src/share/vm/opto/escape.cpp

Tue, 15 Sep 2009 19:03:39 -0700

author
kvn
date
Tue, 15 Sep 2009 19:03:39 -0700
changeset 1423
7e309ecb83ce
parent 1392
159d56b94894
child 1497
dcdcc8c16e20
permissions
-rw-r--r--

6879362: assert(!klass_is_exact(),"only non-exact klass")
Summary: Do nothing for AddP node which has type not related to the type of allocated object.
Reviewed-by: never

duke@435 1 /*
xdono@1279 2 * Copyright 2005-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_escape.cpp.incl"
duke@435 27
duke@435 28 void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
duke@435 29 uint v = (targIdx << EdgeShift) + ((uint) et);
duke@435 30 if (_edges == NULL) {
duke@435 31 Arena *a = Compile::current()->comp_arena();
duke@435 32 _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
duke@435 33 }
duke@435 34 _edges->append_if_missing(v);
duke@435 35 }
duke@435 36
duke@435 37 void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
duke@435 38 uint v = (targIdx << EdgeShift) + ((uint) et);
duke@435 39
duke@435 40 _edges->remove(v);
duke@435 41 }
duke@435 42
duke@435 43 #ifndef PRODUCT
kvn@512 44 static const char *node_type_names[] = {
duke@435 45 "UnknownType",
duke@435 46 "JavaObject",
duke@435 47 "LocalVar",
duke@435 48 "Field"
duke@435 49 };
duke@435 50
kvn@512 51 static const char *esc_names[] = {
duke@435 52 "UnknownEscape",
kvn@500 53 "NoEscape",
kvn@500 54 "ArgEscape",
kvn@500 55 "GlobalEscape"
duke@435 56 };
duke@435 57
kvn@512 58 static const char *edge_type_suffix[] = {
duke@435 59 "?", // UnknownEdge
duke@435 60 "P", // PointsToEdge
duke@435 61 "D", // DeferredEdge
duke@435 62 "F" // FieldEdge
duke@435 63 };
duke@435 64
kvn@688 65 void PointsToNode::dump(bool print_state) const {
duke@435 66 NodeType nt = node_type();
kvn@688 67 tty->print("%s ", node_type_names[(int) nt]);
kvn@688 68 if (print_state) {
kvn@688 69 EscapeState es = escape_state();
kvn@688 70 tty->print("%s %s ", esc_names[(int) es], _scalar_replaceable ? "":"NSR");
kvn@688 71 }
kvn@688 72 tty->print("[[");
duke@435 73 for (uint i = 0; i < edge_count(); i++) {
duke@435 74 tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
duke@435 75 }
duke@435 76 tty->print("]] ");
duke@435 77 if (_node == NULL)
duke@435 78 tty->print_cr("<null>");
duke@435 79 else
duke@435 80 _node->dump();
duke@435 81 }
duke@435 82 #endif
duke@435 83
kvn@679 84 ConnectionGraph::ConnectionGraph(Compile * C) :
kvn@679 85 _nodes(C->comp_arena(), C->unique(), C->unique(), PointsToNode()),
kvn@679 86 _processed(C->comp_arena()),
kvn@679 87 _collecting(true),
kvn@679 88 _compile(C),
kvn@679 89 _node_map(C->comp_arena()) {
kvn@679 90
kvn@688 91 _phantom_object = C->top()->_idx,
kvn@688 92 add_node(C->top(), PointsToNode::JavaObject, PointsToNode::GlobalEscape,true);
kvn@688 93
kvn@688 94 // Add ConP(#NULL) and ConN(#NULL) nodes.
kvn@688 95 PhaseGVN* igvn = C->initial_gvn();
kvn@688 96 Node* oop_null = igvn->zerocon(T_OBJECT);
kvn@688 97 _oop_null = oop_null->_idx;
kvn@688 98 assert(_oop_null < C->unique(), "should be created already");
kvn@688 99 add_node(oop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
kvn@688 100
kvn@688 101 if (UseCompressedOops) {
kvn@688 102 Node* noop_null = igvn->zerocon(T_NARROWOOP);
kvn@688 103 _noop_null = noop_null->_idx;
kvn@688 104 assert(_noop_null < C->unique(), "should be created already");
kvn@688 105 add_node(noop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
kvn@688 106 }
duke@435 107 }
duke@435 108
duke@435 109 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
duke@435 110 PointsToNode *f = ptnode_adr(from_i);
duke@435 111 PointsToNode *t = ptnode_adr(to_i);
duke@435 112
duke@435 113 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 114 assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
duke@435 115 assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
duke@435 116 f->add_edge(to_i, PointsToNode::PointsToEdge);
duke@435 117 }
duke@435 118
duke@435 119 void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
duke@435 120 PointsToNode *f = ptnode_adr(from_i);
duke@435 121 PointsToNode *t = ptnode_adr(to_i);
duke@435 122
duke@435 123 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 124 assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
duke@435 125 assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
duke@435 126 // don't add a self-referential edge, this can occur during removal of
duke@435 127 // deferred edges
duke@435 128 if (from_i != to_i)
duke@435 129 f->add_edge(to_i, PointsToNode::DeferredEdge);
duke@435 130 }
duke@435 131
kvn@500 132 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
kvn@500 133 const Type *adr_type = phase->type(adr);
kvn@500 134 if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
kvn@500 135 adr->in(AddPNode::Address)->is_Proj() &&
kvn@500 136 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
kvn@500 137 // We are computing a raw address for a store captured by an Initialize
kvn@500 138 // compute an appropriate address type. AddP cases #3 and #5 (see below).
kvn@500 139 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 140 assert(offs != Type::OffsetBot ||
kvn@500 141 adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
kvn@500 142 "offset must be a constant or it is initialization of array");
kvn@500 143 return offs;
kvn@500 144 }
kvn@500 145 const TypePtr *t_ptr = adr_type->isa_ptr();
duke@435 146 assert(t_ptr != NULL, "must be a pointer type");
duke@435 147 return t_ptr->offset();
duke@435 148 }
duke@435 149
duke@435 150 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
duke@435 151 PointsToNode *f = ptnode_adr(from_i);
duke@435 152 PointsToNode *t = ptnode_adr(to_i);
duke@435 153
duke@435 154 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 155 assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
duke@435 156 assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
duke@435 157 assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
duke@435 158 t->set_offset(offset);
duke@435 159
duke@435 160 f->add_edge(to_i, PointsToNode::FieldEdge);
duke@435 161 }
duke@435 162
duke@435 163 void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
duke@435 164 PointsToNode *npt = ptnode_adr(ni);
duke@435 165 PointsToNode::EscapeState old_es = npt->escape_state();
duke@435 166 if (es > old_es)
duke@435 167 npt->set_escape_state(es);
duke@435 168 }
duke@435 169
kvn@500 170 void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
kvn@500 171 PointsToNode::EscapeState es, bool done) {
kvn@500 172 PointsToNode* ptadr = ptnode_adr(n->_idx);
kvn@500 173 ptadr->_node = n;
kvn@500 174 ptadr->set_node_type(nt);
kvn@500 175
kvn@500 176 // inline set_escape_state(idx, es);
kvn@500 177 PointsToNode::EscapeState old_es = ptadr->escape_state();
kvn@500 178 if (es > old_es)
kvn@500 179 ptadr->set_escape_state(es);
kvn@500 180
kvn@500 181 if (done)
kvn@500 182 _processed.set(n->_idx);
kvn@500 183 }
kvn@500 184
duke@435 185 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n, PhaseTransform *phase) {
duke@435 186 uint idx = n->_idx;
duke@435 187 PointsToNode::EscapeState es;
duke@435 188
kvn@500 189 // If we are still collecting or there were no non-escaping allocations
kvn@500 190 // we don't know the answer yet
kvn@679 191 if (_collecting)
duke@435 192 return PointsToNode::UnknownEscape;
duke@435 193
duke@435 194 // if the node was created after the escape computation, return
duke@435 195 // UnknownEscape
kvn@679 196 if (idx >= nodes_size())
duke@435 197 return PointsToNode::UnknownEscape;
duke@435 198
kvn@679 199 es = ptnode_adr(idx)->escape_state();
duke@435 200
duke@435 201 // if we have already computed a value, return it
kvn@895 202 if (es != PointsToNode::UnknownEscape &&
kvn@895 203 ptnode_adr(idx)->node_type() == PointsToNode::JavaObject)
duke@435 204 return es;
duke@435 205
kvn@679 206 // PointsTo() calls n->uncast() which can return a new ideal node.
kvn@679 207 if (n->uncast()->_idx >= nodes_size())
kvn@679 208 return PointsToNode::UnknownEscape;
kvn@679 209
duke@435 210 // compute max escape state of anything this node could point to
duke@435 211 VectorSet ptset(Thread::current()->resource_area());
duke@435 212 PointsTo(ptset, n, phase);
kvn@500 213 for(VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i) {
duke@435 214 uint pt = i.elem;
kvn@679 215 PointsToNode::EscapeState pes = ptnode_adr(pt)->escape_state();
duke@435 216 if (pes > es)
duke@435 217 es = pes;
duke@435 218 }
duke@435 219 // cache the computed escape state
duke@435 220 assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
kvn@679 221 ptnode_adr(idx)->set_escape_state(es);
duke@435 222 return es;
duke@435 223 }
duke@435 224
duke@435 225 void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n, PhaseTransform *phase) {
duke@435 226 VectorSet visited(Thread::current()->resource_area());
duke@435 227 GrowableArray<uint> worklist;
duke@435 228
kvn@559 229 #ifdef ASSERT
kvn@559 230 Node *orig_n = n;
kvn@559 231 #endif
kvn@559 232
kvn@500 233 n = n->uncast();
kvn@679 234 PointsToNode* npt = ptnode_adr(n->_idx);
duke@435 235
duke@435 236 // If we have a JavaObject, return just that object
kvn@679 237 if (npt->node_type() == PointsToNode::JavaObject) {
duke@435 238 ptset.set(n->_idx);
duke@435 239 return;
duke@435 240 }
kvn@559 241 #ifdef ASSERT
kvn@679 242 if (npt->_node == NULL) {
kvn@559 243 if (orig_n != n)
kvn@559 244 orig_n->dump();
kvn@559 245 n->dump();
kvn@679 246 assert(npt->_node != NULL, "unregistered node");
kvn@559 247 }
kvn@559 248 #endif
duke@435 249 worklist.push(n->_idx);
duke@435 250 while(worklist.length() > 0) {
duke@435 251 int ni = worklist.pop();
kvn@679 252 if (visited.test_set(ni))
kvn@679 253 continue;
duke@435 254
kvn@679 255 PointsToNode* pn = ptnode_adr(ni);
kvn@679 256 // ensure that all inputs of a Phi have been processed
kvn@679 257 assert(!_collecting || !pn->_node->is_Phi() || _processed.test(ni),"");
kvn@679 258
kvn@679 259 int edges_processed = 0;
kvn@679 260 uint e_cnt = pn->edge_count();
kvn@679 261 for (uint e = 0; e < e_cnt; e++) {
kvn@679 262 uint etgt = pn->edge_target(e);
kvn@679 263 PointsToNode::EdgeType et = pn->edge_type(e);
kvn@679 264 if (et == PointsToNode::PointsToEdge) {
kvn@679 265 ptset.set(etgt);
kvn@679 266 edges_processed++;
kvn@679 267 } else if (et == PointsToNode::DeferredEdge) {
kvn@679 268 worklist.push(etgt);
kvn@679 269 edges_processed++;
kvn@679 270 } else {
kvn@679 271 assert(false,"neither PointsToEdge or DeferredEdge");
duke@435 272 }
kvn@679 273 }
kvn@679 274 if (edges_processed == 0) {
kvn@679 275 // no deferred or pointsto edges found. Assume the value was set
kvn@679 276 // outside this method. Add the phantom object to the pointsto set.
kvn@679 277 ptset.set(_phantom_object);
duke@435 278 }
duke@435 279 }
duke@435 280 }
duke@435 281
kvn@536 282 void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited) {
kvn@536 283 // This method is most expensive during ConnectionGraph construction.
kvn@536 284 // Reuse vectorSet and an additional growable array for deferred edges.
kvn@536 285 deferred_edges->clear();
kvn@536 286 visited->Clear();
duke@435 287
kvn@679 288 visited->set(ni);
duke@435 289 PointsToNode *ptn = ptnode_adr(ni);
duke@435 290
kvn@536 291 // Mark current edges as visited and move deferred edges to separate array.
kvn@679 292 for (uint i = 0; i < ptn->edge_count(); ) {
kvn@500 293 uint t = ptn->edge_target(i);
kvn@536 294 #ifdef ASSERT
kvn@536 295 assert(!visited->test_set(t), "expecting no duplications");
kvn@536 296 #else
kvn@536 297 visited->set(t);
kvn@536 298 #endif
kvn@536 299 if (ptn->edge_type(i) == PointsToNode::DeferredEdge) {
kvn@536 300 ptn->remove_edge(t, PointsToNode::DeferredEdge);
kvn@536 301 deferred_edges->append(t);
kvn@559 302 } else {
kvn@559 303 i++;
kvn@536 304 }
kvn@536 305 }
kvn@536 306 for (int next = 0; next < deferred_edges->length(); ++next) {
kvn@536 307 uint t = deferred_edges->at(next);
kvn@500 308 PointsToNode *ptt = ptnode_adr(t);
kvn@679 309 uint e_cnt = ptt->edge_count();
kvn@679 310 for (uint e = 0; e < e_cnt; e++) {
kvn@679 311 uint etgt = ptt->edge_target(e);
kvn@679 312 if (visited->test_set(etgt))
kvn@536 313 continue;
kvn@679 314
kvn@679 315 PointsToNode::EdgeType et = ptt->edge_type(e);
kvn@679 316 if (et == PointsToNode::PointsToEdge) {
kvn@679 317 add_pointsto_edge(ni, etgt);
kvn@679 318 if(etgt == _phantom_object) {
kvn@679 319 // Special case - field set outside (globally escaping).
kvn@679 320 ptn->set_escape_state(PointsToNode::GlobalEscape);
kvn@679 321 }
kvn@679 322 } else if (et == PointsToNode::DeferredEdge) {
kvn@679 323 deferred_edges->append(etgt);
kvn@679 324 } else {
kvn@679 325 assert(false,"invalid connection graph");
duke@435 326 }
duke@435 327 }
duke@435 328 }
duke@435 329 }
duke@435 330
duke@435 331
duke@435 332 // Add an edge to node given by "to_i" from any field of adr_i whose offset
duke@435 333 // matches "offset" A deferred edge is added if to_i is a LocalVar, and
duke@435 334 // a pointsto edge is added if it is a JavaObject
duke@435 335
duke@435 336 void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
kvn@679 337 PointsToNode* an = ptnode_adr(adr_i);
kvn@679 338 PointsToNode* to = ptnode_adr(to_i);
kvn@679 339 bool deferred = (to->node_type() == PointsToNode::LocalVar);
duke@435 340
kvn@679 341 for (uint fe = 0; fe < an->edge_count(); fe++) {
kvn@679 342 assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
kvn@679 343 int fi = an->edge_target(fe);
kvn@679 344 PointsToNode* pf = ptnode_adr(fi);
kvn@679 345 int po = pf->offset();
duke@435 346 if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
duke@435 347 if (deferred)
duke@435 348 add_deferred_edge(fi, to_i);
duke@435 349 else
duke@435 350 add_pointsto_edge(fi, to_i);
duke@435 351 }
duke@435 352 }
duke@435 353 }
duke@435 354
kvn@500 355 // Add a deferred edge from node given by "from_i" to any field of adr_i
kvn@500 356 // whose offset matches "offset".
duke@435 357 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
kvn@679 358 PointsToNode* an = ptnode_adr(adr_i);
kvn@679 359 for (uint fe = 0; fe < an->edge_count(); fe++) {
kvn@679 360 assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
kvn@679 361 int fi = an->edge_target(fe);
kvn@679 362 PointsToNode* pf = ptnode_adr(fi);
kvn@679 363 int po = pf->offset();
kvn@679 364 if (pf->edge_count() == 0) {
duke@435 365 // we have not seen any stores to this field, assume it was set outside this method
duke@435 366 add_pointsto_edge(fi, _phantom_object);
duke@435 367 }
duke@435 368 if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
duke@435 369 add_deferred_edge(from_i, fi);
duke@435 370 }
duke@435 371 }
duke@435 372 }
duke@435 373
kvn@500 374 // Helper functions
kvn@500 375
kvn@500 376 static Node* get_addp_base(Node *addp) {
kvn@500 377 assert(addp->is_AddP(), "must be AddP");
kvn@500 378 //
kvn@500 379 // AddP cases for Base and Address inputs:
kvn@500 380 // case #1. Direct object's field reference:
kvn@500 381 // Allocate
kvn@500 382 // |
kvn@500 383 // Proj #5 ( oop result )
kvn@500 384 // |
kvn@500 385 // CheckCastPP (cast to instance type)
kvn@500 386 // | |
kvn@500 387 // AddP ( base == address )
kvn@500 388 //
kvn@500 389 // case #2. Indirect object's field reference:
kvn@500 390 // Phi
kvn@500 391 // |
kvn@500 392 // CastPP (cast to instance type)
kvn@500 393 // | |
kvn@500 394 // AddP ( base == address )
kvn@500 395 //
kvn@500 396 // case #3. Raw object's field reference for Initialize node:
kvn@500 397 // Allocate
kvn@500 398 // |
kvn@500 399 // Proj #5 ( oop result )
kvn@500 400 // top |
kvn@500 401 // \ |
kvn@500 402 // AddP ( base == top )
kvn@500 403 //
kvn@500 404 // case #4. Array's element reference:
kvn@500 405 // {CheckCastPP | CastPP}
kvn@500 406 // | | |
kvn@500 407 // | AddP ( array's element offset )
kvn@500 408 // | |
kvn@500 409 // AddP ( array's offset )
kvn@500 410 //
kvn@500 411 // case #5. Raw object's field reference for arraycopy stub call:
kvn@500 412 // The inline_native_clone() case when the arraycopy stub is called
kvn@500 413 // after the allocation before Initialize and CheckCastPP nodes.
kvn@500 414 // Allocate
kvn@500 415 // |
kvn@500 416 // Proj #5 ( oop result )
kvn@500 417 // | |
kvn@500 418 // AddP ( base == address )
kvn@500 419 //
kvn@512 420 // case #6. Constant Pool, ThreadLocal, CastX2P or
kvn@512 421 // Raw object's field reference:
kvn@512 422 // {ConP, ThreadLocal, CastX2P, raw Load}
kvn@500 423 // top |
kvn@500 424 // \ |
kvn@500 425 // AddP ( base == top )
kvn@500 426 //
kvn@512 427 // case #7. Klass's field reference.
kvn@512 428 // LoadKlass
kvn@512 429 // | |
kvn@512 430 // AddP ( base == address )
kvn@512 431 //
kvn@599 432 // case #8. narrow Klass's field reference.
kvn@599 433 // LoadNKlass
kvn@599 434 // |
kvn@599 435 // DecodeN
kvn@599 436 // | |
kvn@599 437 // AddP ( base == address )
kvn@599 438 //
kvn@500 439 Node *base = addp->in(AddPNode::Base)->uncast();
kvn@500 440 if (base->is_top()) { // The AddP case #3 and #6.
kvn@500 441 base = addp->in(AddPNode::Address)->uncast();
kvn@1392 442 while (base->is_AddP()) {
kvn@1392 443 // Case #6 (unsafe access) may have several chained AddP nodes.
kvn@1392 444 assert(base->in(AddPNode::Base)->is_top(), "expected unsafe access address only");
kvn@1392 445 base = base->in(AddPNode::Address)->uncast();
kvn@1392 446 }
kvn@500 447 assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
kvn@603 448 base->Opcode() == Op_CastX2P || base->is_DecodeN() ||
kvn@512 449 (base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL) ||
kvn@512 450 (base->is_Proj() && base->in(0)->is_Allocate()), "sanity");
duke@435 451 }
kvn@500 452 return base;
kvn@500 453 }
kvn@500 454
kvn@500 455 static Node* find_second_addp(Node* addp, Node* n) {
kvn@500 456 assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
kvn@500 457
kvn@500 458 Node* addp2 = addp->raw_out(0);
kvn@500 459 if (addp->outcnt() == 1 && addp2->is_AddP() &&
kvn@500 460 addp2->in(AddPNode::Base) == n &&
kvn@500 461 addp2->in(AddPNode::Address) == addp) {
kvn@500 462
kvn@500 463 assert(addp->in(AddPNode::Base) == n, "expecting the same base");
kvn@500 464 //
kvn@500 465 // Find array's offset to push it on worklist first and
kvn@500 466 // as result process an array's element offset first (pushed second)
kvn@500 467 // to avoid CastPP for the array's offset.
kvn@500 468 // Otherwise the inserted CastPP (LocalVar) will point to what
kvn@500 469 // the AddP (Field) points to. Which would be wrong since
kvn@500 470 // the algorithm expects the CastPP has the same point as
kvn@500 471 // as AddP's base CheckCastPP (LocalVar).
kvn@500 472 //
kvn@500 473 // ArrayAllocation
kvn@500 474 // |
kvn@500 475 // CheckCastPP
kvn@500 476 // |
kvn@500 477 // memProj (from ArrayAllocation CheckCastPP)
kvn@500 478 // | ||
kvn@500 479 // | || Int (element index)
kvn@500 480 // | || | ConI (log(element size))
kvn@500 481 // | || | /
kvn@500 482 // | || LShift
kvn@500 483 // | || /
kvn@500 484 // | AddP (array's element offset)
kvn@500 485 // | |
kvn@500 486 // | | ConI (array's offset: #12(32-bits) or #24(64-bits))
kvn@500 487 // | / /
kvn@500 488 // AddP (array's offset)
kvn@500 489 // |
kvn@500 490 // Load/Store (memory operation on array's element)
kvn@500 491 //
kvn@500 492 return addp2;
kvn@500 493 }
kvn@500 494 return NULL;
duke@435 495 }
duke@435 496
duke@435 497 //
duke@435 498 // Adjust the type and inputs of an AddP which computes the
duke@435 499 // address of a field of an instance
duke@435 500 //
kvn@728 501 bool ConnectionGraph::split_AddP(Node *addp, Node *base, PhaseGVN *igvn) {
kvn@500 502 const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
kvn@658 503 assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
duke@435 504 const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
kvn@500 505 if (t == NULL) {
kvn@500 506 // We are computing a raw address for a store captured by an Initialize
kvn@728 507 // compute an appropriate address type (cases #3 and #5).
kvn@500 508 assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
kvn@500 509 assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
kvn@741 510 intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 511 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@500 512 t = base_t->add_offset(offs)->is_oopptr();
kvn@500 513 }
kvn@658 514 int inst_id = base_t->instance_id();
kvn@658 515 assert(!t->is_known_instance() || t->instance_id() == inst_id,
duke@435 516 "old type must be non-instance or match new type");
kvn@728 517
kvn@728 518 // The type 't' could be subclass of 'base_t'.
kvn@728 519 // As result t->offset() could be large then base_t's size and it will
kvn@728 520 // cause the failure in add_offset() with narrow oops since TypeOopPtr()
kvn@728 521 // constructor verifies correctness of the offset.
kvn@728 522 //
twisti@1040 523 // It could happened on subclass's branch (from the type profiling
kvn@728 524 // inlining) which was not eliminated during parsing since the exactness
kvn@728 525 // of the allocation type was not propagated to the subclass type check.
kvn@728 526 //
kvn@1423 527 // Or the type 't' could be not related to 'base_t' at all.
kvn@1423 528 // It could happened when CHA type is different from MDO type on a dead path
kvn@1423 529 // (for example, from instanceof check) which is not collapsed during parsing.
kvn@1423 530 //
kvn@728 531 // Do nothing for such AddP node and don't process its users since
kvn@728 532 // this code branch will go away.
kvn@728 533 //
kvn@728 534 if (!t->is_known_instance() &&
kvn@1423 535 !base_t->klass()->is_subtype_of(t->klass())) {
kvn@728 536 return false; // bail out
kvn@728 537 }
kvn@728 538
duke@435 539 const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
kvn@500 540 // Do NOT remove the next call: ensure an new alias index is allocated
kvn@500 541 // for the instance type
duke@435 542 int alias_idx = _compile->get_alias_index(tinst);
duke@435 543 igvn->set_type(addp, tinst);
duke@435 544 // record the allocation in the node map
duke@435 545 set_map(addp->_idx, get_map(base->_idx));
kvn@688 546
kvn@688 547 // Set addp's Base and Address to 'base'.
kvn@688 548 Node *abase = addp->in(AddPNode::Base);
kvn@688 549 Node *adr = addp->in(AddPNode::Address);
kvn@688 550 if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
kvn@688 551 adr->in(0)->_idx == (uint)inst_id) {
kvn@688 552 // Skip AddP cases #3 and #5.
kvn@688 553 } else {
kvn@688 554 assert(!abase->is_top(), "sanity"); // AddP case #3
kvn@688 555 if (abase != base) {
kvn@688 556 igvn->hash_delete(addp);
kvn@688 557 addp->set_req(AddPNode::Base, base);
kvn@688 558 if (abase == adr) {
kvn@688 559 addp->set_req(AddPNode::Address, base);
kvn@688 560 } else {
kvn@688 561 // AddP case #4 (adr is array's element offset AddP node)
kvn@688 562 #ifdef ASSERT
kvn@688 563 const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
kvn@688 564 assert(adr->is_AddP() && atype != NULL &&
kvn@688 565 atype->instance_id() == inst_id, "array's element offset should be processed first");
kvn@688 566 #endif
kvn@688 567 }
kvn@688 568 igvn->hash_insert(addp);
duke@435 569 }
duke@435 570 }
kvn@500 571 // Put on IGVN worklist since at least addp's type was changed above.
kvn@500 572 record_for_optimizer(addp);
kvn@728 573 return true;
duke@435 574 }
duke@435 575
duke@435 576 //
duke@435 577 // Create a new version of orig_phi if necessary. Returns either the newly
duke@435 578 // created phi or an existing phi. Sets create_new to indicate wheter a new
duke@435 579 // phi was created. Cache the last newly created phi in the node map.
duke@435 580 //
duke@435 581 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn, bool &new_created) {
duke@435 582 Compile *C = _compile;
duke@435 583 new_created = false;
duke@435 584 int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
duke@435 585 // nothing to do if orig_phi is bottom memory or matches alias_idx
kvn@500 586 if (phi_alias_idx == alias_idx) {
duke@435 587 return orig_phi;
duke@435 588 }
kvn@1286 589 // Have we recently created a Phi for this alias index?
duke@435 590 PhiNode *result = get_map_phi(orig_phi->_idx);
duke@435 591 if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
duke@435 592 return result;
duke@435 593 }
kvn@1286 594 // Previous check may fail when the same wide memory Phi was split into Phis
kvn@1286 595 // for different memory slices. Search all Phis for this region.
kvn@1286 596 if (result != NULL) {
kvn@1286 597 Node* region = orig_phi->in(0);
kvn@1286 598 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
kvn@1286 599 Node* phi = region->fast_out(i);
kvn@1286 600 if (phi->is_Phi() &&
kvn@1286 601 C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
kvn@1286 602 assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
kvn@1286 603 return phi->as_Phi();
kvn@1286 604 }
kvn@1286 605 }
kvn@1286 606 }
kvn@473 607 if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
kvn@473 608 if (C->do_escape_analysis() == true && !C->failing()) {
kvn@473 609 // Retry compilation without escape analysis.
kvn@473 610 // If this is the first failure, the sentinel string will "stick"
kvn@473 611 // to the Compile object, and the C2Compiler will see it and retry.
kvn@473 612 C->record_failure(C2Compiler::retry_no_escape_analysis());
kvn@473 613 }
kvn@473 614 return NULL;
kvn@473 615 }
duke@435 616 orig_phi_worklist.append_if_missing(orig_phi);
kvn@500 617 const TypePtr *atype = C->get_adr_type(alias_idx);
duke@435 618 result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
kvn@1286 619 C->copy_node_notes_to(result, orig_phi);
duke@435 620 set_map_phi(orig_phi->_idx, result);
duke@435 621 igvn->set_type(result, result->bottom_type());
duke@435 622 record_for_optimizer(result);
duke@435 623 new_created = true;
duke@435 624 return result;
duke@435 625 }
duke@435 626
duke@435 627 //
duke@435 628 // Return a new version of Memory Phi "orig_phi" with the inputs having the
duke@435 629 // specified alias index.
duke@435 630 //
duke@435 631 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn) {
duke@435 632
duke@435 633 assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
duke@435 634 Compile *C = _compile;
duke@435 635 bool new_phi_created;
kvn@500 636 PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
duke@435 637 if (!new_phi_created) {
duke@435 638 return result;
duke@435 639 }
duke@435 640
duke@435 641 GrowableArray<PhiNode *> phi_list;
duke@435 642 GrowableArray<uint> cur_input;
duke@435 643
duke@435 644 PhiNode *phi = orig_phi;
duke@435 645 uint idx = 1;
duke@435 646 bool finished = false;
duke@435 647 while(!finished) {
duke@435 648 while (idx < phi->req()) {
kvn@500 649 Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
duke@435 650 if (mem != NULL && mem->is_Phi()) {
kvn@500 651 PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
duke@435 652 if (new_phi_created) {
duke@435 653 // found an phi for which we created a new split, push current one on worklist and begin
duke@435 654 // processing new one
duke@435 655 phi_list.push(phi);
duke@435 656 cur_input.push(idx);
duke@435 657 phi = mem->as_Phi();
kvn@500 658 result = newphi;
duke@435 659 idx = 1;
duke@435 660 continue;
duke@435 661 } else {
kvn@500 662 mem = newphi;
duke@435 663 }
duke@435 664 }
kvn@473 665 if (C->failing()) {
kvn@473 666 return NULL;
kvn@473 667 }
duke@435 668 result->set_req(idx++, mem);
duke@435 669 }
duke@435 670 #ifdef ASSERT
duke@435 671 // verify that the new Phi has an input for each input of the original
duke@435 672 assert( phi->req() == result->req(), "must have same number of inputs.");
duke@435 673 assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
kvn@500 674 #endif
kvn@500 675 // Check if all new phi's inputs have specified alias index.
kvn@500 676 // Otherwise use old phi.
duke@435 677 for (uint i = 1; i < phi->req(); i++) {
kvn@500 678 Node* in = result->in(i);
kvn@500 679 assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
duke@435 680 }
duke@435 681 // we have finished processing a Phi, see if there are any more to do
duke@435 682 finished = (phi_list.length() == 0 );
duke@435 683 if (!finished) {
duke@435 684 phi = phi_list.pop();
duke@435 685 idx = cur_input.pop();
kvn@500 686 PhiNode *prev_result = get_map_phi(phi->_idx);
kvn@500 687 prev_result->set_req(idx++, result);
kvn@500 688 result = prev_result;
duke@435 689 }
duke@435 690 }
duke@435 691 return result;
duke@435 692 }
duke@435 693
kvn@500 694
kvn@500 695 //
kvn@500 696 // The next methods are derived from methods in MemNode.
kvn@500 697 //
kvn@500 698 static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *tinst) {
kvn@500 699 Node *mem = mmem;
kvn@500 700 // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
kvn@500 701 // means an array I have not precisely typed yet. Do not do any
kvn@500 702 // alias stuff with it any time soon.
kvn@500 703 if( tinst->base() != Type::AnyPtr &&
kvn@500 704 !(tinst->klass()->is_java_lang_Object() &&
kvn@500 705 tinst->offset() == Type::OffsetBot) ) {
kvn@500 706 mem = mmem->memory_at(alias_idx);
kvn@500 707 // Update input if it is progress over what we have now
kvn@500 708 }
kvn@500 709 return mem;
kvn@500 710 }
kvn@500 711
kvn@500 712 //
kvn@500 713 // Search memory chain of "mem" to find a MemNode whose address
kvn@500 714 // is the specified alias index.
kvn@500 715 //
kvn@500 716 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *> &orig_phis, PhaseGVN *phase) {
kvn@500 717 if (orig_mem == NULL)
kvn@500 718 return orig_mem;
kvn@500 719 Compile* C = phase->C;
kvn@500 720 const TypeOopPtr *tinst = C->get_adr_type(alias_idx)->isa_oopptr();
kvn@658 721 bool is_instance = (tinst != NULL) && tinst->is_known_instance();
kvn@688 722 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@500 723 Node *prev = NULL;
kvn@500 724 Node *result = orig_mem;
kvn@500 725 while (prev != result) {
kvn@500 726 prev = result;
kvn@688 727 if (result == start_mem)
twisti@1040 728 break; // hit one of our sentinels
kvn@500 729 if (result->is_Mem()) {
kvn@688 730 const Type *at = phase->type(result->in(MemNode::Address));
kvn@500 731 if (at != Type::TOP) {
kvn@500 732 assert (at->isa_ptr() != NULL, "pointer type required.");
kvn@500 733 int idx = C->get_alias_index(at->is_ptr());
kvn@500 734 if (idx == alias_idx)
kvn@500 735 break;
kvn@500 736 }
kvn@688 737 result = result->in(MemNode::Memory);
kvn@500 738 }
kvn@500 739 if (!is_instance)
kvn@500 740 continue; // don't search further for non-instance types
kvn@500 741 // skip over a call which does not affect this memory slice
kvn@500 742 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
kvn@500 743 Node *proj_in = result->in(0);
kvn@688 744 if (proj_in->is_Allocate() && proj_in->_idx == (uint)tinst->instance_id()) {
twisti@1040 745 break; // hit one of our sentinels
kvn@688 746 } else if (proj_in->is_Call()) {
kvn@500 747 CallNode *call = proj_in->as_Call();
kvn@500 748 if (!call->may_modify(tinst, phase)) {
kvn@500 749 result = call->in(TypeFunc::Memory);
kvn@500 750 }
kvn@500 751 } else if (proj_in->is_Initialize()) {
kvn@500 752 AllocateNode* alloc = proj_in->as_Initialize()->allocation();
kvn@500 753 // Stop if this is the initialization for the object instance which
kvn@500 754 // which contains this memory slice, otherwise skip over it.
kvn@658 755 if (alloc == NULL || alloc->_idx != (uint)tinst->instance_id()) {
kvn@500 756 result = proj_in->in(TypeFunc::Memory);
kvn@500 757 }
kvn@500 758 } else if (proj_in->is_MemBar()) {
kvn@500 759 result = proj_in->in(TypeFunc::Memory);
kvn@500 760 }
kvn@500 761 } else if (result->is_MergeMem()) {
kvn@500 762 MergeMemNode *mmem = result->as_MergeMem();
kvn@500 763 result = step_through_mergemem(mmem, alias_idx, tinst);
kvn@500 764 if (result == mmem->base_memory()) {
kvn@500 765 // Didn't find instance memory, search through general slice recursively.
kvn@500 766 result = mmem->memory_at(C->get_general_index(alias_idx));
kvn@500 767 result = find_inst_mem(result, alias_idx, orig_phis, phase);
kvn@500 768 if (C->failing()) {
kvn@500 769 return NULL;
kvn@500 770 }
kvn@500 771 mmem->set_memory_at(alias_idx, result);
kvn@500 772 }
kvn@500 773 } else if (result->is_Phi() &&
kvn@500 774 C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
kvn@500 775 Node *un = result->as_Phi()->unique_input(phase);
kvn@500 776 if (un != NULL) {
kvn@500 777 result = un;
kvn@500 778 } else {
kvn@500 779 break;
kvn@500 780 }
kvn@1019 781 } else if (result->Opcode() == Op_SCMemProj) {
kvn@1019 782 assert(result->in(0)->is_LoadStore(), "sanity");
kvn@1019 783 const Type *at = phase->type(result->in(0)->in(MemNode::Address));
kvn@1019 784 if (at != Type::TOP) {
kvn@1019 785 assert (at->isa_ptr() != NULL, "pointer type required.");
kvn@1019 786 int idx = C->get_alias_index(at->is_ptr());
kvn@1019 787 assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
kvn@1019 788 break;
kvn@1019 789 }
kvn@1019 790 result = result->in(0)->in(MemNode::Memory);
kvn@500 791 }
kvn@500 792 }
kvn@682 793 if (result->is_Phi()) {
kvn@500 794 PhiNode *mphi = result->as_Phi();
kvn@500 795 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
kvn@500 796 const TypePtr *t = mphi->adr_type();
kvn@500 797 if (C->get_alias_index(t) != alias_idx) {
kvn@682 798 // Create a new Phi with the specified alias index type.
kvn@500 799 result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
kvn@682 800 } else if (!is_instance) {
kvn@682 801 // Push all non-instance Phis on the orig_phis worklist to update inputs
kvn@682 802 // during Phase 4 if needed.
kvn@682 803 orig_phis.append_if_missing(mphi);
kvn@500 804 }
kvn@500 805 }
kvn@500 806 // the result is either MemNode, PhiNode, InitializeNode.
kvn@500 807 return result;
kvn@500 808 }
kvn@500 809
kvn@500 810
duke@435 811 //
duke@435 812 // Convert the types of unescaped object to instance types where possible,
duke@435 813 // propagate the new type information through the graph, and update memory
duke@435 814 // edges and MergeMem inputs to reflect the new type.
duke@435 815 //
duke@435 816 // We start with allocations (and calls which may be allocations) on alloc_worklist.
duke@435 817 // The processing is done in 4 phases:
duke@435 818 //
duke@435 819 // Phase 1: Process possible allocations from alloc_worklist. Create instance
duke@435 820 // types for the CheckCastPP for allocations where possible.
duke@435 821 // Propagate the the new types through users as follows:
duke@435 822 // casts and Phi: push users on alloc_worklist
duke@435 823 // AddP: cast Base and Address inputs to the instance type
duke@435 824 // push any AddP users on alloc_worklist and push any memnode
duke@435 825 // users onto memnode_worklist.
duke@435 826 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 827 // search the Memory chain for a store with the appropriate type
duke@435 828 // address type. If a Phi is found, create a new version with
twisti@1040 829 // the appropriate memory slices from each of the Phi inputs.
duke@435 830 // For stores, process the users as follows:
duke@435 831 // MemNode: push on memnode_worklist
duke@435 832 // MergeMem: push on mergemem_worklist
duke@435 833 // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice
duke@435 834 // moving the first node encountered of each instance type to the
duke@435 835 // the input corresponding to its alias index.
duke@435 836 // appropriate memory slice.
duke@435 837 // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes.
duke@435 838 //
duke@435 839 // In the following example, the CheckCastPP nodes are the cast of allocation
duke@435 840 // results and the allocation of node 29 is unescaped and eligible to be an
duke@435 841 // instance type.
duke@435 842 //
duke@435 843 // We start with:
duke@435 844 //
duke@435 845 // 7 Parm #memory
duke@435 846 // 10 ConI "12"
duke@435 847 // 19 CheckCastPP "Foo"
duke@435 848 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 849 // 29 CheckCastPP "Foo"
duke@435 850 // 30 AddP _ 29 29 10 Foo+12 alias_index=4
duke@435 851 //
duke@435 852 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 853 // 50 StoreP 35 40 30 ... alias_index=4
duke@435 854 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 855 // 70 LoadP _ 60 30 ... alias_index=4
duke@435 856 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 857 // 90 LoadP _ 80 30 ... alias_index=4
duke@435 858 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 859 //
duke@435 860 //
duke@435 861 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
duke@435 862 // and creating a new alias index for node 30. This gives:
duke@435 863 //
duke@435 864 // 7 Parm #memory
duke@435 865 // 10 ConI "12"
duke@435 866 // 19 CheckCastPP "Foo"
duke@435 867 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 868 // 29 CheckCastPP "Foo" iid=24
duke@435 869 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 870 //
duke@435 871 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 872 // 50 StoreP 35 40 30 ... alias_index=6
duke@435 873 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 874 // 70 LoadP _ 60 30 ... alias_index=6
duke@435 875 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 876 // 90 LoadP _ 80 30 ... alias_index=6
duke@435 877 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 878 //
duke@435 879 // In phase 2, new memory inputs are computed for the loads and stores,
duke@435 880 // And a new version of the phi is created. In phase 4, the inputs to
duke@435 881 // node 80 are updated and then the memory nodes are updated with the
duke@435 882 // values computed in phase 2. This results in:
duke@435 883 //
duke@435 884 // 7 Parm #memory
duke@435 885 // 10 ConI "12"
duke@435 886 // 19 CheckCastPP "Foo"
duke@435 887 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 888 // 29 CheckCastPP "Foo" iid=24
duke@435 889 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 890 //
duke@435 891 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 892 // 50 StoreP 35 7 30 ... alias_index=6
duke@435 893 // 60 StoreP 45 40 20 ... alias_index=4
duke@435 894 // 70 LoadP _ 50 30 ... alias_index=6
duke@435 895 // 80 Phi 75 40 60 Memory alias_index=4
duke@435 896 // 120 Phi 75 50 50 Memory alias_index=6
duke@435 897 // 90 LoadP _ 120 30 ... alias_index=6
duke@435 898 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 899 //
duke@435 900 void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist) {
duke@435 901 GrowableArray<Node *> memnode_worklist;
duke@435 902 GrowableArray<Node *> mergemem_worklist;
duke@435 903 GrowableArray<PhiNode *> orig_phis;
duke@435 904 PhaseGVN *igvn = _compile->initial_gvn();
duke@435 905 uint new_index_start = (uint) _compile->num_alias_types();
duke@435 906 VectorSet visited(Thread::current()->resource_area());
duke@435 907 VectorSet ptset(Thread::current()->resource_area());
duke@435 908
kvn@500 909
kvn@500 910 // Phase 1: Process possible allocations from alloc_worklist.
kvn@500 911 // Create instance types for the CheckCastPP for allocations where possible.
kvn@679 912 //
kvn@679 913 // (Note: don't forget to change the order of the second AddP node on
kvn@679 914 // the alloc_worklist if the order of the worklist processing is changed,
kvn@679 915 // see the comment in find_second_addp().)
kvn@679 916 //
duke@435 917 while (alloc_worklist.length() != 0) {
duke@435 918 Node *n = alloc_worklist.pop();
duke@435 919 uint ni = n->_idx;
kvn@500 920 const TypeOopPtr* tinst = NULL;
duke@435 921 if (n->is_Call()) {
duke@435 922 CallNode *alloc = n->as_Call();
duke@435 923 // copy escape information to call node
kvn@679 924 PointsToNode* ptn = ptnode_adr(alloc->_idx);
duke@435 925 PointsToNode::EscapeState es = escape_state(alloc, igvn);
kvn@500 926 // We have an allocation or call which returns a Java object,
kvn@500 927 // see if it is unescaped.
kvn@500 928 if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable)
duke@435 929 continue;
kvn@1219 930
kvn@1219 931 // Find CheckCastPP for the allocate or for the return value of a call
kvn@1219 932 n = alloc->result_cast();
kvn@1219 933 if (n == NULL) { // No uses except Initialize node
kvn@1219 934 if (alloc->is_Allocate()) {
kvn@1219 935 // Set the scalar_replaceable flag for allocation
kvn@1219 936 // so it could be eliminated if it has no uses.
kvn@1219 937 alloc->as_Allocate()->_is_scalar_replaceable = true;
kvn@1219 938 }
kvn@1219 939 continue;
kvn@474 940 }
kvn@1219 941 if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
kvn@1219 942 assert(!alloc->is_Allocate(), "allocation should have unique type");
kvn@500 943 continue;
kvn@1219 944 }
kvn@1219 945
kvn@500 946 // The inline code for Object.clone() casts the allocation result to
kvn@682 947 // java.lang.Object and then to the actual type of the allocated
kvn@500 948 // object. Detect this case and use the second cast.
kvn@682 949 // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
kvn@682 950 // the allocation result is cast to java.lang.Object and then
kvn@682 951 // to the actual Array type.
kvn@500 952 if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
kvn@682 953 && (alloc->is_AllocateArray() ||
kvn@682 954 igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
kvn@500 955 Node *cast2 = NULL;
kvn@500 956 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 957 Node *use = n->fast_out(i);
kvn@500 958 if (use->is_CheckCastPP()) {
kvn@500 959 cast2 = use;
kvn@500 960 break;
kvn@500 961 }
kvn@500 962 }
kvn@500 963 if (cast2 != NULL) {
kvn@500 964 n = cast2;
kvn@500 965 } else {
kvn@1219 966 // Non-scalar replaceable if the allocation type is unknown statically
kvn@1219 967 // (reflection allocation), the object can't be restored during
kvn@1219 968 // deoptimization without precise type.
kvn@500 969 continue;
kvn@500 970 }
kvn@500 971 }
kvn@1219 972 if (alloc->is_Allocate()) {
kvn@1219 973 // Set the scalar_replaceable flag for allocation
kvn@1219 974 // so it could be eliminated.
kvn@1219 975 alloc->as_Allocate()->_is_scalar_replaceable = true;
kvn@1219 976 }
kvn@500 977 set_escape_state(n->_idx, es);
kvn@682 978 // in order for an object to be scalar-replaceable, it must be:
kvn@500 979 // - a direct allocation (not a call returning an object)
kvn@500 980 // - non-escaping
kvn@500 981 // - eligible to be a unique type
kvn@500 982 // - not determined to be ineligible by escape analysis
duke@435 983 set_map(alloc->_idx, n);
duke@435 984 set_map(n->_idx, alloc);
kvn@500 985 const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
kvn@500 986 if (t == NULL)
duke@435 987 continue; // not a TypeInstPtr
kvn@682 988 tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
duke@435 989 igvn->hash_delete(n);
duke@435 990 igvn->set_type(n, tinst);
duke@435 991 n->raise_bottom_type(tinst);
duke@435 992 igvn->hash_insert(n);
kvn@500 993 record_for_optimizer(n);
kvn@500 994 if (alloc->is_Allocate() && ptn->_scalar_replaceable &&
kvn@500 995 (t->isa_instptr() || t->isa_aryptr())) {
kvn@598 996
kvn@598 997 // First, put on the worklist all Field edges from Connection Graph
kvn@598 998 // which is more accurate then putting immediate users from Ideal Graph.
kvn@598 999 for (uint e = 0; e < ptn->edge_count(); e++) {
kvn@679 1000 Node *use = ptnode_adr(ptn->edge_target(e))->_node;
kvn@598 1001 assert(ptn->edge_type(e) == PointsToNode::FieldEdge && use->is_AddP(),
kvn@598 1002 "only AddP nodes are Field edges in CG");
kvn@598 1003 if (use->outcnt() > 0) { // Don't process dead nodes
kvn@598 1004 Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
kvn@598 1005 if (addp2 != NULL) {
kvn@598 1006 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@598 1007 alloc_worklist.append_if_missing(addp2);
kvn@598 1008 }
kvn@598 1009 alloc_worklist.append_if_missing(use);
kvn@598 1010 }
kvn@598 1011 }
kvn@598 1012
kvn@500 1013 // An allocation may have an Initialize which has raw stores. Scan
kvn@500 1014 // the users of the raw allocation result and push AddP users
kvn@500 1015 // on alloc_worklist.
kvn@500 1016 Node *raw_result = alloc->proj_out(TypeFunc::Parms);
kvn@500 1017 assert (raw_result != NULL, "must have an allocation result");
kvn@500 1018 for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
kvn@500 1019 Node *use = raw_result->fast_out(i);
kvn@500 1020 if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
kvn@500 1021 Node* addp2 = find_second_addp(use, raw_result);
kvn@500 1022 if (addp2 != NULL) {
kvn@500 1023 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@500 1024 alloc_worklist.append_if_missing(addp2);
kvn@500 1025 }
kvn@500 1026 alloc_worklist.append_if_missing(use);
kvn@500 1027 } else if (use->is_Initialize()) {
kvn@500 1028 memnode_worklist.append_if_missing(use);
kvn@500 1029 }
kvn@500 1030 }
kvn@500 1031 }
duke@435 1032 } else if (n->is_AddP()) {
duke@435 1033 ptset.Clear();
kvn@500 1034 PointsTo(ptset, get_addp_base(n), igvn);
duke@435 1035 assert(ptset.Size() == 1, "AddP address is unique");
kvn@500 1036 uint elem = ptset.getelem(); // Allocation node's index
kvn@500 1037 if (elem == _phantom_object)
kvn@500 1038 continue; // Assume the value was set outside this method.
kvn@500 1039 Node *base = get_map(elem); // CheckCastPP node
kvn@728 1040 if (!split_AddP(n, base, igvn)) continue; // wrong type
kvn@500 1041 tinst = igvn->type(base)->isa_oopptr();
kvn@500 1042 } else if (n->is_Phi() ||
kvn@500 1043 n->is_CheckCastPP() ||
kvn@603 1044 n->is_EncodeP() ||
kvn@603 1045 n->is_DecodeN() ||
kvn@500 1046 (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
duke@435 1047 if (visited.test_set(n->_idx)) {
duke@435 1048 assert(n->is_Phi(), "loops only through Phi's");
duke@435 1049 continue; // already processed
duke@435 1050 }
duke@435 1051 ptset.Clear();
duke@435 1052 PointsTo(ptset, n, igvn);
duke@435 1053 if (ptset.Size() == 1) {
kvn@500 1054 uint elem = ptset.getelem(); // Allocation node's index
kvn@500 1055 if (elem == _phantom_object)
kvn@500 1056 continue; // Assume the value was set outside this method.
kvn@500 1057 Node *val = get_map(elem); // CheckCastPP node
duke@435 1058 TypeNode *tn = n->as_Type();
kvn@500 1059 tinst = igvn->type(val)->isa_oopptr();
kvn@658 1060 assert(tinst != NULL && tinst->is_known_instance() &&
kvn@658 1061 (uint)tinst->instance_id() == elem , "instance type expected.");
kvn@598 1062
kvn@598 1063 const Type *tn_type = igvn->type(tn);
kvn@658 1064 const TypeOopPtr *tn_t;
kvn@658 1065 if (tn_type->isa_narrowoop()) {
kvn@658 1066 tn_t = tn_type->make_ptr()->isa_oopptr();
kvn@658 1067 } else {
kvn@658 1068 tn_t = tn_type->isa_oopptr();
kvn@658 1069 }
duke@435 1070
kvn@500 1071 if (tn_t != NULL &&
kvn@658 1072 tinst->cast_to_instance_id(TypeOopPtr::InstanceBot)->higher_equal(tn_t)) {
kvn@598 1073 if (tn_type->isa_narrowoop()) {
kvn@598 1074 tn_type = tinst->make_narrowoop();
kvn@598 1075 } else {
kvn@598 1076 tn_type = tinst;
kvn@598 1077 }
duke@435 1078 igvn->hash_delete(tn);
kvn@598 1079 igvn->set_type(tn, tn_type);
kvn@598 1080 tn->set_type(tn_type);
duke@435 1081 igvn->hash_insert(tn);
kvn@500 1082 record_for_optimizer(n);
kvn@728 1083 } else {
kvn@728 1084 continue; // wrong type
duke@435 1085 }
duke@435 1086 }
duke@435 1087 } else {
duke@435 1088 continue;
duke@435 1089 }
duke@435 1090 // push users on appropriate worklist
duke@435 1091 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1092 Node *use = n->fast_out(i);
duke@435 1093 if(use->is_Mem() && use->in(MemNode::Address) == n) {
kvn@500 1094 memnode_worklist.append_if_missing(use);
kvn@500 1095 } else if (use->is_Initialize()) {
kvn@500 1096 memnode_worklist.append_if_missing(use);
kvn@500 1097 } else if (use->is_MergeMem()) {
kvn@500 1098 mergemem_worklist.append_if_missing(use);
kvn@688 1099 } else if (use->is_SafePoint() && tinst != NULL) {
kvn@500 1100 // Look for MergeMem nodes for calls which reference unique allocation
kvn@500 1101 // (through CheckCastPP nodes) even for debug info.
kvn@500 1102 Node* m = use->in(TypeFunc::Memory);
kvn@500 1103 uint iid = tinst->instance_id();
kvn@688 1104 while (m->is_Proj() && m->in(0)->is_SafePoint() &&
kvn@500 1105 m->in(0) != use && !m->in(0)->_idx != iid) {
kvn@500 1106 m = m->in(0)->in(TypeFunc::Memory);
kvn@500 1107 }
kvn@500 1108 if (m->is_MergeMem()) {
kvn@500 1109 mergemem_worklist.append_if_missing(m);
kvn@500 1110 }
kvn@500 1111 } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
kvn@500 1112 Node* addp2 = find_second_addp(use, n);
kvn@500 1113 if (addp2 != NULL) {
kvn@500 1114 alloc_worklist.append_if_missing(addp2);
kvn@500 1115 }
kvn@500 1116 alloc_worklist.append_if_missing(use);
kvn@500 1117 } else if (use->is_Phi() ||
kvn@500 1118 use->is_CheckCastPP() ||
kvn@603 1119 use->is_EncodeP() ||
kvn@603 1120 use->is_DecodeN() ||
kvn@500 1121 (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
kvn@500 1122 alloc_worklist.append_if_missing(use);
duke@435 1123 }
duke@435 1124 }
duke@435 1125
duke@435 1126 }
kvn@500 1127 // New alias types were created in split_AddP().
duke@435 1128 uint new_index_end = (uint) _compile->num_alias_types();
duke@435 1129
duke@435 1130 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 1131 // compute new values for Memory inputs (the Memory inputs are not
duke@435 1132 // actually updated until phase 4.)
duke@435 1133 if (memnode_worklist.length() == 0)
duke@435 1134 return; // nothing to do
duke@435 1135
duke@435 1136 while (memnode_worklist.length() != 0) {
duke@435 1137 Node *n = memnode_worklist.pop();
kvn@500 1138 if (visited.test_set(n->_idx))
kvn@500 1139 continue;
duke@435 1140 if (n->is_Phi()) {
duke@435 1141 assert(n->as_Phi()->adr_type() != TypePtr::BOTTOM, "narrow memory slice required");
duke@435 1142 // we don't need to do anything, but the users must be pushed if we haven't processed
duke@435 1143 // this Phi before
kvn@500 1144 } else if (n->is_Initialize()) {
kvn@500 1145 // we don't need to do anything, but the users of the memory projection must be pushed
kvn@500 1146 n = n->as_Initialize()->proj_out(TypeFunc::Memory);
kvn@500 1147 if (n == NULL)
duke@435 1148 continue;
duke@435 1149 } else {
duke@435 1150 assert(n->is_Mem(), "memory node required.");
duke@435 1151 Node *addr = n->in(MemNode::Address);
kvn@500 1152 assert(addr->is_AddP(), "AddP required");
duke@435 1153 const Type *addr_t = igvn->type(addr);
duke@435 1154 if (addr_t == Type::TOP)
duke@435 1155 continue;
duke@435 1156 assert (addr_t->isa_ptr() != NULL, "pointer type required.");
duke@435 1157 int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
kvn@500 1158 assert ((uint)alias_idx < new_index_end, "wrong alias index");
kvn@500 1159 Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
kvn@473 1160 if (_compile->failing()) {
kvn@473 1161 return;
kvn@473 1162 }
kvn@500 1163 if (mem != n->in(MemNode::Memory)) {
duke@435 1164 set_map(n->_idx, mem);
kvn@679 1165 ptnode_adr(n->_idx)->_node = n;
kvn@500 1166 }
duke@435 1167 if (n->is_Load()) {
duke@435 1168 continue; // don't push users
duke@435 1169 } else if (n->is_LoadStore()) {
duke@435 1170 // get the memory projection
duke@435 1171 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1172 Node *use = n->fast_out(i);
duke@435 1173 if (use->Opcode() == Op_SCMemProj) {
duke@435 1174 n = use;
duke@435 1175 break;
duke@435 1176 }
duke@435 1177 }
duke@435 1178 assert(n->Opcode() == Op_SCMemProj, "memory projection required");
duke@435 1179 }
duke@435 1180 }
duke@435 1181 // push user on appropriate worklist
duke@435 1182 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1183 Node *use = n->fast_out(i);
duke@435 1184 if (use->is_Phi()) {
kvn@500 1185 memnode_worklist.append_if_missing(use);
duke@435 1186 } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
kvn@500 1187 memnode_worklist.append_if_missing(use);
kvn@500 1188 } else if (use->is_Initialize()) {
kvn@500 1189 memnode_worklist.append_if_missing(use);
duke@435 1190 } else if (use->is_MergeMem()) {
kvn@500 1191 mergemem_worklist.append_if_missing(use);
duke@435 1192 }
duke@435 1193 }
duke@435 1194 }
duke@435 1195
kvn@500 1196 // Phase 3: Process MergeMem nodes from mergemem_worklist.
kvn@500 1197 // Walk each memory moving the first node encountered of each
kvn@500 1198 // instance type to the the input corresponding to its alias index.
duke@435 1199 while (mergemem_worklist.length() != 0) {
duke@435 1200 Node *n = mergemem_worklist.pop();
duke@435 1201 assert(n->is_MergeMem(), "MergeMem node required.");
kvn@500 1202 if (visited.test_set(n->_idx))
kvn@500 1203 continue;
duke@435 1204 MergeMemNode *nmm = n->as_MergeMem();
duke@435 1205 // Note: we don't want to use MergeMemStream here because we only want to
kvn@500 1206 // scan inputs which exist at the start, not ones we add during processing.
duke@435 1207 uint nslices = nmm->req();
duke@435 1208 igvn->hash_delete(nmm);
duke@435 1209 for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
kvn@500 1210 Node* mem = nmm->in(i);
kvn@500 1211 Node* cur = NULL;
duke@435 1212 if (mem == NULL || mem->is_top())
duke@435 1213 continue;
duke@435 1214 while (mem->is_Mem()) {
duke@435 1215 const Type *at = igvn->type(mem->in(MemNode::Address));
duke@435 1216 if (at != Type::TOP) {
duke@435 1217 assert (at->isa_ptr() != NULL, "pointer type required.");
duke@435 1218 uint idx = (uint)_compile->get_alias_index(at->is_ptr());
duke@435 1219 if (idx == i) {
duke@435 1220 if (cur == NULL)
duke@435 1221 cur = mem;
duke@435 1222 } else {
duke@435 1223 if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
duke@435 1224 nmm->set_memory_at(idx, mem);
duke@435 1225 }
duke@435 1226 }
duke@435 1227 }
duke@435 1228 mem = mem->in(MemNode::Memory);
duke@435 1229 }
duke@435 1230 nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
kvn@500 1231 // Find any instance of the current type if we haven't encountered
kvn@500 1232 // a value of the instance along the chain.
kvn@500 1233 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@500 1234 if((uint)_compile->get_general_index(ni) == i) {
kvn@500 1235 Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
kvn@500 1236 if (nmm->is_empty_memory(m)) {
kvn@500 1237 Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
kvn@500 1238 if (_compile->failing()) {
kvn@500 1239 return;
kvn@500 1240 }
kvn@500 1241 nmm->set_memory_at(ni, result);
kvn@500 1242 }
kvn@500 1243 }
kvn@500 1244 }
kvn@500 1245 }
kvn@500 1246 // Find the rest of instances values
kvn@500 1247 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@500 1248 const TypeOopPtr *tinst = igvn->C->get_adr_type(ni)->isa_oopptr();
kvn@500 1249 Node* result = step_through_mergemem(nmm, ni, tinst);
kvn@500 1250 if (result == nmm->base_memory()) {
kvn@500 1251 // Didn't find instance memory, search through general slice recursively.
kvn@500 1252 result = nmm->memory_at(igvn->C->get_general_index(ni));
kvn@500 1253 result = find_inst_mem(result, ni, orig_phis, igvn);
kvn@500 1254 if (_compile->failing()) {
kvn@500 1255 return;
kvn@500 1256 }
kvn@500 1257 nmm->set_memory_at(ni, result);
kvn@500 1258 }
kvn@500 1259 }
kvn@500 1260 igvn->hash_insert(nmm);
kvn@500 1261 record_for_optimizer(nmm);
kvn@500 1262
kvn@500 1263 // Propagate new memory slices to following MergeMem nodes.
kvn@500 1264 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 1265 Node *use = n->fast_out(i);
kvn@500 1266 if (use->is_Call()) {
kvn@500 1267 CallNode* in = use->as_Call();
kvn@500 1268 if (in->proj_out(TypeFunc::Memory) != NULL) {
kvn@500 1269 Node* m = in->proj_out(TypeFunc::Memory);
kvn@500 1270 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
kvn@500 1271 Node* mm = m->fast_out(j);
kvn@500 1272 if (mm->is_MergeMem()) {
kvn@500 1273 mergemem_worklist.append_if_missing(mm);
kvn@500 1274 }
kvn@500 1275 }
kvn@500 1276 }
kvn@500 1277 if (use->is_Allocate()) {
kvn@500 1278 use = use->as_Allocate()->initialization();
kvn@500 1279 if (use == NULL) {
kvn@500 1280 continue;
kvn@500 1281 }
kvn@500 1282 }
kvn@500 1283 }
kvn@500 1284 if (use->is_Initialize()) {
kvn@500 1285 InitializeNode* in = use->as_Initialize();
kvn@500 1286 if (in->proj_out(TypeFunc::Memory) != NULL) {
kvn@500 1287 Node* m = in->proj_out(TypeFunc::Memory);
kvn@500 1288 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
kvn@500 1289 Node* mm = m->fast_out(j);
kvn@500 1290 if (mm->is_MergeMem()) {
kvn@500 1291 mergemem_worklist.append_if_missing(mm);
duke@435 1292 }
duke@435 1293 }
duke@435 1294 }
duke@435 1295 }
duke@435 1296 }
duke@435 1297 }
duke@435 1298
kvn@500 1299 // Phase 4: Update the inputs of non-instance memory Phis and
kvn@500 1300 // the Memory input of memnodes
duke@435 1301 // First update the inputs of any non-instance Phi's from
duke@435 1302 // which we split out an instance Phi. Note we don't have
duke@435 1303 // to recursively process Phi's encounted on the input memory
duke@435 1304 // chains as is done in split_memory_phi() since they will
duke@435 1305 // also be processed here.
kvn@682 1306 for (int j = 0; j < orig_phis.length(); j++) {
kvn@682 1307 PhiNode *phi = orig_phis.at(j);
duke@435 1308 int alias_idx = _compile->get_alias_index(phi->adr_type());
duke@435 1309 igvn->hash_delete(phi);
duke@435 1310 for (uint i = 1; i < phi->req(); i++) {
duke@435 1311 Node *mem = phi->in(i);
kvn@500 1312 Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
kvn@500 1313 if (_compile->failing()) {
kvn@500 1314 return;
kvn@500 1315 }
duke@435 1316 if (mem != new_mem) {
duke@435 1317 phi->set_req(i, new_mem);
duke@435 1318 }
duke@435 1319 }
duke@435 1320 igvn->hash_insert(phi);
duke@435 1321 record_for_optimizer(phi);
duke@435 1322 }
duke@435 1323
duke@435 1324 // Update the memory inputs of MemNodes with the value we computed
duke@435 1325 // in Phase 2.
kvn@679 1326 for (uint i = 0; i < nodes_size(); i++) {
duke@435 1327 Node *nmem = get_map(i);
duke@435 1328 if (nmem != NULL) {
kvn@679 1329 Node *n = ptnode_adr(i)->_node;
duke@435 1330 if (n != NULL && n->is_Mem()) {
duke@435 1331 igvn->hash_delete(n);
duke@435 1332 n->set_req(MemNode::Memory, nmem);
duke@435 1333 igvn->hash_insert(n);
duke@435 1334 record_for_optimizer(n);
duke@435 1335 }
duke@435 1336 }
duke@435 1337 }
duke@435 1338 }
duke@435 1339
kvn@679 1340 bool ConnectionGraph::has_candidates(Compile *C) {
kvn@679 1341 // EA brings benefits only when the code has allocations and/or locks which
kvn@679 1342 // are represented by ideal Macro nodes.
kvn@679 1343 int cnt = C->macro_count();
kvn@679 1344 for( int i=0; i < cnt; i++ ) {
kvn@679 1345 Node *n = C->macro_node(i);
kvn@679 1346 if ( n->is_Allocate() )
kvn@679 1347 return true;
kvn@679 1348 if( n->is_Lock() ) {
kvn@679 1349 Node* obj = n->as_Lock()->obj_node()->uncast();
kvn@679 1350 if( !(obj->is_Parm() || obj->is_Con()) )
kvn@679 1351 return true;
kvn@679 1352 }
kvn@679 1353 }
kvn@679 1354 return false;
kvn@679 1355 }
kvn@679 1356
kvn@679 1357 bool ConnectionGraph::compute_escape() {
kvn@679 1358 Compile* C = _compile;
duke@435 1359
kvn@598 1360 // 1. Populate Connection Graph (CG) with Ideal nodes.
duke@435 1361
kvn@500 1362 Unique_Node_List worklist_init;
kvn@679 1363 worklist_init.map(C->unique(), NULL); // preallocate space
kvn@500 1364
kvn@500 1365 // Initialize worklist
kvn@679 1366 if (C->root() != NULL) {
kvn@679 1367 worklist_init.push(C->root());
kvn@500 1368 }
kvn@500 1369
kvn@500 1370 GrowableArray<int> cg_worklist;
kvn@679 1371 PhaseGVN* igvn = C->initial_gvn();
kvn@500 1372 bool has_allocations = false;
kvn@500 1373
kvn@500 1374 // Push all useful nodes onto CG list and set their type.
kvn@500 1375 for( uint next = 0; next < worklist_init.size(); ++next ) {
kvn@500 1376 Node* n = worklist_init.at(next);
kvn@500 1377 record_for_escape_analysis(n, igvn);
kvn@679 1378 // Only allocations and java static calls results are checked
kvn@679 1379 // for an escape status. See process_call_result() below.
kvn@679 1380 if (n->is_Allocate() || n->is_CallStaticJava() &&
kvn@679 1381 ptnode_adr(n->_idx)->node_type() == PointsToNode::JavaObject) {
kvn@500 1382 has_allocations = true;
kvn@500 1383 }
kvn@500 1384 if(n->is_AddP())
kvn@500 1385 cg_worklist.append(n->_idx);
kvn@500 1386 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 1387 Node* m = n->fast_out(i); // Get user
kvn@500 1388 worklist_init.push(m);
kvn@500 1389 }
kvn@500 1390 }
kvn@500 1391
kvn@679 1392 if (!has_allocations) {
kvn@500 1393 _collecting = false;
kvn@679 1394 return false; // Nothing to do.
kvn@500 1395 }
kvn@500 1396
kvn@500 1397 // 2. First pass to create simple CG edges (doesn't require to walk CG).
kvn@679 1398 uint delayed_size = _delayed_worklist.size();
kvn@679 1399 for( uint next = 0; next < delayed_size; ++next ) {
kvn@500 1400 Node* n = _delayed_worklist.at(next);
kvn@500 1401 build_connection_graph(n, igvn);
kvn@500 1402 }
kvn@500 1403
kvn@500 1404 // 3. Pass to create fields edges (Allocate -F-> AddP).
kvn@679 1405 uint cg_length = cg_worklist.length();
kvn@679 1406 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1407 int ni = cg_worklist.at(next);
kvn@679 1408 build_connection_graph(ptnode_adr(ni)->_node, igvn);
kvn@500 1409 }
kvn@500 1410
kvn@500 1411 cg_worklist.clear();
kvn@500 1412 cg_worklist.append(_phantom_object);
kvn@500 1413
kvn@500 1414 // 4. Build Connection Graph which need
kvn@500 1415 // to walk the connection graph.
kvn@679 1416 for (uint ni = 0; ni < nodes_size(); ni++) {
kvn@679 1417 PointsToNode* ptn = ptnode_adr(ni);
kvn@500 1418 Node *n = ptn->_node;
kvn@500 1419 if (n != NULL) { // Call, AddP, LoadP, StoreP
kvn@500 1420 build_connection_graph(n, igvn);
kvn@500 1421 if (ptn->node_type() != PointsToNode::UnknownType)
kvn@500 1422 cg_worklist.append(n->_idx); // Collect CG nodes
kvn@500 1423 }
duke@435 1424 }
duke@435 1425
duke@435 1426 VectorSet ptset(Thread::current()->resource_area());
kvn@536 1427 GrowableArray<uint> deferred_edges;
kvn@536 1428 VectorSet visited(Thread::current()->resource_area());
duke@435 1429
kvn@679 1430 // 5. Remove deferred edges from the graph and collect
kvn@679 1431 // information needed for type splitting.
kvn@679 1432 cg_length = cg_worklist.length();
kvn@679 1433 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1434 int ni = cg_worklist.at(next);
kvn@679 1435 PointsToNode* ptn = ptnode_adr(ni);
duke@435 1436 PointsToNode::NodeType nt = ptn->node_type();
duke@435 1437 if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
kvn@536 1438 remove_deferred(ni, &deferred_edges, &visited);
kvn@679 1439 Node *n = ptn->_node;
duke@435 1440 if (n->is_AddP()) {
kvn@688 1441 // Search for objects which are not scalar replaceable.
kvn@688 1442 // Mark their escape state as ArgEscape to propagate the state
kvn@688 1443 // to referenced objects.
kvn@688 1444 // Note: currently there are no difference in compiler optimizations
kvn@688 1445 // for ArgEscape objects and NoEscape objects which are not
kvn@688 1446 // scalar replaceable.
kvn@688 1447
kvn@688 1448 int offset = ptn->offset();
kvn@500 1449 Node *base = get_addp_base(n);
duke@435 1450 ptset.Clear();
duke@435 1451 PointsTo(ptset, base, igvn);
kvn@688 1452 int ptset_size = ptset.Size();
kvn@688 1453
kvn@688 1454 // Check if a field's initializing value is recorded and add
kvn@688 1455 // a corresponding NULL field's value if it is not recorded.
kvn@688 1456 // Connection Graph does not record a default initialization by NULL
kvn@688 1457 // captured by Initialize node.
kvn@688 1458 //
kvn@688 1459 // Note: it will disable scalar replacement in some cases:
kvn@688 1460 //
kvn@688 1461 // Point p[] = new Point[1];
kvn@688 1462 // p[0] = new Point(); // Will be not scalar replaced
kvn@688 1463 //
kvn@688 1464 // but it will save us from incorrect optimizations in next cases:
kvn@688 1465 //
kvn@688 1466 // Point p[] = new Point[1];
kvn@688 1467 // if ( x ) p[0] = new Point(); // Will be not scalar replaced
kvn@688 1468 //
kvn@688 1469 // Without a control flow analysis we can't distinguish above cases.
kvn@688 1470 //
kvn@688 1471 if (offset != Type::OffsetBot && ptset_size == 1) {
kvn@688 1472 uint elem = ptset.getelem(); // Allocation node's index
kvn@688 1473 // It does not matter if it is not Allocation node since
kvn@688 1474 // only non-escaping allocations are scalar replaced.
kvn@688 1475 if (ptnode_adr(elem)->_node->is_Allocate() &&
kvn@688 1476 ptnode_adr(elem)->escape_state() == PointsToNode::NoEscape) {
kvn@688 1477 AllocateNode* alloc = ptnode_adr(elem)->_node->as_Allocate();
kvn@688 1478 InitializeNode* ini = alloc->initialization();
kvn@688 1479 Node* value = NULL;
kvn@688 1480 if (ini != NULL) {
kvn@688 1481 BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT;
kvn@688 1482 Node* store = ini->find_captured_store(offset, type2aelembytes(ft), igvn);
kvn@688 1483 if (store != NULL && store->is_Store())
kvn@688 1484 value = store->in(MemNode::ValueIn);
kvn@688 1485 }
kvn@688 1486 if (value == NULL || value != ptnode_adr(value->_idx)->_node) {
kvn@688 1487 // A field's initializing value was not recorded. Add NULL.
kvn@688 1488 uint null_idx = UseCompressedOops ? _noop_null : _oop_null;
kvn@688 1489 add_pointsto_edge(ni, null_idx);
kvn@688 1490 }
kvn@688 1491 }
kvn@688 1492 }
kvn@688 1493
kvn@688 1494 // An object is not scalar replaceable if the field which may point
kvn@688 1495 // to it has unknown offset (unknown element of an array of objects).
kvn@688 1496 //
kvn@688 1497 if (offset == Type::OffsetBot) {
kvn@688 1498 uint e_cnt = ptn->edge_count();
kvn@688 1499 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@688 1500 uint npi = ptn->edge_target(ei);
kvn@688 1501 set_escape_state(npi, PointsToNode::ArgEscape);
kvn@688 1502 ptnode_adr(npi)->_scalar_replaceable = false;
kvn@688 1503 }
kvn@688 1504 }
kvn@688 1505
kvn@688 1506 // Currently an object is not scalar replaceable if a LoadStore node
kvn@688 1507 // access its field since the field value is unknown after it.
kvn@688 1508 //
kvn@688 1509 bool has_LoadStore = false;
kvn@688 1510 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@688 1511 Node *use = n->fast_out(i);
kvn@688 1512 if (use->is_LoadStore()) {
kvn@688 1513 has_LoadStore = true;
kvn@688 1514 break;
kvn@688 1515 }
kvn@688 1516 }
kvn@688 1517 // An object is not scalar replaceable if the address points
kvn@688 1518 // to unknown field (unknown element for arrays, offset is OffsetBot).
kvn@688 1519 //
kvn@688 1520 // Or the address may point to more then one object. This may produce
kvn@688 1521 // the false positive result (set scalar_replaceable to false)
kvn@688 1522 // since the flow-insensitive escape analysis can't separate
kvn@688 1523 // the case when stores overwrite the field's value from the case
kvn@688 1524 // when stores happened on different control branches.
kvn@688 1525 //
kvn@688 1526 if (ptset_size > 1 || ptset_size != 0 &&
kvn@688 1527 (has_LoadStore || offset == Type::OffsetBot)) {
duke@435 1528 for( VectorSetI j(&ptset); j.test(); ++j ) {
kvn@688 1529 set_escape_state(j.elem, PointsToNode::ArgEscape);
kvn@679 1530 ptnode_adr(j.elem)->_scalar_replaceable = false;
duke@435 1531 }
duke@435 1532 }
duke@435 1533 }
duke@435 1534 }
duke@435 1535 }
kvn@500 1536
kvn@679 1537 // 6. Propagate escape states.
kvn@679 1538 GrowableArray<int> worklist;
kvn@679 1539 bool has_non_escaping_obj = false;
kvn@679 1540
duke@435 1541 // push all GlobalEscape nodes on the worklist
kvn@679 1542 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1543 int nk = cg_worklist.at(next);
kvn@679 1544 if (ptnode_adr(nk)->escape_state() == PointsToNode::GlobalEscape)
kvn@679 1545 worklist.push(nk);
duke@435 1546 }
kvn@679 1547 // mark all nodes reachable from GlobalEscape nodes
duke@435 1548 while(worklist.length() > 0) {
kvn@679 1549 PointsToNode* ptn = ptnode_adr(worklist.pop());
kvn@679 1550 uint e_cnt = ptn->edge_count();
kvn@679 1551 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@679 1552 uint npi = ptn->edge_target(ei);
duke@435 1553 PointsToNode *np = ptnode_adr(npi);
kvn@500 1554 if (np->escape_state() < PointsToNode::GlobalEscape) {
duke@435 1555 np->set_escape_state(PointsToNode::GlobalEscape);
kvn@679 1556 worklist.push(npi);
duke@435 1557 }
duke@435 1558 }
duke@435 1559 }
duke@435 1560
duke@435 1561 // push all ArgEscape nodes on the worklist
kvn@679 1562 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1563 int nk = cg_worklist.at(next);
kvn@679 1564 if (ptnode_adr(nk)->escape_state() == PointsToNode::ArgEscape)
duke@435 1565 worklist.push(nk);
duke@435 1566 }
kvn@679 1567 // mark all nodes reachable from ArgEscape nodes
duke@435 1568 while(worklist.length() > 0) {
kvn@679 1569 PointsToNode* ptn = ptnode_adr(worklist.pop());
kvn@679 1570 if (ptn->node_type() == PointsToNode::JavaObject)
kvn@679 1571 has_non_escaping_obj = true; // Non GlobalEscape
kvn@679 1572 uint e_cnt = ptn->edge_count();
kvn@679 1573 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@679 1574 uint npi = ptn->edge_target(ei);
duke@435 1575 PointsToNode *np = ptnode_adr(npi);
kvn@500 1576 if (np->escape_state() < PointsToNode::ArgEscape) {
duke@435 1577 np->set_escape_state(PointsToNode::ArgEscape);
kvn@679 1578 worklist.push(npi);
duke@435 1579 }
duke@435 1580 }
duke@435 1581 }
kvn@500 1582
kvn@679 1583 GrowableArray<Node*> alloc_worklist;
kvn@679 1584
kvn@500 1585 // push all NoEscape nodes on the worklist
kvn@679 1586 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1587 int nk = cg_worklist.at(next);
kvn@679 1588 if (ptnode_adr(nk)->escape_state() == PointsToNode::NoEscape)
kvn@500 1589 worklist.push(nk);
kvn@500 1590 }
kvn@679 1591 // mark all nodes reachable from NoEscape nodes
kvn@500 1592 while(worklist.length() > 0) {
kvn@679 1593 PointsToNode* ptn = ptnode_adr(worklist.pop());
kvn@679 1594 if (ptn->node_type() == PointsToNode::JavaObject)
kvn@679 1595 has_non_escaping_obj = true; // Non GlobalEscape
kvn@679 1596 Node* n = ptn->_node;
kvn@679 1597 if (n->is_Allocate() && ptn->_scalar_replaceable ) {
twisti@1040 1598 // Push scalar replaceable allocations on alloc_worklist
kvn@679 1599 // for processing in split_unique_types().
kvn@679 1600 alloc_worklist.append(n);
kvn@679 1601 }
kvn@679 1602 uint e_cnt = ptn->edge_count();
kvn@679 1603 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@679 1604 uint npi = ptn->edge_target(ei);
kvn@500 1605 PointsToNode *np = ptnode_adr(npi);
kvn@500 1606 if (np->escape_state() < PointsToNode::NoEscape) {
kvn@500 1607 np->set_escape_state(PointsToNode::NoEscape);
kvn@679 1608 worklist.push(npi);
kvn@500 1609 }
kvn@500 1610 }
kvn@500 1611 }
kvn@500 1612
duke@435 1613 _collecting = false;
kvn@679 1614 assert(C->unique() == nodes_size(), "there should be no new ideal nodes during ConnectionGraph build");
duke@435 1615
kvn@679 1616 bool has_scalar_replaceable_candidates = alloc_worklist.length() > 0;
kvn@679 1617 if ( has_scalar_replaceable_candidates &&
kvn@679 1618 C->AliasLevel() >= 3 && EliminateAllocations ) {
kvn@473 1619
kvn@679 1620 // Now use the escape information to create unique types for
kvn@679 1621 // scalar replaceable objects.
kvn@679 1622 split_unique_types(alloc_worklist);
duke@435 1623
kvn@679 1624 if (C->failing()) return false;
duke@435 1625
kvn@500 1626 // Clean up after split unique types.
kvn@500 1627 ResourceMark rm;
kvn@679 1628 PhaseRemoveUseless pru(C->initial_gvn(), C->for_igvn());
kvn@679 1629
kvn@679 1630 C->print_method("After Escape Analysis", 2);
duke@435 1631
kvn@500 1632 #ifdef ASSERT
kvn@679 1633 } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
kvn@500 1634 tty->print("=== No allocations eliminated for ");
kvn@679 1635 C->method()->print_short_name();
kvn@500 1636 if(!EliminateAllocations) {
kvn@500 1637 tty->print(" since EliminateAllocations is off ===");
kvn@679 1638 } else if(!has_scalar_replaceable_candidates) {
kvn@679 1639 tty->print(" since there are no scalar replaceable candidates ===");
kvn@679 1640 } else if(C->AliasLevel() < 3) {
kvn@500 1641 tty->print(" since AliasLevel < 3 ===");
duke@435 1642 }
kvn@500 1643 tty->cr();
kvn@500 1644 #endif
duke@435 1645 }
kvn@679 1646 return has_non_escaping_obj;
duke@435 1647 }
duke@435 1648
duke@435 1649 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
duke@435 1650
duke@435 1651 switch (call->Opcode()) {
kvn@500 1652 #ifdef ASSERT
duke@435 1653 case Op_Allocate:
duke@435 1654 case Op_AllocateArray:
duke@435 1655 case Op_Lock:
duke@435 1656 case Op_Unlock:
kvn@500 1657 assert(false, "should be done already");
duke@435 1658 break;
kvn@500 1659 #endif
kvn@500 1660 case Op_CallLeafNoFP:
kvn@500 1661 {
kvn@500 1662 // Stub calls, objects do not escape but they are not scale replaceable.
kvn@500 1663 // Adjust escape state for outgoing arguments.
kvn@500 1664 const TypeTuple * d = call->tf()->domain();
kvn@500 1665 VectorSet ptset(Thread::current()->resource_area());
kvn@500 1666 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@500 1667 const Type* at = d->field_at(i);
kvn@500 1668 Node *arg = call->in(i)->uncast();
kvn@500 1669 const Type *aat = phase->type(arg);
kvn@500 1670 if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr()) {
kvn@500 1671 assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
kvn@500 1672 aat->isa_ptr() != NULL, "expecting an Ptr");
kvn@500 1673 set_escape_state(arg->_idx, PointsToNode::ArgEscape);
kvn@500 1674 if (arg->is_AddP()) {
kvn@500 1675 //
kvn@500 1676 // The inline_native_clone() case when the arraycopy stub is called
kvn@500 1677 // after the allocation before Initialize and CheckCastPP nodes.
kvn@500 1678 //
kvn@500 1679 // Set AddP's base (Allocate) as not scalar replaceable since
kvn@500 1680 // pointer to the base (with offset) is passed as argument.
kvn@500 1681 //
kvn@500 1682 arg = get_addp_base(arg);
kvn@500 1683 }
kvn@500 1684 ptset.Clear();
kvn@500 1685 PointsTo(ptset, arg, phase);
kvn@500 1686 for( VectorSetI j(&ptset); j.test(); ++j ) {
kvn@500 1687 uint pt = j.elem;
kvn@500 1688 set_escape_state(pt, PointsToNode::ArgEscape);
kvn@500 1689 }
kvn@500 1690 }
kvn@500 1691 }
kvn@500 1692 break;
kvn@500 1693 }
duke@435 1694
duke@435 1695 case Op_CallStaticJava:
duke@435 1696 // For a static call, we know exactly what method is being called.
duke@435 1697 // Use bytecode estimator to record the call's escape affects
duke@435 1698 {
duke@435 1699 ciMethod *meth = call->as_CallJava()->method();
kvn@500 1700 BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
kvn@500 1701 // fall-through if not a Java method or no analyzer information
kvn@500 1702 if (call_analyzer != NULL) {
duke@435 1703 const TypeTuple * d = call->tf()->domain();
duke@435 1704 VectorSet ptset(Thread::current()->resource_area());
kvn@500 1705 bool copy_dependencies = false;
duke@435 1706 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 1707 const Type* at = d->field_at(i);
duke@435 1708 int k = i - TypeFunc::Parms;
duke@435 1709
duke@435 1710 if (at->isa_oopptr() != NULL) {
kvn@500 1711 Node *arg = call->in(i)->uncast();
duke@435 1712
kvn@500 1713 bool global_escapes = false;
kvn@500 1714 bool fields_escapes = false;
kvn@500 1715 if (!call_analyzer->is_arg_stack(k)) {
duke@435 1716 // The argument global escapes, mark everything it could point to
kvn@500 1717 set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
kvn@500 1718 global_escapes = true;
kvn@500 1719 } else {
kvn@500 1720 if (!call_analyzer->is_arg_local(k)) {
kvn@500 1721 // The argument itself doesn't escape, but any fields might
kvn@500 1722 fields_escapes = true;
kvn@500 1723 }
kvn@500 1724 set_escape_state(arg->_idx, PointsToNode::ArgEscape);
kvn@500 1725 copy_dependencies = true;
kvn@500 1726 }
duke@435 1727
kvn@500 1728 ptset.Clear();
kvn@500 1729 PointsTo(ptset, arg, phase);
kvn@500 1730 for( VectorSetI j(&ptset); j.test(); ++j ) {
kvn@500 1731 uint pt = j.elem;
kvn@500 1732 if (global_escapes) {
kvn@500 1733 //The argument global escapes, mark everything it could point to
duke@435 1734 set_escape_state(pt, PointsToNode::GlobalEscape);
kvn@500 1735 } else {
kvn@500 1736 if (fields_escapes) {
kvn@500 1737 // The argument itself doesn't escape, but any fields might
kvn@500 1738 add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
kvn@500 1739 }
kvn@500 1740 set_escape_state(pt, PointsToNode::ArgEscape);
duke@435 1741 }
duke@435 1742 }
duke@435 1743 }
duke@435 1744 }
kvn@500 1745 if (copy_dependencies)
kvn@679 1746 call_analyzer->copy_dependencies(_compile->dependencies());
duke@435 1747 break;
duke@435 1748 }
duke@435 1749 }
duke@435 1750
duke@435 1751 default:
kvn@500 1752 // Fall-through here if not a Java method or no analyzer information
kvn@500 1753 // or some other type of call, assume the worst case: all arguments
duke@435 1754 // globally escape.
duke@435 1755 {
duke@435 1756 // adjust escape state for outgoing arguments
duke@435 1757 const TypeTuple * d = call->tf()->domain();
duke@435 1758 VectorSet ptset(Thread::current()->resource_area());
duke@435 1759 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 1760 const Type* at = d->field_at(i);
duke@435 1761 if (at->isa_oopptr() != NULL) {
kvn@500 1762 Node *arg = call->in(i)->uncast();
kvn@500 1763 set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
duke@435 1764 ptset.Clear();
duke@435 1765 PointsTo(ptset, arg, phase);
duke@435 1766 for( VectorSetI j(&ptset); j.test(); ++j ) {
duke@435 1767 uint pt = j.elem;
duke@435 1768 set_escape_state(pt, PointsToNode::GlobalEscape);
duke@435 1769 }
duke@435 1770 }
duke@435 1771 }
duke@435 1772 }
duke@435 1773 }
duke@435 1774 }
duke@435 1775 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
kvn@679 1776 CallNode *call = resproj->in(0)->as_Call();
kvn@679 1777 uint call_idx = call->_idx;
kvn@679 1778 uint resproj_idx = resproj->_idx;
duke@435 1779
duke@435 1780 switch (call->Opcode()) {
duke@435 1781 case Op_Allocate:
duke@435 1782 {
duke@435 1783 Node *k = call->in(AllocateNode::KlassNode);
duke@435 1784 const TypeKlassPtr *kt;
duke@435 1785 if (k->Opcode() == Op_LoadKlass) {
duke@435 1786 kt = k->as_Load()->type()->isa_klassptr();
duke@435 1787 } else {
kvn@599 1788 // Also works for DecodeN(LoadNKlass).
duke@435 1789 kt = k->as_Type()->type()->isa_klassptr();
duke@435 1790 }
duke@435 1791 assert(kt != NULL, "TypeKlassPtr required.");
duke@435 1792 ciKlass* cik = kt->klass();
duke@435 1793 ciInstanceKlass* ciik = cik->as_instance_klass();
duke@435 1794
kvn@500 1795 PointsToNode::EscapeState es;
kvn@500 1796 uint edge_to;
duke@435 1797 if (cik->is_subclass_of(_compile->env()->Thread_klass()) || ciik->has_finalizer()) {
kvn@500 1798 es = PointsToNode::GlobalEscape;
kvn@500 1799 edge_to = _phantom_object; // Could not be worse
duke@435 1800 } else {
kvn@500 1801 es = PointsToNode::NoEscape;
kvn@679 1802 edge_to = call_idx;
duke@435 1803 }
kvn@679 1804 set_escape_state(call_idx, es);
kvn@679 1805 add_pointsto_edge(resproj_idx, edge_to);
kvn@679 1806 _processed.set(resproj_idx);
duke@435 1807 break;
duke@435 1808 }
duke@435 1809
duke@435 1810 case Op_AllocateArray:
duke@435 1811 {
kvn@500 1812 int length = call->in(AllocateNode::ALength)->find_int_con(-1);
kvn@500 1813 if (length < 0 || length > EliminateAllocationArraySizeLimit) {
kvn@500 1814 // Not scalar replaceable if the length is not constant or too big.
kvn@679 1815 ptnode_adr(call_idx)->_scalar_replaceable = false;
kvn@500 1816 }
kvn@679 1817 set_escape_state(call_idx, PointsToNode::NoEscape);
kvn@679 1818 add_pointsto_edge(resproj_idx, call_idx);
kvn@679 1819 _processed.set(resproj_idx);
duke@435 1820 break;
duke@435 1821 }
duke@435 1822
duke@435 1823 case Op_CallStaticJava:
duke@435 1824 // For a static call, we know exactly what method is being called.
duke@435 1825 // Use bytecode estimator to record whether the call's return value escapes
duke@435 1826 {
kvn@500 1827 bool done = true;
duke@435 1828 const TypeTuple *r = call->tf()->range();
duke@435 1829 const Type* ret_type = NULL;
duke@435 1830
duke@435 1831 if (r->cnt() > TypeFunc::Parms)
duke@435 1832 ret_type = r->field_at(TypeFunc::Parms);
duke@435 1833
duke@435 1834 // Note: we use isa_ptr() instead of isa_oopptr() here because the
duke@435 1835 // _multianewarray functions return a TypeRawPtr.
kvn@500 1836 if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
kvn@679 1837 _processed.set(resproj_idx);
duke@435 1838 break; // doesn't return a pointer type
kvn@500 1839 }
duke@435 1840 ciMethod *meth = call->as_CallJava()->method();
kvn@500 1841 const TypeTuple * d = call->tf()->domain();
duke@435 1842 if (meth == NULL) {
duke@435 1843 // not a Java method, assume global escape
kvn@679 1844 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 1845 add_pointsto_edge(resproj_idx, _phantom_object);
duke@435 1846 } else {
kvn@500 1847 BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
kvn@500 1848 bool copy_dependencies = false;
duke@435 1849
kvn@500 1850 if (call_analyzer->is_return_allocated()) {
kvn@500 1851 // Returns a newly allocated unescaped object, simply
kvn@500 1852 // update dependency information.
kvn@500 1853 // Mark it as NoEscape so that objects referenced by
kvn@500 1854 // it's fields will be marked as NoEscape at least.
kvn@679 1855 set_escape_state(call_idx, PointsToNode::NoEscape);
kvn@679 1856 add_pointsto_edge(resproj_idx, call_idx);
kvn@500 1857 copy_dependencies = true;
kvn@679 1858 } else if (call_analyzer->is_return_local()) {
duke@435 1859 // determine whether any arguments are returned
kvn@679 1860 set_escape_state(call_idx, PointsToNode::NoEscape);
kvn@742 1861 bool ret_arg = false;
duke@435 1862 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 1863 const Type* at = d->field_at(i);
duke@435 1864
duke@435 1865 if (at->isa_oopptr() != NULL) {
kvn@500 1866 Node *arg = call->in(i)->uncast();
duke@435 1867
kvn@500 1868 if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
kvn@742 1869 ret_arg = true;
kvn@679 1870 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
kvn@500 1871 if (arg_esp->node_type() == PointsToNode::UnknownType)
kvn@500 1872 done = false;
kvn@500 1873 else if (arg_esp->node_type() == PointsToNode::JavaObject)
kvn@679 1874 add_pointsto_edge(resproj_idx, arg->_idx);
duke@435 1875 else
kvn@679 1876 add_deferred_edge(resproj_idx, arg->_idx);
duke@435 1877 arg_esp->_hidden_alias = true;
duke@435 1878 }
duke@435 1879 }
duke@435 1880 }
kvn@742 1881 if (done && !ret_arg) {
kvn@742 1882 // Returns unknown object.
kvn@742 1883 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@742 1884 add_pointsto_edge(resproj_idx, _phantom_object);
kvn@742 1885 }
kvn@500 1886 copy_dependencies = true;
duke@435 1887 } else {
kvn@679 1888 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 1889 add_pointsto_edge(resproj_idx, _phantom_object);
kvn@500 1890 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@500 1891 const Type* at = d->field_at(i);
kvn@500 1892 if (at->isa_oopptr() != NULL) {
kvn@500 1893 Node *arg = call->in(i)->uncast();
kvn@679 1894 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
kvn@500 1895 arg_esp->_hidden_alias = true;
kvn@500 1896 }
kvn@500 1897 }
duke@435 1898 }
kvn@500 1899 if (copy_dependencies)
kvn@679 1900 call_analyzer->copy_dependencies(_compile->dependencies());
duke@435 1901 }
kvn@500 1902 if (done)
kvn@679 1903 _processed.set(resproj_idx);
duke@435 1904 break;
duke@435 1905 }
duke@435 1906
duke@435 1907 default:
duke@435 1908 // Some other type of call, assume the worst case that the
duke@435 1909 // returned value, if any, globally escapes.
duke@435 1910 {
duke@435 1911 const TypeTuple *r = call->tf()->range();
duke@435 1912 if (r->cnt() > TypeFunc::Parms) {
duke@435 1913 const Type* ret_type = r->field_at(TypeFunc::Parms);
duke@435 1914
duke@435 1915 // Note: we use isa_ptr() instead of isa_oopptr() here because the
duke@435 1916 // _multianewarray functions return a TypeRawPtr.
duke@435 1917 if (ret_type->isa_ptr() != NULL) {
kvn@679 1918 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 1919 add_pointsto_edge(resproj_idx, _phantom_object);
duke@435 1920 }
duke@435 1921 }
kvn@679 1922 _processed.set(resproj_idx);
duke@435 1923 }
duke@435 1924 }
duke@435 1925 }
duke@435 1926
kvn@500 1927 // Populate Connection Graph with Ideal nodes and create simple
kvn@500 1928 // connection graph edges (do not need to check the node_type of inputs
kvn@500 1929 // or to call PointsTo() to walk the connection graph).
kvn@500 1930 void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
kvn@500 1931 if (_processed.test(n->_idx))
kvn@500 1932 return; // No need to redefine node's state.
kvn@500 1933
kvn@500 1934 if (n->is_Call()) {
kvn@500 1935 // Arguments to allocation and locking don't escape.
kvn@500 1936 if (n->is_Allocate()) {
kvn@500 1937 add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
kvn@500 1938 record_for_optimizer(n);
kvn@500 1939 } else if (n->is_Lock() || n->is_Unlock()) {
kvn@500 1940 // Put Lock and Unlock nodes on IGVN worklist to process them during
kvn@500 1941 // the first IGVN optimization when escape information is still available.
kvn@500 1942 record_for_optimizer(n);
kvn@500 1943 _processed.set(n->_idx);
kvn@500 1944 } else {
kvn@500 1945 // Have to process call's arguments first.
kvn@500 1946 PointsToNode::NodeType nt = PointsToNode::UnknownType;
kvn@500 1947
kvn@500 1948 // Check if a call returns an object.
kvn@500 1949 const TypeTuple *r = n->as_Call()->tf()->range();
kvn@679 1950 if (n->is_CallStaticJava() && r->cnt() > TypeFunc::Parms &&
kvn@500 1951 n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
kvn@500 1952 // Note: use isa_ptr() instead of isa_oopptr() here because
kvn@500 1953 // the _multianewarray functions return a TypeRawPtr.
kvn@500 1954 if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
kvn@500 1955 nt = PointsToNode::JavaObject;
kvn@500 1956 }
duke@435 1957 }
kvn@500 1958 add_node(n, nt, PointsToNode::UnknownEscape, false);
duke@435 1959 }
kvn@500 1960 return;
duke@435 1961 }
kvn@500 1962
kvn@500 1963 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
kvn@500 1964 // ThreadLocal has RawPrt type.
kvn@500 1965 switch (n->Opcode()) {
kvn@500 1966 case Op_AddP:
kvn@500 1967 {
kvn@500 1968 add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
kvn@500 1969 break;
kvn@500 1970 }
kvn@500 1971 case Op_CastX2P:
kvn@500 1972 { // "Unsafe" memory access.
kvn@500 1973 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@500 1974 break;
kvn@500 1975 }
kvn@500 1976 case Op_CastPP:
kvn@500 1977 case Op_CheckCastPP:
kvn@559 1978 case Op_EncodeP:
kvn@559 1979 case Op_DecodeN:
kvn@500 1980 {
kvn@500 1981 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 1982 int ti = n->in(1)->_idx;
kvn@679 1983 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 1984 if (nt == PointsToNode::UnknownType) {
kvn@500 1985 _delayed_worklist.push(n); // Process it later.
kvn@500 1986 break;
kvn@500 1987 } else if (nt == PointsToNode::JavaObject) {
kvn@500 1988 add_pointsto_edge(n->_idx, ti);
kvn@500 1989 } else {
kvn@500 1990 add_deferred_edge(n->_idx, ti);
kvn@500 1991 }
kvn@500 1992 _processed.set(n->_idx);
kvn@500 1993 break;
kvn@500 1994 }
kvn@500 1995 case Op_ConP:
kvn@500 1996 {
kvn@500 1997 // assume all pointer constants globally escape except for null
kvn@500 1998 PointsToNode::EscapeState es;
kvn@500 1999 if (phase->type(n) == TypePtr::NULL_PTR)
kvn@500 2000 es = PointsToNode::NoEscape;
kvn@500 2001 else
kvn@500 2002 es = PointsToNode::GlobalEscape;
kvn@500 2003
kvn@500 2004 add_node(n, PointsToNode::JavaObject, es, true);
kvn@500 2005 break;
kvn@500 2006 }
coleenp@548 2007 case Op_ConN:
coleenp@548 2008 {
coleenp@548 2009 // assume all narrow oop constants globally escape except for null
coleenp@548 2010 PointsToNode::EscapeState es;
coleenp@548 2011 if (phase->type(n) == TypeNarrowOop::NULL_PTR)
coleenp@548 2012 es = PointsToNode::NoEscape;
coleenp@548 2013 else
coleenp@548 2014 es = PointsToNode::GlobalEscape;
coleenp@548 2015
coleenp@548 2016 add_node(n, PointsToNode::JavaObject, es, true);
coleenp@548 2017 break;
coleenp@548 2018 }
kvn@559 2019 case Op_CreateEx:
kvn@559 2020 {
kvn@559 2021 // assume that all exception objects globally escape
kvn@559 2022 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@559 2023 break;
kvn@559 2024 }
kvn@500 2025 case Op_LoadKlass:
kvn@599 2026 case Op_LoadNKlass:
kvn@500 2027 {
kvn@500 2028 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@500 2029 break;
kvn@500 2030 }
kvn@500 2031 case Op_LoadP:
coleenp@548 2032 case Op_LoadN:
kvn@500 2033 {
kvn@500 2034 const Type *t = phase->type(n);
kvn@688 2035 if (t->make_ptr() == NULL) {
kvn@500 2036 _processed.set(n->_idx);
kvn@500 2037 return;
kvn@500 2038 }
kvn@500 2039 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 2040 break;
kvn@500 2041 }
kvn@500 2042 case Op_Parm:
kvn@500 2043 {
kvn@500 2044 _processed.set(n->_idx); // No need to redefine it state.
kvn@500 2045 uint con = n->as_Proj()->_con;
kvn@500 2046 if (con < TypeFunc::Parms)
kvn@500 2047 return;
kvn@500 2048 const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
kvn@500 2049 if (t->isa_ptr() == NULL)
kvn@500 2050 return;
kvn@500 2051 // We have to assume all input parameters globally escape
kvn@500 2052 // (Note: passing 'false' since _processed is already set).
kvn@500 2053 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
kvn@500 2054 break;
kvn@500 2055 }
kvn@500 2056 case Op_Phi:
kvn@500 2057 {
kvn@688 2058 const Type *t = n->as_Phi()->type();
kvn@688 2059 if (t->make_ptr() == NULL) {
kvn@688 2060 // nothing to do if not an oop or narrow oop
kvn@500 2061 _processed.set(n->_idx);
kvn@500 2062 return;
kvn@500 2063 }
kvn@500 2064 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 2065 uint i;
kvn@500 2066 for (i = 1; i < n->req() ; i++) {
kvn@500 2067 Node* in = n->in(i);
kvn@500 2068 if (in == NULL)
kvn@500 2069 continue; // ignore NULL
kvn@500 2070 in = in->uncast();
kvn@500 2071 if (in->is_top() || in == n)
kvn@500 2072 continue; // ignore top or inputs which go back this node
kvn@500 2073 int ti = in->_idx;
kvn@679 2074 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 2075 if (nt == PointsToNode::UnknownType) {
kvn@500 2076 break;
kvn@500 2077 } else if (nt == PointsToNode::JavaObject) {
kvn@500 2078 add_pointsto_edge(n->_idx, ti);
kvn@500 2079 } else {
kvn@500 2080 add_deferred_edge(n->_idx, ti);
kvn@500 2081 }
kvn@500 2082 }
kvn@500 2083 if (i >= n->req())
kvn@500 2084 _processed.set(n->_idx);
kvn@500 2085 else
kvn@500 2086 _delayed_worklist.push(n);
kvn@500 2087 break;
kvn@500 2088 }
kvn@500 2089 case Op_Proj:
kvn@500 2090 {
kvn@500 2091 // we are only interested in the result projection from a call
kvn@500 2092 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
kvn@500 2093 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 2094 process_call_result(n->as_Proj(), phase);
kvn@500 2095 if (!_processed.test(n->_idx)) {
kvn@500 2096 // The call's result may need to be processed later if the call
kvn@500 2097 // returns it's argument and the argument is not processed yet.
kvn@500 2098 _delayed_worklist.push(n);
kvn@500 2099 }
kvn@500 2100 } else {
kvn@500 2101 _processed.set(n->_idx);
kvn@500 2102 }
kvn@500 2103 break;
kvn@500 2104 }
kvn@500 2105 case Op_Return:
kvn@500 2106 {
kvn@500 2107 if( n->req() > TypeFunc::Parms &&
kvn@500 2108 phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
kvn@500 2109 // Treat Return value as LocalVar with GlobalEscape escape state.
kvn@500 2110 add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
kvn@500 2111 int ti = n->in(TypeFunc::Parms)->_idx;
kvn@679 2112 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 2113 if (nt == PointsToNode::UnknownType) {
kvn@500 2114 _delayed_worklist.push(n); // Process it later.
kvn@500 2115 break;
kvn@500 2116 } else if (nt == PointsToNode::JavaObject) {
kvn@500 2117 add_pointsto_edge(n->_idx, ti);
kvn@500 2118 } else {
kvn@500 2119 add_deferred_edge(n->_idx, ti);
kvn@500 2120 }
kvn@500 2121 }
kvn@500 2122 _processed.set(n->_idx);
kvn@500 2123 break;
kvn@500 2124 }
kvn@500 2125 case Op_StoreP:
coleenp@548 2126 case Op_StoreN:
kvn@500 2127 {
kvn@500 2128 const Type *adr_type = phase->type(n->in(MemNode::Address));
kvn@656 2129 adr_type = adr_type->make_ptr();
kvn@500 2130 if (adr_type->isa_oopptr()) {
kvn@500 2131 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 2132 } else {
kvn@500 2133 Node* adr = n->in(MemNode::Address);
kvn@500 2134 if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
kvn@500 2135 adr->in(AddPNode::Address)->is_Proj() &&
kvn@500 2136 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
kvn@500 2137 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 2138 // We are computing a raw address for a store captured
kvn@500 2139 // by an Initialize compute an appropriate address type.
kvn@500 2140 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 2141 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@500 2142 } else {
kvn@500 2143 _processed.set(n->_idx);
kvn@500 2144 return;
kvn@500 2145 }
kvn@500 2146 }
kvn@500 2147 break;
kvn@500 2148 }
kvn@500 2149 case Op_StorePConditional:
kvn@500 2150 case Op_CompareAndSwapP:
coleenp@548 2151 case Op_CompareAndSwapN:
kvn@500 2152 {
kvn@500 2153 const Type *adr_type = phase->type(n->in(MemNode::Address));
kvn@656 2154 adr_type = adr_type->make_ptr();
kvn@500 2155 if (adr_type->isa_oopptr()) {
kvn@500 2156 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 2157 } else {
kvn@500 2158 _processed.set(n->_idx);
kvn@500 2159 return;
kvn@500 2160 }
kvn@500 2161 break;
kvn@500 2162 }
kvn@500 2163 case Op_ThreadLocal:
kvn@500 2164 {
kvn@500 2165 add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
kvn@500 2166 break;
kvn@500 2167 }
kvn@500 2168 default:
kvn@500 2169 ;
kvn@500 2170 // nothing to do
kvn@500 2171 }
kvn@500 2172 return;
duke@435 2173 }
duke@435 2174
kvn@500 2175 void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
kvn@679 2176 uint n_idx = n->_idx;
kvn@679 2177
kvn@500 2178 // Don't set processed bit for AddP, LoadP, StoreP since
kvn@500 2179 // they may need more then one pass to process.
kvn@679 2180 if (_processed.test(n_idx))
kvn@500 2181 return; // No need to redefine node's state.
duke@435 2182
duke@435 2183 if (n->is_Call()) {
duke@435 2184 CallNode *call = n->as_Call();
duke@435 2185 process_call_arguments(call, phase);
kvn@679 2186 _processed.set(n_idx);
duke@435 2187 return;
duke@435 2188 }
duke@435 2189
kvn@500 2190 switch (n->Opcode()) {
duke@435 2191 case Op_AddP:
duke@435 2192 {
kvn@500 2193 Node *base = get_addp_base(n);
kvn@500 2194 // Create a field edge to this node from everything base could point to.
duke@435 2195 VectorSet ptset(Thread::current()->resource_area());
duke@435 2196 PointsTo(ptset, base, phase);
duke@435 2197 for( VectorSetI i(&ptset); i.test(); ++i ) {
duke@435 2198 uint pt = i.elem;
kvn@679 2199 add_field_edge(pt, n_idx, address_offset(n, phase));
kvn@500 2200 }
kvn@500 2201 break;
kvn@500 2202 }
kvn@500 2203 case Op_CastX2P:
kvn@500 2204 {
kvn@500 2205 assert(false, "Op_CastX2P");
kvn@500 2206 break;
kvn@500 2207 }
kvn@500 2208 case Op_CastPP:
kvn@500 2209 case Op_CheckCastPP:
coleenp@548 2210 case Op_EncodeP:
coleenp@548 2211 case Op_DecodeN:
kvn@500 2212 {
kvn@500 2213 int ti = n->in(1)->_idx;
kvn@679 2214 if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
kvn@679 2215 add_pointsto_edge(n_idx, ti);
kvn@500 2216 } else {
kvn@679 2217 add_deferred_edge(n_idx, ti);
kvn@500 2218 }
kvn@679 2219 _processed.set(n_idx);
kvn@500 2220 break;
kvn@500 2221 }
kvn@500 2222 case Op_ConP:
kvn@500 2223 {
kvn@500 2224 assert(false, "Op_ConP");
kvn@500 2225 break;
kvn@500 2226 }
kvn@598 2227 case Op_ConN:
kvn@598 2228 {
kvn@598 2229 assert(false, "Op_ConN");
kvn@598 2230 break;
kvn@598 2231 }
kvn@500 2232 case Op_CreateEx:
kvn@500 2233 {
kvn@500 2234 assert(false, "Op_CreateEx");
kvn@500 2235 break;
kvn@500 2236 }
kvn@500 2237 case Op_LoadKlass:
kvn@599 2238 case Op_LoadNKlass:
kvn@500 2239 {
kvn@500 2240 assert(false, "Op_LoadKlass");
kvn@500 2241 break;
kvn@500 2242 }
kvn@500 2243 case Op_LoadP:
kvn@559 2244 case Op_LoadN:
kvn@500 2245 {
kvn@500 2246 const Type *t = phase->type(n);
kvn@500 2247 #ifdef ASSERT
kvn@688 2248 if (t->make_ptr() == NULL)
kvn@500 2249 assert(false, "Op_LoadP");
kvn@500 2250 #endif
kvn@500 2251
kvn@500 2252 Node* adr = n->in(MemNode::Address)->uncast();
kvn@500 2253 const Type *adr_type = phase->type(adr);
kvn@500 2254 Node* adr_base;
kvn@500 2255 if (adr->is_AddP()) {
kvn@500 2256 adr_base = get_addp_base(adr);
kvn@500 2257 } else {
kvn@500 2258 adr_base = adr;
kvn@500 2259 }
kvn@500 2260
kvn@500 2261 // For everything "adr_base" could point to, create a deferred edge from
kvn@500 2262 // this node to each field with the same offset.
kvn@500 2263 VectorSet ptset(Thread::current()->resource_area());
kvn@500 2264 PointsTo(ptset, adr_base, phase);
kvn@500 2265 int offset = address_offset(adr, phase);
kvn@500 2266 for( VectorSetI i(&ptset); i.test(); ++i ) {
kvn@500 2267 uint pt = i.elem;
kvn@679 2268 add_deferred_edge_to_fields(n_idx, pt, offset);
duke@435 2269 }
duke@435 2270 break;
duke@435 2271 }
duke@435 2272 case Op_Parm:
duke@435 2273 {
kvn@500 2274 assert(false, "Op_Parm");
kvn@500 2275 break;
kvn@500 2276 }
kvn@500 2277 case Op_Phi:
kvn@500 2278 {
kvn@500 2279 #ifdef ASSERT
kvn@688 2280 const Type *t = n->as_Phi()->type();
kvn@688 2281 if (t->make_ptr() == NULL)
kvn@500 2282 assert(false, "Op_Phi");
kvn@500 2283 #endif
kvn@500 2284 for (uint i = 1; i < n->req() ; i++) {
kvn@500 2285 Node* in = n->in(i);
kvn@500 2286 if (in == NULL)
kvn@500 2287 continue; // ignore NULL
kvn@500 2288 in = in->uncast();
kvn@500 2289 if (in->is_top() || in == n)
kvn@500 2290 continue; // ignore top or inputs which go back this node
kvn@500 2291 int ti = in->_idx;
kvn@742 2292 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@742 2293 assert(nt != PointsToNode::UnknownType, "all nodes should be known");
kvn@742 2294 if (nt == PointsToNode::JavaObject) {
kvn@679 2295 add_pointsto_edge(n_idx, ti);
kvn@500 2296 } else {
kvn@679 2297 add_deferred_edge(n_idx, ti);
kvn@500 2298 }
duke@435 2299 }
kvn@679 2300 _processed.set(n_idx);
duke@435 2301 break;
duke@435 2302 }
kvn@500 2303 case Op_Proj:
duke@435 2304 {
kvn@500 2305 // we are only interested in the result projection from a call
kvn@500 2306 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
kvn@500 2307 process_call_result(n->as_Proj(), phase);
kvn@679 2308 assert(_processed.test(n_idx), "all call results should be processed");
kvn@500 2309 } else {
kvn@500 2310 assert(false, "Op_Proj");
kvn@500 2311 }
duke@435 2312 break;
duke@435 2313 }
kvn@500 2314 case Op_Return:
duke@435 2315 {
kvn@500 2316 #ifdef ASSERT
kvn@500 2317 if( n->req() <= TypeFunc::Parms ||
kvn@500 2318 !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
kvn@500 2319 assert(false, "Op_Return");
kvn@500 2320 }
kvn@500 2321 #endif
kvn@500 2322 int ti = n->in(TypeFunc::Parms)->_idx;
kvn@679 2323 if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
kvn@679 2324 add_pointsto_edge(n_idx, ti);
kvn@500 2325 } else {
kvn@679 2326 add_deferred_edge(n_idx, ti);
kvn@500 2327 }
kvn@679 2328 _processed.set(n_idx);
duke@435 2329 break;
duke@435 2330 }
duke@435 2331 case Op_StoreP:
kvn@559 2332 case Op_StoreN:
duke@435 2333 case Op_StorePConditional:
duke@435 2334 case Op_CompareAndSwapP:
kvn@559 2335 case Op_CompareAndSwapN:
duke@435 2336 {
duke@435 2337 Node *adr = n->in(MemNode::Address);
kvn@656 2338 const Type *adr_type = phase->type(adr)->make_ptr();
kvn@500 2339 #ifdef ASSERT
duke@435 2340 if (!adr_type->isa_oopptr())
kvn@500 2341 assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
kvn@500 2342 #endif
duke@435 2343
kvn@500 2344 assert(adr->is_AddP(), "expecting an AddP");
kvn@500 2345 Node *adr_base = get_addp_base(adr);
kvn@500 2346 Node *val = n->in(MemNode::ValueIn)->uncast();
kvn@500 2347 // For everything "adr_base" could point to, create a deferred edge
kvn@500 2348 // to "val" from each field with the same offset.
duke@435 2349 VectorSet ptset(Thread::current()->resource_area());
duke@435 2350 PointsTo(ptset, adr_base, phase);
duke@435 2351 for( VectorSetI i(&ptset); i.test(); ++i ) {
duke@435 2352 uint pt = i.elem;
kvn@500 2353 add_edge_from_fields(pt, val->_idx, address_offset(adr, phase));
duke@435 2354 }
duke@435 2355 break;
duke@435 2356 }
kvn@500 2357 case Op_ThreadLocal:
duke@435 2358 {
kvn@500 2359 assert(false, "Op_ThreadLocal");
duke@435 2360 break;
duke@435 2361 }
duke@435 2362 default:
duke@435 2363 ;
duke@435 2364 // nothing to do
duke@435 2365 }
duke@435 2366 }
duke@435 2367
duke@435 2368 #ifndef PRODUCT
duke@435 2369 void ConnectionGraph::dump() {
duke@435 2370 PhaseGVN *igvn = _compile->initial_gvn();
duke@435 2371 bool first = true;
duke@435 2372
kvn@679 2373 uint size = nodes_size();
kvn@500 2374 for (uint ni = 0; ni < size; ni++) {
kvn@679 2375 PointsToNode *ptn = ptnode_adr(ni);
kvn@500 2376 PointsToNode::NodeType ptn_type = ptn->node_type();
kvn@500 2377
kvn@500 2378 if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
duke@435 2379 continue;
kvn@500 2380 PointsToNode::EscapeState es = escape_state(ptn->_node, igvn);
kvn@500 2381 if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
kvn@500 2382 if (first) {
kvn@500 2383 tty->cr();
kvn@500 2384 tty->print("======== Connection graph for ");
kvn@679 2385 _compile->method()->print_short_name();
kvn@500 2386 tty->cr();
kvn@500 2387 first = false;
kvn@500 2388 }
kvn@500 2389 tty->print("%6d ", ni);
kvn@500 2390 ptn->dump();
kvn@500 2391 // Print all locals which reference this allocation
kvn@500 2392 for (uint li = ni; li < size; li++) {
kvn@679 2393 PointsToNode *ptn_loc = ptnode_adr(li);
kvn@500 2394 PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
kvn@500 2395 if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
kvn@500 2396 ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
kvn@688 2397 ptnode_adr(li)->dump(false);
duke@435 2398 }
duke@435 2399 }
kvn@500 2400 if (Verbose) {
kvn@500 2401 // Print all fields which reference this allocation
kvn@500 2402 for (uint i = 0; i < ptn->edge_count(); i++) {
kvn@500 2403 uint ei = ptn->edge_target(i);
kvn@688 2404 ptnode_adr(ei)->dump(false);
kvn@500 2405 }
kvn@500 2406 }
kvn@500 2407 tty->cr();
duke@435 2408 }
duke@435 2409 }
duke@435 2410 }
duke@435 2411 #endif

mercurial