src/cpu/sparc/vm/interp_masm_sparc.cpp

Thu, 29 Nov 2012 13:55:49 -0800

author
cjplummer
date
Thu, 29 Nov 2012 13:55:49 -0800
changeset 4303
5505fbbae3d3
parent 4299
f34d701e952e
parent 4302
b2dbd323c668
child 4936
aeaca88565e6
permissions
-rw-r--r--

Merge

duke@435 1 /*
jiangli@3826 2 * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "interp_masm_sparc.hpp"
stefank@2314 27 #include "interpreter/interpreter.hpp"
stefank@2314 28 #include "interpreter/interpreterRuntime.hpp"
stefank@2314 29 #include "oops/arrayOop.hpp"
stefank@2314 30 #include "oops/markOop.hpp"
coleenp@4037 31 #include "oops/methodData.hpp"
coleenp@4037 32 #include "oops/method.hpp"
stefank@2314 33 #include "prims/jvmtiExport.hpp"
stefank@2314 34 #include "prims/jvmtiRedefineClassesTrace.hpp"
stefank@2314 35 #include "prims/jvmtiThreadState.hpp"
stefank@2314 36 #include "runtime/basicLock.hpp"
stefank@2314 37 #include "runtime/biasedLocking.hpp"
stefank@2314 38 #include "runtime/sharedRuntime.hpp"
stefank@4299 39 #include "runtime/thread.inline.hpp"
duke@435 40
duke@435 41 #ifndef CC_INTERP
duke@435 42 #ifndef FAST_DISPATCH
duke@435 43 #define FAST_DISPATCH 1
duke@435 44 #endif
duke@435 45 #undef FAST_DISPATCH
duke@435 46
duke@435 47 // Implementation of InterpreterMacroAssembler
duke@435 48
duke@435 49 // This file specializes the assember with interpreter-specific macros
duke@435 50
twisti@1162 51 const Address InterpreterMacroAssembler::l_tmp(FP, (frame::interpreter_frame_l_scratch_fp_offset * wordSize) + STACK_BIAS);
twisti@1162 52 const Address InterpreterMacroAssembler::d_tmp(FP, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
duke@435 53
duke@435 54 #else // CC_INTERP
duke@435 55 #ifndef STATE
duke@435 56 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
duke@435 57 #endif // STATE
duke@435 58
duke@435 59 #endif // CC_INTERP
duke@435 60
duke@435 61 void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
duke@435 62 // Note: this algorithm is also used by C1's OSR entry sequence.
duke@435 63 // Any changes should also be applied to CodeEmitter::emit_osr_entry().
duke@435 64 assert_different_registers(args_size, locals_size);
duke@435 65 // max_locals*2 for TAGS. Assumes that args_size has already been adjusted.
duke@435 66 subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
duke@435 67 // Use br/mov combination because it works on both V8 and V9 and is
duke@435 68 // faster.
duke@435 69 Label skip_move;
duke@435 70 br(Assembler::negative, true, Assembler::pt, skip_move);
duke@435 71 delayed()->mov(G0, delta);
duke@435 72 bind(skip_move);
duke@435 73 round_to(delta, WordsPerLong); // make multiple of 2 (SP must be 2-word aligned)
duke@435 74 sll(delta, LogBytesPerWord, delta); // extra space for locals in bytes
duke@435 75 }
duke@435 76
duke@435 77 #ifndef CC_INTERP
duke@435 78
duke@435 79 // Dispatch code executed in the prolog of a bytecode which does not do it's
duke@435 80 // own dispatch. The dispatch address is computed and placed in IdispatchAddress
duke@435 81 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
duke@435 82 assert_not_delayed();
duke@435 83 #ifdef FAST_DISPATCH
duke@435 84 // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
duke@435 85 // they both use I2.
duke@435 86 assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
duke@435 87 ldub(Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 88 add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
duke@435 89 // add offset to correct dispatch table
duke@435 90 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
duke@435 91 ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
duke@435 92 #else
twisti@1162 93 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 94 // dispatch table to use
twisti@1162 95 AddressLiteral tbl(Interpreter::dispatch_table(state));
twisti@1162 96 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
twisti@1162 97 set(tbl, G3_scratch); // compute addr of table
twisti@1162 98 ld_ptr(G3_scratch, Lbyte_code, IdispatchAddress); // get entry addr
duke@435 99 #endif
duke@435 100 }
duke@435 101
duke@435 102
duke@435 103 // Dispatch code executed in the epilog of a bytecode which does not do it's
duke@435 104 // own dispatch. The dispatch address in IdispatchAddress is used for the
duke@435 105 // dispatch.
duke@435 106 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
duke@435 107 assert_not_delayed();
duke@435 108 verify_FPU(1, state);
duke@435 109 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 110 jmp( IdispatchAddress, 0 );
duke@435 111 if (bcp_incr != 0) delayed()->inc(Lbcp, bcp_incr);
duke@435 112 else delayed()->nop();
duke@435 113 }
duke@435 114
duke@435 115
duke@435 116 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
duke@435 117 // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
duke@435 118 assert_not_delayed();
duke@435 119 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 120 dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
duke@435 121 }
duke@435 122
duke@435 123
duke@435 124 void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
duke@435 125 // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
duke@435 126 assert_not_delayed();
duke@435 127 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 128 dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
duke@435 129 }
duke@435 130
duke@435 131
duke@435 132 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
duke@435 133 // load current bytecode
duke@435 134 assert_not_delayed();
duke@435 135 ldub( Lbcp, 0, Lbyte_code); // load next bytecode
duke@435 136 dispatch_base(state, table);
duke@435 137 }
duke@435 138
duke@435 139
duke@435 140 void InterpreterMacroAssembler::call_VM_leaf_base(
duke@435 141 Register java_thread,
duke@435 142 address entry_point,
duke@435 143 int number_of_arguments
duke@435 144 ) {
duke@435 145 if (!java_thread->is_valid())
duke@435 146 java_thread = L7_thread_cache;
duke@435 147 // super call
duke@435 148 MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
duke@435 149 }
duke@435 150
duke@435 151
duke@435 152 void InterpreterMacroAssembler::call_VM_base(
duke@435 153 Register oop_result,
duke@435 154 Register java_thread,
duke@435 155 Register last_java_sp,
duke@435 156 address entry_point,
duke@435 157 int number_of_arguments,
duke@435 158 bool check_exception
duke@435 159 ) {
duke@435 160 if (!java_thread->is_valid())
duke@435 161 java_thread = L7_thread_cache;
duke@435 162 // See class ThreadInVMfromInterpreter, which assumes that the interpreter
duke@435 163 // takes responsibility for setting its own thread-state on call-out.
duke@435 164 // However, ThreadInVMfromInterpreter resets the state to "in_Java".
duke@435 165
duke@435 166 //save_bcp(); // save bcp
duke@435 167 MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
duke@435 168 //restore_bcp(); // restore bcp
duke@435 169 //restore_locals(); // restore locals pointer
duke@435 170 }
duke@435 171
duke@435 172
duke@435 173 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
duke@435 174 if (JvmtiExport::can_pop_frame()) {
duke@435 175 Label L;
duke@435 176
duke@435 177 // Check the "pending popframe condition" flag in the current thread
twisti@1162 178 ld(G2_thread, JavaThread::popframe_condition_offset(), scratch_reg);
duke@435 179
duke@435 180 // Initiate popframe handling only if it is not already being processed. If the flag
duke@435 181 // has the popframe_processing bit set, it means that this code is called *during* popframe
duke@435 182 // handling - we don't want to reenter.
duke@435 183 btst(JavaThread::popframe_pending_bit, scratch_reg);
duke@435 184 br(zero, false, pt, L);
duke@435 185 delayed()->nop();
duke@435 186 btst(JavaThread::popframe_processing_bit, scratch_reg);
duke@435 187 br(notZero, false, pt, L);
duke@435 188 delayed()->nop();
duke@435 189
duke@435 190 // Call Interpreter::remove_activation_preserving_args_entry() to get the
duke@435 191 // address of the same-named entrypoint in the generated interpreter code.
duke@435 192 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
duke@435 193
duke@435 194 // Jump to Interpreter::_remove_activation_preserving_args_entry
duke@435 195 jmpl(O0, G0, G0);
duke@435 196 delayed()->nop();
duke@435 197 bind(L);
duke@435 198 }
duke@435 199 }
duke@435 200
duke@435 201
duke@435 202 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
duke@435 203 Register thr_state = G4_scratch;
twisti@1162 204 ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
twisti@1162 205 const Address tos_addr(thr_state, JvmtiThreadState::earlyret_tos_offset());
twisti@1162 206 const Address oop_addr(thr_state, JvmtiThreadState::earlyret_oop_offset());
twisti@1162 207 const Address val_addr(thr_state, JvmtiThreadState::earlyret_value_offset());
duke@435 208 switch (state) {
duke@435 209 case ltos: ld_long(val_addr, Otos_l); break;
duke@435 210 case atos: ld_ptr(oop_addr, Otos_l);
duke@435 211 st_ptr(G0, oop_addr); break;
duke@435 212 case btos: // fall through
duke@435 213 case ctos: // fall through
duke@435 214 case stos: // fall through
duke@435 215 case itos: ld(val_addr, Otos_l1); break;
duke@435 216 case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
duke@435 217 case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
duke@435 218 case vtos: /* nothing to do */ break;
duke@435 219 default : ShouldNotReachHere();
duke@435 220 }
duke@435 221 // Clean up tos value in the jvmti thread state
duke@435 222 or3(G0, ilgl, G3_scratch);
duke@435 223 stw(G3_scratch, tos_addr);
duke@435 224 st_long(G0, val_addr);
duke@435 225 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 226 }
duke@435 227
duke@435 228
duke@435 229 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
duke@435 230 if (JvmtiExport::can_force_early_return()) {
duke@435 231 Label L;
duke@435 232 Register thr_state = G3_scratch;
twisti@1162 233 ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
kvn@3037 234 br_null_short(thr_state, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
duke@435 235
duke@435 236 // Initiate earlyret handling only if it is not already being processed.
duke@435 237 // If the flag has the earlyret_processing bit set, it means that this code
duke@435 238 // is called *during* earlyret handling - we don't want to reenter.
twisti@1162 239 ld(thr_state, JvmtiThreadState::earlyret_state_offset(), G4_scratch);
kvn@3037 240 cmp_and_br_short(G4_scratch, JvmtiThreadState::earlyret_pending, Assembler::notEqual, pt, L);
duke@435 241
duke@435 242 // Call Interpreter::remove_activation_early_entry() to get the address of the
duke@435 243 // same-named entrypoint in the generated interpreter code
twisti@1162 244 ld(thr_state, JvmtiThreadState::earlyret_tos_offset(), Otos_l1);
duke@435 245 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
duke@435 246
duke@435 247 // Jump to Interpreter::_remove_activation_early_entry
duke@435 248 jmpl(O0, G0, G0);
duke@435 249 delayed()->nop();
duke@435 250 bind(L);
duke@435 251 }
duke@435 252 }
duke@435 253
duke@435 254
twisti@1730 255 void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
duke@435 256 mov(arg_1, O0);
twisti@1730 257 mov(arg_2, O1);
twisti@1730 258 MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 2);
duke@435 259 }
duke@435 260 #endif /* CC_INTERP */
duke@435 261
duke@435 262
duke@435 263 #ifndef CC_INTERP
duke@435 264
duke@435 265 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
duke@435 266 assert_not_delayed();
duke@435 267 dispatch_Lbyte_code(state, table);
duke@435 268 }
duke@435 269
duke@435 270
duke@435 271 void InterpreterMacroAssembler::dispatch_normal(TosState state) {
duke@435 272 dispatch_base(state, Interpreter::normal_table(state));
duke@435 273 }
duke@435 274
duke@435 275
duke@435 276 void InterpreterMacroAssembler::dispatch_only(TosState state) {
duke@435 277 dispatch_base(state, Interpreter::dispatch_table(state));
duke@435 278 }
duke@435 279
duke@435 280
duke@435 281 // common code to dispatch and dispatch_only
duke@435 282 // dispatch value in Lbyte_code and increment Lbcp
duke@435 283
duke@435 284 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
duke@435 285 verify_FPU(1, state);
duke@435 286 // %%%%% maybe implement +VerifyActivationFrameSize here
duke@435 287 //verify_thread(); //too slow; we will just verify on method entry & exit
duke@435 288 if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 289 #ifdef FAST_DISPATCH
duke@435 290 if (table == Interpreter::dispatch_table(state)) {
duke@435 291 // use IdispatchTables
duke@435 292 add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
duke@435 293 // add offset to correct dispatch table
duke@435 294 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
duke@435 295 ld_ptr(IdispatchTables, Lbyte_code, G3_scratch); // get entry addr
duke@435 296 } else {
duke@435 297 #endif
duke@435 298 // dispatch table to use
twisti@1162 299 AddressLiteral tbl(table);
duke@435 300 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
twisti@1162 301 set(tbl, G3_scratch); // compute addr of table
duke@435 302 ld_ptr(G3_scratch, Lbyte_code, G3_scratch); // get entry addr
duke@435 303 #ifdef FAST_DISPATCH
duke@435 304 }
duke@435 305 #endif
duke@435 306 jmp( G3_scratch, 0 );
duke@435 307 if (bcp_incr != 0) delayed()->inc(Lbcp, bcp_incr);
duke@435 308 else delayed()->nop();
duke@435 309 }
duke@435 310
duke@435 311
duke@435 312 // Helpers for expression stack
duke@435 313
duke@435 314 // Longs and doubles are Category 2 computational types in the
duke@435 315 // JVM specification (section 3.11.1) and take 2 expression stack or
duke@435 316 // local slots.
duke@435 317 // Aligning them on 32 bit with tagged stacks is hard because the code generated
duke@435 318 // for the dup* bytecodes depends on what types are already on the stack.
duke@435 319 // If the types are split into the two stack/local slots, that is much easier
duke@435 320 // (and we can use 0 for non-reference tags).
duke@435 321
duke@435 322 // Known good alignment in _LP64 but unknown otherwise
duke@435 323 void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
duke@435 324 assert_not_delayed();
duke@435 325
duke@435 326 #ifdef _LP64
duke@435 327 ldf(FloatRegisterImpl::D, r1, offset, d);
duke@435 328 #else
duke@435 329 ldf(FloatRegisterImpl::S, r1, offset, d);
twisti@1861 330 ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize, d->successor());
duke@435 331 #endif
duke@435 332 }
duke@435 333
duke@435 334 // Known good alignment in _LP64 but unknown otherwise
duke@435 335 void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
duke@435 336 assert_not_delayed();
duke@435 337
duke@435 338 #ifdef _LP64
duke@435 339 stf(FloatRegisterImpl::D, d, r1, offset);
duke@435 340 // store something more useful here
twisti@1861 341 debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
duke@435 342 #else
duke@435 343 stf(FloatRegisterImpl::S, d, r1, offset);
twisti@1861 344 stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize);
duke@435 345 #endif
duke@435 346 }
duke@435 347
duke@435 348
duke@435 349 // Known good alignment in _LP64 but unknown otherwise
duke@435 350 void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
duke@435 351 assert_not_delayed();
duke@435 352 #ifdef _LP64
duke@435 353 ldx(r1, offset, rd);
duke@435 354 #else
duke@435 355 ld(r1, offset, rd);
twisti@1861 356 ld(r1, offset + Interpreter::stackElementSize, rd->successor());
duke@435 357 #endif
duke@435 358 }
duke@435 359
duke@435 360 // Known good alignment in _LP64 but unknown otherwise
duke@435 361 void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
duke@435 362 assert_not_delayed();
duke@435 363
duke@435 364 #ifdef _LP64
duke@435 365 stx(l, r1, offset);
duke@435 366 // store something more useful here
twisti@1861 367 debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
duke@435 368 #else
duke@435 369 st(l, r1, offset);
twisti@1861 370 st(l->successor(), r1, offset + Interpreter::stackElementSize);
duke@435 371 #endif
duke@435 372 }
duke@435 373
duke@435 374 void InterpreterMacroAssembler::pop_i(Register r) {
duke@435 375 assert_not_delayed();
duke@435 376 ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
twisti@1861 377 inc(Lesp, Interpreter::stackElementSize);
duke@435 378 debug_only(verify_esp(Lesp));
duke@435 379 }
duke@435 380
duke@435 381 void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
duke@435 382 assert_not_delayed();
duke@435 383 ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
twisti@1861 384 inc(Lesp, Interpreter::stackElementSize);
duke@435 385 debug_only(verify_esp(Lesp));
duke@435 386 }
duke@435 387
duke@435 388 void InterpreterMacroAssembler::pop_l(Register r) {
duke@435 389 assert_not_delayed();
duke@435 390 load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
twisti@1861 391 inc(Lesp, 2*Interpreter::stackElementSize);
duke@435 392 debug_only(verify_esp(Lesp));
duke@435 393 }
duke@435 394
duke@435 395
duke@435 396 void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
duke@435 397 assert_not_delayed();
duke@435 398 ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
twisti@1861 399 inc(Lesp, Interpreter::stackElementSize);
duke@435 400 debug_only(verify_esp(Lesp));
duke@435 401 }
duke@435 402
duke@435 403
duke@435 404 void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
duke@435 405 assert_not_delayed();
duke@435 406 load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
twisti@1861 407 inc(Lesp, 2*Interpreter::stackElementSize);
duke@435 408 debug_only(verify_esp(Lesp));
duke@435 409 }
duke@435 410
duke@435 411
duke@435 412 void InterpreterMacroAssembler::push_i(Register r) {
duke@435 413 assert_not_delayed();
duke@435 414 debug_only(verify_esp(Lesp));
twisti@1861 415 st(r, Lesp, 0);
twisti@1861 416 dec(Lesp, Interpreter::stackElementSize);
duke@435 417 }
duke@435 418
duke@435 419 void InterpreterMacroAssembler::push_ptr(Register r) {
duke@435 420 assert_not_delayed();
twisti@1861 421 st_ptr(r, Lesp, 0);
twisti@1861 422 dec(Lesp, Interpreter::stackElementSize);
duke@435 423 }
duke@435 424
duke@435 425 // remember: our convention for longs in SPARC is:
duke@435 426 // O0 (Otos_l1) has high-order part in first word,
duke@435 427 // O1 (Otos_l2) has low-order part in second word
duke@435 428
duke@435 429 void InterpreterMacroAssembler::push_l(Register r) {
duke@435 430 assert_not_delayed();
duke@435 431 debug_only(verify_esp(Lesp));
twisti@1861 432 // Longs are stored in memory-correct order, even if unaligned.
twisti@1861 433 int offset = -Interpreter::stackElementSize;
duke@435 434 store_unaligned_long(r, Lesp, offset);
twisti@1861 435 dec(Lesp, 2 * Interpreter::stackElementSize);
duke@435 436 }
duke@435 437
duke@435 438
duke@435 439 void InterpreterMacroAssembler::push_f(FloatRegister f) {
duke@435 440 assert_not_delayed();
duke@435 441 debug_only(verify_esp(Lesp));
twisti@1861 442 stf(FloatRegisterImpl::S, f, Lesp, 0);
twisti@1861 443 dec(Lesp, Interpreter::stackElementSize);
duke@435 444 }
duke@435 445
duke@435 446
duke@435 447 void InterpreterMacroAssembler::push_d(FloatRegister d) {
duke@435 448 assert_not_delayed();
duke@435 449 debug_only(verify_esp(Lesp));
twisti@1861 450 // Longs are stored in memory-correct order, even if unaligned.
twisti@1861 451 int offset = -Interpreter::stackElementSize;
duke@435 452 store_unaligned_double(d, Lesp, offset);
twisti@1861 453 dec(Lesp, 2 * Interpreter::stackElementSize);
duke@435 454 }
duke@435 455
duke@435 456
duke@435 457 void InterpreterMacroAssembler::push(TosState state) {
duke@435 458 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 459 switch (state) {
duke@435 460 case atos: push_ptr(); break;
duke@435 461 case btos: push_i(); break;
duke@435 462 case ctos:
duke@435 463 case stos: push_i(); break;
duke@435 464 case itos: push_i(); break;
duke@435 465 case ltos: push_l(); break;
duke@435 466 case ftos: push_f(); break;
duke@435 467 case dtos: push_d(); break;
duke@435 468 case vtos: /* nothing to do */ break;
duke@435 469 default : ShouldNotReachHere();
duke@435 470 }
duke@435 471 }
duke@435 472
duke@435 473
duke@435 474 void InterpreterMacroAssembler::pop(TosState state) {
duke@435 475 switch (state) {
duke@435 476 case atos: pop_ptr(); break;
duke@435 477 case btos: pop_i(); break;
duke@435 478 case ctos:
duke@435 479 case stos: pop_i(); break;
duke@435 480 case itos: pop_i(); break;
duke@435 481 case ltos: pop_l(); break;
duke@435 482 case ftos: pop_f(); break;
duke@435 483 case dtos: pop_d(); break;
duke@435 484 case vtos: /* nothing to do */ break;
duke@435 485 default : ShouldNotReachHere();
duke@435 486 }
duke@435 487 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 488 }
duke@435 489
duke@435 490
twisti@1861 491 // Helpers for swap and dup
twisti@1861 492 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
duke@435 493 ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
duke@435 494 }
twisti@1861 495 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
duke@435 496 st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
duke@435 497 }
duke@435 498
duke@435 499
duke@435 500 void InterpreterMacroAssembler::load_receiver(Register param_count,
duke@435 501 Register recv) {
twisti@1861 502 sll(param_count, Interpreter::logStackElementSize, param_count);
twisti@3969 503 ld_ptr(Lesp, param_count, recv); // gets receiver oop
duke@435 504 }
duke@435 505
duke@435 506 void InterpreterMacroAssembler::empty_expression_stack() {
duke@435 507 // Reset Lesp.
duke@435 508 sub( Lmonitors, wordSize, Lesp );
duke@435 509
duke@435 510 // Reset SP by subtracting more space from Lesp.
duke@435 511 Label done;
twisti@1162 512 assert(G4_scratch != Gframe_size, "Only you can prevent register aliasing!");
duke@435 513
duke@435 514 // A native does not need to do this, since its callee does not change SP.
coleenp@4037 515 ld(Lmethod, Method::access_flags_offset(), Gframe_size); // Load access flags.
duke@435 516 btst(JVM_ACC_NATIVE, Gframe_size);
duke@435 517 br(Assembler::notZero, false, Assembler::pt, done);
duke@435 518 delayed()->nop();
duke@435 519
duke@435 520 // Compute max expression stack+register save area
jiangli@4302 521 ld_ptr(Lmethod, in_bytes(Method::const_offset()), Gframe_size);
jiangli@4302 522 lduh(Gframe_size, in_bytes(ConstMethod::max_stack_offset()), Gframe_size); // Load max stack.
duke@435 523 add( Gframe_size, frame::memory_parameter_word_sp_offset, Gframe_size );
duke@435 524
duke@435 525 //
duke@435 526 // now set up a stack frame with the size computed above
duke@435 527 //
duke@435 528 //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
duke@435 529 sll( Gframe_size, LogBytesPerWord, Gframe_size );
duke@435 530 sub( Lesp, Gframe_size, Gframe_size );
duke@435 531 and3( Gframe_size, -(2 * wordSize), Gframe_size ); // align SP (downwards) to an 8/16-byte boundary
duke@435 532 debug_only(verify_sp(Gframe_size, G4_scratch));
duke@435 533 #ifdef _LP64
duke@435 534 sub(Gframe_size, STACK_BIAS, Gframe_size );
duke@435 535 #endif
duke@435 536 mov(Gframe_size, SP);
duke@435 537
duke@435 538 bind(done);
duke@435 539 }
duke@435 540
duke@435 541
duke@435 542 #ifdef ASSERT
duke@435 543 void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
duke@435 544 Label Bad, OK;
duke@435 545
duke@435 546 // Saved SP must be aligned.
duke@435 547 #ifdef _LP64
duke@435 548 btst(2*BytesPerWord-1, Rsp);
duke@435 549 #else
duke@435 550 btst(LongAlignmentMask, Rsp);
duke@435 551 #endif
duke@435 552 br(Assembler::notZero, false, Assembler::pn, Bad);
duke@435 553 delayed()->nop();
duke@435 554
duke@435 555 // Saved SP, plus register window size, must not be above FP.
duke@435 556 add(Rsp, frame::register_save_words * wordSize, Rtemp);
duke@435 557 #ifdef _LP64
duke@435 558 sub(Rtemp, STACK_BIAS, Rtemp); // Bias Rtemp before cmp to FP
duke@435 559 #endif
kvn@3037 560 cmp_and_brx_short(Rtemp, FP, Assembler::greaterUnsigned, Assembler::pn, Bad);
duke@435 561
duke@435 562 // Saved SP must not be ridiculously below current SP.
duke@435 563 size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
duke@435 564 set(maxstack, Rtemp);
duke@435 565 sub(SP, Rtemp, Rtemp);
duke@435 566 #ifdef _LP64
duke@435 567 add(Rtemp, STACK_BIAS, Rtemp); // Unbias Rtemp before cmp to Rsp
duke@435 568 #endif
kvn@3037 569 cmp_and_brx_short(Rsp, Rtemp, Assembler::lessUnsigned, Assembler::pn, Bad);
kvn@3037 570
kvn@3037 571 ba_short(OK);
duke@435 572
duke@435 573 bind(Bad);
duke@435 574 stop("on return to interpreted call, restored SP is corrupted");
duke@435 575
duke@435 576 bind(OK);
duke@435 577 }
duke@435 578
duke@435 579
duke@435 580 void InterpreterMacroAssembler::verify_esp(Register Resp) {
duke@435 581 // about to read or write Resp[0]
duke@435 582 // make sure it is not in the monitors or the register save area
duke@435 583 Label OK1, OK2;
duke@435 584
duke@435 585 cmp(Resp, Lmonitors);
duke@435 586 brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
duke@435 587 delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
duke@435 588 stop("too many pops: Lesp points into monitor area");
duke@435 589 bind(OK1);
duke@435 590 #ifdef _LP64
duke@435 591 sub(Resp, STACK_BIAS, Resp);
duke@435 592 #endif
duke@435 593 cmp(Resp, SP);
duke@435 594 brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
duke@435 595 delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
duke@435 596 stop("too many pushes: Lesp points into register window");
duke@435 597 bind(OK2);
duke@435 598 }
duke@435 599 #endif // ASSERT
duke@435 600
duke@435 601 // Load compiled (i2c) or interpreter entry when calling from interpreted and
duke@435 602 // do the call. Centralized so that all interpreter calls will do the same actions.
duke@435 603 // If jvmti single stepping is on for a thread we must not call compiled code.
duke@435 604 void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
duke@435 605
duke@435 606 // Assume we want to go compiled if available
duke@435 607
coleenp@4037 608 ld_ptr(G5_method, in_bytes(Method::from_interpreted_offset()), target);
duke@435 609
duke@435 610 if (JvmtiExport::can_post_interpreter_events()) {
duke@435 611 // JVMTI events, such as single-stepping, are implemented partly by avoiding running
duke@435 612 // compiled code in threads for which the event is enabled. Check here for
duke@435 613 // interp_only_mode if these events CAN be enabled.
duke@435 614 verify_thread();
duke@435 615 Label skip_compiled_code;
duke@435 616
twisti@1162 617 const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
duke@435 618 ld(interp_only, scratch);
kvn@3037 619 cmp_zero_and_br(Assembler::notZero, scratch, skip_compiled_code, true, Assembler::pn);
coleenp@4037 620 delayed()->ld_ptr(G5_method, in_bytes(Method::interpreter_entry_offset()), target);
duke@435 621 bind(skip_compiled_code);
duke@435 622 }
duke@435 623
coleenp@4037 624 // the i2c_adapters need Method* in G5_method (right? %%%)
duke@435 625 // do the call
duke@435 626 #ifdef ASSERT
duke@435 627 {
duke@435 628 Label ok;
kvn@3037 629 br_notnull_short(target, Assembler::pt, ok);
duke@435 630 stop("null entry point");
duke@435 631 bind(ok);
duke@435 632 }
duke@435 633 #endif // ASSERT
duke@435 634
duke@435 635 // Adjust Rret first so Llast_SP can be same as Rret
duke@435 636 add(Rret, -frame::pc_return_offset, O7);
duke@435 637 add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
duke@435 638 // Record SP so we can remove any stack space allocated by adapter transition
duke@435 639 jmp(target, 0);
duke@435 640 delayed()->mov(SP, Llast_SP);
duke@435 641 }
duke@435 642
duke@435 643 void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
duke@435 644 assert_not_delayed();
duke@435 645
duke@435 646 Label not_taken;
duke@435 647 if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
duke@435 648 else br (cc, false, Assembler::pn, not_taken);
duke@435 649 delayed()->nop();
duke@435 650
duke@435 651 TemplateTable::branch(false,false);
duke@435 652
duke@435 653 bind(not_taken);
duke@435 654
duke@435 655 profile_not_taken_branch(G3_scratch);
duke@435 656 }
duke@435 657
duke@435 658
duke@435 659 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
duke@435 660 int bcp_offset,
duke@435 661 Register Rtmp,
duke@435 662 Register Rdst,
duke@435 663 signedOrNot is_signed,
duke@435 664 setCCOrNot should_set_CC ) {
duke@435 665 assert(Rtmp != Rdst, "need separate temp register");
duke@435 666 assert_not_delayed();
duke@435 667 switch (is_signed) {
duke@435 668 default: ShouldNotReachHere();
duke@435 669
duke@435 670 case Signed: ldsb( Lbcp, bcp_offset, Rdst ); break; // high byte
duke@435 671 case Unsigned: ldub( Lbcp, bcp_offset, Rdst ); break; // high byte
duke@435 672 }
duke@435 673 ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
duke@435 674 sll( Rdst, BitsPerByte, Rdst);
duke@435 675 switch (should_set_CC ) {
duke@435 676 default: ShouldNotReachHere();
duke@435 677
duke@435 678 case set_CC: orcc( Rdst, Rtmp, Rdst ); break;
duke@435 679 case dont_set_CC: or3( Rdst, Rtmp, Rdst ); break;
duke@435 680 }
duke@435 681 }
duke@435 682
duke@435 683
duke@435 684 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
duke@435 685 int bcp_offset,
duke@435 686 Register Rtmp,
duke@435 687 Register Rdst,
duke@435 688 setCCOrNot should_set_CC ) {
duke@435 689 assert(Rtmp != Rdst, "need separate temp register");
duke@435 690 assert_not_delayed();
duke@435 691 add( Lbcp, bcp_offset, Rtmp);
duke@435 692 andcc( Rtmp, 3, G0);
duke@435 693 Label aligned;
duke@435 694 switch (should_set_CC ) {
duke@435 695 default: ShouldNotReachHere();
duke@435 696
duke@435 697 case set_CC: break;
duke@435 698 case dont_set_CC: break;
duke@435 699 }
duke@435 700
duke@435 701 br(Assembler::zero, true, Assembler::pn, aligned);
duke@435 702 #ifdef _LP64
duke@435 703 delayed()->ldsw(Rtmp, 0, Rdst);
duke@435 704 #else
duke@435 705 delayed()->ld(Rtmp, 0, Rdst);
duke@435 706 #endif
duke@435 707
duke@435 708 ldub(Lbcp, bcp_offset + 3, Rdst);
duke@435 709 ldub(Lbcp, bcp_offset + 2, Rtmp); sll(Rtmp, 8, Rtmp); or3(Rtmp, Rdst, Rdst);
duke@435 710 ldub(Lbcp, bcp_offset + 1, Rtmp); sll(Rtmp, 16, Rtmp); or3(Rtmp, Rdst, Rdst);
duke@435 711 #ifdef _LP64
duke@435 712 ldsb(Lbcp, bcp_offset + 0, Rtmp); sll(Rtmp, 24, Rtmp);
duke@435 713 #else
duke@435 714 // Unsigned load is faster than signed on some implementations
duke@435 715 ldub(Lbcp, bcp_offset + 0, Rtmp); sll(Rtmp, 24, Rtmp);
duke@435 716 #endif
duke@435 717 or3(Rtmp, Rdst, Rdst );
duke@435 718
duke@435 719 bind(aligned);
duke@435 720 if (should_set_CC == set_CC) tst(Rdst);
duke@435 721 }
duke@435 722
coleenp@4037 723 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register temp, Register index,
jrose@1920 724 int bcp_offset, size_t index_size) {
twisti@1858 725 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
jrose@1920 726 if (index_size == sizeof(u2)) {
coleenp@4037 727 get_2_byte_integer_at_bcp(bcp_offset, temp, index, Unsigned);
jrose@1920 728 } else if (index_size == sizeof(u4)) {
twisti@2698 729 assert(EnableInvokeDynamic, "giant index used only for JSR 292");
coleenp@4037 730 get_4_byte_integer_at_bcp(bcp_offset, temp, index);
coleenp@4037 731 assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
coleenp@4037 732 xor3(index, -1, index); // convert to plain index
jrose@1920 733 } else if (index_size == sizeof(u1)) {
coleenp@4037 734 ldub(Lbcp, bcp_offset, index);
jrose@1920 735 } else {
jrose@1920 736 ShouldNotReachHere();
twisti@1858 737 }
twisti@1858 738 }
twisti@1858 739
twisti@1858 740
twisti@1858 741 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp,
jrose@1920 742 int bcp_offset, size_t index_size) {
duke@435 743 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
duke@435 744 assert_different_registers(cache, tmp);
duke@435 745 assert_not_delayed();
jrose@1920 746 get_cache_index_at_bcp(cache, tmp, bcp_offset, index_size);
twisti@1858 747 // convert from field index to ConstantPoolCacheEntry index and from
twisti@1858 748 // word index to byte offset
duke@435 749 sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
duke@435 750 add(LcpoolCache, tmp, cache);
duke@435 751 }
duke@435 752
duke@435 753
twisti@3050 754 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
twisti@3050 755 Register temp,
twisti@3050 756 Register bytecode,
twisti@3050 757 int byte_no,
twisti@3050 758 int bcp_offset,
twisti@3050 759 size_t index_size) {
twisti@3050 760 get_cache_and_index_at_bcp(cache, temp, bcp_offset, index_size);
coleenp@4037 761 ld_ptr(cache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset(), bytecode);
twisti@3050 762 const int shift_count = (1 + byte_no) * BitsPerByte;
twisti@3969 763 assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
twisti@3969 764 (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
twisti@3969 765 "correct shift count");
twisti@3969 766 srl(bytecode, shift_count, bytecode);
twisti@3969 767 assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
twisti@3969 768 and3(bytecode, ConstantPoolCacheEntry::bytecode_1_mask, bytecode);
twisti@3050 769 }
twisti@3050 770
twisti@3050 771
twisti@1858 772 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
jrose@1920 773 int bcp_offset, size_t index_size) {
duke@435 774 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
duke@435 775 assert_different_registers(cache, tmp);
duke@435 776 assert_not_delayed();
jrose@1920 777 if (index_size == sizeof(u2)) {
jrose@1920 778 get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
jrose@1920 779 } else {
jrose@1920 780 ShouldNotReachHere(); // other sizes not supported here
jrose@1920 781 }
duke@435 782 // convert from field index to ConstantPoolCacheEntry index
duke@435 783 // and from word index to byte offset
duke@435 784 sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
duke@435 785 // skip past the header
coleenp@4037 786 add(tmp, in_bytes(ConstantPoolCache::base_offset()), tmp);
duke@435 787 // construct pointer to cache entry
duke@435 788 add(LcpoolCache, tmp, cache);
duke@435 789 }
duke@435 790
duke@435 791
coleenp@4037 792 // Load object from cpool->resolved_references(index)
coleenp@4037 793 void InterpreterMacroAssembler::load_resolved_reference_at_index(
coleenp@4037 794 Register result, Register index) {
coleenp@4037 795 assert_different_registers(result, index);
coleenp@4037 796 assert_not_delayed();
coleenp@4037 797 // convert from field index to resolved_references() index and from
coleenp@4037 798 // word index to byte offset. Since this is a java object, it can be compressed
coleenp@4037 799 Register tmp = index; // reuse
coleenp@4037 800 sll(index, LogBytesPerHeapOop, tmp);
coleenp@4037 801 get_constant_pool(result);
coleenp@4037 802 // load pointer for resolved_references[] objArray
coleenp@4037 803 ld_ptr(result, ConstantPool::resolved_references_offset_in_bytes(), result);
coleenp@4037 804 // JNIHandles::resolve(result)
coleenp@4037 805 ld_ptr(result, 0, result);
coleenp@4037 806 // Add in the index
coleenp@4037 807 add(result, tmp, result);
coleenp@4037 808 load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result);
coleenp@4037 809 }
coleenp@4037 810
coleenp@4037 811
duke@435 812 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
coleenp@548 813 // a subtype of super_klass. Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
duke@435 814 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
duke@435 815 Register Rsuper_klass,
duke@435 816 Register Rtmp1,
duke@435 817 Register Rtmp2,
duke@435 818 Register Rtmp3,
duke@435 819 Label &ok_is_subtype ) {
jrose@1079 820 Label not_subtype;
duke@435 821
duke@435 822 // Profile the not-null value's klass.
duke@435 823 profile_typecheck(Rsub_klass, Rtmp1);
duke@435 824
jrose@1079 825 check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass,
jrose@1079 826 Rtmp1, Rtmp2,
jrose@1079 827 &ok_is_subtype, &not_subtype, NULL);
jrose@1079 828
jrose@1079 829 check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass,
jrose@1079 830 Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg,
jrose@1079 831 &ok_is_subtype, NULL);
duke@435 832
duke@435 833 bind(not_subtype);
duke@435 834 profile_typecheck_failed(Rtmp1);
duke@435 835 }
duke@435 836
duke@435 837 // Separate these two to allow for delay slot in middle
duke@435 838 // These are used to do a test and full jump to exception-throwing code.
duke@435 839
duke@435 840 // %%%%% Could possibly reoptimize this by testing to see if could use
duke@435 841 // a single conditional branch (i.e. if span is small enough.
duke@435 842 // If you go that route, than get rid of the split and give up
duke@435 843 // on the delay-slot hack.
duke@435 844
duke@435 845 void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
duke@435 846 Label& ok ) {
duke@435 847 assert_not_delayed();
duke@435 848 br(ok_condition, true, pt, ok);
duke@435 849 // DELAY SLOT
duke@435 850 }
duke@435 851
duke@435 852 void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
duke@435 853 Label& ok ) {
duke@435 854 assert_not_delayed();
duke@435 855 bp( ok_condition, true, Assembler::xcc, pt, ok);
duke@435 856 // DELAY SLOT
duke@435 857 }
duke@435 858
duke@435 859 void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
duke@435 860 Label& ok ) {
duke@435 861 assert_not_delayed();
duke@435 862 brx(ok_condition, true, pt, ok);
duke@435 863 // DELAY SLOT
duke@435 864 }
duke@435 865
duke@435 866 void InterpreterMacroAssembler::throw_if_not_2( address throw_entry_point,
duke@435 867 Register Rscratch,
duke@435 868 Label& ok ) {
duke@435 869 assert(throw_entry_point != NULL, "entry point must be generated by now");
twisti@1162 870 AddressLiteral dest(throw_entry_point);
twisti@1162 871 jump_to(dest, Rscratch);
duke@435 872 delayed()->nop();
duke@435 873 bind(ok);
duke@435 874 }
duke@435 875
duke@435 876
duke@435 877 // And if you cannot use the delay slot, here is a shorthand:
duke@435 878
duke@435 879 void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
duke@435 880 address throw_entry_point,
duke@435 881 Register Rscratch ) {
duke@435 882 Label ok;
duke@435 883 if (ok_condition != never) {
duke@435 884 throw_if_not_1_icc( ok_condition, ok);
duke@435 885 delayed()->nop();
duke@435 886 }
duke@435 887 throw_if_not_2( throw_entry_point, Rscratch, ok);
duke@435 888 }
duke@435 889 void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
duke@435 890 address throw_entry_point,
duke@435 891 Register Rscratch ) {
duke@435 892 Label ok;
duke@435 893 if (ok_condition != never) {
duke@435 894 throw_if_not_1_xcc( ok_condition, ok);
duke@435 895 delayed()->nop();
duke@435 896 }
duke@435 897 throw_if_not_2( throw_entry_point, Rscratch, ok);
duke@435 898 }
duke@435 899 void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
duke@435 900 address throw_entry_point,
duke@435 901 Register Rscratch ) {
duke@435 902 Label ok;
duke@435 903 if (ok_condition != never) {
duke@435 904 throw_if_not_1_x( ok_condition, ok);
duke@435 905 delayed()->nop();
duke@435 906 }
duke@435 907 throw_if_not_2( throw_entry_point, Rscratch, ok);
duke@435 908 }
duke@435 909
duke@435 910 // Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
duke@435 911 // Note: res is still shy of address by array offset into object.
duke@435 912
duke@435 913 void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
duke@435 914 assert_not_delayed();
duke@435 915
duke@435 916 verify_oop(array);
duke@435 917 #ifdef _LP64
duke@435 918 // sign extend since tos (index) can be a 32bit value
duke@435 919 sra(index, G0, index);
duke@435 920 #endif // _LP64
duke@435 921
duke@435 922 // check array
duke@435 923 Label ptr_ok;
duke@435 924 tst(array);
duke@435 925 throw_if_not_1_x( notZero, ptr_ok );
duke@435 926 delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
duke@435 927 throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
duke@435 928
duke@435 929 Label index_ok;
duke@435 930 cmp(index, tmp);
duke@435 931 throw_if_not_1_icc( lessUnsigned, index_ok );
duke@435 932 if (index_shift > 0) delayed()->sll(index, index_shift, index);
duke@435 933 else delayed()->add(array, index, res); // addr - const offset in index
duke@435 934 // convention: move aberrant index into G3_scratch for exception message
duke@435 935 mov(index, G3_scratch);
duke@435 936 throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
duke@435 937
duke@435 938 // add offset if didn't do it in delay slot
duke@435 939 if (index_shift > 0) add(array, index, res); // addr - const offset in index
duke@435 940 }
duke@435 941
duke@435 942
duke@435 943 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
duke@435 944 assert_not_delayed();
duke@435 945
duke@435 946 // pop array
duke@435 947 pop_ptr(array);
duke@435 948
duke@435 949 // check array
duke@435 950 index_check_without_pop(array, index, index_shift, tmp, res);
duke@435 951 }
duke@435 952
duke@435 953
jiangli@3826 954 void InterpreterMacroAssembler::get_const(Register Rdst) {
coleenp@4037 955 ld_ptr(Lmethod, in_bytes(Method::const_offset()), Rdst);
jiangli@3826 956 }
jiangli@3826 957
jiangli@3826 958
duke@435 959 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
jiangli@3826 960 get_const(Rdst);
coleenp@4037 961 ld_ptr(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst);
duke@435 962 }
duke@435 963
duke@435 964
duke@435 965 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
duke@435 966 get_constant_pool(Rdst);
coleenp@4037 967 ld_ptr(Rdst, ConstantPool::cache_offset_in_bytes(), Rdst);
duke@435 968 }
duke@435 969
duke@435 970
duke@435 971 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
duke@435 972 get_constant_pool(Rcpool);
coleenp@4037 973 ld_ptr(Rcpool, ConstantPool::tags_offset_in_bytes(), Rtags);
duke@435 974 }
duke@435 975
duke@435 976
duke@435 977 // unlock if synchronized method
duke@435 978 //
duke@435 979 // Unlock the receiver if this is a synchronized method.
duke@435 980 // Unlock any Java monitors from syncronized blocks.
duke@435 981 //
duke@435 982 // If there are locked Java monitors
duke@435 983 // If throw_monitor_exception
duke@435 984 // throws IllegalMonitorStateException
duke@435 985 // Else if install_monitor_exception
duke@435 986 // installs IllegalMonitorStateException
duke@435 987 // Else
duke@435 988 // no error processing
duke@435 989 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
duke@435 990 bool throw_monitor_exception,
duke@435 991 bool install_monitor_exception) {
duke@435 992 Label unlocked, unlock, no_unlock;
duke@435 993
duke@435 994 // get the value of _do_not_unlock_if_synchronized into G1_scratch
twisti@1162 995 const Address do_not_unlock_if_synchronized(G2_thread,
twisti@1162 996 JavaThread::do_not_unlock_if_synchronized_offset());
duke@435 997 ldbool(do_not_unlock_if_synchronized, G1_scratch);
duke@435 998 stbool(G0, do_not_unlock_if_synchronized); // reset the flag
duke@435 999
duke@435 1000 // check if synchronized method
coleenp@4037 1001 const Address access_flags(Lmethod, Method::access_flags_offset());
duke@435 1002 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 1003 push(state); // save tos
twisti@1162 1004 ld(access_flags, G3_scratch); // Load access flags.
duke@435 1005 btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
twisti@1162 1006 br(zero, false, pt, unlocked);
duke@435 1007 delayed()->nop();
duke@435 1008
duke@435 1009 // Don't unlock anything if the _do_not_unlock_if_synchronized flag
duke@435 1010 // is set.
kvn@3037 1011 cmp_zero_and_br(Assembler::notZero, G1_scratch, no_unlock);
duke@435 1012 delayed()->nop();
duke@435 1013
duke@435 1014 // BasicObjectLock will be first in list, since this is a synchronized method. However, need
duke@435 1015 // to check that the object has not been unlocked by an explicit monitorexit bytecode.
duke@435 1016
duke@435 1017 //Intel: if (throw_monitor_exception) ... else ...
duke@435 1018 // Entry already unlocked, need to throw exception
duke@435 1019 //...
duke@435 1020
duke@435 1021 // pass top-most monitor elem
duke@435 1022 add( top_most_monitor(), O1 );
duke@435 1023
duke@435 1024 ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
kvn@3037 1025 br_notnull_short(G3_scratch, pt, unlock);
duke@435 1026
duke@435 1027 if (throw_monitor_exception) {
duke@435 1028 // Entry already unlocked need to throw an exception
duke@435 1029 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
duke@435 1030 should_not_reach_here();
duke@435 1031 } else {
duke@435 1032 // Monitor already unlocked during a stack unroll.
duke@435 1033 // If requested, install an illegal_monitor_state_exception.
duke@435 1034 // Continue with stack unrolling.
duke@435 1035 if (install_monitor_exception) {
duke@435 1036 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
duke@435 1037 }
kvn@3037 1038 ba_short(unlocked);
duke@435 1039 }
duke@435 1040
duke@435 1041 bind(unlock);
duke@435 1042
duke@435 1043 unlock_object(O1);
duke@435 1044
duke@435 1045 bind(unlocked);
duke@435 1046
duke@435 1047 // I0, I1: Might contain return value
duke@435 1048
duke@435 1049 // Check that all monitors are unlocked
duke@435 1050 { Label loop, exception, entry, restart;
duke@435 1051
duke@435 1052 Register Rmptr = O0;
duke@435 1053 Register Rtemp = O1;
duke@435 1054 Register Rlimit = Lmonitors;
duke@435 1055 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 1056 assert( (delta & LongAlignmentMask) == 0,
duke@435 1057 "sizeof BasicObjectLock must be even number of doublewords");
duke@435 1058
duke@435 1059 #ifdef ASSERT
duke@435 1060 add(top_most_monitor(), Rmptr, delta);
duke@435 1061 { Label L;
duke@435 1062 // ensure that Rmptr starts out above (or at) Rlimit
kvn@3037 1063 cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
duke@435 1064 stop("monitor stack has negative size");
duke@435 1065 bind(L);
duke@435 1066 }
duke@435 1067 #endif
duke@435 1068 bind(restart);
kvn@3037 1069 ba(entry);
duke@435 1070 delayed()->
duke@435 1071 add(top_most_monitor(), Rmptr, delta); // points to current entry, starting with bottom-most entry
duke@435 1072
duke@435 1073 // Entry is still locked, need to throw exception
duke@435 1074 bind(exception);
duke@435 1075 if (throw_monitor_exception) {
duke@435 1076 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
duke@435 1077 should_not_reach_here();
duke@435 1078 } else {
duke@435 1079 // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
duke@435 1080 // Unlock does not block, so don't have to worry about the frame
duke@435 1081 unlock_object(Rmptr);
duke@435 1082 if (install_monitor_exception) {
duke@435 1083 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
duke@435 1084 }
kvn@3037 1085 ba_short(restart);
duke@435 1086 }
duke@435 1087
duke@435 1088 bind(loop);
duke@435 1089 cmp(Rtemp, G0); // check if current entry is used
duke@435 1090 brx(Assembler::notEqual, false, pn, exception);
duke@435 1091 delayed()->
duke@435 1092 dec(Rmptr, delta); // otherwise advance to next entry
duke@435 1093 #ifdef ASSERT
duke@435 1094 { Label L;
duke@435 1095 // ensure that Rmptr has not somehow stepped below Rlimit
kvn@3037 1096 cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
duke@435 1097 stop("ran off the end of the monitor stack");
duke@435 1098 bind(L);
duke@435 1099 }
duke@435 1100 #endif
duke@435 1101 bind(entry);
duke@435 1102 cmp(Rmptr, Rlimit); // check if bottom reached
duke@435 1103 brx(Assembler::notEqual, true, pn, loop); // if not at bottom then check this entry
duke@435 1104 delayed()->
duke@435 1105 ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
duke@435 1106 }
duke@435 1107
duke@435 1108 bind(no_unlock);
duke@435 1109 pop(state);
duke@435 1110 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 1111 }
duke@435 1112
duke@435 1113
duke@435 1114 // remove activation
duke@435 1115 //
duke@435 1116 // Unlock the receiver if this is a synchronized method.
duke@435 1117 // Unlock any Java monitors from syncronized blocks.
duke@435 1118 // Remove the activation from the stack.
duke@435 1119 //
duke@435 1120 // If there are locked Java monitors
duke@435 1121 // If throw_monitor_exception
duke@435 1122 // throws IllegalMonitorStateException
duke@435 1123 // Else if install_monitor_exception
duke@435 1124 // installs IllegalMonitorStateException
duke@435 1125 // Else
duke@435 1126 // no error processing
duke@435 1127 void InterpreterMacroAssembler::remove_activation(TosState state,
duke@435 1128 bool throw_monitor_exception,
duke@435 1129 bool install_monitor_exception) {
duke@435 1130
duke@435 1131 unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
duke@435 1132
duke@435 1133 // save result (push state before jvmti call and pop it afterwards) and notify jvmti
duke@435 1134 notify_method_exit(false, state, NotifyJVMTI);
duke@435 1135
duke@435 1136 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 1137 verify_thread();
duke@435 1138
duke@435 1139 // return tos
duke@435 1140 assert(Otos_l1 == Otos_i, "adjust code below");
duke@435 1141 switch (state) {
duke@435 1142 #ifdef _LP64
duke@435 1143 case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
duke@435 1144 #else
duke@435 1145 case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through // O1 -> I1
duke@435 1146 #endif
duke@435 1147 case btos: // fall through
duke@435 1148 case ctos:
duke@435 1149 case stos: // fall through
duke@435 1150 case atos: // fall through
duke@435 1151 case itos: mov(Otos_l1, Otos_l1->after_save()); break; // O0 -> I0
duke@435 1152 case ftos: // fall through
duke@435 1153 case dtos: // fall through
duke@435 1154 case vtos: /* nothing to do */ break;
duke@435 1155 default : ShouldNotReachHere();
duke@435 1156 }
duke@435 1157
duke@435 1158 #if defined(COMPILER2) && !defined(_LP64)
duke@435 1159 if (state == ltos) {
duke@435 1160 // C2 expects long results in G1 we can't tell if we're returning to interpreted
duke@435 1161 // or compiled so just be safe use G1 and O0/O1
duke@435 1162
duke@435 1163 // Shift bits into high (msb) of G1
duke@435 1164 sllx(Otos_l1->after_save(), 32, G1);
duke@435 1165 // Zero extend low bits
duke@435 1166 srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
duke@435 1167 or3 (Otos_l2->after_save(), G1, G1);
duke@435 1168 }
duke@435 1169 #endif /* COMPILER2 */
duke@435 1170
duke@435 1171 }
duke@435 1172 #endif /* CC_INTERP */
duke@435 1173
duke@435 1174
duke@435 1175 // Lock object
duke@435 1176 //
duke@435 1177 // Argument - lock_reg points to the BasicObjectLock to be used for locking,
duke@435 1178 // it must be initialized with the object to lock
duke@435 1179 void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
duke@435 1180 if (UseHeavyMonitors) {
duke@435 1181 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
duke@435 1182 }
duke@435 1183 else {
duke@435 1184 Register obj_reg = Object;
duke@435 1185 Register mark_reg = G4_scratch;
duke@435 1186 Register temp_reg = G1_scratch;
twisti@1162 1187 Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes());
twisti@1162 1188 Address mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
duke@435 1189 Label done;
duke@435 1190
duke@435 1191 Label slow_case;
duke@435 1192
duke@435 1193 assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
duke@435 1194
duke@435 1195 // load markOop from object into mark_reg
duke@435 1196 ld_ptr(mark_addr, mark_reg);
duke@435 1197
duke@435 1198 if (UseBiasedLocking) {
duke@435 1199 biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
duke@435 1200 }
duke@435 1201
duke@435 1202 // get the address of basicLock on stack that will be stored in the object
duke@435 1203 // we need a temporary register here as we do not want to clobber lock_reg
duke@435 1204 // (cas clobbers the destination register)
duke@435 1205 mov(lock_reg, temp_reg);
duke@435 1206 // set mark reg to be (markOop of object | UNLOCK_VALUE)
duke@435 1207 or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
duke@435 1208 // initialize the box (Must happen before we update the object mark!)
duke@435 1209 st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
duke@435 1210 // compare and exchange object_addr, markOop | 1, stack address of basicLock
duke@435 1211 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 1212 casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
duke@435 1213 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 1214
duke@435 1215 // if the compare and exchange succeeded we are done (we saw an unlocked object)
kvn@3037 1216 cmp_and_brx_short(mark_reg, temp_reg, Assembler::equal, Assembler::pt, done);
duke@435 1217
duke@435 1218 // We did not see an unlocked object so try the fast recursive case
duke@435 1219
duke@435 1220 // Check if owner is self by comparing the value in the markOop of object
duke@435 1221 // with the stack pointer
duke@435 1222 sub(temp_reg, SP, temp_reg);
duke@435 1223 #ifdef _LP64
duke@435 1224 sub(temp_reg, STACK_BIAS, temp_reg);
duke@435 1225 #endif
duke@435 1226 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
duke@435 1227
duke@435 1228 // Composite "andcc" test:
duke@435 1229 // (a) %sp -vs- markword proximity check, and,
duke@435 1230 // (b) verify mark word LSBs == 0 (Stack-locked).
duke@435 1231 //
duke@435 1232 // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
duke@435 1233 // Note that the page size used for %sp proximity testing is arbitrary and is
duke@435 1234 // unrelated to the actual MMU page size. We use a 'logical' page size of
duke@435 1235 // 4096 bytes. F..FFF003 is designed to fit conveniently in the SIMM13 immediate
duke@435 1236 // field of the andcc instruction.
duke@435 1237 andcc (temp_reg, 0xFFFFF003, G0) ;
duke@435 1238
duke@435 1239 // if condition is true we are done and hence we can store 0 in the displaced
duke@435 1240 // header indicating it is a recursive lock and be done
duke@435 1241 brx(Assembler::zero, true, Assembler::pt, done);
duke@435 1242 delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
duke@435 1243
duke@435 1244 // none of the above fast optimizations worked so we have to get into the
duke@435 1245 // slow case of monitor enter
duke@435 1246 bind(slow_case);
duke@435 1247 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
duke@435 1248
duke@435 1249 bind(done);
duke@435 1250 }
duke@435 1251 }
duke@435 1252
duke@435 1253 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
duke@435 1254 //
duke@435 1255 // Argument - lock_reg points to the BasicObjectLock for lock
duke@435 1256 // Throw IllegalMonitorException if object is not locked by current thread
duke@435 1257 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
duke@435 1258 if (UseHeavyMonitors) {
duke@435 1259 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
duke@435 1260 } else {
duke@435 1261 Register obj_reg = G3_scratch;
duke@435 1262 Register mark_reg = G4_scratch;
duke@435 1263 Register displaced_header_reg = G1_scratch;
twisti@1162 1264 Address lockobj_addr(lock_reg, BasicObjectLock::obj_offset_in_bytes());
twisti@1162 1265 Address mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
duke@435 1266 Label done;
duke@435 1267
duke@435 1268 if (UseBiasedLocking) {
duke@435 1269 // load the object out of the BasicObjectLock
duke@435 1270 ld_ptr(lockobj_addr, obj_reg);
duke@435 1271 biased_locking_exit(mark_addr, mark_reg, done, true);
duke@435 1272 st_ptr(G0, lockobj_addr); // free entry
duke@435 1273 }
duke@435 1274
duke@435 1275 // Test first if we are in the fast recursive case
twisti@1162 1276 Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes());
twisti@1162 1277 ld_ptr(lock_addr, displaced_header_reg);
duke@435 1278 br_null(displaced_header_reg, true, Assembler::pn, done);
duke@435 1279 delayed()->st_ptr(G0, lockobj_addr); // free entry
duke@435 1280
duke@435 1281 // See if it is still a light weight lock, if so we just unlock
duke@435 1282 // the object and we are done
duke@435 1283
duke@435 1284 if (!UseBiasedLocking) {
duke@435 1285 // load the object out of the BasicObjectLock
duke@435 1286 ld_ptr(lockobj_addr, obj_reg);
duke@435 1287 }
duke@435 1288
duke@435 1289 // we have the displaced header in displaced_header_reg
duke@435 1290 // we expect to see the stack address of the basicLock in case the
duke@435 1291 // lock is still a light weight lock (lock_reg)
duke@435 1292 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 1293 casx_under_lock(mark_addr.base(), lock_reg, displaced_header_reg,
duke@435 1294 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 1295 cmp(lock_reg, displaced_header_reg);
duke@435 1296 brx(Assembler::equal, true, Assembler::pn, done);
duke@435 1297 delayed()->st_ptr(G0, lockobj_addr); // free entry
duke@435 1298
duke@435 1299 // The lock has been converted into a heavy lock and hence
duke@435 1300 // we need to get into the slow case
duke@435 1301
duke@435 1302 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
duke@435 1303
duke@435 1304 bind(done);
duke@435 1305 }
duke@435 1306 }
duke@435 1307
duke@435 1308 #ifndef CC_INTERP
duke@435 1309
coleenp@4037 1310 // Get the method data pointer from the Method* and set the
duke@435 1311 // specified register to its value.
duke@435 1312
iveresov@2438 1313 void InterpreterMacroAssembler::set_method_data_pointer() {
duke@435 1314 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1315 Label get_continue;
duke@435 1316
coleenp@4037 1317 ld_ptr(Lmethod, in_bytes(Method::method_data_offset()), ImethodDataPtr);
duke@435 1318 test_method_data_pointer(get_continue);
coleenp@4037 1319 add(ImethodDataPtr, in_bytes(MethodData::data_offset()), ImethodDataPtr);
duke@435 1320 bind(get_continue);
duke@435 1321 }
duke@435 1322
duke@435 1323 // Set the method data pointer for the current bcp.
duke@435 1324
duke@435 1325 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
duke@435 1326 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1327 Label zero_continue;
duke@435 1328
duke@435 1329 // Test MDO to avoid the call if it is NULL.
coleenp@4037 1330 ld_ptr(Lmethod, in_bytes(Method::method_data_offset()), ImethodDataPtr);
duke@435 1331 test_method_data_pointer(zero_continue);
duke@435 1332 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
coleenp@4037 1333 add(ImethodDataPtr, in_bytes(MethodData::data_offset()), ImethodDataPtr);
iveresov@2438 1334 add(ImethodDataPtr, O0, ImethodDataPtr);
duke@435 1335 bind(zero_continue);
duke@435 1336 }
duke@435 1337
duke@435 1338 // Test ImethodDataPtr. If it is null, continue at the specified label
duke@435 1339
duke@435 1340 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
duke@435 1341 assert(ProfileInterpreter, "must be profiling interpreter");
kvn@3037 1342 br_null_short(ImethodDataPtr, Assembler::pn, zero_continue);
duke@435 1343 }
duke@435 1344
duke@435 1345 void InterpreterMacroAssembler::verify_method_data_pointer() {
duke@435 1346 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1347 #ifdef ASSERT
duke@435 1348 Label verify_continue;
duke@435 1349 test_method_data_pointer(verify_continue);
duke@435 1350
duke@435 1351 // If the mdp is valid, it will point to a DataLayout header which is
duke@435 1352 // consistent with the bcp. The converse is highly probable also.
duke@435 1353 lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
coleenp@4037 1354 ld_ptr(Lmethod, Method::const_offset(), O5);
coleenp@4037 1355 add(G3_scratch, in_bytes(ConstMethod::codes_offset()), G3_scratch);
duke@435 1356 add(G3_scratch, O5, G3_scratch);
duke@435 1357 cmp(Lbcp, G3_scratch);
duke@435 1358 brx(Assembler::equal, false, Assembler::pt, verify_continue);
duke@435 1359
duke@435 1360 Register temp_reg = O5;
duke@435 1361 delayed()->mov(ImethodDataPtr, temp_reg);
duke@435 1362 // %%% should use call_VM_leaf here?
duke@435 1363 //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
duke@435 1364 save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
twisti@1162 1365 Address d_save(FP, -sizeof(jdouble) + STACK_BIAS);
duke@435 1366 stf(FloatRegisterImpl::D, Ftos_d, d_save);
duke@435 1367 mov(temp_reg->after_save(), O2);
duke@435 1368 save_thread(L7_thread_cache);
duke@435 1369 call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
duke@435 1370 delayed()->nop();
duke@435 1371 restore_thread(L7_thread_cache);
duke@435 1372 ldf(FloatRegisterImpl::D, d_save, Ftos_d);
duke@435 1373 restore();
duke@435 1374 bind(verify_continue);
duke@435 1375 #endif // ASSERT
duke@435 1376 }
duke@435 1377
duke@435 1378 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
duke@435 1379 Register Rtmp,
duke@435 1380 Label &profile_continue) {
duke@435 1381 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1382 // Control will flow to "profile_continue" if the counter is less than the
duke@435 1383 // limit or if we call profile_method()
duke@435 1384
duke@435 1385 Label done;
duke@435 1386
duke@435 1387 // if no method data exists, and the counter is high enough, make one
kvn@3037 1388 br_notnull_short(ImethodDataPtr, Assembler::pn, done);
duke@435 1389
duke@435 1390 // Test to see if we should create a method data oop
twisti@1162 1391 AddressLiteral profile_limit((address) &InvocationCounter::InterpreterProfileLimit);
twisti@1162 1392 sethi(profile_limit, Rtmp);
twisti@1162 1393 ld(Rtmp, profile_limit.low10(), Rtmp);
kvn@4116 1394 cmp(invocation_count, Rtmp);
kvn@4116 1395 // Use long branches because call_VM() code and following code generated by
kvn@4116 1396 // test_backedge_count_for_osr() is large in debug VM.
kvn@4116 1397 br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
kvn@4116 1398 delayed()->nop();
duke@435 1399
duke@435 1400 // Build it now.
iveresov@2438 1401 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
iveresov@2438 1402 set_method_data_pointer_for_bcp();
kvn@4116 1403 ba(profile_continue);
kvn@4116 1404 delayed()->nop();
duke@435 1405 bind(done);
duke@435 1406 }
duke@435 1407
duke@435 1408 // Store a value at some constant offset from the method data pointer.
duke@435 1409
duke@435 1410 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
duke@435 1411 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1412 st_ptr(value, ImethodDataPtr, constant);
duke@435 1413 }
duke@435 1414
duke@435 1415 void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
duke@435 1416 Register bumped_count,
duke@435 1417 bool decrement) {
duke@435 1418 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1419
duke@435 1420 // Load the counter.
duke@435 1421 ld_ptr(counter, bumped_count);
duke@435 1422
duke@435 1423 if (decrement) {
duke@435 1424 // Decrement the register. Set condition codes.
duke@435 1425 subcc(bumped_count, DataLayout::counter_increment, bumped_count);
duke@435 1426
duke@435 1427 // If the decrement causes the counter to overflow, stay negative
duke@435 1428 Label L;
duke@435 1429 brx(Assembler::negative, true, Assembler::pn, L);
duke@435 1430
duke@435 1431 // Store the decremented counter, if it is still negative.
duke@435 1432 delayed()->st_ptr(bumped_count, counter);
duke@435 1433 bind(L);
duke@435 1434 } else {
duke@435 1435 // Increment the register. Set carry flag.
duke@435 1436 addcc(bumped_count, DataLayout::counter_increment, bumped_count);
duke@435 1437
duke@435 1438 // If the increment causes the counter to overflow, pull back by 1.
duke@435 1439 assert(DataLayout::counter_increment == 1, "subc works");
duke@435 1440 subc(bumped_count, G0, bumped_count);
duke@435 1441
duke@435 1442 // Store the incremented counter.
duke@435 1443 st_ptr(bumped_count, counter);
duke@435 1444 }
duke@435 1445 }
duke@435 1446
duke@435 1447 // Increment the value at some constant offset from the method data pointer.
duke@435 1448
duke@435 1449 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
duke@435 1450 Register bumped_count,
duke@435 1451 bool decrement) {
duke@435 1452 // Locate the counter at a fixed offset from the mdp:
twisti@1162 1453 Address counter(ImethodDataPtr, constant);
duke@435 1454 increment_mdp_data_at(counter, bumped_count, decrement);
duke@435 1455 }
duke@435 1456
duke@435 1457 // Increment the value at some non-fixed (reg + constant) offset from
duke@435 1458 // the method data pointer.
duke@435 1459
duke@435 1460 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
duke@435 1461 int constant,
duke@435 1462 Register bumped_count,
duke@435 1463 Register scratch2,
duke@435 1464 bool decrement) {
duke@435 1465 // Add the constant to reg to get the offset.
duke@435 1466 add(ImethodDataPtr, reg, scratch2);
twisti@1162 1467 Address counter(scratch2, constant);
duke@435 1468 increment_mdp_data_at(counter, bumped_count, decrement);
duke@435 1469 }
duke@435 1470
duke@435 1471 // Set a flag value at the current method data pointer position.
duke@435 1472 // Updates a single byte of the header, to avoid races with other header bits.
duke@435 1473
duke@435 1474 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
duke@435 1475 Register scratch) {
duke@435 1476 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1477 // Load the data header
duke@435 1478 ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
duke@435 1479
duke@435 1480 // Set the flag
duke@435 1481 or3(scratch, flag_constant, scratch);
duke@435 1482
duke@435 1483 // Store the modified header.
duke@435 1484 stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
duke@435 1485 }
duke@435 1486
duke@435 1487 // Test the location at some offset from the method data pointer.
duke@435 1488 // If it is not equal to value, branch to the not_equal_continue Label.
duke@435 1489 // Set condition codes to match the nullness of the loaded value.
duke@435 1490
duke@435 1491 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
duke@435 1492 Register value,
duke@435 1493 Label& not_equal_continue,
duke@435 1494 Register scratch) {
duke@435 1495 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1496 ld_ptr(ImethodDataPtr, offset, scratch);
duke@435 1497 cmp(value, scratch);
duke@435 1498 brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
duke@435 1499 delayed()->tst(scratch);
duke@435 1500 }
duke@435 1501
duke@435 1502 // Update the method data pointer by the displacement located at some fixed
duke@435 1503 // offset from the method data pointer.
duke@435 1504
duke@435 1505 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
duke@435 1506 Register scratch) {
duke@435 1507 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1508 ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
duke@435 1509 add(ImethodDataPtr, scratch, ImethodDataPtr);
duke@435 1510 }
duke@435 1511
duke@435 1512 // Update the method data pointer by the displacement located at the
duke@435 1513 // offset (reg + offset_of_disp).
duke@435 1514
duke@435 1515 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
duke@435 1516 int offset_of_disp,
duke@435 1517 Register scratch) {
duke@435 1518 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1519 add(reg, offset_of_disp, scratch);
duke@435 1520 ld_ptr(ImethodDataPtr, scratch, scratch);
duke@435 1521 add(ImethodDataPtr, scratch, ImethodDataPtr);
duke@435 1522 }
duke@435 1523
duke@435 1524 // Update the method data pointer by a simple constant displacement.
duke@435 1525
duke@435 1526 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
duke@435 1527 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1528 add(ImethodDataPtr, constant, ImethodDataPtr);
duke@435 1529 }
duke@435 1530
duke@435 1531 // Update the method data pointer for a _ret bytecode whose target
duke@435 1532 // was not among our cached targets.
duke@435 1533
duke@435 1534 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
duke@435 1535 Register return_bci) {
duke@435 1536 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1537 push(state);
duke@435 1538 st_ptr(return_bci, l_tmp); // protect return_bci, in case it is volatile
duke@435 1539 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
duke@435 1540 ld_ptr(l_tmp, return_bci);
duke@435 1541 pop(state);
duke@435 1542 }
duke@435 1543
duke@435 1544 // Count a taken branch in the bytecodes.
duke@435 1545
duke@435 1546 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
duke@435 1547 if (ProfileInterpreter) {
duke@435 1548 Label profile_continue;
duke@435 1549
duke@435 1550 // If no method data exists, go to profile_continue.
duke@435 1551 test_method_data_pointer(profile_continue);
duke@435 1552
duke@435 1553 // We are taking a branch. Increment the taken count.
duke@435 1554 increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
duke@435 1555
duke@435 1556 // The method data pointer needs to be updated to reflect the new target.
duke@435 1557 update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
duke@435 1558 bind (profile_continue);
duke@435 1559 }
duke@435 1560 }
duke@435 1561
duke@435 1562
duke@435 1563 // Count a not-taken branch in the bytecodes.
duke@435 1564
duke@435 1565 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
duke@435 1566 if (ProfileInterpreter) {
duke@435 1567 Label profile_continue;
duke@435 1568
duke@435 1569 // If no method data exists, go to profile_continue.
duke@435 1570 test_method_data_pointer(profile_continue);
duke@435 1571
duke@435 1572 // We are taking a branch. Increment the not taken count.
duke@435 1573 increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
duke@435 1574
duke@435 1575 // The method data pointer needs to be updated to correspond to the
duke@435 1576 // next bytecode.
duke@435 1577 update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
duke@435 1578 bind (profile_continue);
duke@435 1579 }
duke@435 1580 }
duke@435 1581
duke@435 1582
duke@435 1583 // Count a non-virtual call in the bytecodes.
duke@435 1584
duke@435 1585 void InterpreterMacroAssembler::profile_call(Register scratch) {
duke@435 1586 if (ProfileInterpreter) {
duke@435 1587 Label profile_continue;
duke@435 1588
duke@435 1589 // If no method data exists, go to profile_continue.
duke@435 1590 test_method_data_pointer(profile_continue);
duke@435 1591
duke@435 1592 // We are making a call. Increment the count.
duke@435 1593 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
duke@435 1594
duke@435 1595 // The method data pointer needs to be updated to reflect the new target.
duke@435 1596 update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
duke@435 1597 bind (profile_continue);
duke@435 1598 }
duke@435 1599 }
duke@435 1600
duke@435 1601
duke@435 1602 // Count a final call in the bytecodes.
duke@435 1603
duke@435 1604 void InterpreterMacroAssembler::profile_final_call(Register scratch) {
duke@435 1605 if (ProfileInterpreter) {
duke@435 1606 Label profile_continue;
duke@435 1607
duke@435 1608 // If no method data exists, go to profile_continue.
duke@435 1609 test_method_data_pointer(profile_continue);
duke@435 1610
duke@435 1611 // We are making a call. Increment the count.
duke@435 1612 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
duke@435 1613
duke@435 1614 // The method data pointer needs to be updated to reflect the new target.
duke@435 1615 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
duke@435 1616 bind (profile_continue);
duke@435 1617 }
duke@435 1618 }
duke@435 1619
duke@435 1620
duke@435 1621 // Count a virtual call in the bytecodes.
duke@435 1622
duke@435 1623 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
twisti@1858 1624 Register scratch,
twisti@1858 1625 bool receiver_can_be_null) {
duke@435 1626 if (ProfileInterpreter) {
duke@435 1627 Label profile_continue;
duke@435 1628
duke@435 1629 // If no method data exists, go to profile_continue.
duke@435 1630 test_method_data_pointer(profile_continue);
duke@435 1631
twisti@1858 1632
twisti@1858 1633 Label skip_receiver_profile;
twisti@1858 1634 if (receiver_can_be_null) {
twisti@1858 1635 Label not_null;
kvn@3037 1636 br_notnull_short(receiver, Assembler::pt, not_null);
twisti@1858 1637 // We are making a call. Increment the count for null receiver.
twisti@1858 1638 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
kvn@3037 1639 ba_short(skip_receiver_profile);
twisti@1858 1640 bind(not_null);
twisti@1858 1641 }
twisti@1858 1642
duke@435 1643 // Record the receiver type.
kvn@1641 1644 record_klass_in_profile(receiver, scratch, true);
twisti@1858 1645 bind(skip_receiver_profile);
duke@435 1646
duke@435 1647 // The method data pointer needs to be updated to reflect the new target.
duke@435 1648 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
duke@435 1649 bind (profile_continue);
duke@435 1650 }
duke@435 1651 }
duke@435 1652
duke@435 1653 void InterpreterMacroAssembler::record_klass_in_profile_helper(
duke@435 1654 Register receiver, Register scratch,
kvn@1641 1655 int start_row, Label& done, bool is_virtual_call) {
kvn@1641 1656 if (TypeProfileWidth == 0) {
kvn@1641 1657 if (is_virtual_call) {
kvn@1641 1658 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
kvn@1641 1659 }
poonam@1402 1660 return;
kvn@1641 1661 }
poonam@1402 1662
duke@435 1663 int last_row = VirtualCallData::row_limit() - 1;
duke@435 1664 assert(start_row <= last_row, "must be work left to do");
duke@435 1665 // Test this row for both the receiver and for null.
duke@435 1666 // Take any of three different outcomes:
duke@435 1667 // 1. found receiver => increment count and goto done
duke@435 1668 // 2. found null => keep looking for case 1, maybe allocate this cell
duke@435 1669 // 3. found something else => keep looking for cases 1 and 2
duke@435 1670 // Case 3 is handled by a recursive call.
duke@435 1671 for (int row = start_row; row <= last_row; row++) {
duke@435 1672 Label next_test;
duke@435 1673 bool test_for_null_also = (row == start_row);
duke@435 1674
duke@435 1675 // See if the receiver is receiver[n].
duke@435 1676 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
duke@435 1677 test_mdp_data_at(recvr_offset, receiver, next_test, scratch);
kvn@1641 1678 // delayed()->tst(scratch);
duke@435 1679
duke@435 1680 // The receiver is receiver[n]. Increment count[n].
duke@435 1681 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
duke@435 1682 increment_mdp_data_at(count_offset, scratch);
kvn@3037 1683 ba_short(done);
duke@435 1684 bind(next_test);
duke@435 1685
duke@435 1686 if (test_for_null_also) {
kvn@1641 1687 Label found_null;
duke@435 1688 // Failed the equality check on receiver[n]... Test for null.
duke@435 1689 if (start_row == last_row) {
duke@435 1690 // The only thing left to do is handle the null case.
kvn@1641 1691 if (is_virtual_call) {
kvn@1641 1692 brx(Assembler::zero, false, Assembler::pn, found_null);
kvn@1641 1693 delayed()->nop();
kvn@1641 1694 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1686 1695 // Increment total counter to indicate polymorphic case.
kvn@1641 1696 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
kvn@3037 1697 ba_short(done);
kvn@1641 1698 bind(found_null);
kvn@1641 1699 } else {
kvn@1641 1700 brx(Assembler::notZero, false, Assembler::pt, done);
kvn@1641 1701 delayed()->nop();
kvn@1641 1702 }
duke@435 1703 break;
duke@435 1704 }
duke@435 1705 // Since null is rare, make it be the branch-taken case.
duke@435 1706 brx(Assembler::zero, false, Assembler::pn, found_null);
duke@435 1707 delayed()->nop();
duke@435 1708
duke@435 1709 // Put all the "Case 3" tests here.
kvn@1641 1710 record_klass_in_profile_helper(receiver, scratch, start_row + 1, done, is_virtual_call);
duke@435 1711
duke@435 1712 // Found a null. Keep searching for a matching receiver,
duke@435 1713 // but remember that this is an empty (unused) slot.
duke@435 1714 bind(found_null);
duke@435 1715 }
duke@435 1716 }
duke@435 1717
duke@435 1718 // In the fall-through case, we found no matching receiver, but we
duke@435 1719 // observed the receiver[start_row] is NULL.
duke@435 1720
duke@435 1721 // Fill in the receiver field and increment the count.
duke@435 1722 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
duke@435 1723 set_mdp_data_at(recvr_offset, receiver);
duke@435 1724 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
duke@435 1725 mov(DataLayout::counter_increment, scratch);
duke@435 1726 set_mdp_data_at(count_offset, scratch);
kvn@1641 1727 if (start_row > 0) {
kvn@3037 1728 ba_short(done);
kvn@1641 1729 }
duke@435 1730 }
duke@435 1731
duke@435 1732 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
kvn@1641 1733 Register scratch, bool is_virtual_call) {
duke@435 1734 assert(ProfileInterpreter, "must be profiling");
duke@435 1735 Label done;
duke@435 1736
kvn@1641 1737 record_klass_in_profile_helper(receiver, scratch, 0, done, is_virtual_call);
duke@435 1738
duke@435 1739 bind (done);
duke@435 1740 }
duke@435 1741
duke@435 1742
duke@435 1743 // Count a ret in the bytecodes.
duke@435 1744
duke@435 1745 void InterpreterMacroAssembler::profile_ret(TosState state,
duke@435 1746 Register return_bci,
duke@435 1747 Register scratch) {
duke@435 1748 if (ProfileInterpreter) {
duke@435 1749 Label profile_continue;
duke@435 1750 uint row;
duke@435 1751
duke@435 1752 // If no method data exists, go to profile_continue.
duke@435 1753 test_method_data_pointer(profile_continue);
duke@435 1754
duke@435 1755 // Update the total ret count.
duke@435 1756 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
duke@435 1757
duke@435 1758 for (row = 0; row < RetData::row_limit(); row++) {
duke@435 1759 Label next_test;
duke@435 1760
duke@435 1761 // See if return_bci is equal to bci[n]:
duke@435 1762 test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
duke@435 1763 return_bci, next_test, scratch);
duke@435 1764
duke@435 1765 // return_bci is equal to bci[n]. Increment the count.
duke@435 1766 increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
duke@435 1767
duke@435 1768 // The method data pointer needs to be updated to reflect the new target.
duke@435 1769 update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
kvn@3037 1770 ba_short(profile_continue);
duke@435 1771 bind(next_test);
duke@435 1772 }
duke@435 1773
duke@435 1774 update_mdp_for_ret(state, return_bci);
duke@435 1775
duke@435 1776 bind (profile_continue);
duke@435 1777 }
duke@435 1778 }
duke@435 1779
duke@435 1780 // Profile an unexpected null in the bytecodes.
duke@435 1781 void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
duke@435 1782 if (ProfileInterpreter) {
duke@435 1783 Label profile_continue;
duke@435 1784
duke@435 1785 // If no method data exists, go to profile_continue.
duke@435 1786 test_method_data_pointer(profile_continue);
duke@435 1787
duke@435 1788 set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
duke@435 1789
duke@435 1790 // The method data pointer needs to be updated.
duke@435 1791 int mdp_delta = in_bytes(BitData::bit_data_size());
duke@435 1792 if (TypeProfileCasts) {
duke@435 1793 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
duke@435 1794 }
duke@435 1795 update_mdp_by_constant(mdp_delta);
duke@435 1796
duke@435 1797 bind (profile_continue);
duke@435 1798 }
duke@435 1799 }
duke@435 1800
duke@435 1801 void InterpreterMacroAssembler::profile_typecheck(Register klass,
duke@435 1802 Register scratch) {
duke@435 1803 if (ProfileInterpreter) {
duke@435 1804 Label profile_continue;
duke@435 1805
duke@435 1806 // If no method data exists, go to profile_continue.
duke@435 1807 test_method_data_pointer(profile_continue);
duke@435 1808
duke@435 1809 int mdp_delta = in_bytes(BitData::bit_data_size());
duke@435 1810 if (TypeProfileCasts) {
duke@435 1811 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
duke@435 1812
duke@435 1813 // Record the object type.
kvn@1641 1814 record_klass_in_profile(klass, scratch, false);
duke@435 1815 }
duke@435 1816
duke@435 1817 // The method data pointer needs to be updated.
duke@435 1818 update_mdp_by_constant(mdp_delta);
duke@435 1819
duke@435 1820 bind (profile_continue);
duke@435 1821 }
duke@435 1822 }
duke@435 1823
duke@435 1824 void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
duke@435 1825 if (ProfileInterpreter && TypeProfileCasts) {
duke@435 1826 Label profile_continue;
duke@435 1827
duke@435 1828 // If no method data exists, go to profile_continue.
duke@435 1829 test_method_data_pointer(profile_continue);
duke@435 1830
duke@435 1831 int count_offset = in_bytes(CounterData::count_offset());
duke@435 1832 // Back up the address, since we have already bumped the mdp.
duke@435 1833 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
duke@435 1834
duke@435 1835 // *Decrement* the counter. We expect to see zero or small negatives.
duke@435 1836 increment_mdp_data_at(count_offset, scratch, true);
duke@435 1837
duke@435 1838 bind (profile_continue);
duke@435 1839 }
duke@435 1840 }
duke@435 1841
duke@435 1842 // Count the default case of a switch construct.
duke@435 1843
duke@435 1844 void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
duke@435 1845 if (ProfileInterpreter) {
duke@435 1846 Label profile_continue;
duke@435 1847
duke@435 1848 // If no method data exists, go to profile_continue.
duke@435 1849 test_method_data_pointer(profile_continue);
duke@435 1850
duke@435 1851 // Update the default case count
duke@435 1852 increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
duke@435 1853 scratch);
duke@435 1854
duke@435 1855 // The method data pointer needs to be updated.
duke@435 1856 update_mdp_by_offset(
duke@435 1857 in_bytes(MultiBranchData::default_displacement_offset()),
duke@435 1858 scratch);
duke@435 1859
duke@435 1860 bind (profile_continue);
duke@435 1861 }
duke@435 1862 }
duke@435 1863
duke@435 1864 // Count the index'th case of a switch construct.
duke@435 1865
duke@435 1866 void InterpreterMacroAssembler::profile_switch_case(Register index,
duke@435 1867 Register scratch,
duke@435 1868 Register scratch2,
duke@435 1869 Register scratch3) {
duke@435 1870 if (ProfileInterpreter) {
duke@435 1871 Label profile_continue;
duke@435 1872
duke@435 1873 // If no method data exists, go to profile_continue.
duke@435 1874 test_method_data_pointer(profile_continue);
duke@435 1875
duke@435 1876 // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
duke@435 1877 set(in_bytes(MultiBranchData::per_case_size()), scratch);
duke@435 1878 smul(index, scratch, scratch);
duke@435 1879 add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
duke@435 1880
duke@435 1881 // Update the case count
duke@435 1882 increment_mdp_data_at(scratch,
duke@435 1883 in_bytes(MultiBranchData::relative_count_offset()),
duke@435 1884 scratch2,
duke@435 1885 scratch3);
duke@435 1886
duke@435 1887 // The method data pointer needs to be updated.
duke@435 1888 update_mdp_by_offset(scratch,
duke@435 1889 in_bytes(MultiBranchData::relative_displacement_offset()),
duke@435 1890 scratch2);
duke@435 1891
duke@435 1892 bind (profile_continue);
duke@435 1893 }
duke@435 1894 }
duke@435 1895
duke@435 1896 // add a InterpMonitorElem to stack (see frame_sparc.hpp)
duke@435 1897
duke@435 1898 void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
duke@435 1899 Register Rtemp,
duke@435 1900 Register Rtemp2 ) {
duke@435 1901
duke@435 1902 Register Rlimit = Lmonitors;
duke@435 1903 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 1904 assert( (delta & LongAlignmentMask) == 0,
duke@435 1905 "sizeof BasicObjectLock must be even number of doublewords");
duke@435 1906
duke@435 1907 sub( SP, delta, SP);
duke@435 1908 sub( Lesp, delta, Lesp);
duke@435 1909 sub( Lmonitors, delta, Lmonitors);
duke@435 1910
duke@435 1911 if (!stack_is_empty) {
duke@435 1912
duke@435 1913 // must copy stack contents down
duke@435 1914
duke@435 1915 Label start_copying, next;
duke@435 1916
duke@435 1917 // untested("monitor stack expansion");
duke@435 1918 compute_stack_base(Rtemp);
kvn@3037 1919 ba(start_copying);
kvn@3037 1920 delayed()->cmp(Rtemp, Rlimit); // done? duplicated below
duke@435 1921
duke@435 1922 // note: must copy from low memory upwards
duke@435 1923 // On entry to loop,
duke@435 1924 // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
duke@435 1925 // Loop mutates Rtemp
duke@435 1926
duke@435 1927 bind( next);
duke@435 1928
duke@435 1929 st_ptr(Rtemp2, Rtemp, 0);
duke@435 1930 inc(Rtemp, wordSize);
duke@435 1931 cmp(Rtemp, Rlimit); // are we done? (duplicated above)
duke@435 1932
duke@435 1933 bind( start_copying );
duke@435 1934
duke@435 1935 brx( notEqual, true, pn, next );
duke@435 1936 delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
duke@435 1937
duke@435 1938 // done copying stack
duke@435 1939 }
duke@435 1940 }
duke@435 1941
duke@435 1942 // Locals
duke@435 1943 void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
duke@435 1944 assert_not_delayed();
twisti@1861 1945 sll(index, Interpreter::logStackElementSize, index);
duke@435 1946 sub(Llocals, index, index);
twisti@1861 1947 ld_ptr(index, 0, dst);
duke@435 1948 // Note: index must hold the effective address--the iinc template uses it
duke@435 1949 }
duke@435 1950
duke@435 1951 // Just like access_local_ptr but the tag is a returnAddress
duke@435 1952 void InterpreterMacroAssembler::access_local_returnAddress(Register index,
duke@435 1953 Register dst ) {
duke@435 1954 assert_not_delayed();
twisti@1861 1955 sll(index, Interpreter::logStackElementSize, index);
duke@435 1956 sub(Llocals, index, index);
twisti@1861 1957 ld_ptr(index, 0, dst);
duke@435 1958 }
duke@435 1959
duke@435 1960 void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
duke@435 1961 assert_not_delayed();
twisti@1861 1962 sll(index, Interpreter::logStackElementSize, index);
duke@435 1963 sub(Llocals, index, index);
twisti@1861 1964 ld(index, 0, dst);
duke@435 1965 // Note: index must hold the effective address--the iinc template uses it
duke@435 1966 }
duke@435 1967
duke@435 1968
duke@435 1969 void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
duke@435 1970 assert_not_delayed();
twisti@1861 1971 sll(index, Interpreter::logStackElementSize, index);
duke@435 1972 sub(Llocals, index, index);
duke@435 1973 // First half stored at index n+1 (which grows down from Llocals[n])
duke@435 1974 load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
duke@435 1975 }
duke@435 1976
duke@435 1977
duke@435 1978 void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
duke@435 1979 assert_not_delayed();
twisti@1861 1980 sll(index, Interpreter::logStackElementSize, index);
duke@435 1981 sub(Llocals, index, index);
twisti@1861 1982 ldf(FloatRegisterImpl::S, index, 0, dst);
duke@435 1983 }
duke@435 1984
duke@435 1985
duke@435 1986 void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
duke@435 1987 assert_not_delayed();
twisti@1861 1988 sll(index, Interpreter::logStackElementSize, index);
duke@435 1989 sub(Llocals, index, index);
duke@435 1990 load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
duke@435 1991 }
duke@435 1992
duke@435 1993
duke@435 1994 #ifdef ASSERT
duke@435 1995 void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
duke@435 1996 Label L;
duke@435 1997
duke@435 1998 assert(Rindex != Rscratch, "Registers cannot be same");
duke@435 1999 assert(Rindex != Rscratch1, "Registers cannot be same");
duke@435 2000 assert(Rlimit != Rscratch, "Registers cannot be same");
duke@435 2001 assert(Rlimit != Rscratch1, "Registers cannot be same");
duke@435 2002 assert(Rscratch1 != Rscratch, "Registers cannot be same");
duke@435 2003
duke@435 2004 // untested("reg area corruption");
duke@435 2005 add(Rindex, offset, Rscratch);
duke@435 2006 add(Rlimit, 64 + STACK_BIAS, Rscratch1);
kvn@3037 2007 cmp_and_brx_short(Rscratch, Rscratch1, Assembler::greaterEqualUnsigned, pn, L);
duke@435 2008 stop("regsave area is being clobbered");
duke@435 2009 bind(L);
duke@435 2010 }
duke@435 2011 #endif // ASSERT
duke@435 2012
duke@435 2013
duke@435 2014 void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
duke@435 2015 assert_not_delayed();
twisti@1861 2016 sll(index, Interpreter::logStackElementSize, index);
duke@435 2017 sub(Llocals, index, index);
twisti@1861 2018 debug_only(check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);)
twisti@1861 2019 st(src, index, 0);
duke@435 2020 }
duke@435 2021
twisti@1861 2022 void InterpreterMacroAssembler::store_local_ptr( Register index, Register src ) {
duke@435 2023 assert_not_delayed();
twisti@1861 2024 sll(index, Interpreter::logStackElementSize, index);
duke@435 2025 sub(Llocals, index, index);
twisti@1861 2026 #ifdef ASSERT
twisti@1861 2027 check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
twisti@1861 2028 #endif
twisti@1861 2029 st_ptr(src, index, 0);
duke@435 2030 }
duke@435 2031
duke@435 2032
duke@435 2033
twisti@1861 2034 void InterpreterMacroAssembler::store_local_ptr( int n, Register src ) {
twisti@1861 2035 st_ptr(src, Llocals, Interpreter::local_offset_in_bytes(n));
duke@435 2036 }
duke@435 2037
duke@435 2038 void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
duke@435 2039 assert_not_delayed();
twisti@1861 2040 sll(index, Interpreter::logStackElementSize, index);
duke@435 2041 sub(Llocals, index, index);
twisti@1861 2042 #ifdef ASSERT
duke@435 2043 check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
twisti@1861 2044 #endif
duke@435 2045 store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
duke@435 2046 }
duke@435 2047
duke@435 2048
duke@435 2049 void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
duke@435 2050 assert_not_delayed();
twisti@1861 2051 sll(index, Interpreter::logStackElementSize, index);
duke@435 2052 sub(Llocals, index, index);
twisti@1861 2053 #ifdef ASSERT
twisti@1861 2054 check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
twisti@1861 2055 #endif
twisti@1861 2056 stf(FloatRegisterImpl::S, src, index, 0);
duke@435 2057 }
duke@435 2058
duke@435 2059
duke@435 2060 void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
duke@435 2061 assert_not_delayed();
twisti@1861 2062 sll(index, Interpreter::logStackElementSize, index);
duke@435 2063 sub(Llocals, index, index);
twisti@1861 2064 #ifdef ASSERT
duke@435 2065 check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
twisti@1861 2066 #endif
duke@435 2067 store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
duke@435 2068 }
duke@435 2069
duke@435 2070
duke@435 2071 int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
duke@435 2072 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 2073 int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
duke@435 2074 return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
duke@435 2075 }
duke@435 2076
duke@435 2077
duke@435 2078 Address InterpreterMacroAssembler::top_most_monitor() {
twisti@1162 2079 return Address(FP, top_most_monitor_byte_offset());
duke@435 2080 }
duke@435 2081
duke@435 2082
duke@435 2083 void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
duke@435 2084 add( Lesp, wordSize, Rdest );
duke@435 2085 }
duke@435 2086
duke@435 2087 #endif /* CC_INTERP */
duke@435 2088
duke@435 2089 void InterpreterMacroAssembler::increment_invocation_counter( Register Rtmp, Register Rtmp2 ) {
duke@435 2090 assert(UseCompiler, "incrementing must be useful");
duke@435 2091 #ifdef CC_INTERP
coleenp@4037 2092 Address inv_counter(G5_method, Method::invocation_counter_offset() +
twisti@1162 2093 InvocationCounter::counter_offset());
coleenp@4037 2094 Address be_counter (G5_method, Method::backedge_counter_offset() +
twisti@1162 2095 InvocationCounter::counter_offset());
duke@435 2096 #else
coleenp@4037 2097 Address inv_counter(Lmethod, Method::invocation_counter_offset() +
twisti@1162 2098 InvocationCounter::counter_offset());
coleenp@4037 2099 Address be_counter (Lmethod, Method::backedge_counter_offset() +
twisti@1162 2100 InvocationCounter::counter_offset());
duke@435 2101 #endif /* CC_INTERP */
duke@435 2102 int delta = InvocationCounter::count_increment;
duke@435 2103
duke@435 2104 // Load each counter in a register
duke@435 2105 ld( inv_counter, Rtmp );
duke@435 2106 ld( be_counter, Rtmp2 );
duke@435 2107
duke@435 2108 assert( is_simm13( delta ), " delta too large.");
duke@435 2109
duke@435 2110 // Add the delta to the invocation counter and store the result
duke@435 2111 add( Rtmp, delta, Rtmp );
duke@435 2112
duke@435 2113 // Mask the backedge counter
duke@435 2114 and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
duke@435 2115
duke@435 2116 // Store value
duke@435 2117 st( Rtmp, inv_counter);
duke@435 2118
duke@435 2119 // Add invocation counter + backedge counter
duke@435 2120 add( Rtmp, Rtmp2, Rtmp);
duke@435 2121
duke@435 2122 // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
duke@435 2123 }
duke@435 2124
duke@435 2125 void InterpreterMacroAssembler::increment_backedge_counter( Register Rtmp, Register Rtmp2 ) {
duke@435 2126 assert(UseCompiler, "incrementing must be useful");
duke@435 2127 #ifdef CC_INTERP
coleenp@4037 2128 Address be_counter (G5_method, Method::backedge_counter_offset() +
twisti@1162 2129 InvocationCounter::counter_offset());
coleenp@4037 2130 Address inv_counter(G5_method, Method::invocation_counter_offset() +
twisti@1162 2131 InvocationCounter::counter_offset());
duke@435 2132 #else
coleenp@4037 2133 Address be_counter (Lmethod, Method::backedge_counter_offset() +
twisti@1162 2134 InvocationCounter::counter_offset());
coleenp@4037 2135 Address inv_counter(Lmethod, Method::invocation_counter_offset() +
twisti@1162 2136 InvocationCounter::counter_offset());
duke@435 2137 #endif /* CC_INTERP */
duke@435 2138 int delta = InvocationCounter::count_increment;
duke@435 2139 // Load each counter in a register
duke@435 2140 ld( be_counter, Rtmp );
duke@435 2141 ld( inv_counter, Rtmp2 );
duke@435 2142
duke@435 2143 // Add the delta to the backedge counter
duke@435 2144 add( Rtmp, delta, Rtmp );
duke@435 2145
duke@435 2146 // Mask the invocation counter, add to backedge counter
duke@435 2147 and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
duke@435 2148
duke@435 2149 // and store the result to memory
duke@435 2150 st( Rtmp, be_counter );
duke@435 2151
duke@435 2152 // Add backedge + invocation counter
duke@435 2153 add( Rtmp, Rtmp2, Rtmp );
duke@435 2154
duke@435 2155 // Note that this macro must leave backedge_count + invocation_count in Rtmp!
duke@435 2156 }
duke@435 2157
duke@435 2158 #ifndef CC_INTERP
duke@435 2159 void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
duke@435 2160 Register branch_bcp,
duke@435 2161 Register Rtmp ) {
duke@435 2162 Label did_not_overflow;
duke@435 2163 Label overflow_with_error;
duke@435 2164 assert_different_registers(backedge_count, Rtmp, branch_bcp);
duke@435 2165 assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
duke@435 2166
twisti@1162 2167 AddressLiteral limit(&InvocationCounter::InterpreterBackwardBranchLimit);
duke@435 2168 load_contents(limit, Rtmp);
kvn@3037 2169 cmp_and_br_short(backedge_count, Rtmp, Assembler::lessUnsigned, Assembler::pt, did_not_overflow);
duke@435 2170
duke@435 2171 // When ProfileInterpreter is on, the backedge_count comes from the
coleenp@4037 2172 // MethodData*, which value does not get reset on the call to
duke@435 2173 // frequency_counter_overflow(). To avoid excessive calls to the overflow
duke@435 2174 // routine while the method is being compiled, add a second test to make sure
duke@435 2175 // the overflow function is called only once every overflow_frequency.
duke@435 2176 if (ProfileInterpreter) {
duke@435 2177 const int overflow_frequency = 1024;
duke@435 2178 andcc(backedge_count, overflow_frequency-1, Rtmp);
duke@435 2179 brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
duke@435 2180 delayed()->nop();
duke@435 2181 }
duke@435 2182
duke@435 2183 // overflow in loop, pass branch bytecode
duke@435 2184 set(6,Rtmp);
duke@435 2185 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
duke@435 2186
duke@435 2187 // Was an OSR adapter generated?
duke@435 2188 // O0 = osr nmethod
kvn@3037 2189 br_null_short(O0, Assembler::pn, overflow_with_error);
duke@435 2190
duke@435 2191 // Has the nmethod been invalidated already?
duke@435 2192 ld(O0, nmethod::entry_bci_offset(), O2);
kvn@3037 2193 cmp_and_br_short(O2, InvalidOSREntryBci, Assembler::equal, Assembler::pn, overflow_with_error);
duke@435 2194
duke@435 2195 // migrate the interpreter frame off of the stack
duke@435 2196
duke@435 2197 mov(G2_thread, L7);
duke@435 2198 // save nmethod
duke@435 2199 mov(O0, L6);
duke@435 2200 set_last_Java_frame(SP, noreg);
duke@435 2201 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
duke@435 2202 reset_last_Java_frame();
duke@435 2203 mov(L7, G2_thread);
duke@435 2204
duke@435 2205 // move OSR nmethod to I1
duke@435 2206 mov(L6, I1);
duke@435 2207
duke@435 2208 // OSR buffer to I0
duke@435 2209 mov(O0, I0);
duke@435 2210
duke@435 2211 // remove the interpreter frame
duke@435 2212 restore(I5_savedSP, 0, SP);
duke@435 2213
duke@435 2214 // Jump to the osr code.
duke@435 2215 ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
duke@435 2216 jmp(O2, G0);
duke@435 2217 delayed()->nop();
duke@435 2218
duke@435 2219 bind(overflow_with_error);
duke@435 2220
duke@435 2221 bind(did_not_overflow);
duke@435 2222 }
duke@435 2223
duke@435 2224
duke@435 2225
duke@435 2226 void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
duke@435 2227 if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
duke@435 2228 }
duke@435 2229
duke@435 2230
duke@435 2231 // local helper function for the verify_oop_or_return_address macro
coleenp@4037 2232 static bool verify_return_address(Method* m, int bci) {
duke@435 2233 #ifndef PRODUCT
duke@435 2234 address pc = (address)(m->constMethod())
coleenp@4037 2235 + in_bytes(ConstMethod::codes_offset()) + bci;
duke@435 2236 // assume it is a valid return address if it is inside m and is preceded by a jsr
duke@435 2237 if (!m->contains(pc)) return false;
duke@435 2238 address jsr_pc;
duke@435 2239 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
duke@435 2240 if (*jsr_pc == Bytecodes::_jsr && jsr_pc >= m->code_base()) return true;
duke@435 2241 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
duke@435 2242 if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base()) return true;
duke@435 2243 #endif // PRODUCT
duke@435 2244 return false;
duke@435 2245 }
duke@435 2246
duke@435 2247
duke@435 2248 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
duke@435 2249 if (!VerifyOops) return;
duke@435 2250 // the VM documentation for the astore[_wide] bytecode allows
duke@435 2251 // the TOS to be not only an oop but also a return address
duke@435 2252 Label test;
duke@435 2253 Label skip;
duke@435 2254 // See if it is an address (in the current method):
duke@435 2255
duke@435 2256 mov(reg, Rtmp);
duke@435 2257 const int log2_bytecode_size_limit = 16;
duke@435 2258 srl(Rtmp, log2_bytecode_size_limit, Rtmp);
kvn@3037 2259 br_notnull_short( Rtmp, pt, test );
duke@435 2260
duke@435 2261 // %%% should use call_VM_leaf here?
duke@435 2262 save_frame_and_mov(0, Lmethod, O0, reg, O1);
duke@435 2263 save_thread(L7_thread_cache);
duke@435 2264 call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
duke@435 2265 delayed()->nop();
duke@435 2266 restore_thread(L7_thread_cache);
duke@435 2267 br_notnull( O0, false, pt, skip );
duke@435 2268 delayed()->restore();
duke@435 2269
duke@435 2270 // Perform a more elaborate out-of-line call
duke@435 2271 // Not an address; verify it:
duke@435 2272 bind(test);
duke@435 2273 verify_oop(reg);
duke@435 2274 bind(skip);
duke@435 2275 }
duke@435 2276
duke@435 2277
duke@435 2278 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
duke@435 2279 if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
duke@435 2280 }
duke@435 2281 #endif /* CC_INTERP */
duke@435 2282
duke@435 2283 // Inline assembly for:
duke@435 2284 //
duke@435 2285 // if (thread is in interp_only_mode) {
duke@435 2286 // InterpreterRuntime::post_method_entry();
duke@435 2287 // }
duke@435 2288 // if (DTraceMethodProbes) {
twisti@1040 2289 // SharedRuntime::dtrace_method_entry(method, receiver);
duke@435 2290 // }
dcubed@1045 2291 // if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
dcubed@1045 2292 // SharedRuntime::rc_trace_method_entry(method, receiver);
coleenp@857 2293 // }
duke@435 2294
duke@435 2295 void InterpreterMacroAssembler::notify_method_entry() {
duke@435 2296
duke@435 2297 // C++ interpreter only uses this for native methods.
duke@435 2298
duke@435 2299 // Whenever JVMTI puts a thread in interp_only_mode, method
duke@435 2300 // entry/exit events are sent for that thread to track stack
duke@435 2301 // depth. If it is possible to enter interp_only_mode we add
duke@435 2302 // the code to check if the event should be sent.
duke@435 2303 if (JvmtiExport::can_post_interpreter_events()) {
duke@435 2304 Label L;
duke@435 2305 Register temp_reg = O5;
twisti@1162 2306 const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
duke@435 2307 ld(interp_only, temp_reg);
kvn@3037 2308 cmp_and_br_short(temp_reg, 0, equal, pt, L);
duke@435 2309 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
duke@435 2310 bind(L);
duke@435 2311 }
duke@435 2312
duke@435 2313 {
duke@435 2314 Register temp_reg = O5;
duke@435 2315 SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
duke@435 2316 call_VM_leaf(noreg,
duke@435 2317 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
duke@435 2318 G2_thread, Lmethod);
duke@435 2319 }
dcubed@1045 2320
dcubed@1045 2321 // RedefineClasses() tracing support for obsolete method entry
dcubed@1045 2322 if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
dcubed@1045 2323 call_VM_leaf(noreg,
dcubed@1045 2324 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
dcubed@1045 2325 G2_thread, Lmethod);
dcubed@1045 2326 }
duke@435 2327 }
duke@435 2328
duke@435 2329
duke@435 2330 // Inline assembly for:
duke@435 2331 //
duke@435 2332 // if (thread is in interp_only_mode) {
duke@435 2333 // // save result
duke@435 2334 // InterpreterRuntime::post_method_exit();
duke@435 2335 // // restore result
duke@435 2336 // }
duke@435 2337 // if (DTraceMethodProbes) {
duke@435 2338 // SharedRuntime::dtrace_method_exit(thread, method);
duke@435 2339 // }
duke@435 2340 //
duke@435 2341 // Native methods have their result stored in d_tmp and l_tmp
duke@435 2342 // Java methods have their result stored in the expression stack
duke@435 2343
duke@435 2344 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
duke@435 2345 TosState state,
duke@435 2346 NotifyMethodExitMode mode) {
duke@435 2347 // C++ interpreter only uses this for native methods.
duke@435 2348
duke@435 2349 // Whenever JVMTI puts a thread in interp_only_mode, method
duke@435 2350 // entry/exit events are sent for that thread to track stack
duke@435 2351 // depth. If it is possible to enter interp_only_mode we add
duke@435 2352 // the code to check if the event should be sent.
duke@435 2353 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
duke@435 2354 Label L;
duke@435 2355 Register temp_reg = O5;
twisti@1162 2356 const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
duke@435 2357 ld(interp_only, temp_reg);
kvn@3037 2358 cmp_and_br_short(temp_reg, 0, equal, pt, L);
duke@435 2359
duke@435 2360 // Note: frame::interpreter_frame_result has a dependency on how the
duke@435 2361 // method result is saved across the call to post_method_exit. For
duke@435 2362 // native methods it assumes the result registers are saved to
duke@435 2363 // l_scratch and d_scratch. If this changes then the interpreter_frame_result
duke@435 2364 // implementation will need to be updated too.
duke@435 2365
duke@435 2366 save_return_value(state, is_native_method);
duke@435 2367 call_VM(noreg,
duke@435 2368 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
duke@435 2369 restore_return_value(state, is_native_method);
duke@435 2370 bind(L);
duke@435 2371 }
duke@435 2372
duke@435 2373 {
duke@435 2374 Register temp_reg = O5;
duke@435 2375 // Dtrace notification
duke@435 2376 SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
duke@435 2377 save_return_value(state, is_native_method);
duke@435 2378 call_VM_leaf(
duke@435 2379 noreg,
duke@435 2380 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
duke@435 2381 G2_thread, Lmethod);
duke@435 2382 restore_return_value(state, is_native_method);
duke@435 2383 }
duke@435 2384 }
duke@435 2385
duke@435 2386 void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
duke@435 2387 #ifdef CC_INTERP
duke@435 2388 // result potentially in O0/O1: save it across calls
duke@435 2389 stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
duke@435 2390 #ifdef _LP64
duke@435 2391 stx(O0, STATE(_native_lresult));
duke@435 2392 #else
duke@435 2393 std(O0, STATE(_native_lresult));
duke@435 2394 #endif
duke@435 2395 #else // CC_INTERP
duke@435 2396 if (is_native_call) {
duke@435 2397 stf(FloatRegisterImpl::D, F0, d_tmp);
duke@435 2398 #ifdef _LP64
duke@435 2399 stx(O0, l_tmp);
duke@435 2400 #else
duke@435 2401 std(O0, l_tmp);
duke@435 2402 #endif
duke@435 2403 } else {
duke@435 2404 push(state);
duke@435 2405 }
duke@435 2406 #endif // CC_INTERP
duke@435 2407 }
duke@435 2408
duke@435 2409 void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
duke@435 2410 #ifdef CC_INTERP
duke@435 2411 ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
duke@435 2412 #ifdef _LP64
duke@435 2413 ldx(STATE(_native_lresult), O0);
duke@435 2414 #else
duke@435 2415 ldd(STATE(_native_lresult), O0);
duke@435 2416 #endif
duke@435 2417 #else // CC_INTERP
duke@435 2418 if (is_native_call) {
duke@435 2419 ldf(FloatRegisterImpl::D, d_tmp, F0);
duke@435 2420 #ifdef _LP64
duke@435 2421 ldx(l_tmp, O0);
duke@435 2422 #else
duke@435 2423 ldd(l_tmp, O0);
duke@435 2424 #endif
duke@435 2425 } else {
duke@435 2426 pop(state);
duke@435 2427 }
duke@435 2428 #endif // CC_INTERP
duke@435 2429 }
iveresov@2138 2430
iveresov@2138 2431 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
iveresov@2138 2432 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
iveresov@2138 2433 int increment, int mask,
iveresov@2138 2434 Register scratch1, Register scratch2,
iveresov@2138 2435 Condition cond, Label *where) {
iveresov@2138 2436 ld(counter_addr, scratch1);
iveresov@2138 2437 add(scratch1, increment, scratch1);
iveresov@2138 2438 if (is_simm13(mask)) {
iveresov@2138 2439 andcc(scratch1, mask, G0);
iveresov@2138 2440 } else {
iveresov@2138 2441 set(mask, scratch2);
iveresov@2138 2442 andcc(scratch1, scratch2, G0);
iveresov@2138 2443 }
iveresov@2138 2444 br(cond, false, Assembler::pn, *where);
iveresov@2138 2445 delayed()->st(scratch1, counter_addr);
iveresov@2138 2446 }

mercurial