src/cpu/sparc/vm/interp_masm_sparc.cpp

Tue, 21 Apr 2009 11:16:30 -0700

author
twisti
date
Tue, 21 Apr 2009 11:16:30 -0700
changeset 1162
6b2273dd6fa9
parent 1079
c517646eef23
child 1402
6918603297f7
permissions
-rw-r--r--

6822110: Add AddressLiteral class on SPARC
Summary: The Address class on SPARC currently handles both, addresses and address literals, what makes the Address class more complicated than it has to be.
Reviewed-by: never, kvn

duke@435 1 /*
twisti@1162 2 * Copyright 1997-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_interp_masm_sparc.cpp.incl"
duke@435 27
duke@435 28 #ifndef CC_INTERP
duke@435 29 #ifndef FAST_DISPATCH
duke@435 30 #define FAST_DISPATCH 1
duke@435 31 #endif
duke@435 32 #undef FAST_DISPATCH
duke@435 33
duke@435 34 // Implementation of InterpreterMacroAssembler
duke@435 35
duke@435 36 // This file specializes the assember with interpreter-specific macros
duke@435 37
twisti@1162 38 const Address InterpreterMacroAssembler::l_tmp(FP, (frame::interpreter_frame_l_scratch_fp_offset * wordSize) + STACK_BIAS);
twisti@1162 39 const Address InterpreterMacroAssembler::d_tmp(FP, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
duke@435 40
duke@435 41 #else // CC_INTERP
duke@435 42 #ifndef STATE
duke@435 43 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
duke@435 44 #endif // STATE
duke@435 45
duke@435 46 #endif // CC_INTERP
duke@435 47
duke@435 48 void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
duke@435 49 // Note: this algorithm is also used by C1's OSR entry sequence.
duke@435 50 // Any changes should also be applied to CodeEmitter::emit_osr_entry().
duke@435 51 assert_different_registers(args_size, locals_size);
duke@435 52 // max_locals*2 for TAGS. Assumes that args_size has already been adjusted.
duke@435 53 if (TaggedStackInterpreter) sll(locals_size, 1, locals_size);
duke@435 54 subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
duke@435 55 // Use br/mov combination because it works on both V8 and V9 and is
duke@435 56 // faster.
duke@435 57 Label skip_move;
duke@435 58 br(Assembler::negative, true, Assembler::pt, skip_move);
duke@435 59 delayed()->mov(G0, delta);
duke@435 60 bind(skip_move);
duke@435 61 round_to(delta, WordsPerLong); // make multiple of 2 (SP must be 2-word aligned)
duke@435 62 sll(delta, LogBytesPerWord, delta); // extra space for locals in bytes
duke@435 63 }
duke@435 64
duke@435 65 #ifndef CC_INTERP
duke@435 66
duke@435 67 // Dispatch code executed in the prolog of a bytecode which does not do it's
duke@435 68 // own dispatch. The dispatch address is computed and placed in IdispatchAddress
duke@435 69 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
duke@435 70 assert_not_delayed();
duke@435 71 #ifdef FAST_DISPATCH
duke@435 72 // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
duke@435 73 // they both use I2.
duke@435 74 assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
duke@435 75 ldub(Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 76 add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
duke@435 77 // add offset to correct dispatch table
duke@435 78 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
duke@435 79 ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
duke@435 80 #else
twisti@1162 81 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 82 // dispatch table to use
twisti@1162 83 AddressLiteral tbl(Interpreter::dispatch_table(state));
twisti@1162 84 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
twisti@1162 85 set(tbl, G3_scratch); // compute addr of table
twisti@1162 86 ld_ptr(G3_scratch, Lbyte_code, IdispatchAddress); // get entry addr
duke@435 87 #endif
duke@435 88 }
duke@435 89
duke@435 90
duke@435 91 // Dispatch code executed in the epilog of a bytecode which does not do it's
duke@435 92 // own dispatch. The dispatch address in IdispatchAddress is used for the
duke@435 93 // dispatch.
duke@435 94 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
duke@435 95 assert_not_delayed();
duke@435 96 verify_FPU(1, state);
duke@435 97 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 98 jmp( IdispatchAddress, 0 );
duke@435 99 if (bcp_incr != 0) delayed()->inc(Lbcp, bcp_incr);
duke@435 100 else delayed()->nop();
duke@435 101 }
duke@435 102
duke@435 103
duke@435 104 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
duke@435 105 // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
duke@435 106 assert_not_delayed();
duke@435 107 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 108 dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
duke@435 109 }
duke@435 110
duke@435 111
duke@435 112 void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
duke@435 113 // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
duke@435 114 assert_not_delayed();
duke@435 115 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 116 dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
duke@435 117 }
duke@435 118
duke@435 119
duke@435 120 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
duke@435 121 // load current bytecode
duke@435 122 assert_not_delayed();
duke@435 123 ldub( Lbcp, 0, Lbyte_code); // load next bytecode
duke@435 124 dispatch_base(state, table);
duke@435 125 }
duke@435 126
duke@435 127
duke@435 128 void InterpreterMacroAssembler::call_VM_leaf_base(
duke@435 129 Register java_thread,
duke@435 130 address entry_point,
duke@435 131 int number_of_arguments
duke@435 132 ) {
duke@435 133 if (!java_thread->is_valid())
duke@435 134 java_thread = L7_thread_cache;
duke@435 135 // super call
duke@435 136 MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
duke@435 137 }
duke@435 138
duke@435 139
duke@435 140 void InterpreterMacroAssembler::call_VM_base(
duke@435 141 Register oop_result,
duke@435 142 Register java_thread,
duke@435 143 Register last_java_sp,
duke@435 144 address entry_point,
duke@435 145 int number_of_arguments,
duke@435 146 bool check_exception
duke@435 147 ) {
duke@435 148 if (!java_thread->is_valid())
duke@435 149 java_thread = L7_thread_cache;
duke@435 150 // See class ThreadInVMfromInterpreter, which assumes that the interpreter
duke@435 151 // takes responsibility for setting its own thread-state on call-out.
duke@435 152 // However, ThreadInVMfromInterpreter resets the state to "in_Java".
duke@435 153
duke@435 154 //save_bcp(); // save bcp
duke@435 155 MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
duke@435 156 //restore_bcp(); // restore bcp
duke@435 157 //restore_locals(); // restore locals pointer
duke@435 158 }
duke@435 159
duke@435 160
duke@435 161 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
duke@435 162 if (JvmtiExport::can_pop_frame()) {
duke@435 163 Label L;
duke@435 164
duke@435 165 // Check the "pending popframe condition" flag in the current thread
twisti@1162 166 ld(G2_thread, JavaThread::popframe_condition_offset(), scratch_reg);
duke@435 167
duke@435 168 // Initiate popframe handling only if it is not already being processed. If the flag
duke@435 169 // has the popframe_processing bit set, it means that this code is called *during* popframe
duke@435 170 // handling - we don't want to reenter.
duke@435 171 btst(JavaThread::popframe_pending_bit, scratch_reg);
duke@435 172 br(zero, false, pt, L);
duke@435 173 delayed()->nop();
duke@435 174 btst(JavaThread::popframe_processing_bit, scratch_reg);
duke@435 175 br(notZero, false, pt, L);
duke@435 176 delayed()->nop();
duke@435 177
duke@435 178 // Call Interpreter::remove_activation_preserving_args_entry() to get the
duke@435 179 // address of the same-named entrypoint in the generated interpreter code.
duke@435 180 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
duke@435 181
duke@435 182 // Jump to Interpreter::_remove_activation_preserving_args_entry
duke@435 183 jmpl(O0, G0, G0);
duke@435 184 delayed()->nop();
duke@435 185 bind(L);
duke@435 186 }
duke@435 187 }
duke@435 188
duke@435 189
duke@435 190 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
duke@435 191 Register thr_state = G4_scratch;
twisti@1162 192 ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
twisti@1162 193 const Address tos_addr(thr_state, JvmtiThreadState::earlyret_tos_offset());
twisti@1162 194 const Address oop_addr(thr_state, JvmtiThreadState::earlyret_oop_offset());
twisti@1162 195 const Address val_addr(thr_state, JvmtiThreadState::earlyret_value_offset());
duke@435 196 switch (state) {
duke@435 197 case ltos: ld_long(val_addr, Otos_l); break;
duke@435 198 case atos: ld_ptr(oop_addr, Otos_l);
duke@435 199 st_ptr(G0, oop_addr); break;
duke@435 200 case btos: // fall through
duke@435 201 case ctos: // fall through
duke@435 202 case stos: // fall through
duke@435 203 case itos: ld(val_addr, Otos_l1); break;
duke@435 204 case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
duke@435 205 case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
duke@435 206 case vtos: /* nothing to do */ break;
duke@435 207 default : ShouldNotReachHere();
duke@435 208 }
duke@435 209 // Clean up tos value in the jvmti thread state
duke@435 210 or3(G0, ilgl, G3_scratch);
duke@435 211 stw(G3_scratch, tos_addr);
duke@435 212 st_long(G0, val_addr);
duke@435 213 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 214 }
duke@435 215
duke@435 216
duke@435 217 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
duke@435 218 if (JvmtiExport::can_force_early_return()) {
duke@435 219 Label L;
duke@435 220 Register thr_state = G3_scratch;
twisti@1162 221 ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
duke@435 222 tst(thr_state);
duke@435 223 br(zero, false, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
duke@435 224 delayed()->nop();
duke@435 225
duke@435 226 // Initiate earlyret handling only if it is not already being processed.
duke@435 227 // If the flag has the earlyret_processing bit set, it means that this code
duke@435 228 // is called *during* earlyret handling - we don't want to reenter.
twisti@1162 229 ld(thr_state, JvmtiThreadState::earlyret_state_offset(), G4_scratch);
duke@435 230 cmp(G4_scratch, JvmtiThreadState::earlyret_pending);
duke@435 231 br(Assembler::notEqual, false, pt, L);
duke@435 232 delayed()->nop();
duke@435 233
duke@435 234 // Call Interpreter::remove_activation_early_entry() to get the address of the
duke@435 235 // same-named entrypoint in the generated interpreter code
twisti@1162 236 ld(thr_state, JvmtiThreadState::earlyret_tos_offset(), Otos_l1);
duke@435 237 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
duke@435 238
duke@435 239 // Jump to Interpreter::_remove_activation_early_entry
duke@435 240 jmpl(O0, G0, G0);
duke@435 241 delayed()->nop();
duke@435 242 bind(L);
duke@435 243 }
duke@435 244 }
duke@435 245
duke@435 246
duke@435 247 void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
duke@435 248 mov(arg_1, O0);
duke@435 249 MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 1);
duke@435 250 }
duke@435 251 #endif /* CC_INTERP */
duke@435 252
duke@435 253
duke@435 254 #ifndef CC_INTERP
duke@435 255
duke@435 256 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
duke@435 257 assert_not_delayed();
duke@435 258 dispatch_Lbyte_code(state, table);
duke@435 259 }
duke@435 260
duke@435 261
duke@435 262 void InterpreterMacroAssembler::dispatch_normal(TosState state) {
duke@435 263 dispatch_base(state, Interpreter::normal_table(state));
duke@435 264 }
duke@435 265
duke@435 266
duke@435 267 void InterpreterMacroAssembler::dispatch_only(TosState state) {
duke@435 268 dispatch_base(state, Interpreter::dispatch_table(state));
duke@435 269 }
duke@435 270
duke@435 271
duke@435 272 // common code to dispatch and dispatch_only
duke@435 273 // dispatch value in Lbyte_code and increment Lbcp
duke@435 274
duke@435 275 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
duke@435 276 verify_FPU(1, state);
duke@435 277 // %%%%% maybe implement +VerifyActivationFrameSize here
duke@435 278 //verify_thread(); //too slow; we will just verify on method entry & exit
duke@435 279 if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 280 #ifdef FAST_DISPATCH
duke@435 281 if (table == Interpreter::dispatch_table(state)) {
duke@435 282 // use IdispatchTables
duke@435 283 add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
duke@435 284 // add offset to correct dispatch table
duke@435 285 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
duke@435 286 ld_ptr(IdispatchTables, Lbyte_code, G3_scratch); // get entry addr
duke@435 287 } else {
duke@435 288 #endif
duke@435 289 // dispatch table to use
twisti@1162 290 AddressLiteral tbl(table);
duke@435 291 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
twisti@1162 292 set(tbl, G3_scratch); // compute addr of table
duke@435 293 ld_ptr(G3_scratch, Lbyte_code, G3_scratch); // get entry addr
duke@435 294 #ifdef FAST_DISPATCH
duke@435 295 }
duke@435 296 #endif
duke@435 297 jmp( G3_scratch, 0 );
duke@435 298 if (bcp_incr != 0) delayed()->inc(Lbcp, bcp_incr);
duke@435 299 else delayed()->nop();
duke@435 300 }
duke@435 301
duke@435 302
duke@435 303 // Helpers for expression stack
duke@435 304
duke@435 305 // Longs and doubles are Category 2 computational types in the
duke@435 306 // JVM specification (section 3.11.1) and take 2 expression stack or
duke@435 307 // local slots.
duke@435 308 // Aligning them on 32 bit with tagged stacks is hard because the code generated
duke@435 309 // for the dup* bytecodes depends on what types are already on the stack.
duke@435 310 // If the types are split into the two stack/local slots, that is much easier
duke@435 311 // (and we can use 0 for non-reference tags).
duke@435 312
duke@435 313 // Known good alignment in _LP64 but unknown otherwise
duke@435 314 void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
duke@435 315 assert_not_delayed();
duke@435 316
duke@435 317 #ifdef _LP64
duke@435 318 ldf(FloatRegisterImpl::D, r1, offset, d);
duke@435 319 #else
duke@435 320 ldf(FloatRegisterImpl::S, r1, offset, d);
duke@435 321 ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize(), d->successor());
duke@435 322 #endif
duke@435 323 }
duke@435 324
duke@435 325 // Known good alignment in _LP64 but unknown otherwise
duke@435 326 void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
duke@435 327 assert_not_delayed();
duke@435 328
duke@435 329 #ifdef _LP64
duke@435 330 stf(FloatRegisterImpl::D, d, r1, offset);
duke@435 331 // store something more useful here
duke@435 332 debug_only(stx(G0, r1, offset+Interpreter::stackElementSize());)
duke@435 333 #else
duke@435 334 stf(FloatRegisterImpl::S, d, r1, offset);
duke@435 335 stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize());
duke@435 336 #endif
duke@435 337 }
duke@435 338
duke@435 339
duke@435 340 // Known good alignment in _LP64 but unknown otherwise
duke@435 341 void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
duke@435 342 assert_not_delayed();
duke@435 343 #ifdef _LP64
duke@435 344 ldx(r1, offset, rd);
duke@435 345 #else
duke@435 346 ld(r1, offset, rd);
duke@435 347 ld(r1, offset + Interpreter::stackElementSize(), rd->successor());
duke@435 348 #endif
duke@435 349 }
duke@435 350
duke@435 351 // Known good alignment in _LP64 but unknown otherwise
duke@435 352 void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
duke@435 353 assert_not_delayed();
duke@435 354
duke@435 355 #ifdef _LP64
duke@435 356 stx(l, r1, offset);
duke@435 357 // store something more useful here
duke@435 358 debug_only(stx(G0, r1, offset+Interpreter::stackElementSize());)
duke@435 359 #else
duke@435 360 st(l, r1, offset);
duke@435 361 st(l->successor(), r1, offset + Interpreter::stackElementSize());
duke@435 362 #endif
duke@435 363 }
duke@435 364
duke@435 365 #ifdef ASSERT
duke@435 366 void InterpreterMacroAssembler::verify_stack_tag(frame::Tag t,
duke@435 367 Register r,
duke@435 368 Register scratch) {
duke@435 369 if (TaggedStackInterpreter) {
duke@435 370 Label ok, long_ok;
duke@435 371 ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(0), r);
duke@435 372 if (t == frame::TagCategory2) {
duke@435 373 cmp(r, G0);
duke@435 374 brx(Assembler::equal, false, Assembler::pt, long_ok);
duke@435 375 delayed()->ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(1), r);
duke@435 376 stop("stack long/double tag value bad");
duke@435 377 bind(long_ok);
duke@435 378 cmp(r, G0);
duke@435 379 } else if (t == frame::TagValue) {
duke@435 380 cmp(r, G0);
duke@435 381 } else {
duke@435 382 assert_different_registers(r, scratch);
duke@435 383 mov(t, scratch);
duke@435 384 cmp(r, scratch);
duke@435 385 }
duke@435 386 brx(Assembler::equal, false, Assembler::pt, ok);
duke@435 387 delayed()->nop();
duke@435 388 // Also compare if the stack value is zero, then the tag might
duke@435 389 // not have been set coming from deopt.
duke@435 390 ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
duke@435 391 cmp(r, G0);
duke@435 392 brx(Assembler::equal, false, Assembler::pt, ok);
duke@435 393 delayed()->nop();
duke@435 394 stop("Stack tag value is bad");
duke@435 395 bind(ok);
duke@435 396 }
duke@435 397 }
duke@435 398 #endif // ASSERT
duke@435 399
duke@435 400 void InterpreterMacroAssembler::pop_i(Register r) {
duke@435 401 assert_not_delayed();
duke@435 402 // Uses destination register r for scratch
duke@435 403 debug_only(verify_stack_tag(frame::TagValue, r));
duke@435 404 ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
duke@435 405 inc(Lesp, Interpreter::stackElementSize());
duke@435 406 debug_only(verify_esp(Lesp));
duke@435 407 }
duke@435 408
duke@435 409 void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
duke@435 410 assert_not_delayed();
duke@435 411 // Uses destination register r for scratch
duke@435 412 debug_only(verify_stack_tag(frame::TagReference, r, scratch));
duke@435 413 ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
duke@435 414 inc(Lesp, Interpreter::stackElementSize());
duke@435 415 debug_only(verify_esp(Lesp));
duke@435 416 }
duke@435 417
duke@435 418 void InterpreterMacroAssembler::pop_l(Register r) {
duke@435 419 assert_not_delayed();
duke@435 420 // Uses destination register r for scratch
duke@435 421 debug_only(verify_stack_tag(frame::TagCategory2, r));
duke@435 422 load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
duke@435 423 inc(Lesp, 2*Interpreter::stackElementSize());
duke@435 424 debug_only(verify_esp(Lesp));
duke@435 425 }
duke@435 426
duke@435 427
duke@435 428 void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
duke@435 429 assert_not_delayed();
duke@435 430 debug_only(verify_stack_tag(frame::TagValue, scratch));
duke@435 431 ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
duke@435 432 inc(Lesp, Interpreter::stackElementSize());
duke@435 433 debug_only(verify_esp(Lesp));
duke@435 434 }
duke@435 435
duke@435 436
duke@435 437 void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
duke@435 438 assert_not_delayed();
duke@435 439 debug_only(verify_stack_tag(frame::TagCategory2, scratch));
duke@435 440 load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
duke@435 441 inc(Lesp, 2*Interpreter::stackElementSize());
duke@435 442 debug_only(verify_esp(Lesp));
duke@435 443 }
duke@435 444
duke@435 445
duke@435 446 // (Note use register first, then decrement so dec can be done during store stall)
duke@435 447 void InterpreterMacroAssembler::tag_stack(Register r) {
duke@435 448 if (TaggedStackInterpreter) {
duke@435 449 st_ptr(r, Lesp, Interpreter::tag_offset_in_bytes());
duke@435 450 }
duke@435 451 }
duke@435 452
duke@435 453 void InterpreterMacroAssembler::tag_stack(frame::Tag t, Register r) {
duke@435 454 if (TaggedStackInterpreter) {
duke@435 455 assert (frame::TagValue == 0, "TagValue must be zero");
duke@435 456 if (t == frame::TagValue) {
duke@435 457 st_ptr(G0, Lesp, Interpreter::tag_offset_in_bytes());
duke@435 458 } else if (t == frame::TagCategory2) {
duke@435 459 st_ptr(G0, Lesp, Interpreter::tag_offset_in_bytes());
duke@435 460 // Tag next slot down too
duke@435 461 st_ptr(G0, Lesp, -Interpreter::stackElementSize() + Interpreter::tag_offset_in_bytes());
duke@435 462 } else {
duke@435 463 assert_different_registers(r, O3);
duke@435 464 mov(t, O3);
duke@435 465 st_ptr(O3, Lesp, Interpreter::tag_offset_in_bytes());
duke@435 466 }
duke@435 467 }
duke@435 468 }
duke@435 469
duke@435 470 void InterpreterMacroAssembler::push_i(Register r) {
duke@435 471 assert_not_delayed();
duke@435 472 debug_only(verify_esp(Lesp));
duke@435 473 tag_stack(frame::TagValue, r);
duke@435 474 st( r, Lesp, Interpreter::value_offset_in_bytes());
duke@435 475 dec( Lesp, Interpreter::stackElementSize());
duke@435 476 }
duke@435 477
duke@435 478 void InterpreterMacroAssembler::push_ptr(Register r) {
duke@435 479 assert_not_delayed();
duke@435 480 tag_stack(frame::TagReference, r);
duke@435 481 st_ptr( r, Lesp, Interpreter::value_offset_in_bytes());
duke@435 482 dec( Lesp, Interpreter::stackElementSize());
duke@435 483 }
duke@435 484
duke@435 485 void InterpreterMacroAssembler::push_ptr(Register r, Register tag) {
duke@435 486 assert_not_delayed();
duke@435 487 tag_stack(tag);
duke@435 488 st_ptr(r, Lesp, Interpreter::value_offset_in_bytes());
duke@435 489 dec( Lesp, Interpreter::stackElementSize());
duke@435 490 }
duke@435 491
duke@435 492 // remember: our convention for longs in SPARC is:
duke@435 493 // O0 (Otos_l1) has high-order part in first word,
duke@435 494 // O1 (Otos_l2) has low-order part in second word
duke@435 495
duke@435 496 void InterpreterMacroAssembler::push_l(Register r) {
duke@435 497 assert_not_delayed();
duke@435 498 debug_only(verify_esp(Lesp));
duke@435 499 tag_stack(frame::TagCategory2, r);
duke@435 500 // Longs are in stored in memory-correct order, even if unaligned.
duke@435 501 // and may be separated by stack tags.
duke@435 502 int offset = -Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
duke@435 503 store_unaligned_long(r, Lesp, offset);
duke@435 504 dec(Lesp, 2 * Interpreter::stackElementSize());
duke@435 505 }
duke@435 506
duke@435 507
duke@435 508 void InterpreterMacroAssembler::push_f(FloatRegister f) {
duke@435 509 assert_not_delayed();
duke@435 510 debug_only(verify_esp(Lesp));
duke@435 511 tag_stack(frame::TagValue, Otos_i);
duke@435 512 stf(FloatRegisterImpl::S, f, Lesp, Interpreter::value_offset_in_bytes());
duke@435 513 dec(Lesp, Interpreter::stackElementSize());
duke@435 514 }
duke@435 515
duke@435 516
duke@435 517 void InterpreterMacroAssembler::push_d(FloatRegister d) {
duke@435 518 assert_not_delayed();
duke@435 519 debug_only(verify_esp(Lesp));
duke@435 520 tag_stack(frame::TagCategory2, Otos_i);
duke@435 521 // Longs are in stored in memory-correct order, even if unaligned.
duke@435 522 // and may be separated by stack tags.
duke@435 523 int offset = -Interpreter::stackElementSize() + Interpreter::value_offset_in_bytes();
duke@435 524 store_unaligned_double(d, Lesp, offset);
duke@435 525 dec(Lesp, 2 * Interpreter::stackElementSize());
duke@435 526 }
duke@435 527
duke@435 528
duke@435 529 void InterpreterMacroAssembler::push(TosState state) {
duke@435 530 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 531 switch (state) {
duke@435 532 case atos: push_ptr(); break;
duke@435 533 case btos: push_i(); break;
duke@435 534 case ctos:
duke@435 535 case stos: push_i(); break;
duke@435 536 case itos: push_i(); break;
duke@435 537 case ltos: push_l(); break;
duke@435 538 case ftos: push_f(); break;
duke@435 539 case dtos: push_d(); break;
duke@435 540 case vtos: /* nothing to do */ break;
duke@435 541 default : ShouldNotReachHere();
duke@435 542 }
duke@435 543 }
duke@435 544
duke@435 545
duke@435 546 void InterpreterMacroAssembler::pop(TosState state) {
duke@435 547 switch (state) {
duke@435 548 case atos: pop_ptr(); break;
duke@435 549 case btos: pop_i(); break;
duke@435 550 case ctos:
duke@435 551 case stos: pop_i(); break;
duke@435 552 case itos: pop_i(); break;
duke@435 553 case ltos: pop_l(); break;
duke@435 554 case ftos: pop_f(); break;
duke@435 555 case dtos: pop_d(); break;
duke@435 556 case vtos: /* nothing to do */ break;
duke@435 557 default : ShouldNotReachHere();
duke@435 558 }
duke@435 559 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 560 }
duke@435 561
duke@435 562
duke@435 563 // Tagged stack helpers for swap and dup
duke@435 564 void InterpreterMacroAssembler::load_ptr_and_tag(int n, Register val,
duke@435 565 Register tag) {
duke@435 566 ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
duke@435 567 if (TaggedStackInterpreter) {
duke@435 568 ld_ptr(Lesp, Interpreter::expr_tag_offset_in_bytes(n), tag);
duke@435 569 }
duke@435 570 }
duke@435 571 void InterpreterMacroAssembler::store_ptr_and_tag(int n, Register val,
duke@435 572 Register tag) {
duke@435 573 st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
duke@435 574 if (TaggedStackInterpreter) {
duke@435 575 st_ptr(tag, Lesp, Interpreter::expr_tag_offset_in_bytes(n));
duke@435 576 }
duke@435 577 }
duke@435 578
duke@435 579
duke@435 580 void InterpreterMacroAssembler::load_receiver(Register param_count,
duke@435 581 Register recv) {
duke@435 582
duke@435 583 sll(param_count, Interpreter::logStackElementSize(), param_count);
duke@435 584 if (TaggedStackInterpreter) {
duke@435 585 add(param_count, Interpreter::value_offset_in_bytes(), param_count); // get obj address
duke@435 586 }
duke@435 587 ld_ptr(Lesp, param_count, recv); // gets receiver Oop
duke@435 588 }
duke@435 589
duke@435 590 void InterpreterMacroAssembler::empty_expression_stack() {
duke@435 591 // Reset Lesp.
duke@435 592 sub( Lmonitors, wordSize, Lesp );
duke@435 593
duke@435 594 // Reset SP by subtracting more space from Lesp.
duke@435 595 Label done;
duke@435 596 verify_oop(Lmethod);
twisti@1162 597 assert(G4_scratch != Gframe_size, "Only you can prevent register aliasing!");
duke@435 598
duke@435 599 // A native does not need to do this, since its callee does not change SP.
twisti@1162 600 ld(Lmethod, methodOopDesc::access_flags_offset(), Gframe_size); // Load access flags.
duke@435 601 btst(JVM_ACC_NATIVE, Gframe_size);
duke@435 602 br(Assembler::notZero, false, Assembler::pt, done);
duke@435 603 delayed()->nop();
duke@435 604
duke@435 605 // Compute max expression stack+register save area
twisti@1162 606 lduh(Lmethod, in_bytes(methodOopDesc::max_stack_offset()), Gframe_size); // Load max stack.
duke@435 607 if (TaggedStackInterpreter) sll ( Gframe_size, 1, Gframe_size); // max_stack * 2 for TAGS
duke@435 608 add( Gframe_size, frame::memory_parameter_word_sp_offset, Gframe_size );
duke@435 609
duke@435 610 //
duke@435 611 // now set up a stack frame with the size computed above
duke@435 612 //
duke@435 613 //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
duke@435 614 sll( Gframe_size, LogBytesPerWord, Gframe_size );
duke@435 615 sub( Lesp, Gframe_size, Gframe_size );
duke@435 616 and3( Gframe_size, -(2 * wordSize), Gframe_size ); // align SP (downwards) to an 8/16-byte boundary
duke@435 617 debug_only(verify_sp(Gframe_size, G4_scratch));
duke@435 618 #ifdef _LP64
duke@435 619 sub(Gframe_size, STACK_BIAS, Gframe_size );
duke@435 620 #endif
duke@435 621 mov(Gframe_size, SP);
duke@435 622
duke@435 623 bind(done);
duke@435 624 }
duke@435 625
duke@435 626
duke@435 627 #ifdef ASSERT
duke@435 628 void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
duke@435 629 Label Bad, OK;
duke@435 630
duke@435 631 // Saved SP must be aligned.
duke@435 632 #ifdef _LP64
duke@435 633 btst(2*BytesPerWord-1, Rsp);
duke@435 634 #else
duke@435 635 btst(LongAlignmentMask, Rsp);
duke@435 636 #endif
duke@435 637 br(Assembler::notZero, false, Assembler::pn, Bad);
duke@435 638 delayed()->nop();
duke@435 639
duke@435 640 // Saved SP, plus register window size, must not be above FP.
duke@435 641 add(Rsp, frame::register_save_words * wordSize, Rtemp);
duke@435 642 #ifdef _LP64
duke@435 643 sub(Rtemp, STACK_BIAS, Rtemp); // Bias Rtemp before cmp to FP
duke@435 644 #endif
duke@435 645 cmp(Rtemp, FP);
duke@435 646 brx(Assembler::greaterUnsigned, false, Assembler::pn, Bad);
duke@435 647 delayed()->nop();
duke@435 648
duke@435 649 // Saved SP must not be ridiculously below current SP.
duke@435 650 size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
duke@435 651 set(maxstack, Rtemp);
duke@435 652 sub(SP, Rtemp, Rtemp);
duke@435 653 #ifdef _LP64
duke@435 654 add(Rtemp, STACK_BIAS, Rtemp); // Unbias Rtemp before cmp to Rsp
duke@435 655 #endif
duke@435 656 cmp(Rsp, Rtemp);
duke@435 657 brx(Assembler::lessUnsigned, false, Assembler::pn, Bad);
duke@435 658 delayed()->nop();
duke@435 659
duke@435 660 br(Assembler::always, false, Assembler::pn, OK);
duke@435 661 delayed()->nop();
duke@435 662
duke@435 663 bind(Bad);
duke@435 664 stop("on return to interpreted call, restored SP is corrupted");
duke@435 665
duke@435 666 bind(OK);
duke@435 667 }
duke@435 668
duke@435 669
duke@435 670 void InterpreterMacroAssembler::verify_esp(Register Resp) {
duke@435 671 // about to read or write Resp[0]
duke@435 672 // make sure it is not in the monitors or the register save area
duke@435 673 Label OK1, OK2;
duke@435 674
duke@435 675 cmp(Resp, Lmonitors);
duke@435 676 brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
duke@435 677 delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
duke@435 678 stop("too many pops: Lesp points into monitor area");
duke@435 679 bind(OK1);
duke@435 680 #ifdef _LP64
duke@435 681 sub(Resp, STACK_BIAS, Resp);
duke@435 682 #endif
duke@435 683 cmp(Resp, SP);
duke@435 684 brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
duke@435 685 delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
duke@435 686 stop("too many pushes: Lesp points into register window");
duke@435 687 bind(OK2);
duke@435 688 }
duke@435 689 #endif // ASSERT
duke@435 690
duke@435 691 // Load compiled (i2c) or interpreter entry when calling from interpreted and
duke@435 692 // do the call. Centralized so that all interpreter calls will do the same actions.
duke@435 693 // If jvmti single stepping is on for a thread we must not call compiled code.
duke@435 694 void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
duke@435 695
duke@435 696 // Assume we want to go compiled if available
duke@435 697
duke@435 698 ld_ptr(G5_method, in_bytes(methodOopDesc::from_interpreted_offset()), target);
duke@435 699
duke@435 700 if (JvmtiExport::can_post_interpreter_events()) {
duke@435 701 // JVMTI events, such as single-stepping, are implemented partly by avoiding running
duke@435 702 // compiled code in threads for which the event is enabled. Check here for
duke@435 703 // interp_only_mode if these events CAN be enabled.
duke@435 704 verify_thread();
duke@435 705 Label skip_compiled_code;
duke@435 706
twisti@1162 707 const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
duke@435 708 ld(interp_only, scratch);
duke@435 709 tst(scratch);
duke@435 710 br(Assembler::notZero, true, Assembler::pn, skip_compiled_code);
duke@435 711 delayed()->ld_ptr(G5_method, in_bytes(methodOopDesc::interpreter_entry_offset()), target);
duke@435 712 bind(skip_compiled_code);
duke@435 713 }
duke@435 714
duke@435 715 // the i2c_adapters need methodOop in G5_method (right? %%%)
duke@435 716 // do the call
duke@435 717 #ifdef ASSERT
duke@435 718 {
duke@435 719 Label ok;
duke@435 720 br_notnull(target, false, Assembler::pt, ok);
duke@435 721 delayed()->nop();
duke@435 722 stop("null entry point");
duke@435 723 bind(ok);
duke@435 724 }
duke@435 725 #endif // ASSERT
duke@435 726
duke@435 727 // Adjust Rret first so Llast_SP can be same as Rret
duke@435 728 add(Rret, -frame::pc_return_offset, O7);
duke@435 729 add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
duke@435 730 // Record SP so we can remove any stack space allocated by adapter transition
duke@435 731 jmp(target, 0);
duke@435 732 delayed()->mov(SP, Llast_SP);
duke@435 733 }
duke@435 734
duke@435 735 void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
duke@435 736 assert_not_delayed();
duke@435 737
duke@435 738 Label not_taken;
duke@435 739 if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
duke@435 740 else br (cc, false, Assembler::pn, not_taken);
duke@435 741 delayed()->nop();
duke@435 742
duke@435 743 TemplateTable::branch(false,false);
duke@435 744
duke@435 745 bind(not_taken);
duke@435 746
duke@435 747 profile_not_taken_branch(G3_scratch);
duke@435 748 }
duke@435 749
duke@435 750
duke@435 751 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
duke@435 752 int bcp_offset,
duke@435 753 Register Rtmp,
duke@435 754 Register Rdst,
duke@435 755 signedOrNot is_signed,
duke@435 756 setCCOrNot should_set_CC ) {
duke@435 757 assert(Rtmp != Rdst, "need separate temp register");
duke@435 758 assert_not_delayed();
duke@435 759 switch (is_signed) {
duke@435 760 default: ShouldNotReachHere();
duke@435 761
duke@435 762 case Signed: ldsb( Lbcp, bcp_offset, Rdst ); break; // high byte
duke@435 763 case Unsigned: ldub( Lbcp, bcp_offset, Rdst ); break; // high byte
duke@435 764 }
duke@435 765 ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
duke@435 766 sll( Rdst, BitsPerByte, Rdst);
duke@435 767 switch (should_set_CC ) {
duke@435 768 default: ShouldNotReachHere();
duke@435 769
duke@435 770 case set_CC: orcc( Rdst, Rtmp, Rdst ); break;
duke@435 771 case dont_set_CC: or3( Rdst, Rtmp, Rdst ); break;
duke@435 772 }
duke@435 773 }
duke@435 774
duke@435 775
duke@435 776 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
duke@435 777 int bcp_offset,
duke@435 778 Register Rtmp,
duke@435 779 Register Rdst,
duke@435 780 setCCOrNot should_set_CC ) {
duke@435 781 assert(Rtmp != Rdst, "need separate temp register");
duke@435 782 assert_not_delayed();
duke@435 783 add( Lbcp, bcp_offset, Rtmp);
duke@435 784 andcc( Rtmp, 3, G0);
duke@435 785 Label aligned;
duke@435 786 switch (should_set_CC ) {
duke@435 787 default: ShouldNotReachHere();
duke@435 788
duke@435 789 case set_CC: break;
duke@435 790 case dont_set_CC: break;
duke@435 791 }
duke@435 792
duke@435 793 br(Assembler::zero, true, Assembler::pn, aligned);
duke@435 794 #ifdef _LP64
duke@435 795 delayed()->ldsw(Rtmp, 0, Rdst);
duke@435 796 #else
duke@435 797 delayed()->ld(Rtmp, 0, Rdst);
duke@435 798 #endif
duke@435 799
duke@435 800 ldub(Lbcp, bcp_offset + 3, Rdst);
duke@435 801 ldub(Lbcp, bcp_offset + 2, Rtmp); sll(Rtmp, 8, Rtmp); or3(Rtmp, Rdst, Rdst);
duke@435 802 ldub(Lbcp, bcp_offset + 1, Rtmp); sll(Rtmp, 16, Rtmp); or3(Rtmp, Rdst, Rdst);
duke@435 803 #ifdef _LP64
duke@435 804 ldsb(Lbcp, bcp_offset + 0, Rtmp); sll(Rtmp, 24, Rtmp);
duke@435 805 #else
duke@435 806 // Unsigned load is faster than signed on some implementations
duke@435 807 ldub(Lbcp, bcp_offset + 0, Rtmp); sll(Rtmp, 24, Rtmp);
duke@435 808 #endif
duke@435 809 or3(Rtmp, Rdst, Rdst );
duke@435 810
duke@435 811 bind(aligned);
duke@435 812 if (should_set_CC == set_CC) tst(Rdst);
duke@435 813 }
duke@435 814
duke@435 815
duke@435 816 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp, int bcp_offset) {
duke@435 817 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
duke@435 818 assert_different_registers(cache, tmp);
duke@435 819 assert_not_delayed();
duke@435 820 get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
duke@435 821 // convert from field index to ConstantPoolCacheEntry index
duke@435 822 // and from word index to byte offset
duke@435 823 sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
duke@435 824 add(LcpoolCache, tmp, cache);
duke@435 825 }
duke@435 826
duke@435 827
duke@435 828 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp, int bcp_offset) {
duke@435 829 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
duke@435 830 assert_different_registers(cache, tmp);
duke@435 831 assert_not_delayed();
duke@435 832 get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
duke@435 833 // convert from field index to ConstantPoolCacheEntry index
duke@435 834 // and from word index to byte offset
duke@435 835 sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
duke@435 836 // skip past the header
duke@435 837 add(tmp, in_bytes(constantPoolCacheOopDesc::base_offset()), tmp);
duke@435 838 // construct pointer to cache entry
duke@435 839 add(LcpoolCache, tmp, cache);
duke@435 840 }
duke@435 841
duke@435 842
duke@435 843 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
coleenp@548 844 // a subtype of super_klass. Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
duke@435 845 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
duke@435 846 Register Rsuper_klass,
duke@435 847 Register Rtmp1,
duke@435 848 Register Rtmp2,
duke@435 849 Register Rtmp3,
duke@435 850 Label &ok_is_subtype ) {
jrose@1079 851 Label not_subtype;
duke@435 852
duke@435 853 // Profile the not-null value's klass.
duke@435 854 profile_typecheck(Rsub_klass, Rtmp1);
duke@435 855
jrose@1079 856 check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass,
jrose@1079 857 Rtmp1, Rtmp2,
jrose@1079 858 &ok_is_subtype, &not_subtype, NULL);
jrose@1079 859
jrose@1079 860 check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass,
jrose@1079 861 Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg,
jrose@1079 862 &ok_is_subtype, NULL);
duke@435 863
duke@435 864 bind(not_subtype);
duke@435 865 profile_typecheck_failed(Rtmp1);
duke@435 866 }
duke@435 867
duke@435 868 // Separate these two to allow for delay slot in middle
duke@435 869 // These are used to do a test and full jump to exception-throwing code.
duke@435 870
duke@435 871 // %%%%% Could possibly reoptimize this by testing to see if could use
duke@435 872 // a single conditional branch (i.e. if span is small enough.
duke@435 873 // If you go that route, than get rid of the split and give up
duke@435 874 // on the delay-slot hack.
duke@435 875
duke@435 876 void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
duke@435 877 Label& ok ) {
duke@435 878 assert_not_delayed();
duke@435 879 br(ok_condition, true, pt, ok);
duke@435 880 // DELAY SLOT
duke@435 881 }
duke@435 882
duke@435 883 void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
duke@435 884 Label& ok ) {
duke@435 885 assert_not_delayed();
duke@435 886 bp( ok_condition, true, Assembler::xcc, pt, ok);
duke@435 887 // DELAY SLOT
duke@435 888 }
duke@435 889
duke@435 890 void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
duke@435 891 Label& ok ) {
duke@435 892 assert_not_delayed();
duke@435 893 brx(ok_condition, true, pt, ok);
duke@435 894 // DELAY SLOT
duke@435 895 }
duke@435 896
duke@435 897 void InterpreterMacroAssembler::throw_if_not_2( address throw_entry_point,
duke@435 898 Register Rscratch,
duke@435 899 Label& ok ) {
duke@435 900 assert(throw_entry_point != NULL, "entry point must be generated by now");
twisti@1162 901 AddressLiteral dest(throw_entry_point);
twisti@1162 902 jump_to(dest, Rscratch);
duke@435 903 delayed()->nop();
duke@435 904 bind(ok);
duke@435 905 }
duke@435 906
duke@435 907
duke@435 908 // And if you cannot use the delay slot, here is a shorthand:
duke@435 909
duke@435 910 void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
duke@435 911 address throw_entry_point,
duke@435 912 Register Rscratch ) {
duke@435 913 Label ok;
duke@435 914 if (ok_condition != never) {
duke@435 915 throw_if_not_1_icc( ok_condition, ok);
duke@435 916 delayed()->nop();
duke@435 917 }
duke@435 918 throw_if_not_2( throw_entry_point, Rscratch, ok);
duke@435 919 }
duke@435 920 void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
duke@435 921 address throw_entry_point,
duke@435 922 Register Rscratch ) {
duke@435 923 Label ok;
duke@435 924 if (ok_condition != never) {
duke@435 925 throw_if_not_1_xcc( ok_condition, ok);
duke@435 926 delayed()->nop();
duke@435 927 }
duke@435 928 throw_if_not_2( throw_entry_point, Rscratch, ok);
duke@435 929 }
duke@435 930 void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
duke@435 931 address throw_entry_point,
duke@435 932 Register Rscratch ) {
duke@435 933 Label ok;
duke@435 934 if (ok_condition != never) {
duke@435 935 throw_if_not_1_x( ok_condition, ok);
duke@435 936 delayed()->nop();
duke@435 937 }
duke@435 938 throw_if_not_2( throw_entry_point, Rscratch, ok);
duke@435 939 }
duke@435 940
duke@435 941 // Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
duke@435 942 // Note: res is still shy of address by array offset into object.
duke@435 943
duke@435 944 void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
duke@435 945 assert_not_delayed();
duke@435 946
duke@435 947 verify_oop(array);
duke@435 948 #ifdef _LP64
duke@435 949 // sign extend since tos (index) can be a 32bit value
duke@435 950 sra(index, G0, index);
duke@435 951 #endif // _LP64
duke@435 952
duke@435 953 // check array
duke@435 954 Label ptr_ok;
duke@435 955 tst(array);
duke@435 956 throw_if_not_1_x( notZero, ptr_ok );
duke@435 957 delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
duke@435 958 throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
duke@435 959
duke@435 960 Label index_ok;
duke@435 961 cmp(index, tmp);
duke@435 962 throw_if_not_1_icc( lessUnsigned, index_ok );
duke@435 963 if (index_shift > 0) delayed()->sll(index, index_shift, index);
duke@435 964 else delayed()->add(array, index, res); // addr - const offset in index
duke@435 965 // convention: move aberrant index into G3_scratch for exception message
duke@435 966 mov(index, G3_scratch);
duke@435 967 throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
duke@435 968
duke@435 969 // add offset if didn't do it in delay slot
duke@435 970 if (index_shift > 0) add(array, index, res); // addr - const offset in index
duke@435 971 }
duke@435 972
duke@435 973
duke@435 974 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
duke@435 975 assert_not_delayed();
duke@435 976
duke@435 977 // pop array
duke@435 978 pop_ptr(array);
duke@435 979
duke@435 980 // check array
duke@435 981 index_check_without_pop(array, index, index_shift, tmp, res);
duke@435 982 }
duke@435 983
duke@435 984
duke@435 985 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
duke@435 986 ld_ptr(Lmethod, in_bytes(methodOopDesc::constants_offset()), Rdst);
duke@435 987 }
duke@435 988
duke@435 989
duke@435 990 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
duke@435 991 get_constant_pool(Rdst);
duke@435 992 ld_ptr(Rdst, constantPoolOopDesc::cache_offset_in_bytes(), Rdst);
duke@435 993 }
duke@435 994
duke@435 995
duke@435 996 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
duke@435 997 get_constant_pool(Rcpool);
duke@435 998 ld_ptr(Rcpool, constantPoolOopDesc::tags_offset_in_bytes(), Rtags);
duke@435 999 }
duke@435 1000
duke@435 1001
duke@435 1002 // unlock if synchronized method
duke@435 1003 //
duke@435 1004 // Unlock the receiver if this is a synchronized method.
duke@435 1005 // Unlock any Java monitors from syncronized blocks.
duke@435 1006 //
duke@435 1007 // If there are locked Java monitors
duke@435 1008 // If throw_monitor_exception
duke@435 1009 // throws IllegalMonitorStateException
duke@435 1010 // Else if install_monitor_exception
duke@435 1011 // installs IllegalMonitorStateException
duke@435 1012 // Else
duke@435 1013 // no error processing
duke@435 1014 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
duke@435 1015 bool throw_monitor_exception,
duke@435 1016 bool install_monitor_exception) {
duke@435 1017 Label unlocked, unlock, no_unlock;
duke@435 1018
duke@435 1019 // get the value of _do_not_unlock_if_synchronized into G1_scratch
twisti@1162 1020 const Address do_not_unlock_if_synchronized(G2_thread,
twisti@1162 1021 JavaThread::do_not_unlock_if_synchronized_offset());
duke@435 1022 ldbool(do_not_unlock_if_synchronized, G1_scratch);
duke@435 1023 stbool(G0, do_not_unlock_if_synchronized); // reset the flag
duke@435 1024
duke@435 1025 // check if synchronized method
twisti@1162 1026 const Address access_flags(Lmethod, methodOopDesc::access_flags_offset());
duke@435 1027 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 1028 push(state); // save tos
twisti@1162 1029 ld(access_flags, G3_scratch); // Load access flags.
duke@435 1030 btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
twisti@1162 1031 br(zero, false, pt, unlocked);
duke@435 1032 delayed()->nop();
duke@435 1033
duke@435 1034 // Don't unlock anything if the _do_not_unlock_if_synchronized flag
duke@435 1035 // is set.
duke@435 1036 tstbool(G1_scratch);
duke@435 1037 br(Assembler::notZero, false, pn, no_unlock);
duke@435 1038 delayed()->nop();
duke@435 1039
duke@435 1040 // BasicObjectLock will be first in list, since this is a synchronized method. However, need
duke@435 1041 // to check that the object has not been unlocked by an explicit monitorexit bytecode.
duke@435 1042
duke@435 1043 //Intel: if (throw_monitor_exception) ... else ...
duke@435 1044 // Entry already unlocked, need to throw exception
duke@435 1045 //...
duke@435 1046
duke@435 1047 // pass top-most monitor elem
duke@435 1048 add( top_most_monitor(), O1 );
duke@435 1049
duke@435 1050 ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
duke@435 1051 br_notnull(G3_scratch, false, pt, unlock);
duke@435 1052 delayed()->nop();
duke@435 1053
duke@435 1054 if (throw_monitor_exception) {
duke@435 1055 // Entry already unlocked need to throw an exception
duke@435 1056 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
duke@435 1057 should_not_reach_here();
duke@435 1058 } else {
duke@435 1059 // Monitor already unlocked during a stack unroll.
duke@435 1060 // If requested, install an illegal_monitor_state_exception.
duke@435 1061 // Continue with stack unrolling.
duke@435 1062 if (install_monitor_exception) {
duke@435 1063 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
duke@435 1064 }
duke@435 1065 ba(false, unlocked);
duke@435 1066 delayed()->nop();
duke@435 1067 }
duke@435 1068
duke@435 1069 bind(unlock);
duke@435 1070
duke@435 1071 unlock_object(O1);
duke@435 1072
duke@435 1073 bind(unlocked);
duke@435 1074
duke@435 1075 // I0, I1: Might contain return value
duke@435 1076
duke@435 1077 // Check that all monitors are unlocked
duke@435 1078 { Label loop, exception, entry, restart;
duke@435 1079
duke@435 1080 Register Rmptr = O0;
duke@435 1081 Register Rtemp = O1;
duke@435 1082 Register Rlimit = Lmonitors;
duke@435 1083 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 1084 assert( (delta & LongAlignmentMask) == 0,
duke@435 1085 "sizeof BasicObjectLock must be even number of doublewords");
duke@435 1086
duke@435 1087 #ifdef ASSERT
duke@435 1088 add(top_most_monitor(), Rmptr, delta);
duke@435 1089 { Label L;
duke@435 1090 // ensure that Rmptr starts out above (or at) Rlimit
duke@435 1091 cmp(Rmptr, Rlimit);
duke@435 1092 brx(Assembler::greaterEqualUnsigned, false, pn, L);
duke@435 1093 delayed()->nop();
duke@435 1094 stop("monitor stack has negative size");
duke@435 1095 bind(L);
duke@435 1096 }
duke@435 1097 #endif
duke@435 1098 bind(restart);
duke@435 1099 ba(false, entry);
duke@435 1100 delayed()->
duke@435 1101 add(top_most_monitor(), Rmptr, delta); // points to current entry, starting with bottom-most entry
duke@435 1102
duke@435 1103 // Entry is still locked, need to throw exception
duke@435 1104 bind(exception);
duke@435 1105 if (throw_monitor_exception) {
duke@435 1106 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
duke@435 1107 should_not_reach_here();
duke@435 1108 } else {
duke@435 1109 // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
duke@435 1110 // Unlock does not block, so don't have to worry about the frame
duke@435 1111 unlock_object(Rmptr);
duke@435 1112 if (install_monitor_exception) {
duke@435 1113 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
duke@435 1114 }
duke@435 1115 ba(false, restart);
duke@435 1116 delayed()->nop();
duke@435 1117 }
duke@435 1118
duke@435 1119 bind(loop);
duke@435 1120 cmp(Rtemp, G0); // check if current entry is used
duke@435 1121 brx(Assembler::notEqual, false, pn, exception);
duke@435 1122 delayed()->
duke@435 1123 dec(Rmptr, delta); // otherwise advance to next entry
duke@435 1124 #ifdef ASSERT
duke@435 1125 { Label L;
duke@435 1126 // ensure that Rmptr has not somehow stepped below Rlimit
duke@435 1127 cmp(Rmptr, Rlimit);
duke@435 1128 brx(Assembler::greaterEqualUnsigned, false, pn, L);
duke@435 1129 delayed()->nop();
duke@435 1130 stop("ran off the end of the monitor stack");
duke@435 1131 bind(L);
duke@435 1132 }
duke@435 1133 #endif
duke@435 1134 bind(entry);
duke@435 1135 cmp(Rmptr, Rlimit); // check if bottom reached
duke@435 1136 brx(Assembler::notEqual, true, pn, loop); // if not at bottom then check this entry
duke@435 1137 delayed()->
duke@435 1138 ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
duke@435 1139 }
duke@435 1140
duke@435 1141 bind(no_unlock);
duke@435 1142 pop(state);
duke@435 1143 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 1144 }
duke@435 1145
duke@435 1146
duke@435 1147 // remove activation
duke@435 1148 //
duke@435 1149 // Unlock the receiver if this is a synchronized method.
duke@435 1150 // Unlock any Java monitors from syncronized blocks.
duke@435 1151 // Remove the activation from the stack.
duke@435 1152 //
duke@435 1153 // If there are locked Java monitors
duke@435 1154 // If throw_monitor_exception
duke@435 1155 // throws IllegalMonitorStateException
duke@435 1156 // Else if install_monitor_exception
duke@435 1157 // installs IllegalMonitorStateException
duke@435 1158 // Else
duke@435 1159 // no error processing
duke@435 1160 void InterpreterMacroAssembler::remove_activation(TosState state,
duke@435 1161 bool throw_monitor_exception,
duke@435 1162 bool install_monitor_exception) {
duke@435 1163
duke@435 1164 unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
duke@435 1165
duke@435 1166 // save result (push state before jvmti call and pop it afterwards) and notify jvmti
duke@435 1167 notify_method_exit(false, state, NotifyJVMTI);
duke@435 1168
duke@435 1169 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 1170 verify_oop(Lmethod);
duke@435 1171 verify_thread();
duke@435 1172
duke@435 1173 // return tos
duke@435 1174 assert(Otos_l1 == Otos_i, "adjust code below");
duke@435 1175 switch (state) {
duke@435 1176 #ifdef _LP64
duke@435 1177 case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
duke@435 1178 #else
duke@435 1179 case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through // O1 -> I1
duke@435 1180 #endif
duke@435 1181 case btos: // fall through
duke@435 1182 case ctos:
duke@435 1183 case stos: // fall through
duke@435 1184 case atos: // fall through
duke@435 1185 case itos: mov(Otos_l1, Otos_l1->after_save()); break; // O0 -> I0
duke@435 1186 case ftos: // fall through
duke@435 1187 case dtos: // fall through
duke@435 1188 case vtos: /* nothing to do */ break;
duke@435 1189 default : ShouldNotReachHere();
duke@435 1190 }
duke@435 1191
duke@435 1192 #if defined(COMPILER2) && !defined(_LP64)
duke@435 1193 if (state == ltos) {
duke@435 1194 // C2 expects long results in G1 we can't tell if we're returning to interpreted
duke@435 1195 // or compiled so just be safe use G1 and O0/O1
duke@435 1196
duke@435 1197 // Shift bits into high (msb) of G1
duke@435 1198 sllx(Otos_l1->after_save(), 32, G1);
duke@435 1199 // Zero extend low bits
duke@435 1200 srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
duke@435 1201 or3 (Otos_l2->after_save(), G1, G1);
duke@435 1202 }
duke@435 1203 #endif /* COMPILER2 */
duke@435 1204
duke@435 1205 }
duke@435 1206 #endif /* CC_INTERP */
duke@435 1207
duke@435 1208
duke@435 1209 // Lock object
duke@435 1210 //
duke@435 1211 // Argument - lock_reg points to the BasicObjectLock to be used for locking,
duke@435 1212 // it must be initialized with the object to lock
duke@435 1213 void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
duke@435 1214 if (UseHeavyMonitors) {
duke@435 1215 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
duke@435 1216 }
duke@435 1217 else {
duke@435 1218 Register obj_reg = Object;
duke@435 1219 Register mark_reg = G4_scratch;
duke@435 1220 Register temp_reg = G1_scratch;
twisti@1162 1221 Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes());
twisti@1162 1222 Address mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
duke@435 1223 Label done;
duke@435 1224
duke@435 1225 Label slow_case;
duke@435 1226
duke@435 1227 assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
duke@435 1228
duke@435 1229 // load markOop from object into mark_reg
duke@435 1230 ld_ptr(mark_addr, mark_reg);
duke@435 1231
duke@435 1232 if (UseBiasedLocking) {
duke@435 1233 biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
duke@435 1234 }
duke@435 1235
duke@435 1236 // get the address of basicLock on stack that will be stored in the object
duke@435 1237 // we need a temporary register here as we do not want to clobber lock_reg
duke@435 1238 // (cas clobbers the destination register)
duke@435 1239 mov(lock_reg, temp_reg);
duke@435 1240 // set mark reg to be (markOop of object | UNLOCK_VALUE)
duke@435 1241 or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
duke@435 1242 // initialize the box (Must happen before we update the object mark!)
duke@435 1243 st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
duke@435 1244 // compare and exchange object_addr, markOop | 1, stack address of basicLock
duke@435 1245 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 1246 casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
duke@435 1247 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 1248
duke@435 1249 // if the compare and exchange succeeded we are done (we saw an unlocked object)
duke@435 1250 cmp(mark_reg, temp_reg);
duke@435 1251 brx(Assembler::equal, true, Assembler::pt, done);
duke@435 1252 delayed()->nop();
duke@435 1253
duke@435 1254 // We did not see an unlocked object so try the fast recursive case
duke@435 1255
duke@435 1256 // Check if owner is self by comparing the value in the markOop of object
duke@435 1257 // with the stack pointer
duke@435 1258 sub(temp_reg, SP, temp_reg);
duke@435 1259 #ifdef _LP64
duke@435 1260 sub(temp_reg, STACK_BIAS, temp_reg);
duke@435 1261 #endif
duke@435 1262 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
duke@435 1263
duke@435 1264 // Composite "andcc" test:
duke@435 1265 // (a) %sp -vs- markword proximity check, and,
duke@435 1266 // (b) verify mark word LSBs == 0 (Stack-locked).
duke@435 1267 //
duke@435 1268 // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
duke@435 1269 // Note that the page size used for %sp proximity testing is arbitrary and is
duke@435 1270 // unrelated to the actual MMU page size. We use a 'logical' page size of
duke@435 1271 // 4096 bytes. F..FFF003 is designed to fit conveniently in the SIMM13 immediate
duke@435 1272 // field of the andcc instruction.
duke@435 1273 andcc (temp_reg, 0xFFFFF003, G0) ;
duke@435 1274
duke@435 1275 // if condition is true we are done and hence we can store 0 in the displaced
duke@435 1276 // header indicating it is a recursive lock and be done
duke@435 1277 brx(Assembler::zero, true, Assembler::pt, done);
duke@435 1278 delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
duke@435 1279
duke@435 1280 // none of the above fast optimizations worked so we have to get into the
duke@435 1281 // slow case of monitor enter
duke@435 1282 bind(slow_case);
duke@435 1283 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
duke@435 1284
duke@435 1285 bind(done);
duke@435 1286 }
duke@435 1287 }
duke@435 1288
duke@435 1289 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
duke@435 1290 //
duke@435 1291 // Argument - lock_reg points to the BasicObjectLock for lock
duke@435 1292 // Throw IllegalMonitorException if object is not locked by current thread
duke@435 1293 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
duke@435 1294 if (UseHeavyMonitors) {
duke@435 1295 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
duke@435 1296 } else {
duke@435 1297 Register obj_reg = G3_scratch;
duke@435 1298 Register mark_reg = G4_scratch;
duke@435 1299 Register displaced_header_reg = G1_scratch;
twisti@1162 1300 Address lockobj_addr(lock_reg, BasicObjectLock::obj_offset_in_bytes());
twisti@1162 1301 Address mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
duke@435 1302 Label done;
duke@435 1303
duke@435 1304 if (UseBiasedLocking) {
duke@435 1305 // load the object out of the BasicObjectLock
duke@435 1306 ld_ptr(lockobj_addr, obj_reg);
duke@435 1307 biased_locking_exit(mark_addr, mark_reg, done, true);
duke@435 1308 st_ptr(G0, lockobj_addr); // free entry
duke@435 1309 }
duke@435 1310
duke@435 1311 // Test first if we are in the fast recursive case
twisti@1162 1312 Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes());
twisti@1162 1313 ld_ptr(lock_addr, displaced_header_reg);
duke@435 1314 br_null(displaced_header_reg, true, Assembler::pn, done);
duke@435 1315 delayed()->st_ptr(G0, lockobj_addr); // free entry
duke@435 1316
duke@435 1317 // See if it is still a light weight lock, if so we just unlock
duke@435 1318 // the object and we are done
duke@435 1319
duke@435 1320 if (!UseBiasedLocking) {
duke@435 1321 // load the object out of the BasicObjectLock
duke@435 1322 ld_ptr(lockobj_addr, obj_reg);
duke@435 1323 }
duke@435 1324
duke@435 1325 // we have the displaced header in displaced_header_reg
duke@435 1326 // we expect to see the stack address of the basicLock in case the
duke@435 1327 // lock is still a light weight lock (lock_reg)
duke@435 1328 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 1329 casx_under_lock(mark_addr.base(), lock_reg, displaced_header_reg,
duke@435 1330 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 1331 cmp(lock_reg, displaced_header_reg);
duke@435 1332 brx(Assembler::equal, true, Assembler::pn, done);
duke@435 1333 delayed()->st_ptr(G0, lockobj_addr); // free entry
duke@435 1334
duke@435 1335 // The lock has been converted into a heavy lock and hence
duke@435 1336 // we need to get into the slow case
duke@435 1337
duke@435 1338 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
duke@435 1339
duke@435 1340 bind(done);
duke@435 1341 }
duke@435 1342 }
duke@435 1343
duke@435 1344 #ifndef CC_INTERP
duke@435 1345
duke@435 1346 // Get the method data pointer from the methodOop and set the
duke@435 1347 // specified register to its value.
duke@435 1348
duke@435 1349 void InterpreterMacroAssembler::set_method_data_pointer_offset(Register Roff) {
duke@435 1350 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1351 Label get_continue;
duke@435 1352
duke@435 1353 ld_ptr(Lmethod, in_bytes(methodOopDesc::method_data_offset()), ImethodDataPtr);
duke@435 1354 test_method_data_pointer(get_continue);
duke@435 1355 add(ImethodDataPtr, in_bytes(methodDataOopDesc::data_offset()), ImethodDataPtr);
duke@435 1356 if (Roff != noreg)
duke@435 1357 // Roff contains a method data index ("mdi"). It defaults to zero.
duke@435 1358 add(ImethodDataPtr, Roff, ImethodDataPtr);
duke@435 1359 bind(get_continue);
duke@435 1360 }
duke@435 1361
duke@435 1362 // Set the method data pointer for the current bcp.
duke@435 1363
duke@435 1364 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
duke@435 1365 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1366 Label zero_continue;
duke@435 1367
duke@435 1368 // Test MDO to avoid the call if it is NULL.
twisti@1162 1369 ld_ptr(Lmethod, methodOopDesc::method_data_offset(), ImethodDataPtr);
duke@435 1370 test_method_data_pointer(zero_continue);
duke@435 1371 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
duke@435 1372 set_method_data_pointer_offset(O0);
duke@435 1373 bind(zero_continue);
duke@435 1374 }
duke@435 1375
duke@435 1376 // Test ImethodDataPtr. If it is null, continue at the specified label
duke@435 1377
duke@435 1378 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
duke@435 1379 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1380 #ifdef _LP64
duke@435 1381 bpr(Assembler::rc_z, false, Assembler::pn, ImethodDataPtr, zero_continue);
duke@435 1382 #else
duke@435 1383 tst(ImethodDataPtr);
duke@435 1384 br(Assembler::zero, false, Assembler::pn, zero_continue);
duke@435 1385 #endif
duke@435 1386 delayed()->nop();
duke@435 1387 }
duke@435 1388
duke@435 1389 void InterpreterMacroAssembler::verify_method_data_pointer() {
duke@435 1390 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1391 #ifdef ASSERT
duke@435 1392 Label verify_continue;
duke@435 1393 test_method_data_pointer(verify_continue);
duke@435 1394
duke@435 1395 // If the mdp is valid, it will point to a DataLayout header which is
duke@435 1396 // consistent with the bcp. The converse is highly probable also.
duke@435 1397 lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
twisti@1162 1398 ld_ptr(Lmethod, methodOopDesc::const_offset(), O5);
duke@435 1399 add(G3_scratch, in_bytes(constMethodOopDesc::codes_offset()), G3_scratch);
duke@435 1400 add(G3_scratch, O5, G3_scratch);
duke@435 1401 cmp(Lbcp, G3_scratch);
duke@435 1402 brx(Assembler::equal, false, Assembler::pt, verify_continue);
duke@435 1403
duke@435 1404 Register temp_reg = O5;
duke@435 1405 delayed()->mov(ImethodDataPtr, temp_reg);
duke@435 1406 // %%% should use call_VM_leaf here?
duke@435 1407 //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
duke@435 1408 save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
twisti@1162 1409 Address d_save(FP, -sizeof(jdouble) + STACK_BIAS);
duke@435 1410 stf(FloatRegisterImpl::D, Ftos_d, d_save);
duke@435 1411 mov(temp_reg->after_save(), O2);
duke@435 1412 save_thread(L7_thread_cache);
duke@435 1413 call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
duke@435 1414 delayed()->nop();
duke@435 1415 restore_thread(L7_thread_cache);
duke@435 1416 ldf(FloatRegisterImpl::D, d_save, Ftos_d);
duke@435 1417 restore();
duke@435 1418 bind(verify_continue);
duke@435 1419 #endif // ASSERT
duke@435 1420 }
duke@435 1421
duke@435 1422 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
duke@435 1423 Register cur_bcp,
duke@435 1424 Register Rtmp,
duke@435 1425 Label &profile_continue) {
duke@435 1426 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1427 // Control will flow to "profile_continue" if the counter is less than the
duke@435 1428 // limit or if we call profile_method()
duke@435 1429
duke@435 1430 Label done;
duke@435 1431
duke@435 1432 // if no method data exists, and the counter is high enough, make one
duke@435 1433 #ifdef _LP64
duke@435 1434 bpr(Assembler::rc_nz, false, Assembler::pn, ImethodDataPtr, done);
duke@435 1435 #else
duke@435 1436 tst(ImethodDataPtr);
duke@435 1437 br(Assembler::notZero, false, Assembler::pn, done);
duke@435 1438 #endif
duke@435 1439
duke@435 1440 // Test to see if we should create a method data oop
twisti@1162 1441 AddressLiteral profile_limit((address) &InvocationCounter::InterpreterProfileLimit);
duke@435 1442 #ifdef _LP64
duke@435 1443 delayed()->nop();
twisti@1162 1444 sethi(profile_limit, Rtmp);
duke@435 1445 #else
twisti@1162 1446 delayed()->sethi(profile_limit, Rtmp);
duke@435 1447 #endif
twisti@1162 1448 ld(Rtmp, profile_limit.low10(), Rtmp);
duke@435 1449 cmp(invocation_count, Rtmp);
duke@435 1450 br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
duke@435 1451 delayed()->nop();
duke@435 1452
duke@435 1453 // Build it now.
duke@435 1454 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method), cur_bcp);
duke@435 1455 set_method_data_pointer_offset(O0);
duke@435 1456 ba(false, profile_continue);
duke@435 1457 delayed()->nop();
duke@435 1458 bind(done);
duke@435 1459 }
duke@435 1460
duke@435 1461 // Store a value at some constant offset from the method data pointer.
duke@435 1462
duke@435 1463 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
duke@435 1464 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1465 st_ptr(value, ImethodDataPtr, constant);
duke@435 1466 }
duke@435 1467
duke@435 1468 void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
duke@435 1469 Register bumped_count,
duke@435 1470 bool decrement) {
duke@435 1471 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1472
duke@435 1473 // Load the counter.
duke@435 1474 ld_ptr(counter, bumped_count);
duke@435 1475
duke@435 1476 if (decrement) {
duke@435 1477 // Decrement the register. Set condition codes.
duke@435 1478 subcc(bumped_count, DataLayout::counter_increment, bumped_count);
duke@435 1479
duke@435 1480 // If the decrement causes the counter to overflow, stay negative
duke@435 1481 Label L;
duke@435 1482 brx(Assembler::negative, true, Assembler::pn, L);
duke@435 1483
duke@435 1484 // Store the decremented counter, if it is still negative.
duke@435 1485 delayed()->st_ptr(bumped_count, counter);
duke@435 1486 bind(L);
duke@435 1487 } else {
duke@435 1488 // Increment the register. Set carry flag.
duke@435 1489 addcc(bumped_count, DataLayout::counter_increment, bumped_count);
duke@435 1490
duke@435 1491 // If the increment causes the counter to overflow, pull back by 1.
duke@435 1492 assert(DataLayout::counter_increment == 1, "subc works");
duke@435 1493 subc(bumped_count, G0, bumped_count);
duke@435 1494
duke@435 1495 // Store the incremented counter.
duke@435 1496 st_ptr(bumped_count, counter);
duke@435 1497 }
duke@435 1498 }
duke@435 1499
duke@435 1500 // Increment the value at some constant offset from the method data pointer.
duke@435 1501
duke@435 1502 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
duke@435 1503 Register bumped_count,
duke@435 1504 bool decrement) {
duke@435 1505 // Locate the counter at a fixed offset from the mdp:
twisti@1162 1506 Address counter(ImethodDataPtr, constant);
duke@435 1507 increment_mdp_data_at(counter, bumped_count, decrement);
duke@435 1508 }
duke@435 1509
duke@435 1510 // Increment the value at some non-fixed (reg + constant) offset from
duke@435 1511 // the method data pointer.
duke@435 1512
duke@435 1513 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
duke@435 1514 int constant,
duke@435 1515 Register bumped_count,
duke@435 1516 Register scratch2,
duke@435 1517 bool decrement) {
duke@435 1518 // Add the constant to reg to get the offset.
duke@435 1519 add(ImethodDataPtr, reg, scratch2);
twisti@1162 1520 Address counter(scratch2, constant);
duke@435 1521 increment_mdp_data_at(counter, bumped_count, decrement);
duke@435 1522 }
duke@435 1523
duke@435 1524 // Set a flag value at the current method data pointer position.
duke@435 1525 // Updates a single byte of the header, to avoid races with other header bits.
duke@435 1526
duke@435 1527 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
duke@435 1528 Register scratch) {
duke@435 1529 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1530 // Load the data header
duke@435 1531 ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
duke@435 1532
duke@435 1533 // Set the flag
duke@435 1534 or3(scratch, flag_constant, scratch);
duke@435 1535
duke@435 1536 // Store the modified header.
duke@435 1537 stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
duke@435 1538 }
duke@435 1539
duke@435 1540 // Test the location at some offset from the method data pointer.
duke@435 1541 // If it is not equal to value, branch to the not_equal_continue Label.
duke@435 1542 // Set condition codes to match the nullness of the loaded value.
duke@435 1543
duke@435 1544 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
duke@435 1545 Register value,
duke@435 1546 Label& not_equal_continue,
duke@435 1547 Register scratch) {
duke@435 1548 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1549 ld_ptr(ImethodDataPtr, offset, scratch);
duke@435 1550 cmp(value, scratch);
duke@435 1551 brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
duke@435 1552 delayed()->tst(scratch);
duke@435 1553 }
duke@435 1554
duke@435 1555 // Update the method data pointer by the displacement located at some fixed
duke@435 1556 // offset from the method data pointer.
duke@435 1557
duke@435 1558 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
duke@435 1559 Register scratch) {
duke@435 1560 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1561 ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
duke@435 1562 add(ImethodDataPtr, scratch, ImethodDataPtr);
duke@435 1563 }
duke@435 1564
duke@435 1565 // Update the method data pointer by the displacement located at the
duke@435 1566 // offset (reg + offset_of_disp).
duke@435 1567
duke@435 1568 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
duke@435 1569 int offset_of_disp,
duke@435 1570 Register scratch) {
duke@435 1571 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1572 add(reg, offset_of_disp, scratch);
duke@435 1573 ld_ptr(ImethodDataPtr, scratch, scratch);
duke@435 1574 add(ImethodDataPtr, scratch, ImethodDataPtr);
duke@435 1575 }
duke@435 1576
duke@435 1577 // Update the method data pointer by a simple constant displacement.
duke@435 1578
duke@435 1579 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
duke@435 1580 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1581 add(ImethodDataPtr, constant, ImethodDataPtr);
duke@435 1582 }
duke@435 1583
duke@435 1584 // Update the method data pointer for a _ret bytecode whose target
duke@435 1585 // was not among our cached targets.
duke@435 1586
duke@435 1587 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
duke@435 1588 Register return_bci) {
duke@435 1589 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1590 push(state);
duke@435 1591 st_ptr(return_bci, l_tmp); // protect return_bci, in case it is volatile
duke@435 1592 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
duke@435 1593 ld_ptr(l_tmp, return_bci);
duke@435 1594 pop(state);
duke@435 1595 }
duke@435 1596
duke@435 1597 // Count a taken branch in the bytecodes.
duke@435 1598
duke@435 1599 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
duke@435 1600 if (ProfileInterpreter) {
duke@435 1601 Label profile_continue;
duke@435 1602
duke@435 1603 // If no method data exists, go to profile_continue.
duke@435 1604 test_method_data_pointer(profile_continue);
duke@435 1605
duke@435 1606 // We are taking a branch. Increment the taken count.
duke@435 1607 increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
duke@435 1608
duke@435 1609 // The method data pointer needs to be updated to reflect the new target.
duke@435 1610 update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
duke@435 1611 bind (profile_continue);
duke@435 1612 }
duke@435 1613 }
duke@435 1614
duke@435 1615
duke@435 1616 // Count a not-taken branch in the bytecodes.
duke@435 1617
duke@435 1618 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
duke@435 1619 if (ProfileInterpreter) {
duke@435 1620 Label profile_continue;
duke@435 1621
duke@435 1622 // If no method data exists, go to profile_continue.
duke@435 1623 test_method_data_pointer(profile_continue);
duke@435 1624
duke@435 1625 // We are taking a branch. Increment the not taken count.
duke@435 1626 increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
duke@435 1627
duke@435 1628 // The method data pointer needs to be updated to correspond to the
duke@435 1629 // next bytecode.
duke@435 1630 update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
duke@435 1631 bind (profile_continue);
duke@435 1632 }
duke@435 1633 }
duke@435 1634
duke@435 1635
duke@435 1636 // Count a non-virtual call in the bytecodes.
duke@435 1637
duke@435 1638 void InterpreterMacroAssembler::profile_call(Register scratch) {
duke@435 1639 if (ProfileInterpreter) {
duke@435 1640 Label profile_continue;
duke@435 1641
duke@435 1642 // If no method data exists, go to profile_continue.
duke@435 1643 test_method_data_pointer(profile_continue);
duke@435 1644
duke@435 1645 // We are making a call. Increment the count.
duke@435 1646 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
duke@435 1647
duke@435 1648 // The method data pointer needs to be updated to reflect the new target.
duke@435 1649 update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
duke@435 1650 bind (profile_continue);
duke@435 1651 }
duke@435 1652 }
duke@435 1653
duke@435 1654
duke@435 1655 // Count a final call in the bytecodes.
duke@435 1656
duke@435 1657 void InterpreterMacroAssembler::profile_final_call(Register scratch) {
duke@435 1658 if (ProfileInterpreter) {
duke@435 1659 Label profile_continue;
duke@435 1660
duke@435 1661 // If no method data exists, go to profile_continue.
duke@435 1662 test_method_data_pointer(profile_continue);
duke@435 1663
duke@435 1664 // We are making a call. Increment the count.
duke@435 1665 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
duke@435 1666
duke@435 1667 // The method data pointer needs to be updated to reflect the new target.
duke@435 1668 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
duke@435 1669 bind (profile_continue);
duke@435 1670 }
duke@435 1671 }
duke@435 1672
duke@435 1673
duke@435 1674 // Count a virtual call in the bytecodes.
duke@435 1675
duke@435 1676 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
duke@435 1677 Register scratch) {
duke@435 1678 if (ProfileInterpreter) {
duke@435 1679 Label profile_continue;
duke@435 1680
duke@435 1681 // If no method data exists, go to profile_continue.
duke@435 1682 test_method_data_pointer(profile_continue);
duke@435 1683
duke@435 1684 // We are making a call. Increment the count.
duke@435 1685 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
duke@435 1686
duke@435 1687 // Record the receiver type.
duke@435 1688 record_klass_in_profile(receiver, scratch);
duke@435 1689
duke@435 1690 // The method data pointer needs to be updated to reflect the new target.
duke@435 1691 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
duke@435 1692 bind (profile_continue);
duke@435 1693 }
duke@435 1694 }
duke@435 1695
duke@435 1696 void InterpreterMacroAssembler::record_klass_in_profile_helper(
duke@435 1697 Register receiver, Register scratch,
duke@435 1698 int start_row, Label& done) {
duke@435 1699 int last_row = VirtualCallData::row_limit() - 1;
duke@435 1700 assert(start_row <= last_row, "must be work left to do");
duke@435 1701 // Test this row for both the receiver and for null.
duke@435 1702 // Take any of three different outcomes:
duke@435 1703 // 1. found receiver => increment count and goto done
duke@435 1704 // 2. found null => keep looking for case 1, maybe allocate this cell
duke@435 1705 // 3. found something else => keep looking for cases 1 and 2
duke@435 1706 // Case 3 is handled by a recursive call.
duke@435 1707 for (int row = start_row; row <= last_row; row++) {
duke@435 1708 Label next_test;
duke@435 1709 bool test_for_null_also = (row == start_row);
duke@435 1710
duke@435 1711 // See if the receiver is receiver[n].
duke@435 1712 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
duke@435 1713 test_mdp_data_at(recvr_offset, receiver, next_test, scratch);
duke@435 1714
duke@435 1715 // The receiver is receiver[n]. Increment count[n].
duke@435 1716 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
duke@435 1717 increment_mdp_data_at(count_offset, scratch);
duke@435 1718 ba(false, done);
duke@435 1719 delayed()->nop();
duke@435 1720 bind(next_test);
duke@435 1721
duke@435 1722 if (test_for_null_also) {
duke@435 1723 // Failed the equality check on receiver[n]... Test for null.
duke@435 1724 if (start_row == last_row) {
duke@435 1725 // The only thing left to do is handle the null case.
duke@435 1726 brx(Assembler::notZero, false, Assembler::pt, done);
duke@435 1727 delayed()->nop();
duke@435 1728 break;
duke@435 1729 }
duke@435 1730 // Since null is rare, make it be the branch-taken case.
duke@435 1731 Label found_null;
duke@435 1732 brx(Assembler::zero, false, Assembler::pn, found_null);
duke@435 1733 delayed()->nop();
duke@435 1734
duke@435 1735 // Put all the "Case 3" tests here.
duke@435 1736 record_klass_in_profile_helper(receiver, scratch, start_row + 1, done);
duke@435 1737
duke@435 1738 // Found a null. Keep searching for a matching receiver,
duke@435 1739 // but remember that this is an empty (unused) slot.
duke@435 1740 bind(found_null);
duke@435 1741 }
duke@435 1742 }
duke@435 1743
duke@435 1744 // In the fall-through case, we found no matching receiver, but we
duke@435 1745 // observed the receiver[start_row] is NULL.
duke@435 1746
duke@435 1747 // Fill in the receiver field and increment the count.
duke@435 1748 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
duke@435 1749 set_mdp_data_at(recvr_offset, receiver);
duke@435 1750 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
duke@435 1751 mov(DataLayout::counter_increment, scratch);
duke@435 1752 set_mdp_data_at(count_offset, scratch);
duke@435 1753 ba(false, done);
duke@435 1754 delayed()->nop();
duke@435 1755 }
duke@435 1756
duke@435 1757 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
duke@435 1758 Register scratch) {
duke@435 1759 assert(ProfileInterpreter, "must be profiling");
duke@435 1760 Label done;
duke@435 1761
duke@435 1762 record_klass_in_profile_helper(receiver, scratch, 0, done);
duke@435 1763
duke@435 1764 bind (done);
duke@435 1765 }
duke@435 1766
duke@435 1767
duke@435 1768 // Count a ret in the bytecodes.
duke@435 1769
duke@435 1770 void InterpreterMacroAssembler::profile_ret(TosState state,
duke@435 1771 Register return_bci,
duke@435 1772 Register scratch) {
duke@435 1773 if (ProfileInterpreter) {
duke@435 1774 Label profile_continue;
duke@435 1775 uint row;
duke@435 1776
duke@435 1777 // If no method data exists, go to profile_continue.
duke@435 1778 test_method_data_pointer(profile_continue);
duke@435 1779
duke@435 1780 // Update the total ret count.
duke@435 1781 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
duke@435 1782
duke@435 1783 for (row = 0; row < RetData::row_limit(); row++) {
duke@435 1784 Label next_test;
duke@435 1785
duke@435 1786 // See if return_bci is equal to bci[n]:
duke@435 1787 test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
duke@435 1788 return_bci, next_test, scratch);
duke@435 1789
duke@435 1790 // return_bci is equal to bci[n]. Increment the count.
duke@435 1791 increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
duke@435 1792
duke@435 1793 // The method data pointer needs to be updated to reflect the new target.
duke@435 1794 update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
duke@435 1795 ba(false, profile_continue);
duke@435 1796 delayed()->nop();
duke@435 1797 bind(next_test);
duke@435 1798 }
duke@435 1799
duke@435 1800 update_mdp_for_ret(state, return_bci);
duke@435 1801
duke@435 1802 bind (profile_continue);
duke@435 1803 }
duke@435 1804 }
duke@435 1805
duke@435 1806 // Profile an unexpected null in the bytecodes.
duke@435 1807 void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
duke@435 1808 if (ProfileInterpreter) {
duke@435 1809 Label profile_continue;
duke@435 1810
duke@435 1811 // If no method data exists, go to profile_continue.
duke@435 1812 test_method_data_pointer(profile_continue);
duke@435 1813
duke@435 1814 set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
duke@435 1815
duke@435 1816 // The method data pointer needs to be updated.
duke@435 1817 int mdp_delta = in_bytes(BitData::bit_data_size());
duke@435 1818 if (TypeProfileCasts) {
duke@435 1819 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
duke@435 1820 }
duke@435 1821 update_mdp_by_constant(mdp_delta);
duke@435 1822
duke@435 1823 bind (profile_continue);
duke@435 1824 }
duke@435 1825 }
duke@435 1826
duke@435 1827 void InterpreterMacroAssembler::profile_typecheck(Register klass,
duke@435 1828 Register scratch) {
duke@435 1829 if (ProfileInterpreter) {
duke@435 1830 Label profile_continue;
duke@435 1831
duke@435 1832 // If no method data exists, go to profile_continue.
duke@435 1833 test_method_data_pointer(profile_continue);
duke@435 1834
duke@435 1835 int mdp_delta = in_bytes(BitData::bit_data_size());
duke@435 1836 if (TypeProfileCasts) {
duke@435 1837 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
duke@435 1838
duke@435 1839 // Record the object type.
duke@435 1840 record_klass_in_profile(klass, scratch);
duke@435 1841 }
duke@435 1842
duke@435 1843 // The method data pointer needs to be updated.
duke@435 1844 update_mdp_by_constant(mdp_delta);
duke@435 1845
duke@435 1846 bind (profile_continue);
duke@435 1847 }
duke@435 1848 }
duke@435 1849
duke@435 1850 void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
duke@435 1851 if (ProfileInterpreter && TypeProfileCasts) {
duke@435 1852 Label profile_continue;
duke@435 1853
duke@435 1854 // If no method data exists, go to profile_continue.
duke@435 1855 test_method_data_pointer(profile_continue);
duke@435 1856
duke@435 1857 int count_offset = in_bytes(CounterData::count_offset());
duke@435 1858 // Back up the address, since we have already bumped the mdp.
duke@435 1859 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
duke@435 1860
duke@435 1861 // *Decrement* the counter. We expect to see zero or small negatives.
duke@435 1862 increment_mdp_data_at(count_offset, scratch, true);
duke@435 1863
duke@435 1864 bind (profile_continue);
duke@435 1865 }
duke@435 1866 }
duke@435 1867
duke@435 1868 // Count the default case of a switch construct.
duke@435 1869
duke@435 1870 void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
duke@435 1871 if (ProfileInterpreter) {
duke@435 1872 Label profile_continue;
duke@435 1873
duke@435 1874 // If no method data exists, go to profile_continue.
duke@435 1875 test_method_data_pointer(profile_continue);
duke@435 1876
duke@435 1877 // Update the default case count
duke@435 1878 increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
duke@435 1879 scratch);
duke@435 1880
duke@435 1881 // The method data pointer needs to be updated.
duke@435 1882 update_mdp_by_offset(
duke@435 1883 in_bytes(MultiBranchData::default_displacement_offset()),
duke@435 1884 scratch);
duke@435 1885
duke@435 1886 bind (profile_continue);
duke@435 1887 }
duke@435 1888 }
duke@435 1889
duke@435 1890 // Count the index'th case of a switch construct.
duke@435 1891
duke@435 1892 void InterpreterMacroAssembler::profile_switch_case(Register index,
duke@435 1893 Register scratch,
duke@435 1894 Register scratch2,
duke@435 1895 Register scratch3) {
duke@435 1896 if (ProfileInterpreter) {
duke@435 1897 Label profile_continue;
duke@435 1898
duke@435 1899 // If no method data exists, go to profile_continue.
duke@435 1900 test_method_data_pointer(profile_continue);
duke@435 1901
duke@435 1902 // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
duke@435 1903 set(in_bytes(MultiBranchData::per_case_size()), scratch);
duke@435 1904 smul(index, scratch, scratch);
duke@435 1905 add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
duke@435 1906
duke@435 1907 // Update the case count
duke@435 1908 increment_mdp_data_at(scratch,
duke@435 1909 in_bytes(MultiBranchData::relative_count_offset()),
duke@435 1910 scratch2,
duke@435 1911 scratch3);
duke@435 1912
duke@435 1913 // The method data pointer needs to be updated.
duke@435 1914 update_mdp_by_offset(scratch,
duke@435 1915 in_bytes(MultiBranchData::relative_displacement_offset()),
duke@435 1916 scratch2);
duke@435 1917
duke@435 1918 bind (profile_continue);
duke@435 1919 }
duke@435 1920 }
duke@435 1921
duke@435 1922 // add a InterpMonitorElem to stack (see frame_sparc.hpp)
duke@435 1923
duke@435 1924 void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
duke@435 1925 Register Rtemp,
duke@435 1926 Register Rtemp2 ) {
duke@435 1927
duke@435 1928 Register Rlimit = Lmonitors;
duke@435 1929 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 1930 assert( (delta & LongAlignmentMask) == 0,
duke@435 1931 "sizeof BasicObjectLock must be even number of doublewords");
duke@435 1932
duke@435 1933 sub( SP, delta, SP);
duke@435 1934 sub( Lesp, delta, Lesp);
duke@435 1935 sub( Lmonitors, delta, Lmonitors);
duke@435 1936
duke@435 1937 if (!stack_is_empty) {
duke@435 1938
duke@435 1939 // must copy stack contents down
duke@435 1940
duke@435 1941 Label start_copying, next;
duke@435 1942
duke@435 1943 // untested("monitor stack expansion");
duke@435 1944 compute_stack_base(Rtemp);
duke@435 1945 ba( false, start_copying );
duke@435 1946 delayed()->cmp( Rtemp, Rlimit); // done? duplicated below
duke@435 1947
duke@435 1948 // note: must copy from low memory upwards
duke@435 1949 // On entry to loop,
duke@435 1950 // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
duke@435 1951 // Loop mutates Rtemp
duke@435 1952
duke@435 1953 bind( next);
duke@435 1954
duke@435 1955 st_ptr(Rtemp2, Rtemp, 0);
duke@435 1956 inc(Rtemp, wordSize);
duke@435 1957 cmp(Rtemp, Rlimit); // are we done? (duplicated above)
duke@435 1958
duke@435 1959 bind( start_copying );
duke@435 1960
duke@435 1961 brx( notEqual, true, pn, next );
duke@435 1962 delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
duke@435 1963
duke@435 1964 // done copying stack
duke@435 1965 }
duke@435 1966 }
duke@435 1967
duke@435 1968 // Locals
duke@435 1969 #ifdef ASSERT
duke@435 1970 void InterpreterMacroAssembler::verify_local_tag(frame::Tag t,
duke@435 1971 Register base,
duke@435 1972 Register scratch,
duke@435 1973 int n) {
duke@435 1974 if (TaggedStackInterpreter) {
duke@435 1975 Label ok, long_ok;
duke@435 1976 // Use dst for scratch
duke@435 1977 assert_different_registers(base, scratch);
duke@435 1978 ld_ptr(base, Interpreter::local_tag_offset_in_bytes(n), scratch);
duke@435 1979 if (t == frame::TagCategory2) {
duke@435 1980 cmp(scratch, G0);
duke@435 1981 brx(Assembler::equal, false, Assembler::pt, long_ok);
duke@435 1982 delayed()->ld_ptr(base, Interpreter::local_tag_offset_in_bytes(n+1), scratch);
duke@435 1983 stop("local long/double tag value bad");
duke@435 1984 bind(long_ok);
duke@435 1985 // compare second half tag
duke@435 1986 cmp(scratch, G0);
duke@435 1987 } else if (t == frame::TagValue) {
duke@435 1988 cmp(scratch, G0);
duke@435 1989 } else {
duke@435 1990 assert_different_registers(O3, base, scratch);
duke@435 1991 mov(t, O3);
duke@435 1992 cmp(scratch, O3);
duke@435 1993 }
duke@435 1994 brx(Assembler::equal, false, Assembler::pt, ok);
duke@435 1995 delayed()->nop();
duke@435 1996 // Also compare if the local value is zero, then the tag might
duke@435 1997 // not have been set coming from deopt.
duke@435 1998 ld_ptr(base, Interpreter::local_offset_in_bytes(n), scratch);
duke@435 1999 cmp(scratch, G0);
duke@435 2000 brx(Assembler::equal, false, Assembler::pt, ok);
duke@435 2001 delayed()->nop();
duke@435 2002 stop("Local tag value is bad");
duke@435 2003 bind(ok);
duke@435 2004 }
duke@435 2005 }
duke@435 2006 #endif // ASSERT
duke@435 2007
duke@435 2008 void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
duke@435 2009 assert_not_delayed();
duke@435 2010 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2011 sub(Llocals, index, index);
duke@435 2012 debug_only(verify_local_tag(frame::TagReference, index, dst));
duke@435 2013 ld_ptr(index, Interpreter::value_offset_in_bytes(), dst);
duke@435 2014 // Note: index must hold the effective address--the iinc template uses it
duke@435 2015 }
duke@435 2016
duke@435 2017 // Just like access_local_ptr but the tag is a returnAddress
duke@435 2018 void InterpreterMacroAssembler::access_local_returnAddress(Register index,
duke@435 2019 Register dst ) {
duke@435 2020 assert_not_delayed();
duke@435 2021 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2022 sub(Llocals, index, index);
duke@435 2023 debug_only(verify_local_tag(frame::TagValue, index, dst));
duke@435 2024 ld_ptr(index, Interpreter::value_offset_in_bytes(), dst);
duke@435 2025 }
duke@435 2026
duke@435 2027 void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
duke@435 2028 assert_not_delayed();
duke@435 2029 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2030 sub(Llocals, index, index);
duke@435 2031 debug_only(verify_local_tag(frame::TagValue, index, dst));
duke@435 2032 ld(index, Interpreter::value_offset_in_bytes(), dst);
duke@435 2033 // Note: index must hold the effective address--the iinc template uses it
duke@435 2034 }
duke@435 2035
duke@435 2036
duke@435 2037 void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
duke@435 2038 assert_not_delayed();
duke@435 2039 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2040 sub(Llocals, index, index);
duke@435 2041 debug_only(verify_local_tag(frame::TagCategory2, index, dst));
duke@435 2042 // First half stored at index n+1 (which grows down from Llocals[n])
duke@435 2043 load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
duke@435 2044 }
duke@435 2045
duke@435 2046
duke@435 2047 void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
duke@435 2048 assert_not_delayed();
duke@435 2049 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2050 sub(Llocals, index, index);
duke@435 2051 debug_only(verify_local_tag(frame::TagValue, index, G1_scratch));
duke@435 2052 ldf(FloatRegisterImpl::S, index, Interpreter::value_offset_in_bytes(), dst);
duke@435 2053 }
duke@435 2054
duke@435 2055
duke@435 2056 void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
duke@435 2057 assert_not_delayed();
duke@435 2058 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2059 sub(Llocals, index, index);
duke@435 2060 debug_only(verify_local_tag(frame::TagCategory2, index, G1_scratch));
duke@435 2061 load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
duke@435 2062 }
duke@435 2063
duke@435 2064
duke@435 2065 #ifdef ASSERT
duke@435 2066 void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
duke@435 2067 Label L;
duke@435 2068
duke@435 2069 assert(Rindex != Rscratch, "Registers cannot be same");
duke@435 2070 assert(Rindex != Rscratch1, "Registers cannot be same");
duke@435 2071 assert(Rlimit != Rscratch, "Registers cannot be same");
duke@435 2072 assert(Rlimit != Rscratch1, "Registers cannot be same");
duke@435 2073 assert(Rscratch1 != Rscratch, "Registers cannot be same");
duke@435 2074
duke@435 2075 // untested("reg area corruption");
duke@435 2076 add(Rindex, offset, Rscratch);
duke@435 2077 add(Rlimit, 64 + STACK_BIAS, Rscratch1);
duke@435 2078 cmp(Rscratch, Rscratch1);
duke@435 2079 brx(Assembler::greaterEqualUnsigned, false, pn, L);
duke@435 2080 delayed()->nop();
duke@435 2081 stop("regsave area is being clobbered");
duke@435 2082 bind(L);
duke@435 2083 }
duke@435 2084 #endif // ASSERT
duke@435 2085
duke@435 2086 void InterpreterMacroAssembler::tag_local(frame::Tag t,
duke@435 2087 Register base,
duke@435 2088 Register src,
duke@435 2089 int n) {
duke@435 2090 if (TaggedStackInterpreter) {
duke@435 2091 // have to store zero because local slots can be reused (rats!)
duke@435 2092 if (t == frame::TagValue) {
duke@435 2093 st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n));
duke@435 2094 } else if (t == frame::TagCategory2) {
duke@435 2095 st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n));
duke@435 2096 st_ptr(G0, base, Interpreter::local_tag_offset_in_bytes(n+1));
duke@435 2097 } else {
duke@435 2098 // assert that we don't stomp the value in 'src'
duke@435 2099 // O3 is arbitrary because it's not used.
duke@435 2100 assert_different_registers(src, base, O3);
duke@435 2101 mov( t, O3);
duke@435 2102 st_ptr(O3, base, Interpreter::local_tag_offset_in_bytes(n));
duke@435 2103 }
duke@435 2104 }
duke@435 2105 }
duke@435 2106
duke@435 2107
duke@435 2108 void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
duke@435 2109 assert_not_delayed();
duke@435 2110 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2111 sub(Llocals, index, index);
duke@435 2112 debug_only(check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);)
duke@435 2113 tag_local(frame::TagValue, index, src);
duke@435 2114 st(src, index, Interpreter::value_offset_in_bytes());
duke@435 2115 }
duke@435 2116
duke@435 2117 void InterpreterMacroAssembler::store_local_ptr( Register index, Register src,
duke@435 2118 Register tag ) {
duke@435 2119 assert_not_delayed();
duke@435 2120 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2121 sub(Llocals, index, index);
duke@435 2122 #ifdef ASSERT
duke@435 2123 check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);
duke@435 2124 #endif
duke@435 2125 st_ptr(src, index, Interpreter::value_offset_in_bytes());
duke@435 2126 // Store tag register directly
duke@435 2127 if (TaggedStackInterpreter) {
duke@435 2128 st_ptr(tag, index, Interpreter::tag_offset_in_bytes());
duke@435 2129 }
duke@435 2130 }
duke@435 2131
duke@435 2132
duke@435 2133
duke@435 2134 void InterpreterMacroAssembler::store_local_ptr( int n, Register src,
duke@435 2135 Register tag ) {
duke@435 2136 st_ptr(src, Llocals, Interpreter::local_offset_in_bytes(n));
duke@435 2137 if (TaggedStackInterpreter) {
duke@435 2138 st_ptr(tag, Llocals, Interpreter::local_tag_offset_in_bytes(n));
duke@435 2139 }
duke@435 2140 }
duke@435 2141
duke@435 2142 void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
duke@435 2143 assert_not_delayed();
duke@435 2144 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2145 sub(Llocals, index, index);
duke@435 2146 #ifdef ASSERT
duke@435 2147 check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
duke@435 2148 #endif
duke@435 2149 tag_local(frame::TagCategory2, index, src);
duke@435 2150 store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
duke@435 2151 }
duke@435 2152
duke@435 2153
duke@435 2154 void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
duke@435 2155 assert_not_delayed();
duke@435 2156 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2157 sub(Llocals, index, index);
duke@435 2158 #ifdef ASSERT
duke@435 2159 check_for_regarea_stomp(index, Interpreter::value_offset_in_bytes(), FP, G1_scratch, G4_scratch);
duke@435 2160 #endif
duke@435 2161 tag_local(frame::TagValue, index, G1_scratch);
duke@435 2162 stf(FloatRegisterImpl::S, src, index, Interpreter::value_offset_in_bytes());
duke@435 2163 }
duke@435 2164
duke@435 2165
duke@435 2166 void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
duke@435 2167 assert_not_delayed();
duke@435 2168 sll(index, Interpreter::logStackElementSize(), index);
duke@435 2169 sub(Llocals, index, index);
duke@435 2170 #ifdef ASSERT
duke@435 2171 check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
duke@435 2172 #endif
duke@435 2173 tag_local(frame::TagCategory2, index, G1_scratch);
duke@435 2174 store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
duke@435 2175 }
duke@435 2176
duke@435 2177
duke@435 2178 int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
duke@435 2179 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 2180 int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
duke@435 2181 return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
duke@435 2182 }
duke@435 2183
duke@435 2184
duke@435 2185 Address InterpreterMacroAssembler::top_most_monitor() {
twisti@1162 2186 return Address(FP, top_most_monitor_byte_offset());
duke@435 2187 }
duke@435 2188
duke@435 2189
duke@435 2190 void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
duke@435 2191 add( Lesp, wordSize, Rdest );
duke@435 2192 }
duke@435 2193
duke@435 2194 #endif /* CC_INTERP */
duke@435 2195
duke@435 2196 void InterpreterMacroAssembler::increment_invocation_counter( Register Rtmp, Register Rtmp2 ) {
duke@435 2197 assert(UseCompiler, "incrementing must be useful");
duke@435 2198 #ifdef CC_INTERP
twisti@1162 2199 Address inv_counter(G5_method, methodOopDesc::invocation_counter_offset() +
twisti@1162 2200 InvocationCounter::counter_offset());
twisti@1162 2201 Address be_counter (G5_method, methodOopDesc::backedge_counter_offset() +
twisti@1162 2202 InvocationCounter::counter_offset());
duke@435 2203 #else
twisti@1162 2204 Address inv_counter(Lmethod, methodOopDesc::invocation_counter_offset() +
twisti@1162 2205 InvocationCounter::counter_offset());
twisti@1162 2206 Address be_counter (Lmethod, methodOopDesc::backedge_counter_offset() +
twisti@1162 2207 InvocationCounter::counter_offset());
duke@435 2208 #endif /* CC_INTERP */
duke@435 2209 int delta = InvocationCounter::count_increment;
duke@435 2210
duke@435 2211 // Load each counter in a register
duke@435 2212 ld( inv_counter, Rtmp );
duke@435 2213 ld( be_counter, Rtmp2 );
duke@435 2214
duke@435 2215 assert( is_simm13( delta ), " delta too large.");
duke@435 2216
duke@435 2217 // Add the delta to the invocation counter and store the result
duke@435 2218 add( Rtmp, delta, Rtmp );
duke@435 2219
duke@435 2220 // Mask the backedge counter
duke@435 2221 and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
duke@435 2222
duke@435 2223 // Store value
duke@435 2224 st( Rtmp, inv_counter);
duke@435 2225
duke@435 2226 // Add invocation counter + backedge counter
duke@435 2227 add( Rtmp, Rtmp2, Rtmp);
duke@435 2228
duke@435 2229 // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
duke@435 2230 }
duke@435 2231
duke@435 2232 void InterpreterMacroAssembler::increment_backedge_counter( Register Rtmp, Register Rtmp2 ) {
duke@435 2233 assert(UseCompiler, "incrementing must be useful");
duke@435 2234 #ifdef CC_INTERP
twisti@1162 2235 Address be_counter (G5_method, methodOopDesc::backedge_counter_offset() +
twisti@1162 2236 InvocationCounter::counter_offset());
twisti@1162 2237 Address inv_counter(G5_method, methodOopDesc::invocation_counter_offset() +
twisti@1162 2238 InvocationCounter::counter_offset());
duke@435 2239 #else
twisti@1162 2240 Address be_counter (Lmethod, methodOopDesc::backedge_counter_offset() +
twisti@1162 2241 InvocationCounter::counter_offset());
twisti@1162 2242 Address inv_counter(Lmethod, methodOopDesc::invocation_counter_offset() +
twisti@1162 2243 InvocationCounter::counter_offset());
duke@435 2244 #endif /* CC_INTERP */
duke@435 2245 int delta = InvocationCounter::count_increment;
duke@435 2246 // Load each counter in a register
duke@435 2247 ld( be_counter, Rtmp );
duke@435 2248 ld( inv_counter, Rtmp2 );
duke@435 2249
duke@435 2250 // Add the delta to the backedge counter
duke@435 2251 add( Rtmp, delta, Rtmp );
duke@435 2252
duke@435 2253 // Mask the invocation counter, add to backedge counter
duke@435 2254 and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
duke@435 2255
duke@435 2256 // and store the result to memory
duke@435 2257 st( Rtmp, be_counter );
duke@435 2258
duke@435 2259 // Add backedge + invocation counter
duke@435 2260 add( Rtmp, Rtmp2, Rtmp );
duke@435 2261
duke@435 2262 // Note that this macro must leave backedge_count + invocation_count in Rtmp!
duke@435 2263 }
duke@435 2264
duke@435 2265 #ifndef CC_INTERP
duke@435 2266 void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
duke@435 2267 Register branch_bcp,
duke@435 2268 Register Rtmp ) {
duke@435 2269 Label did_not_overflow;
duke@435 2270 Label overflow_with_error;
duke@435 2271 assert_different_registers(backedge_count, Rtmp, branch_bcp);
duke@435 2272 assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
duke@435 2273
twisti@1162 2274 AddressLiteral limit(&InvocationCounter::InterpreterBackwardBranchLimit);
duke@435 2275 load_contents(limit, Rtmp);
duke@435 2276 cmp(backedge_count, Rtmp);
duke@435 2277 br(Assembler::lessUnsigned, false, Assembler::pt, did_not_overflow);
duke@435 2278 delayed()->nop();
duke@435 2279
duke@435 2280 // When ProfileInterpreter is on, the backedge_count comes from the
duke@435 2281 // methodDataOop, which value does not get reset on the call to
duke@435 2282 // frequency_counter_overflow(). To avoid excessive calls to the overflow
duke@435 2283 // routine while the method is being compiled, add a second test to make sure
duke@435 2284 // the overflow function is called only once every overflow_frequency.
duke@435 2285 if (ProfileInterpreter) {
duke@435 2286 const int overflow_frequency = 1024;
duke@435 2287 andcc(backedge_count, overflow_frequency-1, Rtmp);
duke@435 2288 brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
duke@435 2289 delayed()->nop();
duke@435 2290 }
duke@435 2291
duke@435 2292 // overflow in loop, pass branch bytecode
duke@435 2293 set(6,Rtmp);
duke@435 2294 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
duke@435 2295
duke@435 2296 // Was an OSR adapter generated?
duke@435 2297 // O0 = osr nmethod
duke@435 2298 tst(O0);
duke@435 2299 brx(Assembler::zero, false, Assembler::pn, overflow_with_error);
duke@435 2300 delayed()->nop();
duke@435 2301
duke@435 2302 // Has the nmethod been invalidated already?
duke@435 2303 ld(O0, nmethod::entry_bci_offset(), O2);
duke@435 2304 cmp(O2, InvalidOSREntryBci);
duke@435 2305 br(Assembler::equal, false, Assembler::pn, overflow_with_error);
duke@435 2306 delayed()->nop();
duke@435 2307
duke@435 2308 // migrate the interpreter frame off of the stack
duke@435 2309
duke@435 2310 mov(G2_thread, L7);
duke@435 2311 // save nmethod
duke@435 2312 mov(O0, L6);
duke@435 2313 set_last_Java_frame(SP, noreg);
duke@435 2314 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
duke@435 2315 reset_last_Java_frame();
duke@435 2316 mov(L7, G2_thread);
duke@435 2317
duke@435 2318 // move OSR nmethod to I1
duke@435 2319 mov(L6, I1);
duke@435 2320
duke@435 2321 // OSR buffer to I0
duke@435 2322 mov(O0, I0);
duke@435 2323
duke@435 2324 // remove the interpreter frame
duke@435 2325 restore(I5_savedSP, 0, SP);
duke@435 2326
duke@435 2327 // Jump to the osr code.
duke@435 2328 ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
duke@435 2329 jmp(O2, G0);
duke@435 2330 delayed()->nop();
duke@435 2331
duke@435 2332 bind(overflow_with_error);
duke@435 2333
duke@435 2334 bind(did_not_overflow);
duke@435 2335 }
duke@435 2336
duke@435 2337
duke@435 2338
duke@435 2339 void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
duke@435 2340 if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
duke@435 2341 }
duke@435 2342
duke@435 2343
duke@435 2344 // local helper function for the verify_oop_or_return_address macro
duke@435 2345 static bool verify_return_address(methodOopDesc* m, int bci) {
duke@435 2346 #ifndef PRODUCT
duke@435 2347 address pc = (address)(m->constMethod())
duke@435 2348 + in_bytes(constMethodOopDesc::codes_offset()) + bci;
duke@435 2349 // assume it is a valid return address if it is inside m and is preceded by a jsr
duke@435 2350 if (!m->contains(pc)) return false;
duke@435 2351 address jsr_pc;
duke@435 2352 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
duke@435 2353 if (*jsr_pc == Bytecodes::_jsr && jsr_pc >= m->code_base()) return true;
duke@435 2354 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
duke@435 2355 if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base()) return true;
duke@435 2356 #endif // PRODUCT
duke@435 2357 return false;
duke@435 2358 }
duke@435 2359
duke@435 2360
duke@435 2361 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
duke@435 2362 if (!VerifyOops) return;
duke@435 2363 // the VM documentation for the astore[_wide] bytecode allows
duke@435 2364 // the TOS to be not only an oop but also a return address
duke@435 2365 Label test;
duke@435 2366 Label skip;
duke@435 2367 // See if it is an address (in the current method):
duke@435 2368
duke@435 2369 mov(reg, Rtmp);
duke@435 2370 const int log2_bytecode_size_limit = 16;
duke@435 2371 srl(Rtmp, log2_bytecode_size_limit, Rtmp);
duke@435 2372 br_notnull( Rtmp, false, pt, test );
duke@435 2373 delayed()->nop();
duke@435 2374
duke@435 2375 // %%% should use call_VM_leaf here?
duke@435 2376 save_frame_and_mov(0, Lmethod, O0, reg, O1);
duke@435 2377 save_thread(L7_thread_cache);
duke@435 2378 call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
duke@435 2379 delayed()->nop();
duke@435 2380 restore_thread(L7_thread_cache);
duke@435 2381 br_notnull( O0, false, pt, skip );
duke@435 2382 delayed()->restore();
duke@435 2383
duke@435 2384 // Perform a more elaborate out-of-line call
duke@435 2385 // Not an address; verify it:
duke@435 2386 bind(test);
duke@435 2387 verify_oop(reg);
duke@435 2388 bind(skip);
duke@435 2389 }
duke@435 2390
duke@435 2391
duke@435 2392 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
duke@435 2393 if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
duke@435 2394 }
duke@435 2395 #endif /* CC_INTERP */
duke@435 2396
duke@435 2397 // Inline assembly for:
duke@435 2398 //
duke@435 2399 // if (thread is in interp_only_mode) {
duke@435 2400 // InterpreterRuntime::post_method_entry();
duke@435 2401 // }
duke@435 2402 // if (DTraceMethodProbes) {
twisti@1040 2403 // SharedRuntime::dtrace_method_entry(method, receiver);
duke@435 2404 // }
dcubed@1045 2405 // if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
dcubed@1045 2406 // SharedRuntime::rc_trace_method_entry(method, receiver);
coleenp@857 2407 // }
duke@435 2408
duke@435 2409 void InterpreterMacroAssembler::notify_method_entry() {
duke@435 2410
duke@435 2411 // C++ interpreter only uses this for native methods.
duke@435 2412
duke@435 2413 // Whenever JVMTI puts a thread in interp_only_mode, method
duke@435 2414 // entry/exit events are sent for that thread to track stack
duke@435 2415 // depth. If it is possible to enter interp_only_mode we add
duke@435 2416 // the code to check if the event should be sent.
duke@435 2417 if (JvmtiExport::can_post_interpreter_events()) {
duke@435 2418 Label L;
duke@435 2419 Register temp_reg = O5;
twisti@1162 2420 const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
duke@435 2421 ld(interp_only, temp_reg);
duke@435 2422 tst(temp_reg);
duke@435 2423 br(zero, false, pt, L);
duke@435 2424 delayed()->nop();
duke@435 2425 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
duke@435 2426 bind(L);
duke@435 2427 }
duke@435 2428
duke@435 2429 {
duke@435 2430 Register temp_reg = O5;
duke@435 2431 SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
duke@435 2432 call_VM_leaf(noreg,
duke@435 2433 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
duke@435 2434 G2_thread, Lmethod);
duke@435 2435 }
dcubed@1045 2436
dcubed@1045 2437 // RedefineClasses() tracing support for obsolete method entry
dcubed@1045 2438 if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
dcubed@1045 2439 call_VM_leaf(noreg,
dcubed@1045 2440 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
dcubed@1045 2441 G2_thread, Lmethod);
dcubed@1045 2442 }
duke@435 2443 }
duke@435 2444
duke@435 2445
duke@435 2446 // Inline assembly for:
duke@435 2447 //
duke@435 2448 // if (thread is in interp_only_mode) {
duke@435 2449 // // save result
duke@435 2450 // InterpreterRuntime::post_method_exit();
duke@435 2451 // // restore result
duke@435 2452 // }
duke@435 2453 // if (DTraceMethodProbes) {
duke@435 2454 // SharedRuntime::dtrace_method_exit(thread, method);
duke@435 2455 // }
duke@435 2456 //
duke@435 2457 // Native methods have their result stored in d_tmp and l_tmp
duke@435 2458 // Java methods have their result stored in the expression stack
duke@435 2459
duke@435 2460 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
duke@435 2461 TosState state,
duke@435 2462 NotifyMethodExitMode mode) {
duke@435 2463 // C++ interpreter only uses this for native methods.
duke@435 2464
duke@435 2465 // Whenever JVMTI puts a thread in interp_only_mode, method
duke@435 2466 // entry/exit events are sent for that thread to track stack
duke@435 2467 // depth. If it is possible to enter interp_only_mode we add
duke@435 2468 // the code to check if the event should be sent.
duke@435 2469 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
duke@435 2470 Label L;
duke@435 2471 Register temp_reg = O5;
twisti@1162 2472 const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
duke@435 2473 ld(interp_only, temp_reg);
duke@435 2474 tst(temp_reg);
duke@435 2475 br(zero, false, pt, L);
duke@435 2476 delayed()->nop();
duke@435 2477
duke@435 2478 // Note: frame::interpreter_frame_result has a dependency on how the
duke@435 2479 // method result is saved across the call to post_method_exit. For
duke@435 2480 // native methods it assumes the result registers are saved to
duke@435 2481 // l_scratch and d_scratch. If this changes then the interpreter_frame_result
duke@435 2482 // implementation will need to be updated too.
duke@435 2483
duke@435 2484 save_return_value(state, is_native_method);
duke@435 2485 call_VM(noreg,
duke@435 2486 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
duke@435 2487 restore_return_value(state, is_native_method);
duke@435 2488 bind(L);
duke@435 2489 }
duke@435 2490
duke@435 2491 {
duke@435 2492 Register temp_reg = O5;
duke@435 2493 // Dtrace notification
duke@435 2494 SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
duke@435 2495 save_return_value(state, is_native_method);
duke@435 2496 call_VM_leaf(
duke@435 2497 noreg,
duke@435 2498 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
duke@435 2499 G2_thread, Lmethod);
duke@435 2500 restore_return_value(state, is_native_method);
duke@435 2501 }
duke@435 2502 }
duke@435 2503
duke@435 2504 void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
duke@435 2505 #ifdef CC_INTERP
duke@435 2506 // result potentially in O0/O1: save it across calls
duke@435 2507 stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
duke@435 2508 #ifdef _LP64
duke@435 2509 stx(O0, STATE(_native_lresult));
duke@435 2510 #else
duke@435 2511 std(O0, STATE(_native_lresult));
duke@435 2512 #endif
duke@435 2513 #else // CC_INTERP
duke@435 2514 if (is_native_call) {
duke@435 2515 stf(FloatRegisterImpl::D, F0, d_tmp);
duke@435 2516 #ifdef _LP64
duke@435 2517 stx(O0, l_tmp);
duke@435 2518 #else
duke@435 2519 std(O0, l_tmp);
duke@435 2520 #endif
duke@435 2521 } else {
duke@435 2522 push(state);
duke@435 2523 }
duke@435 2524 #endif // CC_INTERP
duke@435 2525 }
duke@435 2526
duke@435 2527 void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
duke@435 2528 #ifdef CC_INTERP
duke@435 2529 ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
duke@435 2530 #ifdef _LP64
duke@435 2531 ldx(STATE(_native_lresult), O0);
duke@435 2532 #else
duke@435 2533 ldd(STATE(_native_lresult), O0);
duke@435 2534 #endif
duke@435 2535 #else // CC_INTERP
duke@435 2536 if (is_native_call) {
duke@435 2537 ldf(FloatRegisterImpl::D, d_tmp, F0);
duke@435 2538 #ifdef _LP64
duke@435 2539 ldx(l_tmp, O0);
duke@435 2540 #else
duke@435 2541 ldd(l_tmp, O0);
duke@435 2542 #endif
duke@435 2543 } else {
duke@435 2544 pop(state);
duke@435 2545 }
duke@435 2546 #endif // CC_INTERP
duke@435 2547 }

mercurial