src/share/vm/opto/escape.cpp

Mon, 24 Nov 2014 07:29:03 -0800

author
vlivanov
date
Mon, 24 Nov 2014 07:29:03 -0800
changeset 7385
9e69e8d1c900
parent 7299
90297adbda9d
child 7402
f913964f3fde
permissions
-rw-r--r--

8058148: MaxNodeLimit and LiveNodeCountInliningCutoff
Reviewed-by: kvn, roland

duke@435 1 /*
kvn@7027 2 * Copyright (c) 2005, 2014, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "ci/bcEscapeAnalyzer.hpp"
kvn@3651 27 #include "compiler/compileLog.hpp"
stefank@2314 28 #include "libadt/vectset.hpp"
stefank@2314 29 #include "memory/allocation.hpp"
stefank@2314 30 #include "opto/c2compiler.hpp"
stefank@2314 31 #include "opto/callnode.hpp"
stefank@2314 32 #include "opto/cfgnode.hpp"
stefank@2314 33 #include "opto/compile.hpp"
stefank@2314 34 #include "opto/escape.hpp"
stefank@2314 35 #include "opto/phaseX.hpp"
stefank@2314 36 #include "opto/rootnode.hpp"
duke@435 37
kvn@1989 38 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
kvn@3651 39 _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
kvn@7299 40 _in_worklist(C->comp_arena()),
kvn@7299 41 _next_pidx(0),
kvn@679 42 _collecting(true),
kvn@3651 43 _verify(false),
kvn@679 44 _compile(C),
kvn@1989 45 _igvn(igvn),
kvn@679 46 _node_map(C->comp_arena()) {
kvn@3651 47 // Add unknown java object.
kvn@3651 48 add_java_object(C->top(), PointsToNode::GlobalEscape);
kvn@3651 49 phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
kvn@688 50 // Add ConP(#NULL) and ConN(#NULL) nodes.
kvn@688 51 Node* oop_null = igvn->zerocon(T_OBJECT);
kvn@3651 52 assert(oop_null->_idx < nodes_size(), "should be created already");
kvn@3651 53 add_java_object(oop_null, PointsToNode::NoEscape);
kvn@3651 54 null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
kvn@688 55 if (UseCompressedOops) {
kvn@688 56 Node* noop_null = igvn->zerocon(T_NARROWOOP);
kvn@3651 57 assert(noop_null->_idx < nodes_size(), "should be created already");
kvn@3651 58 map_ideal_node(noop_null, null_obj);
kvn@688 59 }
kvn@3309 60 _pcmp_neq = NULL; // Should be initialized
kvn@3309 61 _pcmp_eq = NULL;
duke@435 62 }
duke@435 63
kvn@3651 64 bool ConnectionGraph::has_candidates(Compile *C) {
kvn@3651 65 // EA brings benefits only when the code has allocations and/or locks which
kvn@3651 66 // are represented by ideal Macro nodes.
kvn@3651 67 int cnt = C->macro_count();
kvn@5110 68 for (int i = 0; i < cnt; i++) {
kvn@3651 69 Node *n = C->macro_node(i);
kvn@5110 70 if (n->is_Allocate())
kvn@3651 71 return true;
kvn@5110 72 if (n->is_Lock()) {
kvn@3651 73 Node* obj = n->as_Lock()->obj_node()->uncast();
kvn@5110 74 if (!(obj->is_Parm() || obj->is_Con()))
kvn@3651 75 return true;
kvn@3318 76 }
kvn@5110 77 if (n->is_CallStaticJava() &&
kvn@5110 78 n->as_CallStaticJava()->is_boxing_method()) {
kvn@5110 79 return true;
kvn@5110 80 }
kvn@3318 81 }
kvn@3651 82 return false;
duke@435 83 }
duke@435 84
kvn@3651 85 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
kvn@3651 86 Compile::TracePhase t2("escapeAnalysis", &Phase::_t_escapeAnalysis, true);
kvn@3651 87 ResourceMark rm;
duke@435 88
kvn@3651 89 // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
kvn@3651 90 // to create space for them in ConnectionGraph::_nodes[].
kvn@3651 91 Node* oop_null = igvn->zerocon(T_OBJECT);
kvn@3651 92 Node* noop_null = igvn->zerocon(T_NARROWOOP);
kvn@3651 93 ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
kvn@3651 94 // Perform escape analysis
kvn@3651 95 if (congraph->compute_escape()) {
kvn@3651 96 // There are non escaping objects.
kvn@3651 97 C->set_congraph(congraph);
kvn@3651 98 }
kvn@3651 99 // Cleanup.
kvn@3651 100 if (oop_null->outcnt() == 0)
kvn@3651 101 igvn->hash_delete(oop_null);
kvn@3651 102 if (noop_null->outcnt() == 0)
kvn@3651 103 igvn->hash_delete(noop_null);
duke@435 104 }
duke@435 105
kvn@3651 106 bool ConnectionGraph::compute_escape() {
kvn@3651 107 Compile* C = _compile;
kvn@3651 108 PhaseGVN* igvn = _igvn;
kvn@3651 109
kvn@3651 110 // Worklists used by EA.
kvn@3651 111 Unique_Node_List delayed_worklist;
kvn@3651 112 GrowableArray<Node*> alloc_worklist;
kvn@3651 113 GrowableArray<Node*> ptr_cmp_worklist;
kvn@3651 114 GrowableArray<Node*> storestore_worklist;
kvn@3651 115 GrowableArray<PointsToNode*> ptnodes_worklist;
kvn@3651 116 GrowableArray<JavaObjectNode*> java_objects_worklist;
kvn@3651 117 GrowableArray<JavaObjectNode*> non_escaped_worklist;
kvn@3651 118 GrowableArray<FieldNode*> oop_fields_worklist;
kvn@3651 119 DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
kvn@3651 120
kvn@3651 121 { Compile::TracePhase t3("connectionGraph", &Phase::_t_connectionGraph, true);
kvn@3651 122
kvn@3651 123 // 1. Populate Connection Graph (CG) with PointsTo nodes.
kvn@5110 124 ideal_nodes.map(C->live_nodes(), NULL); // preallocate space
kvn@3651 125 // Initialize worklist
kvn@3651 126 if (C->root() != NULL) {
kvn@3651 127 ideal_nodes.push(C->root());
kvn@3651 128 }
kvn@7299 129 // Processed ideal nodes are unique on ideal_nodes list
kvn@7299 130 // but several ideal nodes are mapped to the phantom_obj.
kvn@7299 131 // To avoid duplicated entries on the following worklists
kvn@7299 132 // add the phantom_obj only once to them.
kvn@7299 133 ptnodes_worklist.append(phantom_obj);
kvn@7299 134 java_objects_worklist.append(phantom_obj);
kvn@3651 135 for( uint next = 0; next < ideal_nodes.size(); ++next ) {
kvn@3651 136 Node* n = ideal_nodes.at(next);
kvn@3651 137 // Create PointsTo nodes and add them to Connection Graph. Called
kvn@3651 138 // only once per ideal node since ideal_nodes is Unique_Node list.
kvn@3651 139 add_node_to_connection_graph(n, &delayed_worklist);
kvn@3651 140 PointsToNode* ptn = ptnode_adr(n->_idx);
kvn@7299 141 if (ptn != NULL && ptn != phantom_obj) {
kvn@3651 142 ptnodes_worklist.append(ptn);
kvn@3651 143 if (ptn->is_JavaObject()) {
kvn@3651 144 java_objects_worklist.append(ptn->as_JavaObject());
kvn@3651 145 if ((n->is_Allocate() || n->is_CallStaticJava()) &&
kvn@3651 146 (ptn->escape_state() < PointsToNode::GlobalEscape)) {
kvn@3651 147 // Only allocations and java static calls results are interesting.
kvn@3651 148 non_escaped_worklist.append(ptn->as_JavaObject());
kvn@3651 149 }
kvn@3651 150 } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
kvn@3651 151 oop_fields_worklist.append(ptn->as_Field());
kvn@3651 152 }
kvn@3651 153 }
kvn@3651 154 if (n->is_MergeMem()) {
kvn@3651 155 // Collect all MergeMem nodes to add memory slices for
kvn@3651 156 // scalar replaceable objects in split_unique_types().
kvn@3651 157 _mergemem_worklist.append(n->as_MergeMem());
kvn@3651 158 } else if (OptimizePtrCompare && n->is_Cmp() &&
kvn@3651 159 (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
kvn@3651 160 // Collect compare pointers nodes.
kvn@3651 161 ptr_cmp_worklist.append(n);
kvn@3651 162 } else if (n->is_MemBarStoreStore()) {
kvn@3651 163 // Collect all MemBarStoreStore nodes so that depending on the
kvn@3651 164 // escape status of the associated Allocate node some of them
kvn@3651 165 // may be eliminated.
kvn@3651 166 storestore_worklist.append(n);
kvn@5110 167 } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
kvn@5110 168 (n->req() > MemBarNode::Precedent)) {
kvn@5110 169 record_for_optimizer(n);
kvn@3651 170 #ifdef ASSERT
kvn@5110 171 } else if (n->is_AddP()) {
kvn@3651 172 // Collect address nodes for graph verification.
kvn@3651 173 addp_worklist.append(n);
kvn@3651 174 #endif
kvn@3651 175 }
kvn@3651 176 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@3651 177 Node* m = n->fast_out(i); // Get user
kvn@3651 178 ideal_nodes.push(m);
kvn@3651 179 }
kvn@3651 180 }
kvn@3651 181 if (non_escaped_worklist.length() == 0) {
kvn@3651 182 _collecting = false;
kvn@3651 183 return false; // Nothing to do.
kvn@3651 184 }
kvn@3651 185 // Add final simple edges to graph.
kvn@3651 186 while(delayed_worklist.size() > 0) {
kvn@3651 187 Node* n = delayed_worklist.pop();
kvn@3651 188 add_final_edges(n);
kvn@3651 189 }
kvn@3651 190 int ptnodes_length = ptnodes_worklist.length();
kvn@3651 191
kvn@3651 192 #ifdef ASSERT
kvn@3651 193 if (VerifyConnectionGraph) {
kvn@3651 194 // Verify that no new simple edges could be created and all
kvn@3651 195 // local vars has edges.
kvn@3651 196 _verify = true;
kvn@3651 197 for (int next = 0; next < ptnodes_length; ++next) {
kvn@3651 198 PointsToNode* ptn = ptnodes_worklist.at(next);
kvn@3651 199 add_final_edges(ptn->ideal_node());
kvn@3651 200 if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
kvn@3651 201 ptn->dump();
kvn@3651 202 assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
kvn@3651 203 }
kvn@3651 204 }
kvn@3651 205 _verify = false;
kvn@3651 206 }
kvn@3651 207 #endif
kvn@3651 208
kvn@3651 209 // 2. Finish Graph construction by propagating references to all
kvn@3651 210 // java objects through graph.
kvn@3651 211 if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
kvn@3651 212 java_objects_worklist, oop_fields_worklist)) {
kvn@3651 213 // All objects escaped or hit time or iterations limits.
kvn@3651 214 _collecting = false;
kvn@3651 215 return false;
kvn@3651 216 }
kvn@3651 217
kvn@3651 218 // 3. Adjust scalar_replaceable state of nonescaping objects and push
kvn@3651 219 // scalar replaceable allocations on alloc_worklist for processing
kvn@3651 220 // in split_unique_types().
kvn@3651 221 int non_escaped_length = non_escaped_worklist.length();
kvn@3651 222 for (int next = 0; next < non_escaped_length; next++) {
kvn@3651 223 JavaObjectNode* ptn = non_escaped_worklist.at(next);
kvn@5110 224 bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
kvn@5110 225 Node* n = ptn->ideal_node();
kvn@5110 226 if (n->is_Allocate()) {
kvn@5110 227 n->as_Allocate()->_is_non_escaping = noescape;
kvn@5110 228 }
kvn@5110 229 if (n->is_CallStaticJava()) {
kvn@5110 230 n->as_CallStaticJava()->_is_non_escaping = noescape;
kvn@5110 231 }
kvn@5110 232 if (noescape && ptn->scalar_replaceable()) {
kvn@3651 233 adjust_scalar_replaceable_state(ptn);
kvn@3651 234 if (ptn->scalar_replaceable()) {
kvn@3651 235 alloc_worklist.append(ptn->ideal_node());
kvn@3651 236 }
kvn@3651 237 }
kvn@3651 238 }
kvn@3651 239
kvn@3651 240 #ifdef ASSERT
kvn@3651 241 if (VerifyConnectionGraph) {
kvn@3651 242 // Verify that graph is complete - no new edges could be added or needed.
kvn@3651 243 verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
kvn@3651 244 java_objects_worklist, addp_worklist);
kvn@3651 245 }
kvn@3651 246 assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
kvn@3651 247 assert(null_obj->escape_state() == PointsToNode::NoEscape &&
kvn@3651 248 null_obj->edge_count() == 0 &&
kvn@3651 249 !null_obj->arraycopy_src() &&
kvn@3651 250 !null_obj->arraycopy_dst(), "sanity");
kvn@3651 251 #endif
kvn@3651 252
kvn@3651 253 _collecting = false;
kvn@3651 254
kvn@3651 255 } // TracePhase t3("connectionGraph")
kvn@3651 256
kvn@3651 257 // 4. Optimize ideal graph based on EA information.
kvn@3651 258 bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
kvn@3651 259 if (has_non_escaping_obj) {
kvn@3651 260 optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
kvn@3651 261 }
kvn@3651 262
kvn@3651 263 #ifndef PRODUCT
kvn@3651 264 if (PrintEscapeAnalysis) {
kvn@3651 265 dump(ptnodes_worklist); // Dump ConnectionGraph
kvn@3651 266 }
kvn@3651 267 #endif
kvn@3651 268
kvn@3651 269 bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
kvn@3651 270 #ifdef ASSERT
kvn@3651 271 if (VerifyConnectionGraph) {
kvn@3651 272 int alloc_length = alloc_worklist.length();
kvn@3651 273 for (int next = 0; next < alloc_length; ++next) {
kvn@3651 274 Node* n = alloc_worklist.at(next);
kvn@3651 275 PointsToNode* ptn = ptnode_adr(n->_idx);
kvn@3651 276 assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
kvn@3651 277 }
kvn@3651 278 }
kvn@3651 279 #endif
kvn@3651 280
kvn@3651 281 // 5. Separate memory graph for scalar replaceable allcations.
kvn@3651 282 if (has_scalar_replaceable_candidates &&
kvn@3651 283 C->AliasLevel() >= 3 && EliminateAllocations) {
kvn@3651 284 // Now use the escape information to create unique types for
kvn@3651 285 // scalar replaceable objects.
kvn@3651 286 split_unique_types(alloc_worklist);
kvn@3651 287 if (C->failing()) return false;
sla@5237 288 C->print_method(PHASE_AFTER_EA, 2);
kvn@3651 289
kvn@3651 290 #ifdef ASSERT
kvn@3651 291 } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
kvn@3651 292 tty->print("=== No allocations eliminated for ");
kvn@3651 293 C->method()->print_short_name();
kvn@3651 294 if(!EliminateAllocations) {
kvn@3651 295 tty->print(" since EliminateAllocations is off ===");
kvn@3651 296 } else if(!has_scalar_replaceable_candidates) {
kvn@3651 297 tty->print(" since there are no scalar replaceable candidates ===");
kvn@3651 298 } else if(C->AliasLevel() < 3) {
kvn@3651 299 tty->print(" since AliasLevel < 3 ===");
kvn@3651 300 }
kvn@3651 301 tty->cr();
kvn@3651 302 #endif
kvn@3651 303 }
kvn@3651 304 return has_non_escaping_obj;
kvn@3651 305 }
kvn@3651 306
roland@4106 307 // Utility function for nodes that load an object
roland@4106 308 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
roland@4106 309 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
roland@4106 310 // ThreadLocal has RawPtr type.
roland@4106 311 const Type* t = _igvn->type(n);
roland@4106 312 if (t->make_ptr() != NULL) {
roland@4106 313 Node* adr = n->in(MemNode::Address);
roland@4106 314 #ifdef ASSERT
roland@4106 315 if (!adr->is_AddP()) {
roland@4106 316 assert(_igvn->type(adr)->isa_rawptr(), "sanity");
roland@4106 317 } else {
roland@4106 318 assert((ptnode_adr(adr->_idx) == NULL ||
roland@4106 319 ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
roland@4106 320 }
roland@4106 321 #endif
roland@4106 322 add_local_var_and_edge(n, PointsToNode::NoEscape,
roland@4106 323 adr, delayed_worklist);
roland@4106 324 }
roland@4106 325 }
roland@4106 326
kvn@3651 327 // Populate Connection Graph with PointsTo nodes and create simple
kvn@3651 328 // connection graph edges.
kvn@3651 329 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
kvn@3651 330 assert(!_verify, "this method sould not be called for verification");
kvn@3651 331 PhaseGVN* igvn = _igvn;
kvn@3651 332 uint n_idx = n->_idx;
kvn@3651 333 PointsToNode* n_ptn = ptnode_adr(n_idx);
kvn@3651 334 if (n_ptn != NULL)
kvn@3651 335 return; // No need to redefine PointsTo node during first iteration.
kvn@3651 336
kvn@3651 337 if (n->is_Call()) {
kvn@3651 338 // Arguments to allocation and locking don't escape.
kvn@3651 339 if (n->is_AbstractLock()) {
kvn@3651 340 // Put Lock and Unlock nodes on IGVN worklist to process them during
kvn@3651 341 // first IGVN optimization when escape information is still available.
kvn@3651 342 record_for_optimizer(n);
kvn@3651 343 } else if (n->is_Allocate()) {
kvn@3651 344 add_call_node(n->as_Call());
kvn@3651 345 record_for_optimizer(n);
kvn@3651 346 } else {
kvn@3651 347 if (n->is_CallStaticJava()) {
kvn@3651 348 const char* name = n->as_CallStaticJava()->_name;
kvn@3651 349 if (name != NULL && strcmp(name, "uncommon_trap") == 0)
kvn@3651 350 return; // Skip uncommon traps
kvn@3651 351 }
kvn@3651 352 // Don't mark as processed since call's arguments have to be processed.
kvn@3651 353 delayed_worklist->push(n);
kvn@3651 354 // Check if a call returns an object.
kvn@5110 355 if ((n->as_Call()->returns_pointer() &&
kvn@5110 356 n->as_Call()->proj_out(TypeFunc::Parms) != NULL) ||
kvn@5110 357 (n->is_CallStaticJava() &&
kvn@5110 358 n->as_CallStaticJava()->is_boxing_method())) {
kvn@3651 359 add_call_node(n->as_Call());
kvn@3651 360 }
kvn@3651 361 }
kvn@3651 362 return;
kvn@3651 363 }
kvn@3651 364 // Put this check here to process call arguments since some call nodes
kvn@3651 365 // point to phantom_obj.
kvn@3651 366 if (n_ptn == phantom_obj || n_ptn == null_obj)
kvn@3651 367 return; // Skip predefined nodes.
kvn@3651 368
kvn@3651 369 int opcode = n->Opcode();
kvn@3651 370 switch (opcode) {
kvn@3651 371 case Op_AddP: {
kvn@3651 372 Node* base = get_addp_base(n);
kvn@3651 373 PointsToNode* ptn_base = ptnode_adr(base->_idx);
kvn@3651 374 // Field nodes are created for all field types. They are used in
kvn@3651 375 // adjust_scalar_replaceable_state() and split_unique_types().
kvn@3651 376 // Note, non-oop fields will have only base edges in Connection
kvn@3651 377 // Graph because such fields are not used for oop loads and stores.
kvn@3651 378 int offset = address_offset(n, igvn);
kvn@3651 379 add_field(n, PointsToNode::NoEscape, offset);
kvn@3651 380 if (ptn_base == NULL) {
kvn@3651 381 delayed_worklist->push(n); // Process it later.
kvn@3651 382 } else {
kvn@3651 383 n_ptn = ptnode_adr(n_idx);
kvn@3651 384 add_base(n_ptn->as_Field(), ptn_base);
kvn@3651 385 }
kvn@3651 386 break;
kvn@3651 387 }
kvn@3651 388 case Op_CastX2P: {
kvn@3651 389 map_ideal_node(n, phantom_obj);
kvn@3651 390 break;
kvn@3651 391 }
kvn@3651 392 case Op_CastPP:
kvn@3651 393 case Op_CheckCastPP:
kvn@3651 394 case Op_EncodeP:
roland@4159 395 case Op_DecodeN:
roland@4159 396 case Op_EncodePKlass:
roland@4159 397 case Op_DecodeNKlass: {
kvn@3651 398 add_local_var_and_edge(n, PointsToNode::NoEscape,
kvn@3651 399 n->in(1), delayed_worklist);
kvn@3651 400 break;
kvn@3651 401 }
kvn@3651 402 case Op_CMoveP: {
kvn@3651 403 add_local_var(n, PointsToNode::NoEscape);
kvn@3651 404 // Do not add edges during first iteration because some could be
kvn@3651 405 // not defined yet.
kvn@3651 406 delayed_worklist->push(n);
kvn@3651 407 break;
kvn@3651 408 }
kvn@3651 409 case Op_ConP:
roland@4159 410 case Op_ConN:
roland@4159 411 case Op_ConNKlass: {
kvn@3651 412 // assume all oop constants globally escape except for null
kvn@3651 413 PointsToNode::EscapeState es;
kvn@5110 414 const Type* t = igvn->type(n);
kvn@5110 415 if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
kvn@3651 416 es = PointsToNode::NoEscape;
kvn@3651 417 } else {
kvn@3651 418 es = PointsToNode::GlobalEscape;
kvn@3651 419 }
kvn@3651 420 add_java_object(n, es);
kvn@3651 421 break;
kvn@3651 422 }
kvn@3651 423 case Op_CreateEx: {
kvn@3651 424 // assume that all exception objects globally escape
kvn@7299 425 map_ideal_node(n, phantom_obj);
kvn@3651 426 break;
kvn@3651 427 }
kvn@3651 428 case Op_LoadKlass:
kvn@3651 429 case Op_LoadNKlass: {
kvn@3651 430 // Unknown class is loaded
kvn@3651 431 map_ideal_node(n, phantom_obj);
kvn@3651 432 break;
kvn@3651 433 }
kvn@3651 434 case Op_LoadP:
kvn@3651 435 case Op_LoadN:
kvn@3651 436 case Op_LoadPLocked: {
roland@4106 437 add_objload_to_connection_graph(n, delayed_worklist);
kvn@3651 438 break;
kvn@3651 439 }
kvn@3651 440 case Op_Parm: {
kvn@3651 441 map_ideal_node(n, phantom_obj);
kvn@3651 442 break;
kvn@3651 443 }
kvn@3651 444 case Op_PartialSubtypeCheck: {
kvn@3651 445 // Produces Null or notNull and is used in only in CmpP so
kvn@3651 446 // phantom_obj could be used.
kvn@3651 447 map_ideal_node(n, phantom_obj); // Result is unknown
kvn@3651 448 break;
kvn@3651 449 }
kvn@3651 450 case Op_Phi: {
kvn@3651 451 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
roland@4106 452 // ThreadLocal has RawPtr type.
kvn@3651 453 const Type* t = n->as_Phi()->type();
kvn@3651 454 if (t->make_ptr() != NULL) {
kvn@3651 455 add_local_var(n, PointsToNode::NoEscape);
kvn@3651 456 // Do not add edges during first iteration because some could be
kvn@3651 457 // not defined yet.
kvn@3651 458 delayed_worklist->push(n);
kvn@3651 459 }
kvn@3651 460 break;
kvn@3651 461 }
kvn@3651 462 case Op_Proj: {
kvn@3651 463 // we are only interested in the oop result projection from a call
kvn@3651 464 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
kvn@3651 465 n->in(0)->as_Call()->returns_pointer()) {
kvn@3651 466 add_local_var_and_edge(n, PointsToNode::NoEscape,
kvn@3651 467 n->in(0), delayed_worklist);
kvn@3651 468 }
kvn@3651 469 break;
kvn@3651 470 }
kvn@3651 471 case Op_Rethrow: // Exception object escapes
kvn@3651 472 case Op_Return: {
kvn@3651 473 if (n->req() > TypeFunc::Parms &&
kvn@3651 474 igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
kvn@3651 475 // Treat Return value as LocalVar with GlobalEscape escape state.
kvn@3651 476 add_local_var_and_edge(n, PointsToNode::GlobalEscape,
kvn@3651 477 n->in(TypeFunc::Parms), delayed_worklist);
kvn@3651 478 }
kvn@3651 479 break;
kvn@3651 480 }
roland@4106 481 case Op_GetAndSetP:
roland@4106 482 case Op_GetAndSetN: {
roland@4106 483 add_objload_to_connection_graph(n, delayed_worklist);
roland@4106 484 // fallthrough
roland@4106 485 }
kvn@3651 486 case Op_StoreP:
kvn@3651 487 case Op_StoreN:
roland@4159 488 case Op_StoreNKlass:
kvn@3651 489 case Op_StorePConditional:
kvn@3651 490 case Op_CompareAndSwapP:
kvn@3651 491 case Op_CompareAndSwapN: {
kvn@3651 492 Node* adr = n->in(MemNode::Address);
kvn@3651 493 const Type *adr_type = igvn->type(adr);
kvn@3651 494 adr_type = adr_type->make_ptr();
kvn@5111 495 if (adr_type == NULL) {
kvn@5111 496 break; // skip dead nodes
kvn@5111 497 }
kvn@3651 498 if (adr_type->isa_oopptr() ||
roland@4159 499 (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
kvn@3651 500 (adr_type == TypeRawPtr::NOTNULL &&
kvn@3651 501 adr->in(AddPNode::Address)->is_Proj() &&
kvn@3651 502 adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
kvn@3651 503 delayed_worklist->push(n); // Process it later.
kvn@3651 504 #ifdef ASSERT
kvn@3651 505 assert(adr->is_AddP(), "expecting an AddP");
kvn@3651 506 if (adr_type == TypeRawPtr::NOTNULL) {
kvn@3651 507 // Verify a raw address for a store captured by Initialize node.
kvn@3651 508 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@3651 509 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@3651 510 }
kvn@3657 511 #endif
kvn@3651 512 } else {
kvn@3651 513 // Ignore copy the displaced header to the BoxNode (OSR compilation).
kvn@3651 514 if (adr->is_BoxLock())
kvn@3651 515 break;
kvn@3657 516 // Stored value escapes in unsafe access.
kvn@3657 517 if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
kvn@3657 518 // Pointer stores in G1 barriers looks like unsafe access.
kvn@3657 519 // Ignore such stores to be able scalar replace non-escaping
kvn@3657 520 // allocations.
kvn@3657 521 if (UseG1GC && adr->is_AddP()) {
kvn@3657 522 Node* base = get_addp_base(adr);
kvn@3657 523 if (base->Opcode() == Op_LoadP &&
kvn@3657 524 base->in(MemNode::Address)->is_AddP()) {
kvn@3657 525 adr = base->in(MemNode::Address);
kvn@3657 526 Node* tls = get_addp_base(adr);
kvn@3657 527 if (tls->Opcode() == Op_ThreadLocal) {
kvn@3657 528 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@3657 529 if (offs == in_bytes(JavaThread::satb_mark_queue_offset() +
kvn@3657 530 PtrQueue::byte_offset_of_buf())) {
kvn@3657 531 break; // G1 pre barier previous oop value store.
kvn@3657 532 }
kvn@3657 533 if (offs == in_bytes(JavaThread::dirty_card_queue_offset() +
kvn@3657 534 PtrQueue::byte_offset_of_buf())) {
kvn@3657 535 break; // G1 post barier card address store.
kvn@3657 536 }
kvn@3657 537 }
kvn@3657 538 }
kvn@3657 539 }
kvn@3657 540 delayed_worklist->push(n); // Process unsafe access later.
kvn@3657 541 break;
kvn@3651 542 }
kvn@3657 543 #ifdef ASSERT
kvn@3657 544 n->dump(1);
kvn@3657 545 assert(false, "not unsafe or G1 barrier raw StoreP");
kvn@3651 546 #endif
kvn@3651 547 }
kvn@3651 548 break;
kvn@3651 549 }
kvn@3651 550 case Op_AryEq:
kvn@3651 551 case Op_StrComp:
kvn@3651 552 case Op_StrEquals:
kvn@4479 553 case Op_StrIndexOf:
kvn@4479 554 case Op_EncodeISOArray: {
kvn@3651 555 add_local_var(n, PointsToNode::ArgEscape);
kvn@3651 556 delayed_worklist->push(n); // Process it later.
kvn@3651 557 break;
kvn@3651 558 }
kvn@3651 559 case Op_ThreadLocal: {
kvn@3651 560 add_java_object(n, PointsToNode::ArgEscape);
kvn@3651 561 break;
kvn@3651 562 }
kvn@3651 563 default:
kvn@3651 564 ; // Do nothing for nodes not related to EA.
kvn@3651 565 }
kvn@3651 566 return;
kvn@3651 567 }
kvn@3651 568
kvn@3651 569 #ifdef ASSERT
kvn@3651 570 #define ELSE_FAIL(name) \
kvn@3651 571 /* Should not be called for not pointer type. */ \
kvn@3651 572 n->dump(1); \
kvn@3651 573 assert(false, name); \
kvn@3651 574 break;
kvn@3651 575 #else
kvn@3651 576 #define ELSE_FAIL(name) \
kvn@3651 577 break;
kvn@3651 578 #endif
kvn@3651 579
kvn@3651 580 // Add final simple edges to graph.
kvn@3651 581 void ConnectionGraph::add_final_edges(Node *n) {
kvn@3651 582 PointsToNode* n_ptn = ptnode_adr(n->_idx);
kvn@3651 583 #ifdef ASSERT
kvn@3651 584 if (_verify && n_ptn->is_JavaObject())
kvn@3651 585 return; // This method does not change graph for JavaObject.
kvn@3651 586 #endif
kvn@3651 587
kvn@3651 588 if (n->is_Call()) {
kvn@3651 589 process_call_arguments(n->as_Call());
kvn@3651 590 return;
kvn@3651 591 }
kvn@3651 592 assert(n->is_Store() || n->is_LoadStore() ||
kvn@3651 593 (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
kvn@3651 594 "node should be registered already");
kvn@3651 595 int opcode = n->Opcode();
kvn@3651 596 switch (opcode) {
kvn@3651 597 case Op_AddP: {
kvn@3651 598 Node* base = get_addp_base(n);
kvn@3651 599 PointsToNode* ptn_base = ptnode_adr(base->_idx);
kvn@3651 600 assert(ptn_base != NULL, "field's base should be registered");
kvn@3651 601 add_base(n_ptn->as_Field(), ptn_base);
kvn@3651 602 break;
kvn@3651 603 }
kvn@3651 604 case Op_CastPP:
kvn@3651 605 case Op_CheckCastPP:
kvn@3651 606 case Op_EncodeP:
roland@4159 607 case Op_DecodeN:
roland@4159 608 case Op_EncodePKlass:
roland@4159 609 case Op_DecodeNKlass: {
kvn@3651 610 add_local_var_and_edge(n, PointsToNode::NoEscape,
kvn@3651 611 n->in(1), NULL);
kvn@3651 612 break;
kvn@3651 613 }
kvn@3651 614 case Op_CMoveP: {
kvn@3651 615 for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
kvn@3651 616 Node* in = n->in(i);
kvn@3651 617 if (in == NULL)
kvn@3651 618 continue; // ignore NULL
kvn@3651 619 Node* uncast_in = in->uncast();
kvn@3651 620 if (uncast_in->is_top() || uncast_in == n)
kvn@3651 621 continue; // ignore top or inputs which go back this node
kvn@3651 622 PointsToNode* ptn = ptnode_adr(in->_idx);
kvn@3651 623 assert(ptn != NULL, "node should be registered");
kvn@3651 624 add_edge(n_ptn, ptn);
kvn@3651 625 }
kvn@3651 626 break;
kvn@3651 627 }
kvn@3651 628 case Op_LoadP:
kvn@3651 629 case Op_LoadN:
kvn@3651 630 case Op_LoadPLocked: {
kvn@3651 631 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
roland@4106 632 // ThreadLocal has RawPtr type.
kvn@3651 633 const Type* t = _igvn->type(n);
kvn@3651 634 if (t->make_ptr() != NULL) {
kvn@3651 635 Node* adr = n->in(MemNode::Address);
kvn@3651 636 add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
kvn@3651 637 break;
kvn@3651 638 }
kvn@3651 639 ELSE_FAIL("Op_LoadP");
kvn@3651 640 }
kvn@3651 641 case Op_Phi: {
kvn@3651 642 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
roland@4106 643 // ThreadLocal has RawPtr type.
kvn@3651 644 const Type* t = n->as_Phi()->type();
kvn@3651 645 if (t->make_ptr() != NULL) {
kvn@3651 646 for (uint i = 1; i < n->req(); i++) {
kvn@3651 647 Node* in = n->in(i);
kvn@3651 648 if (in == NULL)
kvn@3651 649 continue; // ignore NULL
kvn@3651 650 Node* uncast_in = in->uncast();
kvn@3651 651 if (uncast_in->is_top() || uncast_in == n)
kvn@3651 652 continue; // ignore top or inputs which go back this node
kvn@3651 653 PointsToNode* ptn = ptnode_adr(in->_idx);
kvn@3651 654 assert(ptn != NULL, "node should be registered");
kvn@3651 655 add_edge(n_ptn, ptn);
kvn@3651 656 }
kvn@3651 657 break;
kvn@3651 658 }
kvn@3651 659 ELSE_FAIL("Op_Phi");
kvn@3651 660 }
kvn@3651 661 case Op_Proj: {
kvn@3651 662 // we are only interested in the oop result projection from a call
kvn@3651 663 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
kvn@3651 664 n->in(0)->as_Call()->returns_pointer()) {
kvn@3651 665 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
kvn@3651 666 break;
kvn@3651 667 }
kvn@3651 668 ELSE_FAIL("Op_Proj");
kvn@3651 669 }
kvn@3651 670 case Op_Rethrow: // Exception object escapes
kvn@3651 671 case Op_Return: {
kvn@3651 672 if (n->req() > TypeFunc::Parms &&
kvn@3651 673 _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
kvn@3651 674 // Treat Return value as LocalVar with GlobalEscape escape state.
kvn@3651 675 add_local_var_and_edge(n, PointsToNode::GlobalEscape,
kvn@3651 676 n->in(TypeFunc::Parms), NULL);
kvn@3651 677 break;
kvn@3651 678 }
kvn@3651 679 ELSE_FAIL("Op_Return");
kvn@3651 680 }
kvn@3651 681 case Op_StoreP:
kvn@3651 682 case Op_StoreN:
roland@4159 683 case Op_StoreNKlass:
kvn@3651 684 case Op_StorePConditional:
kvn@3651 685 case Op_CompareAndSwapP:
roland@4106 686 case Op_CompareAndSwapN:
roland@4106 687 case Op_GetAndSetP:
roland@4106 688 case Op_GetAndSetN: {
kvn@3651 689 Node* adr = n->in(MemNode::Address);
kvn@3651 690 const Type *adr_type = _igvn->type(adr);
kvn@3651 691 adr_type = adr_type->make_ptr();
kvn@5111 692 #ifdef ASSERT
kvn@5111 693 if (adr_type == NULL) {
kvn@5111 694 n->dump(1);
kvn@5111 695 assert(adr_type != NULL, "dead node should not be on list");
kvn@5111 696 break;
kvn@5111 697 }
kvn@5111 698 #endif
kvn@5111 699 if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN) {
kvn@5111 700 add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
kvn@5111 701 }
kvn@3651 702 if (adr_type->isa_oopptr() ||
roland@4159 703 (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
kvn@3651 704 (adr_type == TypeRawPtr::NOTNULL &&
kvn@3651 705 adr->in(AddPNode::Address)->is_Proj() &&
kvn@3651 706 adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
kvn@3651 707 // Point Address to Value
kvn@3651 708 PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
kvn@3651 709 assert(adr_ptn != NULL &&
kvn@3651 710 adr_ptn->as_Field()->is_oop(), "node should be registered");
kvn@3651 711 Node *val = n->in(MemNode::ValueIn);
kvn@3651 712 PointsToNode* ptn = ptnode_adr(val->_idx);
kvn@3651 713 assert(ptn != NULL, "node should be registered");
kvn@3651 714 add_edge(adr_ptn, ptn);
kvn@3651 715 break;
kvn@3657 716 } else if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
kvn@3657 717 // Stored value escapes in unsafe access.
kvn@3657 718 Node *val = n->in(MemNode::ValueIn);
kvn@3657 719 PointsToNode* ptn = ptnode_adr(val->_idx);
kvn@3657 720 assert(ptn != NULL, "node should be registered");
kvn@6637 721 set_escape_state(ptn, PointsToNode::GlobalEscape);
kvn@3657 722 // Add edge to object for unsafe access with offset.
kvn@3657 723 PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
kvn@3657 724 assert(adr_ptn != NULL, "node should be registered");
kvn@3657 725 if (adr_ptn->is_Field()) {
kvn@3657 726 assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
kvn@3657 727 add_edge(adr_ptn, ptn);
kvn@3657 728 }
kvn@3657 729 break;
kvn@3651 730 }
kvn@3651 731 ELSE_FAIL("Op_StoreP");
kvn@3651 732 }
kvn@3651 733 case Op_AryEq:
kvn@3651 734 case Op_StrComp:
kvn@3651 735 case Op_StrEquals:
kvn@4479 736 case Op_StrIndexOf:
kvn@4479 737 case Op_EncodeISOArray: {
kvn@3651 738 // char[] arrays passed to string intrinsic do not escape but
kvn@3651 739 // they are not scalar replaceable. Adjust escape state for them.
kvn@3651 740 // Start from in(2) edge since in(1) is memory edge.
kvn@3651 741 for (uint i = 2; i < n->req(); i++) {
kvn@3651 742 Node* adr = n->in(i);
kvn@3651 743 const Type* at = _igvn->type(adr);
kvn@3651 744 if (!adr->is_top() && at->isa_ptr()) {
kvn@3651 745 assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
kvn@3651 746 at->isa_ptr() != NULL, "expecting a pointer");
kvn@3651 747 if (adr->is_AddP()) {
kvn@3651 748 adr = get_addp_base(adr);
kvn@3651 749 }
kvn@3651 750 PointsToNode* ptn = ptnode_adr(adr->_idx);
kvn@3651 751 assert(ptn != NULL, "node should be registered");
kvn@3651 752 add_edge(n_ptn, ptn);
kvn@3651 753 }
kvn@3651 754 }
kvn@3651 755 break;
kvn@3651 756 }
kvn@3651 757 default: {
kvn@3651 758 // This method should be called only for EA specific nodes which may
kvn@3651 759 // miss some edges when they were created.
kvn@3651 760 #ifdef ASSERT
kvn@3651 761 n->dump(1);
kvn@3651 762 #endif
kvn@3651 763 guarantee(false, "unknown node");
kvn@3651 764 }
kvn@3651 765 }
kvn@3651 766 return;
kvn@3651 767 }
kvn@3651 768
kvn@3651 769 void ConnectionGraph::add_call_node(CallNode* call) {
kvn@3651 770 assert(call->returns_pointer(), "only for call which returns pointer");
kvn@3651 771 uint call_idx = call->_idx;
kvn@3651 772 if (call->is_Allocate()) {
kvn@3651 773 Node* k = call->in(AllocateNode::KlassNode);
kvn@3651 774 const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
kvn@3651 775 assert(kt != NULL, "TypeKlassPtr required.");
kvn@3651 776 ciKlass* cik = kt->klass();
kvn@3651 777 PointsToNode::EscapeState es = PointsToNode::NoEscape;
kvn@3651 778 bool scalar_replaceable = true;
kvn@3651 779 if (call->is_AllocateArray()) {
kvn@3651 780 if (!cik->is_array_klass()) { // StressReflectiveCode
kvn@3651 781 es = PointsToNode::GlobalEscape;
kvn@3651 782 } else {
kvn@3651 783 int length = call->in(AllocateNode::ALength)->find_int_con(-1);
kvn@3651 784 if (length < 0 || length > EliminateAllocationArraySizeLimit) {
kvn@3651 785 // Not scalar replaceable if the length is not constant or too big.
kvn@3651 786 scalar_replaceable = false;
kvn@3651 787 }
kvn@3651 788 }
kvn@3651 789 } else { // Allocate instance
kvn@3651 790 if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
twisti@5910 791 cik->is_subclass_of(_compile->env()->Reference_klass()) ||
kvn@3651 792 !cik->is_instance_klass() || // StressReflectiveCode
kvn@3651 793 cik->as_instance_klass()->has_finalizer()) {
kvn@3651 794 es = PointsToNode::GlobalEscape;
kvn@3651 795 }
kvn@3651 796 }
kvn@3651 797 add_java_object(call, es);
kvn@3651 798 PointsToNode* ptn = ptnode_adr(call_idx);
kvn@3651 799 if (!scalar_replaceable && ptn->scalar_replaceable()) {
kvn@3651 800 ptn->set_scalar_replaceable(false);
kvn@3651 801 }
kvn@3651 802 } else if (call->is_CallStaticJava()) {
kvn@3651 803 // Call nodes could be different types:
kvn@3651 804 //
kvn@3651 805 // 1. CallDynamicJavaNode (what happened during call is unknown):
kvn@3651 806 //
kvn@3651 807 // - mapped to GlobalEscape JavaObject node if oop is returned;
kvn@3651 808 //
kvn@3651 809 // - all oop arguments are escaping globally;
kvn@3651 810 //
kvn@3651 811 // 2. CallStaticJavaNode (execute bytecode analysis if possible):
kvn@3651 812 //
kvn@3651 813 // - the same as CallDynamicJavaNode if can't do bytecode analysis;
kvn@3651 814 //
kvn@3651 815 // - mapped to GlobalEscape JavaObject node if unknown oop is returned;
kvn@3651 816 // - mapped to NoEscape JavaObject node if non-escaping object allocated
kvn@3651 817 // during call is returned;
kvn@3651 818 // - mapped to ArgEscape LocalVar node pointed to object arguments
kvn@3651 819 // which are returned and does not escape during call;
kvn@3651 820 //
kvn@3651 821 // - oop arguments escaping status is defined by bytecode analysis;
kvn@3651 822 //
kvn@3651 823 // For a static call, we know exactly what method is being called.
kvn@3651 824 // Use bytecode estimator to record whether the call's return value escapes.
kvn@3651 825 ciMethod* meth = call->as_CallJava()->method();
kvn@3651 826 if (meth == NULL) {
kvn@3651 827 const char* name = call->as_CallStaticJava()->_name;
kvn@3651 828 assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
kvn@3651 829 // Returns a newly allocated unescaped object.
kvn@3651 830 add_java_object(call, PointsToNode::NoEscape);
kvn@3651 831 ptnode_adr(call_idx)->set_scalar_replaceable(false);
kvn@5110 832 } else if (meth->is_boxing_method()) {
kvn@5110 833 // Returns boxing object
kvn@5113 834 PointsToNode::EscapeState es;
kvn@5113 835 vmIntrinsics::ID intr = meth->intrinsic_id();
kvn@5113 836 if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
kvn@5113 837 // It does not escape if object is always allocated.
kvn@5113 838 es = PointsToNode::NoEscape;
kvn@5113 839 } else {
kvn@5113 840 // It escapes globally if object could be loaded from cache.
kvn@5113 841 es = PointsToNode::GlobalEscape;
kvn@5113 842 }
kvn@5113 843 add_java_object(call, es);
kvn@3651 844 } else {
kvn@3651 845 BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
kvn@3651 846 call_analyzer->copy_dependencies(_compile->dependencies());
kvn@3651 847 if (call_analyzer->is_return_allocated()) {
kvn@3651 848 // Returns a newly allocated unescaped object, simply
kvn@3651 849 // update dependency information.
kvn@3651 850 // Mark it as NoEscape so that objects referenced by
kvn@3651 851 // it's fields will be marked as NoEscape at least.
kvn@3651 852 add_java_object(call, PointsToNode::NoEscape);
kvn@3651 853 ptnode_adr(call_idx)->set_scalar_replaceable(false);
kvn@3651 854 } else {
kvn@3651 855 // Determine whether any arguments are returned.
kvn@3651 856 const TypeTuple* d = call->tf()->domain();
kvn@3651 857 bool ret_arg = false;
kvn@3651 858 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@3651 859 if (d->field_at(i)->isa_ptr() != NULL &&
kvn@3651 860 call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
kvn@3651 861 ret_arg = true;
kvn@3651 862 break;
kvn@3651 863 }
kvn@3651 864 }
kvn@3651 865 if (ret_arg) {
kvn@3651 866 add_local_var(call, PointsToNode::ArgEscape);
kvn@3651 867 } else {
kvn@3651 868 // Returns unknown object.
kvn@3651 869 map_ideal_node(call, phantom_obj);
kvn@3651 870 }
kvn@3651 871 }
kvn@3651 872 }
kvn@3651 873 } else {
kvn@3651 874 // An other type of call, assume the worst case:
kvn@3651 875 // returned value is unknown and globally escapes.
kvn@3651 876 assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
kvn@3651 877 map_ideal_node(call, phantom_obj);
kvn@3651 878 }
kvn@3651 879 }
kvn@3651 880
kvn@3651 881 void ConnectionGraph::process_call_arguments(CallNode *call) {
kvn@3651 882 bool is_arraycopy = false;
kvn@3651 883 switch (call->Opcode()) {
kvn@3651 884 #ifdef ASSERT
kvn@3651 885 case Op_Allocate:
kvn@3651 886 case Op_AllocateArray:
kvn@3651 887 case Op_Lock:
kvn@3651 888 case Op_Unlock:
kvn@3651 889 assert(false, "should be done already");
kvn@3651 890 break;
kvn@3651 891 #endif
kvn@3651 892 case Op_CallLeafNoFP:
kvn@3651 893 is_arraycopy = (call->as_CallLeaf()->_name != NULL &&
kvn@3651 894 strstr(call->as_CallLeaf()->_name, "arraycopy") != 0);
kvn@3651 895 // fall through
kvn@3651 896 case Op_CallLeaf: {
kvn@3651 897 // Stub calls, objects do not escape but they are not scale replaceable.
kvn@3651 898 // Adjust escape state for outgoing arguments.
kvn@3651 899 const TypeTuple * d = call->tf()->domain();
kvn@3651 900 bool src_has_oops = false;
kvn@3651 901 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@3651 902 const Type* at = d->field_at(i);
kvn@3651 903 Node *arg = call->in(i);
kvn@3651 904 const Type *aat = _igvn->type(arg);
kvn@3651 905 if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
kvn@3651 906 continue;
kvn@3651 907 if (arg->is_AddP()) {
kvn@3651 908 //
kvn@3651 909 // The inline_native_clone() case when the arraycopy stub is called
kvn@3651 910 // after the allocation before Initialize and CheckCastPP nodes.
kvn@3651 911 // Or normal arraycopy for object arrays case.
kvn@3651 912 //
kvn@3651 913 // Set AddP's base (Allocate) as not scalar replaceable since
kvn@3651 914 // pointer to the base (with offset) is passed as argument.
kvn@3651 915 //
kvn@3651 916 arg = get_addp_base(arg);
kvn@3651 917 }
kvn@3651 918 PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
kvn@3651 919 assert(arg_ptn != NULL, "should be registered");
kvn@3651 920 PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
kvn@3651 921 if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
kvn@3651 922 assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
kvn@3651 923 aat->isa_ptr() != NULL, "expecting an Ptr");
kvn@3651 924 bool arg_has_oops = aat->isa_oopptr() &&
kvn@3651 925 (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
kvn@3651 926 (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
kvn@3651 927 if (i == TypeFunc::Parms) {
kvn@3651 928 src_has_oops = arg_has_oops;
kvn@3651 929 }
kvn@3651 930 //
kvn@3651 931 // src or dst could be j.l.Object when other is basic type array:
kvn@3651 932 //
kvn@3651 933 // arraycopy(char[],0,Object*,0,size);
kvn@3651 934 // arraycopy(Object*,0,char[],0,size);
kvn@3651 935 //
kvn@3651 936 // Don't add edges in such cases.
kvn@3651 937 //
kvn@3651 938 bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
kvn@3651 939 arg_has_oops && (i > TypeFunc::Parms);
kvn@3651 940 #ifdef ASSERT
kvn@3651 941 if (!(is_arraycopy ||
kvn@4205 942 (call->as_CallLeaf()->_name != NULL &&
kvn@4205 943 (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre") == 0 ||
kvn@4205 944 strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ||
drchase@5353 945 strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
kvn@4205 946 strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
kvn@4205 947 strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
kvn@4205 948 strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
kvn@7027 949 strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
kvn@7027 950 strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
kvn@7027 951 strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
kvn@7027 952 strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
kvn@7027 953 strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
kvn@7027 954 strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
kvn@7152 955 strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
kvn@7152 956 strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0)
kvn@4205 957 ))) {
kvn@3651 958 call->dump();
kvn@4205 959 fatal(err_msg_res("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name));
kvn@3651 960 }
kvn@3651 961 #endif
kvn@3651 962 // Always process arraycopy's destination object since
kvn@3651 963 // we need to add all possible edges to references in
kvn@3651 964 // source object.
kvn@3651 965 if (arg_esc >= PointsToNode::ArgEscape &&
kvn@3651 966 !arg_is_arraycopy_dest) {
kvn@3651 967 continue;
kvn@3651 968 }
kvn@3651 969 set_escape_state(arg_ptn, PointsToNode::ArgEscape);
kvn@3651 970 if (arg_is_arraycopy_dest) {
kvn@3651 971 Node* src = call->in(TypeFunc::Parms);
kvn@3651 972 if (src->is_AddP()) {
kvn@3651 973 src = get_addp_base(src);
kvn@3651 974 }
kvn@3651 975 PointsToNode* src_ptn = ptnode_adr(src->_idx);
kvn@3651 976 assert(src_ptn != NULL, "should be registered");
kvn@3651 977 if (arg_ptn != src_ptn) {
kvn@3651 978 // Special arraycopy edge:
kvn@3651 979 // A destination object's field can't have the source object
kvn@3651 980 // as base since objects escape states are not related.
kvn@3651 981 // Only escape state of destination object's fields affects
kvn@3651 982 // escape state of fields in source object.
kvn@3651 983 add_arraycopy(call, PointsToNode::ArgEscape, src_ptn, arg_ptn);
kvn@3651 984 }
kvn@3651 985 }
kvn@3651 986 }
kvn@3651 987 }
kvn@3651 988 break;
kvn@3651 989 }
kvn@3651 990 case Op_CallStaticJava: {
kvn@3651 991 // For a static call, we know exactly what method is being called.
kvn@3651 992 // Use bytecode estimator to record the call's escape affects
kvn@3651 993 #ifdef ASSERT
kvn@3651 994 const char* name = call->as_CallStaticJava()->_name;
kvn@3651 995 assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
kvn@3651 996 #endif
kvn@3651 997 ciMethod* meth = call->as_CallJava()->method();
kvn@5110 998 if ((meth != NULL) && meth->is_boxing_method()) {
kvn@5110 999 break; // Boxing methods do not modify any oops.
kvn@5110 1000 }
kvn@3651 1001 BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
kvn@3651 1002 // fall-through if not a Java method or no analyzer information
kvn@3651 1003 if (call_analyzer != NULL) {
kvn@3651 1004 PointsToNode* call_ptn = ptnode_adr(call->_idx);
kvn@3651 1005 const TypeTuple* d = call->tf()->domain();
kvn@3651 1006 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@3651 1007 const Type* at = d->field_at(i);
kvn@3651 1008 int k = i - TypeFunc::Parms;
kvn@3651 1009 Node* arg = call->in(i);
kvn@3651 1010 PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
kvn@3651 1011 if (at->isa_ptr() != NULL &&
kvn@3651 1012 call_analyzer->is_arg_returned(k)) {
kvn@3651 1013 // The call returns arguments.
kvn@3651 1014 if (call_ptn != NULL) { // Is call's result used?
kvn@3651 1015 assert(call_ptn->is_LocalVar(), "node should be registered");
kvn@3651 1016 assert(arg_ptn != NULL, "node should be registered");
kvn@3651 1017 add_edge(call_ptn, arg_ptn);
kvn@3651 1018 }
kvn@3651 1019 }
kvn@3651 1020 if (at->isa_oopptr() != NULL &&
kvn@3651 1021 arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
kvn@3651 1022 if (!call_analyzer->is_arg_stack(k)) {
kvn@3651 1023 // The argument global escapes
kvn@3651 1024 set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
kvn@3651 1025 } else {
kvn@3651 1026 set_escape_state(arg_ptn, PointsToNode::ArgEscape);
kvn@3651 1027 if (!call_analyzer->is_arg_local(k)) {
kvn@3651 1028 // The argument itself doesn't escape, but any fields might
kvn@3651 1029 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
kvn@3651 1030 }
kvn@3651 1031 }
kvn@3651 1032 }
kvn@3651 1033 }
kvn@3651 1034 if (call_ptn != NULL && call_ptn->is_LocalVar()) {
kvn@3651 1035 // The call returns arguments.
kvn@3651 1036 assert(call_ptn->edge_count() > 0, "sanity");
kvn@3651 1037 if (!call_analyzer->is_return_local()) {
kvn@3651 1038 // Returns also unknown object.
kvn@3651 1039 add_edge(call_ptn, phantom_obj);
kvn@3651 1040 }
kvn@3651 1041 }
kvn@3651 1042 break;
kvn@3651 1043 }
kvn@3651 1044 }
kvn@3651 1045 default: {
kvn@3651 1046 // Fall-through here if not a Java method or no analyzer information
kvn@3651 1047 // or some other type of call, assume the worst case: all arguments
kvn@3651 1048 // globally escape.
kvn@3651 1049 const TypeTuple* d = call->tf()->domain();
kvn@3651 1050 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@3651 1051 const Type* at = d->field_at(i);
kvn@3651 1052 if (at->isa_oopptr() != NULL) {
kvn@3651 1053 Node* arg = call->in(i);
kvn@3651 1054 if (arg->is_AddP()) {
kvn@3651 1055 arg = get_addp_base(arg);
kvn@3651 1056 }
kvn@3651 1057 assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
kvn@3651 1058 set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
kvn@3651 1059 }
kvn@3651 1060 }
kvn@3651 1061 }
kvn@3651 1062 }
kvn@3651 1063 }
kvn@3651 1064
kvn@3651 1065
kvn@3651 1066 // Finish Graph construction.
kvn@3651 1067 bool ConnectionGraph::complete_connection_graph(
kvn@3651 1068 GrowableArray<PointsToNode*>& ptnodes_worklist,
kvn@3651 1069 GrowableArray<JavaObjectNode*>& non_escaped_worklist,
kvn@3651 1070 GrowableArray<JavaObjectNode*>& java_objects_worklist,
kvn@3651 1071 GrowableArray<FieldNode*>& oop_fields_worklist) {
kvn@3651 1072 // Normally only 1-3 passes needed to build Connection Graph depending
kvn@3651 1073 // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
kvn@3651 1074 // Set limit to 20 to catch situation when something did go wrong and
kvn@3651 1075 // bailout Escape Analysis.
kvn@7299 1076 // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
kvn@3651 1077 #define CG_BUILD_ITER_LIMIT 20
kvn@3651 1078
kvn@3651 1079 // Propagate GlobalEscape and ArgEscape escape states and check that
kvn@3651 1080 // we still have non-escaping objects. The method pushs on _worklist
kvn@3651 1081 // Field nodes which reference phantom_object.
kvn@3651 1082 if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
kvn@3651 1083 return false; // Nothing to do.
kvn@3651 1084 }
kvn@3651 1085 // Now propagate references to all JavaObject nodes.
kvn@3651 1086 int java_objects_length = java_objects_worklist.length();
kvn@3651 1087 elapsedTimer time;
kvn@7299 1088 bool timeout = false;
kvn@3651 1089 int new_edges = 1;
kvn@3651 1090 int iterations = 0;
kvn@3651 1091 do {
kvn@3651 1092 while ((new_edges > 0) &&
kvn@7299 1093 (iterations++ < CG_BUILD_ITER_LIMIT)) {
kvn@7299 1094 double start_time = time.seconds();
kvn@3651 1095 time.start();
kvn@3651 1096 new_edges = 0;
kvn@3651 1097 // Propagate references to phantom_object for nodes pushed on _worklist
kvn@3651 1098 // by find_non_escaped_objects() and find_field_value().
kvn@3651 1099 new_edges += add_java_object_edges(phantom_obj, false);
kvn@3651 1100 for (int next = 0; next < java_objects_length; ++next) {
kvn@3651 1101 JavaObjectNode* ptn = java_objects_worklist.at(next);
kvn@3651 1102 new_edges += add_java_object_edges(ptn, true);
kvn@7299 1103
kvn@7299 1104 #define SAMPLE_SIZE 4
kvn@7299 1105 if ((next % SAMPLE_SIZE) == 0) {
kvn@7299 1106 // Each 4 iterations calculate how much time it will take
kvn@7299 1107 // to complete graph construction.
kvn@7299 1108 time.stop();
kvn@7299 1109 double stop_time = time.seconds();
kvn@7299 1110 double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
kvn@7299 1111 double time_until_end = time_per_iter * (double)(java_objects_length - next);
kvn@7299 1112 if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
kvn@7299 1113 timeout = true;
kvn@7299 1114 break; // Timeout
kvn@7299 1115 }
kvn@7299 1116 start_time = stop_time;
kvn@7299 1117 time.start();
kvn@7299 1118 }
kvn@7299 1119 #undef SAMPLE_SIZE
kvn@7299 1120
kvn@3651 1121 }
kvn@7299 1122 if (timeout) break;
kvn@3651 1123 if (new_edges > 0) {
kvn@3651 1124 // Update escape states on each iteration if graph was updated.
kvn@3651 1125 if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
kvn@3651 1126 return false; // Nothing to do.
kvn@3651 1127 }
kvn@3651 1128 }
kvn@3651 1129 time.stop();
kvn@7299 1130 if (time.seconds() >= EscapeAnalysisTimeout) {
kvn@7299 1131 timeout = true;
kvn@7299 1132 break;
kvn@7299 1133 }
kvn@3651 1134 }
kvn@7299 1135 if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) {
kvn@3651 1136 time.start();
kvn@3651 1137 // Find fields which have unknown value.
kvn@3651 1138 int fields_length = oop_fields_worklist.length();
kvn@3651 1139 for (int next = 0; next < fields_length; next++) {
kvn@3651 1140 FieldNode* field = oop_fields_worklist.at(next);
kvn@3651 1141 if (field->edge_count() == 0) {
kvn@3651 1142 new_edges += find_field_value(field);
kvn@3651 1143 // This code may added new edges to phantom_object.
kvn@3651 1144 // Need an other cycle to propagate references to phantom_object.
kvn@3651 1145 }
kvn@3651 1146 }
kvn@3651 1147 time.stop();
kvn@7299 1148 if (time.seconds() >= EscapeAnalysisTimeout) {
kvn@7299 1149 timeout = true;
kvn@7299 1150 break;
kvn@7299 1151 }
kvn@3651 1152 } else {
kvn@3651 1153 new_edges = 0; // Bailout
kvn@3651 1154 }
kvn@3651 1155 } while (new_edges > 0);
kvn@3651 1156
kvn@3651 1157 // Bailout if passed limits.
kvn@7299 1158 if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) {
kvn@3651 1159 Compile* C = _compile;
kvn@3651 1160 if (C->log() != NULL) {
kvn@3651 1161 C->log()->begin_elem("connectionGraph_bailout reason='reached ");
kvn@7299 1162 C->log()->text("%s", timeout ? "time" : "iterations");
kvn@3651 1163 C->log()->end_elem(" limit'");
kvn@3651 1164 }
kvn@4206 1165 assert(ExitEscapeAnalysisOnTimeout, err_msg_res("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
kvn@3651 1166 time.seconds(), iterations, nodes_size(), ptnodes_worklist.length()));
kvn@3651 1167 // Possible infinite build_connection_graph loop,
kvn@3651 1168 // bailout (no changes to ideal graph were made).
kvn@3651 1169 return false;
kvn@3651 1170 }
kvn@3651 1171 #ifdef ASSERT
kvn@3651 1172 if (Verbose && PrintEscapeAnalysis) {
kvn@3651 1173 tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
kvn@3651 1174 iterations, nodes_size(), ptnodes_worklist.length());
kvn@3651 1175 }
kvn@3651 1176 #endif
kvn@3651 1177
kvn@3651 1178 #undef CG_BUILD_ITER_LIMIT
kvn@3651 1179
kvn@3651 1180 // Find fields initialized by NULL for non-escaping Allocations.
kvn@3651 1181 int non_escaped_length = non_escaped_worklist.length();
kvn@3651 1182 for (int next = 0; next < non_escaped_length; next++) {
kvn@3651 1183 JavaObjectNode* ptn = non_escaped_worklist.at(next);
kvn@3651 1184 PointsToNode::EscapeState es = ptn->escape_state();
kvn@3651 1185 assert(es <= PointsToNode::ArgEscape, "sanity");
kvn@3651 1186 if (es == PointsToNode::NoEscape) {
kvn@3651 1187 if (find_init_values(ptn, null_obj, _igvn) > 0) {
kvn@3651 1188 // Adding references to NULL object does not change escape states
kvn@3651 1189 // since it does not escape. Also no fields are added to NULL object.
kvn@3651 1190 add_java_object_edges(null_obj, false);
kvn@3651 1191 }
kvn@3651 1192 }
kvn@3651 1193 Node* n = ptn->ideal_node();
kvn@3651 1194 if (n->is_Allocate()) {
kvn@3651 1195 // The object allocated by this Allocate node will never be
kvn@3651 1196 // seen by an other thread. Mark it so that when it is
kvn@3651 1197 // expanded no MemBarStoreStore is added.
kvn@3651 1198 InitializeNode* ini = n->as_Allocate()->initialization();
kvn@3651 1199 if (ini != NULL)
kvn@3651 1200 ini->set_does_not_escape();
kvn@3651 1201 }
kvn@3651 1202 }
kvn@3651 1203 return true; // Finished graph construction.
kvn@3651 1204 }
kvn@3651 1205
kvn@3651 1206 // Propagate GlobalEscape and ArgEscape escape states to all nodes
kvn@3651 1207 // and check that we still have non-escaping java objects.
kvn@3651 1208 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
kvn@3651 1209 GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
kvn@3651 1210 GrowableArray<PointsToNode*> escape_worklist;
kvn@3651 1211 // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
kvn@3651 1212 int ptnodes_length = ptnodes_worklist.length();
kvn@3651 1213 for (int next = 0; next < ptnodes_length; ++next) {
kvn@3651 1214 PointsToNode* ptn = ptnodes_worklist.at(next);
kvn@3651 1215 if (ptn->escape_state() >= PointsToNode::ArgEscape ||
kvn@3651 1216 ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
kvn@3651 1217 escape_worklist.push(ptn);
kvn@3651 1218 }
kvn@3651 1219 }
kvn@3651 1220 // Set escape states to referenced nodes (edges list).
kvn@3651 1221 while (escape_worklist.length() > 0) {
kvn@3651 1222 PointsToNode* ptn = escape_worklist.pop();
kvn@3651 1223 PointsToNode::EscapeState es = ptn->escape_state();
kvn@3651 1224 PointsToNode::EscapeState field_es = ptn->fields_escape_state();
kvn@3651 1225 if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
kvn@3651 1226 es >= PointsToNode::ArgEscape) {
kvn@3651 1227 // GlobalEscape or ArgEscape state of field means it has unknown value.
kvn@3651 1228 if (add_edge(ptn, phantom_obj)) {
kvn@3651 1229 // New edge was added
kvn@3651 1230 add_field_uses_to_worklist(ptn->as_Field());
kvn@3651 1231 }
kvn@3651 1232 }
kvn@3651 1233 for (EdgeIterator i(ptn); i.has_next(); i.next()) {
kvn@3651 1234 PointsToNode* e = i.get();
kvn@3651 1235 if (e->is_Arraycopy()) {
kvn@3651 1236 assert(ptn->arraycopy_dst(), "sanity");
kvn@3651 1237 // Propagate only fields escape state through arraycopy edge.
kvn@3651 1238 if (e->fields_escape_state() < field_es) {
kvn@3651 1239 set_fields_escape_state(e, field_es);
kvn@3651 1240 escape_worklist.push(e);
kvn@3651 1241 }
kvn@3651 1242 } else if (es >= field_es) {
kvn@3651 1243 // fields_escape_state is also set to 'es' if it is less than 'es'.
kvn@3651 1244 if (e->escape_state() < es) {
kvn@3651 1245 set_escape_state(e, es);
kvn@3651 1246 escape_worklist.push(e);
kvn@3651 1247 }
kvn@3651 1248 } else {
kvn@3651 1249 // Propagate field escape state.
kvn@3651 1250 bool es_changed = false;
kvn@3651 1251 if (e->fields_escape_state() < field_es) {
kvn@3651 1252 set_fields_escape_state(e, field_es);
kvn@3651 1253 es_changed = true;
kvn@3651 1254 }
kvn@3651 1255 if ((e->escape_state() < field_es) &&
kvn@3651 1256 e->is_Field() && ptn->is_JavaObject() &&
kvn@3651 1257 e->as_Field()->is_oop()) {
kvn@3651 1258 // Change escape state of referenced fileds.
kvn@3651 1259 set_escape_state(e, field_es);
kvn@3651 1260 es_changed = true;;
kvn@3651 1261 } else if (e->escape_state() < es) {
kvn@3651 1262 set_escape_state(e, es);
kvn@3651 1263 es_changed = true;;
kvn@3651 1264 }
kvn@3651 1265 if (es_changed) {
kvn@3651 1266 escape_worklist.push(e);
kvn@3651 1267 }
kvn@3651 1268 }
kvn@3651 1269 }
kvn@3651 1270 }
kvn@3651 1271 // Remove escaped objects from non_escaped list.
kvn@3651 1272 for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
kvn@3651 1273 JavaObjectNode* ptn = non_escaped_worklist.at(next);
kvn@3651 1274 if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
kvn@3651 1275 non_escaped_worklist.delete_at(next);
kvn@3651 1276 }
kvn@3651 1277 if (ptn->escape_state() == PointsToNode::NoEscape) {
kvn@3651 1278 // Find fields in non-escaped allocations which have unknown value.
kvn@3651 1279 find_init_values(ptn, phantom_obj, NULL);
kvn@3651 1280 }
kvn@3651 1281 }
kvn@3651 1282 return (non_escaped_worklist.length() > 0);
kvn@3651 1283 }
kvn@3651 1284
kvn@3651 1285 // Add all references to JavaObject node by walking over all uses.
kvn@3651 1286 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
kvn@3651 1287 int new_edges = 0;
kvn@3651 1288 if (populate_worklist) {
kvn@3651 1289 // Populate _worklist by uses of jobj's uses.
kvn@3651 1290 for (UseIterator i(jobj); i.has_next(); i.next()) {
kvn@3651 1291 PointsToNode* use = i.get();
kvn@3651 1292 if (use->is_Arraycopy())
kvn@3651 1293 continue;
kvn@3651 1294 add_uses_to_worklist(use);
kvn@3651 1295 if (use->is_Field() && use->as_Field()->is_oop()) {
kvn@3651 1296 // Put on worklist all field's uses (loads) and
kvn@3651 1297 // related field nodes (same base and offset).
kvn@3651 1298 add_field_uses_to_worklist(use->as_Field());
kvn@3651 1299 }
kvn@3651 1300 }
kvn@3651 1301 }
kvn@7299 1302 for (int l = 0; l < _worklist.length(); l++) {
kvn@7299 1303 PointsToNode* use = _worklist.at(l);
kvn@3651 1304 if (PointsToNode::is_base_use(use)) {
kvn@3651 1305 // Add reference from jobj to field and from field to jobj (field's base).
kvn@3651 1306 use = PointsToNode::get_use_node(use)->as_Field();
kvn@3651 1307 if (add_base(use->as_Field(), jobj)) {
kvn@3651 1308 new_edges++;
kvn@3651 1309 }
kvn@3651 1310 continue;
kvn@3651 1311 }
kvn@3651 1312 assert(!use->is_JavaObject(), "sanity");
kvn@3651 1313 if (use->is_Arraycopy()) {
kvn@3651 1314 if (jobj == null_obj) // NULL object does not have field edges
kvn@3651 1315 continue;
kvn@3651 1316 // Added edge from Arraycopy node to arraycopy's source java object
kvn@3651 1317 if (add_edge(use, jobj)) {
kvn@3651 1318 jobj->set_arraycopy_src();
kvn@3651 1319 new_edges++;
kvn@3651 1320 }
kvn@3651 1321 // and stop here.
kvn@3651 1322 continue;
kvn@3651 1323 }
kvn@3651 1324 if (!add_edge(use, jobj))
kvn@3651 1325 continue; // No new edge added, there was such edge already.
kvn@3651 1326 new_edges++;
kvn@3651 1327 if (use->is_LocalVar()) {
kvn@3651 1328 add_uses_to_worklist(use);
kvn@3651 1329 if (use->arraycopy_dst()) {
kvn@3651 1330 for (EdgeIterator i(use); i.has_next(); i.next()) {
kvn@3651 1331 PointsToNode* e = i.get();
kvn@3651 1332 if (e->is_Arraycopy()) {
kvn@3651 1333 if (jobj == null_obj) // NULL object does not have field edges
kvn@3651 1334 continue;
kvn@3651 1335 // Add edge from arraycopy's destination java object to Arraycopy node.
kvn@3651 1336 if (add_edge(jobj, e)) {
kvn@3651 1337 new_edges++;
kvn@3651 1338 jobj->set_arraycopy_dst();
kvn@3651 1339 }
kvn@3651 1340 }
kvn@3651 1341 }
kvn@3651 1342 }
kvn@3651 1343 } else {
kvn@3651 1344 // Added new edge to stored in field values.
kvn@3651 1345 // Put on worklist all field's uses (loads) and
kvn@3651 1346 // related field nodes (same base and offset).
kvn@3651 1347 add_field_uses_to_worklist(use->as_Field());
kvn@3651 1348 }
kvn@3651 1349 }
kvn@7299 1350 _worklist.clear();
kvn@7299 1351 _in_worklist.Reset();
kvn@3651 1352 return new_edges;
kvn@3651 1353 }
kvn@3651 1354
kvn@3651 1355 // Put on worklist all related field nodes.
kvn@3651 1356 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
kvn@3651 1357 assert(field->is_oop(), "sanity");
kvn@3651 1358 int offset = field->offset();
kvn@3651 1359 add_uses_to_worklist(field);
kvn@3651 1360 // Loop over all bases of this field and push on worklist Field nodes
kvn@3651 1361 // with the same offset and base (since they may reference the same field).
kvn@3651 1362 for (BaseIterator i(field); i.has_next(); i.next()) {
kvn@3651 1363 PointsToNode* base = i.get();
kvn@3651 1364 add_fields_to_worklist(field, base);
kvn@3651 1365 // Check if the base was source object of arraycopy and go over arraycopy's
kvn@3651 1366 // destination objects since values stored to a field of source object are
kvn@3651 1367 // accessable by uses (loads) of fields of destination objects.
kvn@3651 1368 if (base->arraycopy_src()) {
kvn@3651 1369 for (UseIterator j(base); j.has_next(); j.next()) {
kvn@3651 1370 PointsToNode* arycp = j.get();
kvn@3651 1371 if (arycp->is_Arraycopy()) {
kvn@3651 1372 for (UseIterator k(arycp); k.has_next(); k.next()) {
kvn@3651 1373 PointsToNode* abase = k.get();
kvn@3651 1374 if (abase->arraycopy_dst() && abase != base) {
kvn@3651 1375 // Look for the same arracopy reference.
kvn@3651 1376 add_fields_to_worklist(field, abase);
kvn@3651 1377 }
kvn@3651 1378 }
kvn@3651 1379 }
kvn@3651 1380 }
kvn@3651 1381 }
kvn@3651 1382 }
kvn@3651 1383 }
kvn@3651 1384
kvn@3651 1385 // Put on worklist all related field nodes.
kvn@3651 1386 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
kvn@3651 1387 int offset = field->offset();
kvn@3651 1388 if (base->is_LocalVar()) {
kvn@3651 1389 for (UseIterator j(base); j.has_next(); j.next()) {
kvn@3651 1390 PointsToNode* f = j.get();
kvn@3651 1391 if (PointsToNode::is_base_use(f)) { // Field
kvn@3651 1392 f = PointsToNode::get_use_node(f);
kvn@3651 1393 if (f == field || !f->as_Field()->is_oop())
kvn@3651 1394 continue;
kvn@3651 1395 int offs = f->as_Field()->offset();
kvn@3651 1396 if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
kvn@3651 1397 add_to_worklist(f);
kvn@3651 1398 }
kvn@3651 1399 }
kvn@3651 1400 }
kvn@3651 1401 } else {
kvn@3651 1402 assert(base->is_JavaObject(), "sanity");
kvn@3651 1403 if (// Skip phantom_object since it is only used to indicate that
kvn@3651 1404 // this field's content globally escapes.
kvn@3651 1405 (base != phantom_obj) &&
kvn@3651 1406 // NULL object node does not have fields.
kvn@3651 1407 (base != null_obj)) {
kvn@3651 1408 for (EdgeIterator i(base); i.has_next(); i.next()) {
kvn@3651 1409 PointsToNode* f = i.get();
kvn@3651 1410 // Skip arraycopy edge since store to destination object field
kvn@3651 1411 // does not update value in source object field.
kvn@3651 1412 if (f->is_Arraycopy()) {
kvn@3651 1413 assert(base->arraycopy_dst(), "sanity");
kvn@3651 1414 continue;
kvn@3651 1415 }
kvn@3651 1416 if (f == field || !f->as_Field()->is_oop())
kvn@3651 1417 continue;
kvn@3651 1418 int offs = f->as_Field()->offset();
kvn@3651 1419 if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
kvn@3651 1420 add_to_worklist(f);
kvn@3651 1421 }
kvn@3651 1422 }
kvn@3651 1423 }
kvn@3651 1424 }
kvn@3651 1425 }
kvn@3651 1426
kvn@3651 1427 // Find fields which have unknown value.
kvn@3651 1428 int ConnectionGraph::find_field_value(FieldNode* field) {
kvn@3651 1429 // Escaped fields should have init value already.
kvn@3651 1430 assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
kvn@3651 1431 int new_edges = 0;
kvn@3651 1432 for (BaseIterator i(field); i.has_next(); i.next()) {
kvn@3651 1433 PointsToNode* base = i.get();
kvn@3651 1434 if (base->is_JavaObject()) {
kvn@3651 1435 // Skip Allocate's fields which will be processed later.
kvn@3651 1436 if (base->ideal_node()->is_Allocate())
kvn@3651 1437 return 0;
kvn@3651 1438 assert(base == null_obj, "only NULL ptr base expected here");
kvn@3651 1439 }
kvn@3651 1440 }
kvn@3651 1441 if (add_edge(field, phantom_obj)) {
kvn@3651 1442 // New edge was added
kvn@3651 1443 new_edges++;
kvn@3651 1444 add_field_uses_to_worklist(field);
kvn@3651 1445 }
kvn@3651 1446 return new_edges;
kvn@3651 1447 }
kvn@3651 1448
kvn@3651 1449 // Find fields initializing values for allocations.
kvn@3651 1450 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
kvn@3651 1451 assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
kvn@3651 1452 int new_edges = 0;
kvn@3651 1453 Node* alloc = pta->ideal_node();
kvn@3651 1454 if (init_val == phantom_obj) {
kvn@3651 1455 // Do nothing for Allocate nodes since its fields values are "known".
kvn@3651 1456 if (alloc->is_Allocate())
kvn@3651 1457 return 0;
kvn@3651 1458 assert(alloc->as_CallStaticJava(), "sanity");
kvn@3651 1459 #ifdef ASSERT
kvn@3651 1460 if (alloc->as_CallStaticJava()->method() == NULL) {
kvn@3651 1461 const char* name = alloc->as_CallStaticJava()->_name;
kvn@3651 1462 assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
kvn@3651 1463 }
kvn@3651 1464 #endif
kvn@3651 1465 // Non-escaped allocation returned from Java or runtime call have
kvn@3651 1466 // unknown values in fields.
kvn@3651 1467 for (EdgeIterator i(pta); i.has_next(); i.next()) {
kvn@4255 1468 PointsToNode* field = i.get();
kvn@4255 1469 if (field->is_Field() && field->as_Field()->is_oop()) {
kvn@4255 1470 if (add_edge(field, phantom_obj)) {
kvn@3651 1471 // New edge was added
kvn@3651 1472 new_edges++;
kvn@4255 1473 add_field_uses_to_worklist(field->as_Field());
kvn@3651 1474 }
kvn@3651 1475 }
kvn@3651 1476 }
kvn@3651 1477 return new_edges;
kvn@3651 1478 }
kvn@3651 1479 assert(init_val == null_obj, "sanity");
kvn@3651 1480 // Do nothing for Call nodes since its fields values are unknown.
kvn@3651 1481 if (!alloc->is_Allocate())
kvn@3651 1482 return 0;
kvn@3651 1483
kvn@3651 1484 InitializeNode* ini = alloc->as_Allocate()->initialization();
kvn@3651 1485 Compile* C = _compile;
kvn@3651 1486 bool visited_bottom_offset = false;
kvn@3651 1487 GrowableArray<int> offsets_worklist;
kvn@3651 1488
kvn@3651 1489 // Check if an oop field's initializing value is recorded and add
kvn@3651 1490 // a corresponding NULL if field's value if it is not recorded.
kvn@3651 1491 // Connection Graph does not record a default initialization by NULL
kvn@3651 1492 // captured by Initialize node.
kvn@3651 1493 //
kvn@3651 1494 for (EdgeIterator i(pta); i.has_next(); i.next()) {
kvn@4255 1495 PointsToNode* field = i.get(); // Field (AddP)
kvn@4255 1496 if (!field->is_Field() || !field->as_Field()->is_oop())
kvn@3651 1497 continue; // Not oop field
kvn@4255 1498 int offset = field->as_Field()->offset();
kvn@3651 1499 if (offset == Type::OffsetBot) {
kvn@3651 1500 if (!visited_bottom_offset) {
kvn@3651 1501 // OffsetBot is used to reference array's element,
kvn@3651 1502 // always add reference to NULL to all Field nodes since we don't
kvn@3651 1503 // known which element is referenced.
kvn@4255 1504 if (add_edge(field, null_obj)) {
kvn@3651 1505 // New edge was added
kvn@3651 1506 new_edges++;
kvn@4255 1507 add_field_uses_to_worklist(field->as_Field());
kvn@3651 1508 visited_bottom_offset = true;
kvn@3651 1509 }
kvn@3651 1510 }
kvn@3651 1511 } else {
kvn@3651 1512 // Check only oop fields.
kvn@4255 1513 const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
kvn@3651 1514 if (adr_type->isa_rawptr()) {
kvn@3651 1515 #ifdef ASSERT
kvn@3651 1516 // Raw pointers are used for initializing stores so skip it
kvn@3651 1517 // since it should be recorded already
kvn@4255 1518 Node* base = get_addp_base(field->ideal_node());
kvn@3651 1519 assert(adr_type->isa_rawptr() && base->is_Proj() &&
kvn@3651 1520 (base->in(0) == alloc),"unexpected pointer type");
kvn@3651 1521 #endif
kvn@3651 1522 continue;
kvn@3651 1523 }
kvn@3651 1524 if (!offsets_worklist.contains(offset)) {
kvn@3651 1525 offsets_worklist.append(offset);
kvn@3651 1526 Node* value = NULL;
kvn@3651 1527 if (ini != NULL) {
kvn@4255 1528 // StoreP::memory_type() == T_ADDRESS
kvn@4255 1529 BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
kvn@4255 1530 Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
kvn@4255 1531 // Make sure initializing store has the same type as this AddP.
kvn@4255 1532 // This AddP may reference non existing field because it is on a
kvn@4255 1533 // dead branch of bimorphic call which is not eliminated yet.
kvn@4255 1534 if (store != NULL && store->is_Store() &&
kvn@4255 1535 store->as_Store()->memory_type() == ft) {
kvn@3651 1536 value = store->in(MemNode::ValueIn);
kvn@4255 1537 #ifdef ASSERT
kvn@4255 1538 if (VerifyConnectionGraph) {
kvn@4255 1539 // Verify that AddP already points to all objects the value points to.
kvn@4255 1540 PointsToNode* val = ptnode_adr(value->_idx);
kvn@4255 1541 assert((val != NULL), "should be processed already");
kvn@4255 1542 PointsToNode* missed_obj = NULL;
kvn@4255 1543 if (val->is_JavaObject()) {
kvn@4255 1544 if (!field->points_to(val->as_JavaObject())) {
kvn@4255 1545 missed_obj = val;
kvn@4255 1546 }
kvn@4255 1547 } else {
kvn@4255 1548 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
kvn@4255 1549 tty->print_cr("----------init store has invalid value -----");
kvn@4255 1550 store->dump();
kvn@4255 1551 val->dump();
kvn@4255 1552 assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
kvn@4255 1553 }
kvn@4255 1554 for (EdgeIterator j(val); j.has_next(); j.next()) {
kvn@4255 1555 PointsToNode* obj = j.get();
kvn@4255 1556 if (obj->is_JavaObject()) {
kvn@4255 1557 if (!field->points_to(obj->as_JavaObject())) {
kvn@4255 1558 missed_obj = obj;
kvn@4255 1559 break;
kvn@4255 1560 }
kvn@4255 1561 }
kvn@4255 1562 }
kvn@4255 1563 }
kvn@4255 1564 if (missed_obj != NULL) {
kvn@4255 1565 tty->print_cr("----------field---------------------------------");
kvn@4255 1566 field->dump();
kvn@4255 1567 tty->print_cr("----------missed referernce to object-----------");
kvn@4255 1568 missed_obj->dump();
kvn@4255 1569 tty->print_cr("----------object referernced by init store -----");
kvn@4255 1570 store->dump();
kvn@4255 1571 val->dump();
kvn@4255 1572 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
kvn@4255 1573 }
kvn@4255 1574 }
kvn@4255 1575 #endif
kvn@3651 1576 } else {
kvn@3651 1577 // There could be initializing stores which follow allocation.
kvn@3651 1578 // For example, a volatile field store is not collected
kvn@3651 1579 // by Initialize node.
kvn@3651 1580 //
kvn@3651 1581 // Need to check for dependent loads to separate such stores from
kvn@3651 1582 // stores which follow loads. For now, add initial value NULL so
kvn@3651 1583 // that compare pointers optimization works correctly.
kvn@3651 1584 }
kvn@3651 1585 }
kvn@3651 1586 if (value == NULL) {
kvn@3651 1587 // A field's initializing value was not recorded. Add NULL.
kvn@4255 1588 if (add_edge(field, null_obj)) {
kvn@3651 1589 // New edge was added
kvn@3651 1590 new_edges++;
kvn@4255 1591 add_field_uses_to_worklist(field->as_Field());
kvn@3651 1592 }
kvn@3651 1593 }
kvn@3651 1594 }
kvn@3651 1595 }
kvn@3651 1596 }
kvn@3651 1597 return new_edges;
kvn@3651 1598 }
kvn@3651 1599
kvn@3651 1600 // Adjust scalar_replaceable state after Connection Graph is built.
kvn@3651 1601 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
kvn@3651 1602 // Search for non-escaping objects which are not scalar replaceable
kvn@3651 1603 // and mark them to propagate the state to referenced objects.
kvn@3651 1604
kvn@3651 1605 // 1. An object is not scalar replaceable if the field into which it is
kvn@3651 1606 // stored has unknown offset (stored into unknown element of an array).
kvn@3651 1607 //
kvn@3651 1608 for (UseIterator i(jobj); i.has_next(); i.next()) {
kvn@3651 1609 PointsToNode* use = i.get();
kvn@3651 1610 assert(!use->is_Arraycopy(), "sanity");
kvn@3651 1611 if (use->is_Field()) {
kvn@3651 1612 FieldNode* field = use->as_Field();
kvn@3651 1613 assert(field->is_oop() && field->scalar_replaceable() &&
kvn@3651 1614 field->fields_escape_state() == PointsToNode::NoEscape, "sanity");
kvn@3651 1615 if (field->offset() == Type::OffsetBot) {
kvn@3651 1616 jobj->set_scalar_replaceable(false);
kvn@3651 1617 return;
kvn@3651 1618 }
iveresov@6210 1619 // 2. An object is not scalar replaceable if the field into which it is
iveresov@6210 1620 // stored has multiple bases one of which is null.
iveresov@6210 1621 if (field->base_count() > 1) {
iveresov@6210 1622 for (BaseIterator i(field); i.has_next(); i.next()) {
iveresov@6210 1623 PointsToNode* base = i.get();
iveresov@6210 1624 if (base == null_obj) {
iveresov@6210 1625 jobj->set_scalar_replaceable(false);
iveresov@6210 1626 return;
iveresov@6210 1627 }
iveresov@6210 1628 }
iveresov@6210 1629 }
kvn@3651 1630 }
kvn@3651 1631 assert(use->is_Field() || use->is_LocalVar(), "sanity");
iveresov@6210 1632 // 3. An object is not scalar replaceable if it is merged with other objects.
kvn@3651 1633 for (EdgeIterator j(use); j.has_next(); j.next()) {
kvn@3651 1634 PointsToNode* ptn = j.get();
kvn@3651 1635 if (ptn->is_JavaObject() && ptn != jobj) {
kvn@3651 1636 // Mark all objects.
kvn@3651 1637 jobj->set_scalar_replaceable(false);
kvn@3651 1638 ptn->set_scalar_replaceable(false);
kvn@3651 1639 }
kvn@3651 1640 }
kvn@3651 1641 if (!jobj->scalar_replaceable()) {
kvn@3651 1642 return;
kvn@3651 1643 }
kvn@3651 1644 }
kvn@3651 1645
kvn@3651 1646 for (EdgeIterator j(jobj); j.has_next(); j.next()) {
kvn@3651 1647 // Non-escaping object node should point only to field nodes.
kvn@3651 1648 FieldNode* field = j.get()->as_Field();
kvn@3651 1649 int offset = field->as_Field()->offset();
kvn@3651 1650
iveresov@6210 1651 // 4. An object is not scalar replaceable if it has a field with unknown
kvn@3651 1652 // offset (array's element is accessed in loop).
kvn@3651 1653 if (offset == Type::OffsetBot) {
kvn@3651 1654 jobj->set_scalar_replaceable(false);
kvn@3651 1655 return;
kvn@3651 1656 }
iveresov@6210 1657 // 5. Currently an object is not scalar replaceable if a LoadStore node
kvn@3651 1658 // access its field since the field value is unknown after it.
kvn@3651 1659 //
kvn@3651 1660 Node* n = field->ideal_node();
kvn@3651 1661 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@3651 1662 if (n->fast_out(i)->is_LoadStore()) {
kvn@3651 1663 jobj->set_scalar_replaceable(false);
kvn@3651 1664 return;
kvn@3651 1665 }
kvn@3651 1666 }
kvn@3651 1667
iveresov@6210 1668 // 6. Or the address may point to more then one object. This may produce
kvn@3651 1669 // the false positive result (set not scalar replaceable)
kvn@3651 1670 // since the flow-insensitive escape analysis can't separate
kvn@3651 1671 // the case when stores overwrite the field's value from the case
kvn@3651 1672 // when stores happened on different control branches.
kvn@3651 1673 //
kvn@3651 1674 // Note: it will disable scalar replacement in some cases:
kvn@3651 1675 //
kvn@3651 1676 // Point p[] = new Point[1];
kvn@3651 1677 // p[0] = new Point(); // Will be not scalar replaced
kvn@3651 1678 //
kvn@3651 1679 // but it will save us from incorrect optimizations in next cases:
kvn@3651 1680 //
kvn@3651 1681 // Point p[] = new Point[1];
kvn@3651 1682 // if ( x ) p[0] = new Point(); // Will be not scalar replaced
kvn@3651 1683 //
kvn@3651 1684 if (field->base_count() > 1) {
kvn@3651 1685 for (BaseIterator i(field); i.has_next(); i.next()) {
kvn@3651 1686 PointsToNode* base = i.get();
kvn@3651 1687 // Don't take into account LocalVar nodes which
kvn@3651 1688 // may point to only one object which should be also
kvn@3651 1689 // this field's base by now.
kvn@3651 1690 if (base->is_JavaObject() && base != jobj) {
kvn@3651 1691 // Mark all bases.
kvn@3651 1692 jobj->set_scalar_replaceable(false);
kvn@3651 1693 base->set_scalar_replaceable(false);
kvn@3651 1694 }
kvn@3651 1695 }
kvn@3651 1696 }
kvn@3651 1697 }
kvn@3651 1698 }
kvn@3651 1699
kvn@3651 1700 #ifdef ASSERT
kvn@3651 1701 void ConnectionGraph::verify_connection_graph(
kvn@3651 1702 GrowableArray<PointsToNode*>& ptnodes_worklist,
kvn@3651 1703 GrowableArray<JavaObjectNode*>& non_escaped_worklist,
kvn@3651 1704 GrowableArray<JavaObjectNode*>& java_objects_worklist,
kvn@3651 1705 GrowableArray<Node*>& addp_worklist) {
kvn@3651 1706 // Verify that graph is complete - no new edges could be added.
kvn@3651 1707 int java_objects_length = java_objects_worklist.length();
kvn@3651 1708 int non_escaped_length = non_escaped_worklist.length();
kvn@3651 1709 int new_edges = 0;
kvn@3651 1710 for (int next = 0; next < java_objects_length; ++next) {
kvn@3651 1711 JavaObjectNode* ptn = java_objects_worklist.at(next);
kvn@3651 1712 new_edges += add_java_object_edges(ptn, true);
kvn@3651 1713 }
kvn@3651 1714 assert(new_edges == 0, "graph was not complete");
kvn@3651 1715 // Verify that escape state is final.
kvn@3651 1716 int length = non_escaped_worklist.length();
kvn@3651 1717 find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
kvn@3651 1718 assert((non_escaped_length == non_escaped_worklist.length()) &&
kvn@3651 1719 (non_escaped_length == length) &&
kvn@3651 1720 (_worklist.length() == 0), "escape state was not final");
kvn@3651 1721
kvn@3651 1722 // Verify fields information.
kvn@3651 1723 int addp_length = addp_worklist.length();
kvn@3651 1724 for (int next = 0; next < addp_length; ++next ) {
kvn@3651 1725 Node* n = addp_worklist.at(next);
kvn@3651 1726 FieldNode* field = ptnode_adr(n->_idx)->as_Field();
kvn@3651 1727 if (field->is_oop()) {
kvn@3651 1728 // Verify that field has all bases
kvn@3651 1729 Node* base = get_addp_base(n);
kvn@3651 1730 PointsToNode* ptn = ptnode_adr(base->_idx);
kvn@3651 1731 if (ptn->is_JavaObject()) {
kvn@3651 1732 assert(field->has_base(ptn->as_JavaObject()), "sanity");
kvn@3651 1733 } else {
kvn@3651 1734 assert(ptn->is_LocalVar(), "sanity");
kvn@3651 1735 for (EdgeIterator i(ptn); i.has_next(); i.next()) {
kvn@3651 1736 PointsToNode* e = i.get();
kvn@3651 1737 if (e->is_JavaObject()) {
kvn@3651 1738 assert(field->has_base(e->as_JavaObject()), "sanity");
kvn@3651 1739 }
kvn@3651 1740 }
kvn@3651 1741 }
kvn@3651 1742 // Verify that all fields have initializing values.
kvn@3651 1743 if (field->edge_count() == 0) {
kvn@4255 1744 tty->print_cr("----------field does not have references----------");
kvn@3651 1745 field->dump();
kvn@4255 1746 for (BaseIterator i(field); i.has_next(); i.next()) {
kvn@4255 1747 PointsToNode* base = i.get();
kvn@4255 1748 tty->print_cr("----------field has next base---------------------");
kvn@4255 1749 base->dump();
kvn@4255 1750 if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
kvn@4255 1751 tty->print_cr("----------base has fields-------------------------");
kvn@4255 1752 for (EdgeIterator j(base); j.has_next(); j.next()) {
kvn@4255 1753 j.get()->dump();
kvn@4255 1754 }
kvn@4255 1755 tty->print_cr("----------base has references---------------------");
kvn@4255 1756 for (UseIterator j(base); j.has_next(); j.next()) {
kvn@4255 1757 j.get()->dump();
kvn@4255 1758 }
kvn@4255 1759 }
kvn@4255 1760 }
kvn@4255 1761 for (UseIterator i(field); i.has_next(); i.next()) {
kvn@4255 1762 i.get()->dump();
kvn@4255 1763 }
kvn@3651 1764 assert(field->edge_count() > 0, "sanity");
kvn@3651 1765 }
kvn@3651 1766 }
kvn@3651 1767 }
kvn@3651 1768 }
kvn@3651 1769 #endif
kvn@3651 1770
kvn@3651 1771 // Optimize ideal graph.
kvn@3651 1772 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
kvn@3651 1773 GrowableArray<Node*>& storestore_worklist) {
kvn@3651 1774 Compile* C = _compile;
kvn@3651 1775 PhaseIterGVN* igvn = _igvn;
kvn@3651 1776 if (EliminateLocks) {
kvn@3651 1777 // Mark locks before changing ideal graph.
kvn@3651 1778 int cnt = C->macro_count();
kvn@3651 1779 for( int i=0; i < cnt; i++ ) {
kvn@3651 1780 Node *n = C->macro_node(i);
kvn@3651 1781 if (n->is_AbstractLock()) { // Lock and Unlock nodes
kvn@3651 1782 AbstractLockNode* alock = n->as_AbstractLock();
kvn@3651 1783 if (!alock->is_non_esc_obj()) {
kvn@3651 1784 if (not_global_escape(alock->obj_node())) {
kvn@3651 1785 assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
kvn@3651 1786 // The lock could be marked eliminated by lock coarsening
kvn@3651 1787 // code during first IGVN before EA. Replace coarsened flag
kvn@3651 1788 // to eliminate all associated locks/unlocks.
kvn@3651 1789 alock->set_non_esc_obj();
kvn@3651 1790 }
kvn@3651 1791 }
kvn@3651 1792 }
kvn@3651 1793 }
kvn@3651 1794 }
kvn@3651 1795
kvn@3651 1796 if (OptimizePtrCompare) {
kvn@3651 1797 // Add ConI(#CC_GT) and ConI(#CC_EQ).
kvn@3651 1798 _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
kvn@3651 1799 _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
kvn@3651 1800 // Optimize objects compare.
kvn@3651 1801 while (ptr_cmp_worklist.length() != 0) {
kvn@3651 1802 Node *n = ptr_cmp_worklist.pop();
kvn@3651 1803 Node *res = optimize_ptr_compare(n);
kvn@3651 1804 if (res != NULL) {
kvn@3651 1805 #ifndef PRODUCT
kvn@3651 1806 if (PrintOptimizePtrCompare) {
kvn@3651 1807 tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
kvn@3651 1808 if (Verbose) {
kvn@3651 1809 n->dump(1);
kvn@3651 1810 }
kvn@3651 1811 }
kvn@3651 1812 #endif
kvn@3651 1813 igvn->replace_node(n, res);
kvn@3651 1814 }
kvn@3651 1815 }
kvn@3651 1816 // cleanup
kvn@3651 1817 if (_pcmp_neq->outcnt() == 0)
kvn@3651 1818 igvn->hash_delete(_pcmp_neq);
kvn@3651 1819 if (_pcmp_eq->outcnt() == 0)
kvn@3651 1820 igvn->hash_delete(_pcmp_eq);
kvn@3651 1821 }
kvn@3651 1822
kvn@3651 1823 // For MemBarStoreStore nodes added in library_call.cpp, check
kvn@3651 1824 // escape status of associated AllocateNode and optimize out
kvn@3651 1825 // MemBarStoreStore node if the allocated object never escapes.
kvn@3651 1826 while (storestore_worklist.length() != 0) {
kvn@3651 1827 Node *n = storestore_worklist.pop();
kvn@3651 1828 MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
kvn@3651 1829 Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
kvn@3651 1830 assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
kvn@3651 1831 if (not_global_escape(alloc)) {
kvn@3651 1832 MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
kvn@3651 1833 mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
kvn@3651 1834 mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
kvn@3651 1835 igvn->register_new_node_with_optimizer(mb);
kvn@3651 1836 igvn->replace_node(storestore, mb);
kvn@3651 1837 }
kvn@3651 1838 }
kvn@3651 1839 }
kvn@3651 1840
kvn@3651 1841 // Optimize objects compare.
kvn@3651 1842 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
kvn@3651 1843 assert(OptimizePtrCompare, "sanity");
kvn@3651 1844 PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
kvn@3651 1845 PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
kvn@3651 1846 JavaObjectNode* jobj1 = unique_java_object(n->in(1));
kvn@3651 1847 JavaObjectNode* jobj2 = unique_java_object(n->in(2));
kvn@3651 1848 assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
kvn@3651 1849 assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
kvn@3651 1850
kvn@3651 1851 // Check simple cases first.
kvn@3651 1852 if (jobj1 != NULL) {
kvn@3651 1853 if (jobj1->escape_state() == PointsToNode::NoEscape) {
kvn@3651 1854 if (jobj1 == jobj2) {
kvn@3651 1855 // Comparing the same not escaping object.
kvn@3651 1856 return _pcmp_eq;
kvn@3651 1857 }
kvn@3651 1858 Node* obj = jobj1->ideal_node();
kvn@3651 1859 // Comparing not escaping allocation.
kvn@3651 1860 if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
kvn@3651 1861 !ptn2->points_to(jobj1)) {
kvn@3651 1862 return _pcmp_neq; // This includes nullness check.
kvn@3651 1863 }
kvn@3651 1864 }
kvn@3651 1865 }
kvn@3651 1866 if (jobj2 != NULL) {
kvn@3651 1867 if (jobj2->escape_state() == PointsToNode::NoEscape) {
kvn@3651 1868 Node* obj = jobj2->ideal_node();
kvn@3651 1869 // Comparing not escaping allocation.
kvn@3651 1870 if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
kvn@3651 1871 !ptn1->points_to(jobj2)) {
kvn@3651 1872 return _pcmp_neq; // This includes nullness check.
kvn@3651 1873 }
kvn@3651 1874 }
kvn@3651 1875 }
kvn@3651 1876 if (jobj1 != NULL && jobj1 != phantom_obj &&
kvn@3651 1877 jobj2 != NULL && jobj2 != phantom_obj &&
kvn@3651 1878 jobj1->ideal_node()->is_Con() &&
kvn@3651 1879 jobj2->ideal_node()->is_Con()) {
kvn@3651 1880 // Klass or String constants compare. Need to be careful with
kvn@3651 1881 // compressed pointers - compare types of ConN and ConP instead of nodes.
kvn@5111 1882 const Type* t1 = jobj1->ideal_node()->get_ptr_type();
kvn@5111 1883 const Type* t2 = jobj2->ideal_node()->get_ptr_type();
kvn@3651 1884 if (t1->make_ptr() == t2->make_ptr()) {
kvn@3651 1885 return _pcmp_eq;
kvn@3651 1886 } else {
kvn@3651 1887 return _pcmp_neq;
kvn@3651 1888 }
kvn@3651 1889 }
kvn@3651 1890 if (ptn1->meet(ptn2)) {
kvn@3651 1891 return NULL; // Sets are not disjoint
kvn@3651 1892 }
kvn@3651 1893
kvn@3651 1894 // Sets are disjoint.
kvn@3651 1895 bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
kvn@3651 1896 bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
kvn@3651 1897 bool set1_has_null_ptr = ptn1->points_to(null_obj);
kvn@3651 1898 bool set2_has_null_ptr = ptn2->points_to(null_obj);
kvn@3651 1899 if (set1_has_unknown_ptr && set2_has_null_ptr ||
kvn@3651 1900 set2_has_unknown_ptr && set1_has_null_ptr) {
kvn@3651 1901 // Check nullness of unknown object.
kvn@3651 1902 return NULL;
kvn@3651 1903 }
kvn@3651 1904
kvn@3651 1905 // Disjointness by itself is not sufficient since
kvn@3651 1906 // alias analysis is not complete for escaped objects.
kvn@3651 1907 // Disjoint sets are definitely unrelated only when
kvn@3651 1908 // at least one set has only not escaping allocations.
kvn@3651 1909 if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
kvn@3651 1910 if (ptn1->non_escaping_allocation()) {
kvn@3651 1911 return _pcmp_neq;
kvn@3651 1912 }
kvn@3651 1913 }
kvn@3651 1914 if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
kvn@3651 1915 if (ptn2->non_escaping_allocation()) {
kvn@3651 1916 return _pcmp_neq;
kvn@3651 1917 }
kvn@3651 1918 }
kvn@3651 1919 return NULL;
kvn@3651 1920 }
kvn@3651 1921
kvn@3651 1922 // Connection Graph constuction functions.
kvn@3651 1923
kvn@3651 1924 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
kvn@3651 1925 PointsToNode* ptadr = _nodes.at(n->_idx);
kvn@3651 1926 if (ptadr != NULL) {
kvn@3651 1927 assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
kvn@3651 1928 return;
kvn@3651 1929 }
kvn@3651 1930 Compile* C = _compile;
kvn@7299 1931 ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
kvn@3651 1932 _nodes.at_put(n->_idx, ptadr);
kvn@3651 1933 }
kvn@3651 1934
kvn@3651 1935 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
kvn@3651 1936 PointsToNode* ptadr = _nodes.at(n->_idx);
kvn@3651 1937 if (ptadr != NULL) {
kvn@3651 1938 assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
kvn@3651 1939 return;
kvn@3651 1940 }
kvn@3651 1941 Compile* C = _compile;
kvn@7299 1942 ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
kvn@3651 1943 _nodes.at_put(n->_idx, ptadr);
kvn@3651 1944 }
kvn@3651 1945
kvn@3651 1946 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
kvn@3651 1947 PointsToNode* ptadr = _nodes.at(n->_idx);
kvn@3651 1948 if (ptadr != NULL) {
kvn@3651 1949 assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
kvn@3651 1950 return;
kvn@3651 1951 }
twisti@3969 1952 bool unsafe = false;
twisti@3969 1953 bool is_oop = is_oop_field(n, offset, &unsafe);
twisti@3969 1954 if (unsafe) {
twisti@3969 1955 es = PointsToNode::GlobalEscape;
twisti@3969 1956 }
kvn@3651 1957 Compile* C = _compile;
kvn@7299 1958 FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
kvn@3651 1959 _nodes.at_put(n->_idx, field);
kvn@3651 1960 }
kvn@3651 1961
kvn@3651 1962 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
kvn@3651 1963 PointsToNode* src, PointsToNode* dst) {
kvn@3651 1964 assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
kvn@3651 1965 assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
kvn@3651 1966 PointsToNode* ptadr = _nodes.at(n->_idx);
kvn@3651 1967 if (ptadr != NULL) {
kvn@3651 1968 assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
kvn@3651 1969 return;
kvn@3651 1970 }
kvn@3651 1971 Compile* C = _compile;
kvn@7299 1972 ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
kvn@3651 1973 _nodes.at_put(n->_idx, ptadr);
kvn@3651 1974 // Add edge from arraycopy node to source object.
kvn@3651 1975 (void)add_edge(ptadr, src);
kvn@3651 1976 src->set_arraycopy_src();
kvn@3651 1977 // Add edge from destination object to arraycopy node.
kvn@3651 1978 (void)add_edge(dst, ptadr);
kvn@3651 1979 dst->set_arraycopy_dst();
kvn@3651 1980 }
kvn@3651 1981
twisti@3969 1982 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
kvn@3651 1983 const Type* adr_type = n->as_AddP()->bottom_type();
kvn@3651 1984 BasicType bt = T_INT;
kvn@3651 1985 if (offset == Type::OffsetBot) {
kvn@3651 1986 // Check only oop fields.
kvn@3651 1987 if (!adr_type->isa_aryptr() ||
kvn@3651 1988 (adr_type->isa_aryptr()->klass() == NULL) ||
kvn@3651 1989 adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
kvn@3651 1990 // OffsetBot is used to reference array's element. Ignore first AddP.
kvn@3651 1991 if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
kvn@3651 1992 bt = T_OBJECT;
kvn@3651 1993 }
kvn@3651 1994 }
kvn@3651 1995 } else if (offset != oopDesc::klass_offset_in_bytes()) {
kvn@3651 1996 if (adr_type->isa_instptr()) {
kvn@3651 1997 ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
kvn@3651 1998 if (field != NULL) {
kvn@3651 1999 bt = field->layout_type();
kvn@3651 2000 } else {
twisti@3969 2001 // Check for unsafe oop field access
twisti@3969 2002 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
twisti@3969 2003 int opcode = n->fast_out(i)->Opcode();
twisti@3969 2004 if (opcode == Op_StoreP || opcode == Op_LoadP ||
twisti@3969 2005 opcode == Op_StoreN || opcode == Op_LoadN) {
twisti@3969 2006 bt = T_OBJECT;
twisti@3969 2007 (*unsafe) = true;
twisti@3969 2008 break;
twisti@3969 2009 }
twisti@3969 2010 }
kvn@3651 2011 }
kvn@3651 2012 } else if (adr_type->isa_aryptr()) {
kvn@3651 2013 if (offset == arrayOopDesc::length_offset_in_bytes()) {
kvn@3651 2014 // Ignore array length load.
kvn@3651 2015 } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
kvn@3651 2016 // Ignore first AddP.
kvn@3651 2017 } else {
kvn@3651 2018 const Type* elemtype = adr_type->isa_aryptr()->elem();
kvn@3651 2019 bt = elemtype->array_element_basic_type();
kvn@3651 2020 }
kvn@3651 2021 } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
kvn@3651 2022 // Allocation initialization, ThreadLocal field access, unsafe access
kvn@3651 2023 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@3651 2024 int opcode = n->fast_out(i)->Opcode();
kvn@3651 2025 if (opcode == Op_StoreP || opcode == Op_LoadP ||
kvn@3651 2026 opcode == Op_StoreN || opcode == Op_LoadN) {
kvn@3651 2027 bt = T_OBJECT;
twisti@3969 2028 break;
kvn@3651 2029 }
kvn@3651 2030 }
kvn@3651 2031 }
kvn@3651 2032 }
kvn@3651 2033 return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
kvn@3651 2034 }
kvn@3651 2035
kvn@3651 2036 // Returns unique pointed java object or NULL.
kvn@3651 2037 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
kvn@3651 2038 assert(!_collecting, "should not call when contructed graph");
kvn@3651 2039 // If the node was created after the escape computation we can't answer.
kvn@3651 2040 uint idx = n->_idx;
kvn@3651 2041 if (idx >= nodes_size()) {
kvn@3651 2042 return NULL;
kvn@3651 2043 }
kvn@3651 2044 PointsToNode* ptn = ptnode_adr(idx);
kvn@3651 2045 if (ptn->is_JavaObject()) {
kvn@3651 2046 return ptn->as_JavaObject();
kvn@3651 2047 }
kvn@3651 2048 assert(ptn->is_LocalVar(), "sanity");
kvn@3651 2049 // Check all java objects it points to.
kvn@3651 2050 JavaObjectNode* jobj = NULL;
kvn@3651 2051 for (EdgeIterator i(ptn); i.has_next(); i.next()) {
kvn@3651 2052 PointsToNode* e = i.get();
kvn@3651 2053 if (e->is_JavaObject()) {
kvn@3651 2054 if (jobj == NULL) {
kvn@3651 2055 jobj = e->as_JavaObject();
kvn@3651 2056 } else if (jobj != e) {
kvn@3651 2057 return NULL;
kvn@3651 2058 }
kvn@3651 2059 }
kvn@3651 2060 }
kvn@3651 2061 return jobj;
kvn@3651 2062 }
kvn@3651 2063
kvn@3651 2064 // Return true if this node points only to non-escaping allocations.
kvn@3651 2065 bool PointsToNode::non_escaping_allocation() {
kvn@3651 2066 if (is_JavaObject()) {
kvn@3651 2067 Node* n = ideal_node();
kvn@3651 2068 if (n->is_Allocate() || n->is_CallStaticJava()) {
kvn@3651 2069 return (escape_state() == PointsToNode::NoEscape);
kvn@3651 2070 } else {
kvn@3651 2071 return false;
kvn@3651 2072 }
kvn@3651 2073 }
kvn@3651 2074 assert(is_LocalVar(), "sanity");
kvn@3651 2075 // Check all java objects it points to.
kvn@3651 2076 for (EdgeIterator i(this); i.has_next(); i.next()) {
kvn@3651 2077 PointsToNode* e = i.get();
kvn@3651 2078 if (e->is_JavaObject()) {
kvn@3651 2079 Node* n = e->ideal_node();
kvn@3651 2080 if ((e->escape_state() != PointsToNode::NoEscape) ||
kvn@3651 2081 !(n->is_Allocate() || n->is_CallStaticJava())) {
kvn@3651 2082 return false;
kvn@3651 2083 }
kvn@3651 2084 }
kvn@3651 2085 }
kvn@3651 2086 return true;
kvn@3651 2087 }
kvn@3651 2088
kvn@3651 2089 // Return true if we know the node does not escape globally.
kvn@3651 2090 bool ConnectionGraph::not_global_escape(Node *n) {
kvn@3651 2091 assert(!_collecting, "should not call during graph construction");
kvn@3651 2092 // If the node was created after the escape computation we can't answer.
kvn@3651 2093 uint idx = n->_idx;
kvn@3651 2094 if (idx >= nodes_size()) {
kvn@3651 2095 return false;
kvn@3651 2096 }
kvn@3651 2097 PointsToNode* ptn = ptnode_adr(idx);
kvn@3651 2098 PointsToNode::EscapeState es = ptn->escape_state();
kvn@3651 2099 // If we have already computed a value, return it.
kvn@3651 2100 if (es >= PointsToNode::GlobalEscape)
kvn@3651 2101 return false;
kvn@3651 2102 if (ptn->is_JavaObject()) {
kvn@3651 2103 return true; // (es < PointsToNode::GlobalEscape);
kvn@3651 2104 }
kvn@3651 2105 assert(ptn->is_LocalVar(), "sanity");
kvn@3651 2106 // Check all java objects it points to.
kvn@3651 2107 for (EdgeIterator i(ptn); i.has_next(); i.next()) {
kvn@3651 2108 if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
kvn@3651 2109 return false;
kvn@3651 2110 }
kvn@3651 2111 return true;
kvn@3651 2112 }
kvn@3651 2113
kvn@3651 2114
kvn@3651 2115 // Helper functions
kvn@3651 2116
kvn@3651 2117 // Return true if this node points to specified node or nodes it points to.
kvn@3651 2118 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
kvn@3651 2119 if (is_JavaObject()) {
kvn@3651 2120 return (this == ptn);
kvn@3651 2121 }
kvn@4255 2122 assert(is_LocalVar() || is_Field(), "sanity");
kvn@3651 2123 for (EdgeIterator i(this); i.has_next(); i.next()) {
kvn@3651 2124 if (i.get() == ptn)
kvn@3651 2125 return true;
kvn@3651 2126 }
kvn@3651 2127 return false;
kvn@3651 2128 }
kvn@3651 2129
kvn@3651 2130 // Return true if one node points to an other.
kvn@3651 2131 bool PointsToNode::meet(PointsToNode* ptn) {
kvn@3651 2132 if (this == ptn) {
kvn@3651 2133 return true;
kvn@3651 2134 } else if (ptn->is_JavaObject()) {
kvn@3651 2135 return this->points_to(ptn->as_JavaObject());
kvn@3651 2136 } else if (this->is_JavaObject()) {
kvn@3651 2137 return ptn->points_to(this->as_JavaObject());
kvn@3651 2138 }
kvn@3651 2139 assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
kvn@3651 2140 int ptn_count = ptn->edge_count();
kvn@3651 2141 for (EdgeIterator i(this); i.has_next(); i.next()) {
kvn@3651 2142 PointsToNode* this_e = i.get();
kvn@3651 2143 for (int j = 0; j < ptn_count; j++) {
kvn@3651 2144 if (this_e == ptn->edge(j))
kvn@3651 2145 return true;
kvn@3651 2146 }
kvn@3651 2147 }
kvn@3651 2148 return false;
kvn@3651 2149 }
kvn@3651 2150
kvn@3651 2151 #ifdef ASSERT
kvn@3651 2152 // Return true if bases point to this java object.
kvn@3651 2153 bool FieldNode::has_base(JavaObjectNode* jobj) const {
kvn@3651 2154 for (BaseIterator i(this); i.has_next(); i.next()) {
kvn@3651 2155 if (i.get() == jobj)
kvn@3651 2156 return true;
kvn@3651 2157 }
kvn@3651 2158 return false;
kvn@3651 2159 }
kvn@3651 2160 #endif
kvn@3651 2161
kvn@500 2162 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
kvn@500 2163 const Type *adr_type = phase->type(adr);
kvn@500 2164 if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
kvn@500 2165 adr->in(AddPNode::Address)->is_Proj() &&
kvn@500 2166 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
kvn@500 2167 // We are computing a raw address for a store captured by an Initialize
kvn@500 2168 // compute an appropriate address type. AddP cases #3 and #5 (see below).
kvn@500 2169 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 2170 assert(offs != Type::OffsetBot ||
kvn@500 2171 adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
kvn@500 2172 "offset must be a constant or it is initialization of array");
kvn@500 2173 return offs;
kvn@500 2174 }
kvn@500 2175 const TypePtr *t_ptr = adr_type->isa_ptr();
duke@435 2176 assert(t_ptr != NULL, "must be a pointer type");
duke@435 2177 return t_ptr->offset();
duke@435 2178 }
duke@435 2179
kvn@3651 2180 Node* ConnectionGraph::get_addp_base(Node *addp) {
kvn@500 2181 assert(addp->is_AddP(), "must be AddP");
kvn@500 2182 //
kvn@500 2183 // AddP cases for Base and Address inputs:
kvn@500 2184 // case #1. Direct object's field reference:
kvn@500 2185 // Allocate
kvn@500 2186 // |
kvn@500 2187 // Proj #5 ( oop result )
kvn@500 2188 // |
kvn@500 2189 // CheckCastPP (cast to instance type)
kvn@500 2190 // | |
kvn@500 2191 // AddP ( base == address )
kvn@500 2192 //
kvn@500 2193 // case #2. Indirect object's field reference:
kvn@500 2194 // Phi
kvn@500 2195 // |
kvn@500 2196 // CastPP (cast to instance type)
kvn@500 2197 // | |
kvn@500 2198 // AddP ( base == address )
kvn@500 2199 //
kvn@500 2200 // case #3. Raw object's field reference for Initialize node:
kvn@500 2201 // Allocate
kvn@500 2202 // |
kvn@500 2203 // Proj #5 ( oop result )
kvn@500 2204 // top |
kvn@500 2205 // \ |
kvn@500 2206 // AddP ( base == top )
kvn@500 2207 //
kvn@500 2208 // case #4. Array's element reference:
kvn@500 2209 // {CheckCastPP | CastPP}
kvn@500 2210 // | | |
kvn@500 2211 // | AddP ( array's element offset )
kvn@500 2212 // | |
kvn@500 2213 // AddP ( array's offset )
kvn@500 2214 //
kvn@500 2215 // case #5. Raw object's field reference for arraycopy stub call:
kvn@500 2216 // The inline_native_clone() case when the arraycopy stub is called
kvn@500 2217 // after the allocation before Initialize and CheckCastPP nodes.
kvn@500 2218 // Allocate
kvn@500 2219 // |
kvn@500 2220 // Proj #5 ( oop result )
kvn@500 2221 // | |
kvn@500 2222 // AddP ( base == address )
kvn@500 2223 //
kvn@512 2224 // case #6. Constant Pool, ThreadLocal, CastX2P or
kvn@512 2225 // Raw object's field reference:
kvn@512 2226 // {ConP, ThreadLocal, CastX2P, raw Load}
kvn@500 2227 // top |
kvn@500 2228 // \ |
kvn@500 2229 // AddP ( base == top )
kvn@500 2230 //
kvn@512 2231 // case #7. Klass's field reference.
kvn@512 2232 // LoadKlass
kvn@512 2233 // | |
kvn@512 2234 // AddP ( base == address )
kvn@512 2235 //
kvn@599 2236 // case #8. narrow Klass's field reference.
kvn@599 2237 // LoadNKlass
kvn@599 2238 // |
kvn@599 2239 // DecodeN
kvn@599 2240 // | |
kvn@599 2241 // AddP ( base == address )
kvn@599 2242 //
kvn@3651 2243 Node *base = addp->in(AddPNode::Base);
kvn@3651 2244 if (base->uncast()->is_top()) { // The AddP case #3 and #6.
kvn@3651 2245 base = addp->in(AddPNode::Address);
kvn@1392 2246 while (base->is_AddP()) {
kvn@1392 2247 // Case #6 (unsafe access) may have several chained AddP nodes.
kvn@3651 2248 assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
kvn@3651 2249 base = base->in(AddPNode::Address);
kvn@1392 2250 }
kvn@3651 2251 Node* uncast_base = base->uncast();
kvn@3651 2252 int opcode = uncast_base->Opcode();
kvn@3651 2253 assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
roland@4159 2254 opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
kvn@5223 2255 (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
kvn@3651 2256 (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
duke@435 2257 }
kvn@500 2258 return base;
kvn@500 2259 }
kvn@500 2260
kvn@3651 2261 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
kvn@500 2262 assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
kvn@500 2263 Node* addp2 = addp->raw_out(0);
kvn@500 2264 if (addp->outcnt() == 1 && addp2->is_AddP() &&
kvn@500 2265 addp2->in(AddPNode::Base) == n &&
kvn@500 2266 addp2->in(AddPNode::Address) == addp) {
kvn@500 2267 assert(addp->in(AddPNode::Base) == n, "expecting the same base");
kvn@500 2268 //
kvn@500 2269 // Find array's offset to push it on worklist first and
kvn@500 2270 // as result process an array's element offset first (pushed second)
kvn@500 2271 // to avoid CastPP for the array's offset.
kvn@500 2272 // Otherwise the inserted CastPP (LocalVar) will point to what
kvn@500 2273 // the AddP (Field) points to. Which would be wrong since
kvn@500 2274 // the algorithm expects the CastPP has the same point as
kvn@500 2275 // as AddP's base CheckCastPP (LocalVar).
kvn@500 2276 //
kvn@500 2277 // ArrayAllocation
kvn@500 2278 // |
kvn@500 2279 // CheckCastPP
kvn@500 2280 // |
kvn@500 2281 // memProj (from ArrayAllocation CheckCastPP)
kvn@500 2282 // | ||
kvn@500 2283 // | || Int (element index)
kvn@500 2284 // | || | ConI (log(element size))
kvn@500 2285 // | || | /
kvn@500 2286 // | || LShift
kvn@500 2287 // | || /
kvn@500 2288 // | AddP (array's element offset)
kvn@500 2289 // | |
kvn@500 2290 // | | ConI (array's offset: #12(32-bits) or #24(64-bits))
kvn@500 2291 // | / /
kvn@500 2292 // AddP (array's offset)
kvn@500 2293 // |
kvn@500 2294 // Load/Store (memory operation on array's element)
kvn@500 2295 //
kvn@500 2296 return addp2;
kvn@500 2297 }
kvn@500 2298 return NULL;
duke@435 2299 }
duke@435 2300
duke@435 2301 //
duke@435 2302 // Adjust the type and inputs of an AddP which computes the
duke@435 2303 // address of a field of an instance
duke@435 2304 //
kvn@3651 2305 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
kvn@3651 2306 PhaseGVN* igvn = _igvn;
kvn@500 2307 const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
kvn@658 2308 assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
duke@435 2309 const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
kvn@500 2310 if (t == NULL) {
kvn@500 2311 // We are computing a raw address for a store captured by an Initialize
kvn@728 2312 // compute an appropriate address type (cases #3 and #5).
kvn@500 2313 assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
kvn@500 2314 assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
kvn@741 2315 intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 2316 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@500 2317 t = base_t->add_offset(offs)->is_oopptr();
kvn@500 2318 }
kvn@658 2319 int inst_id = base_t->instance_id();
kvn@658 2320 assert(!t->is_known_instance() || t->instance_id() == inst_id,
duke@435 2321 "old type must be non-instance or match new type");
kvn@728 2322
kvn@728 2323 // The type 't' could be subclass of 'base_t'.
kvn@728 2324 // As result t->offset() could be large then base_t's size and it will
kvn@728 2325 // cause the failure in add_offset() with narrow oops since TypeOopPtr()
kvn@728 2326 // constructor verifies correctness of the offset.
kvn@728 2327 //
twisti@1040 2328 // It could happened on subclass's branch (from the type profiling
kvn@728 2329 // inlining) which was not eliminated during parsing since the exactness
kvn@728 2330 // of the allocation type was not propagated to the subclass type check.
kvn@728 2331 //
kvn@1423 2332 // Or the type 't' could be not related to 'base_t' at all.
kvn@1423 2333 // It could happened when CHA type is different from MDO type on a dead path
kvn@1423 2334 // (for example, from instanceof check) which is not collapsed during parsing.
kvn@1423 2335 //
kvn@728 2336 // Do nothing for such AddP node and don't process its users since
kvn@728 2337 // this code branch will go away.
kvn@728 2338 //
kvn@728 2339 if (!t->is_known_instance() &&
kvn@1423 2340 !base_t->klass()->is_subtype_of(t->klass())) {
kvn@728 2341 return false; // bail out
kvn@728 2342 }
duke@435 2343 const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
kvn@1497 2344 // Do NOT remove the next line: ensure a new alias index is allocated
kvn@1497 2345 // for the instance type. Note: C++ will not remove it since the call
kvn@1497 2346 // has side effect.
duke@435 2347 int alias_idx = _compile->get_alias_index(tinst);
duke@435 2348 igvn->set_type(addp, tinst);
duke@435 2349 // record the allocation in the node map
kvn@3651 2350 set_map(addp, get_map(base->_idx));
kvn@688 2351 // Set addp's Base and Address to 'base'.
kvn@688 2352 Node *abase = addp->in(AddPNode::Base);
kvn@688 2353 Node *adr = addp->in(AddPNode::Address);
kvn@688 2354 if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
kvn@688 2355 adr->in(0)->_idx == (uint)inst_id) {
kvn@688 2356 // Skip AddP cases #3 and #5.
kvn@688 2357 } else {
kvn@688 2358 assert(!abase->is_top(), "sanity"); // AddP case #3
kvn@688 2359 if (abase != base) {
kvn@688 2360 igvn->hash_delete(addp);
kvn@688 2361 addp->set_req(AddPNode::Base, base);
kvn@688 2362 if (abase == adr) {
kvn@688 2363 addp->set_req(AddPNode::Address, base);
kvn@688 2364 } else {
kvn@688 2365 // AddP case #4 (adr is array's element offset AddP node)
kvn@688 2366 #ifdef ASSERT
kvn@688 2367 const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
kvn@688 2368 assert(adr->is_AddP() && atype != NULL &&
kvn@688 2369 atype->instance_id() == inst_id, "array's element offset should be processed first");
kvn@688 2370 #endif
kvn@688 2371 }
kvn@688 2372 igvn->hash_insert(addp);
duke@435 2373 }
duke@435 2374 }
kvn@500 2375 // Put on IGVN worklist since at least addp's type was changed above.
kvn@500 2376 record_for_optimizer(addp);
kvn@728 2377 return true;
duke@435 2378 }
duke@435 2379
duke@435 2380 //
duke@435 2381 // Create a new version of orig_phi if necessary. Returns either the newly
kvn@2741 2382 // created phi or an existing phi. Sets create_new to indicate whether a new
duke@435 2383 // phi was created. Cache the last newly created phi in the node map.
duke@435 2384 //
kvn@3651 2385 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, bool &new_created) {
duke@435 2386 Compile *C = _compile;
kvn@3651 2387 PhaseGVN* igvn = _igvn;
duke@435 2388 new_created = false;
duke@435 2389 int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
duke@435 2390 // nothing to do if orig_phi is bottom memory or matches alias_idx
kvn@500 2391 if (phi_alias_idx == alias_idx) {
duke@435 2392 return orig_phi;
duke@435 2393 }
kvn@1286 2394 // Have we recently created a Phi for this alias index?
duke@435 2395 PhiNode *result = get_map_phi(orig_phi->_idx);
duke@435 2396 if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
duke@435 2397 return result;
duke@435 2398 }
kvn@1286 2399 // Previous check may fail when the same wide memory Phi was split into Phis
kvn@1286 2400 // for different memory slices. Search all Phis for this region.
kvn@1286 2401 if (result != NULL) {
kvn@1286 2402 Node* region = orig_phi->in(0);
kvn@1286 2403 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
kvn@1286 2404 Node* phi = region->fast_out(i);
kvn@1286 2405 if (phi->is_Phi() &&
kvn@1286 2406 C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
kvn@1286 2407 assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
kvn@1286 2408 return phi->as_Phi();
kvn@1286 2409 }
kvn@1286 2410 }
kvn@1286 2411 }
vlivanov@7385 2412 if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
kvn@473 2413 if (C->do_escape_analysis() == true && !C->failing()) {
kvn@473 2414 // Retry compilation without escape analysis.
kvn@473 2415 // If this is the first failure, the sentinel string will "stick"
kvn@473 2416 // to the Compile object, and the C2Compiler will see it and retry.
kvn@473 2417 C->record_failure(C2Compiler::retry_no_escape_analysis());
kvn@473 2418 }
kvn@473 2419 return NULL;
kvn@473 2420 }
duke@435 2421 orig_phi_worklist.append_if_missing(orig_phi);
kvn@500 2422 const TypePtr *atype = C->get_adr_type(alias_idx);
duke@435 2423 result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
kvn@1286 2424 C->copy_node_notes_to(result, orig_phi);
duke@435 2425 igvn->set_type(result, result->bottom_type());
duke@435 2426 record_for_optimizer(result);
kvn@3651 2427 set_map(orig_phi, result);
duke@435 2428 new_created = true;
duke@435 2429 return result;
duke@435 2430 }
duke@435 2431
duke@435 2432 //
kvn@2741 2433 // Return a new version of Memory Phi "orig_phi" with the inputs having the
duke@435 2434 // specified alias index.
duke@435 2435 //
kvn@3651 2436 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist) {
duke@435 2437 assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
duke@435 2438 Compile *C = _compile;
kvn@3651 2439 PhaseGVN* igvn = _igvn;
duke@435 2440 bool new_phi_created;
kvn@3651 2441 PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
duke@435 2442 if (!new_phi_created) {
duke@435 2443 return result;
duke@435 2444 }
duke@435 2445 GrowableArray<PhiNode *> phi_list;
duke@435 2446 GrowableArray<uint> cur_input;
duke@435 2447 PhiNode *phi = orig_phi;
duke@435 2448 uint idx = 1;
duke@435 2449 bool finished = false;
duke@435 2450 while(!finished) {
duke@435 2451 while (idx < phi->req()) {
kvn@3651 2452 Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
duke@435 2453 if (mem != NULL && mem->is_Phi()) {
kvn@3651 2454 PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
duke@435 2455 if (new_phi_created) {
duke@435 2456 // found an phi for which we created a new split, push current one on worklist and begin
duke@435 2457 // processing new one
duke@435 2458 phi_list.push(phi);
duke@435 2459 cur_input.push(idx);
duke@435 2460 phi = mem->as_Phi();
kvn@500 2461 result = newphi;
duke@435 2462 idx = 1;
duke@435 2463 continue;
duke@435 2464 } else {
kvn@500 2465 mem = newphi;
duke@435 2466 }
duke@435 2467 }
kvn@473 2468 if (C->failing()) {
kvn@473 2469 return NULL;
kvn@473 2470 }
duke@435 2471 result->set_req(idx++, mem);
duke@435 2472 }
duke@435 2473 #ifdef ASSERT
duke@435 2474 // verify that the new Phi has an input for each input of the original
duke@435 2475 assert( phi->req() == result->req(), "must have same number of inputs.");
duke@435 2476 assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
kvn@500 2477 #endif
kvn@500 2478 // Check if all new phi's inputs have specified alias index.
kvn@500 2479 // Otherwise use old phi.
duke@435 2480 for (uint i = 1; i < phi->req(); i++) {
kvn@500 2481 Node* in = result->in(i);
kvn@500 2482 assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
duke@435 2483 }
duke@435 2484 // we have finished processing a Phi, see if there are any more to do
duke@435 2485 finished = (phi_list.length() == 0 );
duke@435 2486 if (!finished) {
duke@435 2487 phi = phi_list.pop();
duke@435 2488 idx = cur_input.pop();
kvn@500 2489 PhiNode *prev_result = get_map_phi(phi->_idx);
kvn@500 2490 prev_result->set_req(idx++, result);
kvn@500 2491 result = prev_result;
duke@435 2492 }
duke@435 2493 }
duke@435 2494 return result;
duke@435 2495 }
duke@435 2496
kvn@500 2497 //
kvn@500 2498 // The next methods are derived from methods in MemNode.
kvn@500 2499 //
kvn@3651 2500 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
kvn@500 2501 Node *mem = mmem;
never@2170 2502 // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
kvn@500 2503 // means an array I have not precisely typed yet. Do not do any
kvn@500 2504 // alias stuff with it any time soon.
kvn@3651 2505 if (toop->base() != Type::AnyPtr &&
never@2170 2506 !(toop->klass() != NULL &&
never@2170 2507 toop->klass()->is_java_lang_Object() &&
kvn@3651 2508 toop->offset() == Type::OffsetBot)) {
kvn@500 2509 mem = mmem->memory_at(alias_idx);
kvn@500 2510 // Update input if it is progress over what we have now
kvn@500 2511 }
kvn@500 2512 return mem;
kvn@500 2513 }
kvn@500 2514
kvn@500 2515 //
kvn@1536 2516 // Move memory users to their memory slices.
kvn@1536 2517 //
kvn@3651 2518 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *> &orig_phis) {
kvn@1536 2519 Compile* C = _compile;
kvn@3651 2520 PhaseGVN* igvn = _igvn;
kvn@1536 2521 const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
kvn@1536 2522 assert(tp != NULL, "ptr type");
kvn@1536 2523 int alias_idx = C->get_alias_index(tp);
kvn@1536 2524 int general_idx = C->get_general_index(alias_idx);
kvn@1536 2525
kvn@1536 2526 // Move users first
kvn@1536 2527 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@1536 2528 Node* use = n->fast_out(i);
kvn@1536 2529 if (use->is_MergeMem()) {
kvn@1536 2530 MergeMemNode* mmem = use->as_MergeMem();
kvn@1536 2531 assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
kvn@1536 2532 if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
kvn@1536 2533 continue; // Nothing to do
kvn@1536 2534 }
kvn@1536 2535 // Replace previous general reference to mem node.
kvn@1536 2536 uint orig_uniq = C->unique();
kvn@3651 2537 Node* m = find_inst_mem(n, general_idx, orig_phis);
kvn@1536 2538 assert(orig_uniq == C->unique(), "no new nodes");
kvn@1536 2539 mmem->set_memory_at(general_idx, m);
kvn@1536 2540 --imax;
kvn@1536 2541 --i;
kvn@1536 2542 } else if (use->is_MemBar()) {
kvn@1536 2543 assert(!use->is_Initialize(), "initializing stores should not be moved");
kvn@1536 2544 if (use->req() > MemBarNode::Precedent &&
kvn@1536 2545 use->in(MemBarNode::Precedent) == n) {
kvn@1536 2546 // Don't move related membars.
kvn@1536 2547 record_for_optimizer(use);
kvn@1536 2548 continue;
kvn@1536 2549 }
kvn@1536 2550 tp = use->as_MemBar()->adr_type()->isa_ptr();
kvn@1536 2551 if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
kvn@1536 2552 alias_idx == general_idx) {
kvn@1536 2553 continue; // Nothing to do
kvn@1536 2554 }
kvn@1536 2555 // Move to general memory slice.
kvn@1536 2556 uint orig_uniq = C->unique();
kvn@3651 2557 Node* m = find_inst_mem(n, general_idx, orig_phis);
kvn@1536 2558 assert(orig_uniq == C->unique(), "no new nodes");
kvn@1536 2559 igvn->hash_delete(use);
kvn@1536 2560 imax -= use->replace_edge(n, m);
kvn@1536 2561 igvn->hash_insert(use);
kvn@1536 2562 record_for_optimizer(use);
kvn@1536 2563 --i;
kvn@1536 2564 #ifdef ASSERT
kvn@1536 2565 } else if (use->is_Mem()) {
kvn@1536 2566 if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
kvn@1536 2567 // Don't move related cardmark.
kvn@1536 2568 continue;
kvn@1536 2569 }
kvn@1536 2570 // Memory nodes should have new memory input.
kvn@1536 2571 tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
kvn@1536 2572 assert(tp != NULL, "ptr type");
kvn@1536 2573 int idx = C->get_alias_index(tp);
kvn@1536 2574 assert(get_map(use->_idx) != NULL || idx == alias_idx,
kvn@1536 2575 "Following memory nodes should have new memory input or be on the same memory slice");
kvn@1536 2576 } else if (use->is_Phi()) {
kvn@1536 2577 // Phi nodes should be split and moved already.
kvn@1536 2578 tp = use->as_Phi()->adr_type()->isa_ptr();
kvn@1536 2579 assert(tp != NULL, "ptr type");
kvn@1536 2580 int idx = C->get_alias_index(tp);
kvn@1536 2581 assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
kvn@1536 2582 } else {
kvn@1536 2583 use->dump();
kvn@1536 2584 assert(false, "should not be here");
kvn@1536 2585 #endif
kvn@1536 2586 }
kvn@1536 2587 }
kvn@1536 2588 }
kvn@1536 2589
kvn@1536 2590 //
kvn@500 2591 // Search memory chain of "mem" to find a MemNode whose address
kvn@500 2592 // is the specified alias index.
kvn@500 2593 //
kvn@3651 2594 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *> &orig_phis) {
kvn@500 2595 if (orig_mem == NULL)
kvn@500 2596 return orig_mem;
kvn@3651 2597 Compile* C = _compile;
kvn@3651 2598 PhaseGVN* igvn = _igvn;
never@2170 2599 const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
never@2170 2600 bool is_instance = (toop != NULL) && toop->is_known_instance();
kvn@688 2601 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@500 2602 Node *prev = NULL;
kvn@500 2603 Node *result = orig_mem;
kvn@500 2604 while (prev != result) {
kvn@500 2605 prev = result;
kvn@688 2606 if (result == start_mem)
twisti@1040 2607 break; // hit one of our sentinels
kvn@500 2608 if (result->is_Mem()) {
kvn@3651 2609 const Type *at = igvn->type(result->in(MemNode::Address));
kvn@2741 2610 if (at == Type::TOP)
kvn@2741 2611 break; // Dead
kvn@2741 2612 assert (at->isa_ptr() != NULL, "pointer type required.");
kvn@2741 2613 int idx = C->get_alias_index(at->is_ptr());
kvn@2741 2614 if (idx == alias_idx)
kvn@2741 2615 break; // Found
kvn@2741 2616 if (!is_instance && (at->isa_oopptr() == NULL ||
kvn@2741 2617 !at->is_oopptr()->is_known_instance())) {
kvn@2741 2618 break; // Do not skip store to general memory slice.
kvn@500 2619 }
kvn@688 2620 result = result->in(MemNode::Memory);
kvn@500 2621 }
kvn@500 2622 if (!is_instance)
kvn@500 2623 continue; // don't search further for non-instance types
kvn@500 2624 // skip over a call which does not affect this memory slice
kvn@500 2625 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
kvn@500 2626 Node *proj_in = result->in(0);
never@2170 2627 if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
twisti@1040 2628 break; // hit one of our sentinels
kvn@688 2629 } else if (proj_in->is_Call()) {
kvn@500 2630 CallNode *call = proj_in->as_Call();
kvn@3651 2631 if (!call->may_modify(toop, igvn)) {
kvn@500 2632 result = call->in(TypeFunc::Memory);
kvn@500 2633 }
kvn@500 2634 } else if (proj_in->is_Initialize()) {
kvn@500 2635 AllocateNode* alloc = proj_in->as_Initialize()->allocation();
kvn@500 2636 // Stop if this is the initialization for the object instance which
kvn@500 2637 // which contains this memory slice, otherwise skip over it.
never@2170 2638 if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
kvn@500 2639 result = proj_in->in(TypeFunc::Memory);
kvn@500 2640 }
kvn@500 2641 } else if (proj_in->is_MemBar()) {
kvn@500 2642 result = proj_in->in(TypeFunc::Memory);
kvn@500 2643 }
kvn@500 2644 } else if (result->is_MergeMem()) {
kvn@500 2645 MergeMemNode *mmem = result->as_MergeMem();
never@2170 2646 result = step_through_mergemem(mmem, alias_idx, toop);
kvn@500 2647 if (result == mmem->base_memory()) {
kvn@500 2648 // Didn't find instance memory, search through general slice recursively.
kvn@500 2649 result = mmem->memory_at(C->get_general_index(alias_idx));
kvn@3651 2650 result = find_inst_mem(result, alias_idx, orig_phis);
kvn@500 2651 if (C->failing()) {
kvn@500 2652 return NULL;
kvn@500 2653 }
kvn@500 2654 mmem->set_memory_at(alias_idx, result);
kvn@500 2655 }
kvn@500 2656 } else if (result->is_Phi() &&
kvn@500 2657 C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
kvn@3651 2658 Node *un = result->as_Phi()->unique_input(igvn);
kvn@500 2659 if (un != NULL) {
kvn@1536 2660 orig_phis.append_if_missing(result->as_Phi());
kvn@500 2661 result = un;
kvn@500 2662 } else {
kvn@500 2663 break;
kvn@500 2664 }
kvn@1535 2665 } else if (result->is_ClearArray()) {
kvn@3651 2666 if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
kvn@1535 2667 // Can not bypass initialization of the instance
kvn@1535 2668 // we are looking for.
kvn@1535 2669 break;
kvn@1535 2670 }
kvn@1535 2671 // Otherwise skip it (the call updated 'result' value).
kvn@1019 2672 } else if (result->Opcode() == Op_SCMemProj) {
kvn@4479 2673 Node* mem = result->in(0);
kvn@4479 2674 Node* adr = NULL;
kvn@4479 2675 if (mem->is_LoadStore()) {
kvn@4479 2676 adr = mem->in(MemNode::Address);
kvn@4479 2677 } else {
kvn@4479 2678 assert(mem->Opcode() == Op_EncodeISOArray, "sanity");
kvn@4479 2679 adr = mem->in(3); // Memory edge corresponds to destination array
kvn@4479 2680 }
kvn@4479 2681 const Type *at = igvn->type(adr);
kvn@1019 2682 if (at != Type::TOP) {
kvn@1019 2683 assert (at->isa_ptr() != NULL, "pointer type required.");
kvn@1019 2684 int idx = C->get_alias_index(at->is_ptr());
kvn@1019 2685 assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
kvn@1019 2686 break;
kvn@1019 2687 }
kvn@4479 2688 result = mem->in(MemNode::Memory);
kvn@500 2689 }
kvn@500 2690 }
kvn@682 2691 if (result->is_Phi()) {
kvn@500 2692 PhiNode *mphi = result->as_Phi();
kvn@500 2693 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
kvn@500 2694 const TypePtr *t = mphi->adr_type();
kvn@2741 2695 if (!is_instance) {
kvn@682 2696 // Push all non-instance Phis on the orig_phis worklist to update inputs
kvn@682 2697 // during Phase 4 if needed.
kvn@682 2698 orig_phis.append_if_missing(mphi);
kvn@2741 2699 } else if (C->get_alias_index(t) != alias_idx) {
kvn@2741 2700 // Create a new Phi with the specified alias index type.
kvn@3651 2701 result = split_memory_phi(mphi, alias_idx, orig_phis);
kvn@500 2702 }
kvn@500 2703 }
kvn@500 2704 // the result is either MemNode, PhiNode, InitializeNode.
kvn@500 2705 return result;
kvn@500 2706 }
kvn@500 2707
duke@435 2708 //
duke@435 2709 // Convert the types of unescaped object to instance types where possible,
duke@435 2710 // propagate the new type information through the graph, and update memory
duke@435 2711 // edges and MergeMem inputs to reflect the new type.
duke@435 2712 //
duke@435 2713 // We start with allocations (and calls which may be allocations) on alloc_worklist.
duke@435 2714 // The processing is done in 4 phases:
duke@435 2715 //
duke@435 2716 // Phase 1: Process possible allocations from alloc_worklist. Create instance
duke@435 2717 // types for the CheckCastPP for allocations where possible.
duke@435 2718 // Propagate the the new types through users as follows:
duke@435 2719 // casts and Phi: push users on alloc_worklist
duke@435 2720 // AddP: cast Base and Address inputs to the instance type
duke@435 2721 // push any AddP users on alloc_worklist and push any memnode
duke@435 2722 // users onto memnode_worklist.
duke@435 2723 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 2724 // search the Memory chain for a store with the appropriate type
duke@435 2725 // address type. If a Phi is found, create a new version with
twisti@1040 2726 // the appropriate memory slices from each of the Phi inputs.
duke@435 2727 // For stores, process the users as follows:
duke@435 2728 // MemNode: push on memnode_worklist
duke@435 2729 // MergeMem: push on mergemem_worklist
duke@435 2730 // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice
duke@435 2731 // moving the first node encountered of each instance type to the
duke@435 2732 // the input corresponding to its alias index.
duke@435 2733 // appropriate memory slice.
duke@435 2734 // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes.
duke@435 2735 //
duke@435 2736 // In the following example, the CheckCastPP nodes are the cast of allocation
duke@435 2737 // results and the allocation of node 29 is unescaped and eligible to be an
duke@435 2738 // instance type.
duke@435 2739 //
duke@435 2740 // We start with:
duke@435 2741 //
duke@435 2742 // 7 Parm #memory
duke@435 2743 // 10 ConI "12"
duke@435 2744 // 19 CheckCastPP "Foo"
duke@435 2745 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 2746 // 29 CheckCastPP "Foo"
duke@435 2747 // 30 AddP _ 29 29 10 Foo+12 alias_index=4
duke@435 2748 //
duke@435 2749 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 2750 // 50 StoreP 35 40 30 ... alias_index=4
duke@435 2751 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 2752 // 70 LoadP _ 60 30 ... alias_index=4
duke@435 2753 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 2754 // 90 LoadP _ 80 30 ... alias_index=4
duke@435 2755 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 2756 //
duke@435 2757 //
duke@435 2758 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
duke@435 2759 // and creating a new alias index for node 30. This gives:
duke@435 2760 //
duke@435 2761 // 7 Parm #memory
duke@435 2762 // 10 ConI "12"
duke@435 2763 // 19 CheckCastPP "Foo"
duke@435 2764 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 2765 // 29 CheckCastPP "Foo" iid=24
duke@435 2766 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 2767 //
duke@435 2768 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 2769 // 50 StoreP 35 40 30 ... alias_index=6
duke@435 2770 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 2771 // 70 LoadP _ 60 30 ... alias_index=6
duke@435 2772 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 2773 // 90 LoadP _ 80 30 ... alias_index=6
duke@435 2774 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 2775 //
duke@435 2776 // In phase 2, new memory inputs are computed for the loads and stores,
duke@435 2777 // And a new version of the phi is created. In phase 4, the inputs to
duke@435 2778 // node 80 are updated and then the memory nodes are updated with the
duke@435 2779 // values computed in phase 2. This results in:
duke@435 2780 //
duke@435 2781 // 7 Parm #memory
duke@435 2782 // 10 ConI "12"
duke@435 2783 // 19 CheckCastPP "Foo"
duke@435 2784 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 2785 // 29 CheckCastPP "Foo" iid=24
duke@435 2786 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 2787 //
duke@435 2788 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 2789 // 50 StoreP 35 7 30 ... alias_index=6
duke@435 2790 // 60 StoreP 45 40 20 ... alias_index=4
duke@435 2791 // 70 LoadP _ 50 30 ... alias_index=6
duke@435 2792 // 80 Phi 75 40 60 Memory alias_index=4
duke@435 2793 // 120 Phi 75 50 50 Memory alias_index=6
duke@435 2794 // 90 LoadP _ 120 30 ... alias_index=6
duke@435 2795 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 2796 //
duke@435 2797 void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist) {
duke@435 2798 GrowableArray<Node *> memnode_worklist;
duke@435 2799 GrowableArray<PhiNode *> orig_phis;
kvn@2276 2800 PhaseIterGVN *igvn = _igvn;
duke@435 2801 uint new_index_start = (uint) _compile->num_alias_types();
kvn@1536 2802 Arena* arena = Thread::current()->resource_area();
kvn@1536 2803 VectorSet visited(arena);
kvn@3651 2804 ideal_nodes.clear(); // Reset for use with set_map/get_map.
kvn@3651 2805 uint unique_old = _compile->unique();
kvn@500 2806
kvn@500 2807 // Phase 1: Process possible allocations from alloc_worklist.
kvn@500 2808 // Create instance types for the CheckCastPP for allocations where possible.
kvn@679 2809 //
kvn@679 2810 // (Note: don't forget to change the order of the second AddP node on
kvn@679 2811 // the alloc_worklist if the order of the worklist processing is changed,
kvn@679 2812 // see the comment in find_second_addp().)
kvn@679 2813 //
duke@435 2814 while (alloc_worklist.length() != 0) {
duke@435 2815 Node *n = alloc_worklist.pop();
duke@435 2816 uint ni = n->_idx;
duke@435 2817 if (n->is_Call()) {
duke@435 2818 CallNode *alloc = n->as_Call();
duke@435 2819 // copy escape information to call node
kvn@679 2820 PointsToNode* ptn = ptnode_adr(alloc->_idx);
kvn@3651 2821 PointsToNode::EscapeState es = ptn->escape_state();
kvn@500 2822 // We have an allocation or call which returns a Java object,
kvn@500 2823 // see if it is unescaped.
kvn@3254 2824 if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
duke@435 2825 continue;
kvn@1219 2826 // Find CheckCastPP for the allocate or for the return value of a call
kvn@1219 2827 n = alloc->result_cast();
kvn@1219 2828 if (n == NULL) { // No uses except Initialize node
kvn@1219 2829 if (alloc->is_Allocate()) {
kvn@1219 2830 // Set the scalar_replaceable flag for allocation
kvn@1219 2831 // so it could be eliminated if it has no uses.
kvn@1219 2832 alloc->as_Allocate()->_is_scalar_replaceable = true;
kvn@1219 2833 }
kvn@5110 2834 if (alloc->is_CallStaticJava()) {
kvn@5110 2835 // Set the scalar_replaceable flag for boxing method
kvn@5110 2836 // so it could be eliminated if it has no uses.
kvn@5110 2837 alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
kvn@5110 2838 }
kvn@1219 2839 continue;
kvn@474 2840 }
kvn@1219 2841 if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
kvn@1219 2842 assert(!alloc->is_Allocate(), "allocation should have unique type");
kvn@500 2843 continue;
kvn@1219 2844 }
kvn@1219 2845
kvn@500 2846 // The inline code for Object.clone() casts the allocation result to
kvn@682 2847 // java.lang.Object and then to the actual type of the allocated
kvn@500 2848 // object. Detect this case and use the second cast.
kvn@682 2849 // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
kvn@682 2850 // the allocation result is cast to java.lang.Object and then
kvn@682 2851 // to the actual Array type.
kvn@500 2852 if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
kvn@682 2853 && (alloc->is_AllocateArray() ||
kvn@682 2854 igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
kvn@500 2855 Node *cast2 = NULL;
kvn@500 2856 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 2857 Node *use = n->fast_out(i);
kvn@500 2858 if (use->is_CheckCastPP()) {
kvn@500 2859 cast2 = use;
kvn@500 2860 break;
kvn@500 2861 }
kvn@500 2862 }
kvn@500 2863 if (cast2 != NULL) {
kvn@500 2864 n = cast2;
kvn@500 2865 } else {
kvn@1219 2866 // Non-scalar replaceable if the allocation type is unknown statically
kvn@1219 2867 // (reflection allocation), the object can't be restored during
kvn@1219 2868 // deoptimization without precise type.
kvn@500 2869 continue;
kvn@500 2870 }
kvn@500 2871 }
vlivanov@7286 2872
vlivanov@7286 2873 const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
vlivanov@7286 2874 if (t == NULL)
vlivanov@7286 2875 continue; // not a TypeOopPtr
vlivanov@7286 2876 if (!t->klass_is_exact())
vlivanov@7286 2877 continue; // not an unique type
vlivanov@7286 2878
kvn@1219 2879 if (alloc->is_Allocate()) {
kvn@1219 2880 // Set the scalar_replaceable flag for allocation
kvn@1219 2881 // so it could be eliminated.
kvn@1219 2882 alloc->as_Allocate()->_is_scalar_replaceable = true;
kvn@1219 2883 }
kvn@5110 2884 if (alloc->is_CallStaticJava()) {
kvn@5110 2885 // Set the scalar_replaceable flag for boxing method
kvn@5110 2886 // so it could be eliminated.
kvn@5110 2887 alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
kvn@5110 2888 }
kvn@3651 2889 set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
kvn@682 2890 // in order for an object to be scalar-replaceable, it must be:
kvn@500 2891 // - a direct allocation (not a call returning an object)
kvn@500 2892 // - non-escaping
kvn@500 2893 // - eligible to be a unique type
kvn@500 2894 // - not determined to be ineligible by escape analysis
kvn@3651 2895 set_map(alloc, n);
kvn@3651 2896 set_map(n, alloc);
vlivanov@7286 2897 const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
duke@435 2898 igvn->hash_delete(n);
duke@435 2899 igvn->set_type(n, tinst);
duke@435 2900 n->raise_bottom_type(tinst);
duke@435 2901 igvn->hash_insert(n);
kvn@500 2902 record_for_optimizer(n);
kvn@3254 2903 if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
kvn@598 2904
kvn@598 2905 // First, put on the worklist all Field edges from Connection Graph
kvn@598 2906 // which is more accurate then putting immediate users from Ideal Graph.
kvn@3651 2907 for (EdgeIterator e(ptn); e.has_next(); e.next()) {
kvn@3651 2908 PointsToNode* tgt = e.get();
kvn@3651 2909 Node* use = tgt->ideal_node();
kvn@3651 2910 assert(tgt->is_Field() && use->is_AddP(),
kvn@598 2911 "only AddP nodes are Field edges in CG");
kvn@598 2912 if (use->outcnt() > 0) { // Don't process dead nodes
kvn@598 2913 Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
kvn@598 2914 if (addp2 != NULL) {
kvn@598 2915 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@598 2916 alloc_worklist.append_if_missing(addp2);
kvn@598 2917 }
kvn@598 2918 alloc_worklist.append_if_missing(use);
kvn@598 2919 }
kvn@598 2920 }
kvn@598 2921
kvn@500 2922 // An allocation may have an Initialize which has raw stores. Scan
kvn@500 2923 // the users of the raw allocation result and push AddP users
kvn@500 2924 // on alloc_worklist.
kvn@500 2925 Node *raw_result = alloc->proj_out(TypeFunc::Parms);
kvn@500 2926 assert (raw_result != NULL, "must have an allocation result");
kvn@500 2927 for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
kvn@500 2928 Node *use = raw_result->fast_out(i);
kvn@500 2929 if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
kvn@500 2930 Node* addp2 = find_second_addp(use, raw_result);
kvn@500 2931 if (addp2 != NULL) {
kvn@500 2932 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@500 2933 alloc_worklist.append_if_missing(addp2);
kvn@500 2934 }
kvn@500 2935 alloc_worklist.append_if_missing(use);
kvn@1535 2936 } else if (use->is_MemBar()) {
kvn@500 2937 memnode_worklist.append_if_missing(use);
kvn@500 2938 }
kvn@500 2939 }
kvn@500 2940 }
duke@435 2941 } else if (n->is_AddP()) {
kvn@3651 2942 JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
kvn@3651 2943 if (jobj == NULL || jobj == phantom_obj) {
kvn@3651 2944 #ifdef ASSERT
kvn@3651 2945 ptnode_adr(get_addp_base(n)->_idx)->dump();
kvn@3651 2946 ptnode_adr(n->_idx)->dump();
kvn@3651 2947 assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
kvn@3651 2948 #endif
kvn@3651 2949 _compile->record_failure(C2Compiler::retry_no_escape_analysis());
kvn@3651 2950 return;
kvn@1535 2951 }
kvn@3651 2952 Node *base = get_map(jobj->idx()); // CheckCastPP node
kvn@3651 2953 if (!split_AddP(n, base)) continue; // wrong type from dead path
kvn@500 2954 } else if (n->is_Phi() ||
kvn@500 2955 n->is_CheckCastPP() ||
kvn@603 2956 n->is_EncodeP() ||
kvn@603 2957 n->is_DecodeN() ||
kvn@500 2958 (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
duke@435 2959 if (visited.test_set(n->_idx)) {
duke@435 2960 assert(n->is_Phi(), "loops only through Phi's");
duke@435 2961 continue; // already processed
duke@435 2962 }
kvn@3651 2963 JavaObjectNode* jobj = unique_java_object(n);
kvn@3651 2964 if (jobj == NULL || jobj == phantom_obj) {
kvn@3651 2965 #ifdef ASSERT
kvn@3651 2966 ptnode_adr(n->_idx)->dump();
kvn@3651 2967 assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
kvn@3651 2968 #endif
kvn@3651 2969 _compile->record_failure(C2Compiler::retry_no_escape_analysis());
kvn@3651 2970 return;
kvn@3651 2971 } else {
kvn@3651 2972 Node *val = get_map(jobj->idx()); // CheckCastPP node
duke@435 2973 TypeNode *tn = n->as_Type();
kvn@3651 2974 const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
kvn@658 2975 assert(tinst != NULL && tinst->is_known_instance() &&
kvn@3651 2976 tinst->instance_id() == jobj->idx() , "instance type expected.");
kvn@598 2977
kvn@598 2978 const Type *tn_type = igvn->type(tn);
kvn@658 2979 const TypeOopPtr *tn_t;
kvn@658 2980 if (tn_type->isa_narrowoop()) {
kvn@658 2981 tn_t = tn_type->make_ptr()->isa_oopptr();
kvn@658 2982 } else {
kvn@658 2983 tn_t = tn_type->isa_oopptr();
kvn@658 2984 }
kvn@1535 2985 if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
kvn@598 2986 if (tn_type->isa_narrowoop()) {
kvn@598 2987 tn_type = tinst->make_narrowoop();
kvn@598 2988 } else {
kvn@598 2989 tn_type = tinst;
kvn@598 2990 }
duke@435 2991 igvn->hash_delete(tn);
kvn@598 2992 igvn->set_type(tn, tn_type);
kvn@598 2993 tn->set_type(tn_type);
duke@435 2994 igvn->hash_insert(tn);
kvn@500 2995 record_for_optimizer(n);
kvn@728 2996 } else {
kvn@1535 2997 assert(tn_type == TypePtr::NULL_PTR ||
kvn@1535 2998 tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
kvn@1535 2999 "unexpected type");
kvn@1535 3000 continue; // Skip dead path with different type
duke@435 3001 }
duke@435 3002 }
duke@435 3003 } else {
kvn@1535 3004 debug_only(n->dump();)
kvn@1535 3005 assert(false, "EA: unexpected node");
duke@435 3006 continue;
duke@435 3007 }
kvn@1535 3008 // push allocation's users on appropriate worklist
duke@435 3009 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 3010 Node *use = n->fast_out(i);
duke@435 3011 if(use->is_Mem() && use->in(MemNode::Address) == n) {
kvn@1535 3012 // Load/store to instance's field
kvn@500 3013 memnode_worklist.append_if_missing(use);
kvn@1535 3014 } else if (use->is_MemBar()) {
kvn@5110 3015 if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
kvn@5110 3016 memnode_worklist.append_if_missing(use);
kvn@5110 3017 }
kvn@500 3018 } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
kvn@500 3019 Node* addp2 = find_second_addp(use, n);
kvn@500 3020 if (addp2 != NULL) {
kvn@500 3021 alloc_worklist.append_if_missing(addp2);
kvn@500 3022 }
kvn@500 3023 alloc_worklist.append_if_missing(use);
kvn@500 3024 } else if (use->is_Phi() ||
kvn@500 3025 use->is_CheckCastPP() ||
roland@4159 3026 use->is_EncodeNarrowPtr() ||
roland@4159 3027 use->is_DecodeNarrowPtr() ||
kvn@500 3028 (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
kvn@500 3029 alloc_worklist.append_if_missing(use);
kvn@1535 3030 #ifdef ASSERT
kvn@1535 3031 } else if (use->is_Mem()) {
kvn@1535 3032 assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
kvn@1535 3033 } else if (use->is_MergeMem()) {
kvn@1535 3034 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 3035 } else if (use->is_SafePoint()) {
kvn@1535 3036 // Look for MergeMem nodes for calls which reference unique allocation
kvn@1535 3037 // (through CheckCastPP nodes) even for debug info.
kvn@1535 3038 Node* m = use->in(TypeFunc::Memory);
kvn@1535 3039 if (m->is_MergeMem()) {
kvn@1535 3040 assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 3041 }
kvn@4479 3042 } else if (use->Opcode() == Op_EncodeISOArray) {
kvn@4479 3043 if (use->in(MemNode::Memory) == n || use->in(3) == n) {
kvn@4479 3044 // EncodeISOArray overwrites destination array
kvn@4479 3045 memnode_worklist.append_if_missing(use);
kvn@4479 3046 }
kvn@1535 3047 } else {
kvn@1535 3048 uint op = use->Opcode();
kvn@1535 3049 if (!(op == Op_CmpP || op == Op_Conv2B ||
kvn@1535 3050 op == Op_CastP2X || op == Op_StoreCM ||
kvn@1535 3051 op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
kvn@1535 3052 op == Op_StrEquals || op == Op_StrIndexOf)) {
kvn@1535 3053 n->dump();
kvn@1535 3054 use->dump();
kvn@1535 3055 assert(false, "EA: missing allocation reference path");
kvn@1535 3056 }
kvn@1535 3057 #endif
duke@435 3058 }
duke@435 3059 }
duke@435 3060
duke@435 3061 }
kvn@500 3062 // New alias types were created in split_AddP().
duke@435 3063 uint new_index_end = (uint) _compile->num_alias_types();
kvn@3651 3064 assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
duke@435 3065
duke@435 3066 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 3067 // compute new values for Memory inputs (the Memory inputs are not
duke@435 3068 // actually updated until phase 4.)
duke@435 3069 if (memnode_worklist.length() == 0)
duke@435 3070 return; // nothing to do
duke@435 3071 while (memnode_worklist.length() != 0) {
duke@435 3072 Node *n = memnode_worklist.pop();
kvn@500 3073 if (visited.test_set(n->_idx))
kvn@500 3074 continue;
kvn@1535 3075 if (n->is_Phi() || n->is_ClearArray()) {
kvn@1535 3076 // we don't need to do anything, but the users must be pushed
kvn@1535 3077 } else if (n->is_MemBar()) { // Initialize, MemBar nodes
kvn@1535 3078 // we don't need to do anything, but the users must be pushed
kvn@1535 3079 n = n->as_MemBar()->proj_out(TypeFunc::Memory);
kvn@500 3080 if (n == NULL)
duke@435 3081 continue;
kvn@4479 3082 } else if (n->Opcode() == Op_EncodeISOArray) {
kvn@4479 3083 // get the memory projection
kvn@4479 3084 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@4479 3085 Node *use = n->fast_out(i);
kvn@4479 3086 if (use->Opcode() == Op_SCMemProj) {
kvn@4479 3087 n = use;
kvn@4479 3088 break;
kvn@4479 3089 }
kvn@4479 3090 }
kvn@4479 3091 assert(n->Opcode() == Op_SCMemProj, "memory projection required");
duke@435 3092 } else {
duke@435 3093 assert(n->is_Mem(), "memory node required.");
duke@435 3094 Node *addr = n->in(MemNode::Address);
duke@435 3095 const Type *addr_t = igvn->type(addr);
duke@435 3096 if (addr_t == Type::TOP)
duke@435 3097 continue;
duke@435 3098 assert (addr_t->isa_ptr() != NULL, "pointer type required.");
duke@435 3099 int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
kvn@500 3100 assert ((uint)alias_idx < new_index_end, "wrong alias index");
kvn@3651 3101 Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
kvn@473 3102 if (_compile->failing()) {
kvn@473 3103 return;
kvn@473 3104 }
kvn@500 3105 if (mem != n->in(MemNode::Memory)) {
kvn@1536 3106 // We delay the memory edge update since we need old one in
kvn@1536 3107 // MergeMem code below when instances memory slices are separated.
kvn@3651 3108 set_map(n, mem);
kvn@500 3109 }
duke@435 3110 if (n->is_Load()) {
duke@435 3111 continue; // don't push users
duke@435 3112 } else if (n->is_LoadStore()) {
duke@435 3113 // get the memory projection
duke@435 3114 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 3115 Node *use = n->fast_out(i);
duke@435 3116 if (use->Opcode() == Op_SCMemProj) {
duke@435 3117 n = use;
duke@435 3118 break;
duke@435 3119 }
duke@435 3120 }
duke@435 3121 assert(n->Opcode() == Op_SCMemProj, "memory projection required");
duke@435 3122 }
duke@435 3123 }
duke@435 3124 // push user on appropriate worklist
duke@435 3125 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 3126 Node *use = n->fast_out(i);
kvn@1535 3127 if (use->is_Phi() || use->is_ClearArray()) {
kvn@500 3128 memnode_worklist.append_if_missing(use);
kvn@4479 3129 } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
kvn@1535 3130 if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
kvn@1535 3131 continue;
kvn@500 3132 memnode_worklist.append_if_missing(use);
kvn@1535 3133 } else if (use->is_MemBar()) {
kvn@5110 3134 if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
kvn@5110 3135 memnode_worklist.append_if_missing(use);
kvn@5110 3136 }
kvn@1535 3137 #ifdef ASSERT
kvn@1535 3138 } else if(use->is_Mem()) {
kvn@1535 3139 assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
duke@435 3140 } else if (use->is_MergeMem()) {
kvn@1535 3141 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@4479 3142 } else if (use->Opcode() == Op_EncodeISOArray) {
kvn@4479 3143 if (use->in(MemNode::Memory) == n || use->in(3) == n) {
kvn@4479 3144 // EncodeISOArray overwrites destination array
kvn@4479 3145 memnode_worklist.append_if_missing(use);
kvn@4479 3146 }
kvn@1535 3147 } else {
kvn@1535 3148 uint op = use->Opcode();
kvn@1535 3149 if (!(op == Op_StoreCM ||
kvn@1535 3150 (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
kvn@1535 3151 strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
kvn@1535 3152 op == Op_AryEq || op == Op_StrComp ||
kvn@1535 3153 op == Op_StrEquals || op == Op_StrIndexOf)) {
kvn@1535 3154 n->dump();
kvn@1535 3155 use->dump();
kvn@1535 3156 assert(false, "EA: missing memory path");
kvn@1535 3157 }
kvn@1535 3158 #endif
duke@435 3159 }
duke@435 3160 }
duke@435 3161 }
duke@435 3162
kvn@500 3163 // Phase 3: Process MergeMem nodes from mergemem_worklist.
kvn@1535 3164 // Walk each memory slice moving the first node encountered of each
kvn@500 3165 // instance type to the the input corresponding to its alias index.
kvn@1535 3166 uint length = _mergemem_worklist.length();
kvn@1535 3167 for( uint next = 0; next < length; ++next ) {
kvn@1535 3168 MergeMemNode* nmm = _mergemem_worklist.at(next);
kvn@1535 3169 assert(!visited.test_set(nmm->_idx), "should not be visited before");
duke@435 3170 // Note: we don't want to use MergeMemStream here because we only want to
kvn@1535 3171 // scan inputs which exist at the start, not ones we add during processing.
kvn@1535 3172 // Note 2: MergeMem may already contains instance memory slices added
kvn@1535 3173 // during find_inst_mem() call when memory nodes were processed above.
kvn@1535 3174 igvn->hash_delete(nmm);
duke@435 3175 uint nslices = nmm->req();
duke@435 3176 for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
kvn@500 3177 Node* mem = nmm->in(i);
kvn@500 3178 Node* cur = NULL;
duke@435 3179 if (mem == NULL || mem->is_top())
duke@435 3180 continue;
kvn@1536 3181 // First, update mergemem by moving memory nodes to corresponding slices
kvn@1536 3182 // if their type became more precise since this mergemem was created.
duke@435 3183 while (mem->is_Mem()) {
duke@435 3184 const Type *at = igvn->type(mem->in(MemNode::Address));
duke@435 3185 if (at != Type::TOP) {
duke@435 3186 assert (at->isa_ptr() != NULL, "pointer type required.");
duke@435 3187 uint idx = (uint)_compile->get_alias_index(at->is_ptr());
duke@435 3188 if (idx == i) {
duke@435 3189 if (cur == NULL)
duke@435 3190 cur = mem;
duke@435 3191 } else {
duke@435 3192 if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
duke@435 3193 nmm->set_memory_at(idx, mem);
duke@435 3194 }
duke@435 3195 }
duke@435 3196 }
duke@435 3197 mem = mem->in(MemNode::Memory);
duke@435 3198 }
duke@435 3199 nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
kvn@500 3200 // Find any instance of the current type if we haven't encountered
kvn@1536 3201 // already a memory slice of the instance along the memory chain.
kvn@500 3202 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@500 3203 if((uint)_compile->get_general_index(ni) == i) {
kvn@500 3204 Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
kvn@500 3205 if (nmm->is_empty_memory(m)) {
kvn@3651 3206 Node* result = find_inst_mem(mem, ni, orig_phis);
kvn@500 3207 if (_compile->failing()) {
kvn@500 3208 return;
kvn@500 3209 }
kvn@500 3210 nmm->set_memory_at(ni, result);
kvn@500 3211 }
kvn@500 3212 }
kvn@500 3213 }
kvn@500 3214 }
kvn@500 3215 // Find the rest of instances values
kvn@500 3216 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@1536 3217 const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
kvn@500 3218 Node* result = step_through_mergemem(nmm, ni, tinst);
kvn@500 3219 if (result == nmm->base_memory()) {
kvn@500 3220 // Didn't find instance memory, search through general slice recursively.
kvn@1536 3221 result = nmm->memory_at(_compile->get_general_index(ni));
kvn@3651 3222 result = find_inst_mem(result, ni, orig_phis);
kvn@500 3223 if (_compile->failing()) {
kvn@500 3224 return;
kvn@500 3225 }
kvn@500 3226 nmm->set_memory_at(ni, result);
kvn@500 3227 }
kvn@500 3228 }
kvn@500 3229 igvn->hash_insert(nmm);
kvn@500 3230 record_for_optimizer(nmm);
duke@435 3231 }
duke@435 3232
kvn@500 3233 // Phase 4: Update the inputs of non-instance memory Phis and
kvn@500 3234 // the Memory input of memnodes
duke@435 3235 // First update the inputs of any non-instance Phi's from
duke@435 3236 // which we split out an instance Phi. Note we don't have
duke@435 3237 // to recursively process Phi's encounted on the input memory
duke@435 3238 // chains as is done in split_memory_phi() since they will
duke@435 3239 // also be processed here.
kvn@682 3240 for (int j = 0; j < orig_phis.length(); j++) {
kvn@682 3241 PhiNode *phi = orig_phis.at(j);
duke@435 3242 int alias_idx = _compile->get_alias_index(phi->adr_type());
duke@435 3243 igvn->hash_delete(phi);
duke@435 3244 for (uint i = 1; i < phi->req(); i++) {
duke@435 3245 Node *mem = phi->in(i);
kvn@3651 3246 Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
kvn@500 3247 if (_compile->failing()) {
kvn@500 3248 return;
kvn@500 3249 }
duke@435 3250 if (mem != new_mem) {
duke@435 3251 phi->set_req(i, new_mem);
duke@435 3252 }
duke@435 3253 }
duke@435 3254 igvn->hash_insert(phi);
duke@435 3255 record_for_optimizer(phi);
duke@435 3256 }
duke@435 3257
duke@435 3258 // Update the memory inputs of MemNodes with the value we computed
kvn@1536 3259 // in Phase 2 and move stores memory users to corresponding memory slices.
kvn@2810 3260 // Disable memory split verification code until the fix for 6984348.
kvn@2810 3261 // Currently it produces false negative results since it does not cover all cases.
kvn@2810 3262 #if 0 // ifdef ASSERT
kvn@2556 3263 visited.Reset();
kvn@1536 3264 Node_Stack old_mems(arena, _compile->unique() >> 2);
kvn@1536 3265 #endif
kvn@3651 3266 for (uint i = 0; i < ideal_nodes.size(); i++) {
kvn@3651 3267 Node* n = ideal_nodes.at(i);
kvn@3651 3268 Node* nmem = get_map(n->_idx);
kvn@3651 3269 assert(nmem != NULL, "sanity");
kvn@3651 3270 if (n->is_Mem()) {
kvn@2810 3271 #if 0 // ifdef ASSERT
kvn@3651 3272 Node* old_mem = n->in(MemNode::Memory);
kvn@3651 3273 if (!visited.test_set(old_mem->_idx)) {
kvn@3651 3274 old_mems.push(old_mem, old_mem->outcnt());
kvn@3651 3275 }
kvn@1536 3276 #endif
kvn@3651 3277 assert(n->in(MemNode::Memory) != nmem, "sanity");
kvn@3651 3278 if (!n->is_Load()) {
kvn@3651 3279 // Move memory users of a store first.
kvn@3651 3280 move_inst_mem(n, orig_phis);
duke@435 3281 }
kvn@3651 3282 // Now update memory input
kvn@3651 3283 igvn->hash_delete(n);
kvn@3651 3284 n->set_req(MemNode::Memory, nmem);
kvn@3651 3285 igvn->hash_insert(n);
kvn@3651 3286 record_for_optimizer(n);
kvn@3651 3287 } else {
kvn@3651 3288 assert(n->is_Allocate() || n->is_CheckCastPP() ||
kvn@3651 3289 n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
duke@435 3290 }
duke@435 3291 }
kvn@2810 3292 #if 0 // ifdef ASSERT
kvn@1536 3293 // Verify that memory was split correctly
kvn@1536 3294 while (old_mems.is_nonempty()) {
kvn@1536 3295 Node* old_mem = old_mems.node();
kvn@1536 3296 uint old_cnt = old_mems.index();
kvn@1536 3297 old_mems.pop();
kvn@2810 3298 assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
kvn@1536 3299 }
kvn@1536 3300 #endif
duke@435 3301 }
duke@435 3302
kvn@3651 3303 #ifndef PRODUCT
kvn@3651 3304 static const char *node_type_names[] = {
kvn@3651 3305 "UnknownType",
kvn@3651 3306 "JavaObject",
kvn@3651 3307 "LocalVar",
kvn@3651 3308 "Field",
kvn@3651 3309 "Arraycopy"
kvn@3651 3310 };
kvn@3651 3311
kvn@3651 3312 static const char *esc_names[] = {
kvn@3651 3313 "UnknownEscape",
kvn@3651 3314 "NoEscape",
kvn@3651 3315 "ArgEscape",
kvn@3651 3316 "GlobalEscape"
kvn@3651 3317 };
kvn@3651 3318
kvn@3651 3319 void PointsToNode::dump(bool print_state) const {
kvn@3651 3320 NodeType nt = node_type();
kvn@3651 3321 tty->print("%s ", node_type_names[(int) nt]);
kvn@3651 3322 if (print_state) {
kvn@3651 3323 EscapeState es = escape_state();
kvn@3651 3324 EscapeState fields_es = fields_escape_state();
kvn@3651 3325 tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
kvn@3651 3326 if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
kvn@4255 3327 tty->print("NSR ");
kvn@3651 3328 }
kvn@3651 3329 if (is_Field()) {
kvn@3651 3330 FieldNode* f = (FieldNode*)this;
kvn@4255 3331 if (f->is_oop())
kvn@4255 3332 tty->print("oop ");
kvn@4255 3333 if (f->offset() > 0)
kvn@4255 3334 tty->print("+%d ", f->offset());
kvn@3651 3335 tty->print("(");
kvn@3651 3336 for (BaseIterator i(f); i.has_next(); i.next()) {
kvn@3651 3337 PointsToNode* b = i.get();
kvn@3651 3338 tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
kvn@679 3339 }
kvn@3651 3340 tty->print(" )");
kvn@679 3341 }
kvn@3651 3342 tty->print("[");
kvn@3651 3343 for (EdgeIterator i(this); i.has_next(); i.next()) {
kvn@3651 3344 PointsToNode* e = i.get();
kvn@3651 3345 tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
kvn@3651 3346 }
kvn@3651 3347 tty->print(" [");
kvn@3651 3348 for (UseIterator i(this); i.has_next(); i.next()) {
kvn@3651 3349 PointsToNode* u = i.get();
kvn@3651 3350 bool is_base = false;
kvn@3651 3351 if (PointsToNode::is_base_use(u)) {
kvn@3651 3352 is_base = true;
kvn@3651 3353 u = PointsToNode::get_use_node(u)->as_Field();
kvn@3651 3354 }
kvn@3651 3355 tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
kvn@3651 3356 }
kvn@3651 3357 tty->print(" ]] ");
kvn@3651 3358 if (_node == NULL)
kvn@3651 3359 tty->print_cr("<null>");
kvn@3651 3360 else
kvn@3651 3361 _node->dump();
kvn@679 3362 }
kvn@679 3363
kvn@3651 3364 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
duke@435 3365 bool first = true;
kvn@3651 3366 int ptnodes_length = ptnodes_worklist.length();
kvn@3651 3367 for (int i = 0; i < ptnodes_length; i++) {
kvn@3651 3368 PointsToNode *ptn = ptnodes_worklist.at(i);
kvn@3651 3369 if (ptn == NULL || !ptn->is_JavaObject())
duke@435 3370 continue;
kvn@3651 3371 PointsToNode::EscapeState es = ptn->escape_state();
kvn@5110 3372 if ((es != PointsToNode::NoEscape) && !Verbose) {
kvn@5110 3373 continue;
kvn@5110 3374 }
kvn@5110 3375 Node* n = ptn->ideal_node();
kvn@5110 3376 if (n->is_Allocate() || (n->is_CallStaticJava() &&
kvn@5110 3377 n->as_CallStaticJava()->is_boxing_method())) {
kvn@500 3378 if (first) {
kvn@500 3379 tty->cr();
kvn@500 3380 tty->print("======== Connection graph for ");
kvn@679 3381 _compile->method()->print_short_name();
kvn@500 3382 tty->cr();
kvn@500 3383 first = false;
kvn@500 3384 }
kvn@500 3385 ptn->dump();
kvn@3651 3386 // Print all locals and fields which reference this allocation
kvn@3651 3387 for (UseIterator j(ptn); j.has_next(); j.next()) {
kvn@3651 3388 PointsToNode* use = j.get();
kvn@3651 3389 if (use->is_LocalVar()) {
kvn@3651 3390 use->dump(Verbose);
kvn@3651 3391 } else if (Verbose) {
kvn@3651 3392 use->dump();
kvn@500 3393 }
kvn@500 3394 }
kvn@500 3395 tty->cr();
duke@435 3396 }
duke@435 3397 }
duke@435 3398 }
duke@435 3399 #endif

mercurial