src/share/vm/opto/escape.cpp

Mon, 31 Aug 2015 17:20:08 +0200

author
roland
date
Mon, 31 Aug 2015 17:20:08 +0200
changeset 8078
3f47111161d7
parent 7605
6e8e0bf87bbe
child 8307
daaf806995b3
permissions
-rw-r--r--

8134031: Incorrect JIT compilation of complex code with inlining and escape analysis
Summary: Bad rewiring of memory edges when we split unique types during EA
Reviewed-by: kvn

duke@435 1 /*
drchase@7605 2 * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "ci/bcEscapeAnalyzer.hpp"
kvn@3651 27 #include "compiler/compileLog.hpp"
stefank@2314 28 #include "libadt/vectset.hpp"
stefank@2314 29 #include "memory/allocation.hpp"
stefank@2314 30 #include "opto/c2compiler.hpp"
stefank@2314 31 #include "opto/callnode.hpp"
stefank@2314 32 #include "opto/cfgnode.hpp"
stefank@2314 33 #include "opto/compile.hpp"
stefank@2314 34 #include "opto/escape.hpp"
stefank@2314 35 #include "opto/phaseX.hpp"
stefank@2314 36 #include "opto/rootnode.hpp"
duke@435 37
kvn@1989 38 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
kvn@3651 39 _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
kvn@7299 40 _in_worklist(C->comp_arena()),
kvn@7299 41 _next_pidx(0),
kvn@679 42 _collecting(true),
kvn@3651 43 _verify(false),
kvn@679 44 _compile(C),
kvn@1989 45 _igvn(igvn),
kvn@679 46 _node_map(C->comp_arena()) {
kvn@3651 47 // Add unknown java object.
kvn@3651 48 add_java_object(C->top(), PointsToNode::GlobalEscape);
kvn@3651 49 phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
kvn@688 50 // Add ConP(#NULL) and ConN(#NULL) nodes.
kvn@688 51 Node* oop_null = igvn->zerocon(T_OBJECT);
kvn@3651 52 assert(oop_null->_idx < nodes_size(), "should be created already");
kvn@3651 53 add_java_object(oop_null, PointsToNode::NoEscape);
kvn@3651 54 null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
kvn@688 55 if (UseCompressedOops) {
kvn@688 56 Node* noop_null = igvn->zerocon(T_NARROWOOP);
kvn@3651 57 assert(noop_null->_idx < nodes_size(), "should be created already");
kvn@3651 58 map_ideal_node(noop_null, null_obj);
kvn@688 59 }
kvn@3309 60 _pcmp_neq = NULL; // Should be initialized
kvn@3309 61 _pcmp_eq = NULL;
duke@435 62 }
duke@435 63
kvn@3651 64 bool ConnectionGraph::has_candidates(Compile *C) {
kvn@3651 65 // EA brings benefits only when the code has allocations and/or locks which
kvn@3651 66 // are represented by ideal Macro nodes.
kvn@3651 67 int cnt = C->macro_count();
kvn@5110 68 for (int i = 0; i < cnt; i++) {
kvn@3651 69 Node *n = C->macro_node(i);
kvn@5110 70 if (n->is_Allocate())
kvn@3651 71 return true;
kvn@5110 72 if (n->is_Lock()) {
kvn@3651 73 Node* obj = n->as_Lock()->obj_node()->uncast();
kvn@5110 74 if (!(obj->is_Parm() || obj->is_Con()))
kvn@3651 75 return true;
kvn@3318 76 }
kvn@5110 77 if (n->is_CallStaticJava() &&
kvn@5110 78 n->as_CallStaticJava()->is_boxing_method()) {
kvn@5110 79 return true;
kvn@5110 80 }
kvn@3318 81 }
kvn@3651 82 return false;
duke@435 83 }
duke@435 84
kvn@3651 85 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
kvn@3651 86 Compile::TracePhase t2("escapeAnalysis", &Phase::_t_escapeAnalysis, true);
kvn@3651 87 ResourceMark rm;
duke@435 88
kvn@3651 89 // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
kvn@3651 90 // to create space for them in ConnectionGraph::_nodes[].
kvn@3651 91 Node* oop_null = igvn->zerocon(T_OBJECT);
kvn@3651 92 Node* noop_null = igvn->zerocon(T_NARROWOOP);
kvn@3651 93 ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
kvn@3651 94 // Perform escape analysis
kvn@3651 95 if (congraph->compute_escape()) {
kvn@3651 96 // There are non escaping objects.
kvn@3651 97 C->set_congraph(congraph);
kvn@3651 98 }
kvn@3651 99 // Cleanup.
kvn@3651 100 if (oop_null->outcnt() == 0)
kvn@3651 101 igvn->hash_delete(oop_null);
kvn@3651 102 if (noop_null->outcnt() == 0)
kvn@3651 103 igvn->hash_delete(noop_null);
duke@435 104 }
duke@435 105
kvn@3651 106 bool ConnectionGraph::compute_escape() {
kvn@3651 107 Compile* C = _compile;
kvn@3651 108 PhaseGVN* igvn = _igvn;
kvn@3651 109
kvn@3651 110 // Worklists used by EA.
kvn@3651 111 Unique_Node_List delayed_worklist;
kvn@3651 112 GrowableArray<Node*> alloc_worklist;
kvn@3651 113 GrowableArray<Node*> ptr_cmp_worklist;
kvn@3651 114 GrowableArray<Node*> storestore_worklist;
kvn@3651 115 GrowableArray<PointsToNode*> ptnodes_worklist;
kvn@3651 116 GrowableArray<JavaObjectNode*> java_objects_worklist;
kvn@3651 117 GrowableArray<JavaObjectNode*> non_escaped_worklist;
kvn@3651 118 GrowableArray<FieldNode*> oop_fields_worklist;
kvn@3651 119 DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
kvn@3651 120
kvn@3651 121 { Compile::TracePhase t3("connectionGraph", &Phase::_t_connectionGraph, true);
kvn@3651 122
kvn@3651 123 // 1. Populate Connection Graph (CG) with PointsTo nodes.
kvn@5110 124 ideal_nodes.map(C->live_nodes(), NULL); // preallocate space
kvn@3651 125 // Initialize worklist
kvn@3651 126 if (C->root() != NULL) {
kvn@3651 127 ideal_nodes.push(C->root());
kvn@3651 128 }
kvn@7299 129 // Processed ideal nodes are unique on ideal_nodes list
kvn@7299 130 // but several ideal nodes are mapped to the phantom_obj.
kvn@7299 131 // To avoid duplicated entries on the following worklists
kvn@7299 132 // add the phantom_obj only once to them.
kvn@7299 133 ptnodes_worklist.append(phantom_obj);
kvn@7299 134 java_objects_worklist.append(phantom_obj);
kvn@3651 135 for( uint next = 0; next < ideal_nodes.size(); ++next ) {
kvn@3651 136 Node* n = ideal_nodes.at(next);
kvn@3651 137 // Create PointsTo nodes and add them to Connection Graph. Called
kvn@3651 138 // only once per ideal node since ideal_nodes is Unique_Node list.
kvn@3651 139 add_node_to_connection_graph(n, &delayed_worklist);
kvn@3651 140 PointsToNode* ptn = ptnode_adr(n->_idx);
kvn@7299 141 if (ptn != NULL && ptn != phantom_obj) {
kvn@3651 142 ptnodes_worklist.append(ptn);
kvn@3651 143 if (ptn->is_JavaObject()) {
kvn@3651 144 java_objects_worklist.append(ptn->as_JavaObject());
kvn@3651 145 if ((n->is_Allocate() || n->is_CallStaticJava()) &&
kvn@3651 146 (ptn->escape_state() < PointsToNode::GlobalEscape)) {
kvn@3651 147 // Only allocations and java static calls results are interesting.
kvn@3651 148 non_escaped_worklist.append(ptn->as_JavaObject());
kvn@3651 149 }
kvn@3651 150 } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
kvn@3651 151 oop_fields_worklist.append(ptn->as_Field());
kvn@3651 152 }
kvn@3651 153 }
kvn@3651 154 if (n->is_MergeMem()) {
kvn@3651 155 // Collect all MergeMem nodes to add memory slices for
kvn@3651 156 // scalar replaceable objects in split_unique_types().
kvn@3651 157 _mergemem_worklist.append(n->as_MergeMem());
kvn@3651 158 } else if (OptimizePtrCompare && n->is_Cmp() &&
kvn@3651 159 (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
kvn@3651 160 // Collect compare pointers nodes.
kvn@3651 161 ptr_cmp_worklist.append(n);
kvn@3651 162 } else if (n->is_MemBarStoreStore()) {
kvn@3651 163 // Collect all MemBarStoreStore nodes so that depending on the
kvn@3651 164 // escape status of the associated Allocate node some of them
kvn@3651 165 // may be eliminated.
kvn@3651 166 storestore_worklist.append(n);
kvn@5110 167 } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
kvn@5110 168 (n->req() > MemBarNode::Precedent)) {
kvn@5110 169 record_for_optimizer(n);
kvn@3651 170 #ifdef ASSERT
kvn@5110 171 } else if (n->is_AddP()) {
kvn@3651 172 // Collect address nodes for graph verification.
kvn@3651 173 addp_worklist.append(n);
kvn@3651 174 #endif
kvn@3651 175 }
kvn@3651 176 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@3651 177 Node* m = n->fast_out(i); // Get user
kvn@3651 178 ideal_nodes.push(m);
kvn@3651 179 }
kvn@3651 180 }
kvn@3651 181 if (non_escaped_worklist.length() == 0) {
kvn@3651 182 _collecting = false;
kvn@3651 183 return false; // Nothing to do.
kvn@3651 184 }
kvn@3651 185 // Add final simple edges to graph.
kvn@3651 186 while(delayed_worklist.size() > 0) {
kvn@3651 187 Node* n = delayed_worklist.pop();
kvn@3651 188 add_final_edges(n);
kvn@3651 189 }
kvn@3651 190 int ptnodes_length = ptnodes_worklist.length();
kvn@3651 191
kvn@3651 192 #ifdef ASSERT
kvn@3651 193 if (VerifyConnectionGraph) {
kvn@3651 194 // Verify that no new simple edges could be created and all
kvn@3651 195 // local vars has edges.
kvn@3651 196 _verify = true;
kvn@3651 197 for (int next = 0; next < ptnodes_length; ++next) {
kvn@3651 198 PointsToNode* ptn = ptnodes_worklist.at(next);
kvn@3651 199 add_final_edges(ptn->ideal_node());
kvn@3651 200 if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
kvn@3651 201 ptn->dump();
kvn@3651 202 assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
kvn@3651 203 }
kvn@3651 204 }
kvn@3651 205 _verify = false;
kvn@3651 206 }
kvn@3651 207 #endif
kvn@7575 208 // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
kvn@7575 209 // processing, calls to CI to resolve symbols (types, fields, methods)
kvn@7575 210 // referenced in bytecode. During symbol resolution VM may throw
kvn@7575 211 // an exception which CI cleans and converts to compilation failure.
kvn@7575 212 if (C->failing()) return false;
kvn@3651 213
kvn@3651 214 // 2. Finish Graph construction by propagating references to all
kvn@3651 215 // java objects through graph.
kvn@3651 216 if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
kvn@3651 217 java_objects_worklist, oop_fields_worklist)) {
kvn@3651 218 // All objects escaped or hit time or iterations limits.
kvn@3651 219 _collecting = false;
kvn@3651 220 return false;
kvn@3651 221 }
kvn@3651 222
kvn@3651 223 // 3. Adjust scalar_replaceable state of nonescaping objects and push
kvn@3651 224 // scalar replaceable allocations on alloc_worklist for processing
kvn@3651 225 // in split_unique_types().
kvn@3651 226 int non_escaped_length = non_escaped_worklist.length();
kvn@3651 227 for (int next = 0; next < non_escaped_length; next++) {
kvn@3651 228 JavaObjectNode* ptn = non_escaped_worklist.at(next);
kvn@5110 229 bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
kvn@5110 230 Node* n = ptn->ideal_node();
kvn@5110 231 if (n->is_Allocate()) {
kvn@5110 232 n->as_Allocate()->_is_non_escaping = noescape;
kvn@5110 233 }
kvn@5110 234 if (n->is_CallStaticJava()) {
kvn@5110 235 n->as_CallStaticJava()->_is_non_escaping = noescape;
kvn@5110 236 }
kvn@5110 237 if (noescape && ptn->scalar_replaceable()) {
kvn@3651 238 adjust_scalar_replaceable_state(ptn);
kvn@3651 239 if (ptn->scalar_replaceable()) {
kvn@3651 240 alloc_worklist.append(ptn->ideal_node());
kvn@3651 241 }
kvn@3651 242 }
kvn@3651 243 }
kvn@3651 244
kvn@3651 245 #ifdef ASSERT
kvn@3651 246 if (VerifyConnectionGraph) {
kvn@3651 247 // Verify that graph is complete - no new edges could be added or needed.
kvn@3651 248 verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
kvn@3651 249 java_objects_worklist, addp_worklist);
kvn@3651 250 }
kvn@3651 251 assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
kvn@3651 252 assert(null_obj->escape_state() == PointsToNode::NoEscape &&
kvn@3651 253 null_obj->edge_count() == 0 &&
kvn@3651 254 !null_obj->arraycopy_src() &&
kvn@3651 255 !null_obj->arraycopy_dst(), "sanity");
kvn@3651 256 #endif
kvn@3651 257
kvn@3651 258 _collecting = false;
kvn@3651 259
kvn@3651 260 } // TracePhase t3("connectionGraph")
kvn@3651 261
kvn@3651 262 // 4. Optimize ideal graph based on EA information.
kvn@3651 263 bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
kvn@3651 264 if (has_non_escaping_obj) {
kvn@3651 265 optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
kvn@3651 266 }
kvn@3651 267
kvn@3651 268 #ifndef PRODUCT
kvn@3651 269 if (PrintEscapeAnalysis) {
kvn@3651 270 dump(ptnodes_worklist); // Dump ConnectionGraph
kvn@3651 271 }
kvn@3651 272 #endif
kvn@3651 273
kvn@3651 274 bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
kvn@3651 275 #ifdef ASSERT
kvn@3651 276 if (VerifyConnectionGraph) {
kvn@3651 277 int alloc_length = alloc_worklist.length();
kvn@3651 278 for (int next = 0; next < alloc_length; ++next) {
kvn@3651 279 Node* n = alloc_worklist.at(next);
kvn@3651 280 PointsToNode* ptn = ptnode_adr(n->_idx);
kvn@3651 281 assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
kvn@3651 282 }
kvn@3651 283 }
kvn@3651 284 #endif
kvn@3651 285
kvn@3651 286 // 5. Separate memory graph for scalar replaceable allcations.
kvn@3651 287 if (has_scalar_replaceable_candidates &&
kvn@3651 288 C->AliasLevel() >= 3 && EliminateAllocations) {
kvn@3651 289 // Now use the escape information to create unique types for
kvn@3651 290 // scalar replaceable objects.
kvn@3651 291 split_unique_types(alloc_worklist);
kvn@3651 292 if (C->failing()) return false;
sla@5237 293 C->print_method(PHASE_AFTER_EA, 2);
kvn@3651 294
kvn@3651 295 #ifdef ASSERT
kvn@3651 296 } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
kvn@3651 297 tty->print("=== No allocations eliminated for ");
kvn@3651 298 C->method()->print_short_name();
kvn@3651 299 if(!EliminateAllocations) {
kvn@3651 300 tty->print(" since EliminateAllocations is off ===");
kvn@3651 301 } else if(!has_scalar_replaceable_candidates) {
kvn@3651 302 tty->print(" since there are no scalar replaceable candidates ===");
kvn@3651 303 } else if(C->AliasLevel() < 3) {
kvn@3651 304 tty->print(" since AliasLevel < 3 ===");
kvn@3651 305 }
kvn@3651 306 tty->cr();
kvn@3651 307 #endif
kvn@3651 308 }
kvn@3651 309 return has_non_escaping_obj;
kvn@3651 310 }
kvn@3651 311
roland@4106 312 // Utility function for nodes that load an object
roland@4106 313 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
roland@4106 314 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
roland@4106 315 // ThreadLocal has RawPtr type.
roland@4106 316 const Type* t = _igvn->type(n);
roland@4106 317 if (t->make_ptr() != NULL) {
roland@4106 318 Node* adr = n->in(MemNode::Address);
roland@4106 319 #ifdef ASSERT
roland@4106 320 if (!adr->is_AddP()) {
roland@4106 321 assert(_igvn->type(adr)->isa_rawptr(), "sanity");
roland@4106 322 } else {
roland@4106 323 assert((ptnode_adr(adr->_idx) == NULL ||
roland@4106 324 ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
roland@4106 325 }
roland@4106 326 #endif
roland@4106 327 add_local_var_and_edge(n, PointsToNode::NoEscape,
roland@4106 328 adr, delayed_worklist);
roland@4106 329 }
roland@4106 330 }
roland@4106 331
kvn@3651 332 // Populate Connection Graph with PointsTo nodes and create simple
kvn@3651 333 // connection graph edges.
kvn@3651 334 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
kvn@3651 335 assert(!_verify, "this method sould not be called for verification");
kvn@3651 336 PhaseGVN* igvn = _igvn;
kvn@3651 337 uint n_idx = n->_idx;
kvn@3651 338 PointsToNode* n_ptn = ptnode_adr(n_idx);
kvn@3651 339 if (n_ptn != NULL)
kvn@3651 340 return; // No need to redefine PointsTo node during first iteration.
kvn@3651 341
kvn@3651 342 if (n->is_Call()) {
kvn@3651 343 // Arguments to allocation and locking don't escape.
kvn@3651 344 if (n->is_AbstractLock()) {
kvn@3651 345 // Put Lock and Unlock nodes on IGVN worklist to process them during
kvn@3651 346 // first IGVN optimization when escape information is still available.
kvn@3651 347 record_for_optimizer(n);
kvn@3651 348 } else if (n->is_Allocate()) {
kvn@3651 349 add_call_node(n->as_Call());
kvn@3651 350 record_for_optimizer(n);
kvn@3651 351 } else {
kvn@3651 352 if (n->is_CallStaticJava()) {
kvn@3651 353 const char* name = n->as_CallStaticJava()->_name;
kvn@3651 354 if (name != NULL && strcmp(name, "uncommon_trap") == 0)
kvn@3651 355 return; // Skip uncommon traps
kvn@3651 356 }
kvn@3651 357 // Don't mark as processed since call's arguments have to be processed.
kvn@3651 358 delayed_worklist->push(n);
kvn@3651 359 // Check if a call returns an object.
kvn@5110 360 if ((n->as_Call()->returns_pointer() &&
kvn@5110 361 n->as_Call()->proj_out(TypeFunc::Parms) != NULL) ||
kvn@5110 362 (n->is_CallStaticJava() &&
kvn@5110 363 n->as_CallStaticJava()->is_boxing_method())) {
kvn@3651 364 add_call_node(n->as_Call());
kvn@3651 365 }
kvn@3651 366 }
kvn@3651 367 return;
kvn@3651 368 }
kvn@3651 369 // Put this check here to process call arguments since some call nodes
kvn@3651 370 // point to phantom_obj.
kvn@3651 371 if (n_ptn == phantom_obj || n_ptn == null_obj)
kvn@3651 372 return; // Skip predefined nodes.
kvn@3651 373
kvn@3651 374 int opcode = n->Opcode();
kvn@3651 375 switch (opcode) {
kvn@3651 376 case Op_AddP: {
kvn@3651 377 Node* base = get_addp_base(n);
kvn@3651 378 PointsToNode* ptn_base = ptnode_adr(base->_idx);
kvn@3651 379 // Field nodes are created for all field types. They are used in
kvn@3651 380 // adjust_scalar_replaceable_state() and split_unique_types().
kvn@3651 381 // Note, non-oop fields will have only base edges in Connection
kvn@3651 382 // Graph because such fields are not used for oop loads and stores.
kvn@3651 383 int offset = address_offset(n, igvn);
kvn@3651 384 add_field(n, PointsToNode::NoEscape, offset);
kvn@3651 385 if (ptn_base == NULL) {
kvn@3651 386 delayed_worklist->push(n); // Process it later.
kvn@3651 387 } else {
kvn@3651 388 n_ptn = ptnode_adr(n_idx);
kvn@3651 389 add_base(n_ptn->as_Field(), ptn_base);
kvn@3651 390 }
kvn@3651 391 break;
kvn@3651 392 }
kvn@3651 393 case Op_CastX2P: {
kvn@3651 394 map_ideal_node(n, phantom_obj);
kvn@3651 395 break;
kvn@3651 396 }
kvn@3651 397 case Op_CastPP:
kvn@3651 398 case Op_CheckCastPP:
kvn@3651 399 case Op_EncodeP:
roland@4159 400 case Op_DecodeN:
roland@4159 401 case Op_EncodePKlass:
roland@4159 402 case Op_DecodeNKlass: {
kvn@3651 403 add_local_var_and_edge(n, PointsToNode::NoEscape,
kvn@3651 404 n->in(1), delayed_worklist);
kvn@3651 405 break;
kvn@3651 406 }
kvn@3651 407 case Op_CMoveP: {
kvn@3651 408 add_local_var(n, PointsToNode::NoEscape);
kvn@3651 409 // Do not add edges during first iteration because some could be
kvn@3651 410 // not defined yet.
kvn@3651 411 delayed_worklist->push(n);
kvn@3651 412 break;
kvn@3651 413 }
kvn@3651 414 case Op_ConP:
roland@4159 415 case Op_ConN:
roland@4159 416 case Op_ConNKlass: {
kvn@3651 417 // assume all oop constants globally escape except for null
kvn@3651 418 PointsToNode::EscapeState es;
kvn@5110 419 const Type* t = igvn->type(n);
kvn@5110 420 if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
kvn@3651 421 es = PointsToNode::NoEscape;
kvn@3651 422 } else {
kvn@3651 423 es = PointsToNode::GlobalEscape;
kvn@3651 424 }
kvn@3651 425 add_java_object(n, es);
kvn@3651 426 break;
kvn@3651 427 }
kvn@3651 428 case Op_CreateEx: {
kvn@3651 429 // assume that all exception objects globally escape
kvn@7299 430 map_ideal_node(n, phantom_obj);
kvn@3651 431 break;
kvn@3651 432 }
kvn@3651 433 case Op_LoadKlass:
kvn@3651 434 case Op_LoadNKlass: {
kvn@3651 435 // Unknown class is loaded
kvn@3651 436 map_ideal_node(n, phantom_obj);
kvn@3651 437 break;
kvn@3651 438 }
kvn@3651 439 case Op_LoadP:
kvn@3651 440 case Op_LoadN:
kvn@3651 441 case Op_LoadPLocked: {
roland@4106 442 add_objload_to_connection_graph(n, delayed_worklist);
kvn@3651 443 break;
kvn@3651 444 }
kvn@3651 445 case Op_Parm: {
kvn@3651 446 map_ideal_node(n, phantom_obj);
kvn@3651 447 break;
kvn@3651 448 }
kvn@3651 449 case Op_PartialSubtypeCheck: {
kvn@3651 450 // Produces Null or notNull and is used in only in CmpP so
kvn@3651 451 // phantom_obj could be used.
kvn@3651 452 map_ideal_node(n, phantom_obj); // Result is unknown
kvn@3651 453 break;
kvn@3651 454 }
kvn@3651 455 case Op_Phi: {
kvn@3651 456 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
roland@4106 457 // ThreadLocal has RawPtr type.
kvn@3651 458 const Type* t = n->as_Phi()->type();
kvn@3651 459 if (t->make_ptr() != NULL) {
kvn@3651 460 add_local_var(n, PointsToNode::NoEscape);
kvn@3651 461 // Do not add edges during first iteration because some could be
kvn@3651 462 // not defined yet.
kvn@3651 463 delayed_worklist->push(n);
kvn@3651 464 }
kvn@3651 465 break;
kvn@3651 466 }
kvn@3651 467 case Op_Proj: {
kvn@3651 468 // we are only interested in the oop result projection from a call
kvn@3651 469 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
kvn@3651 470 n->in(0)->as_Call()->returns_pointer()) {
kvn@3651 471 add_local_var_and_edge(n, PointsToNode::NoEscape,
kvn@3651 472 n->in(0), delayed_worklist);
kvn@3651 473 }
kvn@3651 474 break;
kvn@3651 475 }
kvn@3651 476 case Op_Rethrow: // Exception object escapes
kvn@3651 477 case Op_Return: {
kvn@3651 478 if (n->req() > TypeFunc::Parms &&
kvn@3651 479 igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
kvn@3651 480 // Treat Return value as LocalVar with GlobalEscape escape state.
kvn@3651 481 add_local_var_and_edge(n, PointsToNode::GlobalEscape,
kvn@3651 482 n->in(TypeFunc::Parms), delayed_worklist);
kvn@3651 483 }
kvn@3651 484 break;
kvn@3651 485 }
roland@4106 486 case Op_GetAndSetP:
roland@4106 487 case Op_GetAndSetN: {
roland@4106 488 add_objload_to_connection_graph(n, delayed_worklist);
roland@4106 489 // fallthrough
roland@4106 490 }
kvn@3651 491 case Op_StoreP:
kvn@3651 492 case Op_StoreN:
roland@4159 493 case Op_StoreNKlass:
kvn@3651 494 case Op_StorePConditional:
kvn@3651 495 case Op_CompareAndSwapP:
kvn@3651 496 case Op_CompareAndSwapN: {
kvn@3651 497 Node* adr = n->in(MemNode::Address);
kvn@3651 498 const Type *adr_type = igvn->type(adr);
kvn@3651 499 adr_type = adr_type->make_ptr();
kvn@5111 500 if (adr_type == NULL) {
kvn@5111 501 break; // skip dead nodes
kvn@5111 502 }
kvn@3651 503 if (adr_type->isa_oopptr() ||
roland@4159 504 (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
kvn@3651 505 (adr_type == TypeRawPtr::NOTNULL &&
kvn@3651 506 adr->in(AddPNode::Address)->is_Proj() &&
kvn@3651 507 adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
kvn@3651 508 delayed_worklist->push(n); // Process it later.
kvn@3651 509 #ifdef ASSERT
kvn@3651 510 assert(adr->is_AddP(), "expecting an AddP");
kvn@3651 511 if (adr_type == TypeRawPtr::NOTNULL) {
kvn@3651 512 // Verify a raw address for a store captured by Initialize node.
kvn@3651 513 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@3651 514 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@3651 515 }
kvn@3657 516 #endif
kvn@3651 517 } else {
kvn@3651 518 // Ignore copy the displaced header to the BoxNode (OSR compilation).
kvn@3651 519 if (adr->is_BoxLock())
kvn@3651 520 break;
kvn@3657 521 // Stored value escapes in unsafe access.
kvn@3657 522 if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
kvn@3657 523 // Pointer stores in G1 barriers looks like unsafe access.
kvn@3657 524 // Ignore such stores to be able scalar replace non-escaping
kvn@3657 525 // allocations.
kvn@3657 526 if (UseG1GC && adr->is_AddP()) {
kvn@3657 527 Node* base = get_addp_base(adr);
kvn@3657 528 if (base->Opcode() == Op_LoadP &&
kvn@3657 529 base->in(MemNode::Address)->is_AddP()) {
kvn@3657 530 adr = base->in(MemNode::Address);
kvn@3657 531 Node* tls = get_addp_base(adr);
kvn@3657 532 if (tls->Opcode() == Op_ThreadLocal) {
kvn@3657 533 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@3657 534 if (offs == in_bytes(JavaThread::satb_mark_queue_offset() +
kvn@3657 535 PtrQueue::byte_offset_of_buf())) {
kvn@3657 536 break; // G1 pre barier previous oop value store.
kvn@3657 537 }
kvn@3657 538 if (offs == in_bytes(JavaThread::dirty_card_queue_offset() +
kvn@3657 539 PtrQueue::byte_offset_of_buf())) {
kvn@3657 540 break; // G1 post barier card address store.
kvn@3657 541 }
kvn@3657 542 }
kvn@3657 543 }
kvn@3657 544 }
kvn@3657 545 delayed_worklist->push(n); // Process unsafe access later.
kvn@3657 546 break;
kvn@3651 547 }
kvn@3657 548 #ifdef ASSERT
kvn@3657 549 n->dump(1);
kvn@3657 550 assert(false, "not unsafe or G1 barrier raw StoreP");
kvn@3651 551 #endif
kvn@3651 552 }
kvn@3651 553 break;
kvn@3651 554 }
kvn@3651 555 case Op_AryEq:
kvn@3651 556 case Op_StrComp:
kvn@3651 557 case Op_StrEquals:
kvn@4479 558 case Op_StrIndexOf:
kvn@4479 559 case Op_EncodeISOArray: {
kvn@3651 560 add_local_var(n, PointsToNode::ArgEscape);
kvn@3651 561 delayed_worklist->push(n); // Process it later.
kvn@3651 562 break;
kvn@3651 563 }
kvn@3651 564 case Op_ThreadLocal: {
kvn@3651 565 add_java_object(n, PointsToNode::ArgEscape);
kvn@3651 566 break;
kvn@3651 567 }
kvn@3651 568 default:
kvn@3651 569 ; // Do nothing for nodes not related to EA.
kvn@3651 570 }
kvn@3651 571 return;
kvn@3651 572 }
kvn@3651 573
kvn@3651 574 #ifdef ASSERT
kvn@3651 575 #define ELSE_FAIL(name) \
kvn@3651 576 /* Should not be called for not pointer type. */ \
kvn@3651 577 n->dump(1); \
kvn@3651 578 assert(false, name); \
kvn@3651 579 break;
kvn@3651 580 #else
kvn@3651 581 #define ELSE_FAIL(name) \
kvn@3651 582 break;
kvn@3651 583 #endif
kvn@3651 584
kvn@3651 585 // Add final simple edges to graph.
kvn@3651 586 void ConnectionGraph::add_final_edges(Node *n) {
kvn@3651 587 PointsToNode* n_ptn = ptnode_adr(n->_idx);
kvn@3651 588 #ifdef ASSERT
kvn@3651 589 if (_verify && n_ptn->is_JavaObject())
kvn@3651 590 return; // This method does not change graph for JavaObject.
kvn@3651 591 #endif
kvn@3651 592
kvn@3651 593 if (n->is_Call()) {
kvn@3651 594 process_call_arguments(n->as_Call());
kvn@3651 595 return;
kvn@3651 596 }
kvn@3651 597 assert(n->is_Store() || n->is_LoadStore() ||
kvn@3651 598 (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
kvn@3651 599 "node should be registered already");
kvn@3651 600 int opcode = n->Opcode();
kvn@3651 601 switch (opcode) {
kvn@3651 602 case Op_AddP: {
kvn@3651 603 Node* base = get_addp_base(n);
kvn@3651 604 PointsToNode* ptn_base = ptnode_adr(base->_idx);
kvn@3651 605 assert(ptn_base != NULL, "field's base should be registered");
kvn@3651 606 add_base(n_ptn->as_Field(), ptn_base);
kvn@3651 607 break;
kvn@3651 608 }
kvn@3651 609 case Op_CastPP:
kvn@3651 610 case Op_CheckCastPP:
kvn@3651 611 case Op_EncodeP:
roland@4159 612 case Op_DecodeN:
roland@4159 613 case Op_EncodePKlass:
roland@4159 614 case Op_DecodeNKlass: {
kvn@3651 615 add_local_var_and_edge(n, PointsToNode::NoEscape,
kvn@3651 616 n->in(1), NULL);
kvn@3651 617 break;
kvn@3651 618 }
kvn@3651 619 case Op_CMoveP: {
kvn@3651 620 for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
kvn@3651 621 Node* in = n->in(i);
kvn@3651 622 if (in == NULL)
kvn@3651 623 continue; // ignore NULL
kvn@3651 624 Node* uncast_in = in->uncast();
kvn@3651 625 if (uncast_in->is_top() || uncast_in == n)
kvn@3651 626 continue; // ignore top or inputs which go back this node
kvn@3651 627 PointsToNode* ptn = ptnode_adr(in->_idx);
kvn@3651 628 assert(ptn != NULL, "node should be registered");
kvn@3651 629 add_edge(n_ptn, ptn);
kvn@3651 630 }
kvn@3651 631 break;
kvn@3651 632 }
kvn@3651 633 case Op_LoadP:
kvn@3651 634 case Op_LoadN:
kvn@3651 635 case Op_LoadPLocked: {
kvn@3651 636 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
roland@4106 637 // ThreadLocal has RawPtr type.
kvn@3651 638 const Type* t = _igvn->type(n);
kvn@3651 639 if (t->make_ptr() != NULL) {
kvn@3651 640 Node* adr = n->in(MemNode::Address);
kvn@3651 641 add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
kvn@3651 642 break;
kvn@3651 643 }
kvn@3651 644 ELSE_FAIL("Op_LoadP");
kvn@3651 645 }
kvn@3651 646 case Op_Phi: {
kvn@3651 647 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
roland@4106 648 // ThreadLocal has RawPtr type.
kvn@3651 649 const Type* t = n->as_Phi()->type();
kvn@3651 650 if (t->make_ptr() != NULL) {
kvn@3651 651 for (uint i = 1; i < n->req(); i++) {
kvn@3651 652 Node* in = n->in(i);
kvn@3651 653 if (in == NULL)
kvn@3651 654 continue; // ignore NULL
kvn@3651 655 Node* uncast_in = in->uncast();
kvn@3651 656 if (uncast_in->is_top() || uncast_in == n)
kvn@3651 657 continue; // ignore top or inputs which go back this node
kvn@3651 658 PointsToNode* ptn = ptnode_adr(in->_idx);
kvn@3651 659 assert(ptn != NULL, "node should be registered");
kvn@3651 660 add_edge(n_ptn, ptn);
kvn@3651 661 }
kvn@3651 662 break;
kvn@3651 663 }
kvn@3651 664 ELSE_FAIL("Op_Phi");
kvn@3651 665 }
kvn@3651 666 case Op_Proj: {
kvn@3651 667 // we are only interested in the oop result projection from a call
kvn@3651 668 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
kvn@3651 669 n->in(0)->as_Call()->returns_pointer()) {
kvn@3651 670 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
kvn@3651 671 break;
kvn@3651 672 }
kvn@3651 673 ELSE_FAIL("Op_Proj");
kvn@3651 674 }
kvn@3651 675 case Op_Rethrow: // Exception object escapes
kvn@3651 676 case Op_Return: {
kvn@3651 677 if (n->req() > TypeFunc::Parms &&
kvn@3651 678 _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
kvn@3651 679 // Treat Return value as LocalVar with GlobalEscape escape state.
kvn@3651 680 add_local_var_and_edge(n, PointsToNode::GlobalEscape,
kvn@3651 681 n->in(TypeFunc::Parms), NULL);
kvn@3651 682 break;
kvn@3651 683 }
kvn@3651 684 ELSE_FAIL("Op_Return");
kvn@3651 685 }
kvn@3651 686 case Op_StoreP:
kvn@3651 687 case Op_StoreN:
roland@4159 688 case Op_StoreNKlass:
kvn@3651 689 case Op_StorePConditional:
kvn@3651 690 case Op_CompareAndSwapP:
roland@4106 691 case Op_CompareAndSwapN:
roland@4106 692 case Op_GetAndSetP:
roland@4106 693 case Op_GetAndSetN: {
kvn@3651 694 Node* adr = n->in(MemNode::Address);
kvn@3651 695 const Type *adr_type = _igvn->type(adr);
kvn@3651 696 adr_type = adr_type->make_ptr();
kvn@5111 697 #ifdef ASSERT
kvn@5111 698 if (adr_type == NULL) {
kvn@5111 699 n->dump(1);
kvn@5111 700 assert(adr_type != NULL, "dead node should not be on list");
kvn@5111 701 break;
kvn@5111 702 }
kvn@5111 703 #endif
kvn@5111 704 if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN) {
kvn@5111 705 add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
kvn@5111 706 }
kvn@3651 707 if (adr_type->isa_oopptr() ||
roland@4159 708 (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
kvn@3651 709 (adr_type == TypeRawPtr::NOTNULL &&
kvn@3651 710 adr->in(AddPNode::Address)->is_Proj() &&
kvn@3651 711 adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
kvn@3651 712 // Point Address to Value
kvn@3651 713 PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
kvn@3651 714 assert(adr_ptn != NULL &&
kvn@3651 715 adr_ptn->as_Field()->is_oop(), "node should be registered");
kvn@3651 716 Node *val = n->in(MemNode::ValueIn);
kvn@3651 717 PointsToNode* ptn = ptnode_adr(val->_idx);
kvn@3651 718 assert(ptn != NULL, "node should be registered");
kvn@3651 719 add_edge(adr_ptn, ptn);
kvn@3651 720 break;
kvn@3657 721 } else if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
kvn@3657 722 // Stored value escapes in unsafe access.
kvn@3657 723 Node *val = n->in(MemNode::ValueIn);
kvn@3657 724 PointsToNode* ptn = ptnode_adr(val->_idx);
kvn@3657 725 assert(ptn != NULL, "node should be registered");
kvn@6637 726 set_escape_state(ptn, PointsToNode::GlobalEscape);
kvn@3657 727 // Add edge to object for unsafe access with offset.
kvn@3657 728 PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
kvn@3657 729 assert(adr_ptn != NULL, "node should be registered");
kvn@3657 730 if (adr_ptn->is_Field()) {
kvn@3657 731 assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
kvn@3657 732 add_edge(adr_ptn, ptn);
kvn@3657 733 }
kvn@3657 734 break;
kvn@3651 735 }
kvn@3651 736 ELSE_FAIL("Op_StoreP");
kvn@3651 737 }
kvn@3651 738 case Op_AryEq:
kvn@3651 739 case Op_StrComp:
kvn@3651 740 case Op_StrEquals:
kvn@4479 741 case Op_StrIndexOf:
kvn@4479 742 case Op_EncodeISOArray: {
kvn@3651 743 // char[] arrays passed to string intrinsic do not escape but
kvn@3651 744 // they are not scalar replaceable. Adjust escape state for them.
kvn@3651 745 // Start from in(2) edge since in(1) is memory edge.
kvn@3651 746 for (uint i = 2; i < n->req(); i++) {
kvn@3651 747 Node* adr = n->in(i);
kvn@3651 748 const Type* at = _igvn->type(adr);
kvn@3651 749 if (!adr->is_top() && at->isa_ptr()) {
kvn@3651 750 assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
kvn@3651 751 at->isa_ptr() != NULL, "expecting a pointer");
kvn@3651 752 if (adr->is_AddP()) {
kvn@3651 753 adr = get_addp_base(adr);
kvn@3651 754 }
kvn@3651 755 PointsToNode* ptn = ptnode_adr(adr->_idx);
kvn@3651 756 assert(ptn != NULL, "node should be registered");
kvn@3651 757 add_edge(n_ptn, ptn);
kvn@3651 758 }
kvn@3651 759 }
kvn@3651 760 break;
kvn@3651 761 }
kvn@3651 762 default: {
kvn@3651 763 // This method should be called only for EA specific nodes which may
kvn@3651 764 // miss some edges when they were created.
kvn@3651 765 #ifdef ASSERT
kvn@3651 766 n->dump(1);
kvn@3651 767 #endif
kvn@3651 768 guarantee(false, "unknown node");
kvn@3651 769 }
kvn@3651 770 }
kvn@3651 771 return;
kvn@3651 772 }
kvn@3651 773
kvn@3651 774 void ConnectionGraph::add_call_node(CallNode* call) {
kvn@3651 775 assert(call->returns_pointer(), "only for call which returns pointer");
kvn@3651 776 uint call_idx = call->_idx;
kvn@3651 777 if (call->is_Allocate()) {
kvn@3651 778 Node* k = call->in(AllocateNode::KlassNode);
kvn@3651 779 const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
kvn@3651 780 assert(kt != NULL, "TypeKlassPtr required.");
kvn@3651 781 ciKlass* cik = kt->klass();
kvn@3651 782 PointsToNode::EscapeState es = PointsToNode::NoEscape;
kvn@3651 783 bool scalar_replaceable = true;
kvn@3651 784 if (call->is_AllocateArray()) {
kvn@3651 785 if (!cik->is_array_klass()) { // StressReflectiveCode
kvn@3651 786 es = PointsToNode::GlobalEscape;
kvn@3651 787 } else {
kvn@3651 788 int length = call->in(AllocateNode::ALength)->find_int_con(-1);
kvn@3651 789 if (length < 0 || length > EliminateAllocationArraySizeLimit) {
kvn@3651 790 // Not scalar replaceable if the length is not constant or too big.
kvn@3651 791 scalar_replaceable = false;
kvn@3651 792 }
kvn@3651 793 }
kvn@3651 794 } else { // Allocate instance
kvn@3651 795 if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
twisti@5910 796 cik->is_subclass_of(_compile->env()->Reference_klass()) ||
kvn@3651 797 !cik->is_instance_klass() || // StressReflectiveCode
kvn@3651 798 cik->as_instance_klass()->has_finalizer()) {
kvn@3651 799 es = PointsToNode::GlobalEscape;
kvn@3651 800 }
kvn@3651 801 }
kvn@3651 802 add_java_object(call, es);
kvn@3651 803 PointsToNode* ptn = ptnode_adr(call_idx);
kvn@3651 804 if (!scalar_replaceable && ptn->scalar_replaceable()) {
kvn@3651 805 ptn->set_scalar_replaceable(false);
kvn@3651 806 }
kvn@3651 807 } else if (call->is_CallStaticJava()) {
kvn@3651 808 // Call nodes could be different types:
kvn@3651 809 //
kvn@3651 810 // 1. CallDynamicJavaNode (what happened during call is unknown):
kvn@3651 811 //
kvn@3651 812 // - mapped to GlobalEscape JavaObject node if oop is returned;
kvn@3651 813 //
kvn@3651 814 // - all oop arguments are escaping globally;
kvn@3651 815 //
kvn@3651 816 // 2. CallStaticJavaNode (execute bytecode analysis if possible):
kvn@3651 817 //
kvn@3651 818 // - the same as CallDynamicJavaNode if can't do bytecode analysis;
kvn@3651 819 //
kvn@3651 820 // - mapped to GlobalEscape JavaObject node if unknown oop is returned;
kvn@3651 821 // - mapped to NoEscape JavaObject node if non-escaping object allocated
kvn@3651 822 // during call is returned;
kvn@3651 823 // - mapped to ArgEscape LocalVar node pointed to object arguments
kvn@3651 824 // which are returned and does not escape during call;
kvn@3651 825 //
kvn@3651 826 // - oop arguments escaping status is defined by bytecode analysis;
kvn@3651 827 //
kvn@3651 828 // For a static call, we know exactly what method is being called.
kvn@3651 829 // Use bytecode estimator to record whether the call's return value escapes.
kvn@3651 830 ciMethod* meth = call->as_CallJava()->method();
kvn@3651 831 if (meth == NULL) {
kvn@3651 832 const char* name = call->as_CallStaticJava()->_name;
kvn@3651 833 assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
kvn@3651 834 // Returns a newly allocated unescaped object.
kvn@3651 835 add_java_object(call, PointsToNode::NoEscape);
kvn@3651 836 ptnode_adr(call_idx)->set_scalar_replaceable(false);
kvn@5110 837 } else if (meth->is_boxing_method()) {
kvn@5110 838 // Returns boxing object
kvn@5113 839 PointsToNode::EscapeState es;
kvn@5113 840 vmIntrinsics::ID intr = meth->intrinsic_id();
kvn@5113 841 if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
kvn@5113 842 // It does not escape if object is always allocated.
kvn@5113 843 es = PointsToNode::NoEscape;
kvn@5113 844 } else {
kvn@5113 845 // It escapes globally if object could be loaded from cache.
kvn@5113 846 es = PointsToNode::GlobalEscape;
kvn@5113 847 }
kvn@5113 848 add_java_object(call, es);
kvn@3651 849 } else {
kvn@3651 850 BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
kvn@3651 851 call_analyzer->copy_dependencies(_compile->dependencies());
kvn@3651 852 if (call_analyzer->is_return_allocated()) {
kvn@3651 853 // Returns a newly allocated unescaped object, simply
kvn@3651 854 // update dependency information.
kvn@3651 855 // Mark it as NoEscape so that objects referenced by
kvn@3651 856 // it's fields will be marked as NoEscape at least.
kvn@3651 857 add_java_object(call, PointsToNode::NoEscape);
kvn@3651 858 ptnode_adr(call_idx)->set_scalar_replaceable(false);
kvn@3651 859 } else {
kvn@3651 860 // Determine whether any arguments are returned.
kvn@3651 861 const TypeTuple* d = call->tf()->domain();
kvn@3651 862 bool ret_arg = false;
kvn@3651 863 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@3651 864 if (d->field_at(i)->isa_ptr() != NULL &&
kvn@3651 865 call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
kvn@3651 866 ret_arg = true;
kvn@3651 867 break;
kvn@3651 868 }
kvn@3651 869 }
kvn@3651 870 if (ret_arg) {
kvn@3651 871 add_local_var(call, PointsToNode::ArgEscape);
kvn@3651 872 } else {
kvn@3651 873 // Returns unknown object.
kvn@3651 874 map_ideal_node(call, phantom_obj);
kvn@3651 875 }
kvn@3651 876 }
kvn@3651 877 }
kvn@3651 878 } else {
kvn@3651 879 // An other type of call, assume the worst case:
kvn@3651 880 // returned value is unknown and globally escapes.
kvn@3651 881 assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
kvn@3651 882 map_ideal_node(call, phantom_obj);
kvn@3651 883 }
kvn@3651 884 }
kvn@3651 885
kvn@3651 886 void ConnectionGraph::process_call_arguments(CallNode *call) {
kvn@3651 887 bool is_arraycopy = false;
kvn@3651 888 switch (call->Opcode()) {
kvn@3651 889 #ifdef ASSERT
kvn@3651 890 case Op_Allocate:
kvn@3651 891 case Op_AllocateArray:
kvn@3651 892 case Op_Lock:
kvn@3651 893 case Op_Unlock:
kvn@3651 894 assert(false, "should be done already");
kvn@3651 895 break;
kvn@3651 896 #endif
kvn@3651 897 case Op_CallLeafNoFP:
kvn@3651 898 is_arraycopy = (call->as_CallLeaf()->_name != NULL &&
kvn@3651 899 strstr(call->as_CallLeaf()->_name, "arraycopy") != 0);
kvn@3651 900 // fall through
kvn@3651 901 case Op_CallLeaf: {
kvn@3651 902 // Stub calls, objects do not escape but they are not scale replaceable.
kvn@3651 903 // Adjust escape state for outgoing arguments.
kvn@3651 904 const TypeTuple * d = call->tf()->domain();
kvn@3651 905 bool src_has_oops = false;
kvn@3651 906 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@3651 907 const Type* at = d->field_at(i);
kvn@3651 908 Node *arg = call->in(i);
kvn@3651 909 const Type *aat = _igvn->type(arg);
kvn@3651 910 if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
kvn@3651 911 continue;
kvn@3651 912 if (arg->is_AddP()) {
kvn@3651 913 //
kvn@3651 914 // The inline_native_clone() case when the arraycopy stub is called
kvn@3651 915 // after the allocation before Initialize and CheckCastPP nodes.
kvn@3651 916 // Or normal arraycopy for object arrays case.
kvn@3651 917 //
kvn@3651 918 // Set AddP's base (Allocate) as not scalar replaceable since
kvn@3651 919 // pointer to the base (with offset) is passed as argument.
kvn@3651 920 //
kvn@3651 921 arg = get_addp_base(arg);
kvn@3651 922 }
kvn@3651 923 PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
kvn@3651 924 assert(arg_ptn != NULL, "should be registered");
kvn@3651 925 PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
kvn@3651 926 if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
kvn@3651 927 assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
kvn@3651 928 aat->isa_ptr() != NULL, "expecting an Ptr");
kvn@3651 929 bool arg_has_oops = aat->isa_oopptr() &&
kvn@3651 930 (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
kvn@3651 931 (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
kvn@3651 932 if (i == TypeFunc::Parms) {
kvn@3651 933 src_has_oops = arg_has_oops;
kvn@3651 934 }
kvn@3651 935 //
kvn@3651 936 // src or dst could be j.l.Object when other is basic type array:
kvn@3651 937 //
kvn@3651 938 // arraycopy(char[],0,Object*,0,size);
kvn@3651 939 // arraycopy(Object*,0,char[],0,size);
kvn@3651 940 //
kvn@3651 941 // Don't add edges in such cases.
kvn@3651 942 //
kvn@3651 943 bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
kvn@3651 944 arg_has_oops && (i > TypeFunc::Parms);
kvn@3651 945 #ifdef ASSERT
kvn@3651 946 if (!(is_arraycopy ||
kvn@4205 947 (call->as_CallLeaf()->_name != NULL &&
kvn@4205 948 (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre") == 0 ||
kvn@4205 949 strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ||
drchase@5353 950 strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
kvn@4205 951 strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
kvn@4205 952 strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
kvn@4205 953 strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
kvn@7027 954 strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
kvn@7027 955 strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
kvn@7027 956 strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
kvn@7027 957 strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
kvn@7027 958 strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
kvn@7027 959 strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
kvn@7152 960 strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
kvn@7152 961 strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0)
kvn@4205 962 ))) {
kvn@3651 963 call->dump();
kvn@4205 964 fatal(err_msg_res("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name));
kvn@3651 965 }
kvn@3651 966 #endif
kvn@3651 967 // Always process arraycopy's destination object since
kvn@3651 968 // we need to add all possible edges to references in
kvn@3651 969 // source object.
kvn@3651 970 if (arg_esc >= PointsToNode::ArgEscape &&
kvn@3651 971 !arg_is_arraycopy_dest) {
kvn@3651 972 continue;
kvn@3651 973 }
kvn@3651 974 set_escape_state(arg_ptn, PointsToNode::ArgEscape);
kvn@3651 975 if (arg_is_arraycopy_dest) {
kvn@3651 976 Node* src = call->in(TypeFunc::Parms);
kvn@3651 977 if (src->is_AddP()) {
kvn@3651 978 src = get_addp_base(src);
kvn@3651 979 }
kvn@3651 980 PointsToNode* src_ptn = ptnode_adr(src->_idx);
kvn@3651 981 assert(src_ptn != NULL, "should be registered");
kvn@3651 982 if (arg_ptn != src_ptn) {
kvn@3651 983 // Special arraycopy edge:
kvn@3651 984 // A destination object's field can't have the source object
kvn@3651 985 // as base since objects escape states are not related.
kvn@3651 986 // Only escape state of destination object's fields affects
kvn@3651 987 // escape state of fields in source object.
kvn@3651 988 add_arraycopy(call, PointsToNode::ArgEscape, src_ptn, arg_ptn);
kvn@3651 989 }
kvn@3651 990 }
kvn@3651 991 }
kvn@3651 992 }
kvn@3651 993 break;
kvn@3651 994 }
kvn@3651 995 case Op_CallStaticJava: {
kvn@3651 996 // For a static call, we know exactly what method is being called.
kvn@3651 997 // Use bytecode estimator to record the call's escape affects
kvn@3651 998 #ifdef ASSERT
kvn@3651 999 const char* name = call->as_CallStaticJava()->_name;
kvn@3651 1000 assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
kvn@3651 1001 #endif
kvn@3651 1002 ciMethod* meth = call->as_CallJava()->method();
kvn@5110 1003 if ((meth != NULL) && meth->is_boxing_method()) {
kvn@5110 1004 break; // Boxing methods do not modify any oops.
kvn@5110 1005 }
kvn@3651 1006 BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
kvn@3651 1007 // fall-through if not a Java method or no analyzer information
kvn@3651 1008 if (call_analyzer != NULL) {
kvn@3651 1009 PointsToNode* call_ptn = ptnode_adr(call->_idx);
kvn@3651 1010 const TypeTuple* d = call->tf()->domain();
kvn@3651 1011 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@3651 1012 const Type* at = d->field_at(i);
kvn@3651 1013 int k = i - TypeFunc::Parms;
kvn@3651 1014 Node* arg = call->in(i);
kvn@3651 1015 PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
kvn@3651 1016 if (at->isa_ptr() != NULL &&
kvn@3651 1017 call_analyzer->is_arg_returned(k)) {
kvn@3651 1018 // The call returns arguments.
kvn@3651 1019 if (call_ptn != NULL) { // Is call's result used?
kvn@3651 1020 assert(call_ptn->is_LocalVar(), "node should be registered");
kvn@3651 1021 assert(arg_ptn != NULL, "node should be registered");
kvn@3651 1022 add_edge(call_ptn, arg_ptn);
kvn@3651 1023 }
kvn@3651 1024 }
kvn@3651 1025 if (at->isa_oopptr() != NULL &&
kvn@3651 1026 arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
kvn@3651 1027 if (!call_analyzer->is_arg_stack(k)) {
kvn@3651 1028 // The argument global escapes
kvn@3651 1029 set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
kvn@3651 1030 } else {
kvn@3651 1031 set_escape_state(arg_ptn, PointsToNode::ArgEscape);
kvn@3651 1032 if (!call_analyzer->is_arg_local(k)) {
kvn@3651 1033 // The argument itself doesn't escape, but any fields might
kvn@3651 1034 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
kvn@3651 1035 }
kvn@3651 1036 }
kvn@3651 1037 }
kvn@3651 1038 }
kvn@3651 1039 if (call_ptn != NULL && call_ptn->is_LocalVar()) {
kvn@3651 1040 // The call returns arguments.
kvn@3651 1041 assert(call_ptn->edge_count() > 0, "sanity");
kvn@3651 1042 if (!call_analyzer->is_return_local()) {
kvn@3651 1043 // Returns also unknown object.
kvn@3651 1044 add_edge(call_ptn, phantom_obj);
kvn@3651 1045 }
kvn@3651 1046 }
kvn@3651 1047 break;
kvn@3651 1048 }
kvn@3651 1049 }
kvn@3651 1050 default: {
kvn@3651 1051 // Fall-through here if not a Java method or no analyzer information
kvn@3651 1052 // or some other type of call, assume the worst case: all arguments
kvn@3651 1053 // globally escape.
kvn@3651 1054 const TypeTuple* d = call->tf()->domain();
kvn@3651 1055 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@3651 1056 const Type* at = d->field_at(i);
kvn@3651 1057 if (at->isa_oopptr() != NULL) {
kvn@3651 1058 Node* arg = call->in(i);
kvn@3651 1059 if (arg->is_AddP()) {
kvn@3651 1060 arg = get_addp_base(arg);
kvn@3651 1061 }
kvn@3651 1062 assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
kvn@3651 1063 set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
kvn@3651 1064 }
kvn@3651 1065 }
kvn@3651 1066 }
kvn@3651 1067 }
kvn@3651 1068 }
kvn@3651 1069
kvn@3651 1070
kvn@3651 1071 // Finish Graph construction.
kvn@3651 1072 bool ConnectionGraph::complete_connection_graph(
kvn@3651 1073 GrowableArray<PointsToNode*>& ptnodes_worklist,
kvn@3651 1074 GrowableArray<JavaObjectNode*>& non_escaped_worklist,
kvn@3651 1075 GrowableArray<JavaObjectNode*>& java_objects_worklist,
kvn@3651 1076 GrowableArray<FieldNode*>& oop_fields_worklist) {
kvn@3651 1077 // Normally only 1-3 passes needed to build Connection Graph depending
kvn@3651 1078 // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
kvn@3651 1079 // Set limit to 20 to catch situation when something did go wrong and
kvn@3651 1080 // bailout Escape Analysis.
kvn@7299 1081 // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
kvn@3651 1082 #define CG_BUILD_ITER_LIMIT 20
kvn@3651 1083
kvn@3651 1084 // Propagate GlobalEscape and ArgEscape escape states and check that
kvn@3651 1085 // we still have non-escaping objects. The method pushs on _worklist
kvn@3651 1086 // Field nodes which reference phantom_object.
kvn@3651 1087 if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
kvn@3651 1088 return false; // Nothing to do.
kvn@3651 1089 }
kvn@3651 1090 // Now propagate references to all JavaObject nodes.
kvn@3651 1091 int java_objects_length = java_objects_worklist.length();
kvn@3651 1092 elapsedTimer time;
kvn@7299 1093 bool timeout = false;
kvn@3651 1094 int new_edges = 1;
kvn@3651 1095 int iterations = 0;
kvn@3651 1096 do {
kvn@3651 1097 while ((new_edges > 0) &&
kvn@7299 1098 (iterations++ < CG_BUILD_ITER_LIMIT)) {
kvn@7299 1099 double start_time = time.seconds();
kvn@3651 1100 time.start();
kvn@3651 1101 new_edges = 0;
kvn@3651 1102 // Propagate references to phantom_object for nodes pushed on _worklist
kvn@3651 1103 // by find_non_escaped_objects() and find_field_value().
kvn@3651 1104 new_edges += add_java_object_edges(phantom_obj, false);
kvn@3651 1105 for (int next = 0; next < java_objects_length; ++next) {
kvn@3651 1106 JavaObjectNode* ptn = java_objects_worklist.at(next);
kvn@3651 1107 new_edges += add_java_object_edges(ptn, true);
kvn@7299 1108
kvn@7299 1109 #define SAMPLE_SIZE 4
kvn@7299 1110 if ((next % SAMPLE_SIZE) == 0) {
kvn@7299 1111 // Each 4 iterations calculate how much time it will take
kvn@7299 1112 // to complete graph construction.
kvn@7299 1113 time.stop();
kvn@7402 1114 // Poll for requests from shutdown mechanism to quiesce compiler
kvn@7402 1115 // because Connection graph construction may take long time.
kvn@7402 1116 CompileBroker::maybe_block();
kvn@7299 1117 double stop_time = time.seconds();
kvn@7299 1118 double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
kvn@7299 1119 double time_until_end = time_per_iter * (double)(java_objects_length - next);
kvn@7299 1120 if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
kvn@7299 1121 timeout = true;
kvn@7299 1122 break; // Timeout
kvn@7299 1123 }
kvn@7299 1124 start_time = stop_time;
kvn@7299 1125 time.start();
kvn@7299 1126 }
kvn@7299 1127 #undef SAMPLE_SIZE
kvn@7299 1128
kvn@3651 1129 }
kvn@7299 1130 if (timeout) break;
kvn@3651 1131 if (new_edges > 0) {
kvn@3651 1132 // Update escape states on each iteration if graph was updated.
kvn@3651 1133 if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
kvn@3651 1134 return false; // Nothing to do.
kvn@3651 1135 }
kvn@3651 1136 }
kvn@3651 1137 time.stop();
kvn@7299 1138 if (time.seconds() >= EscapeAnalysisTimeout) {
kvn@7299 1139 timeout = true;
kvn@7299 1140 break;
kvn@7299 1141 }
kvn@3651 1142 }
kvn@7299 1143 if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) {
kvn@3651 1144 time.start();
kvn@3651 1145 // Find fields which have unknown value.
kvn@3651 1146 int fields_length = oop_fields_worklist.length();
kvn@3651 1147 for (int next = 0; next < fields_length; next++) {
kvn@3651 1148 FieldNode* field = oop_fields_worklist.at(next);
kvn@3651 1149 if (field->edge_count() == 0) {
kvn@3651 1150 new_edges += find_field_value(field);
kvn@3651 1151 // This code may added new edges to phantom_object.
kvn@3651 1152 // Need an other cycle to propagate references to phantom_object.
kvn@3651 1153 }
kvn@3651 1154 }
kvn@3651 1155 time.stop();
kvn@7299 1156 if (time.seconds() >= EscapeAnalysisTimeout) {
kvn@7299 1157 timeout = true;
kvn@7299 1158 break;
kvn@7299 1159 }
kvn@3651 1160 } else {
kvn@3651 1161 new_edges = 0; // Bailout
kvn@3651 1162 }
kvn@3651 1163 } while (new_edges > 0);
kvn@3651 1164
kvn@3651 1165 // Bailout if passed limits.
kvn@7299 1166 if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) {
kvn@3651 1167 Compile* C = _compile;
kvn@3651 1168 if (C->log() != NULL) {
kvn@3651 1169 C->log()->begin_elem("connectionGraph_bailout reason='reached ");
kvn@7299 1170 C->log()->text("%s", timeout ? "time" : "iterations");
kvn@3651 1171 C->log()->end_elem(" limit'");
kvn@3651 1172 }
kvn@4206 1173 assert(ExitEscapeAnalysisOnTimeout, err_msg_res("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
kvn@3651 1174 time.seconds(), iterations, nodes_size(), ptnodes_worklist.length()));
kvn@3651 1175 // Possible infinite build_connection_graph loop,
kvn@3651 1176 // bailout (no changes to ideal graph were made).
kvn@3651 1177 return false;
kvn@3651 1178 }
kvn@3651 1179 #ifdef ASSERT
kvn@3651 1180 if (Verbose && PrintEscapeAnalysis) {
kvn@3651 1181 tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
kvn@3651 1182 iterations, nodes_size(), ptnodes_worklist.length());
kvn@3651 1183 }
kvn@3651 1184 #endif
kvn@3651 1185
kvn@3651 1186 #undef CG_BUILD_ITER_LIMIT
kvn@3651 1187
kvn@3651 1188 // Find fields initialized by NULL for non-escaping Allocations.
kvn@3651 1189 int non_escaped_length = non_escaped_worklist.length();
kvn@3651 1190 for (int next = 0; next < non_escaped_length; next++) {
kvn@3651 1191 JavaObjectNode* ptn = non_escaped_worklist.at(next);
kvn@3651 1192 PointsToNode::EscapeState es = ptn->escape_state();
kvn@3651 1193 assert(es <= PointsToNode::ArgEscape, "sanity");
kvn@3651 1194 if (es == PointsToNode::NoEscape) {
kvn@3651 1195 if (find_init_values(ptn, null_obj, _igvn) > 0) {
kvn@3651 1196 // Adding references to NULL object does not change escape states
kvn@3651 1197 // since it does not escape. Also no fields are added to NULL object.
kvn@3651 1198 add_java_object_edges(null_obj, false);
kvn@3651 1199 }
kvn@3651 1200 }
kvn@3651 1201 Node* n = ptn->ideal_node();
kvn@3651 1202 if (n->is_Allocate()) {
kvn@3651 1203 // The object allocated by this Allocate node will never be
kvn@3651 1204 // seen by an other thread. Mark it so that when it is
kvn@3651 1205 // expanded no MemBarStoreStore is added.
kvn@3651 1206 InitializeNode* ini = n->as_Allocate()->initialization();
kvn@3651 1207 if (ini != NULL)
kvn@3651 1208 ini->set_does_not_escape();
kvn@3651 1209 }
kvn@3651 1210 }
kvn@3651 1211 return true; // Finished graph construction.
kvn@3651 1212 }
kvn@3651 1213
kvn@3651 1214 // Propagate GlobalEscape and ArgEscape escape states to all nodes
kvn@3651 1215 // and check that we still have non-escaping java objects.
kvn@3651 1216 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
kvn@3651 1217 GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
kvn@3651 1218 GrowableArray<PointsToNode*> escape_worklist;
kvn@3651 1219 // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
kvn@3651 1220 int ptnodes_length = ptnodes_worklist.length();
kvn@3651 1221 for (int next = 0; next < ptnodes_length; ++next) {
kvn@3651 1222 PointsToNode* ptn = ptnodes_worklist.at(next);
kvn@3651 1223 if (ptn->escape_state() >= PointsToNode::ArgEscape ||
kvn@3651 1224 ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
kvn@3651 1225 escape_worklist.push(ptn);
kvn@3651 1226 }
kvn@3651 1227 }
kvn@3651 1228 // Set escape states to referenced nodes (edges list).
kvn@3651 1229 while (escape_worklist.length() > 0) {
kvn@3651 1230 PointsToNode* ptn = escape_worklist.pop();
kvn@3651 1231 PointsToNode::EscapeState es = ptn->escape_state();
kvn@3651 1232 PointsToNode::EscapeState field_es = ptn->fields_escape_state();
kvn@3651 1233 if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
kvn@3651 1234 es >= PointsToNode::ArgEscape) {
kvn@3651 1235 // GlobalEscape or ArgEscape state of field means it has unknown value.
kvn@3651 1236 if (add_edge(ptn, phantom_obj)) {
kvn@3651 1237 // New edge was added
kvn@3651 1238 add_field_uses_to_worklist(ptn->as_Field());
kvn@3651 1239 }
kvn@3651 1240 }
kvn@3651 1241 for (EdgeIterator i(ptn); i.has_next(); i.next()) {
kvn@3651 1242 PointsToNode* e = i.get();
kvn@3651 1243 if (e->is_Arraycopy()) {
kvn@3651 1244 assert(ptn->arraycopy_dst(), "sanity");
kvn@3651 1245 // Propagate only fields escape state through arraycopy edge.
kvn@3651 1246 if (e->fields_escape_state() < field_es) {
kvn@3651 1247 set_fields_escape_state(e, field_es);
kvn@3651 1248 escape_worklist.push(e);
kvn@3651 1249 }
kvn@3651 1250 } else if (es >= field_es) {
kvn@3651 1251 // fields_escape_state is also set to 'es' if it is less than 'es'.
kvn@3651 1252 if (e->escape_state() < es) {
kvn@3651 1253 set_escape_state(e, es);
kvn@3651 1254 escape_worklist.push(e);
kvn@3651 1255 }
kvn@3651 1256 } else {
kvn@3651 1257 // Propagate field escape state.
kvn@3651 1258 bool es_changed = false;
kvn@3651 1259 if (e->fields_escape_state() < field_es) {
kvn@3651 1260 set_fields_escape_state(e, field_es);
kvn@3651 1261 es_changed = true;
kvn@3651 1262 }
kvn@3651 1263 if ((e->escape_state() < field_es) &&
kvn@3651 1264 e->is_Field() && ptn->is_JavaObject() &&
kvn@3651 1265 e->as_Field()->is_oop()) {
kvn@3651 1266 // Change escape state of referenced fileds.
kvn@3651 1267 set_escape_state(e, field_es);
kvn@3651 1268 es_changed = true;;
kvn@3651 1269 } else if (e->escape_state() < es) {
kvn@3651 1270 set_escape_state(e, es);
kvn@3651 1271 es_changed = true;;
kvn@3651 1272 }
kvn@3651 1273 if (es_changed) {
kvn@3651 1274 escape_worklist.push(e);
kvn@3651 1275 }
kvn@3651 1276 }
kvn@3651 1277 }
kvn@3651 1278 }
kvn@3651 1279 // Remove escaped objects from non_escaped list.
kvn@3651 1280 for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
kvn@3651 1281 JavaObjectNode* ptn = non_escaped_worklist.at(next);
kvn@3651 1282 if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
kvn@3651 1283 non_escaped_worklist.delete_at(next);
kvn@3651 1284 }
kvn@3651 1285 if (ptn->escape_state() == PointsToNode::NoEscape) {
kvn@3651 1286 // Find fields in non-escaped allocations which have unknown value.
kvn@3651 1287 find_init_values(ptn, phantom_obj, NULL);
kvn@3651 1288 }
kvn@3651 1289 }
kvn@3651 1290 return (non_escaped_worklist.length() > 0);
kvn@3651 1291 }
kvn@3651 1292
kvn@3651 1293 // Add all references to JavaObject node by walking over all uses.
kvn@3651 1294 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
kvn@3651 1295 int new_edges = 0;
kvn@3651 1296 if (populate_worklist) {
kvn@3651 1297 // Populate _worklist by uses of jobj's uses.
kvn@3651 1298 for (UseIterator i(jobj); i.has_next(); i.next()) {
kvn@3651 1299 PointsToNode* use = i.get();
kvn@3651 1300 if (use->is_Arraycopy())
kvn@3651 1301 continue;
kvn@3651 1302 add_uses_to_worklist(use);
kvn@3651 1303 if (use->is_Field() && use->as_Field()->is_oop()) {
kvn@3651 1304 // Put on worklist all field's uses (loads) and
kvn@3651 1305 // related field nodes (same base and offset).
kvn@3651 1306 add_field_uses_to_worklist(use->as_Field());
kvn@3651 1307 }
kvn@3651 1308 }
kvn@3651 1309 }
kvn@7299 1310 for (int l = 0; l < _worklist.length(); l++) {
kvn@7299 1311 PointsToNode* use = _worklist.at(l);
kvn@3651 1312 if (PointsToNode::is_base_use(use)) {
kvn@3651 1313 // Add reference from jobj to field and from field to jobj (field's base).
kvn@3651 1314 use = PointsToNode::get_use_node(use)->as_Field();
kvn@3651 1315 if (add_base(use->as_Field(), jobj)) {
kvn@3651 1316 new_edges++;
kvn@3651 1317 }
kvn@3651 1318 continue;
kvn@3651 1319 }
kvn@3651 1320 assert(!use->is_JavaObject(), "sanity");
kvn@3651 1321 if (use->is_Arraycopy()) {
kvn@3651 1322 if (jobj == null_obj) // NULL object does not have field edges
kvn@3651 1323 continue;
kvn@3651 1324 // Added edge from Arraycopy node to arraycopy's source java object
kvn@3651 1325 if (add_edge(use, jobj)) {
kvn@3651 1326 jobj->set_arraycopy_src();
kvn@3651 1327 new_edges++;
kvn@3651 1328 }
kvn@3651 1329 // and stop here.
kvn@3651 1330 continue;
kvn@3651 1331 }
kvn@3651 1332 if (!add_edge(use, jobj))
kvn@3651 1333 continue; // No new edge added, there was such edge already.
kvn@3651 1334 new_edges++;
kvn@3651 1335 if (use->is_LocalVar()) {
kvn@3651 1336 add_uses_to_worklist(use);
kvn@3651 1337 if (use->arraycopy_dst()) {
kvn@3651 1338 for (EdgeIterator i(use); i.has_next(); i.next()) {
kvn@3651 1339 PointsToNode* e = i.get();
kvn@3651 1340 if (e->is_Arraycopy()) {
kvn@3651 1341 if (jobj == null_obj) // NULL object does not have field edges
kvn@3651 1342 continue;
kvn@3651 1343 // Add edge from arraycopy's destination java object to Arraycopy node.
kvn@3651 1344 if (add_edge(jobj, e)) {
kvn@3651 1345 new_edges++;
kvn@3651 1346 jobj->set_arraycopy_dst();
kvn@3651 1347 }
kvn@3651 1348 }
kvn@3651 1349 }
kvn@3651 1350 }
kvn@3651 1351 } else {
kvn@3651 1352 // Added new edge to stored in field values.
kvn@3651 1353 // Put on worklist all field's uses (loads) and
kvn@3651 1354 // related field nodes (same base and offset).
kvn@3651 1355 add_field_uses_to_worklist(use->as_Field());
kvn@3651 1356 }
kvn@3651 1357 }
kvn@7299 1358 _worklist.clear();
kvn@7299 1359 _in_worklist.Reset();
kvn@3651 1360 return new_edges;
kvn@3651 1361 }
kvn@3651 1362
kvn@3651 1363 // Put on worklist all related field nodes.
kvn@3651 1364 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
kvn@3651 1365 assert(field->is_oop(), "sanity");
kvn@3651 1366 int offset = field->offset();
kvn@3651 1367 add_uses_to_worklist(field);
kvn@3651 1368 // Loop over all bases of this field and push on worklist Field nodes
kvn@3651 1369 // with the same offset and base (since they may reference the same field).
kvn@3651 1370 for (BaseIterator i(field); i.has_next(); i.next()) {
kvn@3651 1371 PointsToNode* base = i.get();
kvn@3651 1372 add_fields_to_worklist(field, base);
kvn@3651 1373 // Check if the base was source object of arraycopy and go over arraycopy's
kvn@3651 1374 // destination objects since values stored to a field of source object are
kvn@3651 1375 // accessable by uses (loads) of fields of destination objects.
kvn@3651 1376 if (base->arraycopy_src()) {
kvn@3651 1377 for (UseIterator j(base); j.has_next(); j.next()) {
kvn@3651 1378 PointsToNode* arycp = j.get();
kvn@3651 1379 if (arycp->is_Arraycopy()) {
kvn@3651 1380 for (UseIterator k(arycp); k.has_next(); k.next()) {
kvn@3651 1381 PointsToNode* abase = k.get();
kvn@3651 1382 if (abase->arraycopy_dst() && abase != base) {
kvn@3651 1383 // Look for the same arracopy reference.
kvn@3651 1384 add_fields_to_worklist(field, abase);
kvn@3651 1385 }
kvn@3651 1386 }
kvn@3651 1387 }
kvn@3651 1388 }
kvn@3651 1389 }
kvn@3651 1390 }
kvn@3651 1391 }
kvn@3651 1392
kvn@3651 1393 // Put on worklist all related field nodes.
kvn@3651 1394 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
kvn@3651 1395 int offset = field->offset();
kvn@3651 1396 if (base->is_LocalVar()) {
kvn@3651 1397 for (UseIterator j(base); j.has_next(); j.next()) {
kvn@3651 1398 PointsToNode* f = j.get();
kvn@3651 1399 if (PointsToNode::is_base_use(f)) { // Field
kvn@3651 1400 f = PointsToNode::get_use_node(f);
kvn@3651 1401 if (f == field || !f->as_Field()->is_oop())
kvn@3651 1402 continue;
kvn@3651 1403 int offs = f->as_Field()->offset();
kvn@3651 1404 if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
kvn@3651 1405 add_to_worklist(f);
kvn@3651 1406 }
kvn@3651 1407 }
kvn@3651 1408 }
kvn@3651 1409 } else {
kvn@3651 1410 assert(base->is_JavaObject(), "sanity");
kvn@3651 1411 if (// Skip phantom_object since it is only used to indicate that
kvn@3651 1412 // this field's content globally escapes.
kvn@3651 1413 (base != phantom_obj) &&
kvn@3651 1414 // NULL object node does not have fields.
kvn@3651 1415 (base != null_obj)) {
kvn@3651 1416 for (EdgeIterator i(base); i.has_next(); i.next()) {
kvn@3651 1417 PointsToNode* f = i.get();
kvn@3651 1418 // Skip arraycopy edge since store to destination object field
kvn@3651 1419 // does not update value in source object field.
kvn@3651 1420 if (f->is_Arraycopy()) {
kvn@3651 1421 assert(base->arraycopy_dst(), "sanity");
kvn@3651 1422 continue;
kvn@3651 1423 }
kvn@3651 1424 if (f == field || !f->as_Field()->is_oop())
kvn@3651 1425 continue;
kvn@3651 1426 int offs = f->as_Field()->offset();
kvn@3651 1427 if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
kvn@3651 1428 add_to_worklist(f);
kvn@3651 1429 }
kvn@3651 1430 }
kvn@3651 1431 }
kvn@3651 1432 }
kvn@3651 1433 }
kvn@3651 1434
kvn@3651 1435 // Find fields which have unknown value.
kvn@3651 1436 int ConnectionGraph::find_field_value(FieldNode* field) {
kvn@3651 1437 // Escaped fields should have init value already.
kvn@3651 1438 assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
kvn@3651 1439 int new_edges = 0;
kvn@3651 1440 for (BaseIterator i(field); i.has_next(); i.next()) {
kvn@3651 1441 PointsToNode* base = i.get();
kvn@3651 1442 if (base->is_JavaObject()) {
kvn@3651 1443 // Skip Allocate's fields which will be processed later.
kvn@3651 1444 if (base->ideal_node()->is_Allocate())
kvn@3651 1445 return 0;
kvn@3651 1446 assert(base == null_obj, "only NULL ptr base expected here");
kvn@3651 1447 }
kvn@3651 1448 }
kvn@3651 1449 if (add_edge(field, phantom_obj)) {
kvn@3651 1450 // New edge was added
kvn@3651 1451 new_edges++;
kvn@3651 1452 add_field_uses_to_worklist(field);
kvn@3651 1453 }
kvn@3651 1454 return new_edges;
kvn@3651 1455 }
kvn@3651 1456
kvn@3651 1457 // Find fields initializing values for allocations.
kvn@3651 1458 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
kvn@3651 1459 assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
kvn@3651 1460 int new_edges = 0;
kvn@3651 1461 Node* alloc = pta->ideal_node();
kvn@3651 1462 if (init_val == phantom_obj) {
kvn@3651 1463 // Do nothing for Allocate nodes since its fields values are "known".
kvn@3651 1464 if (alloc->is_Allocate())
kvn@3651 1465 return 0;
kvn@3651 1466 assert(alloc->as_CallStaticJava(), "sanity");
kvn@3651 1467 #ifdef ASSERT
kvn@3651 1468 if (alloc->as_CallStaticJava()->method() == NULL) {
kvn@3651 1469 const char* name = alloc->as_CallStaticJava()->_name;
kvn@3651 1470 assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
kvn@3651 1471 }
kvn@3651 1472 #endif
kvn@3651 1473 // Non-escaped allocation returned from Java or runtime call have
kvn@3651 1474 // unknown values in fields.
kvn@3651 1475 for (EdgeIterator i(pta); i.has_next(); i.next()) {
kvn@4255 1476 PointsToNode* field = i.get();
kvn@4255 1477 if (field->is_Field() && field->as_Field()->is_oop()) {
kvn@4255 1478 if (add_edge(field, phantom_obj)) {
kvn@3651 1479 // New edge was added
kvn@3651 1480 new_edges++;
kvn@4255 1481 add_field_uses_to_worklist(field->as_Field());
kvn@3651 1482 }
kvn@3651 1483 }
kvn@3651 1484 }
kvn@3651 1485 return new_edges;
kvn@3651 1486 }
kvn@3651 1487 assert(init_val == null_obj, "sanity");
kvn@3651 1488 // Do nothing for Call nodes since its fields values are unknown.
kvn@3651 1489 if (!alloc->is_Allocate())
kvn@3651 1490 return 0;
kvn@3651 1491
kvn@3651 1492 InitializeNode* ini = alloc->as_Allocate()->initialization();
kvn@3651 1493 Compile* C = _compile;
kvn@3651 1494 bool visited_bottom_offset = false;
kvn@3651 1495 GrowableArray<int> offsets_worklist;
kvn@3651 1496
kvn@3651 1497 // Check if an oop field's initializing value is recorded and add
kvn@3651 1498 // a corresponding NULL if field's value if it is not recorded.
kvn@3651 1499 // Connection Graph does not record a default initialization by NULL
kvn@3651 1500 // captured by Initialize node.
kvn@3651 1501 //
kvn@3651 1502 for (EdgeIterator i(pta); i.has_next(); i.next()) {
kvn@4255 1503 PointsToNode* field = i.get(); // Field (AddP)
kvn@4255 1504 if (!field->is_Field() || !field->as_Field()->is_oop())
kvn@3651 1505 continue; // Not oop field
kvn@4255 1506 int offset = field->as_Field()->offset();
kvn@3651 1507 if (offset == Type::OffsetBot) {
kvn@3651 1508 if (!visited_bottom_offset) {
kvn@3651 1509 // OffsetBot is used to reference array's element,
kvn@3651 1510 // always add reference to NULL to all Field nodes since we don't
kvn@3651 1511 // known which element is referenced.
kvn@4255 1512 if (add_edge(field, null_obj)) {
kvn@3651 1513 // New edge was added
kvn@3651 1514 new_edges++;
kvn@4255 1515 add_field_uses_to_worklist(field->as_Field());
kvn@3651 1516 visited_bottom_offset = true;
kvn@3651 1517 }
kvn@3651 1518 }
kvn@3651 1519 } else {
kvn@3651 1520 // Check only oop fields.
kvn@4255 1521 const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
kvn@3651 1522 if (adr_type->isa_rawptr()) {
kvn@3651 1523 #ifdef ASSERT
kvn@3651 1524 // Raw pointers are used for initializing stores so skip it
kvn@3651 1525 // since it should be recorded already
kvn@4255 1526 Node* base = get_addp_base(field->ideal_node());
kvn@3651 1527 assert(adr_type->isa_rawptr() && base->is_Proj() &&
kvn@3651 1528 (base->in(0) == alloc),"unexpected pointer type");
kvn@3651 1529 #endif
kvn@3651 1530 continue;
kvn@3651 1531 }
kvn@3651 1532 if (!offsets_worklist.contains(offset)) {
kvn@3651 1533 offsets_worklist.append(offset);
kvn@3651 1534 Node* value = NULL;
kvn@3651 1535 if (ini != NULL) {
kvn@4255 1536 // StoreP::memory_type() == T_ADDRESS
kvn@4255 1537 BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
kvn@4255 1538 Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
kvn@4255 1539 // Make sure initializing store has the same type as this AddP.
kvn@4255 1540 // This AddP may reference non existing field because it is on a
kvn@4255 1541 // dead branch of bimorphic call which is not eliminated yet.
kvn@4255 1542 if (store != NULL && store->is_Store() &&
kvn@4255 1543 store->as_Store()->memory_type() == ft) {
kvn@3651 1544 value = store->in(MemNode::ValueIn);
kvn@4255 1545 #ifdef ASSERT
kvn@4255 1546 if (VerifyConnectionGraph) {
kvn@4255 1547 // Verify that AddP already points to all objects the value points to.
kvn@4255 1548 PointsToNode* val = ptnode_adr(value->_idx);
kvn@4255 1549 assert((val != NULL), "should be processed already");
kvn@4255 1550 PointsToNode* missed_obj = NULL;
kvn@4255 1551 if (val->is_JavaObject()) {
kvn@4255 1552 if (!field->points_to(val->as_JavaObject())) {
kvn@4255 1553 missed_obj = val;
kvn@4255 1554 }
kvn@4255 1555 } else {
kvn@4255 1556 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
kvn@4255 1557 tty->print_cr("----------init store has invalid value -----");
kvn@4255 1558 store->dump();
kvn@4255 1559 val->dump();
kvn@4255 1560 assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
kvn@4255 1561 }
kvn@4255 1562 for (EdgeIterator j(val); j.has_next(); j.next()) {
kvn@4255 1563 PointsToNode* obj = j.get();
kvn@4255 1564 if (obj->is_JavaObject()) {
kvn@4255 1565 if (!field->points_to(obj->as_JavaObject())) {
kvn@4255 1566 missed_obj = obj;
kvn@4255 1567 break;
kvn@4255 1568 }
kvn@4255 1569 }
kvn@4255 1570 }
kvn@4255 1571 }
kvn@4255 1572 if (missed_obj != NULL) {
kvn@4255 1573 tty->print_cr("----------field---------------------------------");
kvn@4255 1574 field->dump();
kvn@4255 1575 tty->print_cr("----------missed referernce to object-----------");
kvn@4255 1576 missed_obj->dump();
kvn@4255 1577 tty->print_cr("----------object referernced by init store -----");
kvn@4255 1578 store->dump();
kvn@4255 1579 val->dump();
kvn@4255 1580 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
kvn@4255 1581 }
kvn@4255 1582 }
kvn@4255 1583 #endif
kvn@3651 1584 } else {
kvn@3651 1585 // There could be initializing stores which follow allocation.
kvn@3651 1586 // For example, a volatile field store is not collected
kvn@3651 1587 // by Initialize node.
kvn@3651 1588 //
kvn@3651 1589 // Need to check for dependent loads to separate such stores from
kvn@3651 1590 // stores which follow loads. For now, add initial value NULL so
kvn@3651 1591 // that compare pointers optimization works correctly.
kvn@3651 1592 }
kvn@3651 1593 }
kvn@3651 1594 if (value == NULL) {
kvn@3651 1595 // A field's initializing value was not recorded. Add NULL.
kvn@4255 1596 if (add_edge(field, null_obj)) {
kvn@3651 1597 // New edge was added
kvn@3651 1598 new_edges++;
kvn@4255 1599 add_field_uses_to_worklist(field->as_Field());
kvn@3651 1600 }
kvn@3651 1601 }
kvn@3651 1602 }
kvn@3651 1603 }
kvn@3651 1604 }
kvn@3651 1605 return new_edges;
kvn@3651 1606 }
kvn@3651 1607
kvn@3651 1608 // Adjust scalar_replaceable state after Connection Graph is built.
kvn@3651 1609 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
kvn@3651 1610 // Search for non-escaping objects which are not scalar replaceable
kvn@3651 1611 // and mark them to propagate the state to referenced objects.
kvn@3651 1612
kvn@3651 1613 // 1. An object is not scalar replaceable if the field into which it is
kvn@3651 1614 // stored has unknown offset (stored into unknown element of an array).
kvn@3651 1615 //
kvn@3651 1616 for (UseIterator i(jobj); i.has_next(); i.next()) {
kvn@3651 1617 PointsToNode* use = i.get();
kvn@3651 1618 assert(!use->is_Arraycopy(), "sanity");
kvn@3651 1619 if (use->is_Field()) {
kvn@3651 1620 FieldNode* field = use->as_Field();
kvn@3651 1621 assert(field->is_oop() && field->scalar_replaceable() &&
kvn@3651 1622 field->fields_escape_state() == PointsToNode::NoEscape, "sanity");
kvn@3651 1623 if (field->offset() == Type::OffsetBot) {
kvn@3651 1624 jobj->set_scalar_replaceable(false);
kvn@3651 1625 return;
kvn@3651 1626 }
iveresov@6210 1627 // 2. An object is not scalar replaceable if the field into which it is
iveresov@6210 1628 // stored has multiple bases one of which is null.
iveresov@6210 1629 if (field->base_count() > 1) {
iveresov@6210 1630 for (BaseIterator i(field); i.has_next(); i.next()) {
iveresov@6210 1631 PointsToNode* base = i.get();
iveresov@6210 1632 if (base == null_obj) {
iveresov@6210 1633 jobj->set_scalar_replaceable(false);
iveresov@6210 1634 return;
iveresov@6210 1635 }
iveresov@6210 1636 }
iveresov@6210 1637 }
kvn@3651 1638 }
kvn@3651 1639 assert(use->is_Field() || use->is_LocalVar(), "sanity");
iveresov@6210 1640 // 3. An object is not scalar replaceable if it is merged with other objects.
kvn@3651 1641 for (EdgeIterator j(use); j.has_next(); j.next()) {
kvn@3651 1642 PointsToNode* ptn = j.get();
kvn@3651 1643 if (ptn->is_JavaObject() && ptn != jobj) {
kvn@3651 1644 // Mark all objects.
kvn@3651 1645 jobj->set_scalar_replaceable(false);
kvn@3651 1646 ptn->set_scalar_replaceable(false);
kvn@3651 1647 }
kvn@3651 1648 }
kvn@3651 1649 if (!jobj->scalar_replaceable()) {
kvn@3651 1650 return;
kvn@3651 1651 }
kvn@3651 1652 }
kvn@3651 1653
kvn@3651 1654 for (EdgeIterator j(jobj); j.has_next(); j.next()) {
kvn@3651 1655 // Non-escaping object node should point only to field nodes.
kvn@3651 1656 FieldNode* field = j.get()->as_Field();
kvn@3651 1657 int offset = field->as_Field()->offset();
kvn@3651 1658
iveresov@6210 1659 // 4. An object is not scalar replaceable if it has a field with unknown
kvn@3651 1660 // offset (array's element is accessed in loop).
kvn@3651 1661 if (offset == Type::OffsetBot) {
kvn@3651 1662 jobj->set_scalar_replaceable(false);
kvn@3651 1663 return;
kvn@3651 1664 }
iveresov@6210 1665 // 5. Currently an object is not scalar replaceable if a LoadStore node
kvn@3651 1666 // access its field since the field value is unknown after it.
kvn@3651 1667 //
kvn@3651 1668 Node* n = field->ideal_node();
kvn@3651 1669 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@3651 1670 if (n->fast_out(i)->is_LoadStore()) {
kvn@3651 1671 jobj->set_scalar_replaceable(false);
kvn@3651 1672 return;
kvn@3651 1673 }
kvn@3651 1674 }
kvn@3651 1675
iveresov@6210 1676 // 6. Or the address may point to more then one object. This may produce
kvn@3651 1677 // the false positive result (set not scalar replaceable)
kvn@3651 1678 // since the flow-insensitive escape analysis can't separate
kvn@3651 1679 // the case when stores overwrite the field's value from the case
kvn@3651 1680 // when stores happened on different control branches.
kvn@3651 1681 //
kvn@3651 1682 // Note: it will disable scalar replacement in some cases:
kvn@3651 1683 //
kvn@3651 1684 // Point p[] = new Point[1];
kvn@3651 1685 // p[0] = new Point(); // Will be not scalar replaced
kvn@3651 1686 //
kvn@3651 1687 // but it will save us from incorrect optimizations in next cases:
kvn@3651 1688 //
kvn@3651 1689 // Point p[] = new Point[1];
kvn@3651 1690 // if ( x ) p[0] = new Point(); // Will be not scalar replaced
kvn@3651 1691 //
kvn@3651 1692 if (field->base_count() > 1) {
kvn@3651 1693 for (BaseIterator i(field); i.has_next(); i.next()) {
kvn@3651 1694 PointsToNode* base = i.get();
kvn@3651 1695 // Don't take into account LocalVar nodes which
kvn@3651 1696 // may point to only one object which should be also
kvn@3651 1697 // this field's base by now.
kvn@3651 1698 if (base->is_JavaObject() && base != jobj) {
kvn@3651 1699 // Mark all bases.
kvn@3651 1700 jobj->set_scalar_replaceable(false);
kvn@3651 1701 base->set_scalar_replaceable(false);
kvn@3651 1702 }
kvn@3651 1703 }
kvn@3651 1704 }
kvn@3651 1705 }
kvn@3651 1706 }
kvn@3651 1707
kvn@3651 1708 #ifdef ASSERT
kvn@3651 1709 void ConnectionGraph::verify_connection_graph(
kvn@3651 1710 GrowableArray<PointsToNode*>& ptnodes_worklist,
kvn@3651 1711 GrowableArray<JavaObjectNode*>& non_escaped_worklist,
kvn@3651 1712 GrowableArray<JavaObjectNode*>& java_objects_worklist,
kvn@3651 1713 GrowableArray<Node*>& addp_worklist) {
kvn@3651 1714 // Verify that graph is complete - no new edges could be added.
kvn@3651 1715 int java_objects_length = java_objects_worklist.length();
kvn@3651 1716 int non_escaped_length = non_escaped_worklist.length();
kvn@3651 1717 int new_edges = 0;
kvn@3651 1718 for (int next = 0; next < java_objects_length; ++next) {
kvn@3651 1719 JavaObjectNode* ptn = java_objects_worklist.at(next);
kvn@3651 1720 new_edges += add_java_object_edges(ptn, true);
kvn@3651 1721 }
kvn@3651 1722 assert(new_edges == 0, "graph was not complete");
kvn@3651 1723 // Verify that escape state is final.
kvn@3651 1724 int length = non_escaped_worklist.length();
kvn@3651 1725 find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
kvn@3651 1726 assert((non_escaped_length == non_escaped_worklist.length()) &&
kvn@3651 1727 (non_escaped_length == length) &&
kvn@3651 1728 (_worklist.length() == 0), "escape state was not final");
kvn@3651 1729
kvn@3651 1730 // Verify fields information.
kvn@3651 1731 int addp_length = addp_worklist.length();
kvn@3651 1732 for (int next = 0; next < addp_length; ++next ) {
kvn@3651 1733 Node* n = addp_worklist.at(next);
kvn@3651 1734 FieldNode* field = ptnode_adr(n->_idx)->as_Field();
kvn@3651 1735 if (field->is_oop()) {
kvn@3651 1736 // Verify that field has all bases
kvn@3651 1737 Node* base = get_addp_base(n);
kvn@3651 1738 PointsToNode* ptn = ptnode_adr(base->_idx);
kvn@3651 1739 if (ptn->is_JavaObject()) {
kvn@3651 1740 assert(field->has_base(ptn->as_JavaObject()), "sanity");
kvn@3651 1741 } else {
kvn@3651 1742 assert(ptn->is_LocalVar(), "sanity");
kvn@3651 1743 for (EdgeIterator i(ptn); i.has_next(); i.next()) {
kvn@3651 1744 PointsToNode* e = i.get();
kvn@3651 1745 if (e->is_JavaObject()) {
kvn@3651 1746 assert(field->has_base(e->as_JavaObject()), "sanity");
kvn@3651 1747 }
kvn@3651 1748 }
kvn@3651 1749 }
kvn@3651 1750 // Verify that all fields have initializing values.
kvn@3651 1751 if (field->edge_count() == 0) {
kvn@4255 1752 tty->print_cr("----------field does not have references----------");
kvn@3651 1753 field->dump();
kvn@4255 1754 for (BaseIterator i(field); i.has_next(); i.next()) {
kvn@4255 1755 PointsToNode* base = i.get();
kvn@4255 1756 tty->print_cr("----------field has next base---------------------");
kvn@4255 1757 base->dump();
kvn@4255 1758 if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
kvn@4255 1759 tty->print_cr("----------base has fields-------------------------");
kvn@4255 1760 for (EdgeIterator j(base); j.has_next(); j.next()) {
kvn@4255 1761 j.get()->dump();
kvn@4255 1762 }
kvn@4255 1763 tty->print_cr("----------base has references---------------------");
kvn@4255 1764 for (UseIterator j(base); j.has_next(); j.next()) {
kvn@4255 1765 j.get()->dump();
kvn@4255 1766 }
kvn@4255 1767 }
kvn@4255 1768 }
kvn@4255 1769 for (UseIterator i(field); i.has_next(); i.next()) {
kvn@4255 1770 i.get()->dump();
kvn@4255 1771 }
kvn@3651 1772 assert(field->edge_count() > 0, "sanity");
kvn@3651 1773 }
kvn@3651 1774 }
kvn@3651 1775 }
kvn@3651 1776 }
kvn@3651 1777 #endif
kvn@3651 1778
kvn@3651 1779 // Optimize ideal graph.
kvn@3651 1780 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
kvn@3651 1781 GrowableArray<Node*>& storestore_worklist) {
kvn@3651 1782 Compile* C = _compile;
kvn@3651 1783 PhaseIterGVN* igvn = _igvn;
kvn@3651 1784 if (EliminateLocks) {
kvn@3651 1785 // Mark locks before changing ideal graph.
kvn@3651 1786 int cnt = C->macro_count();
kvn@3651 1787 for( int i=0; i < cnt; i++ ) {
kvn@3651 1788 Node *n = C->macro_node(i);
kvn@3651 1789 if (n->is_AbstractLock()) { // Lock and Unlock nodes
kvn@3651 1790 AbstractLockNode* alock = n->as_AbstractLock();
kvn@3651 1791 if (!alock->is_non_esc_obj()) {
kvn@3651 1792 if (not_global_escape(alock->obj_node())) {
kvn@3651 1793 assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
kvn@3651 1794 // The lock could be marked eliminated by lock coarsening
kvn@3651 1795 // code during first IGVN before EA. Replace coarsened flag
kvn@3651 1796 // to eliminate all associated locks/unlocks.
drchase@7605 1797 #ifdef ASSERT
drchase@7605 1798 alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
drchase@7605 1799 #endif
kvn@3651 1800 alock->set_non_esc_obj();
kvn@3651 1801 }
kvn@3651 1802 }
kvn@3651 1803 }
kvn@3651 1804 }
kvn@3651 1805 }
kvn@3651 1806
kvn@3651 1807 if (OptimizePtrCompare) {
kvn@3651 1808 // Add ConI(#CC_GT) and ConI(#CC_EQ).
kvn@3651 1809 _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
kvn@3651 1810 _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
kvn@3651 1811 // Optimize objects compare.
kvn@3651 1812 while (ptr_cmp_worklist.length() != 0) {
kvn@3651 1813 Node *n = ptr_cmp_worklist.pop();
kvn@3651 1814 Node *res = optimize_ptr_compare(n);
kvn@3651 1815 if (res != NULL) {
kvn@3651 1816 #ifndef PRODUCT
kvn@3651 1817 if (PrintOptimizePtrCompare) {
kvn@3651 1818 tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
kvn@3651 1819 if (Verbose) {
kvn@3651 1820 n->dump(1);
kvn@3651 1821 }
kvn@3651 1822 }
kvn@3651 1823 #endif
kvn@3651 1824 igvn->replace_node(n, res);
kvn@3651 1825 }
kvn@3651 1826 }
kvn@3651 1827 // cleanup
kvn@3651 1828 if (_pcmp_neq->outcnt() == 0)
kvn@3651 1829 igvn->hash_delete(_pcmp_neq);
kvn@3651 1830 if (_pcmp_eq->outcnt() == 0)
kvn@3651 1831 igvn->hash_delete(_pcmp_eq);
kvn@3651 1832 }
kvn@3651 1833
kvn@3651 1834 // For MemBarStoreStore nodes added in library_call.cpp, check
kvn@3651 1835 // escape status of associated AllocateNode and optimize out
kvn@3651 1836 // MemBarStoreStore node if the allocated object never escapes.
kvn@3651 1837 while (storestore_worklist.length() != 0) {
kvn@3651 1838 Node *n = storestore_worklist.pop();
kvn@3651 1839 MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
kvn@3651 1840 Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
kvn@3651 1841 assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
kvn@3651 1842 if (not_global_escape(alloc)) {
kvn@3651 1843 MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
kvn@3651 1844 mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
kvn@3651 1845 mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
kvn@3651 1846 igvn->register_new_node_with_optimizer(mb);
kvn@3651 1847 igvn->replace_node(storestore, mb);
kvn@3651 1848 }
kvn@3651 1849 }
kvn@3651 1850 }
kvn@3651 1851
kvn@3651 1852 // Optimize objects compare.
kvn@3651 1853 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
kvn@3651 1854 assert(OptimizePtrCompare, "sanity");
kvn@3651 1855 PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
kvn@3651 1856 PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
kvn@3651 1857 JavaObjectNode* jobj1 = unique_java_object(n->in(1));
kvn@3651 1858 JavaObjectNode* jobj2 = unique_java_object(n->in(2));
kvn@3651 1859 assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
kvn@3651 1860 assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
kvn@3651 1861
kvn@3651 1862 // Check simple cases first.
kvn@3651 1863 if (jobj1 != NULL) {
kvn@3651 1864 if (jobj1->escape_state() == PointsToNode::NoEscape) {
kvn@3651 1865 if (jobj1 == jobj2) {
kvn@3651 1866 // Comparing the same not escaping object.
kvn@3651 1867 return _pcmp_eq;
kvn@3651 1868 }
kvn@3651 1869 Node* obj = jobj1->ideal_node();
kvn@3651 1870 // Comparing not escaping allocation.
kvn@3651 1871 if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
kvn@3651 1872 !ptn2->points_to(jobj1)) {
kvn@3651 1873 return _pcmp_neq; // This includes nullness check.
kvn@3651 1874 }
kvn@3651 1875 }
kvn@3651 1876 }
kvn@3651 1877 if (jobj2 != NULL) {
kvn@3651 1878 if (jobj2->escape_state() == PointsToNode::NoEscape) {
kvn@3651 1879 Node* obj = jobj2->ideal_node();
kvn@3651 1880 // Comparing not escaping allocation.
kvn@3651 1881 if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
kvn@3651 1882 !ptn1->points_to(jobj2)) {
kvn@3651 1883 return _pcmp_neq; // This includes nullness check.
kvn@3651 1884 }
kvn@3651 1885 }
kvn@3651 1886 }
kvn@3651 1887 if (jobj1 != NULL && jobj1 != phantom_obj &&
kvn@3651 1888 jobj2 != NULL && jobj2 != phantom_obj &&
kvn@3651 1889 jobj1->ideal_node()->is_Con() &&
kvn@3651 1890 jobj2->ideal_node()->is_Con()) {
kvn@3651 1891 // Klass or String constants compare. Need to be careful with
kvn@3651 1892 // compressed pointers - compare types of ConN and ConP instead of nodes.
kvn@5111 1893 const Type* t1 = jobj1->ideal_node()->get_ptr_type();
kvn@5111 1894 const Type* t2 = jobj2->ideal_node()->get_ptr_type();
kvn@3651 1895 if (t1->make_ptr() == t2->make_ptr()) {
kvn@3651 1896 return _pcmp_eq;
kvn@3651 1897 } else {
kvn@3651 1898 return _pcmp_neq;
kvn@3651 1899 }
kvn@3651 1900 }
kvn@3651 1901 if (ptn1->meet(ptn2)) {
kvn@3651 1902 return NULL; // Sets are not disjoint
kvn@3651 1903 }
kvn@3651 1904
kvn@3651 1905 // Sets are disjoint.
kvn@3651 1906 bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
kvn@3651 1907 bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
kvn@3651 1908 bool set1_has_null_ptr = ptn1->points_to(null_obj);
kvn@3651 1909 bool set2_has_null_ptr = ptn2->points_to(null_obj);
kvn@3651 1910 if (set1_has_unknown_ptr && set2_has_null_ptr ||
kvn@3651 1911 set2_has_unknown_ptr && set1_has_null_ptr) {
kvn@3651 1912 // Check nullness of unknown object.
kvn@3651 1913 return NULL;
kvn@3651 1914 }
kvn@3651 1915
kvn@3651 1916 // Disjointness by itself is not sufficient since
kvn@3651 1917 // alias analysis is not complete for escaped objects.
kvn@3651 1918 // Disjoint sets are definitely unrelated only when
kvn@3651 1919 // at least one set has only not escaping allocations.
kvn@3651 1920 if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
kvn@3651 1921 if (ptn1->non_escaping_allocation()) {
kvn@3651 1922 return _pcmp_neq;
kvn@3651 1923 }
kvn@3651 1924 }
kvn@3651 1925 if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
kvn@3651 1926 if (ptn2->non_escaping_allocation()) {
kvn@3651 1927 return _pcmp_neq;
kvn@3651 1928 }
kvn@3651 1929 }
kvn@3651 1930 return NULL;
kvn@3651 1931 }
kvn@3651 1932
kvn@3651 1933 // Connection Graph constuction functions.
kvn@3651 1934
kvn@3651 1935 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
kvn@3651 1936 PointsToNode* ptadr = _nodes.at(n->_idx);
kvn@3651 1937 if (ptadr != NULL) {
kvn@3651 1938 assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
kvn@3651 1939 return;
kvn@3651 1940 }
kvn@3651 1941 Compile* C = _compile;
kvn@7299 1942 ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
kvn@3651 1943 _nodes.at_put(n->_idx, ptadr);
kvn@3651 1944 }
kvn@3651 1945
kvn@3651 1946 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
kvn@3651 1947 PointsToNode* ptadr = _nodes.at(n->_idx);
kvn@3651 1948 if (ptadr != NULL) {
kvn@3651 1949 assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
kvn@3651 1950 return;
kvn@3651 1951 }
kvn@3651 1952 Compile* C = _compile;
kvn@7299 1953 ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
kvn@3651 1954 _nodes.at_put(n->_idx, ptadr);
kvn@3651 1955 }
kvn@3651 1956
kvn@3651 1957 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
kvn@3651 1958 PointsToNode* ptadr = _nodes.at(n->_idx);
kvn@3651 1959 if (ptadr != NULL) {
kvn@3651 1960 assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
kvn@3651 1961 return;
kvn@3651 1962 }
twisti@3969 1963 bool unsafe = false;
twisti@3969 1964 bool is_oop = is_oop_field(n, offset, &unsafe);
twisti@3969 1965 if (unsafe) {
twisti@3969 1966 es = PointsToNode::GlobalEscape;
twisti@3969 1967 }
kvn@3651 1968 Compile* C = _compile;
kvn@7299 1969 FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
kvn@3651 1970 _nodes.at_put(n->_idx, field);
kvn@3651 1971 }
kvn@3651 1972
kvn@3651 1973 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
kvn@3651 1974 PointsToNode* src, PointsToNode* dst) {
kvn@3651 1975 assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
kvn@3651 1976 assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
kvn@3651 1977 PointsToNode* ptadr = _nodes.at(n->_idx);
kvn@3651 1978 if (ptadr != NULL) {
kvn@3651 1979 assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
kvn@3651 1980 return;
kvn@3651 1981 }
kvn@3651 1982 Compile* C = _compile;
kvn@7299 1983 ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
kvn@3651 1984 _nodes.at_put(n->_idx, ptadr);
kvn@3651 1985 // Add edge from arraycopy node to source object.
kvn@3651 1986 (void)add_edge(ptadr, src);
kvn@3651 1987 src->set_arraycopy_src();
kvn@3651 1988 // Add edge from destination object to arraycopy node.
kvn@3651 1989 (void)add_edge(dst, ptadr);
kvn@3651 1990 dst->set_arraycopy_dst();
kvn@3651 1991 }
kvn@3651 1992
twisti@3969 1993 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
kvn@3651 1994 const Type* adr_type = n->as_AddP()->bottom_type();
kvn@3651 1995 BasicType bt = T_INT;
kvn@3651 1996 if (offset == Type::OffsetBot) {
kvn@3651 1997 // Check only oop fields.
kvn@3651 1998 if (!adr_type->isa_aryptr() ||
kvn@3651 1999 (adr_type->isa_aryptr()->klass() == NULL) ||
kvn@3651 2000 adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
kvn@3651 2001 // OffsetBot is used to reference array's element. Ignore first AddP.
kvn@3651 2002 if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
kvn@3651 2003 bt = T_OBJECT;
kvn@3651 2004 }
kvn@3651 2005 }
kvn@3651 2006 } else if (offset != oopDesc::klass_offset_in_bytes()) {
kvn@3651 2007 if (adr_type->isa_instptr()) {
kvn@3651 2008 ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
kvn@3651 2009 if (field != NULL) {
kvn@3651 2010 bt = field->layout_type();
kvn@3651 2011 } else {
twisti@3969 2012 // Check for unsafe oop field access
twisti@3969 2013 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
twisti@3969 2014 int opcode = n->fast_out(i)->Opcode();
twisti@3969 2015 if (opcode == Op_StoreP || opcode == Op_LoadP ||
twisti@3969 2016 opcode == Op_StoreN || opcode == Op_LoadN) {
twisti@3969 2017 bt = T_OBJECT;
twisti@3969 2018 (*unsafe) = true;
twisti@3969 2019 break;
twisti@3969 2020 }
twisti@3969 2021 }
kvn@3651 2022 }
kvn@3651 2023 } else if (adr_type->isa_aryptr()) {
kvn@3651 2024 if (offset == arrayOopDesc::length_offset_in_bytes()) {
kvn@3651 2025 // Ignore array length load.
kvn@3651 2026 } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
kvn@3651 2027 // Ignore first AddP.
kvn@3651 2028 } else {
kvn@3651 2029 const Type* elemtype = adr_type->isa_aryptr()->elem();
kvn@3651 2030 bt = elemtype->array_element_basic_type();
kvn@3651 2031 }
kvn@3651 2032 } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
kvn@3651 2033 // Allocation initialization, ThreadLocal field access, unsafe access
kvn@3651 2034 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@3651 2035 int opcode = n->fast_out(i)->Opcode();
kvn@3651 2036 if (opcode == Op_StoreP || opcode == Op_LoadP ||
kvn@3651 2037 opcode == Op_StoreN || opcode == Op_LoadN) {
kvn@3651 2038 bt = T_OBJECT;
twisti@3969 2039 break;
kvn@3651 2040 }
kvn@3651 2041 }
kvn@3651 2042 }
kvn@3651 2043 }
kvn@3651 2044 return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
kvn@3651 2045 }
kvn@3651 2046
kvn@3651 2047 // Returns unique pointed java object or NULL.
kvn@3651 2048 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
kvn@3651 2049 assert(!_collecting, "should not call when contructed graph");
kvn@3651 2050 // If the node was created after the escape computation we can't answer.
kvn@3651 2051 uint idx = n->_idx;
kvn@3651 2052 if (idx >= nodes_size()) {
kvn@3651 2053 return NULL;
kvn@3651 2054 }
kvn@3651 2055 PointsToNode* ptn = ptnode_adr(idx);
kvn@3651 2056 if (ptn->is_JavaObject()) {
kvn@3651 2057 return ptn->as_JavaObject();
kvn@3651 2058 }
kvn@3651 2059 assert(ptn->is_LocalVar(), "sanity");
kvn@3651 2060 // Check all java objects it points to.
kvn@3651 2061 JavaObjectNode* jobj = NULL;
kvn@3651 2062 for (EdgeIterator i(ptn); i.has_next(); i.next()) {
kvn@3651 2063 PointsToNode* e = i.get();
kvn@3651 2064 if (e->is_JavaObject()) {
kvn@3651 2065 if (jobj == NULL) {
kvn@3651 2066 jobj = e->as_JavaObject();
kvn@3651 2067 } else if (jobj != e) {
kvn@3651 2068 return NULL;
kvn@3651 2069 }
kvn@3651 2070 }
kvn@3651 2071 }
kvn@3651 2072 return jobj;
kvn@3651 2073 }
kvn@3651 2074
kvn@3651 2075 // Return true if this node points only to non-escaping allocations.
kvn@3651 2076 bool PointsToNode::non_escaping_allocation() {
kvn@3651 2077 if (is_JavaObject()) {
kvn@3651 2078 Node* n = ideal_node();
kvn@3651 2079 if (n->is_Allocate() || n->is_CallStaticJava()) {
kvn@3651 2080 return (escape_state() == PointsToNode::NoEscape);
kvn@3651 2081 } else {
kvn@3651 2082 return false;
kvn@3651 2083 }
kvn@3651 2084 }
kvn@3651 2085 assert(is_LocalVar(), "sanity");
kvn@3651 2086 // Check all java objects it points to.
kvn@3651 2087 for (EdgeIterator i(this); i.has_next(); i.next()) {
kvn@3651 2088 PointsToNode* e = i.get();
kvn@3651 2089 if (e->is_JavaObject()) {
kvn@3651 2090 Node* n = e->ideal_node();
kvn@3651 2091 if ((e->escape_state() != PointsToNode::NoEscape) ||
kvn@3651 2092 !(n->is_Allocate() || n->is_CallStaticJava())) {
kvn@3651 2093 return false;
kvn@3651 2094 }
kvn@3651 2095 }
kvn@3651 2096 }
kvn@3651 2097 return true;
kvn@3651 2098 }
kvn@3651 2099
kvn@3651 2100 // Return true if we know the node does not escape globally.
kvn@3651 2101 bool ConnectionGraph::not_global_escape(Node *n) {
kvn@3651 2102 assert(!_collecting, "should not call during graph construction");
kvn@3651 2103 // If the node was created after the escape computation we can't answer.
kvn@3651 2104 uint idx = n->_idx;
kvn@3651 2105 if (idx >= nodes_size()) {
kvn@3651 2106 return false;
kvn@3651 2107 }
kvn@3651 2108 PointsToNode* ptn = ptnode_adr(idx);
kvn@3651 2109 PointsToNode::EscapeState es = ptn->escape_state();
kvn@3651 2110 // If we have already computed a value, return it.
kvn@3651 2111 if (es >= PointsToNode::GlobalEscape)
kvn@3651 2112 return false;
kvn@3651 2113 if (ptn->is_JavaObject()) {
kvn@3651 2114 return true; // (es < PointsToNode::GlobalEscape);
kvn@3651 2115 }
kvn@3651 2116 assert(ptn->is_LocalVar(), "sanity");
kvn@3651 2117 // Check all java objects it points to.
kvn@3651 2118 for (EdgeIterator i(ptn); i.has_next(); i.next()) {
kvn@3651 2119 if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
kvn@3651 2120 return false;
kvn@3651 2121 }
kvn@3651 2122 return true;
kvn@3651 2123 }
kvn@3651 2124
kvn@3651 2125
kvn@3651 2126 // Helper functions
kvn@3651 2127
kvn@3651 2128 // Return true if this node points to specified node or nodes it points to.
kvn@3651 2129 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
kvn@3651 2130 if (is_JavaObject()) {
kvn@3651 2131 return (this == ptn);
kvn@3651 2132 }
kvn@4255 2133 assert(is_LocalVar() || is_Field(), "sanity");
kvn@3651 2134 for (EdgeIterator i(this); i.has_next(); i.next()) {
kvn@3651 2135 if (i.get() == ptn)
kvn@3651 2136 return true;
kvn@3651 2137 }
kvn@3651 2138 return false;
kvn@3651 2139 }
kvn@3651 2140
kvn@3651 2141 // Return true if one node points to an other.
kvn@3651 2142 bool PointsToNode::meet(PointsToNode* ptn) {
kvn@3651 2143 if (this == ptn) {
kvn@3651 2144 return true;
kvn@3651 2145 } else if (ptn->is_JavaObject()) {
kvn@3651 2146 return this->points_to(ptn->as_JavaObject());
kvn@3651 2147 } else if (this->is_JavaObject()) {
kvn@3651 2148 return ptn->points_to(this->as_JavaObject());
kvn@3651 2149 }
kvn@3651 2150 assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
kvn@3651 2151 int ptn_count = ptn->edge_count();
kvn@3651 2152 for (EdgeIterator i(this); i.has_next(); i.next()) {
kvn@3651 2153 PointsToNode* this_e = i.get();
kvn@3651 2154 for (int j = 0; j < ptn_count; j++) {
kvn@3651 2155 if (this_e == ptn->edge(j))
kvn@3651 2156 return true;
kvn@3651 2157 }
kvn@3651 2158 }
kvn@3651 2159 return false;
kvn@3651 2160 }
kvn@3651 2161
kvn@3651 2162 #ifdef ASSERT
kvn@3651 2163 // Return true if bases point to this java object.
kvn@3651 2164 bool FieldNode::has_base(JavaObjectNode* jobj) const {
kvn@3651 2165 for (BaseIterator i(this); i.has_next(); i.next()) {
kvn@3651 2166 if (i.get() == jobj)
kvn@3651 2167 return true;
kvn@3651 2168 }
kvn@3651 2169 return false;
kvn@3651 2170 }
kvn@3651 2171 #endif
kvn@3651 2172
kvn@500 2173 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
kvn@500 2174 const Type *adr_type = phase->type(adr);
kvn@500 2175 if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
kvn@500 2176 adr->in(AddPNode::Address)->is_Proj() &&
kvn@500 2177 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
kvn@500 2178 // We are computing a raw address for a store captured by an Initialize
kvn@500 2179 // compute an appropriate address type. AddP cases #3 and #5 (see below).
kvn@500 2180 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 2181 assert(offs != Type::OffsetBot ||
kvn@500 2182 adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
kvn@500 2183 "offset must be a constant or it is initialization of array");
kvn@500 2184 return offs;
kvn@500 2185 }
kvn@500 2186 const TypePtr *t_ptr = adr_type->isa_ptr();
duke@435 2187 assert(t_ptr != NULL, "must be a pointer type");
duke@435 2188 return t_ptr->offset();
duke@435 2189 }
duke@435 2190
kvn@3651 2191 Node* ConnectionGraph::get_addp_base(Node *addp) {
kvn@500 2192 assert(addp->is_AddP(), "must be AddP");
kvn@500 2193 //
kvn@500 2194 // AddP cases for Base and Address inputs:
kvn@500 2195 // case #1. Direct object's field reference:
kvn@500 2196 // Allocate
kvn@500 2197 // |
kvn@500 2198 // Proj #5 ( oop result )
kvn@500 2199 // |
kvn@500 2200 // CheckCastPP (cast to instance type)
kvn@500 2201 // | |
kvn@500 2202 // AddP ( base == address )
kvn@500 2203 //
kvn@500 2204 // case #2. Indirect object's field reference:
kvn@500 2205 // Phi
kvn@500 2206 // |
kvn@500 2207 // CastPP (cast to instance type)
kvn@500 2208 // | |
kvn@500 2209 // AddP ( base == address )
kvn@500 2210 //
kvn@500 2211 // case #3. Raw object's field reference for Initialize node:
kvn@500 2212 // Allocate
kvn@500 2213 // |
kvn@500 2214 // Proj #5 ( oop result )
kvn@500 2215 // top |
kvn@500 2216 // \ |
kvn@500 2217 // AddP ( base == top )
kvn@500 2218 //
kvn@500 2219 // case #4. Array's element reference:
kvn@500 2220 // {CheckCastPP | CastPP}
kvn@500 2221 // | | |
kvn@500 2222 // | AddP ( array's element offset )
kvn@500 2223 // | |
kvn@500 2224 // AddP ( array's offset )
kvn@500 2225 //
kvn@500 2226 // case #5. Raw object's field reference for arraycopy stub call:
kvn@500 2227 // The inline_native_clone() case when the arraycopy stub is called
kvn@500 2228 // after the allocation before Initialize and CheckCastPP nodes.
kvn@500 2229 // Allocate
kvn@500 2230 // |
kvn@500 2231 // Proj #5 ( oop result )
kvn@500 2232 // | |
kvn@500 2233 // AddP ( base == address )
kvn@500 2234 //
kvn@512 2235 // case #6. Constant Pool, ThreadLocal, CastX2P or
kvn@512 2236 // Raw object's field reference:
kvn@512 2237 // {ConP, ThreadLocal, CastX2P, raw Load}
kvn@500 2238 // top |
kvn@500 2239 // \ |
kvn@500 2240 // AddP ( base == top )
kvn@500 2241 //
kvn@512 2242 // case #7. Klass's field reference.
kvn@512 2243 // LoadKlass
kvn@512 2244 // | |
kvn@512 2245 // AddP ( base == address )
kvn@512 2246 //
kvn@599 2247 // case #8. narrow Klass's field reference.
kvn@599 2248 // LoadNKlass
kvn@599 2249 // |
kvn@599 2250 // DecodeN
kvn@599 2251 // | |
kvn@599 2252 // AddP ( base == address )
kvn@599 2253 //
kvn@3651 2254 Node *base = addp->in(AddPNode::Base);
kvn@3651 2255 if (base->uncast()->is_top()) { // The AddP case #3 and #6.
kvn@3651 2256 base = addp->in(AddPNode::Address);
kvn@1392 2257 while (base->is_AddP()) {
kvn@1392 2258 // Case #6 (unsafe access) may have several chained AddP nodes.
kvn@3651 2259 assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
kvn@3651 2260 base = base->in(AddPNode::Address);
kvn@1392 2261 }
kvn@3651 2262 Node* uncast_base = base->uncast();
kvn@3651 2263 int opcode = uncast_base->Opcode();
kvn@3651 2264 assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
roland@4159 2265 opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
kvn@5223 2266 (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
kvn@3651 2267 (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
duke@435 2268 }
kvn@500 2269 return base;
kvn@500 2270 }
kvn@500 2271
kvn@3651 2272 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
kvn@500 2273 assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
kvn@500 2274 Node* addp2 = addp->raw_out(0);
kvn@500 2275 if (addp->outcnt() == 1 && addp2->is_AddP() &&
kvn@500 2276 addp2->in(AddPNode::Base) == n &&
kvn@500 2277 addp2->in(AddPNode::Address) == addp) {
kvn@500 2278 assert(addp->in(AddPNode::Base) == n, "expecting the same base");
kvn@500 2279 //
kvn@500 2280 // Find array's offset to push it on worklist first and
kvn@500 2281 // as result process an array's element offset first (pushed second)
kvn@500 2282 // to avoid CastPP for the array's offset.
kvn@500 2283 // Otherwise the inserted CastPP (LocalVar) will point to what
kvn@500 2284 // the AddP (Field) points to. Which would be wrong since
kvn@500 2285 // the algorithm expects the CastPP has the same point as
kvn@500 2286 // as AddP's base CheckCastPP (LocalVar).
kvn@500 2287 //
kvn@500 2288 // ArrayAllocation
kvn@500 2289 // |
kvn@500 2290 // CheckCastPP
kvn@500 2291 // |
kvn@500 2292 // memProj (from ArrayAllocation CheckCastPP)
kvn@500 2293 // | ||
kvn@500 2294 // | || Int (element index)
kvn@500 2295 // | || | ConI (log(element size))
kvn@500 2296 // | || | /
kvn@500 2297 // | || LShift
kvn@500 2298 // | || /
kvn@500 2299 // | AddP (array's element offset)
kvn@500 2300 // | |
kvn@500 2301 // | | ConI (array's offset: #12(32-bits) or #24(64-bits))
kvn@500 2302 // | / /
kvn@500 2303 // AddP (array's offset)
kvn@500 2304 // |
kvn@500 2305 // Load/Store (memory operation on array's element)
kvn@500 2306 //
kvn@500 2307 return addp2;
kvn@500 2308 }
kvn@500 2309 return NULL;
duke@435 2310 }
duke@435 2311
duke@435 2312 //
duke@435 2313 // Adjust the type and inputs of an AddP which computes the
duke@435 2314 // address of a field of an instance
duke@435 2315 //
kvn@3651 2316 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
kvn@3651 2317 PhaseGVN* igvn = _igvn;
kvn@500 2318 const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
kvn@658 2319 assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
duke@435 2320 const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
kvn@500 2321 if (t == NULL) {
kvn@500 2322 // We are computing a raw address for a store captured by an Initialize
kvn@728 2323 // compute an appropriate address type (cases #3 and #5).
kvn@500 2324 assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
kvn@500 2325 assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
kvn@741 2326 intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 2327 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@500 2328 t = base_t->add_offset(offs)->is_oopptr();
kvn@500 2329 }
kvn@658 2330 int inst_id = base_t->instance_id();
kvn@658 2331 assert(!t->is_known_instance() || t->instance_id() == inst_id,
duke@435 2332 "old type must be non-instance or match new type");
kvn@728 2333
kvn@728 2334 // The type 't' could be subclass of 'base_t'.
kvn@728 2335 // As result t->offset() could be large then base_t's size and it will
kvn@728 2336 // cause the failure in add_offset() with narrow oops since TypeOopPtr()
kvn@728 2337 // constructor verifies correctness of the offset.
kvn@728 2338 //
twisti@1040 2339 // It could happened on subclass's branch (from the type profiling
kvn@728 2340 // inlining) which was not eliminated during parsing since the exactness
kvn@728 2341 // of the allocation type was not propagated to the subclass type check.
kvn@728 2342 //
kvn@1423 2343 // Or the type 't' could be not related to 'base_t' at all.
kvn@1423 2344 // It could happened when CHA type is different from MDO type on a dead path
kvn@1423 2345 // (for example, from instanceof check) which is not collapsed during parsing.
kvn@1423 2346 //
kvn@728 2347 // Do nothing for such AddP node and don't process its users since
kvn@728 2348 // this code branch will go away.
kvn@728 2349 //
kvn@728 2350 if (!t->is_known_instance() &&
kvn@1423 2351 !base_t->klass()->is_subtype_of(t->klass())) {
kvn@728 2352 return false; // bail out
kvn@728 2353 }
duke@435 2354 const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
kvn@1497 2355 // Do NOT remove the next line: ensure a new alias index is allocated
kvn@1497 2356 // for the instance type. Note: C++ will not remove it since the call
kvn@1497 2357 // has side effect.
duke@435 2358 int alias_idx = _compile->get_alias_index(tinst);
duke@435 2359 igvn->set_type(addp, tinst);
duke@435 2360 // record the allocation in the node map
kvn@3651 2361 set_map(addp, get_map(base->_idx));
kvn@688 2362 // Set addp's Base and Address to 'base'.
kvn@688 2363 Node *abase = addp->in(AddPNode::Base);
kvn@688 2364 Node *adr = addp->in(AddPNode::Address);
kvn@688 2365 if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
kvn@688 2366 adr->in(0)->_idx == (uint)inst_id) {
kvn@688 2367 // Skip AddP cases #3 and #5.
kvn@688 2368 } else {
kvn@688 2369 assert(!abase->is_top(), "sanity"); // AddP case #3
kvn@688 2370 if (abase != base) {
kvn@688 2371 igvn->hash_delete(addp);
kvn@688 2372 addp->set_req(AddPNode::Base, base);
kvn@688 2373 if (abase == adr) {
kvn@688 2374 addp->set_req(AddPNode::Address, base);
kvn@688 2375 } else {
kvn@688 2376 // AddP case #4 (adr is array's element offset AddP node)
kvn@688 2377 #ifdef ASSERT
kvn@688 2378 const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
kvn@688 2379 assert(adr->is_AddP() && atype != NULL &&
kvn@688 2380 atype->instance_id() == inst_id, "array's element offset should be processed first");
kvn@688 2381 #endif
kvn@688 2382 }
kvn@688 2383 igvn->hash_insert(addp);
duke@435 2384 }
duke@435 2385 }
kvn@500 2386 // Put on IGVN worklist since at least addp's type was changed above.
kvn@500 2387 record_for_optimizer(addp);
kvn@728 2388 return true;
duke@435 2389 }
duke@435 2390
duke@435 2391 //
duke@435 2392 // Create a new version of orig_phi if necessary. Returns either the newly
kvn@2741 2393 // created phi or an existing phi. Sets create_new to indicate whether a new
duke@435 2394 // phi was created. Cache the last newly created phi in the node map.
duke@435 2395 //
kvn@3651 2396 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, bool &new_created) {
duke@435 2397 Compile *C = _compile;
kvn@3651 2398 PhaseGVN* igvn = _igvn;
duke@435 2399 new_created = false;
duke@435 2400 int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
duke@435 2401 // nothing to do if orig_phi is bottom memory or matches alias_idx
kvn@500 2402 if (phi_alias_idx == alias_idx) {
duke@435 2403 return orig_phi;
duke@435 2404 }
kvn@1286 2405 // Have we recently created a Phi for this alias index?
duke@435 2406 PhiNode *result = get_map_phi(orig_phi->_idx);
duke@435 2407 if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
duke@435 2408 return result;
duke@435 2409 }
kvn@1286 2410 // Previous check may fail when the same wide memory Phi was split into Phis
kvn@1286 2411 // for different memory slices. Search all Phis for this region.
kvn@1286 2412 if (result != NULL) {
kvn@1286 2413 Node* region = orig_phi->in(0);
kvn@1286 2414 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
kvn@1286 2415 Node* phi = region->fast_out(i);
kvn@1286 2416 if (phi->is_Phi() &&
kvn@1286 2417 C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
kvn@1286 2418 assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
kvn@1286 2419 return phi->as_Phi();
kvn@1286 2420 }
kvn@1286 2421 }
kvn@1286 2422 }
vlivanov@7385 2423 if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
kvn@473 2424 if (C->do_escape_analysis() == true && !C->failing()) {
kvn@473 2425 // Retry compilation without escape analysis.
kvn@473 2426 // If this is the first failure, the sentinel string will "stick"
kvn@473 2427 // to the Compile object, and the C2Compiler will see it and retry.
kvn@473 2428 C->record_failure(C2Compiler::retry_no_escape_analysis());
kvn@473 2429 }
kvn@473 2430 return NULL;
kvn@473 2431 }
duke@435 2432 orig_phi_worklist.append_if_missing(orig_phi);
kvn@500 2433 const TypePtr *atype = C->get_adr_type(alias_idx);
duke@435 2434 result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
kvn@1286 2435 C->copy_node_notes_to(result, orig_phi);
duke@435 2436 igvn->set_type(result, result->bottom_type());
duke@435 2437 record_for_optimizer(result);
kvn@3651 2438 set_map(orig_phi, result);
duke@435 2439 new_created = true;
duke@435 2440 return result;
duke@435 2441 }
duke@435 2442
duke@435 2443 //
kvn@2741 2444 // Return a new version of Memory Phi "orig_phi" with the inputs having the
duke@435 2445 // specified alias index.
duke@435 2446 //
kvn@3651 2447 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist) {
duke@435 2448 assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
duke@435 2449 Compile *C = _compile;
kvn@3651 2450 PhaseGVN* igvn = _igvn;
duke@435 2451 bool new_phi_created;
kvn@3651 2452 PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
duke@435 2453 if (!new_phi_created) {
duke@435 2454 return result;
duke@435 2455 }
duke@435 2456 GrowableArray<PhiNode *> phi_list;
duke@435 2457 GrowableArray<uint> cur_input;
duke@435 2458 PhiNode *phi = orig_phi;
duke@435 2459 uint idx = 1;
duke@435 2460 bool finished = false;
duke@435 2461 while(!finished) {
duke@435 2462 while (idx < phi->req()) {
kvn@3651 2463 Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
duke@435 2464 if (mem != NULL && mem->is_Phi()) {
kvn@3651 2465 PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
duke@435 2466 if (new_phi_created) {
duke@435 2467 // found an phi for which we created a new split, push current one on worklist and begin
duke@435 2468 // processing new one
duke@435 2469 phi_list.push(phi);
duke@435 2470 cur_input.push(idx);
duke@435 2471 phi = mem->as_Phi();
kvn@500 2472 result = newphi;
duke@435 2473 idx = 1;
duke@435 2474 continue;
duke@435 2475 } else {
kvn@500 2476 mem = newphi;
duke@435 2477 }
duke@435 2478 }
kvn@473 2479 if (C->failing()) {
kvn@473 2480 return NULL;
kvn@473 2481 }
duke@435 2482 result->set_req(idx++, mem);
duke@435 2483 }
duke@435 2484 #ifdef ASSERT
duke@435 2485 // verify that the new Phi has an input for each input of the original
duke@435 2486 assert( phi->req() == result->req(), "must have same number of inputs.");
duke@435 2487 assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
kvn@500 2488 #endif
kvn@500 2489 // Check if all new phi's inputs have specified alias index.
kvn@500 2490 // Otherwise use old phi.
duke@435 2491 for (uint i = 1; i < phi->req(); i++) {
kvn@500 2492 Node* in = result->in(i);
kvn@500 2493 assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
duke@435 2494 }
duke@435 2495 // we have finished processing a Phi, see if there are any more to do
duke@435 2496 finished = (phi_list.length() == 0 );
duke@435 2497 if (!finished) {
duke@435 2498 phi = phi_list.pop();
duke@435 2499 idx = cur_input.pop();
kvn@500 2500 PhiNode *prev_result = get_map_phi(phi->_idx);
kvn@500 2501 prev_result->set_req(idx++, result);
kvn@500 2502 result = prev_result;
duke@435 2503 }
duke@435 2504 }
duke@435 2505 return result;
duke@435 2506 }
duke@435 2507
kvn@500 2508 //
kvn@500 2509 // The next methods are derived from methods in MemNode.
kvn@500 2510 //
kvn@3651 2511 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
kvn@500 2512 Node *mem = mmem;
never@2170 2513 // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
kvn@500 2514 // means an array I have not precisely typed yet. Do not do any
kvn@500 2515 // alias stuff with it any time soon.
kvn@3651 2516 if (toop->base() != Type::AnyPtr &&
never@2170 2517 !(toop->klass() != NULL &&
never@2170 2518 toop->klass()->is_java_lang_Object() &&
kvn@3651 2519 toop->offset() == Type::OffsetBot)) {
kvn@500 2520 mem = mmem->memory_at(alias_idx);
kvn@500 2521 // Update input if it is progress over what we have now
kvn@500 2522 }
kvn@500 2523 return mem;
kvn@500 2524 }
kvn@500 2525
kvn@500 2526 //
kvn@1536 2527 // Move memory users to their memory slices.
kvn@1536 2528 //
kvn@3651 2529 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *> &orig_phis) {
kvn@1536 2530 Compile* C = _compile;
kvn@3651 2531 PhaseGVN* igvn = _igvn;
kvn@1536 2532 const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
kvn@1536 2533 assert(tp != NULL, "ptr type");
kvn@1536 2534 int alias_idx = C->get_alias_index(tp);
kvn@1536 2535 int general_idx = C->get_general_index(alias_idx);
kvn@1536 2536
kvn@1536 2537 // Move users first
kvn@1536 2538 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@1536 2539 Node* use = n->fast_out(i);
kvn@1536 2540 if (use->is_MergeMem()) {
kvn@1536 2541 MergeMemNode* mmem = use->as_MergeMem();
kvn@1536 2542 assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
kvn@1536 2543 if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
kvn@1536 2544 continue; // Nothing to do
kvn@1536 2545 }
kvn@1536 2546 // Replace previous general reference to mem node.
kvn@1536 2547 uint orig_uniq = C->unique();
kvn@3651 2548 Node* m = find_inst_mem(n, general_idx, orig_phis);
kvn@1536 2549 assert(orig_uniq == C->unique(), "no new nodes");
kvn@1536 2550 mmem->set_memory_at(general_idx, m);
kvn@1536 2551 --imax;
kvn@1536 2552 --i;
kvn@1536 2553 } else if (use->is_MemBar()) {
kvn@1536 2554 assert(!use->is_Initialize(), "initializing stores should not be moved");
kvn@1536 2555 if (use->req() > MemBarNode::Precedent &&
kvn@1536 2556 use->in(MemBarNode::Precedent) == n) {
kvn@1536 2557 // Don't move related membars.
kvn@1536 2558 record_for_optimizer(use);
kvn@1536 2559 continue;
kvn@1536 2560 }
kvn@1536 2561 tp = use->as_MemBar()->adr_type()->isa_ptr();
kvn@1536 2562 if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
kvn@1536 2563 alias_idx == general_idx) {
kvn@1536 2564 continue; // Nothing to do
kvn@1536 2565 }
kvn@1536 2566 // Move to general memory slice.
kvn@1536 2567 uint orig_uniq = C->unique();
kvn@3651 2568 Node* m = find_inst_mem(n, general_idx, orig_phis);
kvn@1536 2569 assert(orig_uniq == C->unique(), "no new nodes");
kvn@1536 2570 igvn->hash_delete(use);
kvn@1536 2571 imax -= use->replace_edge(n, m);
kvn@1536 2572 igvn->hash_insert(use);
kvn@1536 2573 record_for_optimizer(use);
kvn@1536 2574 --i;
kvn@1536 2575 #ifdef ASSERT
kvn@1536 2576 } else if (use->is_Mem()) {
kvn@1536 2577 if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
kvn@1536 2578 // Don't move related cardmark.
kvn@1536 2579 continue;
kvn@1536 2580 }
kvn@1536 2581 // Memory nodes should have new memory input.
kvn@1536 2582 tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
kvn@1536 2583 assert(tp != NULL, "ptr type");
kvn@1536 2584 int idx = C->get_alias_index(tp);
kvn@1536 2585 assert(get_map(use->_idx) != NULL || idx == alias_idx,
kvn@1536 2586 "Following memory nodes should have new memory input or be on the same memory slice");
kvn@1536 2587 } else if (use->is_Phi()) {
kvn@1536 2588 // Phi nodes should be split and moved already.
kvn@1536 2589 tp = use->as_Phi()->adr_type()->isa_ptr();
kvn@1536 2590 assert(tp != NULL, "ptr type");
kvn@1536 2591 int idx = C->get_alias_index(tp);
kvn@1536 2592 assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
kvn@1536 2593 } else {
kvn@1536 2594 use->dump();
kvn@1536 2595 assert(false, "should not be here");
kvn@1536 2596 #endif
kvn@1536 2597 }
kvn@1536 2598 }
kvn@1536 2599 }
kvn@1536 2600
kvn@1536 2601 //
kvn@500 2602 // Search memory chain of "mem" to find a MemNode whose address
kvn@500 2603 // is the specified alias index.
kvn@500 2604 //
kvn@3651 2605 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *> &orig_phis) {
kvn@500 2606 if (orig_mem == NULL)
kvn@500 2607 return orig_mem;
kvn@3651 2608 Compile* C = _compile;
kvn@3651 2609 PhaseGVN* igvn = _igvn;
never@2170 2610 const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
never@2170 2611 bool is_instance = (toop != NULL) && toop->is_known_instance();
kvn@688 2612 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@500 2613 Node *prev = NULL;
kvn@500 2614 Node *result = orig_mem;
kvn@500 2615 while (prev != result) {
kvn@500 2616 prev = result;
kvn@688 2617 if (result == start_mem)
twisti@1040 2618 break; // hit one of our sentinels
kvn@500 2619 if (result->is_Mem()) {
kvn@3651 2620 const Type *at = igvn->type(result->in(MemNode::Address));
kvn@2741 2621 if (at == Type::TOP)
kvn@2741 2622 break; // Dead
kvn@2741 2623 assert (at->isa_ptr() != NULL, "pointer type required.");
kvn@2741 2624 int idx = C->get_alias_index(at->is_ptr());
kvn@2741 2625 if (idx == alias_idx)
kvn@2741 2626 break; // Found
kvn@2741 2627 if (!is_instance && (at->isa_oopptr() == NULL ||
kvn@2741 2628 !at->is_oopptr()->is_known_instance())) {
kvn@2741 2629 break; // Do not skip store to general memory slice.
kvn@500 2630 }
kvn@688 2631 result = result->in(MemNode::Memory);
kvn@500 2632 }
kvn@500 2633 if (!is_instance)
kvn@500 2634 continue; // don't search further for non-instance types
kvn@500 2635 // skip over a call which does not affect this memory slice
kvn@500 2636 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
kvn@500 2637 Node *proj_in = result->in(0);
never@2170 2638 if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
twisti@1040 2639 break; // hit one of our sentinels
kvn@688 2640 } else if (proj_in->is_Call()) {
kvn@500 2641 CallNode *call = proj_in->as_Call();
kvn@3651 2642 if (!call->may_modify(toop, igvn)) {
kvn@500 2643 result = call->in(TypeFunc::Memory);
kvn@500 2644 }
kvn@500 2645 } else if (proj_in->is_Initialize()) {
kvn@500 2646 AllocateNode* alloc = proj_in->as_Initialize()->allocation();
kvn@500 2647 // Stop if this is the initialization for the object instance which
kvn@500 2648 // which contains this memory slice, otherwise skip over it.
never@2170 2649 if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
kvn@500 2650 result = proj_in->in(TypeFunc::Memory);
kvn@500 2651 }
kvn@500 2652 } else if (proj_in->is_MemBar()) {
kvn@500 2653 result = proj_in->in(TypeFunc::Memory);
kvn@500 2654 }
kvn@500 2655 } else if (result->is_MergeMem()) {
kvn@500 2656 MergeMemNode *mmem = result->as_MergeMem();
never@2170 2657 result = step_through_mergemem(mmem, alias_idx, toop);
kvn@500 2658 if (result == mmem->base_memory()) {
kvn@500 2659 // Didn't find instance memory, search through general slice recursively.
kvn@500 2660 result = mmem->memory_at(C->get_general_index(alias_idx));
kvn@3651 2661 result = find_inst_mem(result, alias_idx, orig_phis);
kvn@500 2662 if (C->failing()) {
kvn@500 2663 return NULL;
kvn@500 2664 }
kvn@500 2665 mmem->set_memory_at(alias_idx, result);
kvn@500 2666 }
kvn@500 2667 } else if (result->is_Phi() &&
kvn@500 2668 C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
kvn@3651 2669 Node *un = result->as_Phi()->unique_input(igvn);
kvn@500 2670 if (un != NULL) {
kvn@1536 2671 orig_phis.append_if_missing(result->as_Phi());
kvn@500 2672 result = un;
kvn@500 2673 } else {
kvn@500 2674 break;
kvn@500 2675 }
kvn@1535 2676 } else if (result->is_ClearArray()) {
kvn@3651 2677 if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
kvn@1535 2678 // Can not bypass initialization of the instance
kvn@1535 2679 // we are looking for.
kvn@1535 2680 break;
kvn@1535 2681 }
kvn@1535 2682 // Otherwise skip it (the call updated 'result' value).
kvn@1019 2683 } else if (result->Opcode() == Op_SCMemProj) {
kvn@4479 2684 Node* mem = result->in(0);
kvn@4479 2685 Node* adr = NULL;
kvn@4479 2686 if (mem->is_LoadStore()) {
kvn@4479 2687 adr = mem->in(MemNode::Address);
kvn@4479 2688 } else {
kvn@4479 2689 assert(mem->Opcode() == Op_EncodeISOArray, "sanity");
kvn@4479 2690 adr = mem->in(3); // Memory edge corresponds to destination array
kvn@4479 2691 }
kvn@4479 2692 const Type *at = igvn->type(adr);
kvn@1019 2693 if (at != Type::TOP) {
kvn@1019 2694 assert (at->isa_ptr() != NULL, "pointer type required.");
kvn@1019 2695 int idx = C->get_alias_index(at->is_ptr());
kvn@1019 2696 assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
kvn@1019 2697 break;
kvn@1019 2698 }
kvn@4479 2699 result = mem->in(MemNode::Memory);
kvn@500 2700 }
kvn@500 2701 }
kvn@682 2702 if (result->is_Phi()) {
kvn@500 2703 PhiNode *mphi = result->as_Phi();
kvn@500 2704 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
kvn@500 2705 const TypePtr *t = mphi->adr_type();
kvn@2741 2706 if (!is_instance) {
kvn@682 2707 // Push all non-instance Phis on the orig_phis worklist to update inputs
kvn@682 2708 // during Phase 4 if needed.
kvn@682 2709 orig_phis.append_if_missing(mphi);
kvn@2741 2710 } else if (C->get_alias_index(t) != alias_idx) {
kvn@2741 2711 // Create a new Phi with the specified alias index type.
kvn@3651 2712 result = split_memory_phi(mphi, alias_idx, orig_phis);
kvn@500 2713 }
kvn@500 2714 }
kvn@500 2715 // the result is either MemNode, PhiNode, InitializeNode.
kvn@500 2716 return result;
kvn@500 2717 }
kvn@500 2718
duke@435 2719 //
duke@435 2720 // Convert the types of unescaped object to instance types where possible,
duke@435 2721 // propagate the new type information through the graph, and update memory
duke@435 2722 // edges and MergeMem inputs to reflect the new type.
duke@435 2723 //
duke@435 2724 // We start with allocations (and calls which may be allocations) on alloc_worklist.
duke@435 2725 // The processing is done in 4 phases:
duke@435 2726 //
duke@435 2727 // Phase 1: Process possible allocations from alloc_worklist. Create instance
duke@435 2728 // types for the CheckCastPP for allocations where possible.
duke@435 2729 // Propagate the the new types through users as follows:
duke@435 2730 // casts and Phi: push users on alloc_worklist
duke@435 2731 // AddP: cast Base and Address inputs to the instance type
duke@435 2732 // push any AddP users on alloc_worklist and push any memnode
duke@435 2733 // users onto memnode_worklist.
duke@435 2734 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 2735 // search the Memory chain for a store with the appropriate type
duke@435 2736 // address type. If a Phi is found, create a new version with
twisti@1040 2737 // the appropriate memory slices from each of the Phi inputs.
duke@435 2738 // For stores, process the users as follows:
duke@435 2739 // MemNode: push on memnode_worklist
duke@435 2740 // MergeMem: push on mergemem_worklist
duke@435 2741 // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice
duke@435 2742 // moving the first node encountered of each instance type to the
duke@435 2743 // the input corresponding to its alias index.
duke@435 2744 // appropriate memory slice.
duke@435 2745 // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes.
duke@435 2746 //
duke@435 2747 // In the following example, the CheckCastPP nodes are the cast of allocation
duke@435 2748 // results and the allocation of node 29 is unescaped and eligible to be an
duke@435 2749 // instance type.
duke@435 2750 //
duke@435 2751 // We start with:
duke@435 2752 //
duke@435 2753 // 7 Parm #memory
duke@435 2754 // 10 ConI "12"
duke@435 2755 // 19 CheckCastPP "Foo"
duke@435 2756 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 2757 // 29 CheckCastPP "Foo"
duke@435 2758 // 30 AddP _ 29 29 10 Foo+12 alias_index=4
duke@435 2759 //
duke@435 2760 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 2761 // 50 StoreP 35 40 30 ... alias_index=4
duke@435 2762 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 2763 // 70 LoadP _ 60 30 ... alias_index=4
duke@435 2764 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 2765 // 90 LoadP _ 80 30 ... alias_index=4
duke@435 2766 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 2767 //
duke@435 2768 //
duke@435 2769 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
duke@435 2770 // and creating a new alias index for node 30. This gives:
duke@435 2771 //
duke@435 2772 // 7 Parm #memory
duke@435 2773 // 10 ConI "12"
duke@435 2774 // 19 CheckCastPP "Foo"
duke@435 2775 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 2776 // 29 CheckCastPP "Foo" iid=24
duke@435 2777 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 2778 //
duke@435 2779 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 2780 // 50 StoreP 35 40 30 ... alias_index=6
duke@435 2781 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 2782 // 70 LoadP _ 60 30 ... alias_index=6
duke@435 2783 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 2784 // 90 LoadP _ 80 30 ... alias_index=6
duke@435 2785 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 2786 //
duke@435 2787 // In phase 2, new memory inputs are computed for the loads and stores,
duke@435 2788 // And a new version of the phi is created. In phase 4, the inputs to
duke@435 2789 // node 80 are updated and then the memory nodes are updated with the
duke@435 2790 // values computed in phase 2. This results in:
duke@435 2791 //
duke@435 2792 // 7 Parm #memory
duke@435 2793 // 10 ConI "12"
duke@435 2794 // 19 CheckCastPP "Foo"
duke@435 2795 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 2796 // 29 CheckCastPP "Foo" iid=24
duke@435 2797 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 2798 //
duke@435 2799 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 2800 // 50 StoreP 35 7 30 ... alias_index=6
duke@435 2801 // 60 StoreP 45 40 20 ... alias_index=4
duke@435 2802 // 70 LoadP _ 50 30 ... alias_index=6
duke@435 2803 // 80 Phi 75 40 60 Memory alias_index=4
duke@435 2804 // 120 Phi 75 50 50 Memory alias_index=6
duke@435 2805 // 90 LoadP _ 120 30 ... alias_index=6
duke@435 2806 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 2807 //
duke@435 2808 void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist) {
duke@435 2809 GrowableArray<Node *> memnode_worklist;
duke@435 2810 GrowableArray<PhiNode *> orig_phis;
kvn@2276 2811 PhaseIterGVN *igvn = _igvn;
duke@435 2812 uint new_index_start = (uint) _compile->num_alias_types();
kvn@1536 2813 Arena* arena = Thread::current()->resource_area();
kvn@1536 2814 VectorSet visited(arena);
kvn@3651 2815 ideal_nodes.clear(); // Reset for use with set_map/get_map.
kvn@3651 2816 uint unique_old = _compile->unique();
kvn@500 2817
kvn@500 2818 // Phase 1: Process possible allocations from alloc_worklist.
kvn@500 2819 // Create instance types for the CheckCastPP for allocations where possible.
kvn@679 2820 //
kvn@679 2821 // (Note: don't forget to change the order of the second AddP node on
kvn@679 2822 // the alloc_worklist if the order of the worklist processing is changed,
kvn@679 2823 // see the comment in find_second_addp().)
kvn@679 2824 //
duke@435 2825 while (alloc_worklist.length() != 0) {
duke@435 2826 Node *n = alloc_worklist.pop();
duke@435 2827 uint ni = n->_idx;
duke@435 2828 if (n->is_Call()) {
duke@435 2829 CallNode *alloc = n->as_Call();
duke@435 2830 // copy escape information to call node
kvn@679 2831 PointsToNode* ptn = ptnode_adr(alloc->_idx);
kvn@3651 2832 PointsToNode::EscapeState es = ptn->escape_state();
kvn@500 2833 // We have an allocation or call which returns a Java object,
kvn@500 2834 // see if it is unescaped.
kvn@3254 2835 if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
duke@435 2836 continue;
kvn@1219 2837 // Find CheckCastPP for the allocate or for the return value of a call
kvn@1219 2838 n = alloc->result_cast();
kvn@1219 2839 if (n == NULL) { // No uses except Initialize node
kvn@1219 2840 if (alloc->is_Allocate()) {
kvn@1219 2841 // Set the scalar_replaceable flag for allocation
kvn@1219 2842 // so it could be eliminated if it has no uses.
kvn@1219 2843 alloc->as_Allocate()->_is_scalar_replaceable = true;
kvn@1219 2844 }
kvn@5110 2845 if (alloc->is_CallStaticJava()) {
kvn@5110 2846 // Set the scalar_replaceable flag for boxing method
kvn@5110 2847 // so it could be eliminated if it has no uses.
kvn@5110 2848 alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
kvn@5110 2849 }
kvn@1219 2850 continue;
kvn@474 2851 }
kvn@1219 2852 if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
kvn@1219 2853 assert(!alloc->is_Allocate(), "allocation should have unique type");
kvn@500 2854 continue;
kvn@1219 2855 }
kvn@1219 2856
kvn@500 2857 // The inline code for Object.clone() casts the allocation result to
kvn@682 2858 // java.lang.Object and then to the actual type of the allocated
kvn@500 2859 // object. Detect this case and use the second cast.
kvn@682 2860 // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
kvn@682 2861 // the allocation result is cast to java.lang.Object and then
kvn@682 2862 // to the actual Array type.
kvn@500 2863 if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
kvn@682 2864 && (alloc->is_AllocateArray() ||
kvn@682 2865 igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
kvn@500 2866 Node *cast2 = NULL;
kvn@500 2867 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 2868 Node *use = n->fast_out(i);
kvn@500 2869 if (use->is_CheckCastPP()) {
kvn@500 2870 cast2 = use;
kvn@500 2871 break;
kvn@500 2872 }
kvn@500 2873 }
kvn@500 2874 if (cast2 != NULL) {
kvn@500 2875 n = cast2;
kvn@500 2876 } else {
kvn@1219 2877 // Non-scalar replaceable if the allocation type is unknown statically
kvn@1219 2878 // (reflection allocation), the object can't be restored during
kvn@1219 2879 // deoptimization without precise type.
kvn@500 2880 continue;
kvn@500 2881 }
kvn@500 2882 }
vlivanov@7286 2883
vlivanov@7286 2884 const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
vlivanov@7286 2885 if (t == NULL)
vlivanov@7286 2886 continue; // not a TypeOopPtr
vlivanov@7286 2887 if (!t->klass_is_exact())
vlivanov@7286 2888 continue; // not an unique type
vlivanov@7286 2889
kvn@1219 2890 if (alloc->is_Allocate()) {
kvn@1219 2891 // Set the scalar_replaceable flag for allocation
kvn@1219 2892 // so it could be eliminated.
kvn@1219 2893 alloc->as_Allocate()->_is_scalar_replaceable = true;
kvn@1219 2894 }
kvn@5110 2895 if (alloc->is_CallStaticJava()) {
kvn@5110 2896 // Set the scalar_replaceable flag for boxing method
kvn@5110 2897 // so it could be eliminated.
kvn@5110 2898 alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
kvn@5110 2899 }
kvn@3651 2900 set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
kvn@682 2901 // in order for an object to be scalar-replaceable, it must be:
kvn@500 2902 // - a direct allocation (not a call returning an object)
kvn@500 2903 // - non-escaping
kvn@500 2904 // - eligible to be a unique type
kvn@500 2905 // - not determined to be ineligible by escape analysis
kvn@3651 2906 set_map(alloc, n);
kvn@3651 2907 set_map(n, alloc);
vlivanov@7286 2908 const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
duke@435 2909 igvn->hash_delete(n);
duke@435 2910 igvn->set_type(n, tinst);
duke@435 2911 n->raise_bottom_type(tinst);
duke@435 2912 igvn->hash_insert(n);
kvn@500 2913 record_for_optimizer(n);
kvn@3254 2914 if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
kvn@598 2915
kvn@598 2916 // First, put on the worklist all Field edges from Connection Graph
kvn@598 2917 // which is more accurate then putting immediate users from Ideal Graph.
kvn@3651 2918 for (EdgeIterator e(ptn); e.has_next(); e.next()) {
kvn@3651 2919 PointsToNode* tgt = e.get();
kvn@3651 2920 Node* use = tgt->ideal_node();
kvn@3651 2921 assert(tgt->is_Field() && use->is_AddP(),
kvn@598 2922 "only AddP nodes are Field edges in CG");
kvn@598 2923 if (use->outcnt() > 0) { // Don't process dead nodes
kvn@598 2924 Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
kvn@598 2925 if (addp2 != NULL) {
kvn@598 2926 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@598 2927 alloc_worklist.append_if_missing(addp2);
kvn@598 2928 }
kvn@598 2929 alloc_worklist.append_if_missing(use);
kvn@598 2930 }
kvn@598 2931 }
kvn@598 2932
kvn@500 2933 // An allocation may have an Initialize which has raw stores. Scan
kvn@500 2934 // the users of the raw allocation result and push AddP users
kvn@500 2935 // on alloc_worklist.
kvn@500 2936 Node *raw_result = alloc->proj_out(TypeFunc::Parms);
kvn@500 2937 assert (raw_result != NULL, "must have an allocation result");
kvn@500 2938 for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
kvn@500 2939 Node *use = raw_result->fast_out(i);
kvn@500 2940 if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
kvn@500 2941 Node* addp2 = find_second_addp(use, raw_result);
kvn@500 2942 if (addp2 != NULL) {
kvn@500 2943 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@500 2944 alloc_worklist.append_if_missing(addp2);
kvn@500 2945 }
kvn@500 2946 alloc_worklist.append_if_missing(use);
kvn@1535 2947 } else if (use->is_MemBar()) {
kvn@500 2948 memnode_worklist.append_if_missing(use);
kvn@500 2949 }
kvn@500 2950 }
kvn@500 2951 }
duke@435 2952 } else if (n->is_AddP()) {
kvn@3651 2953 JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
kvn@3651 2954 if (jobj == NULL || jobj == phantom_obj) {
kvn@3651 2955 #ifdef ASSERT
kvn@3651 2956 ptnode_adr(get_addp_base(n)->_idx)->dump();
kvn@3651 2957 ptnode_adr(n->_idx)->dump();
kvn@3651 2958 assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
kvn@3651 2959 #endif
kvn@3651 2960 _compile->record_failure(C2Compiler::retry_no_escape_analysis());
kvn@3651 2961 return;
kvn@1535 2962 }
kvn@3651 2963 Node *base = get_map(jobj->idx()); // CheckCastPP node
kvn@3651 2964 if (!split_AddP(n, base)) continue; // wrong type from dead path
kvn@500 2965 } else if (n->is_Phi() ||
kvn@500 2966 n->is_CheckCastPP() ||
kvn@603 2967 n->is_EncodeP() ||
kvn@603 2968 n->is_DecodeN() ||
kvn@500 2969 (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
duke@435 2970 if (visited.test_set(n->_idx)) {
duke@435 2971 assert(n->is_Phi(), "loops only through Phi's");
duke@435 2972 continue; // already processed
duke@435 2973 }
kvn@3651 2974 JavaObjectNode* jobj = unique_java_object(n);
kvn@3651 2975 if (jobj == NULL || jobj == phantom_obj) {
kvn@3651 2976 #ifdef ASSERT
kvn@3651 2977 ptnode_adr(n->_idx)->dump();
kvn@3651 2978 assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
kvn@3651 2979 #endif
kvn@3651 2980 _compile->record_failure(C2Compiler::retry_no_escape_analysis());
kvn@3651 2981 return;
kvn@3651 2982 } else {
kvn@3651 2983 Node *val = get_map(jobj->idx()); // CheckCastPP node
duke@435 2984 TypeNode *tn = n->as_Type();
kvn@3651 2985 const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
kvn@658 2986 assert(tinst != NULL && tinst->is_known_instance() &&
kvn@3651 2987 tinst->instance_id() == jobj->idx() , "instance type expected.");
kvn@598 2988
kvn@598 2989 const Type *tn_type = igvn->type(tn);
kvn@658 2990 const TypeOopPtr *tn_t;
kvn@658 2991 if (tn_type->isa_narrowoop()) {
kvn@658 2992 tn_t = tn_type->make_ptr()->isa_oopptr();
kvn@658 2993 } else {
kvn@658 2994 tn_t = tn_type->isa_oopptr();
kvn@658 2995 }
kvn@1535 2996 if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
kvn@598 2997 if (tn_type->isa_narrowoop()) {
kvn@598 2998 tn_type = tinst->make_narrowoop();
kvn@598 2999 } else {
kvn@598 3000 tn_type = tinst;
kvn@598 3001 }
duke@435 3002 igvn->hash_delete(tn);
kvn@598 3003 igvn->set_type(tn, tn_type);
kvn@598 3004 tn->set_type(tn_type);
duke@435 3005 igvn->hash_insert(tn);
kvn@500 3006 record_for_optimizer(n);
kvn@728 3007 } else {
kvn@1535 3008 assert(tn_type == TypePtr::NULL_PTR ||
kvn@1535 3009 tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
kvn@1535 3010 "unexpected type");
kvn@1535 3011 continue; // Skip dead path with different type
duke@435 3012 }
duke@435 3013 }
duke@435 3014 } else {
kvn@1535 3015 debug_only(n->dump();)
kvn@1535 3016 assert(false, "EA: unexpected node");
duke@435 3017 continue;
duke@435 3018 }
kvn@1535 3019 // push allocation's users on appropriate worklist
duke@435 3020 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 3021 Node *use = n->fast_out(i);
duke@435 3022 if(use->is_Mem() && use->in(MemNode::Address) == n) {
kvn@1535 3023 // Load/store to instance's field
kvn@500 3024 memnode_worklist.append_if_missing(use);
kvn@1535 3025 } else if (use->is_MemBar()) {
kvn@5110 3026 if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
kvn@5110 3027 memnode_worklist.append_if_missing(use);
kvn@5110 3028 }
kvn@500 3029 } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
kvn@500 3030 Node* addp2 = find_second_addp(use, n);
kvn@500 3031 if (addp2 != NULL) {
kvn@500 3032 alloc_worklist.append_if_missing(addp2);
kvn@500 3033 }
kvn@500 3034 alloc_worklist.append_if_missing(use);
kvn@500 3035 } else if (use->is_Phi() ||
kvn@500 3036 use->is_CheckCastPP() ||
roland@4159 3037 use->is_EncodeNarrowPtr() ||
roland@4159 3038 use->is_DecodeNarrowPtr() ||
kvn@500 3039 (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
kvn@500 3040 alloc_worklist.append_if_missing(use);
kvn@1535 3041 #ifdef ASSERT
kvn@1535 3042 } else if (use->is_Mem()) {
kvn@1535 3043 assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
kvn@1535 3044 } else if (use->is_MergeMem()) {
kvn@1535 3045 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 3046 } else if (use->is_SafePoint()) {
kvn@1535 3047 // Look for MergeMem nodes for calls which reference unique allocation
kvn@1535 3048 // (through CheckCastPP nodes) even for debug info.
kvn@1535 3049 Node* m = use->in(TypeFunc::Memory);
kvn@1535 3050 if (m->is_MergeMem()) {
kvn@1535 3051 assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 3052 }
kvn@4479 3053 } else if (use->Opcode() == Op_EncodeISOArray) {
kvn@4479 3054 if (use->in(MemNode::Memory) == n || use->in(3) == n) {
kvn@4479 3055 // EncodeISOArray overwrites destination array
kvn@4479 3056 memnode_worklist.append_if_missing(use);
kvn@4479 3057 }
kvn@1535 3058 } else {
kvn@1535 3059 uint op = use->Opcode();
kvn@1535 3060 if (!(op == Op_CmpP || op == Op_Conv2B ||
kvn@1535 3061 op == Op_CastP2X || op == Op_StoreCM ||
kvn@1535 3062 op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
kvn@1535 3063 op == Op_StrEquals || op == Op_StrIndexOf)) {
kvn@1535 3064 n->dump();
kvn@1535 3065 use->dump();
kvn@1535 3066 assert(false, "EA: missing allocation reference path");
kvn@1535 3067 }
kvn@1535 3068 #endif
duke@435 3069 }
duke@435 3070 }
duke@435 3071
duke@435 3072 }
kvn@500 3073 // New alias types were created in split_AddP().
duke@435 3074 uint new_index_end = (uint) _compile->num_alias_types();
kvn@3651 3075 assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
duke@435 3076
duke@435 3077 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 3078 // compute new values for Memory inputs (the Memory inputs are not
duke@435 3079 // actually updated until phase 4.)
duke@435 3080 if (memnode_worklist.length() == 0)
duke@435 3081 return; // nothing to do
duke@435 3082 while (memnode_worklist.length() != 0) {
duke@435 3083 Node *n = memnode_worklist.pop();
kvn@500 3084 if (visited.test_set(n->_idx))
kvn@500 3085 continue;
kvn@1535 3086 if (n->is_Phi() || n->is_ClearArray()) {
kvn@1535 3087 // we don't need to do anything, but the users must be pushed
kvn@1535 3088 } else if (n->is_MemBar()) { // Initialize, MemBar nodes
kvn@1535 3089 // we don't need to do anything, but the users must be pushed
kvn@1535 3090 n = n->as_MemBar()->proj_out(TypeFunc::Memory);
kvn@500 3091 if (n == NULL)
duke@435 3092 continue;
kvn@4479 3093 } else if (n->Opcode() == Op_EncodeISOArray) {
kvn@4479 3094 // get the memory projection
kvn@4479 3095 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@4479 3096 Node *use = n->fast_out(i);
kvn@4479 3097 if (use->Opcode() == Op_SCMemProj) {
kvn@4479 3098 n = use;
kvn@4479 3099 break;
kvn@4479 3100 }
kvn@4479 3101 }
kvn@4479 3102 assert(n->Opcode() == Op_SCMemProj, "memory projection required");
duke@435 3103 } else {
duke@435 3104 assert(n->is_Mem(), "memory node required.");
duke@435 3105 Node *addr = n->in(MemNode::Address);
duke@435 3106 const Type *addr_t = igvn->type(addr);
duke@435 3107 if (addr_t == Type::TOP)
duke@435 3108 continue;
duke@435 3109 assert (addr_t->isa_ptr() != NULL, "pointer type required.");
duke@435 3110 int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
kvn@500 3111 assert ((uint)alias_idx < new_index_end, "wrong alias index");
kvn@3651 3112 Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
kvn@473 3113 if (_compile->failing()) {
kvn@473 3114 return;
kvn@473 3115 }
kvn@500 3116 if (mem != n->in(MemNode::Memory)) {
kvn@1536 3117 // We delay the memory edge update since we need old one in
kvn@1536 3118 // MergeMem code below when instances memory slices are separated.
kvn@3651 3119 set_map(n, mem);
kvn@500 3120 }
duke@435 3121 if (n->is_Load()) {
duke@435 3122 continue; // don't push users
duke@435 3123 } else if (n->is_LoadStore()) {
duke@435 3124 // get the memory projection
duke@435 3125 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 3126 Node *use = n->fast_out(i);
duke@435 3127 if (use->Opcode() == Op_SCMemProj) {
duke@435 3128 n = use;
duke@435 3129 break;
duke@435 3130 }
duke@435 3131 }
duke@435 3132 assert(n->Opcode() == Op_SCMemProj, "memory projection required");
duke@435 3133 }
duke@435 3134 }
duke@435 3135 // push user on appropriate worklist
duke@435 3136 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 3137 Node *use = n->fast_out(i);
kvn@1535 3138 if (use->is_Phi() || use->is_ClearArray()) {
kvn@500 3139 memnode_worklist.append_if_missing(use);
kvn@4479 3140 } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
kvn@1535 3141 if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
kvn@1535 3142 continue;
kvn@500 3143 memnode_worklist.append_if_missing(use);
kvn@1535 3144 } else if (use->is_MemBar()) {
kvn@5110 3145 if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
kvn@5110 3146 memnode_worklist.append_if_missing(use);
kvn@5110 3147 }
kvn@1535 3148 #ifdef ASSERT
kvn@1535 3149 } else if(use->is_Mem()) {
kvn@1535 3150 assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
duke@435 3151 } else if (use->is_MergeMem()) {
kvn@1535 3152 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@4479 3153 } else if (use->Opcode() == Op_EncodeISOArray) {
kvn@4479 3154 if (use->in(MemNode::Memory) == n || use->in(3) == n) {
kvn@4479 3155 // EncodeISOArray overwrites destination array
kvn@4479 3156 memnode_worklist.append_if_missing(use);
kvn@4479 3157 }
kvn@1535 3158 } else {
kvn@1535 3159 uint op = use->Opcode();
kvn@1535 3160 if (!(op == Op_StoreCM ||
kvn@1535 3161 (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
kvn@1535 3162 strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
kvn@1535 3163 op == Op_AryEq || op == Op_StrComp ||
kvn@1535 3164 op == Op_StrEquals || op == Op_StrIndexOf)) {
kvn@1535 3165 n->dump();
kvn@1535 3166 use->dump();
kvn@1535 3167 assert(false, "EA: missing memory path");
kvn@1535 3168 }
kvn@1535 3169 #endif
duke@435 3170 }
duke@435 3171 }
duke@435 3172 }
duke@435 3173
kvn@500 3174 // Phase 3: Process MergeMem nodes from mergemem_worklist.
kvn@1535 3175 // Walk each memory slice moving the first node encountered of each
kvn@500 3176 // instance type to the the input corresponding to its alias index.
kvn@1535 3177 uint length = _mergemem_worklist.length();
kvn@1535 3178 for( uint next = 0; next < length; ++next ) {
kvn@1535 3179 MergeMemNode* nmm = _mergemem_worklist.at(next);
kvn@1535 3180 assert(!visited.test_set(nmm->_idx), "should not be visited before");
duke@435 3181 // Note: we don't want to use MergeMemStream here because we only want to
kvn@1535 3182 // scan inputs which exist at the start, not ones we add during processing.
kvn@1535 3183 // Note 2: MergeMem may already contains instance memory slices added
kvn@1535 3184 // during find_inst_mem() call when memory nodes were processed above.
kvn@1535 3185 igvn->hash_delete(nmm);
roland@8078 3186 uint nslices = MIN2(nmm->req(), new_index_start);
duke@435 3187 for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
kvn@500 3188 Node* mem = nmm->in(i);
kvn@500 3189 Node* cur = NULL;
duke@435 3190 if (mem == NULL || mem->is_top())
duke@435 3191 continue;
kvn@1536 3192 // First, update mergemem by moving memory nodes to corresponding slices
kvn@1536 3193 // if their type became more precise since this mergemem was created.
duke@435 3194 while (mem->is_Mem()) {
duke@435 3195 const Type *at = igvn->type(mem->in(MemNode::Address));
duke@435 3196 if (at != Type::TOP) {
duke@435 3197 assert (at->isa_ptr() != NULL, "pointer type required.");
duke@435 3198 uint idx = (uint)_compile->get_alias_index(at->is_ptr());
duke@435 3199 if (idx == i) {
duke@435 3200 if (cur == NULL)
duke@435 3201 cur = mem;
duke@435 3202 } else {
duke@435 3203 if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
duke@435 3204 nmm->set_memory_at(idx, mem);
duke@435 3205 }
duke@435 3206 }
duke@435 3207 }
duke@435 3208 mem = mem->in(MemNode::Memory);
duke@435 3209 }
duke@435 3210 nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
kvn@500 3211 // Find any instance of the current type if we haven't encountered
kvn@1536 3212 // already a memory slice of the instance along the memory chain.
kvn@500 3213 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@500 3214 if((uint)_compile->get_general_index(ni) == i) {
kvn@500 3215 Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
kvn@500 3216 if (nmm->is_empty_memory(m)) {
kvn@3651 3217 Node* result = find_inst_mem(mem, ni, orig_phis);
kvn@500 3218 if (_compile->failing()) {
kvn@500 3219 return;
kvn@500 3220 }
kvn@500 3221 nmm->set_memory_at(ni, result);
kvn@500 3222 }
kvn@500 3223 }
kvn@500 3224 }
kvn@500 3225 }
kvn@500 3226 // Find the rest of instances values
kvn@500 3227 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@1536 3228 const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
kvn@500 3229 Node* result = step_through_mergemem(nmm, ni, tinst);
kvn@500 3230 if (result == nmm->base_memory()) {
kvn@500 3231 // Didn't find instance memory, search through general slice recursively.
kvn@1536 3232 result = nmm->memory_at(_compile->get_general_index(ni));
kvn@3651 3233 result = find_inst_mem(result, ni, orig_phis);
kvn@500 3234 if (_compile->failing()) {
kvn@500 3235 return;
kvn@500 3236 }
kvn@500 3237 nmm->set_memory_at(ni, result);
kvn@500 3238 }
kvn@500 3239 }
kvn@500 3240 igvn->hash_insert(nmm);
kvn@500 3241 record_for_optimizer(nmm);
duke@435 3242 }
duke@435 3243
kvn@500 3244 // Phase 4: Update the inputs of non-instance memory Phis and
kvn@500 3245 // the Memory input of memnodes
duke@435 3246 // First update the inputs of any non-instance Phi's from
duke@435 3247 // which we split out an instance Phi. Note we don't have
duke@435 3248 // to recursively process Phi's encounted on the input memory
duke@435 3249 // chains as is done in split_memory_phi() since they will
duke@435 3250 // also be processed here.
kvn@682 3251 for (int j = 0; j < orig_phis.length(); j++) {
kvn@682 3252 PhiNode *phi = orig_phis.at(j);
duke@435 3253 int alias_idx = _compile->get_alias_index(phi->adr_type());
duke@435 3254 igvn->hash_delete(phi);
duke@435 3255 for (uint i = 1; i < phi->req(); i++) {
duke@435 3256 Node *mem = phi->in(i);
kvn@3651 3257 Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
kvn@500 3258 if (_compile->failing()) {
kvn@500 3259 return;
kvn@500 3260 }
duke@435 3261 if (mem != new_mem) {
duke@435 3262 phi->set_req(i, new_mem);
duke@435 3263 }
duke@435 3264 }
duke@435 3265 igvn->hash_insert(phi);
duke@435 3266 record_for_optimizer(phi);
duke@435 3267 }
duke@435 3268
duke@435 3269 // Update the memory inputs of MemNodes with the value we computed
kvn@1536 3270 // in Phase 2 and move stores memory users to corresponding memory slices.
kvn@2810 3271 // Disable memory split verification code until the fix for 6984348.
kvn@2810 3272 // Currently it produces false negative results since it does not cover all cases.
kvn@2810 3273 #if 0 // ifdef ASSERT
kvn@2556 3274 visited.Reset();
kvn@1536 3275 Node_Stack old_mems(arena, _compile->unique() >> 2);
kvn@1536 3276 #endif
kvn@3651 3277 for (uint i = 0; i < ideal_nodes.size(); i++) {
kvn@3651 3278 Node* n = ideal_nodes.at(i);
kvn@3651 3279 Node* nmem = get_map(n->_idx);
kvn@3651 3280 assert(nmem != NULL, "sanity");
kvn@3651 3281 if (n->is_Mem()) {
kvn@2810 3282 #if 0 // ifdef ASSERT
kvn@3651 3283 Node* old_mem = n->in(MemNode::Memory);
kvn@3651 3284 if (!visited.test_set(old_mem->_idx)) {
kvn@3651 3285 old_mems.push(old_mem, old_mem->outcnt());
kvn@3651 3286 }
kvn@1536 3287 #endif
kvn@3651 3288 assert(n->in(MemNode::Memory) != nmem, "sanity");
kvn@3651 3289 if (!n->is_Load()) {
kvn@3651 3290 // Move memory users of a store first.
kvn@3651 3291 move_inst_mem(n, orig_phis);
duke@435 3292 }
kvn@3651 3293 // Now update memory input
kvn@3651 3294 igvn->hash_delete(n);
kvn@3651 3295 n->set_req(MemNode::Memory, nmem);
kvn@3651 3296 igvn->hash_insert(n);
kvn@3651 3297 record_for_optimizer(n);
kvn@3651 3298 } else {
kvn@3651 3299 assert(n->is_Allocate() || n->is_CheckCastPP() ||
kvn@3651 3300 n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
duke@435 3301 }
duke@435 3302 }
kvn@2810 3303 #if 0 // ifdef ASSERT
kvn@1536 3304 // Verify that memory was split correctly
kvn@1536 3305 while (old_mems.is_nonempty()) {
kvn@1536 3306 Node* old_mem = old_mems.node();
kvn@1536 3307 uint old_cnt = old_mems.index();
kvn@1536 3308 old_mems.pop();
kvn@2810 3309 assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
kvn@1536 3310 }
kvn@1536 3311 #endif
duke@435 3312 }
duke@435 3313
kvn@3651 3314 #ifndef PRODUCT
kvn@3651 3315 static const char *node_type_names[] = {
kvn@3651 3316 "UnknownType",
kvn@3651 3317 "JavaObject",
kvn@3651 3318 "LocalVar",
kvn@3651 3319 "Field",
kvn@3651 3320 "Arraycopy"
kvn@3651 3321 };
kvn@3651 3322
kvn@3651 3323 static const char *esc_names[] = {
kvn@3651 3324 "UnknownEscape",
kvn@3651 3325 "NoEscape",
kvn@3651 3326 "ArgEscape",
kvn@3651 3327 "GlobalEscape"
kvn@3651 3328 };
kvn@3651 3329
kvn@3651 3330 void PointsToNode::dump(bool print_state) const {
kvn@3651 3331 NodeType nt = node_type();
kvn@3651 3332 tty->print("%s ", node_type_names[(int) nt]);
kvn@3651 3333 if (print_state) {
kvn@3651 3334 EscapeState es = escape_state();
kvn@3651 3335 EscapeState fields_es = fields_escape_state();
kvn@3651 3336 tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
kvn@3651 3337 if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
kvn@4255 3338 tty->print("NSR ");
kvn@3651 3339 }
kvn@3651 3340 if (is_Field()) {
kvn@3651 3341 FieldNode* f = (FieldNode*)this;
kvn@4255 3342 if (f->is_oop())
kvn@4255 3343 tty->print("oop ");
kvn@4255 3344 if (f->offset() > 0)
kvn@4255 3345 tty->print("+%d ", f->offset());
kvn@3651 3346 tty->print("(");
kvn@3651 3347 for (BaseIterator i(f); i.has_next(); i.next()) {
kvn@3651 3348 PointsToNode* b = i.get();
kvn@3651 3349 tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
kvn@679 3350 }
kvn@3651 3351 tty->print(" )");
kvn@679 3352 }
kvn@3651 3353 tty->print("[");
kvn@3651 3354 for (EdgeIterator i(this); i.has_next(); i.next()) {
kvn@3651 3355 PointsToNode* e = i.get();
kvn@3651 3356 tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
kvn@3651 3357 }
kvn@3651 3358 tty->print(" [");
kvn@3651 3359 for (UseIterator i(this); i.has_next(); i.next()) {
kvn@3651 3360 PointsToNode* u = i.get();
kvn@3651 3361 bool is_base = false;
kvn@3651 3362 if (PointsToNode::is_base_use(u)) {
kvn@3651 3363 is_base = true;
kvn@3651 3364 u = PointsToNode::get_use_node(u)->as_Field();
kvn@3651 3365 }
kvn@3651 3366 tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
kvn@3651 3367 }
kvn@3651 3368 tty->print(" ]] ");
kvn@3651 3369 if (_node == NULL)
kvn@3651 3370 tty->print_cr("<null>");
kvn@3651 3371 else
kvn@3651 3372 _node->dump();
kvn@679 3373 }
kvn@679 3374
kvn@3651 3375 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
duke@435 3376 bool first = true;
kvn@3651 3377 int ptnodes_length = ptnodes_worklist.length();
kvn@3651 3378 for (int i = 0; i < ptnodes_length; i++) {
kvn@3651 3379 PointsToNode *ptn = ptnodes_worklist.at(i);
kvn@3651 3380 if (ptn == NULL || !ptn->is_JavaObject())
duke@435 3381 continue;
kvn@3651 3382 PointsToNode::EscapeState es = ptn->escape_state();
kvn@5110 3383 if ((es != PointsToNode::NoEscape) && !Verbose) {
kvn@5110 3384 continue;
kvn@5110 3385 }
kvn@5110 3386 Node* n = ptn->ideal_node();
kvn@5110 3387 if (n->is_Allocate() || (n->is_CallStaticJava() &&
kvn@5110 3388 n->as_CallStaticJava()->is_boxing_method())) {
kvn@500 3389 if (first) {
kvn@500 3390 tty->cr();
kvn@500 3391 tty->print("======== Connection graph for ");
kvn@679 3392 _compile->method()->print_short_name();
kvn@500 3393 tty->cr();
kvn@500 3394 first = false;
kvn@500 3395 }
kvn@500 3396 ptn->dump();
kvn@3651 3397 // Print all locals and fields which reference this allocation
kvn@3651 3398 for (UseIterator j(ptn); j.has_next(); j.next()) {
kvn@3651 3399 PointsToNode* use = j.get();
kvn@3651 3400 if (use->is_LocalVar()) {
kvn@3651 3401 use->dump(Verbose);
kvn@3651 3402 } else if (Verbose) {
kvn@3651 3403 use->dump();
kvn@500 3404 }
kvn@500 3405 }
kvn@500 3406 tty->cr();
duke@435 3407 }
duke@435 3408 }
duke@435 3409 }
duke@435 3410 #endif

mercurial