src/share/vm/adlc/formssel.cpp

Tue, 26 Nov 2013 18:38:19 -0800

author
goetz
date
Tue, 26 Nov 2013 18:38:19 -0800
changeset 6489
50fdb38839eb
parent 6484
318d0622a6d7
child 6503
a9becfeecd1b
permissions
-rw-r--r--

8028515: PPPC64 (part 113.2): opto: Introduce LoadFence/StoreFence.
Summary: Use new nodes for loadFence/storeFence intrinsics in C2.
Reviewed-by: kvn, dholmes

     1 /*
     2  * Copyright (c) 1998, 2012, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 // FORMS.CPP - Definitions for ADL Parser Forms Classes
    26 #include "adlc.hpp"
    28 //==============================Instructions===================================
    29 //------------------------------InstructForm-----------------------------------
    30 InstructForm::InstructForm(const char *id, bool ideal_only)
    31   : _ident(id), _ideal_only(ideal_only),
    32     _localNames(cmpstr, hashstr, Form::arena),
    33     _effects(cmpstr, hashstr, Form::arena),
    34     _is_mach_constant(false),
    35     _needs_constant_base(false),
    36     _has_call(false)
    37 {
    38       _ftype = Form::INS;
    40       _matrule              = NULL;
    41       _insencode            = NULL;
    42       _constant             = NULL;
    43       _is_postalloc_expand  = false;
    44       _opcode               = NULL;
    45       _size                 = NULL;
    46       _attribs              = NULL;
    47       _predicate            = NULL;
    48       _exprule              = NULL;
    49       _rewrule              = NULL;
    50       _format               = NULL;
    51       _peephole             = NULL;
    52       _ins_pipe             = NULL;
    53       _uniq_idx             = NULL;
    54       _num_uniq             = 0;
    55       _cisc_spill_operand   = Not_cisc_spillable;// Which operand may cisc-spill
    56       _cisc_spill_alternate = NULL;            // possible cisc replacement
    57       _cisc_reg_mask_name   = NULL;
    58       _is_cisc_alternate    = false;
    59       _is_short_branch      = false;
    60       _short_branch_form    = NULL;
    61       _alignment            = 1;
    62 }
    64 InstructForm::InstructForm(const char *id, InstructForm *instr, MatchRule *rule)
    65   : _ident(id), _ideal_only(false),
    66     _localNames(instr->_localNames),
    67     _effects(instr->_effects),
    68     _is_mach_constant(false),
    69     _needs_constant_base(false),
    70     _has_call(false)
    71 {
    72       _ftype = Form::INS;
    74       _matrule               = rule;
    75       _insencode             = instr->_insencode;
    76       _constant              = instr->_constant;
    77       _is_postalloc_expand   = instr->_is_postalloc_expand;
    78       _opcode                = instr->_opcode;
    79       _size                  = instr->_size;
    80       _attribs               = instr->_attribs;
    81       _predicate             = instr->_predicate;
    82       _exprule               = instr->_exprule;
    83       _rewrule               = instr->_rewrule;
    84       _format                = instr->_format;
    85       _peephole              = instr->_peephole;
    86       _ins_pipe              = instr->_ins_pipe;
    87       _uniq_idx              = instr->_uniq_idx;
    88       _num_uniq              = instr->_num_uniq;
    89       _cisc_spill_operand    = Not_cisc_spillable; // Which operand may cisc-spill
    90       _cisc_spill_alternate  = NULL;               // possible cisc replacement
    91       _cisc_reg_mask_name    = NULL;
    92       _is_cisc_alternate     = false;
    93       _is_short_branch       = false;
    94       _short_branch_form     = NULL;
    95       _alignment             = 1;
    96      // Copy parameters
    97      const char *name;
    98      instr->_parameters.reset();
    99      for (; (name = instr->_parameters.iter()) != NULL;)
   100        _parameters.addName(name);
   101 }
   103 InstructForm::~InstructForm() {
   104 }
   106 InstructForm *InstructForm::is_instruction() const {
   107   return (InstructForm*)this;
   108 }
   110 bool InstructForm::ideal_only() const {
   111   return _ideal_only;
   112 }
   114 bool InstructForm::sets_result() const {
   115   return (_matrule != NULL && _matrule->sets_result());
   116 }
   118 bool InstructForm::needs_projections() {
   119   _components.reset();
   120   for( Component *comp; (comp = _components.iter()) != NULL; ) {
   121     if (comp->isa(Component::KILL)) {
   122       return true;
   123     }
   124   }
   125   return false;
   126 }
   129 bool InstructForm::has_temps() {
   130   if (_matrule) {
   131     // Examine each component to see if it is a TEMP
   132     _components.reset();
   133     // Skip the first component, if already handled as (SET dst (...))
   134     Component *comp = NULL;
   135     if (sets_result())  comp = _components.iter();
   136     while ((comp = _components.iter()) != NULL) {
   137       if (comp->isa(Component::TEMP)) {
   138         return true;
   139       }
   140     }
   141   }
   143   return false;
   144 }
   146 uint InstructForm::num_defs_or_kills() {
   147   uint   defs_or_kills = 0;
   149   _components.reset();
   150   for( Component *comp; (comp = _components.iter()) != NULL; ) {
   151     if( comp->isa(Component::DEF) || comp->isa(Component::KILL) ) {
   152       ++defs_or_kills;
   153     }
   154   }
   156   return  defs_or_kills;
   157 }
   159 // This instruction has an expand rule?
   160 bool InstructForm::expands() const {
   161   return ( _exprule != NULL );
   162 }
   164 // This instruction has a late expand rule?
   165 bool InstructForm::postalloc_expands() const {
   166   return _is_postalloc_expand;
   167 }
   169 // This instruction has a peephole rule?
   170 Peephole *InstructForm::peepholes() const {
   171   return _peephole;
   172 }
   174 // This instruction has a peephole rule?
   175 void InstructForm::append_peephole(Peephole *peephole) {
   176   if( _peephole == NULL ) {
   177     _peephole = peephole;
   178   } else {
   179     _peephole->append_peephole(peephole);
   180   }
   181 }
   184 // ideal opcode enumeration
   185 const char *InstructForm::ideal_Opcode( FormDict &globalNames )  const {
   186   if( !_matrule ) return "Node"; // Something weird
   187   // Chain rules do not really have ideal Opcodes; use their source
   188   // operand ideal Opcode instead.
   189   if( is_simple_chain_rule(globalNames) ) {
   190     const char *src = _matrule->_rChild->_opType;
   191     OperandForm *src_op = globalNames[src]->is_operand();
   192     assert( src_op, "Not operand class of chain rule" );
   193     if( !src_op->_matrule ) return "Node";
   194     return src_op->_matrule->_opType;
   195   }
   196   // Operand chain rules do not really have ideal Opcodes
   197   if( _matrule->is_chain_rule(globalNames) )
   198     return "Node";
   199   return strcmp(_matrule->_opType,"Set")
   200     ? _matrule->_opType
   201     : _matrule->_rChild->_opType;
   202 }
   204 // Recursive check on all operands' match rules in my match rule
   205 bool InstructForm::is_pinned(FormDict &globals) {
   206   if ( ! _matrule)  return false;
   208   int  index   = 0;
   209   if (_matrule->find_type("Goto",          index)) return true;
   210   if (_matrule->find_type("If",            index)) return true;
   211   if (_matrule->find_type("CountedLoopEnd",index)) return true;
   212   if (_matrule->find_type("Return",        index)) return true;
   213   if (_matrule->find_type("Rethrow",       index)) return true;
   214   if (_matrule->find_type("TailCall",      index)) return true;
   215   if (_matrule->find_type("TailJump",      index)) return true;
   216   if (_matrule->find_type("Halt",          index)) return true;
   217   if (_matrule->find_type("Jump",          index)) return true;
   219   return is_parm(globals);
   220 }
   222 // Recursive check on all operands' match rules in my match rule
   223 bool InstructForm::is_projection(FormDict &globals) {
   224   if ( ! _matrule)  return false;
   226   int  index   = 0;
   227   if (_matrule->find_type("Goto",    index)) return true;
   228   if (_matrule->find_type("Return",  index)) return true;
   229   if (_matrule->find_type("Rethrow", index)) return true;
   230   if (_matrule->find_type("TailCall",index)) return true;
   231   if (_matrule->find_type("TailJump",index)) return true;
   232   if (_matrule->find_type("Halt",    index)) return true;
   234   return false;
   235 }
   237 // Recursive check on all operands' match rules in my match rule
   238 bool InstructForm::is_parm(FormDict &globals) {
   239   if ( ! _matrule)  return false;
   241   int  index   = 0;
   242   if (_matrule->find_type("Parm",index)) return true;
   244   return false;
   245 }
   247 bool InstructForm::is_ideal_negD() const {
   248   return (_matrule && _matrule->_rChild && strcmp(_matrule->_rChild->_opType, "NegD") == 0);
   249 }
   251 // Return 'true' if this instruction matches an ideal 'Copy*' node
   252 int InstructForm::is_ideal_copy() const {
   253   return _matrule ? _matrule->is_ideal_copy() : 0;
   254 }
   256 // Return 'true' if this instruction is too complex to rematerialize.
   257 int InstructForm::is_expensive() const {
   258   // We can prove it is cheap if it has an empty encoding.
   259   // This helps with platform-specific nops like ThreadLocal and RoundFloat.
   260   if (is_empty_encoding())
   261     return 0;
   263   if (is_tls_instruction())
   264     return 1;
   266   if (_matrule == NULL)  return 0;
   268   return _matrule->is_expensive();
   269 }
   271 // Has an empty encoding if _size is a constant zero or there
   272 // are no ins_encode tokens.
   273 int InstructForm::is_empty_encoding() const {
   274   if (_insencode != NULL) {
   275     _insencode->reset();
   276     if (_insencode->encode_class_iter() == NULL) {
   277       return 1;
   278     }
   279   }
   280   if (_size != NULL && strcmp(_size, "0") == 0) {
   281     return 1;
   282   }
   283   return 0;
   284 }
   286 int InstructForm::is_tls_instruction() const {
   287   if (_ident != NULL &&
   288       ( ! strcmp( _ident,"tlsLoadP") ||
   289         ! strncmp(_ident,"tlsLoadP_",9)) ) {
   290     return 1;
   291   }
   293   if (_matrule != NULL && _insencode != NULL) {
   294     const char* opType = _matrule->_opType;
   295     if (strcmp(opType, "Set")==0)
   296       opType = _matrule->_rChild->_opType;
   297     if (strcmp(opType,"ThreadLocal")==0) {
   298       fprintf(stderr, "Warning: ThreadLocal instruction %s should be named 'tlsLoadP_*'\n",
   299               (_ident == NULL ? "NULL" : _ident));
   300       return 1;
   301     }
   302   }
   304   return 0;
   305 }
   308 // Return 'true' if this instruction matches an ideal 'If' node
   309 bool InstructForm::is_ideal_if() const {
   310   if( _matrule == NULL ) return false;
   312   return _matrule->is_ideal_if();
   313 }
   315 // Return 'true' if this instruction matches an ideal 'FastLock' node
   316 bool InstructForm::is_ideal_fastlock() const {
   317   if( _matrule == NULL ) return false;
   319   return _matrule->is_ideal_fastlock();
   320 }
   322 // Return 'true' if this instruction matches an ideal 'MemBarXXX' node
   323 bool InstructForm::is_ideal_membar() const {
   324   if( _matrule == NULL ) return false;
   326   return _matrule->is_ideal_membar();
   327 }
   329 // Return 'true' if this instruction matches an ideal 'LoadPC' node
   330 bool InstructForm::is_ideal_loadPC() const {
   331   if( _matrule == NULL ) return false;
   333   return _matrule->is_ideal_loadPC();
   334 }
   336 // Return 'true' if this instruction matches an ideal 'Box' node
   337 bool InstructForm::is_ideal_box() const {
   338   if( _matrule == NULL ) return false;
   340   return _matrule->is_ideal_box();
   341 }
   343 // Return 'true' if this instruction matches an ideal 'Goto' node
   344 bool InstructForm::is_ideal_goto() const {
   345   if( _matrule == NULL ) return false;
   347   return _matrule->is_ideal_goto();
   348 }
   350 // Return 'true' if this instruction matches an ideal 'Jump' node
   351 bool InstructForm::is_ideal_jump() const {
   352   if( _matrule == NULL ) return false;
   354   return _matrule->is_ideal_jump();
   355 }
   357 // Return 'true' if instruction matches ideal 'If' | 'Goto' | 'CountedLoopEnd'
   358 bool InstructForm::is_ideal_branch() const {
   359   if( _matrule == NULL ) return false;
   361   return _matrule->is_ideal_if() || _matrule->is_ideal_goto();
   362 }
   365 // Return 'true' if this instruction matches an ideal 'Return' node
   366 bool InstructForm::is_ideal_return() const {
   367   if( _matrule == NULL ) return false;
   369   // Check MatchRule to see if the first entry is the ideal "Return" node
   370   int  index   = 0;
   371   if (_matrule->find_type("Return",index)) return true;
   372   if (_matrule->find_type("Rethrow",index)) return true;
   373   if (_matrule->find_type("TailCall",index)) return true;
   374   if (_matrule->find_type("TailJump",index)) return true;
   376   return false;
   377 }
   379 // Return 'true' if this instruction matches an ideal 'Halt' node
   380 bool InstructForm::is_ideal_halt() const {
   381   int  index   = 0;
   382   return _matrule && _matrule->find_type("Halt",index);
   383 }
   385 // Return 'true' if this instruction matches an ideal 'SafePoint' node
   386 bool InstructForm::is_ideal_safepoint() const {
   387   int  index   = 0;
   388   return _matrule && _matrule->find_type("SafePoint",index);
   389 }
   391 // Return 'true' if this instruction matches an ideal 'Nop' node
   392 bool InstructForm::is_ideal_nop() const {
   393   return _ident && _ident[0] == 'N' && _ident[1] == 'o' && _ident[2] == 'p' && _ident[3] == '_';
   394 }
   396 bool InstructForm::is_ideal_control() const {
   397   if ( ! _matrule)  return false;
   399   return is_ideal_return() || is_ideal_branch() || _matrule->is_ideal_jump() || is_ideal_halt();
   400 }
   402 // Return 'true' if this instruction matches an ideal 'Call' node
   403 Form::CallType InstructForm::is_ideal_call() const {
   404   if( _matrule == NULL ) return Form::invalid_type;
   406   // Check MatchRule to see if the first entry is the ideal "Call" node
   407   int  idx   = 0;
   408   if(_matrule->find_type("CallStaticJava",idx))   return Form::JAVA_STATIC;
   409   idx = 0;
   410   if(_matrule->find_type("Lock",idx))             return Form::JAVA_STATIC;
   411   idx = 0;
   412   if(_matrule->find_type("Unlock",idx))           return Form::JAVA_STATIC;
   413   idx = 0;
   414   if(_matrule->find_type("CallDynamicJava",idx))  return Form::JAVA_DYNAMIC;
   415   idx = 0;
   416   if(_matrule->find_type("CallRuntime",idx))      return Form::JAVA_RUNTIME;
   417   idx = 0;
   418   if(_matrule->find_type("CallLeaf",idx))         return Form::JAVA_LEAF;
   419   idx = 0;
   420   if(_matrule->find_type("CallLeafNoFP",idx))     return Form::JAVA_LEAF;
   421   idx = 0;
   423   return Form::invalid_type;
   424 }
   426 // Return 'true' if this instruction matches an ideal 'Load?' node
   427 Form::DataType InstructForm::is_ideal_load() const {
   428   if( _matrule == NULL ) return Form::none;
   430   return  _matrule->is_ideal_load();
   431 }
   433 // Return 'true' if this instruction matches an ideal 'LoadKlass' node
   434 bool InstructForm::skip_antidep_check() const {
   435   if( _matrule == NULL ) return false;
   437   return  _matrule->skip_antidep_check();
   438 }
   440 // Return 'true' if this instruction matches an ideal 'Load?' node
   441 Form::DataType InstructForm::is_ideal_store() const {
   442   if( _matrule == NULL ) return Form::none;
   444   return  _matrule->is_ideal_store();
   445 }
   447 // Return 'true' if this instruction matches an ideal vector node
   448 bool InstructForm::is_vector() const {
   449   if( _matrule == NULL ) return false;
   451   return _matrule->is_vector();
   452 }
   455 // Return the input register that must match the output register
   456 // If this is not required, return 0
   457 uint InstructForm::two_address(FormDict &globals) {
   458   uint  matching_input = 0;
   459   if(_components.count() == 0) return 0;
   461   _components.reset();
   462   Component *comp = _components.iter();
   463   // Check if there is a DEF
   464   if( comp->isa(Component::DEF) ) {
   465     // Check that this is a register
   466     const char  *def_type = comp->_type;
   467     const Form  *form     = globals[def_type];
   468     OperandForm *op       = form->is_operand();
   469     if( op ) {
   470       if( op->constrained_reg_class() != NULL &&
   471           op->interface_type(globals) == Form::register_interface ) {
   472         // Remember the local name for equality test later
   473         const char *def_name = comp->_name;
   474         // Check if a component has the same name and is a USE
   475         do {
   476           if( comp->isa(Component::USE) && strcmp(comp->_name,def_name)==0 ) {
   477             return operand_position_format(def_name);
   478           }
   479         } while( (comp = _components.iter()) != NULL);
   480       }
   481     }
   482   }
   484   return 0;
   485 }
   488 // when chaining a constant to an instruction, returns 'true' and sets opType
   489 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals) {
   490   const char *dummy  = NULL;
   491   const char *dummy2 = NULL;
   492   return is_chain_of_constant(globals, dummy, dummy2);
   493 }
   494 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
   495                 const char * &opTypeParam) {
   496   const char *result = NULL;
   498   return is_chain_of_constant(globals, opTypeParam, result);
   499 }
   501 Form::DataType InstructForm::is_chain_of_constant(FormDict &globals,
   502                 const char * &opTypeParam, const char * &resultParam) {
   503   Form::DataType  data_type = Form::none;
   504   if ( ! _matrule)  return data_type;
   506   // !!!!!
   507   // The source of the chain rule is 'position = 1'
   508   uint         position = 1;
   509   const char  *result   = NULL;
   510   const char  *name     = NULL;
   511   const char  *opType   = NULL;
   512   // Here base_operand is looking for an ideal type to be returned (opType).
   513   if ( _matrule->is_chain_rule(globals)
   514        && _matrule->base_operand(position, globals, result, name, opType) ) {
   515     data_type = ideal_to_const_type(opType);
   517     // if it isn't an ideal constant type, just return
   518     if ( data_type == Form::none ) return data_type;
   520     // Ideal constant types also adjust the opType parameter.
   521     resultParam = result;
   522     opTypeParam = opType;
   523     return data_type;
   524   }
   526   return data_type;
   527 }
   529 // Check if a simple chain rule
   530 bool InstructForm::is_simple_chain_rule(FormDict &globals) const {
   531   if( _matrule && _matrule->sets_result()
   532       && _matrule->_rChild->_lChild == NULL
   533       && globals[_matrule->_rChild->_opType]
   534       && globals[_matrule->_rChild->_opType]->is_opclass() ) {
   535     return true;
   536   }
   537   return false;
   538 }
   540 // check for structural rematerialization
   541 bool InstructForm::rematerialize(FormDict &globals, RegisterForm *registers ) {
   542   bool   rematerialize = false;
   544   Form::DataType data_type = is_chain_of_constant(globals);
   545   if( data_type != Form::none )
   546     rematerialize = true;
   548   // Constants
   549   if( _components.count() == 1 && _components[0]->is(Component::USE_DEF) )
   550     rematerialize = true;
   552   // Pseudo-constants (values easily available to the runtime)
   553   if (is_empty_encoding() && is_tls_instruction())
   554     rematerialize = true;
   556   // 1-input, 1-output, such as copies or increments.
   557   if( _components.count() == 2 &&
   558       _components[0]->is(Component::DEF) &&
   559       _components[1]->isa(Component::USE) )
   560     rematerialize = true;
   562   // Check for an ideal 'Load?' and eliminate rematerialize option
   563   if ( is_ideal_load() != Form::none || // Ideal load?  Do not rematerialize
   564        is_ideal_copy() != Form::none || // Ideal copy?  Do not rematerialize
   565        is_expensive()  != Form::none) { // Expensive?   Do not rematerialize
   566     rematerialize = false;
   567   }
   569   // Always rematerialize the flags.  They are more expensive to save &
   570   // restore than to recompute (and possibly spill the compare's inputs).
   571   if( _components.count() >= 1 ) {
   572     Component *c = _components[0];
   573     const Form *form = globals[c->_type];
   574     OperandForm *opform = form->is_operand();
   575     if( opform ) {
   576       // Avoid the special stack_slots register classes
   577       const char *rc_name = opform->constrained_reg_class();
   578       if( rc_name ) {
   579         if( strcmp(rc_name,"stack_slots") ) {
   580           // Check for ideal_type of RegFlags
   581           const char *type = opform->ideal_type( globals, registers );
   582           if( (type != NULL) && !strcmp(type, "RegFlags") )
   583             rematerialize = true;
   584         } else
   585           rematerialize = false; // Do not rematerialize things target stk
   586       }
   587     }
   588   }
   590   return rematerialize;
   591 }
   593 // loads from memory, so must check for anti-dependence
   594 bool InstructForm::needs_anti_dependence_check(FormDict &globals) const {
   595   if ( skip_antidep_check() ) return false;
   597   // Machine independent loads must be checked for anti-dependences
   598   if( is_ideal_load() != Form::none )  return true;
   600   // !!!!! !!!!! !!!!!
   601   // TEMPORARY
   602   // if( is_simple_chain_rule(globals) )  return false;
   604   // String.(compareTo/equals/indexOf) and Arrays.equals use many memorys edges,
   605   // but writes none
   606   if( _matrule && _matrule->_rChild &&
   607       ( strcmp(_matrule->_rChild->_opType,"StrComp"    )==0 ||
   608         strcmp(_matrule->_rChild->_opType,"StrEquals"  )==0 ||
   609         strcmp(_matrule->_rChild->_opType,"StrIndexOf" )==0 ||
   610         strcmp(_matrule->_rChild->_opType,"AryEq"      )==0 ))
   611     return true;
   613   // Check if instruction has a USE of a memory operand class, but no defs
   614   bool USE_of_memory  = false;
   615   bool DEF_of_memory  = false;
   616   Component     *comp = NULL;
   617   ComponentList &components = (ComponentList &)_components;
   619   components.reset();
   620   while( (comp = components.iter()) != NULL ) {
   621     const Form  *form = globals[comp->_type];
   622     if( !form ) continue;
   623     OpClassForm *op   = form->is_opclass();
   624     if( !op ) continue;
   625     if( form->interface_type(globals) == Form::memory_interface ) {
   626       if( comp->isa(Component::USE) ) USE_of_memory = true;
   627       if( comp->isa(Component::DEF) ) {
   628         OperandForm *oper = form->is_operand();
   629         if( oper && oper->is_user_name_for_sReg() ) {
   630           // Stack slots are unaliased memory handled by allocator
   631           oper = oper;  // debug stopping point !!!!!
   632         } else {
   633           DEF_of_memory = true;
   634         }
   635       }
   636     }
   637   }
   638   return (USE_of_memory && !DEF_of_memory);
   639 }
   642 bool InstructForm::is_wide_memory_kill(FormDict &globals) const {
   643   if( _matrule == NULL ) return false;
   644   if( !_matrule->_opType ) return false;
   646   if( strcmp(_matrule->_opType,"MemBarRelease") == 0 ) return true;
   647   if( strcmp(_matrule->_opType,"MemBarAcquire") == 0 ) return true;
   648   if( strcmp(_matrule->_opType,"MemBarReleaseLock") == 0 ) return true;
   649   if( strcmp(_matrule->_opType,"MemBarAcquireLock") == 0 ) return true;
   650   if( strcmp(_matrule->_opType,"MemBarStoreStore") == 0 ) return true;
   651   if( strcmp(_matrule->_opType,"StoreFence") == 0 ) return true;
   652   if( strcmp(_matrule->_opType,"LoadFence") == 0 ) return true;
   654   return false;
   655 }
   657 int InstructForm::memory_operand(FormDict &globals) const {
   658   // Machine independent loads must be checked for anti-dependences
   659   // Check if instruction has a USE of a memory operand class, or a def.
   660   int USE_of_memory  = 0;
   661   int DEF_of_memory  = 0;
   662   const char*    last_memory_DEF = NULL; // to test DEF/USE pairing in asserts
   663   Component     *unique          = NULL;
   664   Component     *comp            = NULL;
   665   ComponentList &components      = (ComponentList &)_components;
   667   components.reset();
   668   while( (comp = components.iter()) != NULL ) {
   669     const Form  *form = globals[comp->_type];
   670     if( !form ) continue;
   671     OpClassForm *op   = form->is_opclass();
   672     if( !op ) continue;
   673     if( op->stack_slots_only(globals) )  continue;
   674     if( form->interface_type(globals) == Form::memory_interface ) {
   675       if( comp->isa(Component::DEF) ) {
   676         last_memory_DEF = comp->_name;
   677         DEF_of_memory++;
   678         unique = comp;
   679       } else if( comp->isa(Component::USE) ) {
   680         if( last_memory_DEF != NULL ) {
   681           assert(0 == strcmp(last_memory_DEF, comp->_name), "every memory DEF is followed by a USE of the same name");
   682           last_memory_DEF = NULL;
   683         }
   684         USE_of_memory++;
   685         if (DEF_of_memory == 0)  // defs take precedence
   686           unique = comp;
   687       } else {
   688         assert(last_memory_DEF == NULL, "unpaired memory DEF");
   689       }
   690     }
   691   }
   692   assert(last_memory_DEF == NULL, "unpaired memory DEF");
   693   assert(USE_of_memory >= DEF_of_memory, "unpaired memory DEF");
   694   USE_of_memory -= DEF_of_memory;   // treat paired DEF/USE as one occurrence
   695   if( (USE_of_memory + DEF_of_memory) > 0 ) {
   696     if( is_simple_chain_rule(globals) ) {
   697       //fprintf(stderr, "Warning: chain rule is not really a memory user.\n");
   698       //((InstructForm*)this)->dump();
   699       // Preceding code prints nothing on sparc and these insns on intel:
   700       // leaP8 leaP32 leaPIdxOff leaPIdxScale leaPIdxScaleOff leaP8 leaP32
   701       // leaPIdxOff leaPIdxScale leaPIdxScaleOff
   702       return NO_MEMORY_OPERAND;
   703     }
   705     if( DEF_of_memory == 1 ) {
   706       assert(unique != NULL, "");
   707       if( USE_of_memory == 0 ) {
   708         // unique def, no uses
   709       } else {
   710         // // unique def, some uses
   711         // // must return bottom unless all uses match def
   712         // unique = NULL;
   713       }
   714     } else if( DEF_of_memory > 0 ) {
   715       // multiple defs, don't care about uses
   716       unique = NULL;
   717     } else if( USE_of_memory == 1) {
   718       // unique use, no defs
   719       assert(unique != NULL, "");
   720     } else if( USE_of_memory > 0 ) {
   721       // multiple uses, no defs
   722       unique = NULL;
   723     } else {
   724       assert(false, "bad case analysis");
   725     }
   726     // process the unique DEF or USE, if there is one
   727     if( unique == NULL ) {
   728       return MANY_MEMORY_OPERANDS;
   729     } else {
   730       int pos = components.operand_position(unique->_name);
   731       if( unique->isa(Component::DEF) ) {
   732         pos += 1;                // get corresponding USE from DEF
   733       }
   734       assert(pos >= 1, "I was just looking at it!");
   735       return pos;
   736     }
   737   }
   739   // missed the memory op??
   740   if( true ) {  // %%% should not be necessary
   741     if( is_ideal_store() != Form::none ) {
   742       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
   743       ((InstructForm*)this)->dump();
   744       // pretend it has multiple defs and uses
   745       return MANY_MEMORY_OPERANDS;
   746     }
   747     if( is_ideal_load()  != Form::none ) {
   748       fprintf(stderr, "Warning: cannot find memory opnd in instr.\n");
   749       ((InstructForm*)this)->dump();
   750       // pretend it has multiple uses and no defs
   751       return MANY_MEMORY_OPERANDS;
   752     }
   753   }
   755   return NO_MEMORY_OPERAND;
   756 }
   759 // This instruction captures the machine-independent bottom_type
   760 // Expected use is for pointer vs oop determination for LoadP
   761 bool InstructForm::captures_bottom_type(FormDict &globals) const {
   762   if( _matrule && _matrule->_rChild &&
   763        (!strcmp(_matrule->_rChild->_opType,"CastPP")       ||  // new result type
   764         !strcmp(_matrule->_rChild->_opType,"CastX2P")      ||  // new result type
   765         !strcmp(_matrule->_rChild->_opType,"DecodeN")      ||
   766         !strcmp(_matrule->_rChild->_opType,"EncodeP")      ||
   767         !strcmp(_matrule->_rChild->_opType,"DecodeNKlass") ||
   768         !strcmp(_matrule->_rChild->_opType,"EncodePKlass") ||
   769         !strcmp(_matrule->_rChild->_opType,"LoadN")        ||
   770         !strcmp(_matrule->_rChild->_opType,"LoadNKlass")   ||
   771         !strcmp(_matrule->_rChild->_opType,"CreateEx")     ||  // type of exception
   772         !strcmp(_matrule->_rChild->_opType,"CheckCastPP")  ||
   773         !strcmp(_matrule->_rChild->_opType,"GetAndSetP")   ||
   774         !strcmp(_matrule->_rChild->_opType,"GetAndSetN")) )  return true;
   775   else if ( is_ideal_load() == Form::idealP )                return true;
   776   else if ( is_ideal_store() != Form::none  )                return true;
   778   if (needs_base_oop_edge(globals)) return true;
   780   if (is_vector()) return true;
   781   if (is_mach_constant()) return true;
   783   return  false;
   784 }
   787 // Access instr_cost attribute or return NULL.
   788 const char* InstructForm::cost() {
   789   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
   790     if( strcmp(cur->_ident,AttributeForm::_ins_cost) == 0 ) {
   791       return cur->_val;
   792     }
   793   }
   794   return NULL;
   795 }
   797 // Return count of top-level operands.
   798 uint InstructForm::num_opnds() {
   799   int  num_opnds = _components.num_operands();
   801   // Need special handling for matching some ideal nodes
   802   // i.e. Matching a return node
   803   /*
   804   if( _matrule ) {
   805     if( strcmp(_matrule->_opType,"Return"   )==0 ||
   806         strcmp(_matrule->_opType,"Halt"     )==0 )
   807       return 3;
   808   }
   809     */
   810   return num_opnds;
   811 }
   813 const char* InstructForm::opnd_ident(int idx) {
   814   return _components.at(idx)->_name;
   815 }
   817 const char* InstructForm::unique_opnd_ident(uint idx) {
   818   uint i;
   819   for (i = 1; i < num_opnds(); ++i) {
   820     if (unique_opnds_idx(i) == idx) {
   821       break;
   822     }
   823   }
   824   return (_components.at(i) != NULL) ? _components.at(i)->_name : "";
   825 }
   827 // Return count of unmatched operands.
   828 uint InstructForm::num_post_match_opnds() {
   829   uint  num_post_match_opnds = _components.count();
   830   uint  num_match_opnds = _components.match_count();
   831   num_post_match_opnds = num_post_match_opnds - num_match_opnds;
   833   return num_post_match_opnds;
   834 }
   836 // Return the number of leaves below this complex operand
   837 uint InstructForm::num_consts(FormDict &globals) const {
   838   if ( ! _matrule) return 0;
   840   // This is a recursive invocation on all operands in the matchrule
   841   return _matrule->num_consts(globals);
   842 }
   844 // Constants in match rule with specified type
   845 uint InstructForm::num_consts(FormDict &globals, Form::DataType type) const {
   846   if ( ! _matrule) return 0;
   848   // This is a recursive invocation on all operands in the matchrule
   849   return _matrule->num_consts(globals, type);
   850 }
   853 // Return the register class associated with 'leaf'.
   854 const char *InstructForm::out_reg_class(FormDict &globals) {
   855   assert( false, "InstructForm::out_reg_class(FormDict &globals); Not Implemented");
   857   return NULL;
   858 }
   862 // Lookup the starting position of inputs we are interested in wrt. ideal nodes
   863 uint InstructForm::oper_input_base(FormDict &globals) {
   864   if( !_matrule ) return 1;     // Skip control for most nodes
   866   // Need special handling for matching some ideal nodes
   867   // i.e. Matching a return node
   868   if( strcmp(_matrule->_opType,"Return"    )==0 ||
   869       strcmp(_matrule->_opType,"Rethrow"   )==0 ||
   870       strcmp(_matrule->_opType,"TailCall"  )==0 ||
   871       strcmp(_matrule->_opType,"TailJump"  )==0 ||
   872       strcmp(_matrule->_opType,"SafePoint" )==0 ||
   873       strcmp(_matrule->_opType,"Halt"      )==0 )
   874     return AdlcVMDeps::Parms;   // Skip the machine-state edges
   876   if( _matrule->_rChild &&
   877       ( strcmp(_matrule->_rChild->_opType,"AryEq"     )==0 ||
   878         strcmp(_matrule->_rChild->_opType,"StrComp"   )==0 ||
   879         strcmp(_matrule->_rChild->_opType,"StrEquals" )==0 ||
   880         strcmp(_matrule->_rChild->_opType,"StrIndexOf")==0 ||
   881         strcmp(_matrule->_rChild->_opType,"EncodeISOArray")==0)) {
   882         // String.(compareTo/equals/indexOf) and Arrays.equals
   883         // and sun.nio.cs.iso8859_1$Encoder.EncodeISOArray
   884         // take 1 control and 1 memory edges.
   885     return 2;
   886   }
   888   // Check for handling of 'Memory' input/edge in the ideal world.
   889   // The AD file writer is shielded from knowledge of these edges.
   890   int base = 1;                 // Skip control
   891   base += _matrule->needs_ideal_memory_edge(globals);
   893   // Also skip the base-oop value for uses of derived oops.
   894   // The AD file writer is shielded from knowledge of these edges.
   895   base += needs_base_oop_edge(globals);
   897   return base;
   898 }
   900 // This function determines the order of the MachOper in _opnds[]
   901 // by writing the operand names into the _components list.
   902 //
   903 // Implementation does not modify state of internal structures
   904 void InstructForm::build_components() {
   905   // Add top-level operands to the components
   906   if (_matrule)  _matrule->append_components(_localNames, _components);
   908   // Add parameters that "do not appear in match rule".
   909   bool has_temp = false;
   910   const char *name;
   911   const char *kill_name = NULL;
   912   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
   913     OperandForm *opForm = (OperandForm*)_localNames[name];
   915     Effect* e = NULL;
   916     {
   917       const Form* form = _effects[name];
   918       e = form ? form->is_effect() : NULL;
   919     }
   921     if (e != NULL) {
   922       has_temp |= e->is(Component::TEMP);
   924       // KILLs must be declared after any TEMPs because TEMPs are real
   925       // uses so their operand numbering must directly follow the real
   926       // inputs from the match rule.  Fixing the numbering seems
   927       // complex so simply enforce the restriction during parse.
   928       if (kill_name != NULL &&
   929           e->isa(Component::TEMP) && !e->isa(Component::DEF)) {
   930         OperandForm* kill = (OperandForm*)_localNames[kill_name];
   931         globalAD->syntax_err(_linenum, "%s: %s %s must be at the end of the argument list\n",
   932                              _ident, kill->_ident, kill_name);
   933       } else if (e->isa(Component::KILL) && !e->isa(Component::USE)) {
   934         kill_name = name;
   935       }
   936     }
   938     const Component *component  = _components.search(name);
   939     if ( component  == NULL ) {
   940       if (e) {
   941         _components.insert(name, opForm->_ident, e->_use_def, false);
   942         component = _components.search(name);
   943         if (component->isa(Component::USE) && !component->isa(Component::TEMP) && _matrule) {
   944           const Form *form = globalAD->globalNames()[component->_type];
   945           assert( form, "component type must be a defined form");
   946           OperandForm *op   = form->is_operand();
   947           if (op->_interface && op->_interface->is_RegInterface()) {
   948             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
   949                                  _ident, opForm->_ident, name);
   950           }
   951         }
   952       } else {
   953         // This would be a nice warning but it triggers in a few places in a benign way
   954         // if (_matrule != NULL && !expands()) {
   955         //   globalAD->syntax_err(_linenum, "%s: %s %s not mentioned in effect or match rule\n",
   956         //                        _ident, opForm->_ident, name);
   957         // }
   958         _components.insert(name, opForm->_ident, Component::INVALID, false);
   959       }
   960     }
   961     else if (e) {
   962       // Component was found in the list
   963       // Check if there is a new effect that requires an extra component.
   964       // This happens when adding 'USE' to a component that is not yet one.
   965       if ((!component->isa( Component::USE) && ((e->_use_def & Component::USE) != 0))) {
   966         if (component->isa(Component::USE) && _matrule) {
   967           const Form *form = globalAD->globalNames()[component->_type];
   968           assert( form, "component type must be a defined form");
   969           OperandForm *op   = form->is_operand();
   970           if (op->_interface && op->_interface->is_RegInterface()) {
   971             globalAD->syntax_err(_linenum, "%s: illegal USE of non-input: %s %s\n",
   972                                  _ident, opForm->_ident, name);
   973           }
   974         }
   975         _components.insert(name, opForm->_ident, e->_use_def, false);
   976       } else {
   977         Component  *comp = (Component*)component;
   978         comp->promote_use_def_info(e->_use_def);
   979       }
   980       // Component positions are zero based.
   981       int  pos  = _components.operand_position(name);
   982       assert( ! (component->isa(Component::DEF) && (pos >= 1)),
   983               "Component::DEF can only occur in the first position");
   984     }
   985   }
   987   // Resolving the interactions between expand rules and TEMPs would
   988   // be complex so simply disallow it.
   989   if (_matrule == NULL && has_temp) {
   990     globalAD->syntax_err(_linenum, "%s: TEMPs without match rule isn't supported\n", _ident);
   991   }
   993   return;
   994 }
   996 // Return zero-based position in component list;  -1 if not in list.
   997 int   InstructForm::operand_position(const char *name, int usedef) {
   998   return unique_opnds_idx(_components.operand_position(name, usedef, this));
   999 }
  1001 int   InstructForm::operand_position_format(const char *name) {
  1002   return unique_opnds_idx(_components.operand_position_format(name, this));
  1005 // Return zero-based position in component list; -1 if not in list.
  1006 int   InstructForm::label_position() {
  1007   return unique_opnds_idx(_components.label_position());
  1010 int   InstructForm::method_position() {
  1011   return unique_opnds_idx(_components.method_position());
  1014 // Return number of relocation entries needed for this instruction.
  1015 uint  InstructForm::reloc(FormDict &globals) {
  1016   uint reloc_entries  = 0;
  1017   // Check for "Call" nodes
  1018   if ( is_ideal_call() )      ++reloc_entries;
  1019   if ( is_ideal_return() )    ++reloc_entries;
  1020   if ( is_ideal_safepoint() ) ++reloc_entries;
  1023   // Check if operands MAYBE oop pointers, by checking for ConP elements
  1024   // Proceed through the leaves of the match-tree and check for ConPs
  1025   if ( _matrule != NULL ) {
  1026     uint         position = 0;
  1027     const char  *result   = NULL;
  1028     const char  *name     = NULL;
  1029     const char  *opType   = NULL;
  1030     while (_matrule->base_operand(position, globals, result, name, opType)) {
  1031       if ( strcmp(opType,"ConP") == 0 ) {
  1032 #ifdef SPARC
  1033         reloc_entries += 2; // 1 for sethi + 1 for setlo
  1034 #else
  1035         ++reloc_entries;
  1036 #endif
  1038       ++position;
  1042   // Above is only a conservative estimate
  1043   // because it did not check contents of operand classes.
  1044   // !!!!! !!!!!
  1045   // Add 1 to reloc info for each operand class in the component list.
  1046   Component  *comp;
  1047   _components.reset();
  1048   while ( (comp = _components.iter()) != NULL ) {
  1049     const Form        *form = globals[comp->_type];
  1050     assert( form, "Did not find component's type in global names");
  1051     const OpClassForm *opc  = form->is_opclass();
  1052     const OperandForm *oper = form->is_operand();
  1053     if ( opc && (oper == NULL) ) {
  1054       ++reloc_entries;
  1055     } else if ( oper ) {
  1056       // floats and doubles loaded out of method's constant pool require reloc info
  1057       Form::DataType type = oper->is_base_constant(globals);
  1058       if ( (type == Form::idealF) || (type == Form::idealD) ) {
  1059         ++reloc_entries;
  1064   // Float and Double constants may come from the CodeBuffer table
  1065   // and require relocatable addresses for access
  1066   // !!!!!
  1067   // Check for any component being an immediate float or double.
  1068   Form::DataType data_type = is_chain_of_constant(globals);
  1069   if( data_type==idealD || data_type==idealF ) {
  1070 #ifdef SPARC
  1071     // sparc required more relocation entries for floating constants
  1072     // (expires 9/98)
  1073     reloc_entries += 6;
  1074 #else
  1075     reloc_entries++;
  1076 #endif
  1079   return reloc_entries;
  1082 // Utility function defined in archDesc.cpp
  1083 extern bool is_def(int usedef);
  1085 // Return the result of reducing an instruction
  1086 const char *InstructForm::reduce_result() {
  1087   const char* result = "Universe";  // default
  1088   _components.reset();
  1089   Component *comp = _components.iter();
  1090   if (comp != NULL && comp->isa(Component::DEF)) {
  1091     result = comp->_type;
  1092     // Override this if the rule is a store operation:
  1093     if (_matrule && _matrule->_rChild &&
  1094         is_store_to_memory(_matrule->_rChild->_opType))
  1095       result = "Universe";
  1097   return result;
  1100 // Return the name of the operand on the right hand side of the binary match
  1101 // Return NULL if there is no right hand side
  1102 const char *InstructForm::reduce_right(FormDict &globals)  const {
  1103   if( _matrule == NULL ) return NULL;
  1104   return  _matrule->reduce_right(globals);
  1107 // Similar for left
  1108 const char *InstructForm::reduce_left(FormDict &globals)   const {
  1109   if( _matrule == NULL ) return NULL;
  1110   return  _matrule->reduce_left(globals);
  1114 // Base class for this instruction, MachNode except for calls
  1115 const char *InstructForm::mach_base_class(FormDict &globals)  const {
  1116   if( is_ideal_call() == Form::JAVA_STATIC ) {
  1117     return "MachCallStaticJavaNode";
  1119   else if( is_ideal_call() == Form::JAVA_DYNAMIC ) {
  1120     return "MachCallDynamicJavaNode";
  1122   else if( is_ideal_call() == Form::JAVA_RUNTIME ) {
  1123     return "MachCallRuntimeNode";
  1125   else if( is_ideal_call() == Form::JAVA_LEAF ) {
  1126     return "MachCallLeafNode";
  1128   else if (is_ideal_return()) {
  1129     return "MachReturnNode";
  1131   else if (is_ideal_halt()) {
  1132     return "MachHaltNode";
  1134   else if (is_ideal_safepoint()) {
  1135     return "MachSafePointNode";
  1137   else if (is_ideal_if()) {
  1138     return "MachIfNode";
  1140   else if (is_ideal_goto()) {
  1141     return "MachGotoNode";
  1143   else if (is_ideal_fastlock()) {
  1144     return "MachFastLockNode";
  1146   else if (is_ideal_nop()) {
  1147     return "MachNopNode";
  1149   else if (is_mach_constant()) {
  1150     return "MachConstantNode";
  1152   else if (captures_bottom_type(globals)) {
  1153     return "MachTypeNode";
  1154   } else {
  1155     return "MachNode";
  1157   assert( false, "ShouldNotReachHere()");
  1158   return NULL;
  1161 // Compare the instruction predicates for textual equality
  1162 bool equivalent_predicates( const InstructForm *instr1, const InstructForm *instr2 ) {
  1163   const Predicate *pred1  = instr1->_predicate;
  1164   const Predicate *pred2  = instr2->_predicate;
  1165   if( pred1 == NULL && pred2 == NULL ) {
  1166     // no predicates means they are identical
  1167     return true;
  1169   if( pred1 != NULL && pred2 != NULL ) {
  1170     // compare the predicates
  1171     if (ADLParser::equivalent_expressions(pred1->_pred, pred2->_pred)) {
  1172       return true;
  1176   return false;
  1179 // Check if this instruction can cisc-spill to 'alternate'
  1180 bool InstructForm::cisc_spills_to(ArchDesc &AD, InstructForm *instr) {
  1181   assert( _matrule != NULL && instr->_matrule != NULL, "must have match rules");
  1182   // Do not replace if a cisc-version has been found.
  1183   if( cisc_spill_operand() != Not_cisc_spillable ) return false;
  1185   int         cisc_spill_operand = Maybe_cisc_spillable;
  1186   char       *result             = NULL;
  1187   char       *result2            = NULL;
  1188   const char *op_name            = NULL;
  1189   const char *reg_type           = NULL;
  1190   FormDict   &globals            = AD.globalNames();
  1191   cisc_spill_operand = _matrule->matchrule_cisc_spill_match(globals, AD.get_registers(), instr->_matrule, op_name, reg_type);
  1192   if( (cisc_spill_operand != Not_cisc_spillable) && (op_name != NULL) && equivalent_predicates(this, instr) ) {
  1193     cisc_spill_operand = operand_position(op_name, Component::USE);
  1194     int def_oper  = operand_position(op_name, Component::DEF);
  1195     if( def_oper == NameList::Not_in_list && instr->num_opnds() == num_opnds()) {
  1196       // Do not support cisc-spilling for destination operands and
  1197       // make sure they have the same number of operands.
  1198       _cisc_spill_alternate = instr;
  1199       instr->set_cisc_alternate(true);
  1200       if( AD._cisc_spill_debug ) {
  1201         fprintf(stderr, "Instruction %s cisc-spills-to %s\n", _ident, instr->_ident);
  1202         fprintf(stderr, "   using operand %s %s at index %d\n", reg_type, op_name, cisc_spill_operand);
  1204       // Record that a stack-version of the reg_mask is needed
  1205       // !!!!!
  1206       OperandForm *oper = (OperandForm*)(globals[reg_type]->is_operand());
  1207       assert( oper != NULL, "cisc-spilling non operand");
  1208       const char *reg_class_name = oper->constrained_reg_class();
  1209       AD.set_stack_or_reg(reg_class_name);
  1210       const char *reg_mask_name  = AD.reg_mask(*oper);
  1211       set_cisc_reg_mask_name(reg_mask_name);
  1212       const char *stack_or_reg_mask_name = AD.stack_or_reg_mask(*oper);
  1213     } else {
  1214       cisc_spill_operand = Not_cisc_spillable;
  1216   } else {
  1217     cisc_spill_operand = Not_cisc_spillable;
  1220   set_cisc_spill_operand(cisc_spill_operand);
  1221   return (cisc_spill_operand != Not_cisc_spillable);
  1224 // Check to see if this instruction can be replaced with the short branch
  1225 // instruction `short-branch'
  1226 bool InstructForm::check_branch_variant(ArchDesc &AD, InstructForm *short_branch) {
  1227   if (_matrule != NULL &&
  1228       this != short_branch &&   // Don't match myself
  1229       !is_short_branch() &&     // Don't match another short branch variant
  1230       reduce_result() != NULL &&
  1231       strcmp(reduce_result(), short_branch->reduce_result()) == 0 &&
  1232       _matrule->equivalent(AD.globalNames(), short_branch->_matrule)) {
  1233     // The instructions are equivalent.
  1235     // Now verify that both instructions have the same parameters and
  1236     // the same effects. Both branch forms should have the same inputs
  1237     // and resulting projections to correctly replace a long branch node
  1238     // with corresponding short branch node during code generation.
  1240     bool different = false;
  1241     if (short_branch->_components.count() != _components.count()) {
  1242        different = true;
  1243     } else if (_components.count() > 0) {
  1244       short_branch->_components.reset();
  1245       _components.reset();
  1246       Component *comp;
  1247       while ((comp = _components.iter()) != NULL) {
  1248         Component *short_comp = short_branch->_components.iter();
  1249         if (short_comp == NULL ||
  1250             short_comp->_type != comp->_type ||
  1251             short_comp->_usedef != comp->_usedef) {
  1252           different = true;
  1253           break;
  1256       if (short_branch->_components.iter() != NULL)
  1257         different = true;
  1259     if (different) {
  1260       globalAD->syntax_err(short_branch->_linenum, "Instruction %s and its short form %s have different parameters\n", _ident, short_branch->_ident);
  1262     if (AD._adl_debug > 1 || AD._short_branch_debug) {
  1263       fprintf(stderr, "Instruction %s has short form %s\n", _ident, short_branch->_ident);
  1265     _short_branch_form = short_branch;
  1266     return true;
  1268   return false;
  1272 // --------------------------- FILE *output_routines
  1273 //
  1274 // Generate the format call for the replacement variable
  1275 void InstructForm::rep_var_format(FILE *fp, const char *rep_var) {
  1276   // Handle special constant table variables.
  1277   if (strcmp(rep_var, "constanttablebase") == 0) {
  1278     fprintf(fp, "char reg[128];  ra->dump_register(in(mach_constant_base_node_input()), reg);\n");
  1279     fprintf(fp, "    st->print(\"%%s\", reg);\n");
  1280     return;
  1282   if (strcmp(rep_var, "constantoffset") == 0) {
  1283     fprintf(fp, "st->print(\"#%%d\", constant_offset_unchecked());\n");
  1284     return;
  1286   if (strcmp(rep_var, "constantaddress") == 0) {
  1287     fprintf(fp, "st->print(\"constant table base + #%%d\", constant_offset_unchecked());\n");
  1288     return;
  1291   // Find replacement variable's type
  1292   const Form *form   = _localNames[rep_var];
  1293   if (form == NULL) {
  1294     globalAD->syntax_err(_linenum, "Unknown replacement variable %s in format statement of %s.",
  1295                          rep_var, _ident);
  1296     return;
  1298   OpClassForm *opc   = form->is_opclass();
  1299   assert( opc, "replacement variable was not found in local names");
  1300   // Lookup the index position of the replacement variable
  1301   int idx  = operand_position_format(rep_var);
  1302   if ( idx == -1 ) {
  1303     globalAD->syntax_err(_linenum, "Could not find replacement variable %s in format statement of %s.\n",
  1304                          rep_var, _ident);
  1305     assert(strcmp(opc->_ident, "label") == 0, "Unimplemented");
  1306     return;
  1309   if (is_noninput_operand(idx)) {
  1310     // This component isn't in the input array.  Print out the static
  1311     // name of the register.
  1312     OperandForm* oper = form->is_operand();
  1313     if (oper != NULL && oper->is_bound_register()) {
  1314       const RegDef* first = oper->get_RegClass()->find_first_elem();
  1315       fprintf(fp, "    st->print(\"%s\");\n", first->_regname);
  1316     } else {
  1317       globalAD->syntax_err(_linenum, "In %s can't find format for %s %s", _ident, opc->_ident, rep_var);
  1319   } else {
  1320     // Output the format call for this operand
  1321     fprintf(fp,"opnd_array(%d)->",idx);
  1322     if (idx == 0)
  1323       fprintf(fp,"int_format(ra, this, st); // %s\n", rep_var);
  1324     else
  1325       fprintf(fp,"ext_format(ra, this,idx%d, st); // %s\n", idx, rep_var );
  1329 // Seach through operands to determine parameters unique positions.
  1330 void InstructForm::set_unique_opnds() {
  1331   uint* uniq_idx = NULL;
  1332   uint  nopnds = num_opnds();
  1333   uint  num_uniq = nopnds;
  1334   uint i;
  1335   _uniq_idx_length = 0;
  1336   if (nopnds > 0) {
  1337     // Allocate index array.  Worst case we're mapping from each
  1338     // component back to an index and any DEF always goes at 0 so the
  1339     // length of the array has to be the number of components + 1.
  1340     _uniq_idx_length = _components.count() + 1;
  1341     uniq_idx = (uint*) malloc(sizeof(uint) * _uniq_idx_length);
  1342     for (i = 0; i < _uniq_idx_length; i++) {
  1343       uniq_idx[i] = i;
  1346   // Do it only if there is a match rule and no expand rule.  With an
  1347   // expand rule it is done by creating new mach node in Expand()
  1348   // method.
  1349   if (nopnds > 0 && _matrule != NULL && _exprule == NULL) {
  1350     const char *name;
  1351     uint count;
  1352     bool has_dupl_use = false;
  1354     _parameters.reset();
  1355     while ((name = _parameters.iter()) != NULL) {
  1356       count = 0;
  1357       uint position = 0;
  1358       uint uniq_position = 0;
  1359       _components.reset();
  1360       Component *comp = NULL;
  1361       if (sets_result()) {
  1362         comp = _components.iter();
  1363         position++;
  1365       // The next code is copied from the method operand_position().
  1366       for (; (comp = _components.iter()) != NULL; ++position) {
  1367         // When the first component is not a DEF,
  1368         // leave space for the result operand!
  1369         if (position==0 && (!comp->isa(Component::DEF))) {
  1370           ++position;
  1372         if (strcmp(name, comp->_name) == 0) {
  1373           if (++count > 1) {
  1374             assert(position < _uniq_idx_length, "out of bounds");
  1375             uniq_idx[position] = uniq_position;
  1376             has_dupl_use = true;
  1377           } else {
  1378             uniq_position = position;
  1381         if (comp->isa(Component::DEF) && comp->isa(Component::USE)) {
  1382           ++position;
  1383           if (position != 1)
  1384             --position;   // only use two slots for the 1st USE_DEF
  1388     if (has_dupl_use) {
  1389       for (i = 1; i < nopnds; i++) {
  1390         if (i != uniq_idx[i]) {
  1391           break;
  1394       uint j = i;
  1395       for (; i < nopnds; i++) {
  1396         if (i == uniq_idx[i]) {
  1397           uniq_idx[i] = j++;
  1400       num_uniq = j;
  1403   _uniq_idx = uniq_idx;
  1404   _num_uniq = num_uniq;
  1407 // Generate index values needed for determining the operand position
  1408 void InstructForm::index_temps(FILE *fp, FormDict &globals, const char *prefix, const char *receiver) {
  1409   uint  idx = 0;                  // position of operand in match rule
  1410   int   cur_num_opnds = num_opnds();
  1412   // Compute the index into vector of operand pointers:
  1413   // idx0=0 is used to indicate that info comes from this same node, not from input edge.
  1414   // idx1 starts at oper_input_base()
  1415   if ( cur_num_opnds >= 1 ) {
  1416     fprintf(fp,"  // Start at oper_input_base() and count operands\n");
  1417     fprintf(fp,"  unsigned %sidx0 = %d;\n", prefix, oper_input_base(globals));
  1418     fprintf(fp,"  unsigned %sidx1 = %d;", prefix, oper_input_base(globals));
  1419     fprintf(fp," \t// %s\n", unique_opnd_ident(1));
  1421     // Generate starting points for other unique operands if they exist
  1422     for ( idx = 2; idx < num_unique_opnds(); ++idx ) {
  1423       if( *receiver == 0 ) {
  1424         fprintf(fp,"  unsigned %sidx%d = %sidx%d + opnd_array(%d)->num_edges();",
  1425                 prefix, idx, prefix, idx-1, idx-1 );
  1426       } else {
  1427         fprintf(fp,"  unsigned %sidx%d = %sidx%d + %s_opnds[%d]->num_edges();",
  1428                 prefix, idx, prefix, idx-1, receiver, idx-1 );
  1430       fprintf(fp," \t// %s\n", unique_opnd_ident(idx));
  1433   if( *receiver != 0 ) {
  1434     // This value is used by generate_peepreplace when copying a node.
  1435     // Don't emit it in other cases since it can hide bugs with the
  1436     // use invalid idx's.
  1437     fprintf(fp,"  unsigned %sidx%d = %sreq(); \n", prefix, idx, receiver);
  1442 // ---------------------------
  1443 bool InstructForm::verify() {
  1444   // !!!!! !!!!!
  1445   // Check that a "label" operand occurs last in the operand list, if present
  1446   return true;
  1449 void InstructForm::dump() {
  1450   output(stderr);
  1453 void InstructForm::output(FILE *fp) {
  1454   fprintf(fp,"\nInstruction: %s\n", (_ident?_ident:""));
  1455   if (_matrule)   _matrule->output(fp);
  1456   if (_insencode) _insencode->output(fp);
  1457   if (_constant)  _constant->output(fp);
  1458   if (_opcode)    _opcode->output(fp);
  1459   if (_attribs)   _attribs->output(fp);
  1460   if (_predicate) _predicate->output(fp);
  1461   if (_effects.Size()) {
  1462     fprintf(fp,"Effects\n");
  1463     _effects.dump();
  1465   if (_exprule)   _exprule->output(fp);
  1466   if (_rewrule)   _rewrule->output(fp);
  1467   if (_format)    _format->output(fp);
  1468   if (_peephole)  _peephole->output(fp);
  1471 void MachNodeForm::dump() {
  1472   output(stderr);
  1475 void MachNodeForm::output(FILE *fp) {
  1476   fprintf(fp,"\nMachNode: %s\n", (_ident?_ident:""));
  1479 //------------------------------build_predicate--------------------------------
  1480 // Build instruction predicates.  If the user uses the same operand name
  1481 // twice, we need to check that the operands are pointer-eequivalent in
  1482 // the DFA during the labeling process.
  1483 Predicate *InstructForm::build_predicate() {
  1484   char buf[1024], *s=buf;
  1485   Dict names(cmpstr,hashstr,Form::arena);       // Map Names to counts
  1487   MatchNode *mnode =
  1488     strcmp(_matrule->_opType, "Set") ? _matrule : _matrule->_rChild;
  1489   mnode->count_instr_names(names);
  1491   uint first = 1;
  1492   // Start with the predicate supplied in the .ad file.
  1493   if( _predicate ) {
  1494     if( first ) first=0;
  1495     strcpy(s,"("); s += strlen(s);
  1496     strcpy(s,_predicate->_pred);
  1497     s += strlen(s);
  1498     strcpy(s,")"); s += strlen(s);
  1500   for( DictI i(&names); i.test(); ++i ) {
  1501     uintptr_t cnt = (uintptr_t)i._value;
  1502     if( cnt > 1 ) {             // Need a predicate at all?
  1503       assert( cnt == 2, "Unimplemented" );
  1504       // Handle many pairs
  1505       if( first ) first=0;
  1506       else {                    // All tests must pass, so use '&&'
  1507         strcpy(s," && ");
  1508         s += strlen(s);
  1510       // Add predicate to working buffer
  1511       sprintf(s,"/*%s*/(",(char*)i._key);
  1512       s += strlen(s);
  1513       mnode->build_instr_pred(s,(char*)i._key,0);
  1514       s += strlen(s);
  1515       strcpy(s," == "); s += strlen(s);
  1516       mnode->build_instr_pred(s,(char*)i._key,1);
  1517       s += strlen(s);
  1518       strcpy(s,")"); s += strlen(s);
  1521   if( s == buf ) s = NULL;
  1522   else {
  1523     assert( strlen(buf) < sizeof(buf), "String buffer overflow" );
  1524     s = strdup(buf);
  1526   return new Predicate(s);
  1529 //------------------------------EncodeForm-------------------------------------
  1530 // Constructor
  1531 EncodeForm::EncodeForm()
  1532   : _encClass(cmpstr,hashstr, Form::arena) {
  1534 EncodeForm::~EncodeForm() {
  1537 // record a new register class
  1538 EncClass *EncodeForm::add_EncClass(const char *className) {
  1539   EncClass *encClass = new EncClass(className);
  1540   _eclasses.addName(className);
  1541   _encClass.Insert(className,encClass);
  1542   return encClass;
  1545 // Lookup the function body for an encoding class
  1546 EncClass  *EncodeForm::encClass(const char *className) {
  1547   assert( className != NULL, "Must provide a defined encoding name");
  1549   EncClass *encClass = (EncClass*)_encClass[className];
  1550   return encClass;
  1553 // Lookup the function body for an encoding class
  1554 const char *EncodeForm::encClassBody(const char *className) {
  1555   if( className == NULL ) return NULL;
  1557   EncClass *encClass = (EncClass*)_encClass[className];
  1558   assert( encClass != NULL, "Encode Class is missing.");
  1559   encClass->_code.reset();
  1560   const char *code = (const char*)encClass->_code.iter();
  1561   assert( code != NULL, "Found an empty encode class body.");
  1563   return code;
  1566 // Lookup the function body for an encoding class
  1567 const char *EncodeForm::encClassPrototype(const char *className) {
  1568   assert( className != NULL, "Encode class name must be non NULL.");
  1570   return className;
  1573 void EncodeForm::dump() {                  // Debug printer
  1574   output(stderr);
  1577 void EncodeForm::output(FILE *fp) {          // Write info to output files
  1578   const char *name;
  1579   fprintf(fp,"\n");
  1580   fprintf(fp,"-------------------- Dump EncodeForm --------------------\n");
  1581   for (_eclasses.reset(); (name = _eclasses.iter()) != NULL;) {
  1582     ((EncClass*)_encClass[name])->output(fp);
  1584   fprintf(fp,"-------------------- end  EncodeForm --------------------\n");
  1586 //------------------------------EncClass---------------------------------------
  1587 EncClass::EncClass(const char *name)
  1588   : _localNames(cmpstr,hashstr, Form::arena), _name(name) {
  1590 EncClass::~EncClass() {
  1593 // Add a parameter <type,name> pair
  1594 void EncClass::add_parameter(const char *parameter_type, const char *parameter_name) {
  1595   _parameter_type.addName( parameter_type );
  1596   _parameter_name.addName( parameter_name );
  1599 // Verify operand types in parameter list
  1600 bool EncClass::check_parameter_types(FormDict &globals) {
  1601   // !!!!!
  1602   return false;
  1605 // Add the decomposed "code" sections of an encoding's code-block
  1606 void EncClass::add_code(const char *code) {
  1607   _code.addName(code);
  1610 // Add the decomposed "replacement variables" of an encoding's code-block
  1611 void EncClass::add_rep_var(char *replacement_var) {
  1612   _code.addName(NameList::_signal);
  1613   _rep_vars.addName(replacement_var);
  1616 // Lookup the function body for an encoding class
  1617 int EncClass::rep_var_index(const char *rep_var) {
  1618   uint        position = 0;
  1619   const char *name     = NULL;
  1621   _parameter_name.reset();
  1622   while ( (name = _parameter_name.iter()) != NULL ) {
  1623     if ( strcmp(rep_var,name) == 0 ) return position;
  1624     ++position;
  1627   return -1;
  1630 // Check after parsing
  1631 bool EncClass::verify() {
  1632   // 1!!!!
  1633   // Check that each replacement variable, '$name' in architecture description
  1634   // is actually a local variable for this encode class, or a reserved name
  1635   // "primary, secondary, tertiary"
  1636   return true;
  1639 void EncClass::dump() {
  1640   output(stderr);
  1643 // Write info to output files
  1644 void EncClass::output(FILE *fp) {
  1645   fprintf(fp,"EncClass: %s", (_name ? _name : ""));
  1647   // Output the parameter list
  1648   _parameter_type.reset();
  1649   _parameter_name.reset();
  1650   const char *type = _parameter_type.iter();
  1651   const char *name = _parameter_name.iter();
  1652   fprintf(fp, " ( ");
  1653   for ( ; (type != NULL) && (name != NULL);
  1654         (type = _parameter_type.iter()), (name = _parameter_name.iter()) ) {
  1655     fprintf(fp, " %s %s,", type, name);
  1657   fprintf(fp, " ) ");
  1659   // Output the code block
  1660   _code.reset();
  1661   _rep_vars.reset();
  1662   const char *code;
  1663   while ( (code = _code.iter()) != NULL ) {
  1664     if ( _code.is_signal(code) ) {
  1665       // A replacement variable
  1666       const char *rep_var = _rep_vars.iter();
  1667       fprintf(fp,"($%s)", rep_var);
  1668     } else {
  1669       // A section of code
  1670       fprintf(fp,"%s", code);
  1676 //------------------------------Opcode-----------------------------------------
  1677 Opcode::Opcode(char *primary, char *secondary, char *tertiary)
  1678   : _primary(primary), _secondary(secondary), _tertiary(tertiary) {
  1681 Opcode::~Opcode() {
  1684 Opcode::opcode_type Opcode::as_opcode_type(const char *param) {
  1685   if( strcmp(param,"primary") == 0 ) {
  1686     return Opcode::PRIMARY;
  1688   else if( strcmp(param,"secondary") == 0 ) {
  1689     return Opcode::SECONDARY;
  1691   else if( strcmp(param,"tertiary") == 0 ) {
  1692     return Opcode::TERTIARY;
  1694   return Opcode::NOT_AN_OPCODE;
  1697 bool Opcode::print_opcode(FILE *fp, Opcode::opcode_type desired_opcode) {
  1698   // Default values previously provided by MachNode::primary()...
  1699   const char *description = NULL;
  1700   const char *value       = NULL;
  1701   // Check if user provided any opcode definitions
  1702   if( this != NULL ) {
  1703     // Update 'value' if user provided a definition in the instruction
  1704     switch (desired_opcode) {
  1705     case PRIMARY:
  1706       description = "primary()";
  1707       if( _primary   != NULL)  { value = _primary;     }
  1708       break;
  1709     case SECONDARY:
  1710       description = "secondary()";
  1711       if( _secondary != NULL ) { value = _secondary;   }
  1712       break;
  1713     case TERTIARY:
  1714       description = "tertiary()";
  1715       if( _tertiary  != NULL ) { value = _tertiary;    }
  1716       break;
  1717     default:
  1718       assert( false, "ShouldNotReachHere();");
  1719       break;
  1722   if (value != NULL) {
  1723     fprintf(fp, "(%s /*%s*/)", value, description);
  1725   return value != NULL;
  1728 void Opcode::dump() {
  1729   output(stderr);
  1732 // Write info to output files
  1733 void Opcode::output(FILE *fp) {
  1734   if (_primary   != NULL) fprintf(fp,"Primary   opcode: %s\n", _primary);
  1735   if (_secondary != NULL) fprintf(fp,"Secondary opcode: %s\n", _secondary);
  1736   if (_tertiary  != NULL) fprintf(fp,"Tertiary  opcode: %s\n", _tertiary);
  1739 //------------------------------InsEncode--------------------------------------
  1740 InsEncode::InsEncode() {
  1742 InsEncode::~InsEncode() {
  1745 // Add "encode class name" and its parameters
  1746 NameAndList *InsEncode::add_encode(char *encoding) {
  1747   assert( encoding != NULL, "Must provide name for encoding");
  1749   // add_parameter(NameList::_signal);
  1750   NameAndList *encode = new NameAndList(encoding);
  1751   _encoding.addName((char*)encode);
  1753   return encode;
  1756 // Access the list of encodings
  1757 void InsEncode::reset() {
  1758   _encoding.reset();
  1759   // _parameter.reset();
  1761 const char* InsEncode::encode_class_iter() {
  1762   NameAndList  *encode_class = (NameAndList*)_encoding.iter();
  1763   return  ( encode_class != NULL ? encode_class->name() : NULL );
  1765 // Obtain parameter name from zero based index
  1766 const char *InsEncode::rep_var_name(InstructForm &inst, uint param_no) {
  1767   NameAndList *params = (NameAndList*)_encoding.current();
  1768   assert( params != NULL, "Internal Error");
  1769   const char *param = (*params)[param_no];
  1771   // Remove '$' if parser placed it there.
  1772   return ( param != NULL && *param == '$') ? (param+1) : param;
  1775 void InsEncode::dump() {
  1776   output(stderr);
  1779 // Write info to output files
  1780 void InsEncode::output(FILE *fp) {
  1781   NameAndList *encoding  = NULL;
  1782   const char  *parameter = NULL;
  1784   fprintf(fp,"InsEncode: ");
  1785   _encoding.reset();
  1787   while ( (encoding = (NameAndList*)_encoding.iter()) != 0 ) {
  1788     // Output the encoding being used
  1789     fprintf(fp,"%s(", encoding->name() );
  1791     // Output its parameter list, if any
  1792     bool first_param = true;
  1793     encoding->reset();
  1794     while (  (parameter = encoding->iter()) != 0 ) {
  1795       // Output the ',' between parameters
  1796       if ( ! first_param )  fprintf(fp,", ");
  1797       first_param = false;
  1798       // Output the parameter
  1799       fprintf(fp,"%s", parameter);
  1800     } // done with parameters
  1801     fprintf(fp,")  ");
  1802   } // done with encodings
  1804   fprintf(fp,"\n");
  1807 //------------------------------Effect-----------------------------------------
  1808 static int effect_lookup(const char *name) {
  1809   if(!strcmp(name, "USE")) return Component::USE;
  1810   if(!strcmp(name, "DEF")) return Component::DEF;
  1811   if(!strcmp(name, "USE_DEF")) return Component::USE_DEF;
  1812   if(!strcmp(name, "KILL")) return Component::KILL;
  1813   if(!strcmp(name, "USE_KILL")) return Component::USE_KILL;
  1814   if(!strcmp(name, "TEMP")) return Component::TEMP;
  1815   if(!strcmp(name, "INVALID")) return Component::INVALID;
  1816   if(!strcmp(name, "CALL")) return Component::CALL;
  1817   assert( false,"Invalid effect name specified\n");
  1818   return Component::INVALID;
  1821 const char *Component::getUsedefName() {
  1822   switch (_usedef) {
  1823     case Component::INVALID:  return "INVALID";  break;
  1824     case Component::USE:      return "USE";      break;
  1825     case Component::USE_DEF:  return "USE_DEF";  break;
  1826     case Component::USE_KILL: return "USE_KILL"; break;
  1827     case Component::KILL:     return "KILL";     break;
  1828     case Component::TEMP:     return "TEMP";     break;
  1829     case Component::DEF:      return "DEF";      break;
  1830     case Component::CALL:     return "CALL";     break;
  1831     default: assert(false, "unknown effect");
  1833   return "Undefined Use/Def info";
  1836 Effect::Effect(const char *name) : _name(name), _use_def(effect_lookup(name)) {
  1837   _ftype = Form::EFF;
  1840 Effect::~Effect() {
  1843 // Dynamic type check
  1844 Effect *Effect::is_effect() const {
  1845   return (Effect*)this;
  1849 // True if this component is equal to the parameter.
  1850 bool Effect::is(int use_def_kill_enum) const {
  1851   return (_use_def == use_def_kill_enum ? true : false);
  1853 // True if this component is used/def'd/kill'd as the parameter suggests.
  1854 bool Effect::isa(int use_def_kill_enum) const {
  1855   return (_use_def & use_def_kill_enum) == use_def_kill_enum;
  1858 void Effect::dump() {
  1859   output(stderr);
  1862 void Effect::output(FILE *fp) {          // Write info to output files
  1863   fprintf(fp,"Effect: %s\n", (_name?_name:""));
  1866 //------------------------------ExpandRule-------------------------------------
  1867 ExpandRule::ExpandRule() : _expand_instrs(),
  1868                            _newopconst(cmpstr, hashstr, Form::arena) {
  1869   _ftype = Form::EXP;
  1872 ExpandRule::~ExpandRule() {                  // Destructor
  1875 void ExpandRule::add_instruction(NameAndList *instruction_name_and_operand_list) {
  1876   _expand_instrs.addName((char*)instruction_name_and_operand_list);
  1879 void ExpandRule::reset_instructions() {
  1880   _expand_instrs.reset();
  1883 NameAndList* ExpandRule::iter_instructions() {
  1884   return (NameAndList*)_expand_instrs.iter();
  1888 void ExpandRule::dump() {
  1889   output(stderr);
  1892 void ExpandRule::output(FILE *fp) {         // Write info to output files
  1893   NameAndList *expand_instr = NULL;
  1894   const char *opid = NULL;
  1896   fprintf(fp,"\nExpand Rule:\n");
  1898   // Iterate over the instructions 'node' expands into
  1899   for(reset_instructions(); (expand_instr = iter_instructions()) != NULL; ) {
  1900     fprintf(fp,"%s(", expand_instr->name());
  1902     // iterate over the operand list
  1903     for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
  1904       fprintf(fp,"%s ", opid);
  1906     fprintf(fp,");\n");
  1910 //------------------------------RewriteRule------------------------------------
  1911 RewriteRule::RewriteRule(char* params, char* block)
  1912   : _tempParams(params), _tempBlock(block) { };  // Constructor
  1913 RewriteRule::~RewriteRule() {                 // Destructor
  1916 void RewriteRule::dump() {
  1917   output(stderr);
  1920 void RewriteRule::output(FILE *fp) {         // Write info to output files
  1921   fprintf(fp,"\nRewrite Rule:\n%s\n%s\n",
  1922           (_tempParams?_tempParams:""),
  1923           (_tempBlock?_tempBlock:""));
  1927 //==============================MachNodes======================================
  1928 //------------------------------MachNodeForm-----------------------------------
  1929 MachNodeForm::MachNodeForm(char *id)
  1930   : _ident(id) {
  1933 MachNodeForm::~MachNodeForm() {
  1936 MachNodeForm *MachNodeForm::is_machnode() const {
  1937   return (MachNodeForm*)this;
  1940 //==============================Operand Classes================================
  1941 //------------------------------OpClassForm------------------------------------
  1942 OpClassForm::OpClassForm(const char* id) : _ident(id) {
  1943   _ftype = Form::OPCLASS;
  1946 OpClassForm::~OpClassForm() {
  1949 bool OpClassForm::ideal_only() const { return 0; }
  1951 OpClassForm *OpClassForm::is_opclass() const {
  1952   return (OpClassForm*)this;
  1955 Form::InterfaceType OpClassForm::interface_type(FormDict &globals) const {
  1956   if( _oplst.count() == 0 ) return Form::no_interface;
  1958   // Check that my operands have the same interface type
  1959   Form::InterfaceType  interface;
  1960   bool  first = true;
  1961   NameList &op_list = (NameList &)_oplst;
  1962   op_list.reset();
  1963   const char *op_name;
  1964   while( (op_name = op_list.iter()) != NULL ) {
  1965     const Form  *form    = globals[op_name];
  1966     OperandForm *operand = form->is_operand();
  1967     assert( operand, "Entry in operand class that is not an operand");
  1968     if( first ) {
  1969       first     = false;
  1970       interface = operand->interface_type(globals);
  1971     } else {
  1972       interface = (interface == operand->interface_type(globals) ? interface : Form::no_interface);
  1975   return interface;
  1978 bool OpClassForm::stack_slots_only(FormDict &globals) const {
  1979   if( _oplst.count() == 0 ) return false;  // how?
  1981   NameList &op_list = (NameList &)_oplst;
  1982   op_list.reset();
  1983   const char *op_name;
  1984   while( (op_name = op_list.iter()) != NULL ) {
  1985     const Form  *form    = globals[op_name];
  1986     OperandForm *operand = form->is_operand();
  1987     assert( operand, "Entry in operand class that is not an operand");
  1988     if( !operand->stack_slots_only(globals) )  return false;
  1990   return true;
  1994 void OpClassForm::dump() {
  1995   output(stderr);
  1998 void OpClassForm::output(FILE *fp) {
  1999   const char *name;
  2000   fprintf(fp,"\nOperand Class: %s\n", (_ident?_ident:""));
  2001   fprintf(fp,"\nCount = %d\n", _oplst.count());
  2002   for(_oplst.reset(); (name = _oplst.iter()) != NULL;) {
  2003     fprintf(fp,"%s, ",name);
  2005   fprintf(fp,"\n");
  2009 //==============================Operands=======================================
  2010 //------------------------------OperandForm------------------------------------
  2011 OperandForm::OperandForm(const char* id)
  2012   : OpClassForm(id), _ideal_only(false),
  2013     _localNames(cmpstr, hashstr, Form::arena) {
  2014       _ftype = Form::OPER;
  2016       _matrule   = NULL;
  2017       _interface = NULL;
  2018       _attribs   = NULL;
  2019       _predicate = NULL;
  2020       _constraint= NULL;
  2021       _construct = NULL;
  2022       _format    = NULL;
  2024 OperandForm::OperandForm(const char* id, bool ideal_only)
  2025   : OpClassForm(id), _ideal_only(ideal_only),
  2026     _localNames(cmpstr, hashstr, Form::arena) {
  2027       _ftype = Form::OPER;
  2029       _matrule   = NULL;
  2030       _interface = NULL;
  2031       _attribs   = NULL;
  2032       _predicate = NULL;
  2033       _constraint= NULL;
  2034       _construct = NULL;
  2035       _format    = NULL;
  2037 OperandForm::~OperandForm() {
  2041 OperandForm *OperandForm::is_operand() const {
  2042   return (OperandForm*)this;
  2045 bool OperandForm::ideal_only() const {
  2046   return _ideal_only;
  2049 Form::InterfaceType OperandForm::interface_type(FormDict &globals) const {
  2050   if( _interface == NULL )  return Form::no_interface;
  2052   return _interface->interface_type(globals);
  2056 bool OperandForm::stack_slots_only(FormDict &globals) const {
  2057   if( _constraint == NULL )  return false;
  2058   return _constraint->stack_slots_only();
  2062 // Access op_cost attribute or return NULL.
  2063 const char* OperandForm::cost() {
  2064   for (Attribute* cur = _attribs; cur != NULL; cur = (Attribute*)cur->_next) {
  2065     if( strcmp(cur->_ident,AttributeForm::_op_cost) == 0 ) {
  2066       return cur->_val;
  2069   return NULL;
  2072 // Return the number of leaves below this complex operand
  2073 uint OperandForm::num_leaves() const {
  2074   if ( ! _matrule) return 0;
  2076   int num_leaves = _matrule->_numleaves;
  2077   return num_leaves;
  2080 // Return the number of constants contained within this complex operand
  2081 uint OperandForm::num_consts(FormDict &globals) const {
  2082   if ( ! _matrule) return 0;
  2084   // This is a recursive invocation on all operands in the matchrule
  2085   return _matrule->num_consts(globals);
  2088 // Return the number of constants in match rule with specified type
  2089 uint OperandForm::num_consts(FormDict &globals, Form::DataType type) const {
  2090   if ( ! _matrule) return 0;
  2092   // This is a recursive invocation on all operands in the matchrule
  2093   return _matrule->num_consts(globals, type);
  2096 // Return the number of pointer constants contained within this complex operand
  2097 uint OperandForm::num_const_ptrs(FormDict &globals) const {
  2098   if ( ! _matrule) return 0;
  2100   // This is a recursive invocation on all operands in the matchrule
  2101   return _matrule->num_const_ptrs(globals);
  2104 uint OperandForm::num_edges(FormDict &globals) const {
  2105   uint edges  = 0;
  2106   uint leaves = num_leaves();
  2107   uint consts = num_consts(globals);
  2109   // If we are matching a constant directly, there are no leaves.
  2110   edges = ( leaves > consts ) ? leaves - consts : 0;
  2112   // !!!!!
  2113   // Special case operands that do not have a corresponding ideal node.
  2114   if( (edges == 0) && (consts == 0) ) {
  2115     if( constrained_reg_class() != NULL ) {
  2116       edges = 1;
  2117     } else {
  2118       if( _matrule
  2119           && (_matrule->_lChild == NULL) && (_matrule->_rChild == NULL) ) {
  2120         const Form *form = globals[_matrule->_opType];
  2121         OperandForm *oper = form ? form->is_operand() : NULL;
  2122         if( oper ) {
  2123           return oper->num_edges(globals);
  2129   return edges;
  2133 // Check if this operand is usable for cisc-spilling
  2134 bool  OperandForm::is_cisc_reg(FormDict &globals) const {
  2135   const char *ideal = ideal_type(globals);
  2136   bool is_cisc_reg = (ideal && (ideal_to_Reg_type(ideal) != none));
  2137   return is_cisc_reg;
  2140 bool  OpClassForm::is_cisc_mem(FormDict &globals) const {
  2141   Form::InterfaceType my_interface = interface_type(globals);
  2142   return (my_interface == memory_interface);
  2146 // node matches ideal 'Bool'
  2147 bool OperandForm::is_ideal_bool() const {
  2148   if( _matrule == NULL ) return false;
  2150   return _matrule->is_ideal_bool();
  2153 // Require user's name for an sRegX to be stackSlotX
  2154 Form::DataType OperandForm::is_user_name_for_sReg() const {
  2155   DataType data_type = none;
  2156   if( _ident != NULL ) {
  2157     if(      strcmp(_ident,"stackSlotI") == 0 ) data_type = Form::idealI;
  2158     else if( strcmp(_ident,"stackSlotP") == 0 ) data_type = Form::idealP;
  2159     else if( strcmp(_ident,"stackSlotD") == 0 ) data_type = Form::idealD;
  2160     else if( strcmp(_ident,"stackSlotF") == 0 ) data_type = Form::idealF;
  2161     else if( strcmp(_ident,"stackSlotL") == 0 ) data_type = Form::idealL;
  2163   assert((data_type == none) || (_matrule == NULL), "No match-rule for stackSlotX");
  2165   return data_type;
  2169 // Return ideal type, if there is a single ideal type for this operand
  2170 const char *OperandForm::ideal_type(FormDict &globals, RegisterForm *registers) const {
  2171   const char *type = NULL;
  2172   if (ideal_only()) type = _ident;
  2173   else if( _matrule == NULL ) {
  2174     // Check for condition code register
  2175     const char *rc_name = constrained_reg_class();
  2176     // !!!!!
  2177     if (rc_name == NULL) return NULL;
  2178     // !!!!! !!!!!
  2179     // Check constraints on result's register class
  2180     if( registers ) {
  2181       RegClass *reg_class  = registers->getRegClass(rc_name);
  2182       assert( reg_class != NULL, "Register class is not defined");
  2184       // Check for ideal type of entries in register class, all are the same type
  2185       reg_class->reset();
  2186       RegDef *reg_def = reg_class->RegDef_iter();
  2187       assert( reg_def != NULL, "No entries in register class");
  2188       assert( reg_def->_idealtype != NULL, "Did not define ideal type for register");
  2189       // Return substring that names the register's ideal type
  2190       type = reg_def->_idealtype + 3;
  2191       assert( *(reg_def->_idealtype + 0) == 'O', "Expect Op_ prefix");
  2192       assert( *(reg_def->_idealtype + 1) == 'p', "Expect Op_ prefix");
  2193       assert( *(reg_def->_idealtype + 2) == '_', "Expect Op_ prefix");
  2196   else if( _matrule->_lChild == NULL && _matrule->_rChild == NULL ) {
  2197     // This operand matches a single type, at the top level.
  2198     // Check for ideal type
  2199     type = _matrule->_opType;
  2200     if( strcmp(type,"Bool") == 0 )
  2201       return "Bool";
  2202     // transitive lookup
  2203     const Form *frm = globals[type];
  2204     OperandForm *op = frm->is_operand();
  2205     type = op->ideal_type(globals, registers);
  2207   return type;
  2211 // If there is a single ideal type for this interface field, return it.
  2212 const char *OperandForm::interface_ideal_type(FormDict &globals,
  2213                                               const char *field) const {
  2214   const char  *ideal_type = NULL;
  2215   const char  *value      = NULL;
  2217   // Check if "field" is valid for this operand's interface
  2218   if ( ! is_interface_field(field, value) )   return ideal_type;
  2220   // !!!!! !!!!! !!!!!
  2221   // If a valid field has a constant value, identify "ConI" or "ConP" or ...
  2223   // Else, lookup type of field's replacement variable
  2225   return ideal_type;
  2229 RegClass* OperandForm::get_RegClass() const {
  2230   if (_interface && !_interface->is_RegInterface()) return NULL;
  2231   return globalAD->get_registers()->getRegClass(constrained_reg_class());
  2235 bool OperandForm::is_bound_register() const {
  2236   RegClass* reg_class = get_RegClass();
  2237   if (reg_class == NULL) {
  2238     return false;
  2241   const char* name = ideal_type(globalAD->globalNames());
  2242   if (name == NULL) {
  2243     return false;
  2246   uint size = 0;
  2247   if (strcmp(name, "RegFlags") == 0) size = 1;
  2248   if (strcmp(name, "RegI") == 0) size = 1;
  2249   if (strcmp(name, "RegF") == 0) size = 1;
  2250   if (strcmp(name, "RegD") == 0) size = 2;
  2251   if (strcmp(name, "RegL") == 0) size = 2;
  2252   if (strcmp(name, "RegN") == 0) size = 1;
  2253   if (strcmp(name, "RegP") == 0) size = globalAD->get_preproc_def("_LP64") ? 2 : 1;
  2254   if (size == 0) {
  2255     return false;
  2257   return size == reg_class->size();
  2261 // Check if this is a valid field for this operand,
  2262 // Return 'true' if valid, and set the value to the string the user provided.
  2263 bool  OperandForm::is_interface_field(const char *field,
  2264                                       const char * &value) const {
  2265   return false;
  2269 // Return register class name if a constraint specifies the register class.
  2270 const char *OperandForm::constrained_reg_class() const {
  2271   const char *reg_class  = NULL;
  2272   if ( _constraint ) {
  2273     // !!!!!
  2274     Constraint *constraint = _constraint;
  2275     if ( strcmp(_constraint->_func,"ALLOC_IN_RC") == 0 ) {
  2276       reg_class = _constraint->_arg;
  2280   return reg_class;
  2284 // Return the register class associated with 'leaf'.
  2285 const char *OperandForm::in_reg_class(uint leaf, FormDict &globals) {
  2286   const char *reg_class = NULL; // "RegMask::Empty";
  2288   if((_matrule == NULL) || (_matrule->is_chain_rule(globals))) {
  2289     reg_class = constrained_reg_class();
  2290     return reg_class;
  2292   const char *result   = NULL;
  2293   const char *name     = NULL;
  2294   const char *type     = NULL;
  2295   // iterate through all base operands
  2296   // until we reach the register that corresponds to "leaf"
  2297   // This function is not looking for an ideal type.  It needs the first
  2298   // level user type associated with the leaf.
  2299   for(uint idx = 0;_matrule->base_operand(idx,globals,result,name,type);++idx) {
  2300     const Form *form = (_localNames[name] ? _localNames[name] : globals[result]);
  2301     OperandForm *oper = form ? form->is_operand() : NULL;
  2302     if( oper ) {
  2303       reg_class = oper->constrained_reg_class();
  2304       if( reg_class ) {
  2305         reg_class = reg_class;
  2306       } else {
  2307         // ShouldNotReachHere();
  2309     } else {
  2310       // ShouldNotReachHere();
  2313     // Increment our target leaf position if current leaf is not a candidate.
  2314     if( reg_class == NULL)    ++leaf;
  2315     // Exit the loop with the value of reg_class when at the correct index
  2316     if( idx == leaf )         break;
  2317     // May iterate through all base operands if reg_class for 'leaf' is NULL
  2319   return reg_class;
  2323 // Recursive call to construct list of top-level operands.
  2324 // Implementation does not modify state of internal structures
  2325 void OperandForm::build_components() {
  2326   if (_matrule)  _matrule->append_components(_localNames, _components);
  2328   // Add parameters that "do not appear in match rule".
  2329   const char *name;
  2330   for (_parameters.reset(); (name = _parameters.iter()) != NULL;) {
  2331     OperandForm *opForm = (OperandForm*)_localNames[name];
  2333     if ( _components.operand_position(name) == -1 ) {
  2334       _components.insert(name, opForm->_ident, Component::INVALID, false);
  2338   return;
  2341 int OperandForm::operand_position(const char *name, int usedef) {
  2342   return _components.operand_position(name, usedef, this);
  2346 // Return zero-based position in component list, only counting constants;
  2347 // Return -1 if not in list.
  2348 int OperandForm::constant_position(FormDict &globals, const Component *last) {
  2349   // Iterate through components and count constants preceding 'constant'
  2350   int position = 0;
  2351   Component *comp;
  2352   _components.reset();
  2353   while( (comp = _components.iter()) != NULL  && (comp != last) ) {
  2354     // Special case for operands that take a single user-defined operand
  2355     // Skip the initial definition in the component list.
  2356     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
  2358     const char *type = comp->_type;
  2359     // Lookup operand form for replacement variable's type
  2360     const Form *form = globals[type];
  2361     assert( form != NULL, "Component's type not found");
  2362     OperandForm *oper = form ? form->is_operand() : NULL;
  2363     if( oper ) {
  2364       if( oper->_matrule->is_base_constant(globals) != Form::none ) {
  2365         ++position;
  2370   // Check for being passed a component that was not in the list
  2371   if( comp != last )  position = -1;
  2373   return position;
  2375 // Provide position of constant by "name"
  2376 int OperandForm::constant_position(FormDict &globals, const char *name) {
  2377   const Component *comp = _components.search(name);
  2378   int idx = constant_position( globals, comp );
  2380   return idx;
  2384 // Return zero-based position in component list, only counting constants;
  2385 // Return -1 if not in list.
  2386 int OperandForm::register_position(FormDict &globals, const char *reg_name) {
  2387   // Iterate through components and count registers preceding 'last'
  2388   uint  position = 0;
  2389   Component *comp;
  2390   _components.reset();
  2391   while( (comp = _components.iter()) != NULL
  2392          && (strcmp(comp->_name,reg_name) != 0) ) {
  2393     // Special case for operands that take a single user-defined operand
  2394     // Skip the initial definition in the component list.
  2395     if( strcmp(comp->_name,this->_ident) == 0 ) continue;
  2397     const char *type = comp->_type;
  2398     // Lookup operand form for component's type
  2399     const Form *form = globals[type];
  2400     assert( form != NULL, "Component's type not found");
  2401     OperandForm *oper = form ? form->is_operand() : NULL;
  2402     if( oper ) {
  2403       if( oper->_matrule->is_base_register(globals) ) {
  2404         ++position;
  2409   return position;
  2413 const char *OperandForm::reduce_result()  const {
  2414   return _ident;
  2416 // Return the name of the operand on the right hand side of the binary match
  2417 // Return NULL if there is no right hand side
  2418 const char *OperandForm::reduce_right(FormDict &globals)  const {
  2419   return  ( _matrule ? _matrule->reduce_right(globals) : NULL );
  2422 // Similar for left
  2423 const char *OperandForm::reduce_left(FormDict &globals)   const {
  2424   return  ( _matrule ? _matrule->reduce_left(globals) : NULL );
  2428 // --------------------------- FILE *output_routines
  2429 //
  2430 // Output code for disp_is_oop, if true.
  2431 void OperandForm::disp_is_oop(FILE *fp, FormDict &globals) {
  2432   //  Check it is a memory interface with a non-user-constant disp field
  2433   if ( this->_interface == NULL ) return;
  2434   MemInterface *mem_interface = this->_interface->is_MemInterface();
  2435   if ( mem_interface == NULL )    return;
  2436   const char   *disp  = mem_interface->_disp;
  2437   if ( *disp != '$' )             return;
  2439   // Lookup replacement variable in operand's component list
  2440   const char   *rep_var = disp + 1;
  2441   const Component *comp = this->_components.search(rep_var);
  2442   assert( comp != NULL, "Replacement variable not found in components");
  2443   // Lookup operand form for replacement variable's type
  2444   const char      *type = comp->_type;
  2445   Form            *form = (Form*)globals[type];
  2446   assert( form != NULL, "Replacement variable's type not found");
  2447   OperandForm     *op   = form->is_operand();
  2448   assert( op, "Memory Interface 'disp' can only emit an operand form");
  2449   // Check if this is a ConP, which may require relocation
  2450   if ( op->is_base_constant(globals) == Form::idealP ) {
  2451     // Find the constant's index:  _c0, _c1, _c2, ... , _cN
  2452     uint idx  = op->constant_position( globals, rep_var);
  2453     fprintf(fp,"  virtual relocInfo::relocType disp_reloc() const {");
  2454     fprintf(fp,  "  return _c%d->reloc();", idx);
  2455     fprintf(fp, " }\n");
  2459 // Generate code for internal and external format methods
  2460 //
  2461 // internal access to reg# node->_idx
  2462 // access to subsumed constant _c0, _c1,
  2463 void  OperandForm::int_format(FILE *fp, FormDict &globals, uint index) {
  2464   Form::DataType dtype;
  2465   if (_matrule && (_matrule->is_base_register(globals) ||
  2466                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
  2467     // !!!!! !!!!!
  2468     fprintf(fp,"  { char reg_str[128];\n");
  2469     fprintf(fp,"    ra->dump_register(node,reg_str);\n");
  2470     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
  2471     fprintf(fp,"  }\n");
  2472   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
  2473     format_constant( fp, index, dtype );
  2474   } else if (ideal_to_sReg_type(_ident) != Form::none) {
  2475     // Special format for Stack Slot Register
  2476     fprintf(fp,"  { char reg_str[128];\n");
  2477     fprintf(fp,"    ra->dump_register(node,reg_str);\n");
  2478     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
  2479     fprintf(fp,"  }\n");
  2480   } else {
  2481     fprintf(fp,"  st->print(\"No format defined for %s\n\");\n", _ident);
  2482     fflush(fp);
  2483     fprintf(stderr,"No format defined for %s\n", _ident);
  2484     dump();
  2485     assert( false,"Internal error:\n  output_internal_operand() attempting to output other than a Register or Constant");
  2489 // Similar to "int_format" but for cases where data is external to operand
  2490 // external access to reg# node->in(idx)->_idx,
  2491 void  OperandForm::ext_format(FILE *fp, FormDict &globals, uint index) {
  2492   Form::DataType dtype;
  2493   if (_matrule && (_matrule->is_base_register(globals) ||
  2494                    strcmp(ideal_type(globalAD->globalNames()), "RegFlags") == 0)) {
  2495     fprintf(fp,"  { char reg_str[128];\n");
  2496     fprintf(fp,"    ra->dump_register(node->in(idx");
  2497     if ( index != 0 ) fprintf(fp,              "+%d",index);
  2498     fprintf(fp,                                      "),reg_str);\n");
  2499     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
  2500     fprintf(fp,"  }\n");
  2501   } else if (_matrule && (dtype = _matrule->is_base_constant(globals)) != Form::none) {
  2502     format_constant( fp, index, dtype );
  2503   } else if (ideal_to_sReg_type(_ident) != Form::none) {
  2504     // Special format for Stack Slot Register
  2505     fprintf(fp,"  { char reg_str[128];\n");
  2506     fprintf(fp,"    ra->dump_register(node->in(idx");
  2507     if ( index != 0 ) fprintf(fp,                  "+%d",index);
  2508     fprintf(fp,                                       "),reg_str);\n");
  2509     fprintf(fp,"    st->print(\"%cs\",reg_str);\n",'%');
  2510     fprintf(fp,"  }\n");
  2511   } else {
  2512     fprintf(fp,"  st->print(\"No format defined for %s\n\");\n", _ident);
  2513     assert( false,"Internal error:\n  output_external_operand() attempting to output other than a Register or Constant");
  2517 void OperandForm::format_constant(FILE *fp, uint const_index, uint const_type) {
  2518   switch(const_type) {
  2519   case Form::idealI: fprintf(fp,"  st->print(\"#%%d\", _c%d);\n", const_index); break;
  2520   case Form::idealP: fprintf(fp,"  if (_c%d) _c%d->dump_on(st);\n", const_index, const_index); break;
  2521   case Form::idealNKlass:
  2522   case Form::idealN: fprintf(fp,"  if (_c%d) _c%d->dump_on(st);\n", const_index, const_index); break;
  2523   case Form::idealL: fprintf(fp,"  st->print(\"#%%lld\", _c%d);\n", const_index); break;
  2524   case Form::idealF: fprintf(fp,"  st->print(\"#%%f\", _c%d);\n", const_index); break;
  2525   case Form::idealD: fprintf(fp,"  st->print(\"#%%f\", _c%d);\n", const_index); break;
  2526   default:
  2527     assert( false, "ShouldNotReachHere()");
  2531 // Return the operand form corresponding to the given index, else NULL.
  2532 OperandForm *OperandForm::constant_operand(FormDict &globals,
  2533                                            uint      index) {
  2534   // !!!!!
  2535   // Check behavior on complex operands
  2536   uint n_consts = num_consts(globals);
  2537   if( n_consts > 0 ) {
  2538     uint i = 0;
  2539     const char *type;
  2540     Component  *comp;
  2541     _components.reset();
  2542     if ((comp = _components.iter()) == NULL) {
  2543       assert(n_consts == 1, "Bad component list detected.\n");
  2544       // Current operand is THE operand
  2545       if ( index == 0 ) {
  2546         return this;
  2548     } // end if NULL
  2549     else {
  2550       // Skip the first component, it can not be a DEF of a constant
  2551       do {
  2552         type = comp->base_type(globals);
  2553         // Check that "type" is a 'ConI', 'ConP', ...
  2554         if ( ideal_to_const_type(type) != Form::none ) {
  2555           // When at correct component, get corresponding Operand
  2556           if ( index == 0 ) {
  2557             return globals[comp->_type]->is_operand();
  2559           // Decrement number of constants to go
  2560           --index;
  2562       } while((comp = _components.iter()) != NULL);
  2566   // Did not find a constant for this index.
  2567   return NULL;
  2570 // If this operand has a single ideal type, return its type
  2571 Form::DataType OperandForm::simple_type(FormDict &globals) const {
  2572   const char *type_name = ideal_type(globals);
  2573   Form::DataType type   = type_name ? ideal_to_const_type( type_name )
  2574                                     : Form::none;
  2575   return type;
  2578 Form::DataType OperandForm::is_base_constant(FormDict &globals) const {
  2579   if ( _matrule == NULL )    return Form::none;
  2581   return _matrule->is_base_constant(globals);
  2584 // "true" if this operand is a simple type that is swallowed
  2585 bool  OperandForm::swallowed(FormDict &globals) const {
  2586   Form::DataType type   = simple_type(globals);
  2587   if( type != Form::none ) {
  2588     return true;
  2591   return false;
  2594 // Output code to access the value of the index'th constant
  2595 void OperandForm::access_constant(FILE *fp, FormDict &globals,
  2596                                   uint const_index) {
  2597   OperandForm *oper = constant_operand(globals, const_index);
  2598   assert( oper, "Index exceeds number of constants in operand");
  2599   Form::DataType dtype = oper->is_base_constant(globals);
  2601   switch(dtype) {
  2602   case idealI: fprintf(fp,"_c%d",           const_index); break;
  2603   case idealP: fprintf(fp,"_c%d->get_con()",const_index); break;
  2604   case idealL: fprintf(fp,"_c%d",           const_index); break;
  2605   case idealF: fprintf(fp,"_c%d",           const_index); break;
  2606   case idealD: fprintf(fp,"_c%d",           const_index); break;
  2607   default:
  2608     assert( false, "ShouldNotReachHere()");
  2613 void OperandForm::dump() {
  2614   output(stderr);
  2617 void OperandForm::output(FILE *fp) {
  2618   fprintf(fp,"\nOperand: %s\n", (_ident?_ident:""));
  2619   if (_matrule)    _matrule->dump();
  2620   if (_interface)  _interface->dump();
  2621   if (_attribs)    _attribs->dump();
  2622   if (_predicate)  _predicate->dump();
  2623   if (_constraint) _constraint->dump();
  2624   if (_construct)  _construct->dump();
  2625   if (_format)     _format->dump();
  2628 //------------------------------Constraint-------------------------------------
  2629 Constraint::Constraint(const char *func, const char *arg)
  2630   : _func(func), _arg(arg) {
  2632 Constraint::~Constraint() { /* not owner of char* */
  2635 bool Constraint::stack_slots_only() const {
  2636   return strcmp(_func, "ALLOC_IN_RC") == 0
  2637       && strcmp(_arg,  "stack_slots") == 0;
  2640 void Constraint::dump() {
  2641   output(stderr);
  2644 void Constraint::output(FILE *fp) {           // Write info to output files
  2645   assert((_func != NULL && _arg != NULL),"missing constraint function or arg");
  2646   fprintf(fp,"Constraint: %s ( %s )\n", _func, _arg);
  2649 //------------------------------Predicate--------------------------------------
  2650 Predicate::Predicate(char *pr)
  2651   : _pred(pr) {
  2653 Predicate::~Predicate() {
  2656 void Predicate::dump() {
  2657   output(stderr);
  2660 void Predicate::output(FILE *fp) {
  2661   fprintf(fp,"Predicate");  // Write to output files
  2663 //------------------------------Interface--------------------------------------
  2664 Interface::Interface(const char *name) : _name(name) {
  2666 Interface::~Interface() {
  2669 Form::InterfaceType Interface::interface_type(FormDict &globals) const {
  2670   Interface *thsi = (Interface*)this;
  2671   if ( thsi->is_RegInterface()   ) return Form::register_interface;
  2672   if ( thsi->is_MemInterface()   ) return Form::memory_interface;
  2673   if ( thsi->is_ConstInterface() ) return Form::constant_interface;
  2674   if ( thsi->is_CondInterface()  ) return Form::conditional_interface;
  2676   return Form::no_interface;
  2679 RegInterface   *Interface::is_RegInterface() {
  2680   if ( strcmp(_name,"REG_INTER") != 0 )
  2681     return NULL;
  2682   return (RegInterface*)this;
  2684 MemInterface   *Interface::is_MemInterface() {
  2685   if ( strcmp(_name,"MEMORY_INTER") != 0 )  return NULL;
  2686   return (MemInterface*)this;
  2688 ConstInterface *Interface::is_ConstInterface() {
  2689   if ( strcmp(_name,"CONST_INTER") != 0 )  return NULL;
  2690   return (ConstInterface*)this;
  2692 CondInterface  *Interface::is_CondInterface() {
  2693   if ( strcmp(_name,"COND_INTER") != 0 )  return NULL;
  2694   return (CondInterface*)this;
  2698 void Interface::dump() {
  2699   output(stderr);
  2702 // Write info to output files
  2703 void Interface::output(FILE *fp) {
  2704   fprintf(fp,"Interface: %s\n", (_name ? _name : "") );
  2707 //------------------------------RegInterface-----------------------------------
  2708 RegInterface::RegInterface() : Interface("REG_INTER") {
  2710 RegInterface::~RegInterface() {
  2713 void RegInterface::dump() {
  2714   output(stderr);
  2717 // Write info to output files
  2718 void RegInterface::output(FILE *fp) {
  2719   Interface::output(fp);
  2722 //------------------------------ConstInterface---------------------------------
  2723 ConstInterface::ConstInterface() : Interface("CONST_INTER") {
  2725 ConstInterface::~ConstInterface() {
  2728 void ConstInterface::dump() {
  2729   output(stderr);
  2732 // Write info to output files
  2733 void ConstInterface::output(FILE *fp) {
  2734   Interface::output(fp);
  2737 //------------------------------MemInterface-----------------------------------
  2738 MemInterface::MemInterface(char *base, char *index, char *scale, char *disp)
  2739   : Interface("MEMORY_INTER"), _base(base), _index(index), _scale(scale), _disp(disp) {
  2741 MemInterface::~MemInterface() {
  2742   // not owner of any character arrays
  2745 void MemInterface::dump() {
  2746   output(stderr);
  2749 // Write info to output files
  2750 void MemInterface::output(FILE *fp) {
  2751   Interface::output(fp);
  2752   if ( _base  != NULL ) fprintf(fp,"  base  == %s\n", _base);
  2753   if ( _index != NULL ) fprintf(fp,"  index == %s\n", _index);
  2754   if ( _scale != NULL ) fprintf(fp,"  scale == %s\n", _scale);
  2755   if ( _disp  != NULL ) fprintf(fp,"  disp  == %s\n", _disp);
  2756   // fprintf(fp,"\n");
  2759 //------------------------------CondInterface----------------------------------
  2760 CondInterface::CondInterface(const char* equal,         const char* equal_format,
  2761                              const char* not_equal,     const char* not_equal_format,
  2762                              const char* less,          const char* less_format,
  2763                              const char* greater_equal, const char* greater_equal_format,
  2764                              const char* less_equal,    const char* less_equal_format,
  2765                              const char* greater,       const char* greater_format,
  2766                              const char* overflow,      const char* overflow_format,
  2767                              const char* no_overflow,   const char* no_overflow_format)
  2768   : Interface("COND_INTER"),
  2769     _equal(equal),                 _equal_format(equal_format),
  2770     _not_equal(not_equal),         _not_equal_format(not_equal_format),
  2771     _less(less),                   _less_format(less_format),
  2772     _greater_equal(greater_equal), _greater_equal_format(greater_equal_format),
  2773     _less_equal(less_equal),       _less_equal_format(less_equal_format),
  2774     _greater(greater),             _greater_format(greater_format),
  2775     _overflow(overflow),           _overflow_format(overflow_format),
  2776     _no_overflow(no_overflow),     _no_overflow_format(no_overflow_format) {
  2778 CondInterface::~CondInterface() {
  2779   // not owner of any character arrays
  2782 void CondInterface::dump() {
  2783   output(stderr);
  2786 // Write info to output files
  2787 void CondInterface::output(FILE *fp) {
  2788   Interface::output(fp);
  2789   if ( _equal  != NULL )     fprintf(fp," equal        == %s\n", _equal);
  2790   if ( _not_equal  != NULL ) fprintf(fp," not_equal    == %s\n", _not_equal);
  2791   if ( _less  != NULL )      fprintf(fp," less         == %s\n", _less);
  2792   if ( _greater_equal  != NULL ) fprintf(fp," greater_equal    == %s\n", _greater_equal);
  2793   if ( _less_equal  != NULL ) fprintf(fp," less_equal   == %s\n", _less_equal);
  2794   if ( _greater  != NULL )    fprintf(fp," greater      == %s\n", _greater);
  2795   if ( _overflow != NULL )    fprintf(fp," overflow     == %s\n", _overflow);
  2796   if ( _no_overflow != NULL ) fprintf(fp," no_overflow  == %s\n", _no_overflow);
  2797   // fprintf(fp,"\n");
  2800 //------------------------------ConstructRule----------------------------------
  2801 ConstructRule::ConstructRule(char *cnstr)
  2802   : _construct(cnstr) {
  2804 ConstructRule::~ConstructRule() {
  2807 void ConstructRule::dump() {
  2808   output(stderr);
  2811 void ConstructRule::output(FILE *fp) {
  2812   fprintf(fp,"\nConstruct Rule\n");  // Write to output files
  2816 //==============================Shared Forms===================================
  2817 //------------------------------AttributeForm----------------------------------
  2818 int         AttributeForm::_insId   = 0;           // start counter at 0
  2819 int         AttributeForm::_opId    = 0;           // start counter at 0
  2820 const char* AttributeForm::_ins_cost = "ins_cost"; // required name
  2821 const char* AttributeForm::_op_cost  = "op_cost";  // required name
  2823 AttributeForm::AttributeForm(char *attr, int type, char *attrdef)
  2824   : Form(Form::ATTR), _attrname(attr), _atype(type), _attrdef(attrdef) {
  2825     if (type==OP_ATTR) {
  2826       id = ++_opId;
  2828     else if (type==INS_ATTR) {
  2829       id = ++_insId;
  2831     else assert( false,"");
  2833 AttributeForm::~AttributeForm() {
  2836 // Dynamic type check
  2837 AttributeForm *AttributeForm::is_attribute() const {
  2838   return (AttributeForm*)this;
  2842 // inlined  // int  AttributeForm::type() { return id;}
  2844 void AttributeForm::dump() {
  2845   output(stderr);
  2848 void AttributeForm::output(FILE *fp) {
  2849   if( _attrname && _attrdef ) {
  2850     fprintf(fp,"\n// AttributeForm \nstatic const int %s = %s;\n",
  2851             _attrname, _attrdef);
  2853   else {
  2854     fprintf(fp,"\n// AttributeForm missing name %s or definition %s\n",
  2855             (_attrname?_attrname:""), (_attrdef?_attrdef:"") );
  2859 //------------------------------Component--------------------------------------
  2860 Component::Component(const char *name, const char *type, int usedef)
  2861   : _name(name), _type(type), _usedef(usedef) {
  2862     _ftype = Form::COMP;
  2864 Component::~Component() {
  2867 // True if this component is equal to the parameter.
  2868 bool Component::is(int use_def_kill_enum) const {
  2869   return (_usedef == use_def_kill_enum ? true : false);
  2871 // True if this component is used/def'd/kill'd as the parameter suggests.
  2872 bool Component::isa(int use_def_kill_enum) const {
  2873   return (_usedef & use_def_kill_enum) == use_def_kill_enum;
  2876 // Extend this component with additional use/def/kill behavior
  2877 int Component::promote_use_def_info(int new_use_def) {
  2878   _usedef |= new_use_def;
  2880   return _usedef;
  2883 // Check the base type of this component, if it has one
  2884 const char *Component::base_type(FormDict &globals) {
  2885   const Form *frm = globals[_type];
  2886   if (frm == NULL) return NULL;
  2887   OperandForm *op = frm->is_operand();
  2888   if (op == NULL) return NULL;
  2889   if (op->ideal_only()) return op->_ident;
  2890   return (char *)op->ideal_type(globals);
  2893 void Component::dump() {
  2894   output(stderr);
  2897 void Component::output(FILE *fp) {
  2898   fprintf(fp,"Component:");  // Write to output files
  2899   fprintf(fp, "  name = %s", _name);
  2900   fprintf(fp, ", type = %s", _type);
  2901   assert(_usedef != 0, "unknown effect");
  2902   fprintf(fp, ", use/def = %s\n", getUsedefName());
  2906 //------------------------------ComponentList---------------------------------
  2907 ComponentList::ComponentList() : NameList(), _matchcnt(0) {
  2909 ComponentList::~ComponentList() {
  2910   // // This list may not own its elements if copied via assignment
  2911   // Component *component;
  2912   // for (reset(); (component = iter()) != NULL;) {
  2913   //   delete component;
  2914   // }
  2917 void   ComponentList::insert(Component *component, bool mflag) {
  2918   NameList::addName((char *)component);
  2919   if(mflag) _matchcnt++;
  2921 void   ComponentList::insert(const char *name, const char *opType, int usedef,
  2922                              bool mflag) {
  2923   Component * component = new Component(name, opType, usedef);
  2924   insert(component, mflag);
  2926 Component *ComponentList::current() { return (Component*)NameList::current(); }
  2927 Component *ComponentList::iter()    { return (Component*)NameList::iter(); }
  2928 Component *ComponentList::match_iter() {
  2929   if(_iter < _matchcnt) return (Component*)NameList::iter();
  2930   return NULL;
  2932 Component *ComponentList::post_match_iter() {
  2933   Component *comp = iter();
  2934   // At end of list?
  2935   if ( comp == NULL ) {
  2936     return comp;
  2938   // In post-match components?
  2939   if (_iter > match_count()-1) {
  2940     return comp;
  2943   return post_match_iter();
  2946 void       ComponentList::reset()   { NameList::reset(); }
  2947 int        ComponentList::count()   { return NameList::count(); }
  2949 Component *ComponentList::operator[](int position) {
  2950   // Shortcut complete iteration if there are not enough entries
  2951   if (position >= count()) return NULL;
  2953   int        index     = 0;
  2954   Component *component = NULL;
  2955   for (reset(); (component = iter()) != NULL;) {
  2956     if (index == position) {
  2957       return component;
  2959     ++index;
  2962   return NULL;
  2965 const Component *ComponentList::search(const char *name) {
  2966   PreserveIter pi(this);
  2967   reset();
  2968   for( Component *comp = NULL; ((comp = iter()) != NULL); ) {
  2969     if( strcmp(comp->_name,name) == 0 ) return comp;
  2972   return NULL;
  2975 // Return number of USEs + number of DEFs
  2976 // When there are no components, or the first component is a USE,
  2977 // then we add '1' to hold a space for the 'result' operand.
  2978 int ComponentList::num_operands() {
  2979   PreserveIter pi(this);
  2980   uint       count = 1;           // result operand
  2981   uint       position = 0;
  2983   Component *component  = NULL;
  2984   for( reset(); (component = iter()) != NULL; ++position ) {
  2985     if( component->isa(Component::USE) ||
  2986         ( position == 0 && (! component->isa(Component::DEF))) ) {
  2987       ++count;
  2991   return count;
  2994 // Return zero-based position of operand 'name' in list;  -1 if not in list.
  2995 // if parameter 'usedef' is ::USE, it will match USE, USE_DEF, ...
  2996 int ComponentList::operand_position(const char *name, int usedef, Form *fm) {
  2997   PreserveIter pi(this);
  2998   int position = 0;
  2999   int num_opnds = num_operands();
  3000   Component *component;
  3001   Component* preceding_non_use = NULL;
  3002   Component* first_def = NULL;
  3003   for (reset(); (component = iter()) != NULL; ++position) {
  3004     // When the first component is not a DEF,
  3005     // leave space for the result operand!
  3006     if ( position==0 && (! component->isa(Component::DEF)) ) {
  3007       ++position;
  3008       ++num_opnds;
  3010     if (strcmp(name, component->_name)==0 && (component->isa(usedef))) {
  3011       // When the first entry in the component list is a DEF and a USE
  3012       // Treat them as being separate, a DEF first, then a USE
  3013       if( position==0
  3014           && usedef==Component::USE && component->isa(Component::DEF) ) {
  3015         assert(position+1 < num_opnds, "advertised index in bounds");
  3016         return position+1;
  3017       } else {
  3018         if( preceding_non_use && strcmp(component->_name, preceding_non_use->_name) ) {
  3019           fprintf(stderr, "the name '%s(%s)' should not precede the name '%s(%s)'",
  3020                   preceding_non_use->_name, preceding_non_use->getUsedefName(),
  3021                   name, component->getUsedefName());
  3022           if (fm && fm->is_instruction()) fprintf(stderr,  "in form '%s'", fm->is_instruction()->_ident);
  3023           if (fm && fm->is_operand()) fprintf(stderr,  "in form '%s'", fm->is_operand()->_ident);
  3024           fprintf(stderr,  "\n");
  3026         if( position >= num_opnds ) {
  3027           fprintf(stderr, "the name '%s' is too late in its name list", name);
  3028           if (fm && fm->is_instruction()) fprintf(stderr,  "in form '%s'", fm->is_instruction()->_ident);
  3029           if (fm && fm->is_operand()) fprintf(stderr,  "in form '%s'", fm->is_operand()->_ident);
  3030           fprintf(stderr,  "\n");
  3032         assert(position < num_opnds, "advertised index in bounds");
  3033         return position;
  3036     if( component->isa(Component::DEF)
  3037         && component->isa(Component::USE) ) {
  3038       ++position;
  3039       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  3041     if( component->isa(Component::DEF) && !first_def ) {
  3042       first_def = component;
  3044     if( !component->isa(Component::USE) && component != first_def ) {
  3045       preceding_non_use = component;
  3046     } else if( preceding_non_use && !strcmp(component->_name, preceding_non_use->_name) ) {
  3047       preceding_non_use = NULL;
  3050   return Not_in_list;
  3053 // Find position for this name, regardless of use/def information
  3054 int ComponentList::operand_position(const char *name) {
  3055   PreserveIter pi(this);
  3056   int position = 0;
  3057   Component *component;
  3058   for (reset(); (component = iter()) != NULL; ++position) {
  3059     // When the first component is not a DEF,
  3060     // leave space for the result operand!
  3061     if ( position==0 && (! component->isa(Component::DEF)) ) {
  3062       ++position;
  3064     if (strcmp(name, component->_name)==0) {
  3065       return position;
  3067     if( component->isa(Component::DEF)
  3068         && component->isa(Component::USE) ) {
  3069       ++position;
  3070       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  3073   return Not_in_list;
  3076 int ComponentList::operand_position_format(const char *name, Form *fm) {
  3077   PreserveIter pi(this);
  3078   int  first_position = operand_position(name);
  3079   int  use_position   = operand_position(name, Component::USE, fm);
  3081   return ((first_position < use_position) ? use_position : first_position);
  3084 int ComponentList::label_position() {
  3085   PreserveIter pi(this);
  3086   int position = 0;
  3087   reset();
  3088   for( Component *comp; (comp = iter()) != NULL; ++position) {
  3089     // When the first component is not a DEF,
  3090     // leave space for the result operand!
  3091     if ( position==0 && (! comp->isa(Component::DEF)) ) {
  3092       ++position;
  3094     if (strcmp(comp->_type, "label")==0) {
  3095       return position;
  3097     if( comp->isa(Component::DEF)
  3098         && comp->isa(Component::USE) ) {
  3099       ++position;
  3100       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  3104   return -1;
  3107 int ComponentList::method_position() {
  3108   PreserveIter pi(this);
  3109   int position = 0;
  3110   reset();
  3111   for( Component *comp; (comp = iter()) != NULL; ++position) {
  3112     // When the first component is not a DEF,
  3113     // leave space for the result operand!
  3114     if ( position==0 && (! comp->isa(Component::DEF)) ) {
  3115       ++position;
  3117     if (strcmp(comp->_type, "method")==0) {
  3118       return position;
  3120     if( comp->isa(Component::DEF)
  3121         && comp->isa(Component::USE) ) {
  3122       ++position;
  3123       if( position != 1 )  --position;   // only use two slots for the 1st USE_DEF
  3127   return -1;
  3130 void ComponentList::dump() { output(stderr); }
  3132 void ComponentList::output(FILE *fp) {
  3133   PreserveIter pi(this);
  3134   fprintf(fp, "\n");
  3135   Component *component;
  3136   for (reset(); (component = iter()) != NULL;) {
  3137     component->output(fp);
  3139   fprintf(fp, "\n");
  3142 //------------------------------MatchNode--------------------------------------
  3143 MatchNode::MatchNode(ArchDesc &ad, const char *result, const char *mexpr,
  3144                      const char *opType, MatchNode *lChild, MatchNode *rChild)
  3145   : _AD(ad), _result(result), _name(mexpr), _opType(opType),
  3146     _lChild(lChild), _rChild(rChild), _internalop(0), _numleaves(0),
  3147     _commutative_id(0) {
  3148   _numleaves = (lChild ? lChild->_numleaves : 0)
  3149                + (rChild ? rChild->_numleaves : 0);
  3152 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode)
  3153   : _AD(ad), _result(mnode._result), _name(mnode._name),
  3154     _opType(mnode._opType), _lChild(mnode._lChild), _rChild(mnode._rChild),
  3155     _internalop(0), _numleaves(mnode._numleaves),
  3156     _commutative_id(mnode._commutative_id) {
  3159 MatchNode::MatchNode(ArchDesc &ad, MatchNode& mnode, int clone)
  3160   : _AD(ad), _result(mnode._result), _name(mnode._name),
  3161     _opType(mnode._opType),
  3162     _internalop(0), _numleaves(mnode._numleaves),
  3163     _commutative_id(mnode._commutative_id) {
  3164   if (mnode._lChild) {
  3165     _lChild = new MatchNode(ad, *mnode._lChild, clone);
  3166   } else {
  3167     _lChild = NULL;
  3169   if (mnode._rChild) {
  3170     _rChild = new MatchNode(ad, *mnode._rChild, clone);
  3171   } else {
  3172     _rChild = NULL;
  3176 MatchNode::~MatchNode() {
  3177   // // This node may not own its children if copied via assignment
  3178   // if( _lChild ) delete _lChild;
  3179   // if( _rChild ) delete _rChild;
  3182 bool  MatchNode::find_type(const char *type, int &position) const {
  3183   if ( (_lChild != NULL) && (_lChild->find_type(type, position)) ) return true;
  3184   if ( (_rChild != NULL) && (_rChild->find_type(type, position)) ) return true;
  3186   if (strcmp(type,_opType)==0)  {
  3187     return true;
  3188   } else {
  3189     ++position;
  3191   return false;
  3194 // Recursive call collecting info on top-level operands, not transitive.
  3195 // Implementation does not modify state of internal structures.
  3196 void MatchNode::append_components(FormDict& locals, ComponentList& components,
  3197                                   bool def_flag) const {
  3198   int usedef = def_flag ? Component::DEF : Component::USE;
  3199   FormDict &globals = _AD.globalNames();
  3201   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
  3202   // Base case
  3203   if (_lChild==NULL && _rChild==NULL) {
  3204     // If _opType is not an operation, do not build a component for it #####
  3205     const Form *f = globals[_opType];
  3206     if( f != NULL ) {
  3207       // Add non-ideals that are operands, operand-classes,
  3208       if( ! f->ideal_only()
  3209           && (f->is_opclass() || f->is_operand()) ) {
  3210         components.insert(_name, _opType, usedef, true);
  3213     return;
  3215   // Promote results of "Set" to DEF
  3216   bool tmpdef_flag = (!strcmp(_opType, "Set")) ? true : false;
  3217   if (_lChild) _lChild->append_components(locals, components, tmpdef_flag);
  3218   tmpdef_flag = false;   // only applies to component immediately following 'Set'
  3219   if (_rChild) _rChild->append_components(locals, components, tmpdef_flag);
  3222 // Find the n'th base-operand in the match node,
  3223 // recursively investigates match rules of user-defined operands.
  3224 //
  3225 // Implementation does not modify state of internal structures since they
  3226 // can be shared.
  3227 bool MatchNode::base_operand(uint &position, FormDict &globals,
  3228                              const char * &result, const char * &name,
  3229                              const char * &opType) const {
  3230   assert (_name != NULL, "MatchNode::base_operand encountered empty node\n");
  3231   // Base case
  3232   if (_lChild==NULL && _rChild==NULL) {
  3233     // Check for special case: "Universe", "label"
  3234     if (strcmp(_opType,"Universe") == 0 || strcmp(_opType,"label")==0 ) {
  3235       if (position == 0) {
  3236         result = _result;
  3237         name   = _name;
  3238         opType = _opType;
  3239         return 1;
  3240       } else {
  3241         -- position;
  3242         return 0;
  3246     const Form *form = globals[_opType];
  3247     MatchNode *matchNode = NULL;
  3248     // Check for user-defined type
  3249     if (form) {
  3250       // User operand or instruction?
  3251       OperandForm  *opForm = form->is_operand();
  3252       InstructForm *inForm = form->is_instruction();
  3253       if ( opForm ) {
  3254         matchNode = (MatchNode*)opForm->_matrule;
  3255       } else if ( inForm ) {
  3256         matchNode = (MatchNode*)inForm->_matrule;
  3259     // if this is user-defined, recurse on match rule
  3260     // User-defined operand and instruction forms have a match-rule.
  3261     if (matchNode) {
  3262       return (matchNode->base_operand(position,globals,result,name,opType));
  3263     } else {
  3264       // Either not a form, or a system-defined form (no match rule).
  3265       if (position==0) {
  3266         result = _result;
  3267         name   = _name;
  3268         opType = _opType;
  3269         return 1;
  3270       } else {
  3271         --position;
  3272         return 0;
  3276   } else {
  3277     // Examine the left child and right child as well
  3278     if (_lChild) {
  3279       if (_lChild->base_operand(position, globals, result, name, opType))
  3280         return 1;
  3283     if (_rChild) {
  3284       if (_rChild->base_operand(position, globals, result, name, opType))
  3285         return 1;
  3289   return 0;
  3292 // Recursive call on all operands' match rules in my match rule.
  3293 uint  MatchNode::num_consts(FormDict &globals) const {
  3294   uint        index      = 0;
  3295   uint        num_consts = 0;
  3296   const char *result;
  3297   const char *name;
  3298   const char *opType;
  3300   for (uint position = index;
  3301        base_operand(position,globals,result,name,opType); position = index) {
  3302     ++index;
  3303     if( ideal_to_const_type(opType) )        num_consts++;
  3306   return num_consts;
  3309 // Recursive call on all operands' match rules in my match rule.
  3310 // Constants in match rule subtree with specified type
  3311 uint  MatchNode::num_consts(FormDict &globals, Form::DataType type) const {
  3312   uint        index      = 0;
  3313   uint        num_consts = 0;
  3314   const char *result;
  3315   const char *name;
  3316   const char *opType;
  3318   for (uint position = index;
  3319        base_operand(position,globals,result,name,opType); position = index) {
  3320     ++index;
  3321     if( ideal_to_const_type(opType) == type ) num_consts++;
  3324   return num_consts;
  3327 // Recursive call on all operands' match rules in my match rule.
  3328 uint  MatchNode::num_const_ptrs(FormDict &globals) const {
  3329   return  num_consts( globals, Form::idealP );
  3332 bool  MatchNode::sets_result() const {
  3333   return   ( (strcmp(_name,"Set") == 0) ? true : false );
  3336 const char *MatchNode::reduce_right(FormDict &globals) const {
  3337   // If there is no right reduction, return NULL.
  3338   const char      *rightStr    = NULL;
  3340   // If we are a "Set", start from the right child.
  3341   const MatchNode *const mnode = sets_result() ?
  3342     (const MatchNode *)this->_rChild :
  3343     (const MatchNode *)this;
  3345   // If our right child exists, it is the right reduction
  3346   if ( mnode->_rChild ) {
  3347     rightStr = mnode->_rChild->_internalop ? mnode->_rChild->_internalop
  3348       : mnode->_rChild->_opType;
  3350   // Else, May be simple chain rule: (Set dst operand_form), rightStr=NULL;
  3351   return rightStr;
  3354 const char *MatchNode::reduce_left(FormDict &globals) const {
  3355   // If there is no left reduction, return NULL.
  3356   const char  *leftStr  = NULL;
  3358   // If we are a "Set", start from the right child.
  3359   const MatchNode *const mnode = sets_result() ?
  3360     (const MatchNode *)this->_rChild :
  3361     (const MatchNode *)this;
  3363   // If our left child exists, it is the left reduction
  3364   if ( mnode->_lChild ) {
  3365     leftStr = mnode->_lChild->_internalop ? mnode->_lChild->_internalop
  3366       : mnode->_lChild->_opType;
  3367   } else {
  3368     // May be simple chain rule: (Set dst operand_form_source)
  3369     if ( sets_result() ) {
  3370       OperandForm *oper = globals[mnode->_opType]->is_operand();
  3371       if( oper ) {
  3372         leftStr = mnode->_opType;
  3376   return leftStr;
  3379 //------------------------------count_instr_names------------------------------
  3380 // Count occurrences of operands names in the leaves of the instruction
  3381 // match rule.
  3382 void MatchNode::count_instr_names( Dict &names ) {
  3383   if( !this ) return;
  3384   if( _lChild ) _lChild->count_instr_names(names);
  3385   if( _rChild ) _rChild->count_instr_names(names);
  3386   if( !_lChild && !_rChild ) {
  3387     uintptr_t cnt = (uintptr_t)names[_name];
  3388     cnt++;                      // One more name found
  3389     names.Insert(_name,(void*)cnt);
  3393 //------------------------------build_instr_pred-------------------------------
  3394 // Build a path to 'name' in buf.  Actually only build if cnt is zero, so we
  3395 // can skip some leading instances of 'name'.
  3396 int MatchNode::build_instr_pred( char *buf, const char *name, int cnt ) {
  3397   if( _lChild ) {
  3398     if( !cnt ) strcpy( buf, "_kids[0]->" );
  3399     cnt = _lChild->build_instr_pred( buf+strlen(buf), name, cnt );
  3400     if( cnt < 0 ) return cnt;   // Found it, all done
  3402   if( _rChild ) {
  3403     if( !cnt ) strcpy( buf, "_kids[1]->" );
  3404     cnt = _rChild->build_instr_pred( buf+strlen(buf), name, cnt );
  3405     if( cnt < 0 ) return cnt;   // Found it, all done
  3407   if( !_lChild && !_rChild ) {  // Found a leaf
  3408     // Wrong name?  Give up...
  3409     if( strcmp(name,_name) ) return cnt;
  3410     if( !cnt ) strcpy(buf,"_leaf");
  3411     return cnt-1;
  3413   return cnt;
  3417 //------------------------------build_internalop-------------------------------
  3418 // Build string representation of subtree
  3419 void MatchNode::build_internalop( ) {
  3420   char *iop, *subtree;
  3421   const char *lstr, *rstr;
  3422   // Build string representation of subtree
  3423   // Operation lchildType rchildType
  3424   int len = (int)strlen(_opType) + 4;
  3425   lstr = (_lChild) ? ((_lChild->_internalop) ?
  3426                        _lChild->_internalop : _lChild->_opType) : "";
  3427   rstr = (_rChild) ? ((_rChild->_internalop) ?
  3428                        _rChild->_internalop : _rChild->_opType) : "";
  3429   len += (int)strlen(lstr) + (int)strlen(rstr);
  3430   subtree = (char *)malloc(len);
  3431   sprintf(subtree,"_%s_%s_%s", _opType, lstr, rstr);
  3432   // Hash the subtree string in _internalOps; if a name exists, use it
  3433   iop = (char *)_AD._internalOps[subtree];
  3434   // Else create a unique name, and add it to the hash table
  3435   if (iop == NULL) {
  3436     iop = subtree;
  3437     _AD._internalOps.Insert(subtree, iop);
  3438     _AD._internalOpNames.addName(iop);
  3439     _AD._internalMatch.Insert(iop, this);
  3441   // Add the internal operand name to the MatchNode
  3442   _internalop = iop;
  3443   _result = iop;
  3447 void MatchNode::dump() {
  3448   output(stderr);
  3451 void MatchNode::output(FILE *fp) {
  3452   if (_lChild==0 && _rChild==0) {
  3453     fprintf(fp," %s",_name);    // operand
  3455   else {
  3456     fprintf(fp," (%s ",_name);  // " (opcodeName "
  3457     if(_lChild) _lChild->output(fp); //               left operand
  3458     if(_rChild) _rChild->output(fp); //                    right operand
  3459     fprintf(fp,")");                 //                                 ")"
  3463 int MatchNode::needs_ideal_memory_edge(FormDict &globals) const {
  3464   static const char *needs_ideal_memory_list[] = {
  3465     "StoreI","StoreL","StoreP","StoreN","StoreNKlass","StoreD","StoreF" ,
  3466     "StoreB","StoreC","Store" ,"StoreFP",
  3467     "LoadI", "LoadL", "LoadP" ,"LoadN", "LoadD" ,"LoadF"  ,
  3468     "LoadB" , "LoadUB", "LoadUS" ,"LoadS" ,"Load" ,
  3469     "StoreVector", "LoadVector",
  3470     "LoadRange", "LoadKlass", "LoadNKlass", "LoadL_unaligned", "LoadD_unaligned",
  3471     "LoadPLocked",
  3472     "StorePConditional", "StoreIConditional", "StoreLConditional",
  3473     "CompareAndSwapI", "CompareAndSwapL", "CompareAndSwapP", "CompareAndSwapN",
  3474     "StoreCM",
  3475     "ClearArray",
  3476     "GetAndAddI", "GetAndSetI", "GetAndSetP",
  3477     "GetAndAddL", "GetAndSetL", "GetAndSetN",
  3478   };
  3479   int cnt = sizeof(needs_ideal_memory_list)/sizeof(char*);
  3480   if( strcmp(_opType,"PrefetchRead")==0 ||
  3481       strcmp(_opType,"PrefetchWrite")==0 ||
  3482       strcmp(_opType,"PrefetchAllocation")==0 )
  3483     return 1;
  3484   if( _lChild ) {
  3485     const char *opType = _lChild->_opType;
  3486     for( int i=0; i<cnt; i++ )
  3487       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
  3488         return 1;
  3489     if( _lChild->needs_ideal_memory_edge(globals) )
  3490       return 1;
  3492   if( _rChild ) {
  3493     const char *opType = _rChild->_opType;
  3494     for( int i=0; i<cnt; i++ )
  3495       if( strcmp(opType,needs_ideal_memory_list[i]) == 0 )
  3496         return 1;
  3497     if( _rChild->needs_ideal_memory_edge(globals) )
  3498       return 1;
  3501   return 0;
  3504 // TRUE if defines a derived oop, and so needs a base oop edge present
  3505 // post-matching.
  3506 int MatchNode::needs_base_oop_edge() const {
  3507   if( !strcmp(_opType,"AddP") ) return 1;
  3508   if( strcmp(_opType,"Set") ) return 0;
  3509   return !strcmp(_rChild->_opType,"AddP");
  3512 int InstructForm::needs_base_oop_edge(FormDict &globals) const {
  3513   if( is_simple_chain_rule(globals) ) {
  3514     const char *src = _matrule->_rChild->_opType;
  3515     OperandForm *src_op = globals[src]->is_operand();
  3516     assert( src_op, "Not operand class of chain rule" );
  3517     return src_op->_matrule ? src_op->_matrule->needs_base_oop_edge() : 0;
  3518   }                             // Else check instruction
  3520   return _matrule ? _matrule->needs_base_oop_edge() : 0;
  3524 //-------------------------cisc spilling methods-------------------------------
  3525 // helper routines and methods for detecting cisc-spilling instructions
  3526 //-------------------------cisc_spill_merge------------------------------------
  3527 int MatchNode::cisc_spill_merge(int left_spillable, int right_spillable) {
  3528   int cisc_spillable  = Maybe_cisc_spillable;
  3530   // Combine results of left and right checks
  3531   if( (left_spillable == Maybe_cisc_spillable) && (right_spillable == Maybe_cisc_spillable) ) {
  3532     // neither side is spillable, nor prevents cisc spilling
  3533     cisc_spillable = Maybe_cisc_spillable;
  3535   else if( (left_spillable == Maybe_cisc_spillable) && (right_spillable > Maybe_cisc_spillable) ) {
  3536     // right side is spillable
  3537     cisc_spillable = right_spillable;
  3539   else if( (right_spillable == Maybe_cisc_spillable) && (left_spillable > Maybe_cisc_spillable) ) {
  3540     // left side is spillable
  3541     cisc_spillable = left_spillable;
  3543   else if( (left_spillable == Not_cisc_spillable) || (right_spillable == Not_cisc_spillable) ) {
  3544     // left or right prevents cisc spilling this instruction
  3545     cisc_spillable = Not_cisc_spillable;
  3547   else {
  3548     // Only allow one to spill
  3549     cisc_spillable = Not_cisc_spillable;
  3552   return cisc_spillable;
  3555 //-------------------------root_ops_match--------------------------------------
  3556 bool static root_ops_match(FormDict &globals, const char *op1, const char *op2) {
  3557   // Base Case: check that the current operands/operations match
  3558   assert( op1, "Must have op's name");
  3559   assert( op2, "Must have op's name");
  3560   const Form *form1 = globals[op1];
  3561   const Form *form2 = globals[op2];
  3563   return (form1 == form2);
  3566 //-------------------------cisc_spill_match_node-------------------------------
  3567 // Recursively check two MatchRules for legal conversion via cisc-spilling
  3568 int MatchNode::cisc_spill_match(FormDict& globals, RegisterForm* registers, MatchNode* mRule2, const char* &operand, const char* &reg_type) {
  3569   int cisc_spillable  = Maybe_cisc_spillable;
  3570   int left_spillable  = Maybe_cisc_spillable;
  3571   int right_spillable = Maybe_cisc_spillable;
  3573   // Check that each has same number of operands at this level
  3574   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) )
  3575     return Not_cisc_spillable;
  3577   // Base Case: check that the current operands/operations match
  3578   // or are CISC spillable
  3579   assert( _opType, "Must have _opType");
  3580   assert( mRule2->_opType, "Must have _opType");
  3581   const Form *form  = globals[_opType];
  3582   const Form *form2 = globals[mRule2->_opType];
  3583   if( form == form2 ) {
  3584     cisc_spillable = Maybe_cisc_spillable;
  3585   } else {
  3586     const InstructForm *form2_inst = form2 ? form2->is_instruction() : NULL;
  3587     const char *name_left  = mRule2->_lChild ? mRule2->_lChild->_opType : NULL;
  3588     const char *name_right = mRule2->_rChild ? mRule2->_rChild->_opType : NULL;
  3589     DataType data_type = Form::none;
  3590     if (form->is_operand()) {
  3591       // Make sure the loadX matches the type of the reg
  3592       data_type = form->ideal_to_Reg_type(form->is_operand()->ideal_type(globals));
  3594     // Detect reg vs (loadX memory)
  3595     if( form->is_cisc_reg(globals)
  3596         && form2_inst
  3597         && data_type != Form::none
  3598         && (is_load_from_memory(mRule2->_opType) == data_type) // reg vs. (load memory)
  3599         && (name_left != NULL)       // NOT (load)
  3600         && (name_right == NULL) ) {  // NOT (load memory foo)
  3601       const Form *form2_left = name_left ? globals[name_left] : NULL;
  3602       if( form2_left && form2_left->is_cisc_mem(globals) ) {
  3603         cisc_spillable = Is_cisc_spillable;
  3604         operand        = _name;
  3605         reg_type       = _result;
  3606         return Is_cisc_spillable;
  3607       } else {
  3608         cisc_spillable = Not_cisc_spillable;
  3611     // Detect reg vs memory
  3612     else if( form->is_cisc_reg(globals) && form2->is_cisc_mem(globals) ) {
  3613       cisc_spillable = Is_cisc_spillable;
  3614       operand        = _name;
  3615       reg_type       = _result;
  3616       return Is_cisc_spillable;
  3617     } else {
  3618       cisc_spillable = Not_cisc_spillable;
  3622   // If cisc is still possible, check rest of tree
  3623   if( cisc_spillable == Maybe_cisc_spillable ) {
  3624     // Check that each has same number of operands at this level
  3625     if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
  3627     // Check left operands
  3628     if( (_lChild == NULL) && (mRule2->_lChild == NULL) ) {
  3629       left_spillable = Maybe_cisc_spillable;
  3630     } else {
  3631       left_spillable = _lChild->cisc_spill_match(globals, registers, mRule2->_lChild, operand, reg_type);
  3634     // Check right operands
  3635     if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
  3636       right_spillable =  Maybe_cisc_spillable;
  3637     } else {
  3638       right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
  3641     // Combine results of left and right checks
  3642     cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
  3645   return cisc_spillable;
  3648 //---------------------------cisc_spill_match_rule------------------------------
  3649 // Recursively check two MatchRules for legal conversion via cisc-spilling
  3650 // This method handles the root of Match tree,
  3651 // general recursive checks done in MatchNode
  3652 int  MatchRule::matchrule_cisc_spill_match(FormDict& globals, RegisterForm* registers,
  3653                                            MatchRule* mRule2, const char* &operand,
  3654                                            const char* &reg_type) {
  3655   int cisc_spillable  = Maybe_cisc_spillable;
  3656   int left_spillable  = Maybe_cisc_spillable;
  3657   int right_spillable = Maybe_cisc_spillable;
  3659   // Check that each sets a result
  3660   if( !(sets_result() && mRule2->sets_result()) ) return Not_cisc_spillable;
  3661   // Check that each has same number of operands at this level
  3662   if( (_lChild && !(mRule2->_lChild)) || (_rChild && !(mRule2->_rChild)) ) return Not_cisc_spillable;
  3664   // Check left operands: at root, must be target of 'Set'
  3665   if( (_lChild == NULL) || (mRule2->_lChild == NULL) ) {
  3666     left_spillable = Not_cisc_spillable;
  3667   } else {
  3668     // Do not support cisc-spilling instruction's target location
  3669     if( root_ops_match(globals, _lChild->_opType, mRule2->_lChild->_opType) ) {
  3670       left_spillable = Maybe_cisc_spillable;
  3671     } else {
  3672       left_spillable = Not_cisc_spillable;
  3676   // Check right operands: recursive walk to identify reg->mem operand
  3677   if( (_rChild == NULL) && (mRule2->_rChild == NULL) ) {
  3678     right_spillable =  Maybe_cisc_spillable;
  3679   } else {
  3680     right_spillable = _rChild->cisc_spill_match(globals, registers, mRule2->_rChild, operand, reg_type);
  3683   // Combine results of left and right checks
  3684   cisc_spillable = cisc_spill_merge(left_spillable, right_spillable);
  3686   return cisc_spillable;
  3689 //----------------------------- equivalent ------------------------------------
  3690 // Recursively check to see if two match rules are equivalent.
  3691 // This rule handles the root.
  3692 bool MatchRule::equivalent(FormDict &globals, MatchNode *mRule2) {
  3693   // Check that each sets a result
  3694   if (sets_result() != mRule2->sets_result()) {
  3695     return false;
  3698   // Check that the current operands/operations match
  3699   assert( _opType, "Must have _opType");
  3700   assert( mRule2->_opType, "Must have _opType");
  3701   const Form *form  = globals[_opType];
  3702   const Form *form2 = globals[mRule2->_opType];
  3703   if( form != form2 ) {
  3704     return false;
  3707   if (_lChild ) {
  3708     if( !_lChild->equivalent(globals, mRule2->_lChild) )
  3709       return false;
  3710   } else if (mRule2->_lChild) {
  3711     return false; // I have NULL left child, mRule2 has non-NULL left child.
  3714   if (_rChild ) {
  3715     if( !_rChild->equivalent(globals, mRule2->_rChild) )
  3716       return false;
  3717   } else if (mRule2->_rChild) {
  3718     return false; // I have NULL right child, mRule2 has non-NULL right child.
  3721   // We've made it through the gauntlet.
  3722   return true;
  3725 //----------------------------- equivalent ------------------------------------
  3726 // Recursively check to see if two match rules are equivalent.
  3727 // This rule handles the operands.
  3728 bool MatchNode::equivalent(FormDict &globals, MatchNode *mNode2) {
  3729   if( !mNode2 )
  3730     return false;
  3732   // Check that the current operands/operations match
  3733   assert( _opType, "Must have _opType");
  3734   assert( mNode2->_opType, "Must have _opType");
  3735   const Form *form  = globals[_opType];
  3736   const Form *form2 = globals[mNode2->_opType];
  3737   if( form != form2 ) {
  3738     return false;
  3741   // Check that their children also match
  3742   if (_lChild ) {
  3743     if( !_lChild->equivalent(globals, mNode2->_lChild) )
  3744       return false;
  3745   } else if (mNode2->_lChild) {
  3746     return false; // I have NULL left child, mNode2 has non-NULL left child.
  3749   if (_rChild ) {
  3750     if( !_rChild->equivalent(globals, mNode2->_rChild) )
  3751       return false;
  3752   } else if (mNode2->_rChild) {
  3753     return false; // I have NULL right child, mNode2 has non-NULL right child.
  3756   // We've made it through the gauntlet.
  3757   return true;
  3760 //-------------------------- has_commutative_op -------------------------------
  3761 // Recursively check for commutative operations with subtree operands
  3762 // which could be swapped.
  3763 void MatchNode::count_commutative_op(int& count) {
  3764   static const char *commut_op_list[] = {
  3765     "AddI","AddL","AddF","AddD",
  3766     "AndI","AndL",
  3767     "MaxI","MinI",
  3768     "MulI","MulL","MulF","MulD",
  3769     "OrI" ,"OrL" ,
  3770     "XorI","XorL"
  3771   };
  3772   int cnt = sizeof(commut_op_list)/sizeof(char*);
  3774   if( _lChild && _rChild && (_lChild->_lChild || _rChild->_lChild) ) {
  3775     // Don't swap if right operand is an immediate constant.
  3776     bool is_const = false;
  3777     if( _rChild->_lChild == NULL && _rChild->_rChild == NULL ) {
  3778       FormDict &globals = _AD.globalNames();
  3779       const Form *form = globals[_rChild->_opType];
  3780       if ( form ) {
  3781         OperandForm  *oper = form->is_operand();
  3782         if( oper && oper->interface_type(globals) == Form::constant_interface )
  3783           is_const = true;
  3786     if( !is_const ) {
  3787       for( int i=0; i<cnt; i++ ) {
  3788         if( strcmp(_opType, commut_op_list[i]) == 0 ) {
  3789           count++;
  3790           _commutative_id = count; // id should be > 0
  3791           break;
  3796   if( _lChild )
  3797     _lChild->count_commutative_op(count);
  3798   if( _rChild )
  3799     _rChild->count_commutative_op(count);
  3802 //-------------------------- swap_commutative_op ------------------------------
  3803 // Recursively swap specified commutative operation with subtree operands.
  3804 void MatchNode::swap_commutative_op(bool atroot, int id) {
  3805   if( _commutative_id == id ) { // id should be > 0
  3806     assert(_lChild && _rChild && (_lChild->_lChild || _rChild->_lChild ),
  3807             "not swappable operation");
  3808     MatchNode* tmp = _lChild;
  3809     _lChild = _rChild;
  3810     _rChild = tmp;
  3811     // Don't exit here since we need to build internalop.
  3814   bool is_set = ( strcmp(_opType, "Set") == 0 );
  3815   if( _lChild )
  3816     _lChild->swap_commutative_op(is_set, id);
  3817   if( _rChild )
  3818     _rChild->swap_commutative_op(is_set, id);
  3820   // If not the root, reduce this subtree to an internal operand
  3821   if( !atroot && (_lChild || _rChild) ) {
  3822     build_internalop();
  3826 //-------------------------- swap_commutative_op ------------------------------
  3827 // Recursively swap specified commutative operation with subtree operands.
  3828 void MatchRule::matchrule_swap_commutative_op(const char* instr_ident, int count, int& match_rules_cnt) {
  3829   assert(match_rules_cnt < 100," too many match rule clones");
  3830   // Clone
  3831   MatchRule* clone = new MatchRule(_AD, this);
  3832   // Swap operands of commutative operation
  3833   ((MatchNode*)clone)->swap_commutative_op(true, count);
  3834   char* buf = (char*) malloc(strlen(instr_ident) + 4);
  3835   sprintf(buf, "%s_%d", instr_ident, match_rules_cnt++);
  3836   clone->_result = buf;
  3838   clone->_next = this->_next;
  3839   this-> _next = clone;
  3840   if( (--count) > 0 ) {
  3841     this-> matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
  3842     clone->matchrule_swap_commutative_op(instr_ident, count, match_rules_cnt);
  3846 //------------------------------MatchRule--------------------------------------
  3847 MatchRule::MatchRule(ArchDesc &ad)
  3848   : MatchNode(ad), _depth(0), _construct(NULL), _numchilds(0) {
  3849     _next = NULL;
  3852 MatchRule::MatchRule(ArchDesc &ad, MatchRule* mRule)
  3853   : MatchNode(ad, *mRule, 0), _depth(mRule->_depth),
  3854     _construct(mRule->_construct), _numchilds(mRule->_numchilds) {
  3855     _next = NULL;
  3858 MatchRule::MatchRule(ArchDesc &ad, MatchNode* mroot, int depth, char *cnstr,
  3859                      int numleaves)
  3860   : MatchNode(ad,*mroot), _depth(depth), _construct(cnstr),
  3861     _numchilds(0) {
  3862       _next = NULL;
  3863       mroot->_lChild = NULL;
  3864       mroot->_rChild = NULL;
  3865       delete mroot;
  3866       _numleaves = numleaves;
  3867       _numchilds = (_lChild ? 1 : 0) + (_rChild ? 1 : 0);
  3869 MatchRule::~MatchRule() {
  3872 // Recursive call collecting info on top-level operands, not transitive.
  3873 // Implementation does not modify state of internal structures.
  3874 void MatchRule::append_components(FormDict& locals, ComponentList& components, bool def_flag) const {
  3875   assert (_name != NULL, "MatchNode::build_components encountered empty node\n");
  3877   MatchNode::append_components(locals, components,
  3878                                false /* not necessarily a def */);
  3881 // Recursive call on all operands' match rules in my match rule.
  3882 // Implementation does not modify state of internal structures  since they
  3883 // can be shared.
  3884 // The MatchNode that is called first treats its
  3885 bool MatchRule::base_operand(uint &position0, FormDict &globals,
  3886                              const char *&result, const char * &name,
  3887                              const char * &opType)const{
  3888   uint position = position0;
  3890   return (MatchNode::base_operand( position, globals, result, name, opType));
  3894 bool MatchRule::is_base_register(FormDict &globals) const {
  3895   uint   position = 1;
  3896   const char  *result   = NULL;
  3897   const char  *name     = NULL;
  3898   const char  *opType   = NULL;
  3899   if (!base_operand(position, globals, result, name, opType)) {
  3900     position = 0;
  3901     if( base_operand(position, globals, result, name, opType) &&
  3902         (strcmp(opType,"RegI")==0 ||
  3903          strcmp(opType,"RegP")==0 ||
  3904          strcmp(opType,"RegN")==0 ||
  3905          strcmp(opType,"RegL")==0 ||
  3906          strcmp(opType,"RegF")==0 ||
  3907          strcmp(opType,"RegD")==0 ||
  3908          strcmp(opType,"VecS")==0 ||
  3909          strcmp(opType,"VecD")==0 ||
  3910          strcmp(opType,"VecX")==0 ||
  3911          strcmp(opType,"VecY")==0 ||
  3912          strcmp(opType,"Reg" )==0) ) {
  3913       return 1;
  3916   return 0;
  3919 Form::DataType MatchRule::is_base_constant(FormDict &globals) const {
  3920   uint         position = 1;
  3921   const char  *result   = NULL;
  3922   const char  *name     = NULL;
  3923   const char  *opType   = NULL;
  3924   if (!base_operand(position, globals, result, name, opType)) {
  3925     position = 0;
  3926     if (base_operand(position, globals, result, name, opType)) {
  3927       return ideal_to_const_type(opType);
  3930   return Form::none;
  3933 bool MatchRule::is_chain_rule(FormDict &globals) const {
  3935   // Check for chain rule, and do not generate a match list for it
  3936   if ((_lChild == NULL) && (_rChild == NULL) ) {
  3937     const Form *form = globals[_opType];
  3938     // If this is ideal, then it is a base match, not a chain rule.
  3939     if ( form && form->is_operand() && (!form->ideal_only())) {
  3940       return true;
  3943   // Check for "Set" form of chain rule, and do not generate a match list
  3944   if (_rChild) {
  3945     const char *rch = _rChild->_opType;
  3946     const Form *form = globals[rch];
  3947     if ((!strcmp(_opType,"Set") &&
  3948          ((form) && form->is_operand()))) {
  3949       return true;
  3952   return false;
  3955 int MatchRule::is_ideal_copy() const {
  3956   if( _rChild ) {
  3957     const char  *opType = _rChild->_opType;
  3958 #if 1
  3959     if( strcmp(opType,"CastIP")==0 )
  3960       return 1;
  3961 #else
  3962     if( strcmp(opType,"CastII")==0 )
  3963       return 1;
  3964     // Do not treat *CastPP this way, because it
  3965     // may transfer a raw pointer to an oop.
  3966     // If the register allocator were to coalesce this
  3967     // into a single LRG, the GC maps would be incorrect.
  3968     //if( strcmp(opType,"CastPP")==0 )
  3969     //  return 1;
  3970     //if( strcmp(opType,"CheckCastPP")==0 )
  3971     //  return 1;
  3972     //
  3973     // Do not treat CastX2P or CastP2X this way, because
  3974     // raw pointers and int types are treated differently
  3975     // when saving local & stack info for safepoints in
  3976     // Output().
  3977     //if( strcmp(opType,"CastX2P")==0 )
  3978     //  return 1;
  3979     //if( strcmp(opType,"CastP2X")==0 )
  3980     //  return 1;
  3981 #endif
  3983   if( is_chain_rule(_AD.globalNames()) &&
  3984       _lChild && strncmp(_lChild->_opType,"stackSlot",9)==0 )
  3985     return 1;
  3986   return 0;
  3990 int MatchRule::is_expensive() const {
  3991   if( _rChild ) {
  3992     const char  *opType = _rChild->_opType;
  3993     if( strcmp(opType,"AtanD")==0 ||
  3994         strcmp(opType,"CosD")==0 ||
  3995         strcmp(opType,"DivD")==0 ||
  3996         strcmp(opType,"DivF")==0 ||
  3997         strcmp(opType,"DivI")==0 ||
  3998         strcmp(opType,"ExpD")==0 ||
  3999         strcmp(opType,"LogD")==0 ||
  4000         strcmp(opType,"Log10D")==0 ||
  4001         strcmp(opType,"ModD")==0 ||
  4002         strcmp(opType,"ModF")==0 ||
  4003         strcmp(opType,"ModI")==0 ||
  4004         strcmp(opType,"PowD")==0 ||
  4005         strcmp(opType,"SinD")==0 ||
  4006         strcmp(opType,"SqrtD")==0 ||
  4007         strcmp(opType,"TanD")==0 ||
  4008         strcmp(opType,"ConvD2F")==0 ||
  4009         strcmp(opType,"ConvD2I")==0 ||
  4010         strcmp(opType,"ConvD2L")==0 ||
  4011         strcmp(opType,"ConvF2D")==0 ||
  4012         strcmp(opType,"ConvF2I")==0 ||
  4013         strcmp(opType,"ConvF2L")==0 ||
  4014         strcmp(opType,"ConvI2D")==0 ||
  4015         strcmp(opType,"ConvI2F")==0 ||
  4016         strcmp(opType,"ConvI2L")==0 ||
  4017         strcmp(opType,"ConvL2D")==0 ||
  4018         strcmp(opType,"ConvL2F")==0 ||
  4019         strcmp(opType,"ConvL2I")==0 ||
  4020         strcmp(opType,"DecodeN")==0 ||
  4021         strcmp(opType,"EncodeP")==0 ||
  4022         strcmp(opType,"EncodePKlass")==0 ||
  4023         strcmp(opType,"DecodeNKlass")==0 ||
  4024         strcmp(opType,"RoundDouble")==0 ||
  4025         strcmp(opType,"RoundFloat")==0 ||
  4026         strcmp(opType,"ReverseBytesI")==0 ||
  4027         strcmp(opType,"ReverseBytesL")==0 ||
  4028         strcmp(opType,"ReverseBytesUS")==0 ||
  4029         strcmp(opType,"ReverseBytesS")==0 ||
  4030         strcmp(opType,"ReplicateB")==0 ||
  4031         strcmp(opType,"ReplicateS")==0 ||
  4032         strcmp(opType,"ReplicateI")==0 ||
  4033         strcmp(opType,"ReplicateL")==0 ||
  4034         strcmp(opType,"ReplicateF")==0 ||
  4035         strcmp(opType,"ReplicateD")==0 ||
  4036         0 /* 0 to line up columns nicely */ )
  4037       return 1;
  4039   return 0;
  4042 bool MatchRule::is_ideal_if() const {
  4043   if( !_opType ) return false;
  4044   return
  4045     !strcmp(_opType,"If"            ) ||
  4046     !strcmp(_opType,"CountedLoopEnd");
  4049 bool MatchRule::is_ideal_fastlock() const {
  4050   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  4051     return (strcmp(_rChild->_opType,"FastLock") == 0);
  4053   return false;
  4056 bool MatchRule::is_ideal_membar() const {
  4057   if( !_opType ) return false;
  4058   return
  4059     !strcmp(_opType,"MemBarAcquire") ||
  4060     !strcmp(_opType,"MemBarRelease") ||
  4061     !strcmp(_opType,"MemBarAcquireLock") ||
  4062     !strcmp(_opType,"MemBarReleaseLock") ||
  4063     !strcmp(_opType,"LoadFence" ) ||
  4064     !strcmp(_opType,"StoreFence") ||
  4065     !strcmp(_opType,"MemBarVolatile") ||
  4066     !strcmp(_opType,"MemBarCPUOrder") ||
  4067     !strcmp(_opType,"MemBarStoreStore");
  4070 bool MatchRule::is_ideal_loadPC() const {
  4071   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  4072     return (strcmp(_rChild->_opType,"LoadPC") == 0);
  4074   return false;
  4077 bool MatchRule::is_ideal_box() const {
  4078   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  4079     return (strcmp(_rChild->_opType,"Box") == 0);
  4081   return false;
  4084 bool MatchRule::is_ideal_goto() const {
  4085   bool   ideal_goto = false;
  4087   if( _opType && (strcmp(_opType,"Goto") == 0) ) {
  4088     ideal_goto = true;
  4090   return ideal_goto;
  4093 bool MatchRule::is_ideal_jump() const {
  4094   if( _opType ) {
  4095     if( !strcmp(_opType,"Jump") )
  4096       return true;
  4098   return false;
  4101 bool MatchRule::is_ideal_bool() const {
  4102   if( _opType ) {
  4103     if( !strcmp(_opType,"Bool") )
  4104       return true;
  4106   return false;
  4110 Form::DataType MatchRule::is_ideal_load() const {
  4111   Form::DataType ideal_load = Form::none;
  4113   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  4114     const char *opType = _rChild->_opType;
  4115     ideal_load = is_load_from_memory(opType);
  4118   return ideal_load;
  4121 bool MatchRule::is_vector() const {
  4122   static const char *vector_list[] = {
  4123     "AddVB","AddVS","AddVI","AddVL","AddVF","AddVD",
  4124     "SubVB","SubVS","SubVI","SubVL","SubVF","SubVD",
  4125     "MulVS","MulVI","MulVF","MulVD",
  4126     "DivVF","DivVD",
  4127     "AndV" ,"XorV" ,"OrV",
  4128     "LShiftCntV","RShiftCntV",
  4129     "LShiftVB","LShiftVS","LShiftVI","LShiftVL",
  4130     "RShiftVB","RShiftVS","RShiftVI","RShiftVL",
  4131     "URShiftVB","URShiftVS","URShiftVI","URShiftVL",
  4132     "ReplicateB","ReplicateS","ReplicateI","ReplicateL","ReplicateF","ReplicateD",
  4133     "LoadVector","StoreVector",
  4134     // Next are not supported currently.
  4135     "PackB","PackS","PackI","PackL","PackF","PackD","Pack2L","Pack2D",
  4136     "ExtractB","ExtractUB","ExtractC","ExtractS","ExtractI","ExtractL","ExtractF","ExtractD"
  4137   };
  4138   int cnt = sizeof(vector_list)/sizeof(char*);
  4139   if (_rChild) {
  4140     const char  *opType = _rChild->_opType;
  4141     for (int i=0; i<cnt; i++)
  4142       if (strcmp(opType,vector_list[i]) == 0)
  4143         return true;
  4145   return false;
  4149 bool MatchRule::skip_antidep_check() const {
  4150   // Some loads operate on what is effectively immutable memory so we
  4151   // should skip the anti dep computations.  For some of these nodes
  4152   // the rewritable field keeps the anti dep logic from triggering but
  4153   // for certain kinds of LoadKlass it does not since they are
  4154   // actually reading memory which could be rewritten by the runtime,
  4155   // though never by generated code.  This disables it uniformly for
  4156   // the nodes that behave like this: LoadKlass, LoadNKlass and
  4157   // LoadRange.
  4158   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  4159     const char *opType = _rChild->_opType;
  4160     if (strcmp("LoadKlass", opType) == 0 ||
  4161         strcmp("LoadNKlass", opType) == 0 ||
  4162         strcmp("LoadRange", opType) == 0) {
  4163       return true;
  4167   return false;
  4171 Form::DataType MatchRule::is_ideal_store() const {
  4172   Form::DataType ideal_store = Form::none;
  4174   if ( _opType && (strcmp(_opType,"Set") == 0) && _rChild ) {
  4175     const char *opType = _rChild->_opType;
  4176     ideal_store = is_store_to_memory(opType);
  4179   return ideal_store;
  4183 void MatchRule::dump() {
  4184   output(stderr);
  4187 // Write just one line.
  4188 void MatchRule::output_short(FILE *fp) {
  4189   fprintf(fp,"MatchRule: ( %s",_name);
  4190   if (_lChild) _lChild->output(fp);
  4191   if (_rChild) _rChild->output(fp);
  4192   fprintf(fp," )");
  4195 void MatchRule::output(FILE *fp) {
  4196   output_short(fp);
  4197   fprintf(fp,"\n   nesting depth = %d\n", _depth);
  4198   if (_result) fprintf(fp,"   Result Type = %s", _result);
  4199   fprintf(fp,"\n");
  4202 //------------------------------Attribute--------------------------------------
  4203 Attribute::Attribute(char *id, char* val, int type)
  4204   : _ident(id), _val(val), _atype(type) {
  4206 Attribute::~Attribute() {
  4209 int Attribute::int_val(ArchDesc &ad) {
  4210   // Make sure it is an integer constant:
  4211   int result = 0;
  4212   if (!_val || !ADLParser::is_int_token(_val, result)) {
  4213     ad.syntax_err(0, "Attribute %s must have an integer value: %s",
  4214                   _ident, _val ? _val : "");
  4216   return result;
  4219 void Attribute::dump() {
  4220   output(stderr);
  4221 } // Debug printer
  4223 // Write to output files
  4224 void Attribute::output(FILE *fp) {
  4225   fprintf(fp,"Attribute: %s  %s\n", (_ident?_ident:""), (_val?_val:""));
  4228 //------------------------------FormatRule----------------------------------
  4229 FormatRule::FormatRule(char *temp)
  4230   : _temp(temp) {
  4232 FormatRule::~FormatRule() {
  4235 void FormatRule::dump() {
  4236   output(stderr);
  4239 // Write to output files
  4240 void FormatRule::output(FILE *fp) {
  4241   fprintf(fp,"\nFormat Rule: \n%s", (_temp?_temp:""));
  4242   fprintf(fp,"\n");

mercurial