we can use 0 for non-reference tags).
duke@435 326
duke@435 327 // Known good alignment in _LP64 but unknown otherwise
duke@435 328 void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
duke@435 329 assert_not_delayed();
duke@435 330
duke@435 331 #ifdef _LP64
duke@435 332 ldf(FloatRegisterImpl::D, r1, offset, d);
duke@435 333 #else
duke@435 334 ldf(FloatRegisterImpl::S, r1, offset, d);
twisti@1861 335 ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize, d->successor());
duke@435 336 #endif
duke@435 337 }
duke@435 338
duke@435 339 // Known good alignment in _LP64 but unknown otherwise
duke@435 340 void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
duke@435 341 assert_not_delayed();
duke@435 342
duke@435 343 #ifdef _LP64
duke@435 344 stf(FloatRegisterImpl::D, d, r1, offset);
duke@435 345 // store something more useful here
twisti@1861 346 debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
duke@435 347 #else
duke@435 348 stf(FloatRegisterImpl::S, d, r1, offset);
twisti@1861 349 stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize);
duke@435 350 #endif
duke@435 351 }
duke@435 352
duke@435 353
duke@435 354 // Known good alignment in _LP64 but unknown otherwise
duke@435 355 void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
duke@435 356 assert_not_delayed();
duke@435 357 #ifdef _LP64
duke@435 358 ldx(r1, offset, rd);
duke@435 359 #else
duke@435 360 ld(r1, offset, rd);
twisti@1861 361 ld(r1, offset + Interpreter::stackElementSize, rd->successor());
duke@435 362 #endif
duke@435 363 }
duke@435 364
duke@435 365 // Known good alignment in _LP64 but unknown otherwise
duke@435 366 void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
duke@435 367 assert_not_delayed();
duke@435 368
duke@435 369 #ifdef _LP64
duke@435 370 stx(l, r1, offset);
duke@435 371 // store something more useful here
twisti@1861 372 debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
duke@435 373 #else
duke@435 374 st(l, r1, offset);
twisti@1861 375 st(l->successor(), r1, offset + Interpreter::stackElementSize);
duke@435 376 #endif
duke@435 377 }
duke@435 378
duke@435 379 void InterpreterMacroAssembler::pop_i(Register r) {
duke@435 380 assert_not_delayed();
duke@435 381 ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
twisti@1861 382 inc(Lesp, Interpreter::stackElementSize);
duke@435 383 debug_only(verify_esp(Lesp));
duke@435 384 }
duke@435 385
duke@435 386 void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
duke@435 387 assert_not_delayed();
duke@435 388 ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
twisti@1861 389 inc(Lesp, Interpreter::stackElementSize);
duke@435 390 debug_only(verify_esp(Lesp));
duke@435 391 }
duke@435 392
duke@435 393 void InterpreterMacroAssembler::pop_l(Register r) {
duke@435 394 assert_not_delayed();
duke@435 395 load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
twisti@1861 396 inc(Lesp, 2*Interpreter::stackElementSize);
duke@435 397 debug_only(verify_esp(Lesp));
duke@435 398 }
duke@435 399
duke@435 400
duke@435 401 void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
duke@435 402 assert_not_delayed();
duke@435 403 ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
twisti@1861 404 inc(Lesp, Interpreter::stackElementSize);
duke@435 405 debug_only(verify_esp(Lesp));
duke@435 406 }
duke@435 407
duke@435 408
duke@435 409 void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
duke@435 410 assert_not_delayed();
duke@435 411 load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
twisti@1861 412 inc(Lesp, 2*Interpreter::stackElementSize);
duke@435 413 debug_only(verify_esp(Lesp));
duke@435 414 }
duke@435 415
duke@435 416
duke@435 417 void InterpreterMacroAssembler::push_i(Register r) {
duke@435 418 assert_not_delayed();
duke@435 419 debug_only(verify_esp(Lesp));
twisti@1861 420 st(r, Lesp, 0);
twisti@1861 421 dec(Lesp, Interpreter::stackElementSize);
duke@435 422 }
duke@435 423
duke@435 424 void InterpreterMacroAssembler::push_ptr(Register r) {
duke@435 425 assert_not_delayed();
twisti@1861 426 st_ptr(r, Lesp, 0);
twisti@1861 427 dec(Lesp, Interpreter::stackElementSize);
duke@435 428 }
duke@435 429
duke@435 430 // remember: our convention for longs in SPARC is:
duke@435 431 // O0 (Otos_l1) has high-order part in first word,
duke@435 432 // O1 (Otos_l2) has low-order part in second word
duke@435 433
duke@435 434 void InterpreterMacroAssembler::push_l(Register r) {
duke@435 435 assert_not_delayed();
duke@435 436 debug_only(verify_esp(Lesp));
twisti@1861 437 // Longs are stored in memory-correct order, even if unaligned.
twisti@1861 438 int offset = -Interpreter::stackElementSize;
duke@435 439 store_unaligned_long(r, Lesp, offset);
twisti@1861 440 dec(Lesp, 2 * Interpreter::stackElementSize);
duke@435 441 }
duke@435 442
duke@435 443
duke@435 444 void InterpreterMacroAssembler::push_f(FloatRegister f) {
duke@435 445 assert_not_delayed();
duke@435 446 debug_only(verify_esp(Lesp));
twisti@1861 447 stf(FloatRegisterImpl::S, f, Lesp, 0);
twisti@1861 448 dec(Lesp, Interpreter::stackElementSize);
duke@435 449 }
duke@435 450
duke@435 451
duke@435 452 void InterpreterMacroAssembler::push_d(FloatRegister d) {
duke@435 453 assert_not_delayed();
duke@435 454 debug_only(verify_esp(Lesp));
twisti@1861 455 // Longs are stored in memory-correct order, even if unaligned.
twisti@1861 456 int offset = -Interpreter::stackElementSize;
duke@435 457 store_unaligned_double(d, Lesp, offset);
twisti@1861 458 dec(Lesp, 2 * Interpreter::stackElementSize);
duke@435 459 }
duke@435 460
duke@435 461
duke@435 462 void InterpreterMacroAssembler::push(TosState state) {
duke@435 463 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 464 switch (state) {
duke@435 465 case atos: push_ptr(); break;
duke@435 466 case btos: push_i(); break;
duke@435 467 case ctos:
duke@435 468 case stos: push_i(); break;
duke@435 469 case itos: push_i(); break;
duke@435 470 case ltos: push_l(); break;
duke@435 471 case ftos: push_f(); break;
duke@435 472 case dtos: push_d(); break;
duke@435 473 case vtos: /* nothing to do */ break;
duke@435 474 default : ShouldNotReachHere();
duke@435 475 }
duke@435 476 }
duke@435 477
duke@435 478
duke@435 479 void InterpreterMacroAssembler::pop(TosState state) {
duke@435 480 switch (state) {
duke@435 481 case atos: pop_ptr(); break;
duke@435 482 case btos: pop_i(); break;
duke@435 483 case ctos:
duke@435 484 case stos: pop_i(); break;
duke@435 485 case itos: pop_i(); break;
duke@435 486 case ltos: pop_l(); break;
duke@435 487 case ftos: pop_f(); break;
duke@435 488 case dtos: pop_d(); break;
duke@435 489 case vtos: /* nothing to do */ break;
duke@435 490 default : ShouldNotReachHere();
duke@435 491 }
duke@435 492 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 493 }
duke@435 494
duke@435 495
twisti@1861 496 // Helpers for swap and dup
twisti@1861 497 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
duke@435 498 ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
duke@435 499 }
twisti@1861 500 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
duke@435 501 st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
duke@435 502 }
duke@435 503
duke@435 504
duke@435 505 void InterpreterMacroAssembler::load_receiver(Register param_count,
duke@435 506 Register recv) {
twisti@1861 507 sll(param_count, Interpreter::logStackElementSize, param_count);
duke@435 508 ld_ptr(Lesp, param_count, recv); // gets receiver Oop
duke@435 509 }
duke@435 510
duke@435 511 void InterpreterMacroAssembler::empty_expression_stack() {
duke@435 512 // Reset Lesp.
duke@435 513 sub( Lmonitors, wordSize, Lesp );
duke@435 514
duke@435 515 // Reset SP by subtracting more space from Lesp.
duke@435 516 Label done;
duke@435 517 verify_oop(Lmethod);
twisti@1162 518 assert(G4_scratch != Gframe_size, "Only you can prevent register aliasing!");
duke@435 519
duke@435 520 // A native does not need to do this, since its callee does not change SP.
twisti@1162 521 ld(Lmethod, methodOopDesc::access_flags_offset(), Gframe_size); // Load access flags.
duke@435 522 btst(JVM_ACC_NATIVE, Gframe_size);
duke@435 523 br(Assembler::notZero, false, Assembler::pt, done);
duke@435 524 delayed()->nop();
duke@435 525
duke@435 526 // Compute max expression stack+register save area
twisti@1162 527 lduh(Lmethod, in_bytes(methodOopDesc::max_stack_offset()), Gframe_size); // Load max stack.
duke@435 528 add( Gframe_size, frame::memory_parameter_word_sp_offset, Gframe_size );
duke@435 529
duke@435 530 //
duke@435 531 // now set up a stack frame with the size computed above
duke@435 532 //
duke@435 533 //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
duke@435 534 sll( Gframe_size, LogBytesPerWord, Gframe_size );
duke@435 535 sub( Lesp, Gframe_size, Gframe_size );
duke@435 536 and3( Gframe_size, -(2 * wordSize), Gframe_size ); // align SP (downwards) to an 8/16-byte boundary
duke@435 537 debug_only(verify_sp(Gframe_size, G4_scratch));
duke@435 538 #ifdef _LP64
duke@435 539 sub(Gframe_size, STACK_BIAS, Gframe_size );
duke@435 540 #endif
duke@435 541 mov(Gframe_size, SP);
duke@435 542
duke@435 543 bind(done);
duke@435 544 }
duke@435 545
duke@435 546
duke@435 547 #ifdef ASSERT
duke@435 548 void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
duke@435 549 Label Bad, OK;
duke@435 550
duke@435 551 // Saved SP must be aligned.
duke@435 552 #ifdef _LP64
duke@435 553 btst(2*BytesPerWord-1, Rsp);
duke@435 554 #else
duke@435 555 btst(LongAlignmentMask, Rsp);
duke@435 556 #endif
duke@435 557 br(Assembler::notZero, false, Assembler::pn, Bad);
duke@435 558 delayed()->nop();
duke@435 559
duke@435 560 // Saved SP, plus register window size, must not be above FP.
duke@435 561 add(Rsp, frame::register_save_words * wordSize, Rtemp);
duke@435 562 #ifdef _LP64
duke@435 563 sub(Rtemp, STACK_BIAS, Rtemp); // Bias Rtemp before cmp to FP
duke@435 564 #endif
kvn@3037 565 cmp_and_brx_short(Rtemp, FP, Assembler::greaterUnsigned, Assembler::pn, Bad);
duke@435 566
duke@435 567 // Saved SP must not be ridiculously below current SP.
duke@435 568 size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
duke@435 569 set(maxstack, Rtemp);
duke@435 570 sub(SP, Rtemp, Rtemp);
duke@435 571 #ifdef _LP64
duke@435 572 add(Rtemp, STACK_BIAS, Rtemp); // Unbias Rtemp before cmp to Rsp
duke@435 573 #endif
kvn@3037 574 cmp_and_brx_short(Rsp, Rtemp, Assembler::lessUnsigned, Assembler::pn, Bad);
kvn@3037 575
kvn@3037 576 ba_short(OK);
duke@435 577
duke@435 578 bind(Bad);
duke@435 579 stop("on return to interpreted call, restored SP is corrupted");
duke@435 580
duke@435 581 bind(OK);
duke@435 582 }
duke@435 583
duke@435 584
duke@435 585 void InterpreterMacroAssembler::verify_esp(Register Resp) {
duke@435 586 // about to read or write Resp[0]
duke@435 587 // make sure it is not in the monitors or the register save area
duke@435 588 Label OK1, OK2;
duke@435 589
duke@435 590 cmp(Resp, Lmonitors);
duke@435 591 brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
duke@435 592 delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
duke@435 593 stop("too many pops: Lesp points into monitor area");
duke@435 594 bind(OK1);
duke@435 595 #ifdef _LP64
duke@435 596 sub(Resp, STACK_BIAS, Resp);
duke@435 597 #endif
duke@435 598 cmp(Resp, SP);
duke@435 599 brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
duke@435 600 delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
duke@435 601 stop("too many pushes: Lesp points into register window");
duke@435 602 bind(OK2);
duke@435 603 }
duke@435 604 #endif // ASSERT
duke@435 605
duke@435 606 // Load compiled (i2c) or interpreter entry when calling from interpreted and
duke@435 607 // do the call. Centralized so that all interpreter calls will do the same actions.
duke@435 608 // If jvmti single stepping is on for a thread we must not call compiled code.
duke@435 609 void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
duke@435 610
duke@435 611 // Assume we want to go compiled if available
duke@435 612
duke@435 613 ld_ptr(G5_method, in_bytes(methodOopDesc::from_interpreted_offset()), target);
duke@435 614
duke@435 615 if (JvmtiExport::can_post_interpreter_events()) {
duke@435 616 // JVMTI events, such as single-stepping, are implemented partly by avoiding running
duke@435 617 // compiled code in threads for which the event is enabled. Check here for
duke@435 618 // interp_only_mode if these events CAN be enabled.
duke@435 619 verify_thread();
duke@435 620 Label skip_compiled_code;
duke@435 621
twisti@1162 622 const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
duke@435 623 ld(interp_only, scratch);
kvn@3037 624 cmp_zero_and_br(Assembler::notZero, scratch, skip_compiled_code, true, Assembler::pn);
duke@435 625 delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), target);
duke@435 626 bind(skip_compiled_code);
duke@435 627 }
duke@435 628
duke@435 629 // the i2c_adapters need methodOop in G5_method (right? %%%)
duke@435 630 // do the call
duke@435 631 #ifdef ASSERT
duke@435 632 {
duke@435 633 Label ok;
kvn@3037 634 br_notnull_short(target, Assembler::pt, ok);
duke@435 635 stop("null entry point");
duke@435 636 bind(ok);
duke@435 637 }
duke@435 638 #endif // ASSERT
duke@435 639
duke@435 640 // Adjust Rret first so Llast_SP can be same as Rret
duke@435 641 add(Rret, -frame::pc_return_offset, O7);
duke@435 642 add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
duke@435 643 // Record SP so we can remove any stack space allocated by adapter transition
duke@435 644 jmp(target, 0);
duke@435 645 delayed()->mov(SP, Llast_SP);
duke@435 646 }
duke@435 647
duke@435 648 void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
duke@435 649 assert_not_delayed();
duke@435 650
duke@435 651 Label not_taken;
duke@435 652 if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
duke@435 653 else br (cc, false, Assembler::pn, not_taken);
duke@435 654 delayed()->nop();
duke@435 655
duke@435 656 TemplateTable::branch(false,false);
duke@435 657
duke@435 658 bind(not_taken);
duke@435 659
duke@435 660 profile_not_taken_branch(G3_scratch);
duke@435 661 }
duke@435 662
duke@435 663
duke@435 664 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
duke@435 665 int bcp_offset,
duke@435 666 Register Rtmp,
duke@435 667 Register Rdst,
duke@435 668 signedOrNot is_signed,
duke@435 669 setCCOrNot should_set_CC ) {
duke@435 670 assert(Rtmp != Rdst, "need separate temp register");
duke@435 671 assert_not_delayed();
duke@435 672 switch (is_signed) {
duke@435 673 default: ShouldNotReachHere();
duke@435 674
duke@435 675 case Signed: ldsb( Lbcp, bcp_offset, Rdst ); break; // high byte
duke@435 676 case Unsigned: ldub( Lbcp, bcp_offset, Rdst ); break; // high byte
duke@435 677 }
duke@435 678 ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
duke@435 679 sll( Rdst, BitsPerByte, Rdst);
duke@435 680 switch (should_set_CC ) {
duke@435 681 default: ShouldNotReachHere();
duke@435 682
duke@435 683 case set_CC: orcc( Rdst, Rtmp, Rdst ); break;
duke@435 684 case dont_set_CC: or3( Rdst, Rtmp, Rdst ); break;
duke@435 685 }
duke@435 686 }
duke@435 687
duke@435 688
duke@435 689 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
duke@435 690 int bcp_offset,
duke@435 691 Register Rtmp,
duke@435 692 Register Rdst,
duke@435 693 setCCOrNot should_set_CC ) {
duke@435 694 assert(Rtmp != Rdst, "need separate temp register");
duke@435 695 assert_not_delayed();
duke@435 696 add( Lbcp, bcp_offset, Rtmp);
duke@435 697 andcc( Rtmp, 3, G0);
duke@435 698 Label aligned;
duke@435 699 switch (should_set_CC ) {
duke@435 700 default: ShouldNotReachHere();
duke@435 701
duke@435 702 case set_CC: break;
duke@435 703 case dont_set_CC: break;
duke@435 704 }
duke@435 705
duke@435 706 br(Assembler::zero, true, Assembler::pn, aligned);
duke@435 707 #ifdef _LP64
duke@435 708 delayed()->ldsw(Rtmp, 0, Rdst);
duke@435 709 #else
duke@435 710 delayed()->ld(Rtmp, 0, Rdst);
duke@435 711 #endif
duke@435 712
duke@435 713 ldub(Lbcp, bcp_offset + 3, Rdst);
duke@435 714 ldub(Lbcp, bcp_offset + 2, Rtmp); sll(Rtmp, 8, Rtmp); or3(Rtmp, Rdst, Rdst);
duke@435 715 ldub(Lbcp, bcp_offset + 1, Rtmp); sll(Rtmp, 16, Rtmp); or3(Rtmp, Rdst, Rdst);
duke@435 716 #ifdef _LP64
duke@435 717 ldsb(Lbcp, bcp_offset + 0, Rtmp); sll(Rtmp, 24, Rtmp);
duke@435 718 #else
duke@435 719 // Unsigned load is faster than signed on some implementations
duke@435 720 ldub(Lbcp, bcp_offset + 0, Rtmp); sll(Rtmp, 24, Rtmp);
duke@435 721 #endif
duke@435 722 or3(Rtmp, Rdst, Rdst );
duke@435 723
duke@435 724 bind(aligned);
duke@435 725 if (should_set_CC == set_CC) tst(Rdst);
duke@435 726 }
duke@435 727
duke@435 728
twisti@1858 729 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register cache, Register tmp,
jrose@1920 730 int bcp_offset, size_t index_size) {
twisti@1858 731 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
jrose@1920 732 if (index_size == sizeof(u2)) {
twisti@1858 733 get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
jrose@1920 734 } else if (index_size == sizeof(u4)) {
twisti@2698 735 assert(EnableInvokeDynamic, "giant index used only for JSR 292");
twisti@1858 736 get_4_byte_integer_at_bcp(bcp_offset, cache, tmp);
twisti@1858 737 assert(constantPoolCacheOopDesc::decode_secondary_index(~123) == 123, "else change next line");
twisti@1858 738 xor3(tmp, -1, tmp); // convert to plain index
jrose@1920 739 } else if (index_size == sizeof(u1)) {
twisti@2698 740 assert(EnableInvokeDynamic, "tiny index used only for JSR 292");
jrose@1920 741 ldub(Lbcp, bcp_offset, tmp);
jrose@1920 742 } else {
jrose@1920 743 ShouldNotReachHere();
twisti@1858 744 }
twisti@1858 745 }
twisti@1858 746
twisti@1858 747
twisti@1858 748 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp,
jrose@1920 749 int bcp_offset, size_t index_size) {
duke@435 750 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
duke@435 751 assert_different_registers(cache, tmp);
duke@435 752 assert_not_delayed();
jrose@1920 753 get_cache_index_at_bcp(cache, tmp, bcp_offset, index_size);
twisti@1858 754 // convert from field index to ConstantPoolCacheEntry index and from
twisti@1858 755 // word index to byte offset
duke@435 756 sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
duke@435 757 add(LcpoolCache, tmp, cache);
duke@435 758 }
duke@435 759
duke@435 760
twisti@3050 761 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
twisti@3050 762 Register temp,
twisti@3050 763 Register bytecode,
twisti@3050 764 int byte_no,
twisti@3050 765 int bcp_offset,
twisti@3050 766 size_t index_size) {
twisti@3050 767 get_cache_and_index_at_bcp(cache, temp, bcp_offset, index_size);
twisti@3050 768 ld_ptr(cache, constantPoolCacheOopDesc::base_offset() + ConstantPoolCacheEntry::indices_offset(), bytecode);
twisti@3050 769 const int shift_count = (1 + byte_no) * BitsPerByte;
twisti@3050 770 srl( bytecode, shift_count, bytecode);
twisti@3050 771 and3(bytecode, 0xFF, bytecode);
twisti@3050 772 }
twisti@3050 773
twisti@3050 774
twisti@1858 775 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
jrose@1920 776 int bcp_offset, size_t index_size) {
duke@435 777 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
duke@435 778 assert_different_registers(cache, tmp);
duke@435 779 assert_not_delayed();
jrose@1920 780 if (index_size == sizeof(u2)) {
jrose@1920 781 get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
jrose@1920 782 } else {
jrose@1920 783 ShouldNotReachHere(); // other sizes not supported here
jrose@1920 784 }
duke@435 785 // convert from field index to ConstantPoolCacheEntry index
duke@435 786 // and from word index to byte offset
duke@435 787 sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
duke@435 788 // skip past the header
duke@435 789 add(tmp, in_bytes(constantPoolCacheOopDesc::base_offset()), tmp);
duke@435 790 // construct pointer to cache entry
duke@435 791 add(LcpoolCache, tmp, cache);
duke@435 792 }
duke@435 793
duke@435 794
duke@435 795 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
coleenp@548 796 // a subtype of super_klass. Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
duke@435 797 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
duke@435 798 Register Rsuper_klass,
duke@435 799 Register Rtmp1,
duke@435 800 Register Rtmp2,
duke@435 801 Register Rtmp3,
duke@435 802 Label &ok_is_subtype ) {
jrose@1079 803 Label not_subtype;
duke@435 804
duke@435 805 // Profile the not-null value's klass.
duke@435 806 profile_typecheck(Rsub_klass, Rtmp1);
duke@435 807
jrose@1079 808 check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass,
jrose@1079 809 Rtmp1, Rtmp2,
jrose@1079 810 &ok_is_subtype, &not_subtype, NULL);
jrose@1079 811
jrose@1079 812 check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass,
jrose@1079 813 Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg,
jrose@1079 814 &ok_is_subtype, NULL);
duke@435 815
duke@435 816 bind(not_subtype);
duke@435 817 profile_typecheck_failed(Rtmp1);
duke@435 818 }
duke@435 819
duke@435 820 // Separate these two to allow for delay slot in middle
duke@435 821 // These are used to do a test and full jump to exception-throwing code.
duke@435 822
duke@435 823 // %%%%% Could possibly reoptimize this by testing to see if could use
duke@435 824 // a single conditional branch (i.e. if span is small enough.
duke@435 825 // If you go that route, than get rid of the split and give up
duke@435 826 // on the delay-slot hack.
duke@435 827
duke@435 828 void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
duke@435 829 Label& ok ) {
duke@435 830 assert_not_delayed();
duke@435 831 br(ok_condition, true, pt, ok);
duke@435 832 // DELAY SLOT
duke@435 833 }
duke@435 834
duke@435 835 void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
duke@435 836 Label& ok ) {
duke@435 837 assert_not_delayed();
duke@435 838 bp( ok_condition, true, Assembler::xcc, pt, ok);
duke@435 839 // DELAY SLOT
duke@435 840 }
duke@435 841
duke@435 842 void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
duke@435 843 Label& ok ) {
duke@435 844 assert_not_delayed();
duke@435 845 brx(ok_condition, true, pt, ok);
duke@435 846 // DELAY SLOT
duke@435 847 }
duke@435 848
duke@435 849 void InterpreterMacroAssembler::throw_if_not_2( address throw_entry_point,
duke@435 850 Register Rscratch,
duke@435 851 Label& ok ) {
duke@435 852 assert(throw_entry_point != NULL, "entry point must be generated by now");
twisti@1162 853 AddressLiteral dest(throw_entry_point);
twisti@1162 854 jump_to(dest, Rscratch);
duke@435 855 delayed()->nop();
duke@435 856 bind(ok);
duke@435 857 }
duke@435 858
duke@435 859
duke@435 860 // And if you cannot use the delay slot, here is a shorthand:
duke@435 861
duke@435 862 void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
duke@435 863 address throw_entry_point,
duke@435 864 Register Rscratch ) {
duke@435 865 Label ok;
duke@435 866 if (ok_condition != never) {
duke@435 867 throw_if_not_1_icc( ok_condition, ok);
duke@435 868 delayed()->nop();
duke@435 869 }
duke@435 870 throw_if_not_2( throw_entry_point, Rscratch, ok);
duke@435 871 }
duke@435 872 void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
duke@435 873 address throw_entry_point,
duke@435 874 Register Rscratch ) {
duke@435 875 Label ok;
duke@435 876 if (ok_condition != never) {
duke@435 877 throw_if_not_1_xcc( ok_condition, ok);
duke@435 878 delayed()->nop();
duke@435 879 }
duke@435 880 throw_if_not_2( throw_entry_point, Rscratch, ok);
duke@435 881 }
duke@435 882 void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
duke@435 883 address throw_entry_point,
duke@435 884 Register Rscratch ) {
duke@435 885 Label ok;
duke@435 886 if (ok_condition != never) {
duke@435 887 throw_if_not_1_x( ok_condition, ok);
duke@435 888 delayed()->nop();
duke@435 889 }
duke@435 890 throw_if_not_2( throw_entry_point, Rscratch, ok);
duke@435 891 }
duke@435 892
duke@435 893 // Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
duke@435 894 // Note: res is still shy of address by array offset into object.
duke@435 895
duke@435 896 void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
duke@435 897 assert_not_delayed();
duke@435 898
duke@435 899 verify_oop(array);
duke@435 900 #ifdef _LP64
duke@435 901 // sign extend since tos (index) can be a 32bit value
duke@435 902 sra(index, G0, index);
duke@435 903 #endif // _LP64
duke@435 904
duke@435 905 // check array
duke@435 906 Label ptr_ok;
duke@435 907 tst(array);
duke@435 908 throw_if_not_1_x( notZero, ptr_ok );
duke@435 909 delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
duke@435 910 throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
duke@435 911
duke@435 912 Label index_ok;
duke@435 913 cmp(index, tmp);
duke@435 914 throw_if_not_1_icc( lessUnsigned, index_ok );
duke@435 915 if (index_shift > 0) delayed()->sll(index, index_shift, index);
duke@435 916 else delayed()->add(array, index, res); // addr - const offset in index
duke@435 917 // convention: move aberrant index into G3_scratch for exception message
duke@435 918 mov(index, G3_scratch);
duke@435 919 throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
duke@435 920
duke@435 921 // add offset if didn't do it in delay slot
duke@435 922 if (index_shift > 0) add(array, index, res); // addr - const offset in index
duke@435 923 }
duke@435 924
duke@435 925
duke@435 926 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
duke@435 927 assert_not_delayed();
duke@435 928
duke@435 929 // pop array
duke@435 930 pop_ptr(array);
duke@435 931
duke@435 932 // check array
duke@435 933 index_check_without_pop(array, index, index_shift, tmp, res);
duke@435 934 }
duke@435 935
duke@435 936
jiangli@3826 937 void InterpreterMacroAssembler::get_const(Register Rdst) {
jiangli@3826 938 ld_ptr(Lmethod, in_bytes(methodOopDesc::const_offset()), Rdst);
jiangli@3826 939 }
jiangli@3826 940
jiangli@3826 941
duke@435 942 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
jiangli@3826 943 get_const(Rdst);
jiangli@3826 944 ld_ptr(Rdst, in_bytes(constMethodOopDesc::constants_offset()), Rdst);
duke@435 945 }
duke@435 946
duke@435 947
duke@435 948 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
duke@435 949 get_constant_pool(Rdst);
duke@435 950 ld_ptr(Rdst, constantPoolOopDesc::cache_offset_in_bytes(), Rdst);
duke@435 951 }
duke@435 952
duke@435 953
duke@435 954 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
duke@435 955 get_constant_pool(Rcpool);
duke@435 956 ld_ptr(Rcpool, constantPoolOopDesc::tags_offset_in_bytes(), Rtags);
duke@435 957 }
duke@435 958
duke@435 959
duke@435 960 // unlock if synchronized method
duke@435 961 //
duke@435 962 // Unlock the receiver if this is a synchronized method.
duke@435 963 // Unlock any Java monitors from syncronized blocks.
duke@435 964 //
duke@435 965 // If there are locked Java monitors
duke@435 966 // If throw_monitor_exception
duke@435 967 // throws IllegalMonitorStateException
duke@435 968 // Else if install_monitor_exception
duke@435 969 // installs IllegalMonitorStateException
duke@435 970 // Else
duke@435 971 // no error processing
duke@435 972 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
duke@435 973 bool throw_monitor_exception,
duke@435 974 bool install_monitor_exception) {
duke@435 975 Label unlocked, unlock, no_unlock;
duke@435 976
duke@435 977 // get the value of _do_not_unlock_if_synchronized into G1_scratch
twisti@1162 978 const Address do_not_unlock_if_synchronized(G2_thread,
twisti@1162 979 JavaThread::do_not_unlock_if_synchronized_offset());
duke@435 980 ldbool(do_not_unlock_if_synchronized, G1_scratch);
duke@435 981 stbool(G0, do_not_unlock_if_synchronized); // reset the flag
duke@435 982
duke@435 983 // check if synchronized method
twisti@1162 984 const Address access_flags(Lmethod, methodOopDesc::access_flags_offset());
duke@435 985 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 986 push(state); // save tos
twisti@1162 987 ld(access_flags, G3_scratch); // Load access flags.
duke@435 988 btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
twisti@1162 989 br(zero, false, pt, unlocked);
duke@435 990 delayed()->nop();
duke@435 991
duke@435 992 // Don't unlock anything if the _do_not_unlock_if_synchronized flag
duke@435 993 // is set.
kvn@3037 994 cmp_zero_and_br(Assembler::notZero, G1_scratch, no_unlock);
duke@435 995 delayed()->nop();
duke@435 996
duke@435 997 // BasicObjectLock will be first in list, since this is a synchronized method. However, need
duke@435 998 // to check that the object has not been unlocked by an explicit monitorexit bytecode.
duke@435 999
duke@435 1000 //Intel: if (throw_monitor_exception) ... else ...
duke@435 1001 // Entry already unlocked, need to throw exception
duke@435 1002 //...
duke@435 1003
duke@435 1004 // pass top-most monitor elem
duke@435 1005 add( top_most_monitor(), O1 );
duke@435 1006
duke@435 1007 ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
kvn@3037 1008 br_notnull_short(G3_scratch, pt, unlock);
duke@435 1009
duke@435 1010 if (throw_monitor_exception) {
duke@435 1011 // Entry already unlocked need to throw an exception
duke@435 1012 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
duke@435 1013 should_not_reach_here();
duke@435 1014 } else {
duke@435 1015 // Monitor already unlocked during a stack unroll.
duke@435 1016 // If requested, install an illegal_monitor_state_exception.
duke@435 1017 // Continue with stack unrolling.
duke@435 1018 if (install_monitor_exception) {
duke@435 1019 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
duke@435 1020 }
kvn@3037 1021 ba_short(unlocked);
duke@435 1022 }
duke@435 1023
duke@435 1024 bind(unlock);
duke@435 1025
duke@435 1026 unlock_object(O1);
duke@435 1027
duke@435 1028 bind(unlocked);
duke@435 1029
duke@435 1030 // I0, I1: Might contain return value
duke@435 1031
duke@435 1032 // Check that all monitors are unlocked
duke@435 1033 { Label loop, exception, entry, restart;
duke@435 1034
duke@435 1035 Register Rmptr = O0;
duke@435 1036 Register Rtemp = O1;
duke@435 1037 Register Rlimit = Lmonitors;
duke@435 1038 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 1039 assert( (delta & LongAlignmentMask) == 0,
duke@435 1040 "sizeof BasicObjectLock must be even number of doublewords");
duke@435 1041
duke@435 1042 #ifdef ASSERT
duke@435 1043 add(top_most_monitor(), Rmptr, delta);
duke@435 1044 { Label L;
duke@435 1045 // ensure that Rmptr starts out above (or at) Rlimit
kvn@3037 1046 cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
duke@435 1047 stop("monitor stack has negative size");
duke@435 1048 bind(L);
duke@435 1049 }
duke@435 1050 #endif
duke@435 1051 bind(restart);
kvn@3037 1052 ba(entry);
duke@435 1053 delayed()->
duke@435 1054 add(top_most_monitor(), Rmptr, delta); // points to current entry, starting with bottom-most entry
duke@435 1055
duke@435 1056 // Entry is still locked, need to throw exception
duke@435 1057 bind(exception);
duke@435 1058 if (throw_monitor_exception) {
duke@435 1059 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
duke@435 1060 should_not_reach_here();
duke@435 1061 } else {
duke@435 1062 // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
duke@435 1063 // Unlock does not block, so don't have to worry about the frame
duke@435 1064 unlock_object(Rmptr);
duke@435 1065 if (install_monitor_exception) {
duke@435 1066 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
duke@435 1067 }
kvn@3037 1068 ba_short(restart);
duke@435 1069 }
duke@435 1070
duke@435 1071 bind(loop);
duke@435 1072 cmp(Rtemp, G0); // check if current entry is used
duke@435 1073 brx(Assembler::notEqual, false, pn, exception);
duke@435 1074 delayed()->
duke@435 1075 dec(Rmptr, delta); // otherwise advance to next entry
duke@435 1076 #ifdef ASSERT
duke@435 1077 { Label L;
duke@435 1078 // ensure that Rmptr has not somehow stepped below Rlimit
kvn@3037 1079 cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
duke@435 1080 stop("ran off the end of the monitor stack");
duke@435 1081 bind(L);
duke@435 1082 }
duke@435 1083 #endif
duke@435 1084 bind(entry);
duke@435 1085 cmp(Rmptr, Rlimit); // check if bottom reached
duke@435 1086 brx(Assembler::notEqual, true, pn, loop); // if not at bottom then check this entry
duke@435 1087 delayed()->
duke@435 1088 ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
duke@435 1089 }
duke@435 1090
duke@435 1091 bind(no_unlock);
duke@435 1092 pop(state);
duke@435 1093 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 1094 }
duke@435 1095
duke@435 1096
duke@435 1097 // remove activation
duke@435 1098 //
duke@435 1099 // Unlock the receiver if this is a synchronized method.
duke@435 1100 // Unlock any Java monitors from syncronized blocks.
duke@435 1101 // Remove the activation from the stack.
duke@435 1102 //
duke@435 1103 // If there are locked Java monitors
duke@435 1104 // If throw_monitor_exception
duke@435 1105 // throws IllegalMonitorStateException
duke@435 1106 // Else if install_monitor_exception
duke@435 1107 // installs IllegalMonitorStateException
duke@435 1108 // Else
duke@435 1109 // no error processing
duke@435 1110 void InterpreterMacroAssembler::remove_activation(TosState state,
duke@435 1111 bool throw_monitor_exception,
duke@435 1112 bool install_monitor_exception) {
duke@435 1113
duke@435 1114 unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
duke@435 1115
duke@435 1116 // save result (push state before jvmti call and pop it afterwards) and notify jvmti
duke@435 1117 notify_method_exit(false, state, NotifyJVMTI);
duke@435 1118
duke@435 1119 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 1120 verify_oop(Lmethod);
duke@435 1121 verify_thread();
duke@435 1122
duke@435 1123 // return tos
duke@435 1124 assert(Otos_l1 == Otos_i, "adjust code below");
duke@435 1125 switch (state) {
duke@435 1126 #ifdef _LP64
duke@435 1127 case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
duke@435 1128 #else
duke@435 1129 case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through // O1 -> I1
duke@435 1130 #endif
duke@435 1131 case btos: // fall through
duke@435 1132 case ctos:
duke@435 1133 case stos: // fall through
duke@435 1134 case atos: // fall through
duke@435 1135 case itos: mov(Otos_l1, Otos_l1->after_save()); break; // O0 -> I0
duke@435 1136 case ftos: // fall through
duke@435 1137 case dtos: // fall through
duke@435 1138 case vtos: /* nothing to do */ break;
duke@435 1139 default : ShouldNotReachHere();
duke@435 1140 }
duke@435 1141
duke@435 1142 #if defined(COMPILER2) && !defined(_LP64)
duke@435 1143 if (state == ltos) {
duke@435 1144 // C2 expects long results in G1 we can't tell if we're returning to interpreted
duke@435 1145 // or compiled so just be safe use G1 and O0/O1
duke@435 1146
duke@435 1147 // Shift bits into high (msb) of G1
duke@435 1148 sllx(Otos_l1->after_save(), 32, G1);
duke@435 1149 // Zero extend low bits
duke@435 1150 srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
duke@435 1151 or3 (Otos_l2->after_save(), G1, G1);
duke@435 1152 }
duke@435 1153 #endif /* COMPILER2 */
duke@435 1154
duke@435 1155 }
duke@435 1156 #endif /* CC_INTERP */
duke@435 1157
duke@435 1158
duke@435 1159 // Lock object
duke@435 1160 //
duke@435 1161 // Argument - lock_reg points to the BasicObjectLock to be used for locking,
duke@435 1162 // it must be initialized with the object to lock
duke@435 1163 void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
duke@435 1164 if (UseHeavyMonitors) {
duke@435 1165 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
duke@435 1166 }
duke@435 1167 else {
duke@435 1168 Register obj_reg = Object;
duke@435 1169 Register mark_reg = G4_scratch;
duke@435 1170 Register temp_reg = G1_scratch;
twisti@1162 1171 Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes());
twisti@1162 1172 Address mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
duke@435 1173 Label done;
duke@435 1174
duke@435 1175 Label slow_case;
duke@435 1176
duke@435 1177 assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
duke@435 1178
duke@435 1179 // load markOop from object into mark_reg
duke@435 1180 ld_ptr(mark_addr, mark_reg);
duke@435 1181
duke@435 1182 if (UseBiasedLocking) {
duke@435 1183 biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
duke@435 1184 }
duke@435 1185
duke@435 1186 // get the address of basicLock on stack that will be stored in the object
duke@435 1187 // we need a temporary register here as we do not want to clobber lock_reg
duke@435 1188 // (cas clobbers the destination register)
duke@435 1189 mov(lock_reg, temp_reg);
duke@435 1190 // set mark reg to be (markOop of object | UNLOCK_VALUE)
duke@435 1191 or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
duke@435 1192 // initialize the box (Must happen before we update the object mark!)
duke@435 1193 st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
duke@435 1194 // compare and exchange object_addr, markOop | 1, stack address of basicLock
duke@435 1195 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 1196 casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
duke@435 1197 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 1198
duke@435 1199 // if the compare and exchange succeeded we are done (we saw an unlocked object)
kvn@3037 1200 cmp_and_brx_short(mark_reg, temp_reg, Assembler::equal, Assembler::pt, done);
duke@435 1201
duke@435 1202 // We did not see an unlocked object so try the fast recursive case
duke@435 1203
duke@435 1204 // Check if owner is self by comparing the value in the markOop of object
duke@435 1205 // with the stack pointer
duke@435 1206 sub(temp_reg, SP, temp_reg);
duke@435 1207 #ifdef _LP64
duke@435 1208 sub(temp_reg, STACK_BIAS, temp_reg);
duke@435 1209 #endif
duke@435 1210 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
duke@435 1211
duke@435 1212 // Composite "andcc" test:
duke@435 1213 // (a) %sp -vs- markword proximity check, and,
duke@435 1214 // (b) verify mark word LSBs == 0 (Stack-locked).
duke@435 1215 //
duke@435 1216 // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
duke@435 1217 // Note that the page size used for %sp proximity testing is arbitrary and is
duke@435 1218 // unrelated to the actual MMU page size. We use a 'logical' page size of
duke@435 1219 // 4096 bytes. F..FFF003 is designed to fit conveniently in the SIMM13 immediate
duke@435 1220 // field of the andcc instruction.
duke@435 1221 andcc (temp_reg, 0xFFFFF003, G0) ;
duke@435 1222
duke@435 1223 // if condition is true we are done and hence we can store 0 in the displaced
duke@435 1224 // header indicating it is a recursive lock and be done
duke@435 1225 brx(Assembler::zero, true, Assembler::pt, done);
duke@435 1226 delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
duke@435 1227
duke@435 1228 // none of the above fast optimizations worked so we have to get into the
duke@435 1229 // slow case of monitor enter
duke@435 1230 bind(slow_case);
duke@435 1231 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
duke@435 1232
duke@435 1233 bind(done);
duke@435 1234 }
duke@435 1235 }
duke@435 1236
duke@435 1237 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
duke@435 1238 //
duke@435 1239 // Argument - lock_reg points to the BasicObjectLock for lock
duke@435 1240 // Throw IllegalMonitorException if object is not locked by current thread
duke@435 1241 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
duke@435 1242 if (UseHeavyMonitors) {
duke@435 1243 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
duke@435 1244 } else {
duke@435 1245 Register obj_reg = G3_scratch;
duke@435 1246 Register mark_reg = G4_scratch;
duke@435 1247 Register displaced_header_reg = G1_scratch;
twisti@1162 1248 Address lockobj_addr(lock_reg, BasicObjectLock::obj_offset_in_bytes());
twisti@1162 1249 Address mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
duke@435 1250 Label done;
duke@435 1251
duke@435 1252 if (UseBiasedLocking) {
duke@435 1253 // load the object out of the BasicObjectLock
duke@435 1254 ld_ptr(lockobj_addr, obj_reg);
duke@435 1255 biased_locking_exit(mark_addr, mark_reg, done, true);
duke@435 1256 st_ptr(G0, lockobj_addr); // free entry
duke@435 1257 }
duke@435 1258
duke@435 1259 // Test first if we are in the fast recursive case
twisti@1162 1260 Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes());
twisti@1162 1261 ld_ptr(lock_addr, displaced_header_reg);
duke@435 1262 br_null(displaced_header_reg, true, Assembler::pn, done);
duke@435 1263 delayed()->st_ptr(G0, lockobj_addr); // free entry
duke@435 1264
duke@435 1265 // See if it is still a light weight lock, if so we just unlock
duke@435 1266 // the object and we are done
duke@435 1267
duke@435 1268 if (!UseBiasedLocking) {
duke@435 1269 // load the object out of the BasicObjectLock
duke@435 1270 ld_ptr(lockobj_addr, obj_reg);
duke@435 1271 }
duke@435 1272
duke@435 1273 // we have the displaced header in displaced_header_reg
duke@435 1274 // we expect to see the stack address of the basicLock in case the
duke@435 1275 // lock is still a light weight lock (lock_reg)
duke@435 1276 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 1277 casx_under_lock(mark_addr.base(), lock_reg, displaced_header_reg,
duke@435 1278 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 1279 cmp(lock_reg, displaced_header_reg);
duke@435 1280 brx(Assembler::equal, true, Assembler::pn, done);
duke@435 1281 delayed()->st_ptr(G0, lockobj_addr); // free entry
duke@435 1282
duke@435 1283 // The lock has been converted into a heavy lock and hence
duke@435 1284 // we need to get into the slow case
duke@435 1285
duke@435 1286 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
duke@435 1287
duke@435 1288 bind(done);
duke@435 1289 }
duke@435 1290 }
duke@435 1291
duke@435 1292 #ifndef CC_INTERP
duke@435 1293
duke@435 1294 // Get the method data pointer from the methodOop and set the
duke@435 1295 // specified register to its value.
duke@435 1296
iveresov@2438 1297 void InterpreterMacroAssembler::set_method_data_pointer() {
duke@435 1298 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1299 Label get_continue;
duke@435 1300
duke@435 1301 ld_ptr(Lmethod, in_bytes(methodOopDesc::method_data_offset()), ImethodDataPtr);
duke@435 1302 test_method_data_pointer(get_continue);
duke@435 1303 add(ImethodDataPtr, in_bytes(methodDataOopDesc::data_offset()), ImethodDataPtr);
duke@435 1304 bind(get_continue);
duke@435 1305 }
duke@435 1306
duke@435 1307 // Set the method data pointer for the current bcp.
duke@435 1308
duke@435 1309 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
duke@435 1310 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1311 Label zero_continue;
duke@435 1312
duke@435 1313 // Test MDO to avoid the call if it is NULL.
iveresov@2438 1314 ld_ptr(Lmethod, in_bytes(methodOopDesc::method_data_offset()), ImethodDataPtr);
duke@435 1315 test_method_data_pointer(zero_continue);
duke@435 1316 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
iveresov@2438 1317 add(ImethodDataPtr, in_bytes(methodDataOopDesc::data_offset()), ImethodDataPtr);
iveresov@2438 1318 add(ImethodDataPtr, O0, ImethodDataPtr);
duke@435 1319 bind(zero_continue);
duke@435 1320 }
duke@435 1321
duke@435 1322 // Test ImethodDataPtr. If it is null, continue at the specified label
duke@435 1323
duke@435 1324 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
duke@435 1325 assert(ProfileInterpreter, "must be profiling interpreter");
kvn@3037 1326 br_null_short(ImethodDataPtr, Assembler::pn, zero_continue);
duke@435 1327 }
duke@435 1328
duke@435 1329 void InterpreterMacroAssembler::verify_method_data_pointer() {
duke@435 1330 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1331 #ifdef ASSERT
duke@435 1332 Label verify_continue;
duke@435 1333 test_method_data_pointer(verify_continue);
duke@435 1334
duke@435 1335 // If the mdp is valid, it will point to a DataLayout header which is
duke@435 1336 // consistent with the bcp. The converse is highly probable also.
duke@435 1337 lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
twisti@1162 1338 ld_ptr(Lmethod, methodOopDesc::const_offset(), O5);
duke@435 1339 add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), G3_scratch);
duke@435 1340 add(G3_scratch, O5, G3_scratch);
duke@435 1341 cmp(Lbcp, G3_scratch);
duke@435 1342 brx(Assembler::equal, false, Assembler::pt, verify_continue);
duke@435 1343
duke@435 1344 Register temp_reg = O5;
duke@435 1345 delayed()->mov(ImethodDataPtr, temp_reg);
duke@435 1346 // %%% should use call_VM_leaf here?
duke@435 1347 //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
duke@435 1348 save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
twisti@1162 1349 Address d_save(FP, -sizeof(jdouble) + STACK_BIAS);
duke@435 1350 stf(FloatRegisterImpl::D, Ftos_d, d_save);
duke@435 1351 mov(temp_reg->after_save(), O2);
duke@435 1352 save_thread(L7_thread_cache);
duke@435 1353 call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
duke@435 1354 delayed()->nop();
duke@435 1355 restore_thread(L7_thread_cache);
duke@435 1356 ldf(FloatRegisterImpl::D, d_save, Ftos_d);
duke@435 1357 restore();
duke@435 1358 bind(verify_continue);
duke@435 1359 #endif // ASSERT
duke@435 1360 }
duke@435 1361
duke@435 1362 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
duke@435 1363 Register Rtmp,
duke@435 1364 Label &profile_continue) {
duke@435 1365 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1366 // Control will flow to "profile_continue" if the counter is less than the
duke@435 1367 // limit or if we call profile_method()
duke@435 1368
duke@435 1369 Label done;
duke@435 1370
duke@435 1371 // if no method data exists, and the counter is high enough, make one
kvn@3037 1372 br_notnull_short(ImethodDataPtr, Assembler::pn, done);
duke@435 1373
duke@435 1374 // Test to see if we should create a method data oop
twisti@1162 1375 AddressLiteral profile_limit((address) &InvocationCounter::InterpreterProfileLimit);
twisti@1162 1376 sethi(profile_limit, Rtmp);
twisti@1162 1377 ld(Rtmp, profile_limit.low10(), Rtmp);
kvn@3037 1378 cmp_and_br_short(invocation_count, Rtmp, Assembler::lessUnsigned, Assembler::pn, profile_continue);
duke@435 1379
duke@435 1380 // Build it now.
iveresov@2438 1381 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
iveresov@2438 1382 set_method_data_pointer_for_bcp();
kvn@3037 1383 ba_short(profile_continue);
duke@435 1384 bind(done);
duke@435 1385 }
duke@435 1386
duke@435 1387 // Store a value at some constant offset from the method data pointer.
duke@435 1388
duke@435 1389 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
duke@435 1390 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1391 st_ptr(value, ImethodDataPtr, constant);
duke@435 1392 }
duke@435 1393
duke@435 1394 void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
duke@435 1395 Register bumped_count,
duke@435 1396 bool decrement) {
duke@435 1397 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1398
duke@435 1399 // Load the counter.
duke@435 1400 ld_ptr(counter, bumped_count);
duke@435 1401
duke@435 1402 if (decrement) {
duke@435 1403 // Decrement the register. Set condition codes.
duke@435 1404 subcc(bumped_count, DataLayout::counter_increment, bumped_count);
duke@435 1405
duke@435 1406 // If the decrement causes the counter to overflow, stay negative
duke@435 1407 Label L;
duke@435 1408 brx(Assembler::negative, true, Assembler::pn, L);
duke@435 1409
duke@435 1410 // Store the decremented counter, if it is still negative.
duke@435 1411 delayed()->st_ptr(bumped_count, counter);
duke@435 1412 bind(L);
duke@435 1413 } else {
duke@435 1414 // Increment the register. Set carry flag.
duke@435 1415 addcc(bumped_count, DataLayout::counter_increment, bumped_count);
duke@435 1416
duke@435 1417 // If the increment causes the counter to overflow, pull back by 1.
duke@435 1418 assert(DataLayout::counter_increment == 1, "subc works");
duke@435 1419 subc(bumped_count, G0, bumped_count);
duke@435 1420
duke@435 1421 // Store the incremented counter.
duke@435 1422 st_ptr(bumped_count, counter);
duke@435 1423 }
duke@435 1424 }
duke@435 1425
duke@435 1426 // Increment the value at some constant offset from the method data pointer.
duke@435 1427
duke@435 1428 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
duke@435 1429 Register bumped_count,
duke@435 1430 bool decrement) {
duke@435 1431 // Locate the counter at a fixed offset from the mdp:
twisti@1162 1432 Address counter(ImethodDataPtr, constant);
duke@435 1433 increment_mdp_data_at(counter, bumped_count, decrement);
duke@435 1434 }
duke@435 1435
duke@435 1436 // Increment the value at some non-fixed (reg + constant) offset from
duke@435 1437 // the method data pointer.
duke@435 1438
duke@435 1439 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
duke@435 1440 int constant,
duke@435 1441 Register bumped_count,
duke@435 1442 Register scratch2,
duke@435 1443 bool decrement) {
duke@435 1444 // Add the constant to reg to get the offset.
duke@435 1445 add(ImethodDataPtr, reg, scratch2);
twisti@1162 1446 Address counter(scratch2, constant);
duke@435 1447 increment_mdp_data_at(counter, bumped_count, decrement);
duke@435 1448 }
duke@435 1449
duke@435 1450 // Set a flag value at the current method data pointer position.
duke@435 1451 // Updates a single byte of the header, to avoid races with other header bits.
duke@435 1452
duke@435 1453 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
duke@435 1454 Register scratch) {
duke@435 1455 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1456 // Load the data header
duke@435 1457 ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
duke@435 1458
duke@435 1459 // Set the flag
duke@435 1460 or3(scratch, flag_constant, scratch);
duke@435 1461
duke@435 1462 // Store the modified header.
duke@435 1463 stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
duke@435 1464 }
duke@435 1465
duke@435 1466 // Test the location at some offset from the method data pointer.
duke@435 1467 // If it is not equal to value, branch to the not_equal_continue Label.
duke@435 1468 // Set condition codes to match the nullness of the loaded value.
duke@435 1469
duke@435 1470 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
duke@435 1471 Register value,
duke@435 1472 Label& not_equal_continue,
duke@435 1473 Register scratch) {
duke@435 1474 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1475 ld_ptr(ImethodDataPtr, offset, scratch);
duke@435 1476 cmp(value, scratch);
duke@435 1477 brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
duke@435 1478 delayed()->tst(scratch);
duke@435 1479 }
duke@435 1480
duke@435 1481 // Update the method data pointer by the displacement located at some fixed
duke@435 1482 // offset from the method data pointer.
duke@435 1483
duke@435 1484 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
duke@435 1485 Register scratch) {
duke@435 1486 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1487 ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
duke@435 1488 add(ImethodDataPtr, scratch, ImethodDataPtr);
duke@435 1489 }
duke@435 1490
duke@435 1491 // Update the method data pointer by the displacement located at the
duke@435 1492 // offset (reg + offset_of_disp).
duke@435 1493
duke@435 1494 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
duke@435 1495 int offset_of_disp,
duke@435 1496 Register scratch) {
duke@435 1497 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1498 add(reg, offset_of_disp, scratch);
duke@435 1499 ld_ptr(ImethodDataPtr, scratch, scratch);
duke@435 1500 add(ImethodDataPtr, scratch, ImethodDataPtr);
duke@435 1501 }
duke@435 1502
duke@435 1503 // Update the method data pointer by a simple constant displacement.
duke@435 1504
duke@435 1505 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
duke@435 1506 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1507 add(ImethodDataPtr, constant, ImethodDataPtr);
duke@435 1508 }
duke@435 1509
duke@435 1510 // Update the method data pointer for a _ret bytecode whose target
duke@435 1511 // was not among our cached targets.
duke@435 1512
duke@435 1513 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
duke@435 1514 Register return_bci) {
duke@435 1515 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1516 push(state);
duke@435 1517 st_ptr(return_bci, l_tmp); // protect return_bci, in case it is volatile
duke@435 1518 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
duke@435 1519 ld_ptr(l_tmp, return_bci);
duke@435 1520 pop(state);
duke@435 1521 }
duke@435 1522
duke@435 1523 // Count a taken branch in the bytecodes.
duke@435 1524
duke@435 1525 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
duke@435 1526 if (ProfileInterpreter) {
duke@435 1527 Label profile_continue;
duke@435 1528
duke@435 1529 // If no method data exists, go to profile_continue.
duke@435 1530 test_method_data_pointer(profile_continue);
duke@435 1531
duke@435 1532 // We are taking a branch. Increment the taken count.
duke@435 1533 increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
duke@435 1534
duke@435 1535 // The method data pointer needs to be updated to reflect the new target.
duke@435 1536 update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
duke@435 1537 bind (profile_continue);
duke@435 1538 }
duke@435 1539 }
duke@435 1540
duke@435 1541
duke@435 1542 // Count a not-taken branch in the bytecodes.
duke@435 1543
duke@435 1544 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
duke@435 1545 if (ProfileInterpreter) {
duke@435 1546 Label profile_continue;
duke@435 1547
duke@435 1548 // If no method data exists, go to profile_continue.
duke@435 1549 test_method_data_pointer(profile_continue);
duke@435 1550
duke@435 1551 // We are taking a branch. Increment the not taken count.
duke@435 1552 increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
duke@435 1553
duke@435 1554 // The method data pointer needs to be updated to correspond to the
duke@435 1555 // next bytecode.
duke@435 1556 update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
duke@435 1557 bind (profile_continue);
duke@435 1558 }
duke@435 1559 }
duke@435 1560
duke@435 1561
duke@435 1562 // Count a non-virtual call in the bytecodes.
duke@435 1563
duke@435 1564 void InterpreterMacroAssembler::profile_call(Register scratch) {
duke@435 1565 if (ProfileInterpreter) {
duke@435 1566 Label profile_continue;
duke@435 1567
duke@435 1568 // If no method data exists, go to profile_continue.
duke@435 1569 test_method_data_pointer(profile_continue);
duke@435 1570
duke@435 1571 // We are making a call. Increment the count.
duke@435 1572 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
duke@435 1573
duke@435 1574 // The method data pointer needs to be updated to reflect the new target.
duke@435 1575 update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
duke@435 1576 bind (profile_continue);
duke@435 1577 }
duke@435 1578 }
duke@435 1579
duke@435 1580
duke@435 1581 // Count a final call in the bytecodes.
duke@435 1582
duke@435 1583 void InterpreterMacroAssembler::profile_final_call(Register scratch) {
duke@435 1584 if (ProfileInterpreter) {
duke@435 1585 Label profile_continue;
duke@435 1586
duke@435 1587 // If no method data exists, go to profile_continue.
duke@435 1588 test_method_data_pointer(profile_continue);
duke@435 1589
duke@435 1590 // We are making a call. Increment the count.
duke@435 1591 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
duke@435 1592
duke@435 1593 // The method data pointer needs to be updated to reflect the new target.
duke@435 1594 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
duke@435 1595 bind (profile_continue);
duke@435 1596 }
duke@435 1597 }
duke@435 1598
duke@435 1599
duke@435 1600 // Count a virtual call in the bytecodes.
duke@435 1601
duke@435 1602 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
twisti@1858 1603 Register scratch,
twisti@1858 1604 bool receiver_can_be_null) {
duke@435 1605 if (ProfileInterpreter) {
duke@435 1606 Label profile_continue;
duke@435 1607
duke@435 1608 // If no method data exists, go to profile_continue.
duke@435 1609 test_method_data_pointer(profile_continue);
duke@435 1610
twisti@1858 1611
twisti@1858 1612 Label skip_receiver_profile;
twisti@1858 1613 if (receiver_can_be_null) {
twisti@1858 1614 Label not_null;
kvn@3037 1615 br_notnull_short(receiver, Assembler::pt, not_null);
twisti@1858 1616 // We are making a call. Increment the count for null receiver.
twisti@1858 1617 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
kvn@3037 1618 ba_short(skip_receiver_profile);
twisti@1858 1619 bind(not_null);
twisti@1858 1620 }
twisti@1858 1621
duke@435 1622 // Record the receiver type.
kvn@1641 1623 record_klass_in_profile(receiver, scratch, true);
twisti@1858 1624 bind(skip_receiver_profile);
duke@435 1625
duke@435 1626 // The method data pointer needs to be updated to reflect the new target.
duke@435 1627 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
duke@435 1628 bind (profile_continue);
duke@435 1629 }
duke@435 1630 }
duke@435 1631
duke@435 1632 void InterpreterMacroAssembler::record_klass_in_profile_helper(
duke@435 1633 Register receiver, Register scratch,
kvn@1641 1634 int start_row, Label& done, bool is_virtual_call) {
kvn@1641 1635 if (TypeProfileWidth == 0) {
kvn@1641 1636 if (is_virtual_call) {
kvn@1641 1637 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
kvn@1641 1638 }
poonam@1402 1639 return;
kvn@1641 1640 }
poonam@1402 1641
duke@435 1642 int last_row = VirtualCallData::row_limit() - 1;
duke@435 1643 assert(start_row <= last_row, "must be work left to do");
duke@435 1644 // Test this row for both the receiver and for null.
duke@435 1645 // Take any of three different outcomes:
duke@435 1646 // 1. found receiver => increment count and goto done
duke@435 1647 // 2. found null => keep looking for case 1, maybe allocate this cell
duke@435 1648 // 3. found something else => keep looking for cases 1 and 2
duke@435 1649 // Case 3 is handled by a recursive call.
duke@435 1650 for (int row = start_row; row <= last_row; row++) {
duke@435 1651 Label next_test;
duke@435 1652 bool test_for_null_also = (row == start_row);
duke@435 1653
duke@435 1654 // See if the receiver is receiver[n].
duke@435 1655 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
duke@435 1656 test_mdp_data_at(recvr_offset, receiver, next_test, scratch);
kvn@1641 1657 // delayed()->tst(scratch);
duke@435 1658
duke@435 1659 // The receiver is receiver[n]. Increment count[n].
duke@435 1660 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
duke@435 1661 increment_mdp_data_at(count_offset, scratch);
kvn@3037 1662 ba_short(done);
duke@435 1663 bind(next_test);
duke@435 1664
duke@435 1665 if (test_for_null_also) {
kvn@1641 1666 Label found_null;
duke@435 1667 // Failed the equality check on receiver[n]... Test for null.
duke@435 1668 if (start_row == last_row) {
duke@435 1669 // The only thing left to do is handle the null case.
kvn@1641 1670 if (is_virtual_call) {
kvn@1641 1671 brx(Assembler::zero, false, Assembler::pn, found_null);
kvn@1641 1672 delayed()->nop();
kvn@1641 1673 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1686 1674 // Increment total counter to indicate polymorphic case.
kvn@1641 1675 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
kvn@3037 1676 ba_short(done);
kvn@1641 1677 bind(found_null);
kvn@1641 1678 } else {
kvn@1641 1679 brx(Assembler::notZero, false, Assembler::pt, done);
kvn@1641 1680 delayed()->nop();
kvn@1641 1681 }
duke@435 1682 break;
duke@435 1683 }
duke@435 1684 // Since null is rare, make it be the branch-taken case.
duke@435 1685 brx(Assembler::zero, false, Assembler::pn, found_null);
duke@435 1686 delayed()->nop();
duke@435 1687
duke@435 1688 // Put all the "Case 3" tests here.
kvn@1641 1689 record_klass_in_profile_helper(receiver, scratch, start_row + 1, done, is_virtual_call);
duke@435 1690
duke@435 1691 // Found a null. Keep searching for a matching receiver,
duke@435 1692 // but remember that this is an empty (unused) slot.
duke@435 1693 bind(found_null);
duke@435 1694 }
duke@435 1695 }
duke@435 1696
duke@435 1697 // In the fall-through case, we found no matching receiver, but we
duke@435 1698 // observed the receiver[start_row] is NULL.
duke@435 1699
duke@435 1700 // Fill in the receiver field and increment the count.
duke@435 1701 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
duke@435 1702 set_mdp_data_at(recvr_offset, receiver);
duke@435 1703 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
duke@435 1704 mov(DataLayout::counter_increment, scratch);
duke@435 1705 set_mdp_data_at(count_offset, scratch);
kvn@1641 1706 if (start_row > 0) {
kvn@3037 1707 ba_short(done);
kvn@1641 1708 }
duke@435 1709 }
duke@435 1710
duke@435 1711 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
kvn@1641 1712 Register scratch, bool is_virtual_call) {
duke@435 1713 assert(ProfileInterpreter, "must be profiling");
duke@435 1714 Label done;
duke@435 1715
kvn@1641 1716 record_klass_in_profile_helper(receiver, scratch, 0, done, is_virtual_call);
duke@435 1717
duke@435 1718 bind (done);
duke@435 1719 }
duke@435 1720
duke@435 1721
duke@435 1722 // Count a ret in the bytecodes.
duke@435 1723
duke@435 1724 void InterpreterMacroAssembler::profile_ret(TosState state,
duke@435 1725 Register return_bci,
duke@435 1726 Register scratch) {
duke@435 1727 if (ProfileInterpreter) {
duke@435 1728 Label profile_continue;
duke@435 1729 uint row;
duke@435 1730
duke@435 1731 // If no method data exists, go to profile_continue.
duke@435 1732 test_method_data_pointer(profile_continue);
duke@435 1733
duke@435 1734 // Update the total ret count.
duke@435 1735 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
duke@435 1736
duke@435 1737 for (row = 0; row < RetData::row_limit(); row++) {
duke@435 1738 Label next_test;
duke@435 1739
duke@435 1740 // See if return_bci is equal to bci[n]:
duke@435 1741 test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
duke@435 1742 return_bci, next_test, scratch);
duke@435 1743
duke@435 1744 // return_bci is equal to bci[n]. Increment the count.
duke@435 1745 increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
duke@435 1746
duke@435 1747 // The method data pointer needs to be updated to reflect the new target.
duke@435 1748 update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
kvn@3037 1749 ba_short(profile_continue);
duke@435 1750 bind(next_test);
duke@435 1751 }
duke@435 1752
duke@435 1753 update_mdp_for_ret(state, return_bci);
duke@435 1754
duke@435 1755 bind (profile_continue);
duke@435 1756 }
duke@435 1757 }
duke@435 1758
duke@435 1759 // Profile an unexpected null in the bytecodes.
duke@435 1760 void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
duke@435 1761 if (ProfileInterpreter) {
duke@435 1762 Label profile_continue;
duke@435 1763
duke@435 1764 // If no method data exists, go to profile_continue.
duke@435 1765 test_method_data_pointer(profile_continue);
duke@435 1766
duke@435 1767 set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
duke@435 1768
duke@435 1769 // The method data pointer needs to be updated.
duke@435 1770 int mdp_delta = in_bytes(BitData::bit_data_size());
duke@435 1771 if (TypeProfileCasts) {
duke@435 1772 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
duke@435 1773 }
duke@435 1774 update_mdp_by_constant(mdp_delta);
duke@435 1775
duke@435 1776 bind (profile_continue);
duke@435 1777 }
duke@435 1778 }
duke@435 1779
duke@435 1780 void InterpreterMacroAssembler::profile_typecheck(Register klass,
duke@435 1781 Register scratch) {
duke@435 1782 if (ProfileInterpreter) {
duke@435 1783 Label profile_continue;
duke@435 1784
duke@435 1785 // If no method data exists, go to profile_continue.
duke@435 1786 test_method_data_pointer(profile_continue);
duke@435 1787
duke@435 1788 int mdp_delta = in_bytes(BitData::bit_data_size());
duke@435 1789 if (TypeProfileCasts) {
duke@435 1790 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
duke@435 1791
duke@435 1792 // Record the object type.
kvn@1641 1793 record_klass_in_profile(klass, scratch, false);
duke@435 1794 }
duke@435 1795
duke@435 1796 // The method data pointer needs to be updated.
duke@435 1797 update_mdp_by_constant(mdp_delta);
duke@435 1798
duke@435 1799 bind (profile_continue);
duke@435 1800 }
duke@435 1801 }
duke@435 1802
duke@435 1803 void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
duke@435 1804 if (ProfileInterpreter && TypeProfileCasts) {
duke@435 1805 Label profile_continue;
duke@435 1806
duke@435 1807 // If no method data exists, go to profile_continue.
duke@435 1808 test_method_data_pointer(profile_continue);
duke@435 1809
duke@435 1810 int count_offset = in_bytes(CounterData::count_offset());
duke@435 1811 // Back up the address, since we have already bumped the mdp.
duke@435 1812 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
duke@435 1813
duke@435 1814 // *Decrement* the counter. We expect to see zero or small negatives.
duke@435 1815 increment_mdp_data_at(count_offset, scratch, true);
duke@435 1816
duke@435 1817 bind (profile_continue);
duke@435 1818 }
duke@435 1819 }
duke@435 1820
duke@435 1821 // Count the default case of a switch construct.
duke@435 1822
duke@435 1823 void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
duke@435 1824 if (ProfileInterpreter) {
duke@435 1825 Label profile_continue;
duke@435 1826
duke@435 1827 // If no method data exists, go to profile_continue.
duke@435 1828 test_method_data_pointer(profile_continue);
duke@435 1829
duke@435 1830 // Update the default case count
duke@435 1831 increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
duke@435 1832 scratch);
duke@435 1833
duke@435 1834 // The method data pointer needs to be updated.
duke@435 1835 update_mdp_by_offset(
duke@435 1836 in_bytes(MultiBranchData::default_displacement_offset()),
duke@435 1837 scratch);
duke@435 1838
duke@435 1839 bind (profile_continue);
duke@435 1840 }
duke@435 1841 }
duke@435 1842
duke@435 1843 // Count the index'th case of a switch construct.
duke@435 1844
duke@435 1845 void InterpreterMacroAssembler::profile_switch_case(Register index,
duke@435 1846 Register scratch,
duke@435 1847 Register scratch2,
duke@435 1848 Register scratch3) {
duke@435 1849 if (ProfileInterpreter) {
duke@435 1850 Label profile_continue;
duke@435 1851
duke@435 1852 // If no method data exists, go to profile_continue.
duke@435 1853 test_method_data_pointer(profile_continue);
duke@435 1854
duke@435 1855 // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
duke@435 1856 set(in_bytes(MultiBranchData::per_case_size()), scratch);
duke@435 1857 smul(index, scratch, scratch);
duke@435 1858 add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
duke@435 1859
duke@435 1860 // Update the case count
duke@435 1861 increment_mdp_data_at(scratch,
duke@435 1862 in_bytes(MultiBranchData::relative_count_offset()),
duke@435 1863 scratch2,
duke@435 1864 scratch3);
duke@435 1865
duke@435 1866 // The method data pointer needs to be updated.
duke@435 1867 update_mdp_by_offset(scratch,
duke@435 1868 in_bytes(MultiBranchData::relative_displacement_offset()),
duke@435 1869 scratch2);
duke@435 1870
duke@435 1871 bind (profile_continue);
duke@435 1872 }
duke@435 1873 }
duke@435 1874
duke@435 1875 // add a InterpMonitorElem to stack (see frame_sparc.hpp)
duke@435 1876
duke@435 1877 void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
duke@435 1878 Register Rtemp,
duke@435 1879 Register Rtemp2 ) {
duke@435 1880
duke@435 1881 Register Rlimit = Lmonitors;
duke@435 1882 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 1883 assert( (delta & LongAlignmentMask) == 0,
duke@435 1884 "sizeof BasicObjectLock must be even number of doublewords");
duke@435 1885
duke@435 1886 sub( SP, delta, SP);
duke@435 1887 sub( Lesp, delta, Lesp);
duke@435 1888 sub( Lmonitors, delta, Lmonitors);
duke@435 1889
duke@435 1890 if (!stack_is_empty) {
duke@435 1891
duke@435 1892 // must copy stack contents down
duke@435 1893
duke@435 1894 Label start_copying, next;
duke@435 1895
duke@435 1896 // untested("monitor stack expansion");
duke@435 1897 compute_stack_base(Rtemp);
kvn@3037 1898 ba(start_copying);
kvn@3037 1899 delayed()->cmp(Rtemp, Rlimit); // done? duplicated below
duke@435 1900
duke@435 1901 // note: must copy from low memory upwards
duke@435 1902 // On entry to loop,
duke@435 1903 // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
duke@435 1904 // Loop mutates Rtemp
duke@435 1905
duke@435 1906 bind( next);
duke@435 1907
duke@435 1908 st_ptr(Rtemp2, Rtemp, 0);
duke@435 1909 inc(Rtemp, wordSize);
duke@435 1910 cmp(Rtemp, Rlimit); // are we done? (duplicated above)
duke@435 1911
duke@435 1912 bind( start_copying );
duke@435 1913
duke@435 1914 brx( notEqual, true, pn, next );
duke@435 1915 delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
duke@435 1916
duke@435 1917 // done copying stack
duke@435 1918 }
duke@435 1919 }
duke@435 1920
duke@435 1921 // Locals
duke@435 1922 void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
duke@435 1923 assert_not_delayed();
twisti@1861 1924 sll(index, Interpreter::logStackElementSize, index);
duke@435 1925 sub(Llocals, index, index);
twisti@1861 1926 ld_ptr(index, 0, dst);
duke@435 1927 // Note: index must hold the effective address--the iinc template uses it
duke@435 1928 }
duke@435 1929
duke@435 1930 // Just like access_local_ptr but the tag is a returnAddress
duke@435 1931 void InterpreterMacroAssembler::access_local_returnAddress(Register index,
duke@435 1932 Register dst ) {
duke@435 1933 assert_not_delayed();
twisti@1861 1934 sll(index, Interpreter::logStackElementSize, index);
duke@435 1935 sub(Llocals, index, index);
twisti@1861 1936 ld_ptr(index, 0, dst);
duke@435 1937 }
duke@435 1938
duke@435 1939 void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
duke@435 1940 assert_not_delayed();
twisti@1861 1941 sll(index, Interpreter::logStackElementSize, index);
duke@435 1942 sub(Llocals, index, index);
twisti@1861 1943 ld(index, 0, dst);
duke@435 1944 // Note: index must hold the effective address--the iinc template uses it
duke@435 1945 }
duke@435 1946
duke@435 1947
duke@435 1948 void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
duke@435 1949 assert_not_delayed();
twisti@1861 1950 sll(index, Interpreter::logStackElementSize, index);
duke@435 1951 sub(Llocals, index, index);
duke@435 1952 // First half stored at index n+1 (which grows down from Llocals[n])
duke@435 1953 load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
duke@435 1954 }
duke@435 1955
duke@435 1956
duke@435 1957 void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
duke@435 1958 assert_not_delayed();
twisti@1861 1959 sll(index, Interpreter::logStackElementSize, index);
duke@435 1960 sub(Llocals, index, index);
twisti@1861 1961 ldf(FloatRegisterImpl::S, index, 0, dst);
duke@435 1962 }
duke@435 1963
duke@435 1964
duke@435 1965 void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
duke@435 1966 assert_not_delayed();
twisti@1861 1967 sll(index, Interpreter::logStackElementSize, index);
duke@435 1968 sub(Llocals, index, index);
duke@435 1969 load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
duke@435 1970 }
duke@435 1971
duke@435 1972
duke@435 1973 #ifdef ASSERT
duke@435 1974 void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
duke@435 1975 Label L;
duke@435 1976
duke@435 1977 assert(Rindex != Rscratch, "Registers cannot be same");
duke@435 1978 assert(Rindex != Rscratch1, "Registers cannot be same");
duke@435 1979 assert(Rlimit != Rscratch, "Registers cannot be same");
duke@435 1980 assert(Rlimit != Rscratch1, "Registers cannot be same");
duke@435 1981 assert(Rscratch1 != Rscratch, "Registers cannot be same");
duke@435 1982
duke@435 1983 // untested("reg area corruption");
duke@435 1984 add(Rindex, offset, Rscratch);
duke@435 1985 add(Rlimit, 64 + STACK_BIAS, Rscratch1);
kvn@3037 1986 cmp_and_brx_short(Rscratch, Rscratch1, Assembler::greaterEqualUnsigned, pn, L);
duke@435 1987 stop("regsave area is being clobbered");
duke@435 1988 bind(L);
duke@435 1989 }
duke@435 1990 #endif // ASSERT
duke@435 1991
duke@435 1992
duke@435 1993 void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
duke@435 1994 assert_not_delayed();
twisti@1861 1995 sll(index, Interpreter::logStackElementSize, index);
duke@435 1996 sub(Llocals, index, index);
twisti@1861 1997 debug_only(check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);)
twisti@1861 1998 st(src, index, 0);
duke@435 1999 }
duke@435 2000
twisti@1861 2001 void InterpreterMacroAssembler::store_local_ptr( Register index, Register src ) {
duke@435 2002 assert_not_delayed();
twisti@1861 2003 sll(index, Interpreter::logStackElementSize, index);
duke@435 2004 sub(Llocals, index, index);
twisti@1861 2005 #ifdef ASSERT
twisti@1861 2006 check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
twisti@1861 2007 #endif
twisti@1861 2008 st_ptr(src, index, 0);
duke@435 2009 }
duke@435 2010
duke@435 2011
duke@435 2012
twisti@1861 2013 void InterpreterMacroAssembler::store_local_ptr( int n, Register src ) {
twisti@1861 2014 st_ptr(src, Llocals, Interpreter::local_offset_in_bytes(n));
duke@435 2015 }
duke@435 2016
duke@435 2017 void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
duke@435 2018 assert_not_delayed();
twisti@1861 2019 sll(index, Interpreter::logStackElementSize, index);
duke@435 2020 sub(Llocals, index, index);
twisti@1861 2021 #ifdef ASSERT
duke@435 2022 check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
twisti@1861 2023 #endif
duke@435 2024 store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
duke@435 2025 }
duke@435 2026
duke@435 2027
duke@435 2028 void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
duke@435 2029 assert_not_delayed();
twisti@1861 2030 sll(index, Interpreter::logStackElementSize, index);
duke@435 2031 sub(Llocals, index, index);
twisti@1861 2032 #ifdef ASSERT
twisti@1861 2033 check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
twisti@1861 2034 #endif
twisti@1861 2035 stf(FloatRegisterImpl::S, src, index, 0);
duke@435 2036 }
duke@435 2037
duke@435 2038
duke@435 2039 void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
duke@435 2040 assert_not_delayed();
twisti@1861 2041 sll(index, Interpreter::logStackElementSize, index);
duke@435 2042 sub(Llocals, index, index);
twisti@1861 2043 #ifdef ASSERT
duke@435 2044 check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
twisti@1861 2045 #endif
duke@435 2046 store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
duke@435 2047 }
duke@435 2048
duke@435 2049
duke@435 2050 int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
duke@435 2051 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 2052 int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
duke@435 2053 return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
duke@435 2054 }
duke@435 2055
duke@435 2056
duke@435 2057 Address InterpreterMacroAssembler::top_most_monitor() {
twisti@1162 2058 return Address(FP, top_most_monitor_byte_offset());
duke@435 2059 }
duke@435 2060
duke@435 2061
duke@435 2062 void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
duke@435 2063 add( Lesp, wordSize, Rdest );
duke@435 2064 }
duke@435 2065
duke@435 2066 #endif /* CC_INTERP */
duke@435 2067
duke@435 2068 void InterpreterMacroAssembler::increment_invocation_counter( Register Rtmp, Register Rtmp2 ) {
duke@435 2069 assert(UseCompiler, "incrementing must be useful");
duke@435 2070 #ifdef CC_INTERP
twisti@1162 2071 Address inv_counter(G5_method, methodOopDesc::invocation_counter_offset() +
twisti@1162 2072 InvocationCounter::counter_offset());
twisti@1162 2073 Address be_counter (G5_method, methodOopDesc::backedge_counter_offset() +
twisti@1162 2074 InvocationCounter::counter_offset());
duke@435 2075 #else
twisti@1162 2076 Address inv_counter(Lmethod, methodOopDesc::invocation_counter_offset() +
twisti@1162 2077 InvocationCounter::counter_offset());
twisti@1162 2078 Address be_counter (Lmethod, methodOopDesc::backedge_counter_offset() +
twisti@1162 2079 InvocationCounter::counter_offset());
duke@435 2080 #endif /* CC_INTERP */
duke@435 2081 int delta = InvocationCounter::count_increment;
duke@435 2082
duke@435 2083 // Load each counter in a register
duke@435 2084 ld( inv_counter, Rtmp );
duke@435 2085 ld( be_counter, Rtmp2 );
duke@435 2086
duke@435 2087 assert( is_simm13( delta ), " delta too large.");
duke@435 2088
duke@435 2089 // Add the delta to the invocation counter and store the result
duke@435 2090 add( Rtmp, delta, Rtmp );
duke@435 2091
duke@435 2092 // Mask the backedge counter
duke@435 2093 and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
duke@435 2094
duke@435 2095 // Store value
duke@435 2096 st( Rtmp, inv_counter);
duke@435 2097
duke@435 2098 // Add invocation counter + backedge counter
duke@435 2099 add( Rtmp, Rtmp2, Rtmp);
duke@435 2100
duke@435 2101 // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
duke@435 2102 }
duke@435 2103
duke@435 2104 void InterpreterMacroAssembler::increment_backedge_counter( Register Rtmp, Register Rtmp2 ) {
duke@435 2105 assert(UseCompiler, "incrementing must be useful");
duke@435 2106 #ifdef CC_INTERP
twisti@1162 2107 Address be_counter (G5_method, methodOopDesc::backedge_counter_offset() +
twisti@1162 2108 InvocationCounter::counter_offset());
twisti@1162 2109 Address inv_counter(G5_method, methodOopDesc::invocation_counter_offset() +
twisti@1162 2110 InvocationCounter::counter_offset());
duke@435 2111 #else
twisti@1162 2112 Address be_counter (Lmethod, methodOopDesc::backedge_counter_offset() +
twisti@1162 2113 InvocationCounter::counter_offset());
twisti@1162 2114 Address inv_counter(Lmethod, methodOopDesc::invocation_counter_offset() +
twisti@1162 2115 InvocationCounter::counter_offset());
duke@435 2116 #endif /* CC_INTERP */
duke@435 2117 int delta = InvocationCounter::count_increment;
duke@435 2118 // Load each counter in a register
duke@435 2119 ld( be_counter, Rtmp );
duke@435 2120 ld( inv_counter, Rtmp2 );
duke@435 2121
duke@435 2122 // Add the delta to the backedge counter
duke@435 2123 add( Rtmp, delta, Rtmp );
duke@435 2124
duke@435 2125 // Mask the invocation counter, add to backedge counter
duke@435 2126 and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
duke@435 2127
duke@435 2128 // and store the result to memory
duke@435 2129 st( Rtmp, be_counter );
duke@435 2130
duke@435 2131 // Add backedge + invocation counter
duke@435 2132 add( Rtmp, Rtmp2, Rtmp );
duke@435 2133
duke@435 2134 // Note that this macro must leave backedge_count + invocation_count in Rtmp!
duke@435 2135 }
duke@435 2136
duke@435 2137 #ifndef CC_INTERP
duke@435 2138 void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
duke@435 2139 Register branch_bcp,
duke@435 2140 Register Rtmp ) {
duke@435 2141 Label did_not_overflow;
duke@435 2142 Label overflow_with_error;
duke@435 2143 assert_different_registers(backedge_count, Rtmp, branch_bcp);
duke@435 2144 assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
duke@435 2145
twisti@1162 2146 AddressLiteral limit(&InvocationCounter::InterpreterBackwardBranchLimit);
duke@435 2147 load_contents(limit, Rtmp);
kvn@3037 2148 cmp_and_br_short(backedge_count, Rtmp, Assembler::lessUnsigned, Assembler::pt, did_not_overflow);
duke@435 2149
duke@435 2150 // When ProfileInterpreter is on, the backedge_count comes from the
duke@435 2151 // methodDataOop, which value does not get reset on the call to
duke@435 2152 // frequency_counter_overflow(). To avoid excessive calls to the overflow
duke@435 2153 // routine while the method is being compiled, add a second test to make sure
duke@435 2154 // the overflow function is called only once every overflow_frequency.
duke@435 2155 if (ProfileInterpreter) {
duke@435 2156 const int overflow_frequency = 1024;
duke@435 2157 andcc(backedge_count, overflow_frequency-1, Rtmp);
duke@435 2158 brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
duke@435 2159 delayed()->nop();
duke@435 2160 }
duke@435 2161
duke@435 2162 // overflow in loop, pass branch bytecode
duke@435 2163 set(6,Rtmp);
duke@435 2164 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
duke@435 2165
duke@435 2166 // Was an OSR adapter generated?
duke@435 2167 // O0 = osr nmethod
kvn@3037 2168 br_null_short(O0, Assembler::pn, overflow_with_error);
duke@435 2169
duke@435 2170 // Has the nmethod been invalidated already?
duke@435 2171 ld(O0, nmethod::entry_bci_offset(), O2);
kvn@3037 2172 cmp_and_br_short(O2, InvalidOSREntryBci, Assembler::equal, Assembler::pn, overflow_with_error);
duke@435 2173
duke@435 2174 // migrate the interpreter frame off of the stack
duke@435 2175
duke@435 2176 mov(G2_thread, L7);
duke@435 2177 // save nmethod
duke@435 2178 mov(O0, L6);
duke@435 2179 set_last_Java_frame(SP, noreg);
duke@435 2180 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
duke@435 2181 reset_last_Java_frame();
duke@435 2182 mov(L7, G2_thread);
duke@435 2183
duke@435 2184 // move OSR nmethod to I1
duke@435 2185 mov(L6, I1);
duke@435 2186
duke@435 2187 // OSR buffer to I0
duke@435 2188 mov(O0, I0);
duke@435 2189
duke@435 2190 // remove the interpreter frame
duke@435 2191 restore(I5_savedSP, 0, SP);
duke@435 2192
duke@435 2193 // Jump to the osr code.
duke@435 2194 ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
duke@435 2195 jmp(O2, G0);
duke@435 2196 delayed()->nop();
duke@435 2197
duke@435 2198 bind(overflow_with_error);
duke@435 2199
duke@435 2200 bind(did_not_overflow);
duke@435 2201 }
duke@435 2202
duke@435 2203
duke@435 2204
duke@435 2205 void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
duke@435 2206 if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
duke@435 2207 }
duke@435 2208
duke@435 2209
duke@435 2210 // local helper function for the verify_oop_or_return_address macro
duke@435 2211 static bool verify_return_address(methodOopDesc* m, int bci) {
duke@435 2212 #ifndef PRODUCT
duke@435 2213 address pc = (address)(m->constMethod())
duke@435 2214 + in_bytes(constMethodOopDesc::codes_offset()) + bci;
duke@435 2215 // assume it is a valid return address if it is inside m and is preceded by a jsr
duke@435 2216 if (!m->contains(pc)) return false;
duke@435 2217 address jsr_pc;
duke@435 2218 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
duke@435 2219 if (*jsr_pc == Bytecodes::_jsr && jsr_pc >= m->code_base()) return true;
duke@435 2220 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
duke@435 2221 if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base()) return true;
duke@435 2222 #endif // PRODUCT
duke@435 2223 return false;
duke@435 2224 }
duke@435 2225
duke@435 2226
duke@435 2227 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
duke@435 2228 if (!VerifyOops) return;
duke@435 2229 // the VM documentation for the astore[_wide] bytecode allows
duke@435 2230 // the TOS to be not only an oop but also a return address
duke@435 2231 Label test;
duke@435 2232 Label skip;
duke@435 2233 // See if it is an address (in the current method):
duke@435 2234
duke@435 2235 mov(reg, Rtmp);
duke@435 2236 const int log2_bytecode_size_limit = 16;
duke@435 2237 srl(Rtmp, log2_bytecode_size_limit, Rtmp);
kvn@3037 2238 br_notnull_short( Rtmp, pt, test );
duke@435 2239
duke@435 2240 // %%% should use call_VM_leaf here?
duke@435 2241 save_frame_and_mov(0, Lmethod, O0, reg, O1);
duke@435 2242 save_thread(L7_thread_cache);
duke@435 2243 call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
duke@435 2244 delayed()->nop();
duke@435 2245 restore_thread(L7_thread_cache);
duke@435 2246 br_notnull( O0, false, pt, skip );
duke@435 2247 delayed()->restore();
duke@435 2248
duke@435 2249 // Perform a more elaborate out-of-line call
duke@435 2250 // Not an address; verify it:
duke@435 2251 bind(test);
duke@435 2252 verify_oop(reg);
duke@435 2253 bind(skip);
duke@435 2254 }
duke@435 2255
duke@435 2256
duke@435 2257 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
duke@435 2258 if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
duke@435 2259 }
duke@435 2260 #endif /* CC_INTERP */
duke@435 2261
duke@435 2262 // Inline assembly for:
duke@435 2263 //
duke@435 2264 // if (thread is in interp_only_mode) {
duke@435 2265 // InterpreterRuntime::post_method_entry();
duke@435 2266 // }
duke@435 2267 // if (DTraceMethodProbes) {
twisti@1040 2268 // SharedRuntime::dtrace_method_entry(method, receiver);
duke@435 2269 // }
dcubed@1045 2270 // if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
dcubed@1045 2271 // SharedRuntime::rc_trace_method_entry(method, receiver);
coleenp@857 2272 // }
duke@435 2273
duke@435 2274 void InterpreterMacroAssembler::notify_method_entry() {
duke@435 2275
duke@435 2276 // C++ interpreter only uses this for native methods.
duke@435 2277
duke@435 2278 // Whenever JVMTI puts a thread in interp_only_mode, method
duke@435 2279 // entry/exit events are sent for that thread to track stack
duke@435 2280 // depth. If it is possible to enter interp_only_mode we add
duke@435 2281 // the code to check if the event should be sent.
duke@435 2282 if (JvmtiExport::can_post_interpreter_events()) {
duke@435 2283 Label L;
duke@435 2284 Register temp_reg = O5;
twisti@1162 2285 const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
duke@435 2286 ld(interp_only, temp_reg);
kvn@3037 2287 cmp_and_br_short(temp_reg, 0, equal, pt, L);
duke@435 2288 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
duke@435 2289 bind(L);
duke@435 2290 }
duke@435 2291
duke@435 2292 {
duke@435 2293 Register temp_reg = O5;
duke@435 2294 SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
duke@435 2295 call_VM_leaf(noreg,
duke@435 2296 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
duke@435 2297 G2_thread, Lmethod);
duke@435 2298 }
dcubed@1045 2299
dcubed@1045 2300 // RedefineClasses() tracing support for obsolete method entry
dcubed@1045 2301 if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
dcubed@1045 2302 call_VM_leaf(noreg,
dcubed@1045 2303 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
dcubed@1045 2304 G2_thread, Lmethod);
dcubed@1045 2305 }
duke@435 2306 }
duke@435 2307
duke@435 2308
duke@435 2309 // Inline assembly for:
duke@435 2310 //
duke@435 2311 // if (thread is in interp_only_mode) {
duke@435 2312 // // save result
duke@435 2313 // InterpreterRuntime::post_method_exit();
duke@435 2314 // // restore result
duke@435 2315 // }
duke@435 2316 // if (DTraceMethodProbes) {
duke@435 2317 // SharedRuntime::dtrace_method_exit(thread, method);
duke@435 2318 // }
duke@435 2319 //
duke@435 2320 // Native methods have their result stored in d_tmp and l_tmp
duke@435 2321 // Java methods have their result stored in the expression stack
duke@435 2322
duke@435 2323 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
duke@435 2324 TosState state,
duke@435 2325 NotifyMethodExitMode mode) {
duke@435 2326 // C++ interpreter only uses this for native methods.
duke@435 2327
duke@435 2328 // Whenever JVMTI puts a thread in interp_only_mode, method
duke@435 2329 // entry/exit events are sent for that thread to track stack
duke@435 2330 // depth. If it is possible to enter interp_only_mode we add
duke@435 2331 // the code to check if the event should be sent.
duke@435 2332 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
duke@435 2333 Label L;
duke@435 2334 Register temp_reg = O5;
twisti@1162 2335 const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
duke@435 2336 ld(interp_only, temp_reg);
kvn@3037 2337 cmp_and_br_short(temp_reg, 0, equal, pt, L);
duke@435 2338
duke@435 2339 // Note: frame::interpreter_frame_result has a dependency on how the
duke@435 2340 // method result is saved across the call to post_method_exit. For
duke@435 2341 // native methods it assumes the result registers are saved to
duke@435 2342 // l_scratch and d_scratch. If this changes then the interpreter_frame_result
duke@435 2343 // implementation will need to be updated too.
duke@435 2344
duke@435 2345 save_return_value(state, is_native_method);
duke@435 2346 call_VM(noreg,
duke@435 2347 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
duke@435 2348 restore_return_value(state, is_native_method);
duke@435 2349 bind(L);
duke@435 2350 }
duke@435 2351
duke@435 2352 {
duke@435 2353 Register temp_reg = O5;
duke@435 2354 // Dtrace notification
duke@435 2355 SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
duke@435 2356 save_return_value(state, is_native_method);
duke@435 2357 call_VM_leaf(
duke@435 2358 noreg,
duke@435 2359 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
duke@435 2360 G2_thread, Lmethod);
duke@435 2361 restore_return_value(state, is_native_method);
duke@435 2362 }
duke@435 2363 }
duke@435 2364
duke@435 2365 void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
duke@435 2366 #ifdef CC_INTERP
duke@435 2367 // result potentially in O0/O1: save it across calls
duke@435 2368 stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
duke@435 2369 #ifdef _LP64
duke@435 2370 stx(O0, STATE(_native_lresult));
duke@435 2371 #else
duke@435 2372 std(O0, STATE(_native_lresult));
duke@435 2373 #endif
duke@435 2374 #else // CC_INTERP
duke@435 2375 if (is_native_call) {
duke@435 2376 stf(FloatRegisterImpl::D, F0, d_tmp);
duke@435 2377 #ifdef _LP64
duke@435 2378 stx(O0, l_tmp);
duke@435 2379 #else
duke@435 2380 std(O0, l_tmp);
duke@435 2381 #endif
duke@435 2382 } else {
duke@435 2383 push(state);
duke@435 2384 }
duke@435 2385 #endif // CC_INTERP
duke@435 2386 }
duke@435 2387
duke@435 2388 void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
duke@435 2389 #ifdef CC_INTERP
duke@435 2390 ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
duke@435 2391 #ifdef _LP64
duke@435 2392 ldx(STATE(_native_lresult), O0);
duke@435 2393 #else
duke@435 2394 ldd(STATE(_native_lresult), O0);
duke@435 2395 #endif
duke@435 2396 #else // CC_INTERP
duke@435 2397 if (is_native_call) {
duke@435 2398 ldf(FloatRegisterImpl::D, d_tmp, F0);
duke@435 2399 #ifdef _LP64
duke@435 2400 ldx(l_tmp, O0);
duke@435 2401 #else
duke@435 2402 ldd(l_tmp, O0);
duke@435 2403 #endif
duke@435 2404 } else {
duke@435 2405 pop(state);
duke@435 2406 }
duke@435 2407 #endif // CC_INTERP
duke@435 2408 }
iveresov@2138 2409
iveresov@2138 2410 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
iveresov@2138 2411 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
iveresov@2138 2412 int increment, int mask,
iveresov@2138 2413 Register scratch1, Register scratch2,
iveresov@2138 2414 Condition cond, Label *where) {
iveresov@2138 2415 ld(counter_addr, scratch1);
iveresov@2138 2416 add(scratch1, increment, scratch1);
iveresov@2138 2417 if (is_simm13(mask)) {
iveresov@2138 2418 andcc(scratch1, mask, G0);
iveresov@2138 2419 } else {
iveresov@2138 2420 set(mask, scratch2);
iveresov@2138 2421 andcc(scratch1, scratch2, G0);
iveresov@2138 2422 }
iveresov@2138 2423 br(cond, false, Assembler::pn, *where);
iveresov@2138 2424 delayed()->st(scratch1, counter_addr);
iveresov@2138 2425 }

mercurial