src/cpu/sparc/vm/interp_masm_sparc.cpp

Fri, 13 Mar 2009 18:39:22 -0700

author
jrose
date
Fri, 13 Mar 2009 18:39:22 -0700
changeset 1079
c517646eef23
parent 1049
3db67f76d308
child 1162
6b2273dd6fa9
permissions
-rw-r--r--

6813212: factor duplicated assembly code for general subclass check (for 6655638)
Summary: Code in interp_masm, stubGenerator, c1_LIRAssembler, and AD files moved into MacroAssembler.
Reviewed-by: kvn

duke@435 1 /*
xdono@631 2 * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_interp_masm_sparc.cpp.incl"
duke@435 27
duke@435 28 #ifndef CC_INTERP
duke@435 29 #ifndef FAST_DISPATCH
duke@435 30 #define FAST_DISPATCH 1
duke@435 31 #endif
duke@435 32 #undef FAST_DISPATCH
duke@435 33
duke@435 34 // Implementation of InterpreterMacroAssembler
duke@435 35
duke@435 36 // This file specializes the assember with interpreter-specific macros
duke@435 37
duke@435 38 const Address InterpreterMacroAssembler::l_tmp( FP, 0, (frame::interpreter_frame_l_scratch_fp_offset * wordSize ) + STACK_BIAS);
duke@435 39 const Address InterpreterMacroAssembler::d_tmp( FP, 0, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
duke@435 40
duke@435 41 #else // CC_INTERP
duke@435 42 #ifndef STATE
duke@435 43 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
duke@435 44 #endif // STATE
duke@435 45
duke@435 46 #endif // CC_INTERP
duke@435 47
duke@435 48 void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
duke@435 49 // Note: this algorithm is also used by C1's OSR entry sequence.
duke@435 50 // Any changes should also be applied to CodeEmitter::emit_osr_entry().
duke@435 51 assert_different_registers(args_size, locals_size);
duke@435 52 // max_locals*2 for TAGS. Assumes that args_size has already been adjusted.
duke@435 53 if (TaggedStackInterpreter) sll(locals_size, 1, locals_size);
duke@435 54 subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
duke@435 55 // Use br/mov combination because it works on both V8 and V9 and is
duke@435 56 // faster.
duke@435 57 Label skip_move;
duke@435 58 br(Assembler::negative, true, Assembler::pt, skip_move);
duke@435 59 delayed()->mov(G0, delta);
duke@435 60 bind(skip_move);
duke@435 61 round_to(delta, WordsPerLong); // make multiple of 2 (SP must be 2-word aligned)
duke@435 62 sll(delta, LogBytesPerWord, delta); // extra space for locals in bytes
duke@435 63 }
duke@435 64
duke@435 65 #ifndef CC_INTERP
duke@435 66
duke@435 67 // Dispatch code executed in the prolog of a bytecode which does not do it's
duke@435 68 // own dispatch. The dispatch address is computed and placed in IdispatchAddress
duke@435 69 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
duke@435 70 assert_not_delayed();
duke@435 71 #ifdef FAST_DISPATCH
duke@435 72 // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
duke@435 73 // they both use I2.
duke@435 74 assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
duke@435 75 ldub(Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 76 add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
duke@435 77 // add offset to correct dispatch table
duke@435 78 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
duke@435 79 ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
duke@435 80 #else
duke@435 81 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 82 // dispatch table to use
duke@435 83 Address tbl(G3_scratch, (address)Interpreter::dispatch_table(state));
duke@435 84
duke@435 85 sethi(tbl);
duke@435 86 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
duke@435 87 add(tbl, tbl.base(), 0);
duke@435 88 ld_ptr( G3_scratch, Lbyte_code, IdispatchAddress); // get entry addr
duke@435 89 #endif
duke@435 90 }
duke@435 91
duke@435 92
duke@435 93 // Dispatch code executed in the epilog of a bytecode which does not do it's
duke@435 94 // own dispatch. The dispatch address in IdispatchAddress is used for the
duke@435 95 // dispatch.
duke@435 96 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
duke@435 97 assert_not_delayed();
duke@435 98 verify_FPU(1, state);
duke@435 99 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 100 jmp( IdispatchAddress, 0 );
duke@435 101 if (bcp_incr != 0) delayed()->inc(Lbcp, bcp_incr);
duke@435 102 else delayed()->nop();
duke@435 103 }
duke@435 104
duke@435 105
duke@435 106 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
duke@435 107 // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
duke@435 108 assert_not_delayed();
duke@435 109 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 110 dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
duke@435 111 }
duke@435 112
duke@435 113
duke@435 114 void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
duke@435 115 // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
duke@435 116 assert_not_delayed();
duke@435 117 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 118 dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
duke@435 119 }
duke@435 120
duke@435 121
duke@435 122 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
duke@435 123 // load current bytecode
duke@435 124 assert_not_delayed();
duke@435 125 ldub( Lbcp, 0, Lbyte_code); // load next bytecode
duke@435 126 dispatch_base(state, table);
duke@435 127 }
duke@435 128
duke@435 129
duke@435 130 void InterpreterMacroAssembler::call_VM_leaf_base(
duke@435 131 Register java_thread,
duke@435 132 address entry_point,
duke@435 133 int number_of_arguments
duke@435 134 ) {
duke@435 135 if (!java_thread->is_valid())
duke@435 136 java_thread = L7_thread_cache;
duke@435 137 // super call
duke@435 138 MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
duke@435 139 }
duke@435 140
duke@435 141
duke@435 142 void InterpreterMacroAssembler::call_VM_base(
duke@435 143 Register oop_result,
duke@435 144 Register java_thread,
duke@435 145 Register last_java_sp,
duke@435 146 address entry_point,
duke@435 147 int number_of_arguments,
duke@435 148 bool check_exception
duke@435 149 ) {
duke@435 150 if (!java_thread->is_valid())
duke@435 151 java_thread = L7_thread_cache;
duke@435 152 // See class ThreadInVMfromInterpreter, which assumes that the interpreter
duke@435 153 // takes responsibility for setting its own thread-state on call-out.
duke@435 154 // However, ThreadInVMfromInterpreter resets the state to "in_Java".
duke@435 155
duke@435 156 //save_bcp(); // save bcp
duke@435 157 MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
duke@435 158 //restore_bcp(); // restore bcp
duke@435 159 //restore_locals(); // restore locals pointer
duke@435 160 }
duke@435 161
duke@435 162
duke@435 163 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
duke@435 164 if (JvmtiExport::can_pop_frame()) {
duke@435 165 Label L;
duke@435 166
duke@435 167 // Check the "pending popframe condition" flag in the current thread
duke@435 168 Address popframe_condition_addr(G2_thread, 0, in_bytes(JavaThread::popframe_condition_offset()));
duke@435 169 ld(popframe_condition_addr, scratch_reg);
duke@435 170
duke@435 171 // Initiate popframe handling only if it is not already being processed. If the flag
duke@435 172 // has the popframe_processing bit set, it means that this code is called *during* popframe
duke@435 173 // handling - we don't want to reenter.
duke@435 174 btst(JavaThread::popframe_pending_bit, scratch_reg);
duke@435 175 br(zero, false, pt, L);
duke@435 176 delayed()->nop();
duke@435 177 btst(JavaThread::popframe_processing_bit, scratch_reg);
duke@435 178 br(notZero, false, pt, L);
duke@435 179 delayed()->nop();
duke@435 180
duke@435 181 // Call Interpreter::remove_activation_preserving_args_entry() to get the
duke@435 182 // address of the same-named entrypoint in the generated interpreter code.
duke@435 183 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
duke@435 184
duke@435 185 // Jump to Interpreter::_remove_activation_preserving_args_entry
duke@435 186 jmpl(O0, G0, G0);
duke@435 187 delayed()->nop();
duke@435 188 bind(L);
duke@435 189 }
duke@435 190 }
duke@435 191
duke@435 192
duke@435 193 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
duke@435 194 Register thr_state = G4_scratch;
duke@435 195 ld_ptr(Address(G2_thread, 0, in_bytes(JavaThread::jvmti_thread_state_offset())),
duke@435 196 thr_state);
duke@435 197 const Address tos_addr(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_tos_offset()));
duke@435 198 const Address oop_addr(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_oop_offset()));
duke@435 199 const Address val_addr(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_value_offset()));
duke@435 200 switch (state) {
duke@435 201 case ltos: ld_long(val_addr, Otos_l); break;
duke@435 202 case atos: ld_ptr(oop_addr, Otos_l);
duke@435 203 st_ptr(G0, oop_addr); break;
duke@435 204 case btos: // fall through
duke@435 205 case ctos: // fall through
duke@435 206 case stos: // fall through
duke@435 207 case itos: ld(val_addr, Otos_l1); break;
duke@435 208 case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
duke@435 209 case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
duke@435 210 case vtos: /* nothing to do */ break;
duke@435 211 default : ShouldNotReachHere();
duke@435 212 }
duke@435 213 // Clean up tos value in the jvmti thread state
duke@435 214 or3(G0, ilgl, G3_scratch);
duke@435 215 stw(G3_scratch, tos_addr);
duke@435 216 st_long(G0, val_addr);
duke@435 217 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 218 }
duke@435 219
duke@435 220
duke@435 221 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
duke@435 222 if (JvmtiExport::can_force_early_return()) {
duke@435 223 Label L;
duke@435 224 Register thr_state = G3_scratch;
duke@435 225 ld_ptr(Address(G2_thread, 0, in_bytes(JavaThread::jvmti_thread_state_offset())),
duke@435 226 thr_state);
duke@435 227 tst(thr_state);
duke@435 228 br(zero, false, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
duke@435 229 delayed()->nop();
duke@435 230
duke@435 231 // Initiate earlyret handling only if it is not already being processed.
duke@435 232 // If the flag has the earlyret_processing bit set, it means that this code
duke@435 233 // is called *during* earlyret handling - we don't want to reenter.
duke@435 234 ld(Address(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_state_offset())),
duke@435 235 G4_scratch);
duke@435 236 cmp(G4_scratch, JvmtiThreadState::earlyret_pending);
duke@435 237 br(Assembler::notEqual, false, pt, L);
duke@435 238 delayed()->nop();
duke@435 239
duke@435 240 // Call Interpreter::remove_activation_early_entry() to get the address of the
duke@435 241 // same-named entrypoint in the generated interpreter code
duke@435 242 Address tos_addr(thr_state, 0, in_bytes(JvmtiThreadState::earlyret_tos_offset()));
duke@435 243 ld(tos_addr, Otos_l1);
duke@435 244 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
duke@435 245
duke@435 246 // Jump to Interpreter::_remove_activation_early_entry
duke@435 247 jmpl(O0, G0, G0);
duke@435 248 delayed()->nop();
duke@435 249 bind(L);
duke@435 250 }
duke@435 251 }
duke@435 252
duke@435 253
duke@435 254 void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
duke@435 255 mov(arg_1, O0);
duke@435 256 MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 1);
duke@435 257 }
duke@435 258 #endif /* CC_INTERP */
duke@435 259
duke@435 260
duke@435 261 #ifndef CC_INTERP
duke@435 262
duke@435 263 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
duke@435 264 assert_not_delayed();
duke@435 265 dispatch_Lbyte_code(state, table);
duke@435 266 }
duke@435 267
duke@435 268
duke@435 269 void InterpreterMacroAssembler::dispatch_normal(TosState state) {
duke@435 270 dispatch_base(state, Interpreter::normal_table(state));
duke@435 271 }
duke@435 272
duke@435 273
duke@435 274 void InterpreterMacroAssembler::dispatch_only(TosState state) {
duke@435 275 dispatch_base(state, Interpreter::dispatch_table(state));
duke@435 276 }
duke@435 277
duke@435 278
duke@435 279 // common code to dispatch and dispatch_only
duke@435 280 // dispatch value in Lbyte_code and increment Lbcp
duke@435 281
duke@435 282 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
duke@435 283 verify_FPU(1, state);
duke@435 284 // %%%%% maybe implement +VerifyActivationFrameSize here
duke@435 285 //verify_thread(); //too slow; we will just verify on method entry & exit
duke@435 286 if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 287 #ifdef FAST_DISPATCH
duke@435 288 if (table == Interpreter::dispatch_table(state)) {
duke@435 289 // use IdispatchTables
duke@435 290 add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
duke@435 291 // add offset to correct dispatch table
duke@435 292 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
duke@435 293 ld_ptr(IdispatchTables, Lbyte_code, G3_scratch); // get entry addr
duke@435 294 } else {
duke@435 295 #endif
duke@435 296 // dispatch table to use
duke@435 297 Address tbl(G3_scratch, (address)table);
duke@435 298
duke@435 299 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
duke@435 300 load_address(tbl); // compute addr of table
duke@435 301 ld_ptr(G3_scratch, Lbyte_code, G3_scratch); // get entry addr
duke@435 302 #ifdef FAST_DISPATCH
duke@435 303 }
duke@435 304 #endif
duke@435 305 jmp( G3_scratch, 0 );
duke@435 306 if (bcp_incr != 0) delayed()->inc(Lbcp, bcp_incr);
duke@435 307 else delayed()->nop();
duke@435 308 }
duke@435 309
duke@435 310
duke@435 311 // Helpers for expression stack
duke@435 312
duke@435 313 // Longs and doubles are Category 2 computational types in the
duke@435 314 // JVM specification (section 3.11.1) and take 2 expression stack or
duke@435 315 // local slots.
duke@435 316 // Aligning them on 32 bit with tagged stacks is hard because the code generated
duke@435 317 // for the dup* bytecodes depends on what types are already on the stack.
duke@435 318 // If the types are split into the two stack/local slots, that is much easier
duke@435 319 // (and we can use 0 for non-reference tags).
duke@435 320
duke@435 321 // Known good alignment in _LP64 but unknown otherwise
duke@435 322 void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
duke@435 323 assert_not_delayed();
duke@435 324
duke@435 325 #ifdef _LP64
duke@435 326 ldf(FloatRegisterImpl::D, r1, offset, d);
duke@435 327 #else
duke@435 328 ldf(FloatRegisterImpl::S, r1, offset, d);
duke@435 329 ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize(), d->successor());
duke@435 330 #endif
duke@435 331 }
duke@435 332
duke@435 333 // Known good alignment in _LP64 but unknown otherwise
duke@435 334 void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
duke@435 335 assert_not_delayed();
duke@435 336
duke@435 337 #ifdef _LP64
duke@435 338 stf(FloatRegisterImpl::D, d, r1, offset);
duke@435 339 // store something more useful here
duke@435 340 debug_only(stx(G0, r1, offset+Interpreter::stackElementSize());)
duke@435 341 #else
duke@435 342 stf(FloatRegisterImpl::S, d, r1, offset);
duke@435 343 stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize());
duke@435 344 #endif
duke@435 345 }
duke@435 346
duke@435 347
duke@435 348 // Known good alignment in _LP64 but unknown otherwise
duke@435 349 void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
duke@435 350 assert_not_delayed();
duke@435 351 #ifdef _LP64
duke@435 352 ldx(r1, offset, rd);
duke@435 353 #else
duke@435 354 ld(r1, offset, rd);
duke@435 355 ld(r1, offset + Interpreter::stackElementSize(), rd->successor());
duke@435 356 #endif
duke@435 357 }
duke@435 358
duke@435 359 // Known good alignment in _LP64 but unknown otherwise
duke@435 360 void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
duke@435 361 assert_not_delayed();
duke@435 362
duke@435 363 #ifdef _LP64
duke@435 364 stx(l, r1, offset);
duke@435 365 // store something more useful here
duke@435 366 debug_only(stx(G0, r1, offset+Interpreter::stackElementSize());)
duke@435 367 #else
duke@435 368 st(l, r1, offset);
duke@435 369 st(l->successor(), r1, offset + Interpreter::stackElementSize());
duke@435 370 #endif
duke@435 371 }
duke@435 372
duke@435 373 #ifdef ASSERT
duke@435 374 void InterpreterMacroAssembler::verify_stack_tag(frame::Tag t,
duke@435 375 Register r,
duke@435 376 Register scratch) {
duke@435 377 if (TaggedStackInterpreter) {
duke@435 378 Label ok, long_ok;
duke@435 379 ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(0), r);
duke@435 380 if (t == frame::TagCategory2) {
duke@435 381 cmp(r, G0);
duke@435 382 brx(Assembler::equal, false, Assembler::pt, long_ok);
duke@435 383 delayed()->ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(1), r);
duke@435 384 stop("stack long/double tag value bad");
duke@435 385 bind(long_ok);
duke@435 386 cmp(r, G0);
duke@435 387 } else if (t == frame::TagValue) {
duke@435 388 cmp(r, G0);
duke@435 389 } else {
duke@435 390 assert_different_registers(r, scratch);
duke@435 391 mov(t, scratch);
duke@435 392 cmp(r, scratch);
duke@435 393 }
duke@435 394 brx(Assembler::equal, false, Assembler::pt, ok);
duke@435 395 delayed()->nop();
duke@435 396 // Also compare if the stack value is zero, then the tag might
duke@435 397 // not have been set coming from deopt.
duke@435 398 ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
duke@435 399 cmp(r, G0);
duke@435 400 brx(Assembler::equal, false, Assembler::pt, ok);
duke@435 401 delayed()->nop();
duke@435 402 stop("Stack tag value is bad");
duke@435 403 bind(ok);
duke@435 404 }
duke@435 405 }
duke@435 406 #endif // ASSERT
duke@435 407
duke@435 408 void InterpreterMacroAssembler::pop_i(Register r) {
duke@435 409 assert_not_delayed();
duke@435 410 // Uses destination register r for scratch
duke@435 411 debug_only(verify_stack_tag(frame::TagValue, r));
duke@435 412 ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
duke@435 413 inc(Lesp, Interpreter::stackElementSize());
duke@435 414 debug_only(verify_esp(Lesp));
duke@435 415 }
duke@435 416
duke@435 417 void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
duke@435 418 assert_not_delayed();
duke@435 419 // Uses destination register r for scratch
duke@435 420 debug_only(verify_stack_tag(frame::TagReference, r, scratch));
duke@435 421 ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
duke@435 422 inc(Lesp, Interpreter::stackElementSize());
duke@435 423 debug_only(verify_esp(Lesp));
duke@435 424 }
duke@435 425
duke@435 426 void InterpreterMacroAssembler::pop_l(Register r) {
duke@435 427 assert_not_delayed();
duke@435 428 // Uses destination register r for scratch
duke@435 429 debug_only(verify_stack_tag(frame::TagCategory2, r));
duke@435 430 load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
duke@435 431 inc(Lesp, 2*Interpreter::stackElementSize());
duke@435 432 debug_only(verify_esp(Lesp));
duke@435 433 }
duke@435 434
duke@435 435
duke@435 436 void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
duke@435 437 assert_not_delayed();
duke@435 438 debug_only(verify_stack_tag(frame::TagValue, scratch));
duke@435 439 ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
duke@435 440 inc(Lesp, Interpreter::stackElementSize());
duke@435 441 debug_only(verify_esp(Lesp));
duke@435 442 }
duke@435 443
duke@435 444
duke@435 445 void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
duke@435 446 assert_not_delayed();
duke@435 447 debug_only(verify_stack_tag(frame::TagCategory2, scratch));
duke@435 448 load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
duke@435 449 inc(Lesp, 2*Interpreter::stackElementSize());
duke@435 450 debug_only(verify_esp(Lesp));
duke@435 451 }
duke@435 452
duke@435 453
duke@435 454 // (Note use register first, then decrement so dec can be done during store stall)
duke@435 455 void InterpreterMacroAssembler::tag_stack(Register r) {
duke@435 456 if (TaggedStackInterpreter) {
duke@435 457 st_ptr(r, Lesp, Interpreter::tag_offset_in_bytes());
duke@435 458 }
duke@435 459 }
duke@435 460
duke@435 461 void InterpreterMacroAssembler::tag_stack(frame::Tag t, Register r) {
duke@435 462 if (TaggedStackInterpreter) {
duke@435 463 assert (frame::TagValue == 0, "TagValue must be zero");
duke@435 464 if (t == frame::TagValue) {
duke@435 465 st_ptr(G0, Lesp, Interpreter::tag_offset_in_bytes());
duke@435 466 } else if (t == frame::TagCategory2) {
duke@435 467 st_ptr(G0, Lesp, Interpreter::tag_offset_in_bytes());
duke@435 468 // Tag next slot down too
duke@435 469 st_ptr(G0, Lesp, -Interpreter::stackElementSize() + Interpreter::tag_offset_in_bytes());
duke@435 470 } else {
duke@435 471 assert_different_registers(r, O3);
duke@435 472 mov(t, O3);
duke@435 473 st_ptr(O3, Lesp, Interpreter::tag_offset_in_bytes());
duke@435 474 }
duke@435 475 }
duke@435 476 }
duke@435 477
duke@435 478 void InterpreterMacroAssembler::push_i(Register r) {
duke@435 479 assert_not_delayed();
duke@435 480 debug_only(verify_esp(Lesp));
duke@435 481 tag_stack(frame::TagValue, r);
duke@435 482 st( r, Lesp, Interpreter::value_offset_in_bytes());
duke@435 483 dec( Lesp, Interpreter::stackElementSize());
duke@435 484 }
duke@435 485
duke@435 486 void InterpreterMacroAssembler::push_ptr(Register r) {
duke@435 487 assert_not_delayed();
duke@435 488 tag_stack(frame::TagReference, r);
duke@435 489 st_ptr( r, Lesp, Interpreter::value_offset_in_bytes());
duke@435 490 dec( Lesp, Interpreter::stackElementSize());
duke@435 491 }
duke@435 492
duke@435 493 void InterpreterMacroAssembler::push_ptr(Register r, Register tag) {
duke@435 494 assert_not_delayed();
duke@435 495 tag_stack(tag);
duke@435 496 st_ptr(r, Lesp, Interpreter::value_offset_in_bytes());
duke@435 497 dec( Lesp, Interpreter::stackElementSize());
duke@435 498 }
duke@435 499
duke@435 500 // remember: our convention for longs in SPARC is:
duke@435 501 // O0 (Otos_l1) has high-order part in first word,
duke@435 502 // O1 (Otos_l2) has low-order part in second word
duke@435 503
duke@435 504 void InterpreterMacroAssembler::push_l(Register r) {
duke@435 505 assert_not_delayed();
duke@435 506 debug_only(verify_esp(Lesp));
duke@435 507 tag_stack(frame::TagCategory2, r);
duke@435 508 // Longs are in stored in memory-correct order, even if unaligned.
duke@435 509 // and may be separated by stack tags.
duke@435 510 int offset = -Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
duke@435 511 store_unaligned_long(r, Lesp, offset);
duke@435 512 dec(Lesp, 2 * Interpreter::stackElementSize());
duke@435 513 }
duke@435 514
duke@435 515
duke@435 516 void InterpreterMacroAssembler::push_f(FloatRegister f) {
duke@435 517 assert_not_delayed();
duke@435 518 debug_only(verify_esp(Lesp));
duke@435 519 tag_stack(frame::TagValue, Otos_i);
duke@435 520 stf(FloatRegisterImpl::S, f, Lesp, Interpreter::value_offset_in_bytes());
duke@435 521 dec(Lesp, Interpreter::stackElementSize());
duke@435 522 }
duke@435 523
duke@435 524
duke@435 525 void InterpreterMacroAssembler::push_d(FloatRegister d) {
duke@435 526 assert_not_delayed();
duke@435 527 debug_only(verify_esp(Lesp));
duke@435 528 tag_stack(frame::TagCategory2, Otos_i);
duke@435 529 // Longs are in stored in memory-correct order, even if unaligned.
duke@435 530 // and may be separated by stack tags.
duke@435 531 int offset = -Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
duke@435 532 store_unaligned_double(d, Lesp, offset);
duke@435 533 dec(Lesp, 2 * Interpreter::stackElementSize());
duke@435 534 }
duke@435 535
duke@435 536
duke@435 537 void InterpreterMacroAssembler::push(TosState state) {
duke@435 538 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 539 switch (state) {
duke@435 540 case atos: push_ptr(); break;
duke@435 541 case btos: push_i(); break;
duke@435 542 case ctos:
duke@435 543 case stos: push_i(); break;
duke@435 544 case itos: push_i(); break;
duke@435 545 case ltos: push_l(); break;
duke@435 546 case ftos: push_f(); break;
duke@435 547 case dtos: push_d(); break;
duke@435 548 case vtos: /* nothing to do */ break;
duke@435 549 default : ShouldNotReachHere();
duke@435 550 }
duke@435 551 }
duke@435 552
duke@435 553
duke@435 554 void InterpreterMacroAssembler::pop(TosState state) {
duke@435 555 switch (state) {
duke@435 556 case atos: pop_ptr(); break;
duke@435 557 case btos: pop_i(); break;
duke@435 558 case ctos:
duke@435 559 case stos: pop_i(); break;
duke@435 560 case itos: pop_i(); break;
duke@435 561 case ltos: pop_l(); break;
duke@435 562 case ftos: pop_f(); break;
duke@435 563 case dtos: pop_d(); break;
duke@435 564 case vtos: /* nothing to do */ break;
duke@435 565 default : ShouldNotReachHere();
duke@435 566 }
duke@435 567 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 568 }
duke@435 569
duke@435 570
duke@435 571 // Tagged stack helpers for swap and dup
duke@435 572 void InterpreterMacroAssembler::load_ptr_and_tag(int n, Register val,
duke@435 573 Register tag) {
duke@435 574 ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
duke@435 575 if (TaggedStackInterpreter) {
duke@435 576 ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(n), tag);
duke@435 577 }
duke@435 578 }
duke@435 579 void InterpreterMacroAssembler::store_ptr_and_tag(int n, Register val,
duke@435 580 Register tag) {
duke@435 581 st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
duke@435 582 if (TaggedStackInterpreter) {
duke@435 583 st_ptr(tag, Lesp, Interpreter::expr_tag_offset_in_bytes(n));
duke@435 584 }
duke@435 585 }
duke@435 586
duke@435 587
duke@435 588 void InterpreterMacroAssembler::load_receiver(Register param_count,
duke@435 589 Register recv) {
duke@435 590
duke@435 591 sll(param_count, Interpreter::logStackElementSize(), param_count);
duke@435 592 if (TaggedStackInterpreter) {
duke@435 593 add(param_count, Interpreter::value_offset_in_bytes(), param_count); // get obj address
duke@435 594 }
duke@435 595 ld_ptr(Lesp, param_count, recv); // gets receiver Oop
duke@435 596 }
duke@435 597
duke@435 598 void InterpreterMacroAssembler::empty_expression_stack() {
duke@435 599 // Reset Lesp.
duke@435 600 sub( Lmonitors, wordSize, Lesp );
duke@435 601
duke@435 602 // Reset SP by subtracting more space from Lesp.
duke@435 603 Label done;
duke@435 604
duke@435 605 const Address max_stack (Lmethod, 0, in_bytes(methodOopDesc::max_stack_offset()));
duke@435 606 const Address access_flags(Lmethod, 0, in_bytes(methodOopDesc::access_flags_offset()));
duke@435 607
duke@435 608 verify_oop(Lmethod);
duke@435 609
duke@435 610
duke@435 611 assert( G4_scratch != Gframe_size,
duke@435 612 "Only you can prevent register aliasing!");
duke@435 613
duke@435 614 // A native does not need to do this, since its callee does not change SP.
duke@435 615 ld(access_flags, Gframe_size);
duke@435 616 btst(JVM_ACC_NATIVE, Gframe_size);
duke@435 617 br(Assembler::notZero, false, Assembler::pt, done);
duke@435 618 delayed()->nop();
duke@435 619
duke@435 620 //
duke@435 621 // Compute max expression stack+register save area
duke@435 622 //
duke@435 623 lduh( max_stack, Gframe_size );
duke@435 624 if (TaggedStackInterpreter) sll ( Gframe_size, 1, Gframe_size); // max_stack * 2 for TAGS
duke@435 625 add( Gframe_size, frame::memory_parameter_word_sp_offset, Gframe_size );
duke@435 626
duke@435 627 //
duke@435 628 // now set up a stack frame with the size computed above
duke@435 629 //
duke@435 630 //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
duke@435 631 sll( Gframe_size, LogBytesPerWord, Gframe_size );
duke@435 632 sub( Lesp, Gframe_size, Gframe_size );
duke@435 633 and3( Gframe_size, -(2 * wordSize), Gframe_size ); // align SP (downwards) to an 8/16-byte boundary
duke@435 634 debug_only(verify_sp(Gframe_size, G4_scratch));
duke@435 635 #ifdef _LP64
duke@435 636 sub(Gframe_size, STACK_BIAS, Gframe_size );
duke@435 637 #endif
duke@435 638 mov(Gframe_size, SP);
duke@435 639
duke@435 640 bind(done);
duke@435 641 }
duke@435 642
duke@435 643
duke@435 644 #ifdef ASSERT
duke@435 645 void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
duke@435 646 Label Bad, OK;
duke@435 647
duke@435 648 // Saved SP must be aligned.
duke@435 649 #ifdef _LP64
duke@435 650 btst(2*BytesPerWord-1, Rsp);
duke@435 651 #else
duke@435 652 btst(LongAlignmentMask, Rsp);
duke@435 653 #endif
duke@435 654 br(Assembler::notZero, false, Assembler::pn, Bad);
duke@435 655 delayed()->nop();
duke@435 656
duke@435 657 // Saved SP, plus register window size, must not be above FP.
duke@435 658 add(Rsp, frame::register_save_words * wordSize, Rtemp);
duke@435 659 #ifdef _LP64
duke@435 660 sub(Rtemp, STACK_BIAS, Rtemp); // Bias Rtemp before cmp to FP
duke@435 661 #endif
duke@435 662 cmp(Rtemp, FP);
duke@435 663 brx(Assembler::greaterUnsigned, false, Assembler::pn, Bad);
duke@435 664 delayed()->nop();
duke@435 665
duke@435 666 // Saved SP must not be ridiculously below current SP.
duke@435 667 size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
duke@435 668 set(maxstack, Rtemp);
duke@435 669 sub(SP, Rtemp, Rtemp);
duke@435 670 #ifdef _LP64
duke@435 671 add(Rtemp, STACK_BIAS, Rtemp); // Unbias Rtemp before cmp to Rsp
duke@435 672 #endif
duke@435 673 cmp(Rsp, Rtemp);
duke@435 674 brx(Assembler::lessUnsigned, false, Assembler::pn, Bad);
duke@435 675 delayed()->nop();
duke@435 676
duke@435 677 br(Assembler::always, false, Assembler::pn, OK);
duke@435 678 delayed()->nop();
duke@435 679
duke@435 680 bind(Bad);
duke@435 681 stop("on return to interpreted call, restored SP is corrupted");
duke@435 682
duke@435 683 bind(OK);
duke@435 684 }
duke@435 685
duke@435 686
duke@435 687 void InterpreterMacroAssembler::verify_esp(Register Resp) {
duke@435 688 // about to read or write Resp[0]
duke@435 689 // make sure it is not in the monitors or the register save area
duke@435 690 Label OK1, OK2;
duke@435 691
duke@435 692 cmp(Resp, Lmonitors);
duke@435 693 brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
duke@435 694 delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
duke@435 695 stop("too many pops: Lesp points into monitor area");
duke@435 696 bind(OK1);
duke@435 697 #ifdef _LP64
duke@435 698 sub(Resp, STACK_BIAS, Resp);
duke@435 699 #endif
duke@435 700 cmp(Resp, SP);
duke@435 701 brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
duke@435 702 delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
duke@435 703 stop("too many pushes: Lesp points into register window");
duke@435 704 bind(OK2);
duke@435 705 }
duke@435 706 #endif // ASSERT
duke@435 707
duke@435 708 // Load compiled (i2c) or interpreter entry when calling from interpreted and
duke@435 709 // do the call. Centralized so that all interpreter calls will do the same actions.
duke@435 710 // If jvmti single stepping is on for a thread we must not call compiled code.
duke@435 711 void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
duke@435 712
duke@435 713 // Assume we want to go compiled if available
duke@435 714
duke@435 715 ld_ptr(G5_method, in_bytes(methodOopDesc::from_interpreted_offset()), target);
duke@435 716
duke@435 717 if (JvmtiExport::can_post_interpreter_events()) {
duke@435 718 // JVMTI events, such as single-stepping, are implemented partly by avoiding running
duke@435 719 // compiled code in threads for which the event is enabled. Check here for
duke@435 720 // interp_only_mode if these events CAN be enabled.
duke@435 721 verify_thread();
duke@435 722 Label skip_compiled_code;
duke@435 723
duke@435 724 const Address interp_only (G2_thread, 0, in_bytes(JavaThread::interp_only_mode_offset()));
duke@435 725
duke@435 726 ld(interp_only, scratch);
duke@435 727 tst(scratch);
duke@435 728 br(Assembler::notZero, true, Assembler::pn, skip_compiled_code);
duke@435 729 delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), target);
duke@435 730 bind(skip_compiled_code);
duke@435 731 }
duke@435 732
duke@435 733 // the i2c_adapters need methodOop in G5_method (right? %%%)
duke@435 734 // do the call
duke@435 735 #ifdef ASSERT
duke@435 736 {
duke@435 737 Label ok;
duke@435 738 br_notnull(target, false, Assembler::pt, ok);
duke@435 739 delayed()->nop();
duke@435 740 stop("null entry point");
duke@435 741 bind(ok);
duke@435 742 }
duke@435 743 #endif // ASSERT
duke@435 744
duke@435 745 // Adjust Rret first so Llast_SP can be same as Rret
duke@435 746 add(Rret, -frame::pc_return_offset, O7);
duke@435 747 add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
duke@435 748 // Record SP so we can remove any stack space allocated by adapter transition
duke@435 749 jmp(target, 0);
duke@435 750 delayed()->mov(SP, Llast_SP);
duke@435 751 }
duke@435 752
duke@435 753 void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
duke@435 754 assert_not_delayed();
duke@435 755
duke@435 756 Label not_taken;
duke@435 757 if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
duke@435 758 else br (cc, false, Assembler::pn, not_taken);
duke@435 759 delayed()->nop();
duke@435 760
duke@435 761 TemplateTable::branch(false,false);
duke@435 762
duke@435 763 bind(not_taken);
duke@435 764
duke@435 765 profile_not_taken_branch(G3_scratch);
duke@435 766 }
duke@435 767
duke@435 768
duke@435 769 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
duke@435 770 int bcp_offset,
duke@435 771 Register Rtmp,
duke@435 772 Register Rdst,
duke@435 773 signedOrNot is_signed,
duke@435 774 setCCOrNot should_set_CC ) {
duke@435 775 assert(Rtmp != Rdst, "need separate temp register");
duke@435 776 assert_not_delayed();
duke@435 777 switch (is_signed) {
duke@435 778 default: ShouldNotReachHere();
duke@435 779
duke@435 780 case Signed: ldsb( Lbcp, bcp_offset, Rdst ); break; // high byte
duke@435 781 case Unsigned: ldub( Lbcp, bcp_offset, Rdst ); break; // high byte
duke@435 782 }
duke@435 783 ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
duke@435 784 sll( Rdst, BitsPerByte, Rdst);
duke@435 785 switch (should_set_CC ) {
duke@435 786 default: ShouldNotReachHere();
duke@435 787
duke@435 788 case set_CC: orcc( Rdst, Rtmp, Rdst ); break;
duke@435 789 case dont_set_CC: or3( Rdst, Rtmp, Rdst ); break;
duke@435 790 }
duke@435 791 }
duke@435 792
duke@435 793
duke@435 794 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
duke@435 795 int bcp_offset,
duke@435 796 Register Rtmp,
duke@435 797 Register Rdst,
duke@435 798 setCCOrNot should_set_CC ) {
duke@435 799 assert(Rtmp != Rdst, "need separate temp register");
duke@435 800 assert_not_delayed();
duke@435 801 add( Lbcp, bcp_offset, Rtmp);
duke@435 802 andcc( Rtmp, 3, G0);
duke@435 803 Label aligned;
duke@435 804 switch (should_set_CC ) {
duke@435 805 default: ShouldNotReachHere();
duke@435 806
duke@435 807 case set_CC: break;
duke@435 808 case dont_set_CC: break;
duke@435 809 }
duke@435 810
duke@435 811 br(Assembler::zero, true, Assembler::pn, aligned);
duke@435 812 #ifdef _LP64
duke@435 813 delayed()->ldsw(Rtmp, 0, Rdst);
duke@435 814 #else
duke@435 815 delayed()->ld(Rtmp, 0, Rdst);
duke@435 816 #endif
duke@435 817
duke@435 818 ldub(Lbcp, bcp_offset + 3, Rdst);
duke@435 819 ldub(Lbcp, bcp_offset + 2, Rtmp); sll(Rtmp, 8, Rtmp); or3(Rtmp, Rdst, Rdst);
duke@435 820 ldub(Lbcp, bcp_offset + 1, Rtmp); sll(Rtmp, 16, Rtmp); or3(Rtmp, Rdst, Rdst);
duke@435 821 #ifdef _LP64
duke@435 822 ldsb(Lbcp, bcp_offset + 0, Rtmp); sll(Rtmp, 24, Rtmp);
duke@435 823 #else
duke@435 824 // Unsigned load is faster than signed on some implementations
duke@435 825 ldub(Lbcp, bcp_offset + 0, Rtmp); sll(Rtmp, 24, Rtmp);
duke@435 826 #endif
duke@435 827 or3(Rtmp, Rdst, Rdst );
duke@435 828
duke@435 829 bind(aligned);
duke@435 830 if (should_set_CC == set_CC) tst(Rdst);
duke@435 831 }
duke@435 832
duke@435 833
duke@435 834 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp, int bcp_offset) {
duke@435 835 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
duke@435 836 assert_different_registers(cache, tmp);
duke@435 837 assert_not_delayed();
duke@435 838 get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
duke@435 839 // convert from field index to ConstantPoolCacheEntry index
duke@435 840 // and from word index to byte offset
duke@435 841 sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
duke@435 842 add(LcpoolCache, tmp, cache);
duke@435 843 }
duke@435 844
duke@435 845
duke@435 846 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp, int bcp_offset) {
duke@435 847 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
duke@435 848 assert_different_registers(cache, tmp);
duke@435 849 assert_not_delayed();
duke@435 850 get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
duke@435 851 // convert from field index to ConstantPoolCacheEntry index
duke@435 852 // and from word index to byte offset
duke@435 853 sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
duke@435 854 // skip past the header
duke@435 855 add(tmp, in_bytes(constantPoolCacheOopDesc::base_offset()), tmp);
duke@435 856 // construct pointer to cache entry
duke@435 857 add(LcpoolCache, tmp, cache);
duke@435 858 }
duke@435 859
duke@435 860
duke@435 861 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
coleenp@548 862 // a subtype of super_klass. Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
duke@435 863 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
duke@435 864 Register Rsuper_klass,
duke@435 865 Register Rtmp1,
duke@435 866 Register Rtmp2,
duke@435 867 Register Rtmp3,
duke@435 868 Label &ok_is_subtype ) {
jrose@1079 869 Label not_subtype;
duke@435 870
duke@435 871 // Profile the not-null value's klass.
duke@435 872 profile_typecheck(Rsub_klass, Rtmp1);
duke@435 873
jrose@1079 874 check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass,
jrose@1079 875 Rtmp1, Rtmp2,
jrose@1079 876 &ok_is_subtype, &not_subtype, NULL);
jrose@1079 877
jrose@1079 878 check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass,
jrose@1079 879 Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg,
jrose@1079 880 &ok_is_subtype, NULL);
duke@435 881
duke@435 882 bind(not_subtype);
duke@435 883 profile_typecheck_failed(Rtmp1);
duke@435 884 }
duke@435 885
duke@435 886 // Separate these two to allow for delay slot in middle
duke@435 887 // These are used to do a test and full jump to exception-throwing code.
duke@435 888
duke@435 889 // %%%%% Could possibly reoptimize this by testing to see if could use
duke@435 890 // a single conditional branch (i.e. if span is small enough.
duke@435 891 // If you go that route, than get rid of the split and give up
duke@435 892 // on the delay-slot hack.
duke@435 893
duke@435 894 void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
duke@435 895 Label& ok ) {
duke@435 896 assert_not_delayed();
duke@435 897 br(ok_condition, true, pt, ok);
duke@435 898 // DELAY SLOT
duke@435 899 }
duke@435 900
duke@435 901 void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
duke@435 902 Label& ok ) {
duke@435 903 assert_not_delayed();
duke@435 904 bp( ok_condition, true, Assembler::xcc, pt, ok);
duke@435 905 // DELAY SLOT
duke@435 906 }
duke@435 907
duke@435 908 void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
duke@435 909 Label& ok ) {
duke@435 910 assert_not_delayed();
duke@435 911 brx(ok_condition, true, pt, ok);
duke@435 912 // DELAY SLOT
duke@435 913 }
duke@435 914
duke@435 915 void InterpreterMacroAssembler::throw_if_not_2( address throw_entry_point,
duke@435 916 Register Rscratch,
duke@435 917 Label& ok ) {
duke@435 918 assert(throw_entry_point != NULL, "entry point must be generated by now");
duke@435 919 Address dest(Rscratch, throw_entry_point);
duke@435 920 jump_to(dest);
duke@435 921 delayed()->nop();
duke@435 922 bind(ok);
duke@435 923 }
duke@435 924
duke@435 925
duke@435 926 // And if you cannot use the delay slot, here is a shorthand:
duke@435 927
duke@435 928 void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
duke@435 929 address throw_entry_point,
duke@435 930 Register Rscratch ) {
duke@435 931 Label ok;
duke@435 932 if (ok_condition != never) {
duke@435 933 throw_if_not_1_icc( ok_condition, ok);
duke@435 934 delayed()->nop();
duke@435 935 }
duke@435 936 throw_if_not_2( throw_entry_point, Rscratch, ok);
duke@435 937 }
duke@435 938 void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
duke@435 939 address throw_entry_point,
duke@435 940 Register Rscratch ) {
duke@435 941 Label ok;
duke@435 942 if (ok_condition != never) {
duke@435 943 throw_if_not_1_xcc( ok_condition, ok);
duke@435 944 delayed()->nop();
duke@435 945 }
duke@435 946 throw_if_not_2( throw_entry_point, Rscratch, ok);
duke@435 947 }
duke@435 948 void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
duke@435 949 address throw_entry_point,
duke@435 950 Register Rscratch ) {
duke@435 951 Label ok;
duke@435 952 if (ok_condition != never) {
duke@435 953 throw_if_not_1_x( ok_condition, ok);
duke@435 954 delayed()->nop();
duke@435 955 }
duke@435 956 throw_if_not_2( throw_entry_point, Rscratch, ok);
duke@435 957 }
duke@435 958
duke@435 959 // Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
duke@435 960 // Note: res is still shy of address by array offset into object.
duke@435 961
duke@435 962 void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
duke@435 963 assert_not_delayed();
duke@435 964
duke@435 965 verify_oop(array);
duke@435 966 #ifdef _LP64
duke@435 967 // sign extend since tos (index) can be a 32bit value
duke@435 968 sra(index, G0, index);
duke@435 969 #endif // _LP64
duke@435 970
duke@435 971 // check array
duke@435 972 Label ptr_ok;
duke@435 973 tst(array);
duke@435 974 throw_if_not_1_x( notZero, ptr_ok );
duke@435 975 delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
duke@435 976 throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
duke@435 977
duke@435 978 Label index_ok;
duke@435 979 cmp(index, tmp);
duke@435 980 throw_if_not_1_icc( lessUnsigned, index_ok );
duke@435 981 if (index_shift > 0) delayed()->sll(index, index_shift, index);
duke@435 982 else delayed()->add(array, index, res); // addr - const offset in index
duke@435 983 // convention: move aberrant index into G3_scratch for exception message
duke@435 984 mov(index, G3_scratch);
duke@435 985 throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
duke@435 986
duke@435 987 // add offset if didn't do it in delay slot
duke@435 988 if (index_shift > 0) add(array, index, res); // addr - const offset in index
duke@435 989 }
duke@435 990
duke@435 991
duke@435 992 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
duke@435 993 assert_not_delayed();
duke@435 994
duke@435 995 // pop array
duke@435 996 pop_ptr(array);
duke@435 997
duke@435 998 // check array
duke@435 999 index_check_without_pop(array, index, index_shift, tmp, res);
duke@435 1000 }
duke@435 1001
duke@435 1002
duke@435 1003 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
duke@435 1004 ld_ptr(Lmethod, in_bytes(methodOopDesc::constants_offset()), Rdst);
duke@435 1005 }
duke@435 1006
duke@435 1007
duke@435 1008 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
duke@435 1009 get_constant_pool(Rdst);
duke@435 1010 ld_ptr(Rdst, constantPoolOopDesc::cache_offset_in_bytes(), Rdst);
duke@435 1011 }
duke@435 1012
duke@435 1013
duke@435 1014 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
duke@435 1015 get_constant_pool(Rcpool);
duke@435 1016 ld_ptr(Rcpool, constantPoolOopDesc::tags_offset_in_bytes(), Rtags);
duke@435 1017 }
duke@435 1018
duke@435 1019
duke@435 1020 // unlock if synchronized method
duke@435 1021 //
duke@435 1022 // Unlock the receiver if this is a synchronized method.
duke@435 1023 // Unlock any Java monitors from syncronized blocks.
duke@435 1024 //
duke@435 1025 // If there are locked Java monitors
duke@435 1026 // If throw_monitor_exception
duke@435 1027 // throws IllegalMonitorStateException
duke@435 1028 // Else if install_monitor_exception
duke@435 1029 // installs IllegalMonitorStateException
duke@435 1030 // Else
duke@435 1031 // no error processing
duke@435 1032 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
duke@435 1033 bool throw_monitor_exception,
duke@435 1034 bool install_monitor_exception) {
duke@435 1035 Label unlocked, unlock, no_unlock;
duke@435 1036
duke@435 1037 // get the value of _do_not_unlock_if_synchronized into G1_scratch
duke@435 1038 const Address do_not_unlock_if_synchronized(G2_thread, 0,
duke@435 1039 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
duke@435 1040 ldbool(do_not_unlock_if_synchronized, G1_scratch);
duke@435 1041 stbool(G0, do_not_unlock_if_synchronized); // reset the flag
duke@435 1042
duke@435 1043 // check if synchronized method
duke@435 1044 const Address access_flags(Lmethod, 0, in_bytes(methodOopDesc::access_flags_offset()));
duke@435 1045 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 1046 push(state); // save tos
duke@435 1047 ld(access_flags, G3_scratch);
duke@435 1048 btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
duke@435 1049 br( zero, false, pt, unlocked);
duke@435 1050 delayed()->nop();
duke@435 1051
duke@435 1052 // Don't unlock anything if the _do_not_unlock_if_synchronized flag
duke@435 1053 // is set.
duke@435 1054 tstbool(G1_scratch);
duke@435 1055 br(Assembler::notZero, false, pn, no_unlock);
duke@435 1056 delayed()->nop();
duke@435 1057
duke@435 1058 // BasicObjectLock will be first in list, since this is a synchronized method. However, need
duke@435 1059 // to check that the object has not been unlocked by an explicit monitorexit bytecode.
duke@435 1060
duke@435 1061 //Intel: if (throw_monitor_exception) ... else ...
duke@435 1062 // Entry already unlocked, need to throw exception
duke@435 1063 //...
duke@435 1064
duke@435 1065 // pass top-most monitor elem
duke@435 1066 add( top_most_monitor(), O1 );
duke@435 1067
duke@435 1068 ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
duke@435 1069 br_notnull(G3_scratch, false, pt, unlock);
duke@435 1070 delayed()->nop();
duke@435 1071
duke@435 1072 if (throw_monitor_exception) {
duke@435 1073 // Entry already unlocked need to throw an exception
duke@435 1074 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
duke@435 1075 should_not_reach_here();
duke@435 1076 } else {
duke@435 1077 // Monitor already unlocked during a stack unroll.
duke@435 1078 // If requested, install an illegal_monitor_state_exception.
duke@435 1079 // Continue with stack unrolling.
duke@435 1080 if (install_monitor_exception) {
duke@435 1081 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
duke@435 1082 }
duke@435 1083 ba(false, unlocked);
duke@435 1084 delayed()->nop();
duke@435 1085 }
duke@435 1086
duke@435 1087 bind(unlock);
duke@435 1088
duke@435 1089 unlock_object(O1);
duke@435 1090
duke@435 1091 bind(unlocked);
duke@435 1092
duke@435 1093 // I0, I1: Might contain return value
duke@435 1094
duke@435 1095 // Check that all monitors are unlocked
duke@435 1096 { Label loop, exception, entry, restart;
duke@435 1097
duke@435 1098 Register Rmptr = O0;
duke@435 1099 Register Rtemp = O1;
duke@435 1100 Register Rlimit = Lmonitors;
duke@435 1101 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 1102 assert( (delta & LongAlignmentMask) == 0,
duke@435 1103 "sizeof BasicObjectLock must be even number of doublewords");
duke@435 1104
duke@435 1105 #ifdef ASSERT
duke@435 1106 add(top_most_monitor(), Rmptr, delta);
duke@435 1107 { Label L;
duke@435 1108 // ensure that Rmptr starts out above (or at) Rlimit
duke@435 1109 cmp(Rmptr, Rlimit);
duke@435 1110 brx(Assembler::greaterEqualUnsigned, false, pn, L);
duke@435 1111 delayed()->nop();
duke@435 1112 stop("monitor stack has negative size");
duke@435 1113 bind(L);
duke@435 1114 }
duke@435 1115 #endif
duke@435 1116 bind(restart);
duke@435 1117 ba(false, entry);
duke@435 1118 delayed()->
duke@435 1119 add(top_most_monitor(), Rmptr, delta); // points to current entry, starting with bottom-most entry
duke@435 1120
duke@435 1121 // Entry is still locked, need to throw exception
duke@435 1122 bind(exception);
duke@435 1123 if (throw_monitor_exception) {
duke@435 1124 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
duke@435 1125 should_not_reach_here();
duke@435 1126 } else {
duke@435 1127 // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
duke@435 1128 // Unlock does not block, so don't have to worry about the frame
duke@435 1129 unlock_object(Rmptr);
duke@435 1130 if (install_monitor_exception) {
duke@435 1131 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
duke@435 1132 }
duke@435 1133 ba(false, restart);
duke@435 1134 delayed()->nop();
duke@435 1135 }
duke@435 1136
duke@435 1137 bind(loop);
duke@435 1138 cmp(Rtemp, G0); // check if current entry is used
duke@435 1139 brx(Assembler::notEqual, false, pn, exception);
duke@435 1140 delayed()->
duke@435 1141 dec(Rmptr, delta); // otherwise advance to next entry
duke@435 1142 #ifdef ASSERT
duke@435 1143 { Label L;
duke@435 1144 // ensure that Rmptr has not somehow stepped below Rlimit
duke@435 1145 cmp(Rmptr, Rlimit);
duke@435 1146 brx(Assembler::greaterEqualUnsigned, false, pn, L);
duke@435 1147 delayed()->nop();
duke@435 1148 stop("ran off the end of the monitor stack");
duke@435 1149 bind(L);
duke@435 1150 }
duke@435 1151 #endif
duke@435 1152 bind(entry);
duke@435 1153 cmp(Rmptr, Rlimit); // check if bottom reached
duke@435 1154 brx(Assembler::notEqual, true, pn, loop); // if not at bottom then check this entry
duke@435 1155 delayed()->
duke@435 1156 ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
duke@435 1157 }
duke@435 1158
duke@435 1159 bind(no_unlock);
duke@435 1160 pop(state);
duke@435 1161 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 1162 }
duke@435 1163
duke@435 1164
duke@435 1165 // remove activation
duke@435 1166 //
duke@435 1167 // Unlock the receiver if this is a synchronized method.
duke@435 1168 // Unlock any Java monitors from syncronized blocks.
duke@435 1169 // Remove the activation from the stack.
duke@435 1170 //
duke@435 1171 // If there are locked Java monitors
duke@435 1172 // If throw_monitor_exception
duke@435 1173 // throws IllegalMonitorStateException
duke@435 1174 // Else if install_monitor_exception
duke@435 1175 // installs IllegalMonitorStateException
duke@435 1176 // Else
duke@435 1177 // no error processing
duke@435 1178 void InterpreterMacroAssembler::remove_activation(TosState state,
duke@435 1179 bool throw_monitor_exception,
duke@435 1180 bool install_monitor_exception) {
duke@435 1181
duke@435 1182 unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
duke@435 1183
duke@435 1184 // save result (push state before jvmti call and pop it afterwards) and notify jvmti
duke@435 1185 notify_method_exit(false, state, NotifyJVMTI);
duke@435 1186
duke@435 1187 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 1188 verify_oop(Lmethod);
duke@435 1189 verify_thread();
duke@435 1190
duke@435 1191 // return tos
duke@435 1192 assert(Otos_l1 == Otos_i, "adjust code below");
duke@435 1193 switch (state) {
duke@435 1194 #ifdef _LP64
duke@435 1195 case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
duke@435 1196 #else
duke@435 1197 case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through // O1 -> I1
duke@435 1198 #endif
duke@435 1199 case btos: // fall through
duke@435 1200 case ctos:
duke@435 1201 case stos: // fall through
duke@435 1202 case atos: // fall through
duke@435 1203 case itos: mov(Otos_l1, Otos_l1->after_save()); break; // O0 -> I0
duke@435 1204 case ftos: // fall through
duke@435 1205 case dtos: // fall through
duke@435 1206 case vtos: /* nothing to do */ break;
duke@435 1207 default : ShouldNotReachHere();
duke@435 1208 }
duke@435 1209
duke@435 1210 #if defined(COMPILER2) && !defined(_LP64)
duke@435 1211 if (state == ltos) {
duke@435 1212 // C2 expects long results in G1 we can't tell if we're returning to interpreted
duke@435 1213 // or compiled so just be safe use G1 and O0/O1
duke@435 1214
duke@435 1215 // Shift bits into high (msb) of G1
duke@435 1216 sllx(Otos_l1->after_save(), 32, G1);
duke@435 1217 // Zero extend low bits
duke@435 1218 srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
duke@435 1219 or3 (Otos_l2->after_save(), G1, G1);
duke@435 1220 }
duke@435 1221 #endif /* COMPILER2 */
duke@435 1222
duke@435 1223 }
duke@435 1224 #endif /* CC_INTERP */
duke@435 1225
duke@435 1226
duke@435 1227 // Lock object
duke@435 1228 //
duke@435 1229 // Argument - lock_reg points to the BasicObjectLock to be used for locking,
duke@435 1230 // it must be initialized with the object to lock
duke@435 1231 void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
duke@435 1232 if (UseHeavyMonitors) {
duke@435 1233 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
duke@435 1234 }
duke@435 1235 else {
duke@435 1236 Register obj_reg = Object;
duke@435 1237 Register mark_reg = G4_scratch;
duke@435 1238 Register temp_reg = G1_scratch;
duke@435 1239 Address lock_addr = Address(lock_reg, 0, BasicObjectLock::lock_offset_in_bytes());
duke@435 1240 Address mark_addr = Address(obj_reg, 0, oopDesc::mark_offset_in_bytes());
duke@435 1241 Label done;
duke@435 1242
duke@435 1243 Label slow_case;
duke@435 1244
duke@435 1245 assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
duke@435 1246
duke@435 1247 // load markOop from object into mark_reg
duke@435 1248 ld_ptr(mark_addr, mark_reg);
duke@435 1249
duke@435 1250 if (UseBiasedLocking) {
duke@435 1251 biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
duke@435 1252 }
duke@435 1253
duke@435 1254 // get the address of basicLock on stack that will be stored in the object
duke@435 1255 // we need a temporary register here as we do not want to clobber lock_reg
duke@435 1256 // (cas clobbers the destination register)
duke@435 1257 mov(lock_reg, temp_reg);
duke@435 1258 // set mark reg to be (markOop of object | UNLOCK_VALUE)
duke@435 1259 or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
duke@435 1260 // initialize the box (Must happen before we update the object mark!)
duke@435 1261 st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
duke@435 1262 // compare and exchange object_addr, markOop | 1, stack address of basicLock
duke@435 1263 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 1264 casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
duke@435 1265 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 1266
duke@435 1267 // if the compare and exchange succeeded we are done (we saw an unlocked object)
duke@435 1268 cmp(mark_reg, temp_reg);
duke@435 1269 brx(Assembler::equal, true, Assembler::pt, done);
duke@435 1270 delayed()->nop();
duke@435 1271
duke@435 1272 // We did not see an unlocked object so try the fast recursive case
duke@435 1273
duke@435 1274 // Check if owner is self by comparing the value in the markOop of object
duke@435 1275 // with the stack pointer
duke@435 1276 sub(temp_reg, SP, temp_reg);
duke@435 1277 #ifdef _LP64
duke@435 1278 sub(temp_reg, STACK_BIAS, temp_reg);
duke@435 1279 #endif
duke@435 1280 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
duke@435 1281
duke@435 1282 // Composite "andcc" test:
duke@435 1283 // (a) %sp -vs- markword proximity check, and,
duke@435 1284 // (b) verify mark word LSBs == 0 (Stack-locked).
duke@435 1285 //
duke@435 1286 // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
duke@435 1287 // Note that the page size used for %sp proximity testing is arbitrary and is
duke@435 1288 // unrelated to the actual MMU page size. We use a 'logical' page size of
duke@435 1289 // 4096 bytes. F..FFF003 is designed to fit conveniently in the SIMM13 immediate
duke@435 1290 // field of the andcc instruction.
duke@435 1291 andcc (temp_reg, 0xFFFFF003, G0) ;
duke@435 1292
duke@435 1293 // if condition is true we are done and hence we can store 0 in the displaced
duke@435 1294 // header indicating it is a recursive lock and be done
duke@435 1295 brx(Assembler::zero, true, Assembler::pt, done);
duke@435 1296 delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
duke@435 1297
duke@435 1298 // none of the above fast optimizations worked so we have to get into the
duke@435 1299 // slow case of monitor enter
duke@435 1300 bind(slow_case);
duke@435 1301 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
duke@435 1302
duke@435 1303 bind(done);
duke@435 1304 }
duke@435 1305 }
duke@435 1306
duke@435 1307 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
duke@435 1308 //
duke@435 1309 // Argument - lock_reg points to the BasicObjectLock for lock
duke@435 1310 // Throw IllegalMonitorException if object is not locked by current thread
duke@435 1311 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
duke@435 1312 if (UseHeavyMonitors) {
duke@435 1313 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
duke@435 1314 } else {
duke@435 1315 Register obj_reg = G3_scratch;
duke@435 1316 Register mark_reg = G4_scratch;
duke@435 1317 Register displaced_header_reg = G1_scratch;
duke@435 1318 Address lock_addr = Address(lock_reg, 0, BasicObjectLock::lock_offset_in_bytes());
duke@435 1319 Address lockobj_addr = Address(lock_reg, 0, BasicObjectLock::obj_offset_in_bytes());
duke@435 1320 Address mark_addr = Address(obj_reg, 0, oopDesc::mark_offset_in_bytes());
duke@435 1321 Label done;
duke@435 1322
duke@435 1323 if (UseBiasedLocking) {
duke@435 1324 // load the object out of the BasicObjectLock
duke@435 1325 ld_ptr(lockobj_addr, obj_reg);
duke@435 1326 biased_locking_exit(mark_addr, mark_reg, done, true);
duke@435 1327 st_ptr(G0, lockobj_addr); // free entry
duke@435 1328 }
duke@435 1329
duke@435 1330 // Test first if we are in the fast recursive case
duke@435 1331 ld_ptr(lock_addr, displaced_header_reg, BasicLock::displaced_header_offset_in_bytes());
duke@435 1332 br_null(displaced_header_reg, true, Assembler::pn, done);
duke@435 1333 delayed()->st_ptr(G0, lockobj_addr); // free entry
duke@435 1334
duke@435 1335 // See if it is still a light weight lock, if so we just unlock
duke@435 1336 // the object and we are done
duke@435 1337
duke@435 1338 if (!UseBiasedLocking) {
duke@435 1339 // load the object out of the BasicObjectLock
duke@435 1340 ld_ptr(lockobj_addr, obj_reg);
duke@435 1341 }
duke@435 1342
duke@435 1343 // we have the displaced header in displaced_header_reg
duke@435 1344 // we expect to see the stack address of the basicLock in case the
duke@435 1345 // lock is still a light weight lock (lock_reg)
duke@435 1346 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 1347 casx_under_lock(mark_addr.base(), lock_reg, displaced_header_reg,
duke@435 1348 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 1349 cmp(lock_reg, displaced_header_reg);
duke@435 1350 brx(Assembler::equal, true, Assembler::pn, done);
duke@435 1351 delayed()->st_ptr(G0, lockobj_addr); // free entry
duke@435 1352
duke@435 1353 // The lock has been converted into a heavy lock and hence
duke@435 1354 // we need to get into the slow case
duke@435 1355
duke@435 1356 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
duke@435 1357
duke@435 1358 bind(done);
duke@435 1359 }
duke@435 1360 }
duke@435 1361
duke@435 1362 #ifndef CC_INTERP
duke@435 1363
duke@435 1364 // Get the method data pointer from the methodOop and set the
duke@435 1365 // specified register to its value.
duke@435 1366
duke@435 1367 void InterpreterMacroAssembler::set_method_data_pointer_offset(Register Roff) {
duke@435 1368 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1369 Label get_continue;
duke@435 1370
duke@435 1371 ld_ptr(Lmethod, in_bytes(methodOopDesc::method_data_offset()), ImethodDataPtr);
duke@435 1372 test_method_data_pointer(get_continue);
duke@435 1373 add(ImethodDataPtr, in_bytes(methodDataOopDesc::data_offset()), ImethodDataPtr);
duke@435 1374 if (Roff != noreg)
duke@435 1375 // Roff contains a method data index ("mdi"). It defaults to zero.
duke@435 1376 add(ImethodDataPtr, Roff, ImethodDataPtr);
duke@435 1377 bind(get_continue);
duke@435 1378 }
duke@435 1379
duke@435 1380 // Set the method data pointer for the current bcp.
duke@435 1381
duke@435 1382 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
duke@435 1383 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1384 Label zero_continue;
duke@435 1385
duke@435 1386 // Test MDO to avoid the call if it is NULL.
duke@435 1387 ld_ptr(Lmethod, in_bytes(methodOopDesc::method_data_offset()), ImethodDataPtr);
duke@435 1388 test_method_data_pointer(zero_continue);
duke@435 1389 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
duke@435 1390 set_method_data_pointer_offset(O0);
duke@435 1391 bind(zero_continue);
duke@435 1392 }
duke@435 1393
duke@435 1394 // Test ImethodDataPtr. If it is null, continue at the specified label
duke@435 1395
duke@435 1396 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
duke@435 1397 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1398 #ifdef _LP64
duke@435 1399 bpr(Assembler::rc_z, false, Assembler::pn, ImethodDataPtr, zero_continue);
duke@435 1400 #else
duke@435 1401 tst(ImethodDataPtr);
duke@435 1402 br(Assembler::zero, false, Assembler::pn, zero_continue);
duke@435 1403 #endif
duke@435 1404 delayed()->nop();
duke@435 1405 }
duke@435 1406
duke@435 1407 void InterpreterMacroAssembler::verify_method_data_pointer() {
duke@435 1408 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1409 #ifdef ASSERT
duke@435 1410 Label verify_continue;
duke@435 1411 test_method_data_pointer(verify_continue);
duke@435 1412
duke@435 1413 // If the mdp is valid, it will point to a DataLayout header which is
duke@435 1414 // consistent with the bcp. The converse is highly probable also.
duke@435 1415 lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
duke@435 1416 ld_ptr(Address(Lmethod, 0, in_bytes(methodOopDesc::const_offset())), O5);
duke@435 1417 add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), G3_scratch);
duke@435 1418 add(G3_scratch, O5, G3_scratch);
duke@435 1419 cmp(Lbcp, G3_scratch);
duke@435 1420 brx(Assembler::equal, false, Assembler::pt, verify_continue);
duke@435 1421
duke@435 1422 Register temp_reg = O5;
duke@435 1423 delayed()->mov(ImethodDataPtr, temp_reg);
duke@435 1424 // %%% should use call_VM_leaf here?
duke@435 1425 //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
duke@435 1426 save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
duke@435 1427 Address d_save(FP, 0, -sizeof(jdouble) + STACK_BIAS);
duke@435 1428 stf(FloatRegisterImpl::D, Ftos_d, d_save);
duke@435 1429 mov(temp_reg->after_save(), O2);
duke@435 1430 save_thread(L7_thread_cache);
duke@435 1431 call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
duke@435 1432 delayed()->nop();
duke@435 1433 restore_thread(L7_thread_cache);
duke@435 1434 ldf(FloatRegisterImpl::D, d_save, Ftos_d);
duke@435 1435 restore();
duke@435 1436 bind(verify_continue);
duke@435 1437 #endif // ASSERT
duke@435 1438 }
duke@435 1439
duke@435 1440 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
duke@435 1441 Register cur_bcp,
duke@435 1442 Register Rtmp,
duke@435 1443 Label &profile_continue) {
duke@435 1444 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1445 // Control will flow to "profile_continue" if the counter is less than the
duke@435 1446 // limit or if we call profile_method()
duke@435 1447
duke@435 1448 Label done;
duke@435 1449
duke@435 1450 // if no method data exists, and the counter is high enough, make one
duke@435 1451 #ifdef _LP64
duke@435 1452 bpr(Assembler::rc_nz, false, Assembler::pn, ImethodDataPtr, done);
duke@435 1453 #else
duke@435 1454 tst(ImethodDataPtr);
duke@435 1455 br(Assembler::notZero, false, Assembler::pn, done);
duke@435 1456 #endif
duke@435 1457
duke@435 1458 // Test to see if we should create a method data oop
duke@435 1459 Address profile_limit(Rtmp, (address)&InvocationCounter::InterpreterProfileLimit);
duke@435 1460 #ifdef _LP64
duke@435 1461 delayed()->nop();
duke@435 1462 sethi(profile_limit);
duke@435 1463 #else
duke@435 1464 delayed()->sethi(profile_limit);
duke@435 1465 #endif
duke@435 1466 ld(profile_limit, Rtmp);
duke@435 1467 cmp(invocation_count, Rtmp);
duke@435 1468 br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
duke@435 1469 delayed()->nop();
duke@435 1470
duke@435 1471 // Build it now.
duke@435 1472 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), cur_bcp);
duke@435 1473 set_method_data_pointer_offset(O0);
duke@435 1474 ba(false, profile_continue);
duke@435 1475 delayed()->nop();
duke@435 1476 bind(done);
duke@435 1477 }
duke@435 1478
duke@435 1479 // Store a value at some constant offset from the method data pointer.
duke@435 1480
duke@435 1481 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
duke@435 1482 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1483 st_ptr(value, ImethodDataPtr, constant);
duke@435 1484 }
duke@435 1485
duke@435 1486 void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
duke@435 1487 Register bumped_count,
duke@435 1488 bool decrement) {
duke@435 1489 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1490
duke@435 1491 // Load the counter.
duke@435 1492 ld_ptr(counter, bumped_count);
duke@435 1493
duke@435 1494 if (decrement) {
duke@435 1495 // Decrement the register. Set condition codes.
duke@435 1496 subcc(bumped_count, DataLayout::counter_increment, bumped_count);
duke@435 1497
duke@435 1498 // If the decrement causes the counter to overflow, stay negative
duke@435 1499 Label L;
duke@435 1500 brx(Assembler::negative, true, Assembler::pn, L);
duke@435 1501
duke@435 1502 // Store the decremented counter, if it is still negative.
duke@435 1503 delayed()->st_ptr(bumped_count, counter);
duke@435 1504 bind(L);
duke@435 1505 } else {
duke@435 1506 // Increment the register. Set carry flag.
duke@435 1507 addcc(bumped_count, DataLayout::counter_increment, bumped_count);
duke@435 1508
duke@435 1509 // If the increment causes the counter to overflow, pull back by 1.
duke@435 1510 assert(DataLayout::counter_increment == 1, "subc works");
duke@435 1511 subc(bumped_count, G0, bumped_count);
duke@435 1512
duke@435 1513 // Store the incremented counter.
duke@435 1514 st_ptr(bumped_count, counter);
duke@435 1515 }
duke@435 1516 }
duke@435 1517
duke@435 1518 // Increment the value at some constant offset from the method data pointer.
duke@435 1519
duke@435 1520 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
duke@435 1521 Register bumped_count,
duke@435 1522 bool decrement) {
duke@435 1523 // Locate the counter at a fixed offset from the mdp:
duke@435 1524 Address counter(ImethodDataPtr, 0, constant);
duke@435 1525 increment_mdp_data_at(counter, bumped_count, decrement);
duke@435 1526 }
duke@435 1527
duke@435 1528 // Increment the value at some non-fixed (reg + constant) offset from
duke@435 1529 // the method data pointer.
duke@435 1530
duke@435 1531 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
duke@435 1532 int constant,
duke@435 1533 Register bumped_count,
duke@435 1534 Register scratch2,
duke@435 1535 bool decrement) {
duke@435 1536 // Add the constant to reg to get the offset.
duke@435 1537 add(ImethodDataPtr, reg, scratch2);
duke@435 1538 Address counter(scratch2, 0, constant);
duke@435 1539 increment_mdp_data_at(counter, bumped_count, decrement);
duke@435 1540 }
duke@435 1541
duke@435 1542 // Set a flag value at the current method data pointer position.
duke@435 1543 // Updates a single byte of the header, to avoid races with other header bits.
duke@435 1544
duke@435 1545 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
duke@435 1546 Register scratch) {
duke@435 1547 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1548 // Load the data header
duke@435 1549 ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
duke@435 1550
duke@435 1551 // Set the flag
duke@435 1552 or3(scratch, flag_constant, scratch);
duke@435 1553
duke@435 1554 // Store the modified header.
duke@435 1555 stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
duke@435 1556 }
duke@435 1557
duke@435 1558 // Test the location at some offset from the method data pointer.
duke@435 1559 // If it is not equal to value, branch to the not_equal_continue Label.
duke@435 1560 // Set condition codes to match the nullness of the loaded value.
duke@435 1561
duke@435 1562 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
duke@435 1563 Register value,
duke@435 1564 Label& not_equal_continue,
duke@435 1565 Register scratch) {
duke@435 1566 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1567 ld_ptr(ImethodDataPtr, offset, scratch);
duke@435 1568 cmp(value, scratch);
duke@435 1569 brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
duke@435 1570 delayed()->tst(scratch);
duke@435 1571 }
duke@435 1572
duke@435 1573 // Update the method data pointer by the displacement located at some fixed
duke@435 1574 // offset from the method data pointer.
duke@435 1575
duke@435 1576 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
duke@435 1577 Register scratch) {
duke@435 1578 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1579 ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
duke@435 1580 add(ImethodDataPtr, scratch, ImethodDataPtr);
duke@435 1581 }
duke@435 1582
duke@435 1583 // Update the method data pointer by the displacement located at the
duke@435 1584 // offset (reg + offset_of_disp).
duke@435 1585
duke@435 1586 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
duke@435 1587 int offset_of_disp,
duke@435 1588 Register scratch) {
duke@435 1589 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1590 add(reg, offset_of_disp, scratch);
duke@435 1591 ld_ptr(ImethodDataPtr, scratch, scratch);
duke@435 1592 add(ImethodDataPtr, scratch, ImethodDataPtr);
duke@435 1593 }
duke@435 1594
duke@435 1595 // Update the method data pointer by a simple constant displacement.
duke@435 1596
duke@435 1597 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
duke@435 1598 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1599 add(ImethodDataPtr, constant, ImethodDataPtr);
duke@435 1600 }
duke@435 1601
duke@435 1602 // Update the method data pointer for a _ret bytecode whose target
duke@435 1603 // was not among our cached targets.
duke@435 1604
duke@435 1605 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
duke@435 1606 Register return_bci) {
duke@435 1607 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1608 push(state);
duke@435 1609 st_ptr(return_bci, l_tmp); // protect return_bci, in case it is volatile
duke@435 1610 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
duke@435 1611 ld_ptr(l_tmp, return_bci);
duke@435 1612 pop(state);
duke@435 1613 }
duke@435 1614
duke@435 1615 // Count a taken branch in the bytecodes.
duke@435 1616
duke@435 1617 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
duke@435 1618 if (ProfileInterpreter) {
duke@435 1619 Label profile_continue;
duke@435 1620
duke@435 1621 // If no method data exists, go to profile_continue.
duke@435 1622 test_method_data_pointer(profile_continue);
duke@435 1623
duke@435 1624 // We are taking a branch. Increment the taken count.
duke@435 1625 increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
duke@435 1626
duke@435 1627 // The method data pointer needs to be updated to reflect the new target.
duke@435 1628 update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
duke@435 1629 bind (profile_continue);
duke@435 1630 }
duke@435 1631 }
duke@435 1632
duke@435 1633
duke@435 1634 // Count a not-taken branch in the bytecodes.
duke@435 1635
duke@435 1636 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
duke@435 1637 if (ProfileInterpreter) {
duke@435 1638 Label profile_continue;
duke@435 1639
duke@435 1640 // If no method data exists, go to profile_continue.
duke@435 1641 test_method_data_pointer(profile_continue);
duke@435 1642
duke@435 1643 // We are taking a branch. Increment the not taken count.
duke@435 1644 increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
duke@435 1645
duke@435 1646 // The method data pointer needs to be updated to correspond to the
duke@435 1647 // next bytecode.
duke@435 1648 update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
duke@435 1649 bind (profile_continue);
duke@435 1650 }
duke@435 1651 }
duke@435 1652
duke@435 1653
duke@435 1654 // Count a non-virtual call in the bytecodes.
duke@435 1655
duke@435 1656 void InterpreterMacroAssembler::profile_call(Register scratch) {
duke@435 1657 if (ProfileInterpreter) {
duke@435 1658 Label profile_continue;
duke@435 1659
duke@435 1660 // If no method data exists, go to profile_continue.
duke@435 1661 test_method_data_pointer(profile_continue);
duke@435 1662
duke@435 1663 // We are making a call. Increment the count.
duke@435 1664 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
duke@435 1665
duke@435 1666 // The method data pointer needs to be updated to reflect the new target.
duke@435 1667 update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
duke@435 1668 bind (profile_continue);
duke@435 1669 }
duke@435 1670 }
duke@435 1671
duke@435 1672
duke@435 1673 // Count a final call in the bytecodes.
duke@435 1674
duke@435 1675 void InterpreterMacroAssembler::profile_final_call(Register scratch) {
duke@435 1676 if (ProfileInterpreter) {
duke@435 1677 Label profile_continue;
duke@435 1678
duke@435 1679 // If no method data exists, go to profile_continue.
duke@435 1680 test_method_data_pointer(profile_continue);
duke@435 1681
duke@435 1682 // We are making a call. Increment the count.
duke@435 1683 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
duke@435 1684
duke@435 1685 // The method data pointer needs to be updated to reflect the new target.
duke@435 1686 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
duke@435 1687 bind (profile_continue);
duke@435 1688 }
duke@435 1689 }
duke@435 1690
duke@435 1691
duke@435 1692 // Count a virtual call in the bytecodes.
duke@435 1693
duke@435 1694 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
duke@435 1695 Register scratch) {
duke@435 1696 if (ProfileInterpreter) {
duke@435 1697 Label profile_continue;
duke@435 1698
duke@435 1699 // If no method data exists, go to profile_continue.
duke@435 1700 test_method_data_pointer(profile_continue);
duke@435 1701
duke@435 1702 // We are making a call. Increment the count.
duke@435 1703 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
duke@435 1704
duke@435 1705 // Record the receiver type.
duke@435 1706 record_klass_in_profile(receiver, scratch);
duke@435 1707
duke@435 1708 // The method data pointer needs to be updated to reflect the new target.
duke@435 1709 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
duke@435 1710 bind (profile_continue);
duke@435 1711 }
duke@435 1712 }
duke@435 1713
duke@435 1714 void InterpreterMacroAssembler::record_klass_in_profile_helper(
duke@435 1715 Register receiver, Register scratch,
duke@435 1716 int start_row, Label& done) {
duke@435 1717 int last_row = VirtualCallData::row_limit() - 1;
duke@435 1718 assert(start_row <= last_row, "must be work left to do");
duke@435 1719 // Test this row for both the receiver and for null.
duke@435 1720 // Take any of three different outcomes:
duke@435 1721 // 1. found receiver => increment count and goto done
duke@435 1722 // 2. found null => keep looking for case 1, maybe allocate this cell
duke@435 1723 // 3. found something else => keep looking for cases 1 and 2
duke@435 1724 // Case 3 is handled by a recursive call.
duke@435 1725 for (int row = start_row; row <= last_row; row++) {
duke@435 1726 Label next_test;
duke@435 1727 bool test_for_null_also = (row == start_row);
duke@435 1728
duke@435 1729 // See if the receiver is receiver[n].
duke@435 1730 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
duke@435 1731 test_mdp_data_at(recvr_offset, receiver, next_test, scratch);
duke@435 1732
duke@435 1733 // The receiver is receiver[n]. Increment count[n].
duke@435 1734 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
duke@435 1735 increment_mdp_data_at(count_offset, scratch);
duke@435 1736 ba(false, done);
duke@435 1737 delayed()->nop();
duke@435 1738 bind(next_test);
duke@435 1739
duke@435 1740 if (test_for_null_also) {
duke@435 1741 // Failed the equality check on receiver[n]... Test for null.
duke@435 1742 if (start_row == last_row) {
duke@435 1743 // The only thing left to do is handle the null case.
duke@435 1744 brx(Assembler::notZero, false, Assembler::pt, done);
duke@435 1745 delayed()->nop();
duke@435 1746 break;
duke@435 1747 }
duke@435 1748 // Since null is rare, make it be the branch-taken case.
duke@435 1749 Label found_null;
duke@435 1750 brx(Assembler::zero, false, Assembler::pn, found_null);
duke@435 1751 delayed()->nop();
duke@435 1752
duke@435 1753 // Put all the "Case 3" tests here.
duke@435 1754 record_klass_in_profile_helper(receiver, scratch, start_row + 1, done);
duke@435 1755
duke@435 1756 // Found a null. Keep searching for a matching receiver,
duke@435 1757 // but remember that this is an empty (unused) slot.
duke@435 1758 bind(found_null);
duke@435 1759 }
duke@435 1760 }
duke@435 1761
duke@435 1762 // In the fall-through case, we found no matching receiver, but we
duke@435 1763 // observed the receiver[start_row] is NULL.
duke@435 1764
duke@435 1765 // Fill in the receiver field and increment the count.
duke@435 1766 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
duke@435 1767 set_mdp_data_at(recvr_offset, receiver);
duke@435 1768 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
duke@435 1769 mov(DataLayout::counter_increment, scratch);
duke@435 1770 set_mdp_data_at(count_offset, scratch);
duke@435 1771 ba(false, done);
duke@435 1772 delayed()->nop();
duke@435 1773 }
duke@435 1774
duke@435 1775 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
duke@435 1776 Register scratch) {
duke@435 1777 assert(ProfileInterpreter, "must be profiling");
duke@435 1778 Label done;
duke@435 1779
duke@435 1780 record_klass_in_profile_helper(receiver, scratch, 0, done);
duke@435 1781
duke@435 1782 bind (done);
duke@435 1783 }
duke@435 1784
duke@435 1785
duke@435 1786 // Count a ret in the bytecodes.
duke@435 1787
duke@435 1788 void InterpreterMacroAssembler::profile_ret(TosState state,
duke@435 1789 Register return_bci,
duke@435 1790 Register scratch) {
duke@435 1791 if (ProfileInterpreter) {
duke@435 1792 Label profile_continue;
duke@435 1793 uint row;
duke@435 1794
duke@435 1795 // If no method data exists, go to profile_continue.
duke@435 1796 test_method_data_pointer(profile_continue);
duke@435 1797
duke@435 1798 // Update the total ret count.
duke@435 1799 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
duke@435 1800
duke@435 1801 for (row = 0; row < RetData::row_limit(); row++) {
duke@435 1802 Label next_test;
duke@435 1803
duke@435 1804 // See if return_bci is equal to bci[n]:
duke@435 1805 test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
duke@435 1806 return_bci, next_test, scratch);
duke@435 1807
duke@435 1808 // return_bci is equal to bci[n]. Increment the count.
duke@435 1809 increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
duke@435 1810
duke@435 1811 // The method data pointer needs to be updated to reflect the new target.
duke@435 1812 update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
duke@435 1813 ba(false, profile_continue);
duke@435 1814 delayed()->nop();
duke@435 1815 bind(next_test);
duke@435 1816 }
duke@435 1817
duke@435 1818 update_mdp_for_ret(state, return_bci);
duke@435 1819
duke@435 1820 bind (profile_continue);
duke@435 1821 }
duke@435 1822 }
duke@435 1823
duke@435 1824 // Profile an unexpected null in the bytecodes.
duke@435 1825 void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
duke@435 1826 if (ProfileInterpreter) {
duke@435 1827 Label profile_continue;
duke@435 1828
duke@435 1829 // If no method data exists, go to profile_continue.
duke@435 1830 test_method_data_pointer(profile_continue);
duke@435 1831
duke@435 1832 set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
duke@435 1833
duke@435 1834 // The method data pointer needs to be updated.
duke@435 1835 int mdp_delta = in_bytes(BitData::bit_data_size());
duke@435 1836 if (TypeProfileCasts) {
duke@435 1837 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
duke@435 1838 }
duke@435 1839 update_mdp_by_constant(mdp_delta);
duke@435 1840
duke@435 1841 bind (profile_continue);
duke@435 1842 }
duke@435 1843 }
duke@435 1844
duke@435 1845 void InterpreterMacroAssembler::profile_typecheck(Register klass,
duke@435 1846 Register scratch) {
duke@435 1847 if (ProfileInterpreter) {
duke@435 1848 Label profile_continue;
duke@435 1849
duke@435 1850 // If no method data exists, go to profile_continue.
duke@435 1851 test_method_data_pointer(profile_continue);
duke@435 1852
duke@435 1853 int mdp_delta = in_bytes(BitData::bit_data_size());
duke@435 1854 if (TypeProfileCasts) {
duke@435 1855 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
duke@435 1856
duke@435 1857 // Record the object type.
duke@435 1858 record_klass_in_profile(klass, scratch);
duke@435 1859 }
duke@435 1860
duke@435 1861 // The method data pointer needs to be updated.
duke@435 1862 update_mdp_by_constant(mdp_delta);
duke@435 1863
duke@435 1864 bind (profile_continue);
duke@435 1865 }
duke@435 1866 }
duke@435 1867
duke@435 1868 void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
duke@435 1869 if (ProfileInterpreter && TypeProfileCasts) {
duke@435 1870 Label profile_continue;
duke@435 1871
duke@435 1872 // If no method data exists, go to profile_continue.
duke@435 1873 test_method_data_pointer(profile_continue);
duke@435 1874
duke@435 1875 int count_offset = in_bytes(CounterData::count_offset());
duke@435 1876 // Back up the address, since we have already bumped the mdp.
duke@435 1877 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
duke@435 1878
duke@435 1879 // *Decrement* the counter. We expect to see zero or small negatives.
duke@435 1880 increment_mdp_data_at(count_offset, scratch, true);
duke@435 1881
duke@435 1882 bind (profile_continue);
duke@435 1883 }
duke@435 1884 }
duke@435 1885
duke@435 1886 // Count the default case of a switch construct.
duke@435 1887
duke@435 1888 void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
duke@435 1889 if (ProfileInterpreter) {
duke@435 1890 Label profile_continue;
duke@435 1891
duke@435 1892 // If no method data exists, go to profile_continue.
duke@435 1893 test_method_data_pointer(profile_continue);
duke@435 1894
duke@435 1895 // Update the default case count
duke@435 1896 increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
duke@435 1897 scratch);
duke@435 1898
duke@435 1899 // The method data pointer needs to be updated.
duke@435 1900 update_mdp_by_offset(
duke@435 1901 in_bytes(MultiBranchData::default_displacement_offset()),
duke@435 1902 scratch);
duke@435 1903
duke@435 1904 bind (profile_continue);
duke@435 1905 }
duke@435 1906 }
duke@435 1907
duke@435 1908 // Count the index'th case of a switch construct.
duke@435 1909
duke@435 1910 void InterpreterMacroAssembler::profile_switch_case(Register index,
duke@435 1911 Register scratch,
duke@435 1912 Register scratch2,
duke@435 1913 Register scratch3) {
duke@435 1914 if (ProfileInterpreter) {
duke@435 1915 Label profile_continue;
duke@435 1916
duke@435 1917 // If no method data exists, go to profile_continue.
duke@435 1918 test_method_data_pointer(profile_continue);
duke@435 1919
duke@435 1920 // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
duke@435 1921 set(in_bytes(MultiBranchData::per_case_size()), scratch);
duke@435 1922 smul(index, scratch, scratch);
duke@435 1923 add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
duke@435 1924
duke@435 1925 // Update the case count
duke@435 1926 increment_mdp_data_at(scratch,
duke@435 1927 in_bytes(MultiBranchData::relative_count_offset()),
duke@435 1928 scratch2,
duke@435 1929 scratch3);
duke@435 1930
duke@435 1931 // The method data pointer needs to be updated.
duke@435 1932 update_mdp_by_offset(scratch,
duke@435 1933 in_bytes(MultiBranchData::relative_displacement_offset()),
duke@435 1934 scratch2);
duke@435 1935
duke@435 1936 bind (profile_continue);
duke@435 1937 }
duke@435 1938 }
duke@435 1939
duke@435 1940 // add a InterpMonitorElem to stack (see frame_sparc.hpp)
duke@435 1941
duke@435 1942 void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
duke@435 1943 Register Rtemp,
duke@435 1944 Register Rtemp2 ) {
duke@435 1945
duke@435 1946 Register Rlimit = Lmonitors;
duke@435 1947 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 1948 assert( (delta & LongAlignmentMask) == 0,
duke@435 1949 "sizeof BasicObjectLock must be even number of doublewords");
duke@435 1950
duke@435 1951 sub( SP, delta, SP);
duke@435 1952 sub( Lesp, delta, Lesp);
duke@435 1953 sub( Lmonitors, delta, Lmonitors);
duke@435 1954
duke@435 1955 if (!stack_is_empty) {
duke@435 1956
duke@435 1957 // must copy stack contents down
duke@435 1958
duke@435 1959 Label start_copying, next;
duke@435 1960
duke@435 1961 // untested("monitor stack expansion");
duke@435 1962 compute_stack_base(Rtemp);
duke@435 1963 ba( false, start_copying );
duke@435 1964 delayed()->cmp( Rtemp, Rlimit); // done? duplicated below
duke@435 1965
duke@435 1966 // note: must copy from low memory upwards
duke@435 1967 // On entry to loop,
duke@435 1968 // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
duke@435 1969 // Loop mutates Rtemp
duke@435 1970
duke@435 1971 bind( next);
duke@435 1972
duke@435 1973 st_ptr(Rtemp2, Rtemp, 0);
duke@435 1974 inc(Rtemp, wordSize);
duke@435 1975 cmp(Rtemp, Rlimit); // are we done? (duplicated above)
duke@435 1976
duke@435 1977 bind( start_copying );
duke@435 1978
duke@435 1979 brx( notEqual, true, pn, next );
duke@435 1980 delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
duke@435 1981
duke@435 1982 // done copying stack
duke@435 1983 }
duke@435 1984 }
duke@435 1985
duke@435 1986 // Locals
duke@435 1987 #ifdef ASSERT
duke@435 1988 void InterpreterMacroAssembler::verify_local_tag(frame::Tag t,
duke@435 1989 Register base,
duke@435 1990 Register scratch,
duke@435 1991 int n) {
duke@435 1992 if (TaggedStackInterpreter) {
duke@435 1993 Label ok, long_ok;
duke@435 1994 // Use dst for scratch
duke@435 1995 assert_different_registers(base, scratch);
duke@435 1996 ld_ptr(base, Interpreter::local_tag_offset_in_bytes(n), scratch);
duke@435 1997 if (t == frame::TagCategory2) {
duke@435 1998 cmp(scratch, G0);
duke@435 1999 brx(Assembler::equal, false, Assembler::pt, long_ok);
duke@435 2000 delayed()->ld_ptr(base, Interpreter::local_tag_offset_in_bytes(n+1), scratch);
duke@435 2001 stop("local long/double tag value bad");
duke@435 2002 bind(long_ok);
duke@435 2003 // compare second half tag
duke@435 2004 cmp(scratch, G0);
duke@435 2005 } else if (t == frame::TagValue) {
duke@435 2006 cmp(scratch, G0);
duke@435 2007 } else {
duke@435 2008 assert_different_registers(O3, base, scratch);
duke@435 2009 mov(t, O3);
duke@435 2010 cmp(scratch, O3);
duke@435 2011 }
duke@435 2012 brx(Assembler::equal, false, Assembler::pt, ok);
duke@435 2013 delayed()->nop();
duke@435 2014 // Also compare if the local value is zero, then the tag might
duke@435 2015 // not have been set coming from deopt.
duke@435 2016 ld_ptr(base, Interpreter::local_offset_in_bytes(n), scratch);
duke@435 2017 cmp(scratch, G0);
duke@435 2018 brx(Assembler::equal, false, Assembler::pt, ok);
duke@435 2019 delayed()->nop();
duke@435 2020 stop("Local tag value is bad");
duke@435 2021 bind(ok);
duke@435 2022 }
duke@435 2023 }
duke@435 2024 #endif // ASSERT
duke@435 2025
duke@435 2026 void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
duke@435 2027 assert_not_delayed();
duke@435 2028 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2029 sub(Llocals, index, index);
duke@435 2030 debug_only(verify_local_tag(frame::TagReference, index, dst));
duke@435 2031 ld_ptr(index, Interpreter::value_offset_in_bytes(), dst);
duke@435 2032 // Note: index must hold the effective address--the iinc template uses it
duke@435 2033 }
duke@435 2034
duke@435 2035 // Just like access_local_ptr but the tag is a returnAddress
duke@435 2036 void InterpreterMacroAssembler::access_local_returnAddress(Register index,
duke@435 2037 Register dst ) {
duke@435 2038 assert_not_delayed();
duke@435 2039 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2040 sub(Llocals, index, index);
duke@435 2041 debug_only(verify_local_tag(frame::TagValue, index, dst));
duke@435 2042 ld_ptr(index, Interpreter::value_offset_in_bytes(), dst);
duke@435 2043 }
duke@435 2044
duke@435 2045 void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
duke@435 2046 assert_not_delayed();
duke@435 2047 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2048 sub(Llocals, index, index);
duke@435 2049 debug_only(verify_local_tag(frame::TagValue, index, dst));
duke@435 2050 ld(index, Interpreter::value_offset_in_bytes(), dst);
duke@435 2051 // Note: index must hold the effective address--the iinc template uses it
duke@435 2052 }
duke@435 2053
duke@435 2054
duke@435 2055 void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
duke@435 2056 assert_not_delayed();
duke@435 2057 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2058 sub(Llocals, index, index);
duke@435 2059 debug_only(verify_local_tag(frame::TagCategory2, index, dst));
duke@435 2060 // First half stored at index n+1 (which grows down from Llocals[n])
duke@435 2061 load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
duke@435 2062 }
duke@435 2063
duke@435 2064
duke@435 2065 void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
duke@435 2066 assert_not_delayed();
duke@435 2067 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2068 sub(Llocals, index, index);
duke@435 2069 debug_only(verify_local_tag(frame::TagValue, index, G1_scratch));
duke@435 2070 ldf(FloatRegisterImpl::S, index, Interpreter::value_offset_in_bytes(), dst);
duke@435 2071 }
duke@435 2072
duke@435 2073
duke@435 2074 void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
duke@435 2075 assert_not_delayed();
duke@435 2076 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2077 sub(Llocals, index, index);
duke@435 2078 debug_only(verify_local_tag(frame::TagCategory2, index, G1_scratch));
duke@435 2079 load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
duke@435 2080 }
duke@435 2081
duke@435 2082
duke@435 2083 #ifdef ASSERT
duke@435 2084 void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
duke@435 2085 Label L;
duke@435 2086
duke@435 2087 assert(Rindex != Rscratch, "Registers cannot be same");
duke@435 2088 assert(Rindex != Rscratch1, "Registers cannot be same");
duke@435 2089 assert(Rlimit != Rscratch, "Registers cannot be same");
duke@435 2090 assert(Rlimit != Rscratch1, "Registers cannot be same");
duke@435 2091 assert(Rscratch1 != Rscratch, "Registers cannot be same");
duke@435 2092
duke@435 2093 // untested("reg area corruption");
duke@435 2094 add(Rindex, offset, Rscratch);
duke@435 2095 add(Rlimit, 64 + STACK_BIAS, Rscratch1);
duke@435 2096 cmp(Rscratch, Rscratch1);
duke@435 2097 brx(Assembler::greaterEqualUnsigned, false, pn, L);
duke@435 2098 delayed()->nop();
duke@435 2099 stop("regsave area is being clobbered");
duke@435 2100 bind(L);
duke@435 2101 }
duke@435 2102 #endif // ASSERT
duke@435 2103
duke@435 2104 void InterpreterMacroAssembler::tag_local(frame::Tag t,
duke@435 2105 Register base,
duke@435 2106 Register src,
duke@435 2107 int n) {
duke@435 2108 if (TaggedStackInterpreter) {
duke@435 2109 // have to store zero because local slots can be reused (rats!)
duke@435 2110 if (t == frame::TagValue) {
duke@435 2111 st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n));
duke@435 2112 } else if (t == frame::TagCategory2) {
duke@435 2113 st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n));
duke@435 2114 st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n+1));
duke@435 2115 } else {
duke@435 2116 // assert that we don't stomp the value in 'src'
duke@435 2117 // O3 is arbitrary because it's not used.
duke@435 2118 assert_different_registers(src, base, O3);
duke@435 2119 mov( t, O3);
duke@435 2120 st_ptr(O3, base, Interpreter::local_tag_offset_in_bytes(n));
duke@435 2121 }
duke@435 2122 }
duke@435 2123 }
duke@435 2124
duke@435 2125
duke@435 2126 void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
duke@435 2127 assert_not_delayed();
duke@435 2128 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2129 sub(Llocals, index, index);
duke@435 2130 debug_only(check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);)
duke@435 2131 tag_local(frame::TagValue, index, src);
duke@435 2132 st(src, index, Interpreter::value_offset_in_bytes());
duke@435 2133 }
duke@435 2134
duke@435 2135 void InterpreterMacroAssembler::store_local_ptr( Register index, Register src,
duke@435 2136 Register tag ) {
duke@435 2137 assert_not_delayed();
duke@435 2138 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2139 sub(Llocals, index, index);
duke@435 2140 #ifdef ASSERT
duke@435 2141 check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);
duke@435 2142 #endif
duke@435 2143 st_ptr(src, index, Interpreter::value_offset_in_bytes());
duke@435 2144 // Store tag register directly
duke@435 2145 if (TaggedStackInterpreter) {
duke@435 2146 st_ptr(tag, index, Interpreter::tag_offset_in_bytes());
duke@435 2147 }
duke@435 2148 }
duke@435 2149
duke@435 2150
duke@435 2151
duke@435 2152 void InterpreterMacroAssembler::store_local_ptr( int n, Register src,
duke@435 2153 Register tag ) {
duke@435 2154 st_ptr(src, Llocals, Interpreter::local_offset_in_bytes(n));
duke@435 2155 if (TaggedStackInterpreter) {
duke@435 2156 st_ptr(tag, Llocals, Interpreter::local_tag_offset_in_bytes(n));
duke@435 2157 }
duke@435 2158 }
duke@435 2159
duke@435 2160 void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
duke@435 2161 assert_not_delayed();
duke@435 2162 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2163 sub(Llocals, index, index);
duke@435 2164 #ifdef ASSERT
duke@435 2165 check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
duke@435 2166 #endif
duke@435 2167 tag_local(frame::TagCategory2, index, src);
duke@435 2168 store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
duke@435 2169 }
duke@435 2170
duke@435 2171
duke@435 2172 void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
duke@435 2173 assert_not_delayed();
duke@435 2174 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2175 sub(Llocals, index, index);
duke@435 2176 #ifdef ASSERT
duke@435 2177 check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);
duke@435 2178 #endif
duke@435 2179 tag_local(frame::TagValue, index, G1_scratch);
duke@435 2180 stf(FloatRegisterImpl::S, src, index, Interpreter::value_offset_in_bytes());
duke@435 2181 }
duke@435 2182
duke@435 2183
duke@435 2184 void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
duke@435 2185 assert_not_delayed();
duke@435 2186 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2187 sub(Llocals, index, index);
duke@435 2188 #ifdef ASSERT
duke@435 2189 check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
duke@435 2190 #endif
duke@435 2191 tag_local(frame::TagCategory2, index, G1_scratch);
duke@435 2192 store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
duke@435 2193 }
duke@435 2194
duke@435 2195
duke@435 2196 int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
duke@435 2197 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 2198 int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
duke@435 2199 return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
duke@435 2200 }
duke@435 2201
duke@435 2202
duke@435 2203 Address InterpreterMacroAssembler::top_most_monitor() {
duke@435 2204 return Address(FP, 0, top_most_monitor_byte_offset());
duke@435 2205 }
duke@435 2206
duke@435 2207
duke@435 2208 void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
duke@435 2209 add( Lesp, wordSize, Rdest );
duke@435 2210 }
duke@435 2211
duke@435 2212 #endif /* CC_INTERP */
duke@435 2213
duke@435 2214 void InterpreterMacroAssembler::increment_invocation_counter( Register Rtmp, Register Rtmp2 ) {
duke@435 2215 assert(UseCompiler, "incrementing must be useful");
duke@435 2216 #ifdef CC_INTERP
duke@435 2217 Address inv_counter(G5_method, 0, in_bytes(methodOopDesc::invocation_counter_offset()
duke@435 2218 + InvocationCounter::counter_offset()));
duke@435 2219 Address be_counter(G5_method, 0, in_bytes(methodOopDesc::backedge_counter_offset()
duke@435 2220 + InvocationCounter::counter_offset()));
duke@435 2221 #else
duke@435 2222 Address inv_counter(Lmethod, 0, in_bytes(methodOopDesc::invocation_counter_offset()
duke@435 2223 + InvocationCounter::counter_offset()));
duke@435 2224 Address be_counter(Lmethod, 0, in_bytes(methodOopDesc::backedge_counter_offset()
duke@435 2225 + InvocationCounter::counter_offset()));
duke@435 2226 #endif /* CC_INTERP */
duke@435 2227 int delta = InvocationCounter::count_increment;
duke@435 2228
duke@435 2229 // Load each counter in a register
duke@435 2230 ld( inv_counter, Rtmp );
duke@435 2231 ld( be_counter, Rtmp2 );
duke@435 2232
duke@435 2233 assert( is_simm13( delta ), " delta too large.");
duke@435 2234
duke@435 2235 // Add the delta to the invocation counter and store the result
duke@435 2236 add( Rtmp, delta, Rtmp );
duke@435 2237
duke@435 2238 // Mask the backedge counter
duke@435 2239 and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
duke@435 2240
duke@435 2241 // Store value
duke@435 2242 st( Rtmp, inv_counter);
duke@435 2243
duke@435 2244 // Add invocation counter + backedge counter
duke@435 2245 add( Rtmp, Rtmp2, Rtmp);
duke@435 2246
duke@435 2247 // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
duke@435 2248 }
duke@435 2249
duke@435 2250 void InterpreterMacroAssembler::increment_backedge_counter( Register Rtmp, Register Rtmp2 ) {
duke@435 2251 assert(UseCompiler, "incrementing must be useful");
duke@435 2252 #ifdef CC_INTERP
duke@435 2253 Address be_counter(G5_method, 0, in_bytes(methodOopDesc::backedge_counter_offset()
duke@435 2254 + InvocationCounter::counter_offset()));
duke@435 2255 Address inv_counter(G5_method, 0, in_bytes(methodOopDesc::invocation_counter_offset()
duke@435 2256 + InvocationCounter::counter_offset()));
duke@435 2257 #else
duke@435 2258 Address be_counter(Lmethod, 0, in_bytes(methodOopDesc::backedge_counter_offset()
duke@435 2259 + InvocationCounter::counter_offset()));
duke@435 2260 Address inv_counter(Lmethod, 0, in_bytes(methodOopDesc::invocation_counter_offset()
duke@435 2261 + InvocationCounter::counter_offset()));
duke@435 2262 #endif /* CC_INTERP */
duke@435 2263 int delta = InvocationCounter::count_increment;
duke@435 2264 // Load each counter in a register
duke@435 2265 ld( be_counter, Rtmp );
duke@435 2266 ld( inv_counter, Rtmp2 );
duke@435 2267
duke@435 2268 // Add the delta to the backedge counter
duke@435 2269 add( Rtmp, delta, Rtmp );
duke@435 2270
duke@435 2271 // Mask the invocation counter, add to backedge counter
duke@435 2272 and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
duke@435 2273
duke@435 2274 // and store the result to memory
duke@435 2275 st( Rtmp, be_counter );
duke@435 2276
duke@435 2277 // Add backedge + invocation counter
duke@435 2278 add( Rtmp, Rtmp2, Rtmp );
duke@435 2279
duke@435 2280 // Note that this macro must leave backedge_count + invocation_count in Rtmp!
duke@435 2281 }
duke@435 2282
duke@435 2283 #ifndef CC_INTERP
duke@435 2284 void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
duke@435 2285 Register branch_bcp,
duke@435 2286 Register Rtmp ) {
duke@435 2287 Label did_not_overflow;
duke@435 2288 Label overflow_with_error;
duke@435 2289 assert_different_registers(backedge_count, Rtmp, branch_bcp);
duke@435 2290 assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
duke@435 2291
duke@435 2292 Address limit(Rtmp, address(&InvocationCounter::InterpreterBackwardBranchLimit));
duke@435 2293 load_contents(limit, Rtmp);
duke@435 2294 cmp(backedge_count, Rtmp);
duke@435 2295 br(Assembler::lessUnsigned, false, Assembler::pt, did_not_overflow);
duke@435 2296 delayed()->nop();
duke@435 2297
duke@435 2298 // When ProfileInterpreter is on, the backedge_count comes from the
duke@435 2299 // methodDataOop, which value does not get reset on the call to
duke@435 2300 // frequency_counter_overflow(). To avoid excessive calls to the overflow
duke@435 2301 // routine while the method is being compiled, add a second test to make sure
duke@435 2302 // the overflow function is called only once every overflow_frequency.
duke@435 2303 if (ProfileInterpreter) {
duke@435 2304 const int overflow_frequency = 1024;
duke@435 2305 andcc(backedge_count, overflow_frequency-1, Rtmp);
duke@435 2306 brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
duke@435 2307 delayed()->nop();
duke@435 2308 }
duke@435 2309
duke@435 2310 // overflow in loop, pass branch bytecode
duke@435 2311 set(6,Rtmp);
duke@435 2312 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
duke@435 2313
duke@435 2314 // Was an OSR adapter generated?
duke@435 2315 // O0 = osr nmethod
duke@435 2316 tst(O0);
duke@435 2317 brx(Assembler::zero, false, Assembler::pn, overflow_with_error);
duke@435 2318 delayed()->nop();
duke@435 2319
duke@435 2320 // Has the nmethod been invalidated already?
duke@435 2321 ld(O0, nmethod::entry_bci_offset(), O2);
duke@435 2322 cmp(O2, InvalidOSREntryBci);
duke@435 2323 br(Assembler::equal, false, Assembler::pn, overflow_with_error);
duke@435 2324 delayed()->nop();
duke@435 2325
duke@435 2326 // migrate the interpreter frame off of the stack
duke@435 2327
duke@435 2328 mov(G2_thread, L7);
duke@435 2329 // save nmethod
duke@435 2330 mov(O0, L6);
duke@435 2331 set_last_Java_frame(SP, noreg);
duke@435 2332 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
duke@435 2333 reset_last_Java_frame();
duke@435 2334 mov(L7, G2_thread);
duke@435 2335
duke@435 2336 // move OSR nmethod to I1
duke@435 2337 mov(L6, I1);
duke@435 2338
duke@435 2339 // OSR buffer to I0
duke@435 2340 mov(O0, I0);
duke@435 2341
duke@435 2342 // remove the interpreter frame
duke@435 2343 restore(I5_savedSP, 0, SP);
duke@435 2344
duke@435 2345 // Jump to the osr code.
duke@435 2346 ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
duke@435 2347 jmp(O2, G0);
duke@435 2348 delayed()->nop();
duke@435 2349
duke@435 2350 bind(overflow_with_error);
duke@435 2351
duke@435 2352 bind(did_not_overflow);
duke@435 2353 }
duke@435 2354
duke@435 2355
duke@435 2356
duke@435 2357 void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
duke@435 2358 if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
duke@435 2359 }
duke@435 2360
duke@435 2361
duke@435 2362 // local helper function for the verify_oop_or_return_address macro
duke@435 2363 static bool verify_return_address(methodOopDesc* m, int bci) {
duke@435 2364 #ifndef PRODUCT
duke@435 2365 address pc = (address)(m->constMethod())
duke@435 2366 + in_bytes(constMethodOopDesc::codes_offset()) + bci;
duke@435 2367 // assume it is a valid return address if it is inside m and is preceded by a jsr
duke@435 2368 if (!m->contains(pc)) return false;
duke@435 2369 address jsr_pc;
duke@435 2370 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
duke@435 2371 if (*jsr_pc == Bytecodes::_jsr && jsr_pc >= m->code_base()) return true;
duke@435 2372 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
duke@435 2373 if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base()) return true;
duke@435 2374 #endif // PRODUCT
duke@435 2375 return false;
duke@435 2376 }
duke@435 2377
duke@435 2378
duke@435 2379 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
duke@435 2380 if (!VerifyOops) return;
duke@435 2381 // the VM documentation for the astore[_wide] bytecode allows
duke@435 2382 // the TOS to be not only an oop but also a return address
duke@435 2383 Label test;
duke@435 2384 Label skip;
duke@435 2385 // See if it is an address (in the current method):
duke@435 2386
duke@435 2387 mov(reg, Rtmp);
duke@435 2388 const int log2_bytecode_size_limit = 16;
duke@435 2389 srl(Rtmp, log2_bytecode_size_limit, Rtmp);
duke@435 2390 br_notnull( Rtmp, false, pt, test );
duke@435 2391 delayed()->nop();
duke@435 2392
duke@435 2393 // %%% should use call_VM_leaf here?
duke@435 2394 save_frame_and_mov(0, Lmethod, O0, reg, O1);
duke@435 2395 save_thread(L7_thread_cache);
duke@435 2396 call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
duke@435 2397 delayed()->nop();
duke@435 2398 restore_thread(L7_thread_cache);
duke@435 2399 br_notnull( O0, false, pt, skip );
duke@435 2400 delayed()->restore();
duke@435 2401
duke@435 2402 // Perform a more elaborate out-of-line call
duke@435 2403 // Not an address; verify it:
duke@435 2404 bind(test);
duke@435 2405 verify_oop(reg);
duke@435 2406 bind(skip);
duke@435 2407 }
duke@435 2408
duke@435 2409
duke@435 2410 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
duke@435 2411 if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
duke@435 2412 }
duke@435 2413 #endif /* CC_INTERP */
duke@435 2414
duke@435 2415 // Inline assembly for:
duke@435 2416 //
duke@435 2417 // if (thread is in interp_only_mode) {
duke@435 2418 // InterpreterRuntime::post_method_entry();
duke@435 2419 // }
duke@435 2420 // if (DTraceMethodProbes) {
twisti@1040 2421 // SharedRuntime::dtrace_method_entry(method, receiver);
duke@435 2422 // }
dcubed@1045 2423 // if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
dcubed@1045 2424 // SharedRuntime::rc_trace_method_entry(method, receiver);
coleenp@857 2425 // }
duke@435 2426
duke@435 2427 void InterpreterMacroAssembler::notify_method_entry() {
duke@435 2428
duke@435 2429 // C++ interpreter only uses this for native methods.
duke@435 2430
duke@435 2431 // Whenever JVMTI puts a thread in interp_only_mode, method
duke@435 2432 // entry/exit events are sent for that thread to track stack
duke@435 2433 // depth. If it is possible to enter interp_only_mode we add
duke@435 2434 // the code to check if the event should be sent.
duke@435 2435 if (JvmtiExport::can_post_interpreter_events()) {
duke@435 2436 Label L;
duke@435 2437 Register temp_reg = O5;
duke@435 2438
duke@435 2439 const Address interp_only (G2_thread, 0, in_bytes(JavaThread::interp_only_mode_offset()));
duke@435 2440
duke@435 2441 ld(interp_only, temp_reg);
duke@435 2442 tst(temp_reg);
duke@435 2443 br(zero, false, pt, L);
duke@435 2444 delayed()->nop();
duke@435 2445 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
duke@435 2446 bind(L);
duke@435 2447 }
duke@435 2448
duke@435 2449 {
duke@435 2450 Register temp_reg = O5;
duke@435 2451 SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
duke@435 2452 call_VM_leaf(noreg,
duke@435 2453 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
duke@435 2454 G2_thread, Lmethod);
duke@435 2455 }
dcubed@1045 2456
dcubed@1045 2457 // RedefineClasses() tracing support for obsolete method entry
dcubed@1045 2458 if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
dcubed@1045 2459 call_VM_leaf(noreg,
dcubed@1045 2460 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
dcubed@1045 2461 G2_thread, Lmethod);
dcubed@1045 2462 }
duke@435 2463 }
duke@435 2464
duke@435 2465
duke@435 2466 // Inline assembly for:
duke@435 2467 //
duke@435 2468 // if (thread is in interp_only_mode) {
duke@435 2469 // // save result
duke@435 2470 // InterpreterRuntime::post_method_exit();
duke@435 2471 // // restore result
duke@435 2472 // }
duke@435 2473 // if (DTraceMethodProbes) {
duke@435 2474 // SharedRuntime::dtrace_method_exit(thread, method);
duke@435 2475 // }
duke@435 2476 //
duke@435 2477 // Native methods have their result stored in d_tmp and l_tmp
duke@435 2478 // Java methods have their result stored in the expression stack
duke@435 2479
duke@435 2480 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
duke@435 2481 TosState state,
duke@435 2482 NotifyMethodExitMode mode) {
duke@435 2483 // C++ interpreter only uses this for native methods.
duke@435 2484
duke@435 2485 // Whenever JVMTI puts a thread in interp_only_mode, method
duke@435 2486 // entry/exit events are sent for that thread to track stack
duke@435 2487 // depth. If it is possible to enter interp_only_mode we add
duke@435 2488 // the code to check if the event should be sent.
duke@435 2489 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
duke@435 2490 Label L;
duke@435 2491 Register temp_reg = O5;
duke@435 2492
duke@435 2493 const Address interp_only (G2_thread, 0, in_bytes(JavaThread::interp_only_mode_offset()));
duke@435 2494
duke@435 2495 ld(interp_only, temp_reg);
duke@435 2496 tst(temp_reg);
duke@435 2497 br(zero, false, pt, L);
duke@435 2498 delayed()->nop();
duke@435 2499
duke@435 2500 // Note: frame::interpreter_frame_result has a dependency on how the
duke@435 2501 // method result is saved across the call to post_method_exit. For
duke@435 2502 // native methods it assumes the result registers are saved to
duke@435 2503 // l_scratch and d_scratch. If this changes then the interpreter_frame_result
duke@435 2504 // implementation will need to be updated too.
duke@435 2505
duke@435 2506 save_return_value(state, is_native_method);
duke@435 2507 call_VM(noreg,
duke@435 2508 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
duke@435 2509 restore_return_value(state, is_native_method);
duke@435 2510 bind(L);
duke@435 2511 }
duke@435 2512
duke@435 2513 {
duke@435 2514 Register temp_reg = O5;
duke@435 2515 // Dtrace notification
duke@435 2516 SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
duke@435 2517 save_return_value(state, is_native_method);
duke@435 2518 call_VM_leaf(
duke@435 2519 noreg,
duke@435 2520 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
duke@435 2521 G2_thread, Lmethod);
duke@435 2522 restore_return_value(state, is_native_method);
duke@435 2523 }
duke@435 2524 }
duke@435 2525
duke@435 2526 void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
duke@435 2527 #ifdef CC_INTERP
duke@435 2528 // result potentially in O0/O1: save it across calls
duke@435 2529 stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
duke@435 2530 #ifdef _LP64
duke@435 2531 stx(O0, STATE(_native_lresult));
duke@435 2532 #else
duke@435 2533 std(O0, STATE(_native_lresult));
duke@435 2534 #endif
duke@435 2535 #else // CC_INTERP
duke@435 2536 if (is_native_call) {
duke@435 2537 stf(FloatRegisterImpl::D, F0, d_tmp);
duke@435 2538 #ifdef _LP64
duke@435 2539 stx(O0, l_tmp);
duke@435 2540 #else
duke@435 2541 std(O0, l_tmp);
duke@435 2542 #endif
duke@435 2543 } else {
duke@435 2544 push(state);
duke@435 2545 }
duke@435 2546 #endif // CC_INTERP
duke@435 2547 }
duke@435 2548
duke@435 2549 void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
duke@435 2550 #ifdef CC_INTERP
duke@435 2551 ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
duke@435 2552 #ifdef _LP64
duke@435 2553 ldx(STATE(_native_lresult), O0);
duke@435 2554 #else
duke@435 2555 ldd(STATE(_native_lresult), O0);
duke@435 2556 #endif
duke@435 2557 #else // CC_INTERP
duke@435 2558 if (is_native_call) {
duke@435 2559 ldf(FloatRegisterImpl::D, d_tmp, F0);
duke@435 2560 #ifdef _LP64
duke@435 2561 ldx(l_tmp, O0);
duke@435 2562 #else
duke@435 2563 ldd(l_tmp, O0);
duke@435 2564 #endif
duke@435 2565 } else {
duke@435 2566 pop(state);
duke@435 2567 }
duke@435 2568 #endif // CC_INTERP
duke@435 2569 }

mercurial