src/cpu/sparc/vm/interp_masm_sparc.cpp

Thu, 21 Jul 2011 11:25:07 -0700

author
kvn
date
Thu, 21 Jul 2011 11:25:07 -0700
changeset 3037
3d42f82cd811
parent 2698
38fea01eb669
child 3050
fdb992d83a87
permissions
-rw-r--r--

7063628: Use cbcond on T4
Summary: Add new short branch instruction to Hotspot sparc assembler.
Reviewed-by: never, twisti, jrose

duke@435 1 /*
iveresov@2438 2 * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "interp_masm_sparc.hpp"
stefank@2314 27 #include "interpreter/interpreter.hpp"
stefank@2314 28 #include "interpreter/interpreterRuntime.hpp"
stefank@2314 29 #include "oops/arrayOop.hpp"
stefank@2314 30 #include "oops/markOop.hpp"
stefank@2314 31 #include "oops/methodDataOop.hpp"
stefank@2314 32 #include "oops/methodOop.hpp"
stefank@2314 33 #include "prims/jvmtiExport.hpp"
stefank@2314 34 #include "prims/jvmtiRedefineClassesTrace.hpp"
stefank@2314 35 #include "prims/jvmtiThreadState.hpp"
stefank@2314 36 #include "runtime/basicLock.hpp"
stefank@2314 37 #include "runtime/biasedLocking.hpp"
stefank@2314 38 #include "runtime/sharedRuntime.hpp"
stefank@2314 39 #ifdef TARGET_OS_FAMILY_linux
stefank@2314 40 # include "thread_linux.inline.hpp"
stefank@2314 41 #endif
stefank@2314 42 #ifdef TARGET_OS_FAMILY_solaris
stefank@2314 43 # include "thread_solaris.inline.hpp"
stefank@2314 44 #endif
duke@435 45
duke@435 46 #ifndef CC_INTERP
duke@435 47 #ifndef FAST_DISPATCH
duke@435 48 #define FAST_DISPATCH 1
duke@435 49 #endif
duke@435 50 #undef FAST_DISPATCH
duke@435 51
duke@435 52 // Implementation of InterpreterMacroAssembler
duke@435 53
duke@435 54 // This file specializes the assember with interpreter-specific macros
duke@435 55
twisti@1162 56 const Address InterpreterMacroAssembler::l_tmp(FP, (frame::interpreter_frame_l_scratch_fp_offset * wordSize) + STACK_BIAS);
twisti@1162 57 const Address InterpreterMacroAssembler::d_tmp(FP, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
duke@435 58
duke@435 59 #else // CC_INTERP
duke@435 60 #ifndef STATE
duke@435 61 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
duke@435 62 #endif // STATE
duke@435 63
duke@435 64 #endif // CC_INTERP
duke@435 65
duke@435 66 void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
duke@435 67 // Note: this algorithm is also used by C1's OSR entry sequence.
duke@435 68 // Any changes should also be applied to CodeEmitter::emit_osr_entry().
duke@435 69 assert_different_registers(args_size, locals_size);
duke@435 70 // max_locals*2 for TAGS. Assumes that args_size has already been adjusted.
duke@435 71 subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
duke@435 72 // Use br/mov combination because it works on both V8 and V9 and is
duke@435 73 // faster.
duke@435 74 Label skip_move;
duke@435 75 br(Assembler::negative, true, Assembler::pt, skip_move);
duke@435 76 delayed()->mov(G0, delta);
duke@435 77 bind(skip_move);
duke@435 78 round_to(delta, WordsPerLong); // make multiple of 2 (SP must be 2-word aligned)
duke@435 79 sll(delta, LogBytesPerWord, delta); // extra space for locals in bytes
duke@435 80 }
duke@435 81
duke@435 82 #ifndef CC_INTERP
duke@435 83
duke@435 84 // Dispatch code executed in the prolog of a bytecode which does not do it's
duke@435 85 // own dispatch. The dispatch address is computed and placed in IdispatchAddress
duke@435 86 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
duke@435 87 assert_not_delayed();
duke@435 88 #ifdef FAST_DISPATCH
duke@435 89 // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
duke@435 90 // they both use I2.
duke@435 91 assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
duke@435 92 ldub(Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 93 add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
duke@435 94 // add offset to correct dispatch table
duke@435 95 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
duke@435 96 ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
duke@435 97 #else
twisti@1162 98 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 99 // dispatch table to use
twisti@1162 100 AddressLiteral tbl(Interpreter::dispatch_table(state));
twisti@1162 101 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
twisti@1162 102 set(tbl, G3_scratch); // compute addr of table
twisti@1162 103 ld_ptr(G3_scratch, Lbyte_code, IdispatchAddress); // get entry addr
duke@435 104 #endif
duke@435 105 }
duke@435 106
duke@435 107
duke@435 108 // Dispatch code executed in the epilog of a bytecode which does not do it's
duke@435 109 // own dispatch. The dispatch address in IdispatchAddress is used for the
duke@435 110 // dispatch.
duke@435 111 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
duke@435 112 assert_not_delayed();
duke@435 113 verify_FPU(1, state);
duke@435 114 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 115 jmp( IdispatchAddress, 0 );
duke@435 116 if (bcp_incr != 0) delayed()->inc(Lbcp, bcp_incr);
duke@435 117 else delayed()->nop();
duke@435 118 }
duke@435 119
duke@435 120
duke@435 121 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
duke@435 122 // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
duke@435 123 assert_not_delayed();
duke@435 124 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 125 dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
duke@435 126 }
duke@435 127
duke@435 128
duke@435 129 void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
duke@435 130 // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
duke@435 131 assert_not_delayed();
duke@435 132 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 133 dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
duke@435 134 }
duke@435 135
duke@435 136
duke@435 137 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
duke@435 138 // load current bytecode
duke@435 139 assert_not_delayed();
duke@435 140 ldub( Lbcp, 0, Lbyte_code); // load next bytecode
duke@435 141 dispatch_base(state, table);
duke@435 142 }
duke@435 143
duke@435 144
duke@435 145 void InterpreterMacroAssembler::call_VM_leaf_base(
duke@435 146 Register java_thread,
duke@435 147 address entry_point,
duke@435 148 int number_of_arguments
duke@435 149 ) {
duke@435 150 if (!java_thread->is_valid())
duke@435 151 java_thread = L7_thread_cache;
duke@435 152 // super call
duke@435 153 MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
duke@435 154 }
duke@435 155
duke@435 156
duke@435 157 void InterpreterMacroAssembler::call_VM_base(
duke@435 158 Register oop_result,
duke@435 159 Register java_thread,
duke@435 160 Register last_java_sp,
duke@435 161 address entry_point,
duke@435 162 int number_of_arguments,
duke@435 163 bool check_exception
duke@435 164 ) {
duke@435 165 if (!java_thread->is_valid())
duke@435 166 java_thread = L7_thread_cache;
duke@435 167 // See class ThreadInVMfromInterpreter, which assumes that the interpreter
duke@435 168 // takes responsibility for setting its own thread-state on call-out.
duke@435 169 // However, ThreadInVMfromInterpreter resets the state to "in_Java".
duke@435 170
duke@435 171 //save_bcp(); // save bcp
duke@435 172 MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
duke@435 173 //restore_bcp(); // restore bcp
duke@435 174 //restore_locals(); // restore locals pointer
duke@435 175 }
duke@435 176
duke@435 177
duke@435 178 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
duke@435 179 if (JvmtiExport::can_pop_frame()) {
duke@435 180 Label L;
duke@435 181
duke@435 182 // Check the "pending popframe condition" flag in the current thread
twisti@1162 183 ld(G2_thread, JavaThread::popframe_condition_offset(), scratch_reg);
duke@435 184
duke@435 185 // Initiate popframe handling only if it is not already being processed. If the flag
duke@435 186 // has the popframe_processing bit set, it means that this code is called *during* popframe
duke@435 187 // handling - we don't want to reenter.
duke@435 188 btst(JavaThread::popframe_pending_bit, scratch_reg);
duke@435 189 br(zero, false, pt, L);
duke@435 190 delayed()->nop();
duke@435 191 btst(JavaThread::popframe_processing_bit, scratch_reg);
duke@435 192 br(notZero, false, pt, L);
duke@435 193 delayed()->nop();
duke@435 194
duke@435 195 // Call Interpreter::remove_activation_preserving_args_entry() to get the
duke@435 196 // address of the same-named entrypoint in the generated interpreter code.
duke@435 197 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
duke@435 198
duke@435 199 // Jump to Interpreter::_remove_activation_preserving_args_entry
duke@435 200 jmpl(O0, G0, G0);
duke@435 201 delayed()->nop();
duke@435 202 bind(L);
duke@435 203 }
duke@435 204 }
duke@435 205
duke@435 206
duke@435 207 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
duke@435 208 Register thr_state = G4_scratch;
twisti@1162 209 ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
twisti@1162 210 const Address tos_addr(thr_state, JvmtiThreadState::earlyret_tos_offset());
twisti@1162 211 const Address oop_addr(thr_state, JvmtiThreadState::earlyret_oop_offset());
twisti@1162 212 const Address val_addr(thr_state, JvmtiThreadState::earlyret_value_offset());
duke@435 213 switch (state) {
duke@435 214 case ltos: ld_long(val_addr, Otos_l); break;
duke@435 215 case atos: ld_ptr(oop_addr, Otos_l);
duke@435 216 st_ptr(G0, oop_addr); break;
duke@435 217 case btos: // fall through
duke@435 218 case ctos: // fall through
duke@435 219 case stos: // fall through
duke@435 220 case itos: ld(val_addr, Otos_l1); break;
duke@435 221 case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
duke@435 222 case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
duke@435 223 case vtos: /* nothing to do */ break;
duke@435 224 default : ShouldNotReachHere();
duke@435 225 }
duke@435 226 // Clean up tos value in the jvmti thread state
duke@435 227 or3(G0, ilgl, G3_scratch);
duke@435 228 stw(G3_scratch, tos_addr);
duke@435 229 st_long(G0, val_addr);
duke@435 230 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 231 }
duke@435 232
duke@435 233
duke@435 234 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
duke@435 235 if (JvmtiExport::can_force_early_return()) {
duke@435 236 Label L;
duke@435 237 Register thr_state = G3_scratch;
twisti@1162 238 ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
kvn@3037 239 br_null_short(thr_state, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
duke@435 240
duke@435 241 // Initiate earlyret handling only if it is not already being processed.
duke@435 242 // If the flag has the earlyret_processing bit set, it means that this code
duke@435 243 // is called *during* earlyret handling - we don't want to reenter.
twisti@1162 244 ld(thr_state, JvmtiThreadState::earlyret_state_offset(), G4_scratch);
kvn@3037 245 cmp_and_br_short(G4_scratch, JvmtiThreadState::earlyret_pending, Assembler::notEqual, pt, L);
duke@435 246
duke@435 247 // Call Interpreter::remove_activation_early_entry() to get the address of the
duke@435 248 // same-named entrypoint in the generated interpreter code
twisti@1162 249 ld(thr_state, JvmtiThreadState::earlyret_tos_offset(), Otos_l1);
duke@435 250 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
duke@435 251
duke@435 252 // Jump to Interpreter::_remove_activation_early_entry
duke@435 253 jmpl(O0, G0, G0);
duke@435 254 delayed()->nop();
duke@435 255 bind(L);
duke@435 256 }
duke@435 257 }
duke@435 258
duke@435 259
twisti@1730 260 void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
duke@435 261 mov(arg_1, O0);
twisti@1730 262 mov(arg_2, O1);
twisti@1730 263 MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 2);
duke@435 264 }
duke@435 265 #endif /* CC_INTERP */
duke@435 266
duke@435 267
duke@435 268 #ifndef CC_INTERP
duke@435 269
duke@435 270 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
duke@435 271 assert_not_delayed();
duke@435 272 dispatch_Lbyte_code(state, table);
duke@435 273 }
duke@435 274
duke@435 275
duke@435 276 void InterpreterMacroAssembler::dispatch_normal(TosState state) {
duke@435 277 dispatch_base(state, Interpreter::normal_table(state));
duke@435 278 }
duke@435 279
duke@435 280
duke@435 281 void InterpreterMacroAssembler::dispatch_only(TosState state) {
duke@435 282 dispatch_base(state, Interpreter::dispatch_table(state));
duke@435 283 }
duke@435 284
duke@435 285
duke@435 286 // common code to dispatch and dispatch_only
duke@435 287 // dispatch value in Lbyte_code and increment Lbcp
duke@435 288
duke@435 289 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
duke@435 290 verify_FPU(1, state);
duke@435 291 // %%%%% maybe implement +VerifyActivationFrameSize here
duke@435 292 //verify_thread(); //too slow; we will just verify on method entry & exit
duke@435 293 if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 294 #ifdef FAST_DISPATCH
duke@435 295 if (table == Interpreter::dispatch_table(state)) {
duke@435 296 // use IdispatchTables
duke@435 297 add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
duke@435 298 // add offset to correct dispatch table
duke@435 299 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
duke@435 300 ld_ptr(IdispatchTables, Lbyte_code, G3_scratch); // get entry addr
duke@435 301 } else {
duke@435 302 #endif
duke@435 303 // dispatch table to use
twisti@1162 304 AddressLiteral tbl(table);
duke@435 305 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
twisti@1162 306 set(tbl, G3_scratch); // compute addr of table
duke@435 307 ld_ptr(G3_scratch, Lbyte_code, G3_scratch); // get entry addr
duke@435 308 #ifdef FAST_DISPATCH
duke@435 309 }
duke@435 310 #endif
duke@435 311 jmp( G3_scratch, 0 );
duke@435 312 if (bcp_incr != 0) delayed()->inc(Lbcp, bcp_incr);
duke@435 313 else delayed()->nop();
duke@435 314 }
duke@435 315
duke@435 316
duke@435 317 // Helpers for expression stack
duke@435 318
duke@435 319 // Longs and doubles are Category 2 computational types in the
duke@435 320 // JVM specification (section 3.11.1) and take 2 expression stack or
duke@435 321 // local slots.
duke@435 322 // Aligning them on 32 bit with tagged stacks is hard because the code generated
duke@435 323 // for the dup* bytecodes depends on what types are already on the stack.
duke@435 324 // If the types are split into the two stack/local slots, that is much easier
duke@435 325 // (and we can use 0 for non-reference tags).
duke@435 326
duke@435 327 // Known good alignment in _LP64 but unknown otherwise
duke@435 328 void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
duke@435 329 assert_not_delayed();
duke@435 330
duke@435 331 #ifdef _LP64
duke@435 332 ldf(FloatRegisterImpl::D, r1, offset, d);
duke@435 333 #else
duke@435 334 ldf(FloatRegisterImpl::S, r1, offset, d);
twisti@1861 335 ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize, d->successor());
duke@435 336 #endif
duke@435 337 }
duke@435 338
duke@435 339 // Known good alignment in _LP64 but unknown otherwise
duke@435 340 void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
duke@435 341 assert_not_delayed();
duke@435 342
duke@435 343 #ifdef _LP64
duke@435 344 stf(FloatRegisterImpl::D, d, r1, offset);
duke@435 345 // store something more useful here
twisti@1861 346 debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
duke@435 347 #else
duke@435 348 stf(FloatRegisterImpl::S, d, r1, offset);
twisti@1861 349 stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize);
duke@435 350 #endif
duke@435 351 }
duke@435 352
duke@435 353
duke@435 354 // Known good alignment in _LP64 but unknown otherwise
duke@435 355 void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
duke@435 356 assert_not_delayed();
duke@435 357 #ifdef _LP64
duke@435 358 ldx(r1, offset, rd);
duke@435 359 #else
duke@435 360 ld(r1, offset, rd);
twisti@1861 361 ld(r1, offset + Interpreter::stackElementSize, rd->successor());
duke@435 362 #endif
duke@435 363 }
duke@435 364
duke@435 365 // Known good alignment in _LP64 but unknown otherwise
duke@435 366 void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
duke@435 367 assert_not_delayed();
duke@435 368
duke@435 369 #ifdef _LP64
duke@435 370 stx(l, r1, offset);
duke@435 371 // store something more useful here
twisti@1861 372 debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
duke@435 373 #else
duke@435 374 st(l, r1, offset);
twisti@1861 375 st(l->successor(), r1, offset + Interpreter::stackElementSize);
duke@435 376 #endif
duke@435 377 }
duke@435 378
duke@435 379 void InterpreterMacroAssembler::pop_i(Register r) {
duke@435 380 assert_not_delayed();
duke@435 381 ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
twisti@1861 382 inc(Lesp, Interpreter::stackElementSize);
duke@435 383 debug_only(verify_esp(Lesp));
duke@435 384 }
duke@435 385
duke@435 386 void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
duke@435 387 assert_not_delayed();
duke@435 388 ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
twisti@1861 389 inc(Lesp, Interpreter::stackElementSize);
duke@435 390 debug_only(verify_esp(Lesp));
duke@435 391 }
duke@435 392
duke@435 393 void InterpreterMacroAssembler::pop_l(Register r) {
duke@435 394 assert_not_delayed();
duke@435 395 load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
twisti@1861 396 inc(Lesp, 2*Interpreter::stackElementSize);
duke@435 397 debug_only(verify_esp(Lesp));
duke@435 398 }
duke@435 399
duke@435 400
duke@435 401 void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
duke@435 402 assert_not_delayed();
duke@435 403 ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
twisti@1861 404 inc(Lesp, Interpreter::stackElementSize);
duke@435 405 debug_only(verify_esp(Lesp));
duke@435 406 }
duke@435 407
duke@435 408
duke@435 409 void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
duke@435 410 assert_not_delayed();
duke@435 411 load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
twisti@1861 412 inc(Lesp, 2*Interpreter::stackElementSize);
duke@435 413 debug_only(verify_esp(Lesp));
duke@435 414 }
duke@435 415
duke@435 416
duke@435 417 void InterpreterMacroAssembler::push_i(Register r) {
duke@435 418 assert_not_delayed();
duke@435 419 debug_only(verify_esp(Lesp));
twisti@1861 420 st(r, Lesp, 0);
twisti@1861 421 dec(Lesp, Interpreter::stackElementSize);
duke@435 422 }
duke@435 423
duke@435 424 void InterpreterMacroAssembler::push_ptr(Register r) {
duke@435 425 assert_not_delayed();
twisti@1861 426 st_ptr(r, Lesp, 0);
twisti@1861 427 dec(Lesp, Interpreter::stackElementSize);
duke@435 428 }
duke@435 429
duke@435 430 // remember: our convention for longs in SPARC is:
duke@435 431 // O0 (Otos_l1) has high-order part in first word,
duke@435 432 // O1 (Otos_l2) has low-order part in second word
duke@435 433
duke@435 434 void InterpreterMacroAssembler::push_l(Register r) {
duke@435 435 assert_not_delayed();
duke@435 436 debug_only(verify_esp(Lesp));
twisti@1861 437 // Longs are stored in memory-correct order, even if unaligned.
twisti@1861 438 int offset = -Interpreter::stackElementSize;
duke@435 439 store_unaligned_long(r, Lesp, offset);
twisti@1861 440 dec(Lesp, 2 * Interpreter::stackElementSize);
duke@435 441 }
duke@435 442
duke@435 443
duke@435 444 void InterpreterMacroAssembler::push_f(FloatRegister f) {
duke@435 445 assert_not_delayed();
duke@435 446 debug_only(verify_esp(Lesp));
twisti@1861 447 stf(FloatRegisterImpl::S, f, Lesp, 0);
twisti@1861 448 dec(Lesp, Interpreter::stackElementSize);
duke@435 449 }
duke@435 450
duke@435 451
duke@435 452 void InterpreterMacroAssembler::push_d(FloatRegister d) {
duke@435 453 assert_not_delayed();
duke@435 454 debug_only(verify_esp(Lesp));
twisti@1861 455 // Longs are stored in memory-correct order, even if unaligned.
twisti@1861 456 int offset = -Interpreter::stackElementSize;
duke@435 457 store_unaligned_double(d, Lesp, offset);
twisti@1861 458 dec(Lesp, 2 * Interpreter::stackElementSize);
duke@435 459 }
duke@435 460
duke@435 461
duke@435 462 void InterpreterMacroAssembler::push(TosState state) {
duke@435 463 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 464 switch (state) {
duke@435 465 case atos: push_ptr(); break;
duke@435 466 case btos: push_i(); break;
duke@435 467 case ctos:
duke@435 468 case stos: push_i(); break;
duke@435 469 case itos: push_i(); break;
duke@435 470 case ltos: push_l(); break;
duke@435 471 case ftos: push_f(); break;
duke@435 472 case dtos: push_d(); break;
duke@435 473 case vtos: /* nothing to do */ break;
duke@435 474 default : ShouldNotReachHere();
duke@435 475 }
duke@435 476 }
duke@435 477
duke@435 478
duke@435 479 void InterpreterMacroAssembler::pop(TosState state) {
duke@435 480 switch (state) {
duke@435 481 case atos: pop_ptr(); break;
duke@435 482 case btos: pop_i(); break;
duke@435 483 case ctos:
duke@435 484 case stos: pop_i(); break;
duke@435 485 case itos: pop_i(); break;
duke@435 486 case ltos: pop_l(); break;
duke@435 487 case ftos: pop_f(); break;
duke@435 488 case dtos: pop_d(); break;
duke@435 489 case vtos: /* nothing to do */ break;
duke@435 490 default : ShouldNotReachHere();
duke@435 491 }
duke@435 492 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 493 }
duke@435 494
duke@435 495
twisti@1861 496 // Helpers for swap and dup
twisti@1861 497 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
duke@435 498 ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
duke@435 499 }
twisti@1861 500 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
duke@435 501 st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
duke@435 502 }
duke@435 503
duke@435 504
duke@435 505 void InterpreterMacroAssembler::load_receiver(Register param_count,
duke@435 506 Register recv) {
twisti@1861 507 sll(param_count, Interpreter::logStackElementSize, param_count);
duke@435 508 ld_ptr(Lesp, param_count, recv); // gets receiver Oop
duke@435 509 }
duke@435 510
duke@435 511 void InterpreterMacroAssembler::empty_expression_stack() {
duke@435 512 // Reset Lesp.
duke@435 513 sub( Lmonitors, wordSize, Lesp );
duke@435 514
duke@435 515 // Reset SP by subtracting more space from Lesp.
duke@435 516 Label done;
duke@435 517 verify_oop(Lmethod);
twisti@1162 518 assert(G4_scratch != Gframe_size, "Only you can prevent register aliasing!");
duke@435 519
duke@435 520 // A native does not need to do this, since its callee does not change SP.
twisti@1162 521 ld(Lmethod, methodOopDesc::access_flags_offset(), Gframe_size); // Load access flags.
duke@435 522 btst(JVM_ACC_NATIVE, Gframe_size);
duke@435 523 br(Assembler::notZero, false, Assembler::pt, done);
duke@435 524 delayed()->nop();
duke@435 525
duke@435 526 // Compute max expression stack+register save area
twisti@1162 527 lduh(Lmethod, in_bytes(methodOopDesc::max_stack_offset()), Gframe_size); // Load max stack.
duke@435 528 add( Gframe_size, frame::memory_parameter_word_sp_offset, Gframe_size );
duke@435 529
duke@435 530 //
duke@435 531 // now set up a stack frame with the size computed above
duke@435 532 //
duke@435 533 //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
duke@435 534 sll( Gframe_size, LogBytesPerWord, Gframe_size );
duke@435 535 sub( Lesp, Gframe_size, Gframe_size );
duke@435 536 and3( Gframe_size, -(2 * wordSize), Gframe_size ); // align SP (downwards) to an 8/16-byte boundary
duke@435 537 debug_only(verify_sp(Gframe_size, G4_scratch));
duke@435 538 #ifdef _LP64
duke@435 539 sub(Gframe_size, STACK_BIAS, Gframe_size );
duke@435 540 #endif
duke@435 541 mov(Gframe_size, SP);
duke@435 542
duke@435 543 bind(done);
duke@435 544 }
duke@435 545
duke@435 546
duke@435 547 #ifdef ASSERT
duke@435 548 void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
duke@435 549 Label Bad, OK;
duke@435 550
duke@435 551 // Saved SP must be aligned.
duke@435 552 #ifdef _LP64
duke@435 553 btst(2*BytesPerWord-1, Rsp);
duke@435 554 #else
duke@435 555 btst(LongAlignmentMask, Rsp);
duke@435 556 #endif
duke@435 557 br(Assembler::notZero, false, Assembler::pn, Bad);
duke@435 558 delayed()->nop();
duke@435 559
duke@435 560 // Saved SP, plus register window size, must not be above FP.
duke@435 561 add(Rsp, frame::register_save_words * wordSize, Rtemp);
duke@435 562 #ifdef _LP64
duke@435 563 sub(Rtemp, STACK_BIAS, Rtemp); // Bias Rtemp before cmp to FP
duke@435 564 #endif
kvn@3037 565 cmp_and_brx_short(Rtemp, FP, Assembler::greaterUnsigned, Assembler::pn, Bad);
duke@435 566
duke@435 567 // Saved SP must not be ridiculously below current SP.
duke@435 568 size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
duke@435 569 set(maxstack, Rtemp);
duke@435 570 sub(SP, Rtemp, Rtemp);
duke@435 571 #ifdef _LP64
duke@435 572 add(Rtemp, STACK_BIAS, Rtemp); // Unbias Rtemp before cmp to Rsp
duke@435 573 #endif
kvn@3037 574 cmp_and_brx_short(Rsp, Rtemp, Assembler::lessUnsigned, Assembler::pn, Bad);
kvn@3037 575
kvn@3037 576 ba_short(OK);
duke@435 577
duke@435 578 bind(Bad);
duke@435 579 stop("on return to interpreted call, restored SP is corrupted");
duke@435 580
duke@435 581 bind(OK);
duke@435 582 }
duke@435 583
duke@435 584
duke@435 585 void InterpreterMacroAssembler::verify_esp(Register Resp) {
duke@435 586 // about to read or write Resp[0]
duke@435 587 // make sure it is not in the monitors or the register save area
duke@435 588 Label OK1, OK2;
duke@435 589
duke@435 590 cmp(Resp, Lmonitors);
duke@435 591 brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
duke@435 592 delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
duke@435 593 stop("too many pops: Lesp points into monitor area");
duke@435 594 bind(OK1);
duke@435 595 #ifdef _LP64
duke@435 596 sub(Resp, STACK_BIAS, Resp);
duke@435 597 #endif
duke@435 598 cmp(Resp, SP);
duke@435 599 brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
duke@435 600 delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
duke@435 601 stop("too many pushes: Lesp points into register window");
duke@435 602 bind(OK2);
duke@435 603 }
duke@435 604 #endif // ASSERT
duke@435 605
duke@435 606 // Load compiled (i2c) or interpreter entry when calling from interpreted and
duke@435 607 // do the call. Centralized so that all interpreter calls will do the same actions.
duke@435 608 // If jvmti single stepping is on for a thread we must not call compiled code.
duke@435 609 void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
duke@435 610
duke@435 611 // Assume we want to go compiled if available
duke@435 612
duke@435 613 ld_ptr(G5_method, in_bytes(methodOopDesc::from_interpreted_offset()), target);
duke@435 614
duke@435 615 if (JvmtiExport::can_post_interpreter_events()) {
duke@435 616 // JVMTI events, such as single-stepping, are implemented partly by avoiding running
duke@435 617 // compiled code in threads for which the event is enabled. Check here for
duke@435 618 // interp_only_mode if these events CAN be enabled.
duke@435 619 verify_thread();
duke@435 620 Label skip_compiled_code;
duke@435 621
twisti@1162 622 const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
duke@435 623 ld(interp_only, scratch);
kvn@3037 624 cmp_zero_and_br(Assembler::notZero, scratch, skip_compiled_code, true, Assembler::pn);
duke@435 625 delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), target);
duke@435 626 bind(skip_compiled_code);
duke@435 627 }
duke@435 628
duke@435 629 // the i2c_adapters need methodOop in G5_method (right? %%%)
duke@435 630 // do the call
duke@435 631 #ifdef ASSERT
duke@435 632 {
duke@435 633 Label ok;
kvn@3037 634 br_notnull_short(target, Assembler::pt, ok);
duke@435 635 stop("null entry point");
duke@435 636 bind(ok);
duke@435 637 }
duke@435 638 #endif // ASSERT
duke@435 639
duke@435 640 // Adjust Rret first so Llast_SP can be same as Rret
duke@435 641 add(Rret, -frame::pc_return_offset, O7);
duke@435 642 add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
duke@435 643 // Record SP so we can remove any stack space allocated by adapter transition
duke@435 644 jmp(target, 0);
duke@435 645 delayed()->mov(SP, Llast_SP);
duke@435 646 }
duke@435 647
duke@435 648 void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
duke@435 649 assert_not_delayed();
duke@435 650
duke@435 651 Label not_taken;
duke@435 652 if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
duke@435 653 else br (cc, false, Assembler::pn, not_taken);
duke@435 654 delayed()->nop();
duke@435 655
duke@435 656 TemplateTable::branch(false,false);
duke@435 657
duke@435 658 bind(not_taken);
duke@435 659
duke@435 660 profile_not_taken_branch(G3_scratch);
duke@435 661 }
duke@435 662
duke@435 663
duke@435 664 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
duke@435 665 int bcp_offset,
duke@435 666 Register Rtmp,
duke@435 667 Register Rdst,
duke@435 668 signedOrNot is_signed,
duke@435 669 setCCOrNot should_set_CC ) {
duke@435 670 assert(Rtmp != Rdst, "need separate temp register");
duke@435 671 assert_not_delayed();
duke@435 672 switch (is_signed) {
duke@435 673 default: ShouldNotReachHere();
duke@435 674
duke@435 675 case Signed: ldsb( Lbcp, bcp_offset, Rdst ); break; // high byte
duke@435 676 case Unsigned: ldub( Lbcp, bcp_offset, Rdst ); break; // high byte
duke@435 677 }
duke@435 678 ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
duke@435 679 sll( Rdst, BitsPerByte, Rdst);
duke@435 680 switch (should_set_CC ) {
duke@435 681 default: ShouldNotReachHere();
duke@435 682
duke@435 683 case set_CC: orcc( Rdst, Rtmp, Rdst ); break;
duke@435 684 case dont_set_CC: or3( Rdst, Rtmp, Rdst ); break;
duke@435 685 }
duke@435 686 }
duke@435 687
duke@435 688
duke@435 689 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
duke@435 690 int bcp_offset,
duke@435 691 Register Rtmp,
duke@435 692 Register Rdst,
duke@435 693 setCCOrNot should_set_CC ) {
duke@435 694 assert(Rtmp != Rdst, "need separate temp register");
duke@435 695 assert_not_delayed();
duke@435 696 add( Lbcp, bcp_offset, Rtmp);
duke@435 697 andcc( Rtmp, 3, G0);
duke@435 698 Label aligned;
duke@435 699 switch (should_set_CC ) {
duke@435 700 default: ShouldNotReachHere();
duke@435 701
duke@435 702 case set_CC: break;
duke@435 703 case dont_set_CC: break;
duke@435 704 }
duke@435 705
duke@435 706 br(Assembler::zero, true, Assembler::pn, aligned);
duke@435 707 #ifdef _LP64
duke@435 708 delayed()->ldsw(Rtmp, 0, Rdst);
duke@435 709 #else
duke@435 710 delayed()->ld(Rtmp, 0, Rdst);
duke@435 711 #endif
duke@435 712
duke@435 713 ldub(Lbcp, bcp_offset + 3, Rdst);
duke@435 714 ldub(Lbcp, bcp_offset + 2, Rtmp); sll(Rtmp, 8, Rtmp); or3(Rtmp, Rdst, Rdst);
duke@435 715 ldub(Lbcp, bcp_offset + 1, Rtmp); sll(Rtmp, 16, Rtmp); or3(Rtmp, Rdst, Rdst);
duke@435 716 #ifdef _LP64
duke@435 717 ldsb(Lbcp, bcp_offset + 0, Rtmp); sll(Rtmp, 24, Rtmp);
duke@435 718 #else
duke@435 719 // Unsigned load is faster than signed on some implementations
duke@435 720 ldub(Lbcp, bcp_offset + 0, Rtmp); sll(Rtmp, 24, Rtmp);
duke@435 721 #endif
duke@435 722 or3(Rtmp, Rdst, Rdst );
duke@435 723
duke@435 724 bind(aligned);
duke@435 725 if (should_set_CC == set_CC) tst(Rdst);
duke@435 726 }
duke@435 727
duke@435 728
twisti@1858 729 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register cache, Register tmp,
jrose@1920 730 int bcp_offset, size_t index_size) {
twisti@1858 731 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
jrose@1920 732 if (index_size == sizeof(u2)) {
twisti@1858 733 get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
jrose@1920 734 } else if (index_size == sizeof(u4)) {
twisti@2698 735 assert(EnableInvokeDynamic, "giant index used only for JSR 292");
twisti@1858 736 get_4_byte_integer_at_bcp(bcp_offset, cache, tmp);
twisti@1858 737 assert(constantPoolCacheOopDesc::decode_secondary_index(~123) == 123, "else change next line");
twisti@1858 738 xor3(tmp, -1, tmp); // convert to plain index
jrose@1920 739 } else if (index_size == sizeof(u1)) {
twisti@2698 740 assert(EnableInvokeDynamic, "tiny index used only for JSR 292");
jrose@1920 741 ldub(Lbcp, bcp_offset, tmp);
jrose@1920 742 } else {
jrose@1920 743 ShouldNotReachHere();
twisti@1858 744 }
twisti@1858 745 }
twisti@1858 746
twisti@1858 747
twisti@1858 748 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp,
jrose@1920 749 int bcp_offset, size_t index_size) {
duke@435 750 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
duke@435 751 assert_different_registers(cache, tmp);
duke@435 752 assert_not_delayed();
jrose@1920 753 get_cache_index_at_bcp(cache, tmp, bcp_offset, index_size);
twisti@1858 754 // convert from field index to ConstantPoolCacheEntry index and from
twisti@1858 755 // word index to byte offset
duke@435 756 sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
duke@435 757 add(LcpoolCache, tmp, cache);
duke@435 758 }
duke@435 759
duke@435 760
twisti@1858 761 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
jrose@1920 762 int bcp_offset, size_t index_size) {
duke@435 763 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
duke@435 764 assert_different_registers(cache, tmp);
duke@435 765 assert_not_delayed();
jrose@1920 766 if (index_size == sizeof(u2)) {
jrose@1920 767 get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
jrose@1920 768 } else {
jrose@1920 769 ShouldNotReachHere(); // other sizes not supported here
jrose@1920 770 }
duke@435 771 // convert from field index to ConstantPoolCacheEntry index
duke@435 772 // and from word index to byte offset
duke@435 773 sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
duke@435 774 // skip past the header
duke@435 775 add(tmp, in_bytes(constantPoolCacheOopDesc::base_offset()), tmp);
duke@435 776 // construct pointer to cache entry
duke@435 777 add(LcpoolCache, tmp, cache);
duke@435 778 }
duke@435 779
duke@435 780
duke@435 781 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
coleenp@548 782 // a subtype of super_klass. Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
duke@435 783 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
duke@435 784 Register Rsuper_klass,
duke@435 785 Register Rtmp1,
duke@435 786 Register Rtmp2,
duke@435 787 Register Rtmp3,
duke@435 788 Label &ok_is_subtype ) {
jrose@1079 789 Label not_subtype;
duke@435 790
duke@435 791 // Profile the not-null value's klass.
duke@435 792 profile_typecheck(Rsub_klass, Rtmp1);
duke@435 793
jrose@1079 794 check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass,
jrose@1079 795 Rtmp1, Rtmp2,
jrose@1079 796 &ok_is_subtype, &not_subtype, NULL);
jrose@1079 797
jrose@1079 798 check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass,
jrose@1079 799 Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg,
jrose@1079 800 &ok_is_subtype, NULL);
duke@435 801
duke@435 802 bind(not_subtype);
duke@435 803 profile_typecheck_failed(Rtmp1);
duke@435 804 }
duke@435 805
duke@435 806 // Separate these two to allow for delay slot in middle
duke@435 807 // These are used to do a test and full jump to exception-throwing code.
duke@435 808
duke@435 809 // %%%%% Could possibly reoptimize this by testing to see if could use
duke@435 810 // a single conditional branch (i.e. if span is small enough.
duke@435 811 // If you go that route, than get rid of the split and give up
duke@435 812 // on the delay-slot hack.
duke@435 813
duke@435 814 void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
duke@435 815 Label& ok ) {
duke@435 816 assert_not_delayed();
duke@435 817 br(ok_condition, true, pt, ok);
duke@435 818 // DELAY SLOT
duke@435 819 }
duke@435 820
duke@435 821 void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
duke@435 822 Label& ok ) {
duke@435 823 assert_not_delayed();
duke@435 824 bp( ok_condition, true, Assembler::xcc, pt, ok);
duke@435 825 // DELAY SLOT
duke@435 826 }
duke@435 827
duke@435 828 void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
duke@435 829 Label& ok ) {
duke@435 830 assert_not_delayed();
duke@435 831 brx(ok_condition, true, pt, ok);
duke@435 832 // DELAY SLOT
duke@435 833 }
duke@435 834
duke@435 835 void InterpreterMacroAssembler::throw_if_not_2( address throw_entry_point,
duke@435 836 Register Rscratch,
duke@435 837 Label& ok ) {
duke@435 838 assert(throw_entry_point != NULL, "entry point must be generated by now");
twisti@1162 839 AddressLiteral dest(throw_entry_point);
twisti@1162 840 jump_to(dest, Rscratch);
duke@435 841 delayed()->nop();
duke@435 842 bind(ok);
duke@435 843 }
duke@435 844
duke@435 845
duke@435 846 // And if you cannot use the delay slot, here is a shorthand:
duke@435 847
duke@435 848 void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
duke@435 849 address throw_entry_point,
duke@435 850 Register Rscratch ) {
duke@435 851 Label ok;
duke@435 852 if (ok_condition != never) {
duke@435 853 throw_if_not_1_icc( ok_condition, ok);
duke@435 854 delayed()->nop();
duke@435 855 }
duke@435 856 throw_if_not_2( throw_entry_point, Rscratch, ok);
duke@435 857 }
duke@435 858 void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
duke@435 859 address throw_entry_point,
duke@435 860 Register Rscratch ) {
duke@435 861 Label ok;
duke@435 862 if (ok_condition != never) {
duke@435 863 throw_if_not_1_xcc( ok_condition, ok);
duke@435 864 delayed()->nop();
duke@435 865 }
duke@435 866 throw_if_not_2( throw_entry_point, Rscratch, ok);
duke@435 867 }
duke@435 868 void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
duke@435 869 address throw_entry_point,
duke@435 870 Register Rscratch ) {
duke@435 871 Label ok;
duke@435 872 if (ok_condition != never) {
duke@435 873 throw_if_not_1_x( ok_condition, ok);
duke@435 874 delayed()->nop();
duke@435 875 }
duke@435 876 throw_if_not_2( throw_entry_point, Rscratch, ok);
duke@435 877 }
duke@435 878
duke@435 879 // Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
duke@435 880 // Note: res is still shy of address by array offset into object.
duke@435 881
duke@435 882 void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
duke@435 883 assert_not_delayed();
duke@435 884
duke@435 885 verify_oop(array);
duke@435 886 #ifdef _LP64
duke@435 887 // sign extend since tos (index) can be a 32bit value
duke@435 888 sra(index, G0, index);
duke@435 889 #endif // _LP64
duke@435 890
duke@435 891 // check array
duke@435 892 Label ptr_ok;
duke@435 893 tst(array);
duke@435 894 throw_if_not_1_x( notZero, ptr_ok );
duke@435 895 delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
duke@435 896 throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
duke@435 897
duke@435 898 Label index_ok;
duke@435 899 cmp(index, tmp);
duke@435 900 throw_if_not_1_icc( lessUnsigned, index_ok );
duke@435 901 if (index_shift > 0) delayed()->sll(index, index_shift, index);
duke@435 902 else delayed()->add(array, index, res); // addr - const offset in index
duke@435 903 // convention: move aberrant index into G3_scratch for exception message
duke@435 904 mov(index, G3_scratch);
duke@435 905 throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
duke@435 906
duke@435 907 // add offset if didn't do it in delay slot
duke@435 908 if (index_shift > 0) add(array, index, res); // addr - const offset in index
duke@435 909 }
duke@435 910
duke@435 911
duke@435 912 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
duke@435 913 assert_not_delayed();
duke@435 914
duke@435 915 // pop array
duke@435 916 pop_ptr(array);
duke@435 917
duke@435 918 // check array
duke@435 919 index_check_without_pop(array, index, index_shift, tmp, res);
duke@435 920 }
duke@435 921
duke@435 922
duke@435 923 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
duke@435 924 ld_ptr(Lmethod, in_bytes(methodOopDesc::constants_offset()), Rdst);
duke@435 925 }
duke@435 926
duke@435 927
duke@435 928 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
duke@435 929 get_constant_pool(Rdst);
duke@435 930 ld_ptr(Rdst, constantPoolOopDesc::cache_offset_in_bytes(), Rdst);
duke@435 931 }
duke@435 932
duke@435 933
duke@435 934 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
duke@435 935 get_constant_pool(Rcpool);
duke@435 936 ld_ptr(Rcpool, constantPoolOopDesc::tags_offset_in_bytes(), Rtags);
duke@435 937 }
duke@435 938
duke@435 939
duke@435 940 // unlock if synchronized method
duke@435 941 //
duke@435 942 // Unlock the receiver if this is a synchronized method.
duke@435 943 // Unlock any Java monitors from syncronized blocks.
duke@435 944 //
duke@435 945 // If there are locked Java monitors
duke@435 946 // If throw_monitor_exception
duke@435 947 // throws IllegalMonitorStateException
duke@435 948 // Else if install_monitor_exception
duke@435 949 // installs IllegalMonitorStateException
duke@435 950 // Else
duke@435 951 // no error processing
duke@435 952 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
duke@435 953 bool throw_monitor_exception,
duke@435 954 bool install_monitor_exception) {
duke@435 955 Label unlocked, unlock, no_unlock;
duke@435 956
duke@435 957 // get the value of _do_not_unlock_if_synchronized into G1_scratch
twisti@1162 958 const Address do_not_unlock_if_synchronized(G2_thread,
twisti@1162 959 JavaThread::do_not_unlock_if_synchronized_offset());
duke@435 960 ldbool(do_not_unlock_if_synchronized, G1_scratch);
duke@435 961 stbool(G0, do_not_unlock_if_synchronized); // reset the flag
duke@435 962
duke@435 963 // check if synchronized method
twisti@1162 964 const Address access_flags(Lmethod, methodOopDesc::access_flags_offset());
duke@435 965 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 966 push(state); // save tos
twisti@1162 967 ld(access_flags, G3_scratch); // Load access flags.
duke@435 968 btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
twisti@1162 969 br(zero, false, pt, unlocked);
duke@435 970 delayed()->nop();
duke@435 971
duke@435 972 // Don't unlock anything if the _do_not_unlock_if_synchronized flag
duke@435 973 // is set.
kvn@3037 974 cmp_zero_and_br(Assembler::notZero, G1_scratch, no_unlock);
duke@435 975 delayed()->nop();
duke@435 976
duke@435 977 // BasicObjectLock will be first in list, since this is a synchronized method. However, need
duke@435 978 // to check that the object has not been unlocked by an explicit monitorexit bytecode.
duke@435 979
duke@435 980 //Intel: if (throw_monitor_exception) ... else ...
duke@435 981 // Entry already unlocked, need to throw exception
duke@435 982 //...
duke@435 983
duke@435 984 // pass top-most monitor elem
duke@435 985 add( top_most_monitor(), O1 );
duke@435 986
duke@435 987 ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
kvn@3037 988 br_notnull_short(G3_scratch, pt, unlock);
duke@435 989
duke@435 990 if (throw_monitor_exception) {
duke@435 991 // Entry already unlocked need to throw an exception
duke@435 992 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
duke@435 993 should_not_reach_here();
duke@435 994 } else {
duke@435 995 // Monitor already unlocked during a stack unroll.
duke@435 996 // If requested, install an illegal_monitor_state_exception.
duke@435 997 // Continue with stack unrolling.
duke@435 998 if (install_monitor_exception) {
duke@435 999 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
duke@435 1000 }
kvn@3037 1001 ba_short(unlocked);
duke@435 1002 }
duke@435 1003
duke@435 1004 bind(unlock);
duke@435 1005
duke@435 1006 unlock_object(O1);
duke@435 1007
duke@435 1008 bind(unlocked);
duke@435 1009
duke@435 1010 // I0, I1: Might contain return value
duke@435 1011
duke@435 1012 // Check that all monitors are unlocked
duke@435 1013 { Label loop, exception, entry, restart;
duke@435 1014
duke@435 1015 Register Rmptr = O0;
duke@435 1016 Register Rtemp = O1;
duke@435 1017 Register Rlimit = Lmonitors;
duke@435 1018 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 1019 assert( (delta & LongAlignmentMask) == 0,
duke@435 1020 "sizeof BasicObjectLock must be even number of doublewords");
duke@435 1021
duke@435 1022 #ifdef ASSERT
duke@435 1023 add(top_most_monitor(), Rmptr, delta);
duke@435 1024 { Label L;
duke@435 1025 // ensure that Rmptr starts out above (or at) Rlimit
kvn@3037 1026 cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
duke@435 1027 stop("monitor stack has negative size");
duke@435 1028 bind(L);
duke@435 1029 }
duke@435 1030 #endif
duke@435 1031 bind(restart);
kvn@3037 1032 ba(entry);
duke@435 1033 delayed()->
duke@435 1034 add(top_most_monitor(), Rmptr, delta); // points to current entry, starting with bottom-most entry
duke@435 1035
duke@435 1036 // Entry is still locked, need to throw exception
duke@435 1037 bind(exception);
duke@435 1038 if (throw_monitor_exception) {
duke@435 1039 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
duke@435 1040 should_not_reach_here();
duke@435 1041 } else {
duke@435 1042 // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
duke@435 1043 // Unlock does not block, so don't have to worry about the frame
duke@435 1044 unlock_object(Rmptr);
duke@435 1045 if (install_monitor_exception) {
duke@435 1046 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
duke@435 1047 }
kvn@3037 1048 ba_short(restart);
duke@435 1049 }
duke@435 1050
duke@435 1051 bind(loop);
duke@435 1052 cmp(Rtemp, G0); // check if current entry is used
duke@435 1053 brx(Assembler::notEqual, false, pn, exception);
duke@435 1054 delayed()->
duke@435 1055 dec(Rmptr, delta); // otherwise advance to next entry
duke@435 1056 #ifdef ASSERT
duke@435 1057 { Label L;
duke@435 1058 // ensure that Rmptr has not somehow stepped below Rlimit
kvn@3037 1059 cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
duke@435 1060 stop("ran off the end of the monitor stack");
duke@435 1061 bind(L);
duke@435 1062 }
duke@435 1063 #endif
duke@435 1064 bind(entry);
duke@435 1065 cmp(Rmptr, Rlimit); // check if bottom reached
duke@435 1066 brx(Assembler::notEqual, true, pn, loop); // if not at bottom then check this entry
duke@435 1067 delayed()->
duke@435 1068 ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
duke@435 1069 }
duke@435 1070
duke@435 1071 bind(no_unlock);
duke@435 1072 pop(state);
duke@435 1073 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 1074 }
duke@435 1075
duke@435 1076
duke@435 1077 // remove activation
duke@435 1078 //
duke@435 1079 // Unlock the receiver if this is a synchronized method.
duke@435 1080 // Unlock any Java monitors from syncronized blocks.
duke@435 1081 // Remove the activation from the stack.
duke@435 1082 //
duke@435 1083 // If there are locked Java monitors
duke@435 1084 // If throw_monitor_exception
duke@435 1085 // throws IllegalMonitorStateException
duke@435 1086 // Else if install_monitor_exception
duke@435 1087 // installs IllegalMonitorStateException
duke@435 1088 // Else
duke@435 1089 // no error processing
duke@435 1090 void InterpreterMacroAssembler::remove_activation(TosState state,
duke@435 1091 bool throw_monitor_exception,
duke@435 1092 bool install_monitor_exception) {
duke@435 1093
duke@435 1094 unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
duke@435 1095
duke@435 1096 // save result (push state before jvmti call and pop it afterwards) and notify jvmti
duke@435 1097 notify_method_exit(false, state, NotifyJVMTI);
duke@435 1098
duke@435 1099 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 1100 verify_oop(Lmethod);
duke@435 1101 verify_thread();
duke@435 1102
duke@435 1103 // return tos
duke@435 1104 assert(Otos_l1 == Otos_i, "adjust code below");
duke@435 1105 switch (state) {
duke@435 1106 #ifdef _LP64
duke@435 1107 case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
duke@435 1108 #else
duke@435 1109 case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through // O1 -> I1
duke@435 1110 #endif
duke@435 1111 case btos: // fall through
duke@435 1112 case ctos:
duke@435 1113 case stos: // fall through
duke@435 1114 case atos: // fall through
duke@435 1115 case itos: mov(Otos_l1, Otos_l1->after_save()); break; // O0 -> I0
duke@435 1116 case ftos: // fall through
duke@435 1117 case dtos: // fall through
duke@435 1118 case vtos: /* nothing to do */ break;
duke@435 1119 default : ShouldNotReachHere();
duke@435 1120 }
duke@435 1121
duke@435 1122 #if defined(COMPILER2) && !defined(_LP64)
duke@435 1123 if (state == ltos) {
duke@435 1124 // C2 expects long results in G1 we can't tell if we're returning to interpreted
duke@435 1125 // or compiled so just be safe use G1 and O0/O1
duke@435 1126
duke@435 1127 // Shift bits into high (msb) of G1
duke@435 1128 sllx(Otos_l1->after_save(), 32, G1);
duke@435 1129 // Zero extend low bits
duke@435 1130 srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
duke@435 1131 or3 (Otos_l2->after_save(), G1, G1);
duke@435 1132 }
duke@435 1133 #endif /* COMPILER2 */
duke@435 1134
duke@435 1135 }
duke@435 1136 #endif /* CC_INTERP */
duke@435 1137
duke@435 1138
duke@435 1139 // Lock object
duke@435 1140 //
duke@435 1141 // Argument - lock_reg points to the BasicObjectLock to be used for locking,
duke@435 1142 // it must be initialized with the object to lock
duke@435 1143 void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
duke@435 1144 if (UseHeavyMonitors) {
duke@435 1145 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
duke@435 1146 }
duke@435 1147 else {
duke@435 1148 Register obj_reg = Object;
duke@435 1149 Register mark_reg = G4_scratch;
duke@435 1150 Register temp_reg = G1_scratch;
twisti@1162 1151 Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes());
twisti@1162 1152 Address mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
duke@435 1153 Label done;
duke@435 1154
duke@435 1155 Label slow_case;
duke@435 1156
duke@435 1157 assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
duke@435 1158
duke@435 1159 // load markOop from object into mark_reg
duke@435 1160 ld_ptr(mark_addr, mark_reg);
duke@435 1161
duke@435 1162 if (UseBiasedLocking) {
duke@435 1163 biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
duke@435 1164 }
duke@435 1165
duke@435 1166 // get the address of basicLock on stack that will be stored in the object
duke@435 1167 // we need a temporary register here as we do not want to clobber lock_reg
duke@435 1168 // (cas clobbers the destination register)
duke@435 1169 mov(lock_reg, temp_reg);
duke@435 1170 // set mark reg to be (markOop of object | UNLOCK_VALUE)
duke@435 1171 or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
duke@435 1172 // initialize the box (Must happen before we update the object mark!)
duke@435 1173 st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
duke@435 1174 // compare and exchange object_addr, markOop | 1, stack address of basicLock
duke@435 1175 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 1176 casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
duke@435 1177 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 1178
duke@435 1179 // if the compare and exchange succeeded we are done (we saw an unlocked object)
kvn@3037 1180 cmp_and_brx_short(mark_reg, temp_reg, Assembler::equal, Assembler::pt, done);
duke@435 1181
duke@435 1182 // We did not see an unlocked object so try the fast recursive case
duke@435 1183
duke@435 1184 // Check if owner is self by comparing the value in the markOop of object
duke@435 1185 // with the stack pointer
duke@435 1186 sub(temp_reg, SP, temp_reg);
duke@435 1187 #ifdef _LP64
duke@435 1188 sub(temp_reg, STACK_BIAS, temp_reg);
duke@435 1189 #endif
duke@435 1190 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
duke@435 1191
duke@435 1192 // Composite "andcc" test:
duke@435 1193 // (a) %sp -vs- markword proximity check, and,
duke@435 1194 // (b) verify mark word LSBs == 0 (Stack-locked).
duke@435 1195 //
duke@435 1196 // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
duke@435 1197 // Note that the page size used for %sp proximity testing is arbitrary and is
duke@435 1198 // unrelated to the actual MMU page size. We use a 'logical' page size of
duke@435 1199 // 4096 bytes. F..FFF003 is designed to fit conveniently in the SIMM13 immediate
duke@435 1200 // field of the andcc instruction.
duke@435 1201 andcc (temp_reg, 0xFFFFF003, G0) ;
duke@435 1202
duke@435 1203 // if condition is true we are done and hence we can store 0 in the displaced
duke@435 1204 // header indicating it is a recursive lock and be done
duke@435 1205 brx(Assembler::zero, true, Assembler::pt, done);
duke@435 1206 delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
duke@435 1207
duke@435 1208 // none of the above fast optimizations worked so we have to get into the
duke@435 1209 // slow case of monitor enter
duke@435 1210 bind(slow_case);
duke@435 1211 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
duke@435 1212
duke@435 1213 bind(done);
duke@435 1214 }
duke@435 1215 }
duke@435 1216
duke@435 1217 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
duke@435 1218 //
duke@435 1219 // Argument - lock_reg points to the BasicObjectLock for lock
duke@435 1220 // Throw IllegalMonitorException if object is not locked by current thread
duke@435 1221 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
duke@435 1222 if (UseHeavyMonitors) {
duke@435 1223 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
duke@435 1224 } else {
duke@435 1225 Register obj_reg = G3_scratch;
duke@435 1226 Register mark_reg = G4_scratch;
duke@435 1227 Register displaced_header_reg = G1_scratch;
twisti@1162 1228 Address lockobj_addr(lock_reg, BasicObjectLock::obj_offset_in_bytes());
twisti@1162 1229 Address mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
duke@435 1230 Label done;
duke@435 1231
duke@435 1232 if (UseBiasedLocking) {
duke@435 1233 // load the object out of the BasicObjectLock
duke@435 1234 ld_ptr(lockobj_addr, obj_reg);
duke@435 1235 biased_locking_exit(mark_addr, mark_reg, done, true);
duke@435 1236 st_ptr(G0, lockobj_addr); // free entry
duke@435 1237 }
duke@435 1238
duke@435 1239 // Test first if we are in the fast recursive case
twisti@1162 1240 Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes());
twisti@1162 1241 ld_ptr(lock_addr, displaced_header_reg);
duke@435 1242 br_null(displaced_header_reg, true, Assembler::pn, done);
duke@435 1243 delayed()->st_ptr(G0, lockobj_addr); // free entry
duke@435 1244
duke@435 1245 // See if it is still a light weight lock, if so we just unlock
duke@435 1246 // the object and we are done
duke@435 1247
duke@435 1248 if (!UseBiasedLocking) {
duke@435 1249 // load the object out of the BasicObjectLock
duke@435 1250 ld_ptr(lockobj_addr, obj_reg);
duke@435 1251 }
duke@435 1252
duke@435 1253 // we have the displaced header in displaced_header_reg
duke@435 1254 // we expect to see the stack address of the basicLock in case the
duke@435 1255 // lock is still a light weight lock (lock_reg)
duke@435 1256 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 1257 casx_under_lock(mark_addr.base(), lock_reg, displaced_header_reg,
duke@435 1258 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 1259 cmp(lock_reg, displaced_header_reg);
duke@435 1260 brx(Assembler::equal, true, Assembler::pn, done);
duke@435 1261 delayed()->st_ptr(G0, lockobj_addr); // free entry
duke@435 1262
duke@435 1263 // The lock has been converted into a heavy lock and hence
duke@435 1264 // we need to get into the slow case
duke@435 1265
duke@435 1266 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
duke@435 1267
duke@435 1268 bind(done);
duke@435 1269 }
duke@435 1270 }
duke@435 1271
duke@435 1272 #ifndef CC_INTERP
duke@435 1273
duke@435 1274 // Get the method data pointer from the methodOop and set the
duke@435 1275 // specified register to its value.
duke@435 1276
iveresov@2438 1277 void InterpreterMacroAssembler::set_method_data_pointer() {
duke@435 1278 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1279 Label get_continue;
duke@435 1280
duke@435 1281 ld_ptr(Lmethod, in_bytes(methodOopDesc::method_data_offset()), ImethodDataPtr);
duke@435 1282 test_method_data_pointer(get_continue);
duke@435 1283 add(ImethodDataPtr, in_bytes(methodDataOopDesc::data_offset()), ImethodDataPtr);
duke@435 1284 bind(get_continue);
duke@435 1285 }
duke@435 1286
duke@435 1287 // Set the method data pointer for the current bcp.
duke@435 1288
duke@435 1289 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
duke@435 1290 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1291 Label zero_continue;
duke@435 1292
duke@435 1293 // Test MDO to avoid the call if it is NULL.
iveresov@2438 1294 ld_ptr(Lmethod, in_bytes(methodOopDesc::method_data_offset()), ImethodDataPtr);
duke@435 1295 test_method_data_pointer(zero_continue);
duke@435 1296 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
iveresov@2438 1297 add(ImethodDataPtr, in_bytes(methodDataOopDesc::data_offset()), ImethodDataPtr);
iveresov@2438 1298 add(ImethodDataPtr, O0, ImethodDataPtr);
duke@435 1299 bind(zero_continue);
duke@435 1300 }
duke@435 1301
duke@435 1302 // Test ImethodDataPtr. If it is null, continue at the specified label
duke@435 1303
duke@435 1304 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
duke@435 1305 assert(ProfileInterpreter, "must be profiling interpreter");
kvn@3037 1306 br_null_short(ImethodDataPtr, Assembler::pn, zero_continue);
duke@435 1307 }
duke@435 1308
duke@435 1309 void InterpreterMacroAssembler::verify_method_data_pointer() {
duke@435 1310 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1311 #ifdef ASSERT
duke@435 1312 Label verify_continue;
duke@435 1313 test_method_data_pointer(verify_continue);
duke@435 1314
duke@435 1315 // If the mdp is valid, it will point to a DataLayout header which is
duke@435 1316 // consistent with the bcp. The converse is highly probable also.
duke@435 1317 lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
twisti@1162 1318 ld_ptr(Lmethod, methodOopDesc::const_offset(), O5);
duke@435 1319 add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), G3_scratch);
duke@435 1320 add(G3_scratch, O5, G3_scratch);
duke@435 1321 cmp(Lbcp, G3_scratch);
duke@435 1322 brx(Assembler::equal, false, Assembler::pt, verify_continue);
duke@435 1323
duke@435 1324 Register temp_reg = O5;
duke@435 1325 delayed()->mov(ImethodDataPtr, temp_reg);
duke@435 1326 // %%% should use call_VM_leaf here?
duke@435 1327 //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
duke@435 1328 save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
twisti@1162 1329 Address d_save(FP, -sizeof(jdouble) + STACK_BIAS);
duke@435 1330 stf(FloatRegisterImpl::D, Ftos_d, d_save);
duke@435 1331 mov(temp_reg->after_save(), O2);
duke@435 1332 save_thread(L7_thread_cache);
duke@435 1333 call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
duke@435 1334 delayed()->nop();
duke@435 1335 restore_thread(L7_thread_cache);
duke@435 1336 ldf(FloatRegisterImpl::D, d_save, Ftos_d);
duke@435 1337 restore();
duke@435 1338 bind(verify_continue);
duke@435 1339 #endif // ASSERT
duke@435 1340 }
duke@435 1341
duke@435 1342 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
duke@435 1343 Register Rtmp,
duke@435 1344 Label &profile_continue) {
duke@435 1345 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1346 // Control will flow to "profile_continue" if the counter is less than the
duke@435 1347 // limit or if we call profile_method()
duke@435 1348
duke@435 1349 Label done;
duke@435 1350
duke@435 1351 // if no method data exists, and the counter is high enough, make one
kvn@3037 1352 br_notnull_short(ImethodDataPtr, Assembler::pn, done);
duke@435 1353
duke@435 1354 // Test to see if we should create a method data oop
twisti@1162 1355 AddressLiteral profile_limit((address) &InvocationCounter::InterpreterProfileLimit);
twisti@1162 1356 sethi(profile_limit, Rtmp);
twisti@1162 1357 ld(Rtmp, profile_limit.low10(), Rtmp);
kvn@3037 1358 cmp_and_br_short(invocation_count, Rtmp, Assembler::lessUnsigned, Assembler::pn, profile_continue);
duke@435 1359
duke@435 1360 // Build it now.
iveresov@2438 1361 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
iveresov@2438 1362 set_method_data_pointer_for_bcp();
kvn@3037 1363 ba_short(profile_continue);
duke@435 1364 bind(done);
duke@435 1365 }
duke@435 1366
duke@435 1367 // Store a value at some constant offset from the method data pointer.
duke@435 1368
duke@435 1369 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
duke@435 1370 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1371 st_ptr(value, ImethodDataPtr, constant);
duke@435 1372 }
duke@435 1373
duke@435 1374 void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
duke@435 1375 Register bumped_count,
duke@435 1376 bool decrement) {
duke@435 1377 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1378
duke@435 1379 // Load the counter.
duke@435 1380 ld_ptr(counter, bumped_count);
duke@435 1381
duke@435 1382 if (decrement) {
duke@435 1383 // Decrement the register. Set condition codes.
duke@435 1384 subcc(bumped_count, DataLayout::counter_increment, bumped_count);
duke@435 1385
duke@435 1386 // If the decrement causes the counter to overflow, stay negative
duke@435 1387 Label L;
duke@435 1388 brx(Assembler::negative, true, Assembler::pn, L);
duke@435 1389
duke@435 1390 // Store the decremented counter, if it is still negative.
duke@435 1391 delayed()->st_ptr(bumped_count, counter);
duke@435 1392 bind(L);
duke@435 1393 } else {
duke@435 1394 // Increment the register. Set carry flag.
duke@435 1395 addcc(bumped_count, DataLayout::counter_increment, bumped_count);
duke@435 1396
duke@435 1397 // If the increment causes the counter to overflow, pull back by 1.
duke@435 1398 assert(DataLayout::counter_increment == 1, "subc works");
duke@435 1399 subc(bumped_count, G0, bumped_count);
duke@435 1400
duke@435 1401 // Store the incremented counter.
duke@435 1402 st_ptr(bumped_count, counter);
duke@435 1403 }
duke@435 1404 }
duke@435 1405
duke@435 1406 // Increment the value at some constant offset from the method data pointer.
duke@435 1407
duke@435 1408 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
duke@435 1409 Register bumped_count,
duke@435 1410 bool decrement) {
duke@435 1411 // Locate the counter at a fixed offset from the mdp:
twisti@1162 1412 Address counter(ImethodDataPtr, constant);
duke@435 1413 increment_mdp_data_at(counter, bumped_count, decrement);
duke@435 1414 }
duke@435 1415
duke@435 1416 // Increment the value at some non-fixed (reg + constant) offset from
duke@435 1417 // the method data pointer.
duke@435 1418
duke@435 1419 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
duke@435 1420 int constant,
duke@435 1421 Register bumped_count,
duke@435 1422 Register scratch2,
duke@435 1423 bool decrement) {
duke@435 1424 // Add the constant to reg to get the offset.
duke@435 1425 add(ImethodDataPtr, reg, scratch2);
twisti@1162 1426 Address counter(scratch2, constant);
duke@435 1427 increment_mdp_data_at(counter, bumped_count, decrement);
duke@435 1428 }
duke@435 1429
duke@435 1430 // Set a flag value at the current method data pointer position.
duke@435 1431 // Updates a single byte of the header, to avoid races with other header bits.
duke@435 1432
duke@435 1433 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
duke@435 1434 Register scratch) {
duke@435 1435 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1436 // Load the data header
duke@435 1437 ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
duke@435 1438
duke@435 1439 // Set the flag
duke@435 1440 or3(scratch, flag_constant, scratch);
duke@435 1441
duke@435 1442 // Store the modified header.
duke@435 1443 stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
duke@435 1444 }
duke@435 1445
duke@435 1446 // Test the location at some offset from the method data pointer.
duke@435 1447 // If it is not equal to value, branch to the not_equal_continue Label.
duke@435 1448 // Set condition codes to match the nullness of the loaded value.
duke@435 1449
duke@435 1450 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
duke@435 1451 Register value,
duke@435 1452 Label& not_equal_continue,
duke@435 1453 Register scratch) {
duke@435 1454 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1455 ld_ptr(ImethodDataPtr, offset, scratch);
duke@435 1456 cmp(value, scratch);
duke@435 1457 brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
duke@435 1458 delayed()->tst(scratch);
duke@435 1459 }
duke@435 1460
duke@435 1461 // Update the method data pointer by the displacement located at some fixed
duke@435 1462 // offset from the method data pointer.
duke@435 1463
duke@435 1464 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
duke@435 1465 Register scratch) {
duke@435 1466 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1467 ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
duke@435 1468 add(ImethodDataPtr, scratch, ImethodDataPtr);
duke@435 1469 }
duke@435 1470
duke@435 1471 // Update the method data pointer by the displacement located at the
duke@435 1472 // offset (reg + offset_of_disp).
duke@435 1473
duke@435 1474 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
duke@435 1475 int offset_of_disp,
duke@435 1476 Register scratch) {
duke@435 1477 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1478 add(reg, offset_of_disp, scratch);
duke@435 1479 ld_ptr(ImethodDataPtr, scratch, scratch);
duke@435 1480 add(ImethodDataPtr, scratch, ImethodDataPtr);
duke@435 1481 }
duke@435 1482
duke@435 1483 // Update the method data pointer by a simple constant displacement.
duke@435 1484
duke@435 1485 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
duke@435 1486 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1487 add(ImethodDataPtr, constant, ImethodDataPtr);
duke@435 1488 }
duke@435 1489
duke@435 1490 // Update the method data pointer for a _ret bytecode whose target
duke@435 1491 // was not among our cached targets.
duke@435 1492
duke@435 1493 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
duke@435 1494 Register return_bci) {
duke@435 1495 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1496 push(state);
duke@435 1497 st_ptr(return_bci, l_tmp); // protect return_bci, in case it is volatile
duke@435 1498 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
duke@435 1499 ld_ptr(l_tmp, return_bci);
duke@435 1500 pop(state);
duke@435 1501 }
duke@435 1502
duke@435 1503 // Count a taken branch in the bytecodes.
duke@435 1504
duke@435 1505 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
duke@435 1506 if (ProfileInterpreter) {
duke@435 1507 Label profile_continue;
duke@435 1508
duke@435 1509 // If no method data exists, go to profile_continue.
duke@435 1510 test_method_data_pointer(profile_continue);
duke@435 1511
duke@435 1512 // We are taking a branch. Increment the taken count.
duke@435 1513 increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
duke@435 1514
duke@435 1515 // The method data pointer needs to be updated to reflect the new target.
duke@435 1516 update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
duke@435 1517 bind (profile_continue);
duke@435 1518 }
duke@435 1519 }
duke@435 1520
duke@435 1521
duke@435 1522 // Count a not-taken branch in the bytecodes.
duke@435 1523
duke@435 1524 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
duke@435 1525 if (ProfileInterpreter) {
duke@435 1526 Label profile_continue;
duke@435 1527
duke@435 1528 // If no method data exists, go to profile_continue.
duke@435 1529 test_method_data_pointer(profile_continue);
duke@435 1530
duke@435 1531 // We are taking a branch. Increment the not taken count.
duke@435 1532 increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
duke@435 1533
duke@435 1534 // The method data pointer needs to be updated to correspond to the
duke@435 1535 // next bytecode.
duke@435 1536 update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
duke@435 1537 bind (profile_continue);
duke@435 1538 }
duke@435 1539 }
duke@435 1540
duke@435 1541
duke@435 1542 // Count a non-virtual call in the bytecodes.
duke@435 1543
duke@435 1544 void InterpreterMacroAssembler::profile_call(Register scratch) {
duke@435 1545 if (ProfileInterpreter) {
duke@435 1546 Label profile_continue;
duke@435 1547
duke@435 1548 // If no method data exists, go to profile_continue.
duke@435 1549 test_method_data_pointer(profile_continue);
duke@435 1550
duke@435 1551 // We are making a call. Increment the count.
duke@435 1552 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
duke@435 1553
duke@435 1554 // The method data pointer needs to be updated to reflect the new target.
duke@435 1555 update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
duke@435 1556 bind (profile_continue);
duke@435 1557 }
duke@435 1558 }
duke@435 1559
duke@435 1560
duke@435 1561 // Count a final call in the bytecodes.
duke@435 1562
duke@435 1563 void InterpreterMacroAssembler::profile_final_call(Register scratch) {
duke@435 1564 if (ProfileInterpreter) {
duke@435 1565 Label profile_continue;
duke@435 1566
duke@435 1567 // If no method data exists, go to profile_continue.
duke@435 1568 test_method_data_pointer(profile_continue);
duke@435 1569
duke@435 1570 // We are making a call. Increment the count.
duke@435 1571 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
duke@435 1572
duke@435 1573 // The method data pointer needs to be updated to reflect the new target.
duke@435 1574 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
duke@435 1575 bind (profile_continue);
duke@435 1576 }
duke@435 1577 }
duke@435 1578
duke@435 1579
duke@435 1580 // Count a virtual call in the bytecodes.
duke@435 1581
duke@435 1582 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
twisti@1858 1583 Register scratch,
twisti@1858 1584 bool receiver_can_be_null) {
duke@435 1585 if (ProfileInterpreter) {
duke@435 1586 Label profile_continue;
duke@435 1587
duke@435 1588 // If no method data exists, go to profile_continue.
duke@435 1589 test_method_data_pointer(profile_continue);
duke@435 1590
twisti@1858 1591
twisti@1858 1592 Label skip_receiver_profile;
twisti@1858 1593 if (receiver_can_be_null) {
twisti@1858 1594 Label not_null;
kvn@3037 1595 br_notnull_short(receiver, Assembler::pt, not_null);
twisti@1858 1596 // We are making a call. Increment the count for null receiver.
twisti@1858 1597 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
kvn@3037 1598 ba_short(skip_receiver_profile);
twisti@1858 1599 bind(not_null);
twisti@1858 1600 }
twisti@1858 1601
duke@435 1602 // Record the receiver type.
kvn@1641 1603 record_klass_in_profile(receiver, scratch, true);
twisti@1858 1604 bind(skip_receiver_profile);
duke@435 1605
duke@435 1606 // The method data pointer needs to be updated to reflect the new target.
duke@435 1607 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
duke@435 1608 bind (profile_continue);
duke@435 1609 }
duke@435 1610 }
duke@435 1611
duke@435 1612 void InterpreterMacroAssembler::record_klass_in_profile_helper(
duke@435 1613 Register receiver, Register scratch,
kvn@1641 1614 int start_row, Label& done, bool is_virtual_call) {
kvn@1641 1615 if (TypeProfileWidth == 0) {
kvn@1641 1616 if (is_virtual_call) {
kvn@1641 1617 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
kvn@1641 1618 }
poonam@1402 1619 return;
kvn@1641 1620 }
poonam@1402 1621
duke@435 1622 int last_row = VirtualCallData::row_limit() - 1;
duke@435 1623 assert(start_row <= last_row, "must be work left to do");
duke@435 1624 // Test this row for both the receiver and for null.
duke@435 1625 // Take any of three different outcomes:
duke@435 1626 // 1. found receiver => increment count and goto done
duke@435 1627 // 2. found null => keep looking for case 1, maybe allocate this cell
duke@435 1628 // 3. found something else => keep looking for cases 1 and 2
duke@435 1629 // Case 3 is handled by a recursive call.
duke@435 1630 for (int row = start_row; row <= last_row; row++) {
duke@435 1631 Label next_test;
duke@435 1632 bool test_for_null_also = (row == start_row);
duke@435 1633
duke@435 1634 // See if the receiver is receiver[n].
duke@435 1635 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
duke@435 1636 test_mdp_data_at(recvr_offset, receiver, next_test, scratch);
kvn@1641 1637 // delayed()->tst(scratch);
duke@435 1638
duke@435 1639 // The receiver is receiver[n]. Increment count[n].
duke@435 1640 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
duke@435 1641 increment_mdp_data_at(count_offset, scratch);
kvn@3037 1642 ba_short(done);
duke@435 1643 bind(next_test);
duke@435 1644
duke@435 1645 if (test_for_null_also) {
kvn@1641 1646 Label found_null;
duke@435 1647 // Failed the equality check on receiver[n]... Test for null.
duke@435 1648 if (start_row == last_row) {
duke@435 1649 // The only thing left to do is handle the null case.
kvn@1641 1650 if (is_virtual_call) {
kvn@1641 1651 brx(Assembler::zero, false, Assembler::pn, found_null);
kvn@1641 1652 delayed()->nop();
kvn@1641 1653 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1686 1654 // Increment total counter to indicate polymorphic case.
kvn@1641 1655 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
kvn@3037 1656 ba_short(done);
kvn@1641 1657 bind(found_null);
kvn@1641 1658 } else {
kvn@1641 1659 brx(Assembler::notZero, false, Assembler::pt, done);
kvn@1641 1660 delayed()->nop();
kvn@1641 1661 }
duke@435 1662 break;
duke@435 1663 }
duke@435 1664 // Since null is rare, make it be the branch-taken case.
duke@435 1665 brx(Assembler::zero, false, Assembler::pn, found_null);
duke@435 1666 delayed()->nop();
duke@435 1667
duke@435 1668 // Put all the "Case 3" tests here.
kvn@1641 1669 record_klass_in_profile_helper(receiver, scratch, start_row + 1, done, is_virtual_call);
duke@435 1670
duke@435 1671 // Found a null. Keep searching for a matching receiver,
duke@435 1672 // but remember that this is an empty (unused) slot.
duke@435 1673 bind(found_null);
duke@435 1674 }
duke@435 1675 }
duke@435 1676
duke@435 1677 // In the fall-through case, we found no matching receiver, but we
duke@435 1678 // observed the receiver[start_row] is NULL.
duke@435 1679
duke@435 1680 // Fill in the receiver field and increment the count.
duke@435 1681 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
duke@435 1682 set_mdp_data_at(recvr_offset, receiver);
duke@435 1683 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
duke@435 1684 mov(DataLayout::counter_increment, scratch);
duke@435 1685 set_mdp_data_at(count_offset, scratch);
kvn@1641 1686 if (start_row > 0) {
kvn@3037 1687 ba_short(done);
kvn@1641 1688 }
duke@435 1689 }
duke@435 1690
duke@435 1691 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
kvn@1641 1692 Register scratch, bool is_virtual_call) {
duke@435 1693 assert(ProfileInterpreter, "must be profiling");
duke@435 1694 Label done;
duke@435 1695
kvn@1641 1696 record_klass_in_profile_helper(receiver, scratch, 0, done, is_virtual_call);
duke@435 1697
duke@435 1698 bind (done);
duke@435 1699 }
duke@435 1700
duke@435 1701
duke@435 1702 // Count a ret in the bytecodes.
duke@435 1703
duke@435 1704 void InterpreterMacroAssembler::profile_ret(TosState state,
duke@435 1705 Register return_bci,
duke@435 1706 Register scratch) {
duke@435 1707 if (ProfileInterpreter) {
duke@435 1708 Label profile_continue;
duke@435 1709 uint row;
duke@435 1710
duke@435 1711 // If no method data exists, go to profile_continue.
duke@435 1712 test_method_data_pointer(profile_continue);
duke@435 1713
duke@435 1714 // Update the total ret count.
duke@435 1715 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
duke@435 1716
duke@435 1717 for (row = 0; row < RetData::row_limit(); row++) {
duke@435 1718 Label next_test;
duke@435 1719
duke@435 1720 // See if return_bci is equal to bci[n]:
duke@435 1721 test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
duke@435 1722 return_bci, next_test, scratch);
duke@435 1723
duke@435 1724 // return_bci is equal to bci[n]. Increment the count.
duke@435 1725 increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
duke@435 1726
duke@435 1727 // The method data pointer needs to be updated to reflect the new target.
duke@435 1728 update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
kvn@3037 1729 ba_short(profile_continue);
duke@435 1730 bind(next_test);
duke@435 1731 }
duke@435 1732
duke@435 1733 update_mdp_for_ret(state, return_bci);
duke@435 1734
duke@435 1735 bind (profile_continue);
duke@435 1736 }
duke@435 1737 }
duke@435 1738
duke@435 1739 // Profile an unexpected null in the bytecodes.
duke@435 1740 void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
duke@435 1741 if (ProfileInterpreter) {
duke@435 1742 Label profile_continue;
duke@435 1743
duke@435 1744 // If no method data exists, go to profile_continue.
duke@435 1745 test_method_data_pointer(profile_continue);
duke@435 1746
duke@435 1747 set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
duke@435 1748
duke@435 1749 // The method data pointer needs to be updated.
duke@435 1750 int mdp_delta = in_bytes(BitData::bit_data_size());
duke@435 1751 if (TypeProfileCasts) {
duke@435 1752 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
duke@435 1753 }
duke@435 1754 update_mdp_by_constant(mdp_delta);
duke@435 1755
duke@435 1756 bind (profile_continue);
duke@435 1757 }
duke@435 1758 }
duke@435 1759
duke@435 1760 void InterpreterMacroAssembler::profile_typecheck(Register klass,
duke@435 1761 Register scratch) {
duke@435 1762 if (ProfileInterpreter) {
duke@435 1763 Label profile_continue;
duke@435 1764
duke@435 1765 // If no method data exists, go to profile_continue.
duke@435 1766 test_method_data_pointer(profile_continue);
duke@435 1767
duke@435 1768 int mdp_delta = in_bytes(BitData::bit_data_size());
duke@435 1769 if (TypeProfileCasts) {
duke@435 1770 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
duke@435 1771
duke@435 1772 // Record the object type.
kvn@1641 1773 record_klass_in_profile(klass, scratch, false);
duke@435 1774 }
duke@435 1775
duke@435 1776 // The method data pointer needs to be updated.
duke@435 1777 update_mdp_by_constant(mdp_delta);
duke@435 1778
duke@435 1779 bind (profile_continue);
duke@435 1780 }
duke@435 1781 }
duke@435 1782
duke@435 1783 void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
duke@435 1784 if (ProfileInterpreter && TypeProfileCasts) {
duke@435 1785 Label profile_continue;
duke@435 1786
duke@435 1787 // If no method data exists, go to profile_continue.
duke@435 1788 test_method_data_pointer(profile_continue);
duke@435 1789
duke@435 1790 int count_offset = in_bytes(CounterData::count_offset());
duke@435 1791 // Back up the address, since we have already bumped the mdp.
duke@435 1792 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
duke@435 1793
duke@435 1794 // *Decrement* the counter. We expect to see zero or small negatives.
duke@435 1795 increment_mdp_data_at(count_offset, scratch, true);
duke@435 1796
duke@435 1797 bind (profile_continue);
duke@435 1798 }
duke@435 1799 }
duke@435 1800
duke@435 1801 // Count the default case of a switch construct.
duke@435 1802
duke@435 1803 void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
duke@435 1804 if (ProfileInterpreter) {
duke@435 1805 Label profile_continue;
duke@435 1806
duke@435 1807 // If no method data exists, go to profile_continue.
duke@435 1808 test_method_data_pointer(profile_continue);
duke@435 1809
duke@435 1810 // Update the default case count
duke@435 1811 increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
duke@435 1812 scratch);
duke@435 1813
duke@435 1814 // The method data pointer needs to be updated.
duke@435 1815 update_mdp_by_offset(
duke@435 1816 in_bytes(MultiBranchData::default_displacement_offset()),
duke@435 1817 scratch);
duke@435 1818
duke@435 1819 bind (profile_continue);
duke@435 1820 }
duke@435 1821 }
duke@435 1822
duke@435 1823 // Count the index'th case of a switch construct.
duke@435 1824
duke@435 1825 void InterpreterMacroAssembler::profile_switch_case(Register index,
duke@435 1826 Register scratch,
duke@435 1827 Register scratch2,
duke@435 1828 Register scratch3) {
duke@435 1829 if (ProfileInterpreter) {
duke@435 1830 Label profile_continue;
duke@435 1831
duke@435 1832 // If no method data exists, go to profile_continue.
duke@435 1833 test_method_data_pointer(profile_continue);
duke@435 1834
duke@435 1835 // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
duke@435 1836 set(in_bytes(MultiBranchData::per_case_size()), scratch);
duke@435 1837 smul(index, scratch, scratch);
duke@435 1838 add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
duke@435 1839
duke@435 1840 // Update the case count
duke@435 1841 increment_mdp_data_at(scratch,
duke@435 1842 in_bytes(MultiBranchData::relative_count_offset()),
duke@435 1843 scratch2,
duke@435 1844 scratch3);
duke@435 1845
duke@435 1846 // The method data pointer needs to be updated.
duke@435 1847 update_mdp_by_offset(scratch,
duke@435 1848 in_bytes(MultiBranchData::relative_displacement_offset()),
duke@435 1849 scratch2);
duke@435 1850
duke@435 1851 bind (profile_continue);
duke@435 1852 }
duke@435 1853 }
duke@435 1854
duke@435 1855 // add a InterpMonitorElem to stack (see frame_sparc.hpp)
duke@435 1856
duke@435 1857 void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
duke@435 1858 Register Rtemp,
duke@435 1859 Register Rtemp2 ) {
duke@435 1860
duke@435 1861 Register Rlimit = Lmonitors;
duke@435 1862 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 1863 assert( (delta & LongAlignmentMask) == 0,
duke@435 1864 "sizeof BasicObjectLock must be even number of doublewords");
duke@435 1865
duke@435 1866 sub( SP, delta, SP);
duke@435 1867 sub( Lesp, delta, Lesp);
duke@435 1868 sub( Lmonitors, delta, Lmonitors);
duke@435 1869
duke@435 1870 if (!stack_is_empty) {
duke@435 1871
duke@435 1872 // must copy stack contents down
duke@435 1873
duke@435 1874 Label start_copying, next;
duke@435 1875
duke@435 1876 // untested("monitor stack expansion");
duke@435 1877 compute_stack_base(Rtemp);
kvn@3037 1878 ba(start_copying);
kvn@3037 1879 delayed()->cmp(Rtemp, Rlimit); // done? duplicated below
duke@435 1880
duke@435 1881 // note: must copy from low memory upwards
duke@435 1882 // On entry to loop,
duke@435 1883 // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
duke@435 1884 // Loop mutates Rtemp
duke@435 1885
duke@435 1886 bind( next);
duke@435 1887
duke@435 1888 st_ptr(Rtemp2, Rtemp, 0);
duke@435 1889 inc(Rtemp, wordSize);
duke@435 1890 cmp(Rtemp, Rlimit); // are we done? (duplicated above)
duke@435 1891
duke@435 1892 bind( start_copying );
duke@435 1893
duke@435 1894 brx( notEqual, true, pn, next );
duke@435 1895 delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
duke@435 1896
duke@435 1897 // done copying stack
duke@435 1898 }
duke@435 1899 }
duke@435 1900
duke@435 1901 // Locals
duke@435 1902 void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
duke@435 1903 assert_not_delayed();
twisti@1861 1904 sll(index, Interpreter::logStackElementSize, index);
duke@435 1905 sub(Llocals, index, index);
twisti@1861 1906 ld_ptr(index, 0, dst);
duke@435 1907 // Note: index must hold the effective address--the iinc template uses it
duke@435 1908 }
duke@435 1909
duke@435 1910 // Just like access_local_ptr but the tag is a returnAddress
duke@435 1911 void InterpreterMacroAssembler::access_local_returnAddress(Register index,
duke@435 1912 Register dst ) {
duke@435 1913 assert_not_delayed();
twisti@1861 1914 sll(index, Interpreter::logStackElementSize, index);
duke@435 1915 sub(Llocals, index, index);
twisti@1861 1916 ld_ptr(index, 0, dst);
duke@435 1917 }
duke@435 1918
duke@435 1919 void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
duke@435 1920 assert_not_delayed();
twisti@1861 1921 sll(index, Interpreter::logStackElementSize, index);
duke@435 1922 sub(Llocals, index, index);
twisti@1861 1923 ld(index, 0, dst);
duke@435 1924 // Note: index must hold the effective address--the iinc template uses it
duke@435 1925 }
duke@435 1926
duke@435 1927
duke@435 1928 void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
duke@435 1929 assert_not_delayed();
twisti@1861 1930 sll(index, Interpreter::logStackElementSize, index);
duke@435 1931 sub(Llocals, index, index);
duke@435 1932 // First half stored at index n+1 (which grows down from Llocals[n])
duke@435 1933 load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
duke@435 1934 }
duke@435 1935
duke@435 1936
duke@435 1937 void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
duke@435 1938 assert_not_delayed();
twisti@1861 1939 sll(index, Interpreter::logStackElementSize, index);
duke@435 1940 sub(Llocals, index, index);
twisti@1861 1941 ldf(FloatRegisterImpl::S, index, 0, dst);
duke@435 1942 }
duke@435 1943
duke@435 1944
duke@435 1945 void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
duke@435 1946 assert_not_delayed();
twisti@1861 1947 sll(index, Interpreter::logStackElementSize, index);
duke@435 1948 sub(Llocals, index, index);
duke@435 1949 load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
duke@435 1950 }
duke@435 1951
duke@435 1952
duke@435 1953 #ifdef ASSERT
duke@435 1954 void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
duke@435 1955 Label L;
duke@435 1956
duke@435 1957 assert(Rindex != Rscratch, "Registers cannot be same");
duke@435 1958 assert(Rindex != Rscratch1, "Registers cannot be same");
duke@435 1959 assert(Rlimit != Rscratch, "Registers cannot be same");
duke@435 1960 assert(Rlimit != Rscratch1, "Registers cannot be same");
duke@435 1961 assert(Rscratch1 != Rscratch, "Registers cannot be same");
duke@435 1962
duke@435 1963 // untested("reg area corruption");
duke@435 1964 add(Rindex, offset, Rscratch);
duke@435 1965 add(Rlimit, 64 + STACK_BIAS, Rscratch1);
kvn@3037 1966 cmp_and_brx_short(Rscratch, Rscratch1, Assembler::greaterEqualUnsigned, pn, L);
duke@435 1967 stop("regsave area is being clobbered");
duke@435 1968 bind(L);
duke@435 1969 }
duke@435 1970 #endif // ASSERT
duke@435 1971
duke@435 1972
duke@435 1973 void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
duke@435 1974 assert_not_delayed();
twisti@1861 1975 sll(index, Interpreter::logStackElementSize, index);
duke@435 1976 sub(Llocals, index, index);
twisti@1861 1977 debug_only(check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);)
twisti@1861 1978 st(src, index, 0);
duke@435 1979 }
duke@435 1980
twisti@1861 1981 void InterpreterMacroAssembler::store_local_ptr( Register index, Register src ) {
duke@435 1982 assert_not_delayed();
twisti@1861 1983 sll(index, Interpreter::logStackElementSize, index);
duke@435 1984 sub(Llocals, index, index);
twisti@1861 1985 #ifdef ASSERT
twisti@1861 1986 check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
twisti@1861 1987 #endif
twisti@1861 1988 st_ptr(src, index, 0);
duke@435 1989 }
duke@435 1990
duke@435 1991
duke@435 1992
twisti@1861 1993 void InterpreterMacroAssembler::store_local_ptr( int n, Register src ) {
twisti@1861 1994 st_ptr(src, Llocals, Interpreter::local_offset_in_bytes(n));
duke@435 1995 }
duke@435 1996
duke@435 1997 void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
duke@435 1998 assert_not_delayed();
twisti@1861 1999 sll(index, Interpreter::logStackElementSize, index);
duke@435 2000 sub(Llocals, index, index);
twisti@1861 2001 #ifdef ASSERT
duke@435 2002 check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
twisti@1861 2003 #endif
duke@435 2004 store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
duke@435 2005 }
duke@435 2006
duke@435 2007
duke@435 2008 void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
duke@435 2009 assert_not_delayed();
twisti@1861 2010 sll(index, Interpreter::logStackElementSize, index);
duke@435 2011 sub(Llocals, index, index);
twisti@1861 2012 #ifdef ASSERT
twisti@1861 2013 check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
twisti@1861 2014 #endif
twisti@1861 2015 stf(FloatRegisterImpl::S, src, index, 0);
duke@435 2016 }
duke@435 2017
duke@435 2018
duke@435 2019 void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
duke@435 2020 assert_not_delayed();
twisti@1861 2021 sll(index, Interpreter::logStackElementSize, index);
duke@435 2022 sub(Llocals, index, index);
twisti@1861 2023 #ifdef ASSERT
duke@435 2024 check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
twisti@1861 2025 #endif
duke@435 2026 store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
duke@435 2027 }
duke@435 2028
duke@435 2029
duke@435 2030 int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
duke@435 2031 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 2032 int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
duke@435 2033 return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
duke@435 2034 }
duke@435 2035
duke@435 2036
duke@435 2037 Address InterpreterMacroAssembler::top_most_monitor() {
twisti@1162 2038 return Address(FP, top_most_monitor_byte_offset());
duke@435 2039 }
duke@435 2040
duke@435 2041
duke@435 2042 void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
duke@435 2043 add( Lesp, wordSize, Rdest );
duke@435 2044 }
duke@435 2045
duke@435 2046 #endif /* CC_INTERP */
duke@435 2047
duke@435 2048 void InterpreterMacroAssembler::increment_invocation_counter( Register Rtmp, Register Rtmp2 ) {
duke@435 2049 assert(UseCompiler, "incrementing must be useful");
duke@435 2050 #ifdef CC_INTERP
twisti@1162 2051 Address inv_counter(G5_method, methodOopDesc::invocation_counter_offset() +
twisti@1162 2052 InvocationCounter::counter_offset());
twisti@1162 2053 Address be_counter (G5_method, methodOopDesc::backedge_counter_offset() +
twisti@1162 2054 InvocationCounter::counter_offset());
duke@435 2055 #else
twisti@1162 2056 Address inv_counter(Lmethod, methodOopDesc::invocation_counter_offset() +
twisti@1162 2057 InvocationCounter::counter_offset());
twisti@1162 2058 Address be_counter (Lmethod, methodOopDesc::backedge_counter_offset() +
twisti@1162 2059 InvocationCounter::counter_offset());
duke@435 2060 #endif /* CC_INTERP */
duke@435 2061 int delta = InvocationCounter::count_increment;
duke@435 2062
duke@435 2063 // Load each counter in a register
duke@435 2064 ld( inv_counter, Rtmp );
duke@435 2065 ld( be_counter, Rtmp2 );
duke@435 2066
duke@435 2067 assert( is_simm13( delta ), " delta too large.");
duke@435 2068
duke@435 2069 // Add the delta to the invocation counter and store the result
duke@435 2070 add( Rtmp, delta, Rtmp );
duke@435 2071
duke@435 2072 // Mask the backedge counter
duke@435 2073 and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
duke@435 2074
duke@435 2075 // Store value
duke@435 2076 st( Rtmp, inv_counter);
duke@435 2077
duke@435 2078 // Add invocation counter + backedge counter
duke@435 2079 add( Rtmp, Rtmp2, Rtmp);
duke@435 2080
duke@435 2081 // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
duke@435 2082 }
duke@435 2083
duke@435 2084 void InterpreterMacroAssembler::increment_backedge_counter( Register Rtmp, Register Rtmp2 ) {
duke@435 2085 assert(UseCompiler, "incrementing must be useful");
duke@435 2086 #ifdef CC_INTERP
twisti@1162 2087 Address be_counter (G5_method, methodOopDesc::backedge_counter_offset() +
twisti@1162 2088 InvocationCounter::counter_offset());
twisti@1162 2089 Address inv_counter(G5_method, methodOopDesc::invocation_counter_offset() +
twisti@1162 2090 InvocationCounter::counter_offset());
duke@435 2091 #else
twisti@1162 2092 Address be_counter (Lmethod, methodOopDesc::backedge_counter_offset() +
twisti@1162 2093 InvocationCounter::counter_offset());
twisti@1162 2094 Address inv_counter(Lmethod, methodOopDesc::invocation_counter_offset() +
twisti@1162 2095 InvocationCounter::counter_offset());
duke@435 2096 #endif /* CC_INTERP */
duke@435 2097 int delta = InvocationCounter::count_increment;
duke@435 2098 // Load each counter in a register
duke@435 2099 ld( be_counter, Rtmp );
duke@435 2100 ld( inv_counter, Rtmp2 );
duke@435 2101
duke@435 2102 // Add the delta to the backedge counter
duke@435 2103 add( Rtmp, delta, Rtmp );
duke@435 2104
duke@435 2105 // Mask the invocation counter, add to backedge counter
duke@435 2106 and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
duke@435 2107
duke@435 2108 // and store the result to memory
duke@435 2109 st( Rtmp, be_counter );
duke@435 2110
duke@435 2111 // Add backedge + invocation counter
duke@435 2112 add( Rtmp, Rtmp2, Rtmp );
duke@435 2113
duke@435 2114 // Note that this macro must leave backedge_count + invocation_count in Rtmp!
duke@435 2115 }
duke@435 2116
duke@435 2117 #ifndef CC_INTERP
duke@435 2118 void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
duke@435 2119 Register branch_bcp,
duke@435 2120 Register Rtmp ) {
duke@435 2121 Label did_not_overflow;
duke@435 2122 Label overflow_with_error;
duke@435 2123 assert_different_registers(backedge_count, Rtmp, branch_bcp);
duke@435 2124 assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
duke@435 2125
twisti@1162 2126 AddressLiteral limit(&InvocationCounter::InterpreterBackwardBranchLimit);
duke@435 2127 load_contents(limit, Rtmp);
kvn@3037 2128 cmp_and_br_short(backedge_count, Rtmp, Assembler::lessUnsigned, Assembler::pt, did_not_overflow);
duke@435 2129
duke@435 2130 // When ProfileInterpreter is on, the backedge_count comes from the
duke@435 2131 // methodDataOop, which value does not get reset on the call to
duke@435 2132 // frequency_counter_overflow(). To avoid excessive calls to the overflow
duke@435 2133 // routine while the method is being compiled, add a second test to make sure
duke@435 2134 // the overflow function is called only once every overflow_frequency.
duke@435 2135 if (ProfileInterpreter) {
duke@435 2136 const int overflow_frequency = 1024;
duke@435 2137 andcc(backedge_count, overflow_frequency-1, Rtmp);
duke@435 2138 brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
duke@435 2139 delayed()->nop();
duke@435 2140 }
duke@435 2141
duke@435 2142 // overflow in loop, pass branch bytecode
duke@435 2143 set(6,Rtmp);
duke@435 2144 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
duke@435 2145
duke@435 2146 // Was an OSR adapter generated?
duke@435 2147 // O0 = osr nmethod
kvn@3037 2148 br_null_short(O0, Assembler::pn, overflow_with_error);
duke@435 2149
duke@435 2150 // Has the nmethod been invalidated already?
duke@435 2151 ld(O0, nmethod::entry_bci_offset(), O2);
kvn@3037 2152 cmp_and_br_short(O2, InvalidOSREntryBci, Assembler::equal, Assembler::pn, overflow_with_error);
duke@435 2153
duke@435 2154 // migrate the interpreter frame off of the stack
duke@435 2155
duke@435 2156 mov(G2_thread, L7);
duke@435 2157 // save nmethod
duke@435 2158 mov(O0, L6);
duke@435 2159 set_last_Java_frame(SP, noreg);
duke@435 2160 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
duke@435 2161 reset_last_Java_frame();
duke@435 2162 mov(L7, G2_thread);
duke@435 2163
duke@435 2164 // move OSR nmethod to I1
duke@435 2165 mov(L6, I1);
duke@435 2166
duke@435 2167 // OSR buffer to I0
duke@435 2168 mov(O0, I0);
duke@435 2169
duke@435 2170 // remove the interpreter frame
duke@435 2171 restore(I5_savedSP, 0, SP);
duke@435 2172
duke@435 2173 // Jump to the osr code.
duke@435 2174 ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
duke@435 2175 jmp(O2, G0);
duke@435 2176 delayed()->nop();
duke@435 2177
duke@435 2178 bind(overflow_with_error);
duke@435 2179
duke@435 2180 bind(did_not_overflow);
duke@435 2181 }
duke@435 2182
duke@435 2183
duke@435 2184
duke@435 2185 void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
duke@435 2186 if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
duke@435 2187 }
duke@435 2188
duke@435 2189
duke@435 2190 // local helper function for the verify_oop_or_return_address macro
duke@435 2191 static bool verify_return_address(methodOopDesc* m, int bci) {
duke@435 2192 #ifndef PRODUCT
duke@435 2193 address pc = (address)(m->constMethod())
duke@435 2194 + in_bytes(constMethodOopDesc::codes_offset()) + bci;
duke@435 2195 // assume it is a valid return address if it is inside m and is preceded by a jsr
duke@435 2196 if (!m->contains(pc)) return false;
duke@435 2197 address jsr_pc;
duke@435 2198 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
duke@435 2199 if (*jsr_pc == Bytecodes::_jsr && jsr_pc >= m->code_base()) return true;
duke@435 2200 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
duke@435 2201 if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base()) return true;
duke@435 2202 #endif // PRODUCT
duke@435 2203 return false;
duke@435 2204 }
duke@435 2205
duke@435 2206
duke@435 2207 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
duke@435 2208 if (!VerifyOops) return;
duke@435 2209 // the VM documentation for the astore[_wide] bytecode allows
duke@435 2210 // the TOS to be not only an oop but also a return address
duke@435 2211 Label test;
duke@435 2212 Label skip;
duke@435 2213 // See if it is an address (in the current method):
duke@435 2214
duke@435 2215 mov(reg, Rtmp);
duke@435 2216 const int log2_bytecode_size_limit = 16;
duke@435 2217 srl(Rtmp, log2_bytecode_size_limit, Rtmp);
kvn@3037 2218 br_notnull_short( Rtmp, pt, test );
duke@435 2219
duke@435 2220 // %%% should use call_VM_leaf here?
duke@435 2221 save_frame_and_mov(0, Lmethod, O0, reg, O1);
duke@435 2222 save_thread(L7_thread_cache);
duke@435 2223 call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
duke@435 2224 delayed()->nop();
duke@435 2225 restore_thread(L7_thread_cache);
duke@435 2226 br_notnull( O0, false, pt, skip );
duke@435 2227 delayed()->restore();
duke@435 2228
duke@435 2229 // Perform a more elaborate out-of-line call
duke@435 2230 // Not an address; verify it:
duke@435 2231 bind(test);
duke@435 2232 verify_oop(reg);
duke@435 2233 bind(skip);
duke@435 2234 }
duke@435 2235
duke@435 2236
duke@435 2237 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
duke@435 2238 if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
duke@435 2239 }
duke@435 2240 #endif /* CC_INTERP */
duke@435 2241
duke@435 2242 // Inline assembly for:
duke@435 2243 //
duke@435 2244 // if (thread is in interp_only_mode) {
duke@435 2245 // InterpreterRuntime::post_method_entry();
duke@435 2246 // }
duke@435 2247 // if (DTraceMethodProbes) {
twisti@1040 2248 // SharedRuntime::dtrace_method_entry(method, receiver);
duke@435 2249 // }
dcubed@1045 2250 // if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
dcubed@1045 2251 // SharedRuntime::rc_trace_method_entry(method, receiver);
coleenp@857 2252 // }
duke@435 2253
duke@435 2254 void InterpreterMacroAssembler::notify_method_entry() {
duke@435 2255
duke@435 2256 // C++ interpreter only uses this for native methods.
duke@435 2257
duke@435 2258 // Whenever JVMTI puts a thread in interp_only_mode, method
duke@435 2259 // entry/exit events are sent for that thread to track stack
duke@435 2260 // depth. If it is possible to enter interp_only_mode we add
duke@435 2261 // the code to check if the event should be sent.
duke@435 2262 if (JvmtiExport::can_post_interpreter_events()) {
duke@435 2263 Label L;
duke@435 2264 Register temp_reg = O5;
twisti@1162 2265 const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
duke@435 2266 ld(interp_only, temp_reg);
kvn@3037 2267 cmp_and_br_short(temp_reg, 0, equal, pt, L);
duke@435 2268 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
duke@435 2269 bind(L);
duke@435 2270 }
duke@435 2271
duke@435 2272 {
duke@435 2273 Register temp_reg = O5;
duke@435 2274 SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
duke@435 2275 call_VM_leaf(noreg,
duke@435 2276 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
duke@435 2277 G2_thread, Lmethod);
duke@435 2278 }
dcubed@1045 2279
dcubed@1045 2280 // RedefineClasses() tracing support for obsolete method entry
dcubed@1045 2281 if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
dcubed@1045 2282 call_VM_leaf(noreg,
dcubed@1045 2283 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
dcubed@1045 2284 G2_thread, Lmethod);
dcubed@1045 2285 }
duke@435 2286 }
duke@435 2287
duke@435 2288
duke@435 2289 // Inline assembly for:
duke@435 2290 //
duke@435 2291 // if (thread is in interp_only_mode) {
duke@435 2292 // // save result
duke@435 2293 // InterpreterRuntime::post_method_exit();
duke@435 2294 // // restore result
duke@435 2295 // }
duke@435 2296 // if (DTraceMethodProbes) {
duke@435 2297 // SharedRuntime::dtrace_method_exit(thread, method);
duke@435 2298 // }
duke@435 2299 //
duke@435 2300 // Native methods have their result stored in d_tmp and l_tmp
duke@435 2301 // Java methods have their result stored in the expression stack
duke@435 2302
duke@435 2303 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
duke@435 2304 TosState state,
duke@435 2305 NotifyMethodExitMode mode) {
duke@435 2306 // C++ interpreter only uses this for native methods.
duke@435 2307
duke@435 2308 // Whenever JVMTI puts a thread in interp_only_mode, method
duke@435 2309 // entry/exit events are sent for that thread to track stack
duke@435 2310 // depth. If it is possible to enter interp_only_mode we add
duke@435 2311 // the code to check if the event should be sent.
duke@435 2312 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
duke@435 2313 Label L;
duke@435 2314 Register temp_reg = O5;
twisti@1162 2315 const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
duke@435 2316 ld(interp_only, temp_reg);
kvn@3037 2317 cmp_and_br_short(temp_reg, 0, equal, pt, L);
duke@435 2318
duke@435 2319 // Note: frame::interpreter_frame_result has a dependency on how the
duke@435 2320 // method result is saved across the call to post_method_exit. For
duke@435 2321 // native methods it assumes the result registers are saved to
duke@435 2322 // l_scratch and d_scratch. If this changes then the interpreter_frame_result
duke@435 2323 // implementation will need to be updated too.
duke@435 2324
duke@435 2325 save_return_value(state, is_native_method);
duke@435 2326 call_VM(noreg,
duke@435 2327 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
duke@435 2328 restore_return_value(state, is_native_method);
duke@435 2329 bind(L);
duke@435 2330 }
duke@435 2331
duke@435 2332 {
duke@435 2333 Register temp_reg = O5;
duke@435 2334 // Dtrace notification
duke@435 2335 SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
duke@435 2336 save_return_value(state, is_native_method);
duke@435 2337 call_VM_leaf(
duke@435 2338 noreg,
duke@435 2339 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
duke@435 2340 G2_thread, Lmethod);
duke@435 2341 restore_return_value(state, is_native_method);
duke@435 2342 }
duke@435 2343 }
duke@435 2344
duke@435 2345 void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
duke@435 2346 #ifdef CC_INTERP
duke@435 2347 // result potentially in O0/O1: save it across calls
duke@435 2348 stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
duke@435 2349 #ifdef _LP64
duke@435 2350 stx(O0, STATE(_native_lresult));
duke@435 2351 #else
duke@435 2352 std(O0, STATE(_native_lresult));
duke@435 2353 #endif
duke@435 2354 #else // CC_INTERP
duke@435 2355 if (is_native_call) {
duke@435 2356 stf(FloatRegisterImpl::D, F0, d_tmp);
duke@435 2357 #ifdef _LP64
duke@435 2358 stx(O0, l_tmp);
duke@435 2359 #else
duke@435 2360 std(O0, l_tmp);
duke@435 2361 #endif
duke@435 2362 } else {
duke@435 2363 push(state);
duke@435 2364 }
duke@435 2365 #endif // CC_INTERP
duke@435 2366 }
duke@435 2367
duke@435 2368 void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
duke@435 2369 #ifdef CC_INTERP
duke@435 2370 ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
duke@435 2371 #ifdef _LP64
duke@435 2372 ldx(STATE(_native_lresult), O0);
duke@435 2373 #else
duke@435 2374 ldd(STATE(_native_lresult), O0);
duke@435 2375 #endif
duke@435 2376 #else // CC_INTERP
duke@435 2377 if (is_native_call) {
duke@435 2378 ldf(FloatRegisterImpl::D, d_tmp, F0);
duke@435 2379 #ifdef _LP64
duke@435 2380 ldx(l_tmp, O0);
duke@435 2381 #else
duke@435 2382 ldd(l_tmp, O0);
duke@435 2383 #endif
duke@435 2384 } else {
duke@435 2385 pop(state);
duke@435 2386 }
duke@435 2387 #endif // CC_INTERP
duke@435 2388 }
iveresov@2138 2389
iveresov@2138 2390 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
iveresov@2138 2391 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
iveresov@2138 2392 int increment, int mask,
iveresov@2138 2393 Register scratch1, Register scratch2,
iveresov@2138 2394 Condition cond, Label *where) {
iveresov@2138 2395 ld(counter_addr, scratch1);
iveresov@2138 2396 add(scratch1, increment, scratch1);
iveresov@2138 2397 if (is_simm13(mask)) {
iveresov@2138 2398 andcc(scratch1, mask, G0);
iveresov@2138 2399 } else {
iveresov@2138 2400 set(mask, scratch2);
iveresov@2138 2401 andcc(scratch1, scratch2, G0);
iveresov@2138 2402 }
iveresov@2138 2403 br(cond, false, Assembler::pn, *where);
iveresov@2138 2404 delayed()->st(scratch1, counter_addr);
iveresov@2138 2405 }

mercurial