src/share/vm/opto/escape.cpp

Wed, 09 Dec 2009 16:40:45 -0800

author
kvn
date
Wed, 09 Dec 2009 16:40:45 -0800
changeset 1535
f96a1a986f7b
parent 1507
7ef1d2e14917
child 1536
7fee0a6cc6d4
permissions
-rw-r--r--

6895383: JCK test throws NPE for method compiled with Escape Analysis
Summary: Add missing checks for MemBar nodes in EA.
Reviewed-by: never

duke@435 1 /*
xdono@1279 2 * Copyright 2005-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_escape.cpp.incl"
duke@435 27
duke@435 28 void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
duke@435 29 uint v = (targIdx << EdgeShift) + ((uint) et);
duke@435 30 if (_edges == NULL) {
duke@435 31 Arena *a = Compile::current()->comp_arena();
duke@435 32 _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
duke@435 33 }
duke@435 34 _edges->append_if_missing(v);
duke@435 35 }
duke@435 36
duke@435 37 void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
duke@435 38 uint v = (targIdx << EdgeShift) + ((uint) et);
duke@435 39
duke@435 40 _edges->remove(v);
duke@435 41 }
duke@435 42
duke@435 43 #ifndef PRODUCT
kvn@512 44 static const char *node_type_names[] = {
duke@435 45 "UnknownType",
duke@435 46 "JavaObject",
duke@435 47 "LocalVar",
duke@435 48 "Field"
duke@435 49 };
duke@435 50
kvn@512 51 static const char *esc_names[] = {
duke@435 52 "UnknownEscape",
kvn@500 53 "NoEscape",
kvn@500 54 "ArgEscape",
kvn@500 55 "GlobalEscape"
duke@435 56 };
duke@435 57
kvn@512 58 static const char *edge_type_suffix[] = {
duke@435 59 "?", // UnknownEdge
duke@435 60 "P", // PointsToEdge
duke@435 61 "D", // DeferredEdge
duke@435 62 "F" // FieldEdge
duke@435 63 };
duke@435 64
kvn@688 65 void PointsToNode::dump(bool print_state) const {
duke@435 66 NodeType nt = node_type();
kvn@688 67 tty->print("%s ", node_type_names[(int) nt]);
kvn@688 68 if (print_state) {
kvn@688 69 EscapeState es = escape_state();
kvn@688 70 tty->print("%s %s ", esc_names[(int) es], _scalar_replaceable ? "":"NSR");
kvn@688 71 }
kvn@688 72 tty->print("[[");
duke@435 73 for (uint i = 0; i < edge_count(); i++) {
duke@435 74 tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
duke@435 75 }
duke@435 76 tty->print("]] ");
duke@435 77 if (_node == NULL)
duke@435 78 tty->print_cr("<null>");
duke@435 79 else
duke@435 80 _node->dump();
duke@435 81 }
duke@435 82 #endif
duke@435 83
kvn@679 84 ConnectionGraph::ConnectionGraph(Compile * C) :
kvn@679 85 _nodes(C->comp_arena(), C->unique(), C->unique(), PointsToNode()),
kvn@679 86 _processed(C->comp_arena()),
kvn@679 87 _collecting(true),
kvn@679 88 _compile(C),
kvn@679 89 _node_map(C->comp_arena()) {
kvn@679 90
kvn@688 91 _phantom_object = C->top()->_idx,
kvn@688 92 add_node(C->top(), PointsToNode::JavaObject, PointsToNode::GlobalEscape,true);
kvn@688 93
kvn@688 94 // Add ConP(#NULL) and ConN(#NULL) nodes.
kvn@688 95 PhaseGVN* igvn = C->initial_gvn();
kvn@688 96 Node* oop_null = igvn->zerocon(T_OBJECT);
kvn@688 97 _oop_null = oop_null->_idx;
kvn@688 98 assert(_oop_null < C->unique(), "should be created already");
kvn@688 99 add_node(oop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
kvn@688 100
kvn@688 101 if (UseCompressedOops) {
kvn@688 102 Node* noop_null = igvn->zerocon(T_NARROWOOP);
kvn@688 103 _noop_null = noop_null->_idx;
kvn@688 104 assert(_noop_null < C->unique(), "should be created already");
kvn@688 105 add_node(noop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
kvn@688 106 }
duke@435 107 }
duke@435 108
duke@435 109 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
duke@435 110 PointsToNode *f = ptnode_adr(from_i);
duke@435 111 PointsToNode *t = ptnode_adr(to_i);
duke@435 112
duke@435 113 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 114 assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
duke@435 115 assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
duke@435 116 f->add_edge(to_i, PointsToNode::PointsToEdge);
duke@435 117 }
duke@435 118
duke@435 119 void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
duke@435 120 PointsToNode *f = ptnode_adr(from_i);
duke@435 121 PointsToNode *t = ptnode_adr(to_i);
duke@435 122
duke@435 123 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 124 assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
duke@435 125 assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
duke@435 126 // don't add a self-referential edge, this can occur during removal of
duke@435 127 // deferred edges
duke@435 128 if (from_i != to_i)
duke@435 129 f->add_edge(to_i, PointsToNode::DeferredEdge);
duke@435 130 }
duke@435 131
kvn@500 132 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
kvn@500 133 const Type *adr_type = phase->type(adr);
kvn@500 134 if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
kvn@500 135 adr->in(AddPNode::Address)->is_Proj() &&
kvn@500 136 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
kvn@500 137 // We are computing a raw address for a store captured by an Initialize
kvn@500 138 // compute an appropriate address type. AddP cases #3 and #5 (see below).
kvn@500 139 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 140 assert(offs != Type::OffsetBot ||
kvn@500 141 adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
kvn@500 142 "offset must be a constant or it is initialization of array");
kvn@500 143 return offs;
kvn@500 144 }
kvn@500 145 const TypePtr *t_ptr = adr_type->isa_ptr();
duke@435 146 assert(t_ptr != NULL, "must be a pointer type");
duke@435 147 return t_ptr->offset();
duke@435 148 }
duke@435 149
duke@435 150 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
duke@435 151 PointsToNode *f = ptnode_adr(from_i);
duke@435 152 PointsToNode *t = ptnode_adr(to_i);
duke@435 153
duke@435 154 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 155 assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
duke@435 156 assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
duke@435 157 assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
duke@435 158 t->set_offset(offset);
duke@435 159
duke@435 160 f->add_edge(to_i, PointsToNode::FieldEdge);
duke@435 161 }
duke@435 162
duke@435 163 void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
duke@435 164 PointsToNode *npt = ptnode_adr(ni);
duke@435 165 PointsToNode::EscapeState old_es = npt->escape_state();
duke@435 166 if (es > old_es)
duke@435 167 npt->set_escape_state(es);
duke@435 168 }
duke@435 169
kvn@500 170 void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
kvn@500 171 PointsToNode::EscapeState es, bool done) {
kvn@500 172 PointsToNode* ptadr = ptnode_adr(n->_idx);
kvn@500 173 ptadr->_node = n;
kvn@500 174 ptadr->set_node_type(nt);
kvn@500 175
kvn@500 176 // inline set_escape_state(idx, es);
kvn@500 177 PointsToNode::EscapeState old_es = ptadr->escape_state();
kvn@500 178 if (es > old_es)
kvn@500 179 ptadr->set_escape_state(es);
kvn@500 180
kvn@500 181 if (done)
kvn@500 182 _processed.set(n->_idx);
kvn@500 183 }
kvn@500 184
duke@435 185 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n, PhaseTransform *phase) {
duke@435 186 uint idx = n->_idx;
duke@435 187 PointsToNode::EscapeState es;
duke@435 188
kvn@500 189 // If we are still collecting or there were no non-escaping allocations
kvn@500 190 // we don't know the answer yet
kvn@679 191 if (_collecting)
duke@435 192 return PointsToNode::UnknownEscape;
duke@435 193
duke@435 194 // if the node was created after the escape computation, return
duke@435 195 // UnknownEscape
kvn@679 196 if (idx >= nodes_size())
duke@435 197 return PointsToNode::UnknownEscape;
duke@435 198
kvn@679 199 es = ptnode_adr(idx)->escape_state();
duke@435 200
duke@435 201 // if we have already computed a value, return it
kvn@895 202 if (es != PointsToNode::UnknownEscape &&
kvn@895 203 ptnode_adr(idx)->node_type() == PointsToNode::JavaObject)
duke@435 204 return es;
duke@435 205
kvn@679 206 // PointsTo() calls n->uncast() which can return a new ideal node.
kvn@679 207 if (n->uncast()->_idx >= nodes_size())
kvn@679 208 return PointsToNode::UnknownEscape;
kvn@679 209
duke@435 210 // compute max escape state of anything this node could point to
duke@435 211 VectorSet ptset(Thread::current()->resource_area());
duke@435 212 PointsTo(ptset, n, phase);
kvn@500 213 for(VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i) {
duke@435 214 uint pt = i.elem;
kvn@679 215 PointsToNode::EscapeState pes = ptnode_adr(pt)->escape_state();
duke@435 216 if (pes > es)
duke@435 217 es = pes;
duke@435 218 }
duke@435 219 // cache the computed escape state
duke@435 220 assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
kvn@679 221 ptnode_adr(idx)->set_escape_state(es);
duke@435 222 return es;
duke@435 223 }
duke@435 224
duke@435 225 void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n, PhaseTransform *phase) {
duke@435 226 VectorSet visited(Thread::current()->resource_area());
duke@435 227 GrowableArray<uint> worklist;
duke@435 228
kvn@559 229 #ifdef ASSERT
kvn@559 230 Node *orig_n = n;
kvn@559 231 #endif
kvn@559 232
kvn@500 233 n = n->uncast();
kvn@679 234 PointsToNode* npt = ptnode_adr(n->_idx);
duke@435 235
duke@435 236 // If we have a JavaObject, return just that object
kvn@679 237 if (npt->node_type() == PointsToNode::JavaObject) {
duke@435 238 ptset.set(n->_idx);
duke@435 239 return;
duke@435 240 }
kvn@559 241 #ifdef ASSERT
kvn@679 242 if (npt->_node == NULL) {
kvn@559 243 if (orig_n != n)
kvn@559 244 orig_n->dump();
kvn@559 245 n->dump();
kvn@679 246 assert(npt->_node != NULL, "unregistered node");
kvn@559 247 }
kvn@559 248 #endif
duke@435 249 worklist.push(n->_idx);
duke@435 250 while(worklist.length() > 0) {
duke@435 251 int ni = worklist.pop();
kvn@679 252 if (visited.test_set(ni))
kvn@679 253 continue;
duke@435 254
kvn@679 255 PointsToNode* pn = ptnode_adr(ni);
kvn@679 256 // ensure that all inputs of a Phi have been processed
kvn@679 257 assert(!_collecting || !pn->_node->is_Phi() || _processed.test(ni),"");
kvn@679 258
kvn@679 259 int edges_processed = 0;
kvn@679 260 uint e_cnt = pn->edge_count();
kvn@679 261 for (uint e = 0; e < e_cnt; e++) {
kvn@679 262 uint etgt = pn->edge_target(e);
kvn@679 263 PointsToNode::EdgeType et = pn->edge_type(e);
kvn@679 264 if (et == PointsToNode::PointsToEdge) {
kvn@679 265 ptset.set(etgt);
kvn@679 266 edges_processed++;
kvn@679 267 } else if (et == PointsToNode::DeferredEdge) {
kvn@679 268 worklist.push(etgt);
kvn@679 269 edges_processed++;
kvn@679 270 } else {
kvn@679 271 assert(false,"neither PointsToEdge or DeferredEdge");
duke@435 272 }
kvn@679 273 }
kvn@679 274 if (edges_processed == 0) {
kvn@679 275 // no deferred or pointsto edges found. Assume the value was set
kvn@679 276 // outside this method. Add the phantom object to the pointsto set.
kvn@679 277 ptset.set(_phantom_object);
duke@435 278 }
duke@435 279 }
duke@435 280 }
duke@435 281
kvn@536 282 void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited) {
kvn@536 283 // This method is most expensive during ConnectionGraph construction.
kvn@536 284 // Reuse vectorSet and an additional growable array for deferred edges.
kvn@536 285 deferred_edges->clear();
kvn@536 286 visited->Clear();
duke@435 287
kvn@679 288 visited->set(ni);
duke@435 289 PointsToNode *ptn = ptnode_adr(ni);
duke@435 290
kvn@536 291 // Mark current edges as visited and move deferred edges to separate array.
kvn@679 292 for (uint i = 0; i < ptn->edge_count(); ) {
kvn@500 293 uint t = ptn->edge_target(i);
kvn@536 294 #ifdef ASSERT
kvn@536 295 assert(!visited->test_set(t), "expecting no duplications");
kvn@536 296 #else
kvn@536 297 visited->set(t);
kvn@536 298 #endif
kvn@536 299 if (ptn->edge_type(i) == PointsToNode::DeferredEdge) {
kvn@536 300 ptn->remove_edge(t, PointsToNode::DeferredEdge);
kvn@536 301 deferred_edges->append(t);
kvn@559 302 } else {
kvn@559 303 i++;
kvn@536 304 }
kvn@536 305 }
kvn@536 306 for (int next = 0; next < deferred_edges->length(); ++next) {
kvn@536 307 uint t = deferred_edges->at(next);
kvn@500 308 PointsToNode *ptt = ptnode_adr(t);
kvn@679 309 uint e_cnt = ptt->edge_count();
kvn@679 310 for (uint e = 0; e < e_cnt; e++) {
kvn@679 311 uint etgt = ptt->edge_target(e);
kvn@679 312 if (visited->test_set(etgt))
kvn@536 313 continue;
kvn@679 314
kvn@679 315 PointsToNode::EdgeType et = ptt->edge_type(e);
kvn@679 316 if (et == PointsToNode::PointsToEdge) {
kvn@679 317 add_pointsto_edge(ni, etgt);
kvn@679 318 if(etgt == _phantom_object) {
kvn@679 319 // Special case - field set outside (globally escaping).
kvn@679 320 ptn->set_escape_state(PointsToNode::GlobalEscape);
kvn@679 321 }
kvn@679 322 } else if (et == PointsToNode::DeferredEdge) {
kvn@679 323 deferred_edges->append(etgt);
kvn@679 324 } else {
kvn@679 325 assert(false,"invalid connection graph");
duke@435 326 }
duke@435 327 }
duke@435 328 }
duke@435 329 }
duke@435 330
duke@435 331
duke@435 332 // Add an edge to node given by "to_i" from any field of adr_i whose offset
duke@435 333 // matches "offset" A deferred edge is added if to_i is a LocalVar, and
duke@435 334 // a pointsto edge is added if it is a JavaObject
duke@435 335
duke@435 336 void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
kvn@679 337 PointsToNode* an = ptnode_adr(adr_i);
kvn@679 338 PointsToNode* to = ptnode_adr(to_i);
kvn@679 339 bool deferred = (to->node_type() == PointsToNode::LocalVar);
duke@435 340
kvn@679 341 for (uint fe = 0; fe < an->edge_count(); fe++) {
kvn@679 342 assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
kvn@679 343 int fi = an->edge_target(fe);
kvn@679 344 PointsToNode* pf = ptnode_adr(fi);
kvn@679 345 int po = pf->offset();
duke@435 346 if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
duke@435 347 if (deferred)
duke@435 348 add_deferred_edge(fi, to_i);
duke@435 349 else
duke@435 350 add_pointsto_edge(fi, to_i);
duke@435 351 }
duke@435 352 }
duke@435 353 }
duke@435 354
kvn@500 355 // Add a deferred edge from node given by "from_i" to any field of adr_i
kvn@500 356 // whose offset matches "offset".
duke@435 357 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
kvn@679 358 PointsToNode* an = ptnode_adr(adr_i);
kvn@679 359 for (uint fe = 0; fe < an->edge_count(); fe++) {
kvn@679 360 assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
kvn@679 361 int fi = an->edge_target(fe);
kvn@679 362 PointsToNode* pf = ptnode_adr(fi);
kvn@679 363 int po = pf->offset();
kvn@679 364 if (pf->edge_count() == 0) {
duke@435 365 // we have not seen any stores to this field, assume it was set outside this method
duke@435 366 add_pointsto_edge(fi, _phantom_object);
duke@435 367 }
duke@435 368 if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
duke@435 369 add_deferred_edge(from_i, fi);
duke@435 370 }
duke@435 371 }
duke@435 372 }
duke@435 373
kvn@500 374 // Helper functions
kvn@500 375
kvn@500 376 static Node* get_addp_base(Node *addp) {
kvn@500 377 assert(addp->is_AddP(), "must be AddP");
kvn@500 378 //
kvn@500 379 // AddP cases for Base and Address inputs:
kvn@500 380 // case #1. Direct object's field reference:
kvn@500 381 // Allocate
kvn@500 382 // |
kvn@500 383 // Proj #5 ( oop result )
kvn@500 384 // |
kvn@500 385 // CheckCastPP (cast to instance type)
kvn@500 386 // | |
kvn@500 387 // AddP ( base == address )
kvn@500 388 //
kvn@500 389 // case #2. Indirect object's field reference:
kvn@500 390 // Phi
kvn@500 391 // |
kvn@500 392 // CastPP (cast to instance type)
kvn@500 393 // | |
kvn@500 394 // AddP ( base == address )
kvn@500 395 //
kvn@500 396 // case #3. Raw object's field reference for Initialize node:
kvn@500 397 // Allocate
kvn@500 398 // |
kvn@500 399 // Proj #5 ( oop result )
kvn@500 400 // top |
kvn@500 401 // \ |
kvn@500 402 // AddP ( base == top )
kvn@500 403 //
kvn@500 404 // case #4. Array's element reference:
kvn@500 405 // {CheckCastPP | CastPP}
kvn@500 406 // | | |
kvn@500 407 // | AddP ( array's element offset )
kvn@500 408 // | |
kvn@500 409 // AddP ( array's offset )
kvn@500 410 //
kvn@500 411 // case #5. Raw object's field reference for arraycopy stub call:
kvn@500 412 // The inline_native_clone() case when the arraycopy stub is called
kvn@500 413 // after the allocation before Initialize and CheckCastPP nodes.
kvn@500 414 // Allocate
kvn@500 415 // |
kvn@500 416 // Proj #5 ( oop result )
kvn@500 417 // | |
kvn@500 418 // AddP ( base == address )
kvn@500 419 //
kvn@512 420 // case #6. Constant Pool, ThreadLocal, CastX2P or
kvn@512 421 // Raw object's field reference:
kvn@512 422 // {ConP, ThreadLocal, CastX2P, raw Load}
kvn@500 423 // top |
kvn@500 424 // \ |
kvn@500 425 // AddP ( base == top )
kvn@500 426 //
kvn@512 427 // case #7. Klass's field reference.
kvn@512 428 // LoadKlass
kvn@512 429 // | |
kvn@512 430 // AddP ( base == address )
kvn@512 431 //
kvn@599 432 // case #8. narrow Klass's field reference.
kvn@599 433 // LoadNKlass
kvn@599 434 // |
kvn@599 435 // DecodeN
kvn@599 436 // | |
kvn@599 437 // AddP ( base == address )
kvn@599 438 //
kvn@500 439 Node *base = addp->in(AddPNode::Base)->uncast();
kvn@500 440 if (base->is_top()) { // The AddP case #3 and #6.
kvn@500 441 base = addp->in(AddPNode::Address)->uncast();
kvn@1392 442 while (base->is_AddP()) {
kvn@1392 443 // Case #6 (unsafe access) may have several chained AddP nodes.
kvn@1392 444 assert(base->in(AddPNode::Base)->is_top(), "expected unsafe access address only");
kvn@1392 445 base = base->in(AddPNode::Address)->uncast();
kvn@1392 446 }
kvn@500 447 assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
kvn@603 448 base->Opcode() == Op_CastX2P || base->is_DecodeN() ||
kvn@512 449 (base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL) ||
kvn@512 450 (base->is_Proj() && base->in(0)->is_Allocate()), "sanity");
duke@435 451 }
kvn@500 452 return base;
kvn@500 453 }
kvn@500 454
kvn@500 455 static Node* find_second_addp(Node* addp, Node* n) {
kvn@500 456 assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
kvn@500 457
kvn@500 458 Node* addp2 = addp->raw_out(0);
kvn@500 459 if (addp->outcnt() == 1 && addp2->is_AddP() &&
kvn@500 460 addp2->in(AddPNode::Base) == n &&
kvn@500 461 addp2->in(AddPNode::Address) == addp) {
kvn@500 462
kvn@500 463 assert(addp->in(AddPNode::Base) == n, "expecting the same base");
kvn@500 464 //
kvn@500 465 // Find array's offset to push it on worklist first and
kvn@500 466 // as result process an array's element offset first (pushed second)
kvn@500 467 // to avoid CastPP for the array's offset.
kvn@500 468 // Otherwise the inserted CastPP (LocalVar) will point to what
kvn@500 469 // the AddP (Field) points to. Which would be wrong since
kvn@500 470 // the algorithm expects the CastPP has the same point as
kvn@500 471 // as AddP's base CheckCastPP (LocalVar).
kvn@500 472 //
kvn@500 473 // ArrayAllocation
kvn@500 474 // |
kvn@500 475 // CheckCastPP
kvn@500 476 // |
kvn@500 477 // memProj (from ArrayAllocation CheckCastPP)
kvn@500 478 // | ||
kvn@500 479 // | || Int (element index)
kvn@500 480 // | || | ConI (log(element size))
kvn@500 481 // | || | /
kvn@500 482 // | || LShift
kvn@500 483 // | || /
kvn@500 484 // | AddP (array's element offset)
kvn@500 485 // | |
kvn@500 486 // | | ConI (array's offset: #12(32-bits) or #24(64-bits))
kvn@500 487 // | / /
kvn@500 488 // AddP (array's offset)
kvn@500 489 // |
kvn@500 490 // Load/Store (memory operation on array's element)
kvn@500 491 //
kvn@500 492 return addp2;
kvn@500 493 }
kvn@500 494 return NULL;
duke@435 495 }
duke@435 496
duke@435 497 //
duke@435 498 // Adjust the type and inputs of an AddP which computes the
duke@435 499 // address of a field of an instance
duke@435 500 //
kvn@728 501 bool ConnectionGraph::split_AddP(Node *addp, Node *base, PhaseGVN *igvn) {
kvn@500 502 const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
kvn@658 503 assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
duke@435 504 const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
kvn@500 505 if (t == NULL) {
kvn@500 506 // We are computing a raw address for a store captured by an Initialize
kvn@728 507 // compute an appropriate address type (cases #3 and #5).
kvn@500 508 assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
kvn@500 509 assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
kvn@741 510 intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 511 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@500 512 t = base_t->add_offset(offs)->is_oopptr();
kvn@500 513 }
kvn@658 514 int inst_id = base_t->instance_id();
kvn@658 515 assert(!t->is_known_instance() || t->instance_id() == inst_id,
duke@435 516 "old type must be non-instance or match new type");
kvn@728 517
kvn@728 518 // The type 't' could be subclass of 'base_t'.
kvn@728 519 // As result t->offset() could be large then base_t's size and it will
kvn@728 520 // cause the failure in add_offset() with narrow oops since TypeOopPtr()
kvn@728 521 // constructor verifies correctness of the offset.
kvn@728 522 //
twisti@1040 523 // It could happened on subclass's branch (from the type profiling
kvn@728 524 // inlining) which was not eliminated during parsing since the exactness
kvn@728 525 // of the allocation type was not propagated to the subclass type check.
kvn@728 526 //
kvn@1423 527 // Or the type 't' could be not related to 'base_t' at all.
kvn@1423 528 // It could happened when CHA type is different from MDO type on a dead path
kvn@1423 529 // (for example, from instanceof check) which is not collapsed during parsing.
kvn@1423 530 //
kvn@728 531 // Do nothing for such AddP node and don't process its users since
kvn@728 532 // this code branch will go away.
kvn@728 533 //
kvn@728 534 if (!t->is_known_instance() &&
kvn@1423 535 !base_t->klass()->is_subtype_of(t->klass())) {
kvn@728 536 return false; // bail out
kvn@728 537 }
kvn@728 538
duke@435 539 const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
kvn@1497 540 // Do NOT remove the next line: ensure a new alias index is allocated
kvn@1497 541 // for the instance type. Note: C++ will not remove it since the call
kvn@1497 542 // has side effect.
duke@435 543 int alias_idx = _compile->get_alias_index(tinst);
duke@435 544 igvn->set_type(addp, tinst);
duke@435 545 // record the allocation in the node map
duke@435 546 set_map(addp->_idx, get_map(base->_idx));
kvn@688 547
kvn@688 548 // Set addp's Base and Address to 'base'.
kvn@688 549 Node *abase = addp->in(AddPNode::Base);
kvn@688 550 Node *adr = addp->in(AddPNode::Address);
kvn@688 551 if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
kvn@688 552 adr->in(0)->_idx == (uint)inst_id) {
kvn@688 553 // Skip AddP cases #3 and #5.
kvn@688 554 } else {
kvn@688 555 assert(!abase->is_top(), "sanity"); // AddP case #3
kvn@688 556 if (abase != base) {
kvn@688 557 igvn->hash_delete(addp);
kvn@688 558 addp->set_req(AddPNode::Base, base);
kvn@688 559 if (abase == adr) {
kvn@688 560 addp->set_req(AddPNode::Address, base);
kvn@688 561 } else {
kvn@688 562 // AddP case #4 (adr is array's element offset AddP node)
kvn@688 563 #ifdef ASSERT
kvn@688 564 const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
kvn@688 565 assert(adr->is_AddP() && atype != NULL &&
kvn@688 566 atype->instance_id() == inst_id, "array's element offset should be processed first");
kvn@688 567 #endif
kvn@688 568 }
kvn@688 569 igvn->hash_insert(addp);
duke@435 570 }
duke@435 571 }
kvn@500 572 // Put on IGVN worklist since at least addp's type was changed above.
kvn@500 573 record_for_optimizer(addp);
kvn@728 574 return true;
duke@435 575 }
duke@435 576
duke@435 577 //
duke@435 578 // Create a new version of orig_phi if necessary. Returns either the newly
duke@435 579 // created phi or an existing phi. Sets create_new to indicate wheter a new
duke@435 580 // phi was created. Cache the last newly created phi in the node map.
duke@435 581 //
duke@435 582 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn, bool &new_created) {
duke@435 583 Compile *C = _compile;
duke@435 584 new_created = false;
duke@435 585 int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
duke@435 586 // nothing to do if orig_phi is bottom memory or matches alias_idx
kvn@500 587 if (phi_alias_idx == alias_idx) {
duke@435 588 return orig_phi;
duke@435 589 }
kvn@1286 590 // Have we recently created a Phi for this alias index?
duke@435 591 PhiNode *result = get_map_phi(orig_phi->_idx);
duke@435 592 if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
duke@435 593 return result;
duke@435 594 }
kvn@1286 595 // Previous check may fail when the same wide memory Phi was split into Phis
kvn@1286 596 // for different memory slices. Search all Phis for this region.
kvn@1286 597 if (result != NULL) {
kvn@1286 598 Node* region = orig_phi->in(0);
kvn@1286 599 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
kvn@1286 600 Node* phi = region->fast_out(i);
kvn@1286 601 if (phi->is_Phi() &&
kvn@1286 602 C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
kvn@1286 603 assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
kvn@1286 604 return phi->as_Phi();
kvn@1286 605 }
kvn@1286 606 }
kvn@1286 607 }
kvn@473 608 if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
kvn@473 609 if (C->do_escape_analysis() == true && !C->failing()) {
kvn@473 610 // Retry compilation without escape analysis.
kvn@473 611 // If this is the first failure, the sentinel string will "stick"
kvn@473 612 // to the Compile object, and the C2Compiler will see it and retry.
kvn@473 613 C->record_failure(C2Compiler::retry_no_escape_analysis());
kvn@473 614 }
kvn@473 615 return NULL;
kvn@473 616 }
duke@435 617 orig_phi_worklist.append_if_missing(orig_phi);
kvn@500 618 const TypePtr *atype = C->get_adr_type(alias_idx);
duke@435 619 result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
kvn@1286 620 C->copy_node_notes_to(result, orig_phi);
duke@435 621 set_map_phi(orig_phi->_idx, result);
duke@435 622 igvn->set_type(result, result->bottom_type());
duke@435 623 record_for_optimizer(result);
duke@435 624 new_created = true;
duke@435 625 return result;
duke@435 626 }
duke@435 627
duke@435 628 //
duke@435 629 // Return a new version of Memory Phi "orig_phi" with the inputs having the
duke@435 630 // specified alias index.
duke@435 631 //
duke@435 632 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn) {
duke@435 633
duke@435 634 assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
duke@435 635 Compile *C = _compile;
duke@435 636 bool new_phi_created;
kvn@500 637 PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
duke@435 638 if (!new_phi_created) {
duke@435 639 return result;
duke@435 640 }
duke@435 641
duke@435 642 GrowableArray<PhiNode *> phi_list;
duke@435 643 GrowableArray<uint> cur_input;
duke@435 644
duke@435 645 PhiNode *phi = orig_phi;
duke@435 646 uint idx = 1;
duke@435 647 bool finished = false;
duke@435 648 while(!finished) {
duke@435 649 while (idx < phi->req()) {
kvn@500 650 Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
duke@435 651 if (mem != NULL && mem->is_Phi()) {
kvn@500 652 PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
duke@435 653 if (new_phi_created) {
duke@435 654 // found an phi for which we created a new split, push current one on worklist and begin
duke@435 655 // processing new one
duke@435 656 phi_list.push(phi);
duke@435 657 cur_input.push(idx);
duke@435 658 phi = mem->as_Phi();
kvn@500 659 result = newphi;
duke@435 660 idx = 1;
duke@435 661 continue;
duke@435 662 } else {
kvn@500 663 mem = newphi;
duke@435 664 }
duke@435 665 }
kvn@473 666 if (C->failing()) {
kvn@473 667 return NULL;
kvn@473 668 }
duke@435 669 result->set_req(idx++, mem);
duke@435 670 }
duke@435 671 #ifdef ASSERT
duke@435 672 // verify that the new Phi has an input for each input of the original
duke@435 673 assert( phi->req() == result->req(), "must have same number of inputs.");
duke@435 674 assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
kvn@500 675 #endif
kvn@500 676 // Check if all new phi's inputs have specified alias index.
kvn@500 677 // Otherwise use old phi.
duke@435 678 for (uint i = 1; i < phi->req(); i++) {
kvn@500 679 Node* in = result->in(i);
kvn@500 680 assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
duke@435 681 }
duke@435 682 // we have finished processing a Phi, see if there are any more to do
duke@435 683 finished = (phi_list.length() == 0 );
duke@435 684 if (!finished) {
duke@435 685 phi = phi_list.pop();
duke@435 686 idx = cur_input.pop();
kvn@500 687 PhiNode *prev_result = get_map_phi(phi->_idx);
kvn@500 688 prev_result->set_req(idx++, result);
kvn@500 689 result = prev_result;
duke@435 690 }
duke@435 691 }
duke@435 692 return result;
duke@435 693 }
duke@435 694
kvn@500 695
kvn@500 696 //
kvn@500 697 // The next methods are derived from methods in MemNode.
kvn@500 698 //
kvn@500 699 static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *tinst) {
kvn@500 700 Node *mem = mmem;
kvn@500 701 // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
kvn@500 702 // means an array I have not precisely typed yet. Do not do any
kvn@500 703 // alias stuff with it any time soon.
kvn@500 704 if( tinst->base() != Type::AnyPtr &&
kvn@500 705 !(tinst->klass()->is_java_lang_Object() &&
kvn@500 706 tinst->offset() == Type::OffsetBot) ) {
kvn@500 707 mem = mmem->memory_at(alias_idx);
kvn@500 708 // Update input if it is progress over what we have now
kvn@500 709 }
kvn@500 710 return mem;
kvn@500 711 }
kvn@500 712
kvn@500 713 //
kvn@500 714 // Search memory chain of "mem" to find a MemNode whose address
kvn@500 715 // is the specified alias index.
kvn@500 716 //
kvn@500 717 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *> &orig_phis, PhaseGVN *phase) {
kvn@500 718 if (orig_mem == NULL)
kvn@500 719 return orig_mem;
kvn@500 720 Compile* C = phase->C;
kvn@500 721 const TypeOopPtr *tinst = C->get_adr_type(alias_idx)->isa_oopptr();
kvn@658 722 bool is_instance = (tinst != NULL) && tinst->is_known_instance();
kvn@688 723 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@500 724 Node *prev = NULL;
kvn@500 725 Node *result = orig_mem;
kvn@500 726 while (prev != result) {
kvn@500 727 prev = result;
kvn@688 728 if (result == start_mem)
twisti@1040 729 break; // hit one of our sentinels
kvn@500 730 if (result->is_Mem()) {
kvn@688 731 const Type *at = phase->type(result->in(MemNode::Address));
kvn@500 732 if (at != Type::TOP) {
kvn@500 733 assert (at->isa_ptr() != NULL, "pointer type required.");
kvn@500 734 int idx = C->get_alias_index(at->is_ptr());
kvn@500 735 if (idx == alias_idx)
kvn@500 736 break;
kvn@500 737 }
kvn@688 738 result = result->in(MemNode::Memory);
kvn@500 739 }
kvn@500 740 if (!is_instance)
kvn@500 741 continue; // don't search further for non-instance types
kvn@500 742 // skip over a call which does not affect this memory slice
kvn@500 743 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
kvn@500 744 Node *proj_in = result->in(0);
kvn@688 745 if (proj_in->is_Allocate() && proj_in->_idx == (uint)tinst->instance_id()) {
twisti@1040 746 break; // hit one of our sentinels
kvn@688 747 } else if (proj_in->is_Call()) {
kvn@500 748 CallNode *call = proj_in->as_Call();
kvn@500 749 if (!call->may_modify(tinst, phase)) {
kvn@500 750 result = call->in(TypeFunc::Memory);
kvn@500 751 }
kvn@500 752 } else if (proj_in->is_Initialize()) {
kvn@500 753 AllocateNode* alloc = proj_in->as_Initialize()->allocation();
kvn@500 754 // Stop if this is the initialization for the object instance which
kvn@500 755 // which contains this memory slice, otherwise skip over it.
kvn@658 756 if (alloc == NULL || alloc->_idx != (uint)tinst->instance_id()) {
kvn@500 757 result = proj_in->in(TypeFunc::Memory);
kvn@500 758 }
kvn@500 759 } else if (proj_in->is_MemBar()) {
kvn@500 760 result = proj_in->in(TypeFunc::Memory);
kvn@500 761 }
kvn@500 762 } else if (result->is_MergeMem()) {
kvn@500 763 MergeMemNode *mmem = result->as_MergeMem();
kvn@500 764 result = step_through_mergemem(mmem, alias_idx, tinst);
kvn@500 765 if (result == mmem->base_memory()) {
kvn@500 766 // Didn't find instance memory, search through general slice recursively.
kvn@500 767 result = mmem->memory_at(C->get_general_index(alias_idx));
kvn@500 768 result = find_inst_mem(result, alias_idx, orig_phis, phase);
kvn@500 769 if (C->failing()) {
kvn@500 770 return NULL;
kvn@500 771 }
kvn@500 772 mmem->set_memory_at(alias_idx, result);
kvn@500 773 }
kvn@500 774 } else if (result->is_Phi() &&
kvn@500 775 C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
kvn@500 776 Node *un = result->as_Phi()->unique_input(phase);
kvn@500 777 if (un != NULL) {
kvn@500 778 result = un;
kvn@500 779 } else {
kvn@500 780 break;
kvn@500 781 }
kvn@1535 782 } else if (result->is_ClearArray()) {
kvn@1535 783 if (!ClearArrayNode::step_through(&result, (uint)tinst->instance_id(), phase)) {
kvn@1535 784 // Can not bypass initialization of the instance
kvn@1535 785 // we are looking for.
kvn@1535 786 break;
kvn@1535 787 }
kvn@1535 788 // Otherwise skip it (the call updated 'result' value).
kvn@1019 789 } else if (result->Opcode() == Op_SCMemProj) {
kvn@1019 790 assert(result->in(0)->is_LoadStore(), "sanity");
kvn@1019 791 const Type *at = phase->type(result->in(0)->in(MemNode::Address));
kvn@1019 792 if (at != Type::TOP) {
kvn@1019 793 assert (at->isa_ptr() != NULL, "pointer type required.");
kvn@1019 794 int idx = C->get_alias_index(at->is_ptr());
kvn@1019 795 assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
kvn@1019 796 break;
kvn@1019 797 }
kvn@1019 798 result = result->in(0)->in(MemNode::Memory);
kvn@500 799 }
kvn@500 800 }
kvn@682 801 if (result->is_Phi()) {
kvn@500 802 PhiNode *mphi = result->as_Phi();
kvn@500 803 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
kvn@500 804 const TypePtr *t = mphi->adr_type();
kvn@500 805 if (C->get_alias_index(t) != alias_idx) {
kvn@682 806 // Create a new Phi with the specified alias index type.
kvn@500 807 result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
kvn@682 808 } else if (!is_instance) {
kvn@682 809 // Push all non-instance Phis on the orig_phis worklist to update inputs
kvn@682 810 // during Phase 4 if needed.
kvn@682 811 orig_phis.append_if_missing(mphi);
kvn@500 812 }
kvn@500 813 }
kvn@500 814 // the result is either MemNode, PhiNode, InitializeNode.
kvn@500 815 return result;
kvn@500 816 }
kvn@500 817
duke@435 818 //
duke@435 819 // Convert the types of unescaped object to instance types where possible,
duke@435 820 // propagate the new type information through the graph, and update memory
duke@435 821 // edges and MergeMem inputs to reflect the new type.
duke@435 822 //
duke@435 823 // We start with allocations (and calls which may be allocations) on alloc_worklist.
duke@435 824 // The processing is done in 4 phases:
duke@435 825 //
duke@435 826 // Phase 1: Process possible allocations from alloc_worklist. Create instance
duke@435 827 // types for the CheckCastPP for allocations where possible.
duke@435 828 // Propagate the the new types through users as follows:
duke@435 829 // casts and Phi: push users on alloc_worklist
duke@435 830 // AddP: cast Base and Address inputs to the instance type
duke@435 831 // push any AddP users on alloc_worklist and push any memnode
duke@435 832 // users onto memnode_worklist.
duke@435 833 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 834 // search the Memory chain for a store with the appropriate type
duke@435 835 // address type. If a Phi is found, create a new version with
twisti@1040 836 // the appropriate memory slices from each of the Phi inputs.
duke@435 837 // For stores, process the users as follows:
duke@435 838 // MemNode: push on memnode_worklist
duke@435 839 // MergeMem: push on mergemem_worklist
duke@435 840 // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice
duke@435 841 // moving the first node encountered of each instance type to the
duke@435 842 // the input corresponding to its alias index.
duke@435 843 // appropriate memory slice.
duke@435 844 // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes.
duke@435 845 //
duke@435 846 // In the following example, the CheckCastPP nodes are the cast of allocation
duke@435 847 // results and the allocation of node 29 is unescaped and eligible to be an
duke@435 848 // instance type.
duke@435 849 //
duke@435 850 // We start with:
duke@435 851 //
duke@435 852 // 7 Parm #memory
duke@435 853 // 10 ConI "12"
duke@435 854 // 19 CheckCastPP "Foo"
duke@435 855 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 856 // 29 CheckCastPP "Foo"
duke@435 857 // 30 AddP _ 29 29 10 Foo+12 alias_index=4
duke@435 858 //
duke@435 859 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 860 // 50 StoreP 35 40 30 ... alias_index=4
duke@435 861 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 862 // 70 LoadP _ 60 30 ... alias_index=4
duke@435 863 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 864 // 90 LoadP _ 80 30 ... alias_index=4
duke@435 865 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 866 //
duke@435 867 //
duke@435 868 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
duke@435 869 // and creating a new alias index for node 30. This gives:
duke@435 870 //
duke@435 871 // 7 Parm #memory
duke@435 872 // 10 ConI "12"
duke@435 873 // 19 CheckCastPP "Foo"
duke@435 874 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 875 // 29 CheckCastPP "Foo" iid=24
duke@435 876 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 877 //
duke@435 878 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 879 // 50 StoreP 35 40 30 ... alias_index=6
duke@435 880 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 881 // 70 LoadP _ 60 30 ... alias_index=6
duke@435 882 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 883 // 90 LoadP _ 80 30 ... alias_index=6
duke@435 884 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 885 //
duke@435 886 // In phase 2, new memory inputs are computed for the loads and stores,
duke@435 887 // And a new version of the phi is created. In phase 4, the inputs to
duke@435 888 // node 80 are updated and then the memory nodes are updated with the
duke@435 889 // values computed in phase 2. This results in:
duke@435 890 //
duke@435 891 // 7 Parm #memory
duke@435 892 // 10 ConI "12"
duke@435 893 // 19 CheckCastPP "Foo"
duke@435 894 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 895 // 29 CheckCastPP "Foo" iid=24
duke@435 896 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 897 //
duke@435 898 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 899 // 50 StoreP 35 7 30 ... alias_index=6
duke@435 900 // 60 StoreP 45 40 20 ... alias_index=4
duke@435 901 // 70 LoadP _ 50 30 ... alias_index=6
duke@435 902 // 80 Phi 75 40 60 Memory alias_index=4
duke@435 903 // 120 Phi 75 50 50 Memory alias_index=6
duke@435 904 // 90 LoadP _ 120 30 ... alias_index=6
duke@435 905 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 906 //
duke@435 907 void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist) {
duke@435 908 GrowableArray<Node *> memnode_worklist;
duke@435 909 GrowableArray<PhiNode *> orig_phis;
duke@435 910 PhaseGVN *igvn = _compile->initial_gvn();
duke@435 911 uint new_index_start = (uint) _compile->num_alias_types();
duke@435 912 VectorSet visited(Thread::current()->resource_area());
duke@435 913 VectorSet ptset(Thread::current()->resource_area());
duke@435 914
kvn@500 915
kvn@500 916 // Phase 1: Process possible allocations from alloc_worklist.
kvn@500 917 // Create instance types for the CheckCastPP for allocations where possible.
kvn@679 918 //
kvn@679 919 // (Note: don't forget to change the order of the second AddP node on
kvn@679 920 // the alloc_worklist if the order of the worklist processing is changed,
kvn@679 921 // see the comment in find_second_addp().)
kvn@679 922 //
duke@435 923 while (alloc_worklist.length() != 0) {
duke@435 924 Node *n = alloc_worklist.pop();
duke@435 925 uint ni = n->_idx;
kvn@500 926 const TypeOopPtr* tinst = NULL;
duke@435 927 if (n->is_Call()) {
duke@435 928 CallNode *alloc = n->as_Call();
duke@435 929 // copy escape information to call node
kvn@679 930 PointsToNode* ptn = ptnode_adr(alloc->_idx);
duke@435 931 PointsToNode::EscapeState es = escape_state(alloc, igvn);
kvn@500 932 // We have an allocation or call which returns a Java object,
kvn@500 933 // see if it is unescaped.
kvn@500 934 if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable)
duke@435 935 continue;
kvn@1219 936
kvn@1219 937 // Find CheckCastPP for the allocate or for the return value of a call
kvn@1219 938 n = alloc->result_cast();
kvn@1219 939 if (n == NULL) { // No uses except Initialize node
kvn@1219 940 if (alloc->is_Allocate()) {
kvn@1219 941 // Set the scalar_replaceable flag for allocation
kvn@1219 942 // so it could be eliminated if it has no uses.
kvn@1219 943 alloc->as_Allocate()->_is_scalar_replaceable = true;
kvn@1219 944 }
kvn@1219 945 continue;
kvn@474 946 }
kvn@1219 947 if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
kvn@1219 948 assert(!alloc->is_Allocate(), "allocation should have unique type");
kvn@500 949 continue;
kvn@1219 950 }
kvn@1219 951
kvn@500 952 // The inline code for Object.clone() casts the allocation result to
kvn@682 953 // java.lang.Object and then to the actual type of the allocated
kvn@500 954 // object. Detect this case and use the second cast.
kvn@682 955 // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
kvn@682 956 // the allocation result is cast to java.lang.Object and then
kvn@682 957 // to the actual Array type.
kvn@500 958 if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
kvn@682 959 && (alloc->is_AllocateArray() ||
kvn@682 960 igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
kvn@500 961 Node *cast2 = NULL;
kvn@500 962 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 963 Node *use = n->fast_out(i);
kvn@500 964 if (use->is_CheckCastPP()) {
kvn@500 965 cast2 = use;
kvn@500 966 break;
kvn@500 967 }
kvn@500 968 }
kvn@500 969 if (cast2 != NULL) {
kvn@500 970 n = cast2;
kvn@500 971 } else {
kvn@1219 972 // Non-scalar replaceable if the allocation type is unknown statically
kvn@1219 973 // (reflection allocation), the object can't be restored during
kvn@1219 974 // deoptimization without precise type.
kvn@500 975 continue;
kvn@500 976 }
kvn@500 977 }
kvn@1219 978 if (alloc->is_Allocate()) {
kvn@1219 979 // Set the scalar_replaceable flag for allocation
kvn@1219 980 // so it could be eliminated.
kvn@1219 981 alloc->as_Allocate()->_is_scalar_replaceable = true;
kvn@1219 982 }
kvn@500 983 set_escape_state(n->_idx, es);
kvn@682 984 // in order for an object to be scalar-replaceable, it must be:
kvn@500 985 // - a direct allocation (not a call returning an object)
kvn@500 986 // - non-escaping
kvn@500 987 // - eligible to be a unique type
kvn@500 988 // - not determined to be ineligible by escape analysis
duke@435 989 set_map(alloc->_idx, n);
duke@435 990 set_map(n->_idx, alloc);
kvn@500 991 const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
kvn@500 992 if (t == NULL)
duke@435 993 continue; // not a TypeInstPtr
kvn@682 994 tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
duke@435 995 igvn->hash_delete(n);
duke@435 996 igvn->set_type(n, tinst);
duke@435 997 n->raise_bottom_type(tinst);
duke@435 998 igvn->hash_insert(n);
kvn@500 999 record_for_optimizer(n);
kvn@500 1000 if (alloc->is_Allocate() && ptn->_scalar_replaceable &&
kvn@500 1001 (t->isa_instptr() || t->isa_aryptr())) {
kvn@598 1002
kvn@598 1003 // First, put on the worklist all Field edges from Connection Graph
kvn@598 1004 // which is more accurate then putting immediate users from Ideal Graph.
kvn@598 1005 for (uint e = 0; e < ptn->edge_count(); e++) {
kvn@679 1006 Node *use = ptnode_adr(ptn->edge_target(e))->_node;
kvn@598 1007 assert(ptn->edge_type(e) == PointsToNode::FieldEdge && use->is_AddP(),
kvn@598 1008 "only AddP nodes are Field edges in CG");
kvn@598 1009 if (use->outcnt() > 0) { // Don't process dead nodes
kvn@598 1010 Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
kvn@598 1011 if (addp2 != NULL) {
kvn@598 1012 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@598 1013 alloc_worklist.append_if_missing(addp2);
kvn@598 1014 }
kvn@598 1015 alloc_worklist.append_if_missing(use);
kvn@598 1016 }
kvn@598 1017 }
kvn@598 1018
kvn@500 1019 // An allocation may have an Initialize which has raw stores. Scan
kvn@500 1020 // the users of the raw allocation result and push AddP users
kvn@500 1021 // on alloc_worklist.
kvn@500 1022 Node *raw_result = alloc->proj_out(TypeFunc::Parms);
kvn@500 1023 assert (raw_result != NULL, "must have an allocation result");
kvn@500 1024 for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
kvn@500 1025 Node *use = raw_result->fast_out(i);
kvn@500 1026 if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
kvn@500 1027 Node* addp2 = find_second_addp(use, raw_result);
kvn@500 1028 if (addp2 != NULL) {
kvn@500 1029 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@500 1030 alloc_worklist.append_if_missing(addp2);
kvn@500 1031 }
kvn@500 1032 alloc_worklist.append_if_missing(use);
kvn@1535 1033 } else if (use->is_MemBar()) {
kvn@500 1034 memnode_worklist.append_if_missing(use);
kvn@500 1035 }
kvn@500 1036 }
kvn@500 1037 }
duke@435 1038 } else if (n->is_AddP()) {
duke@435 1039 ptset.Clear();
kvn@500 1040 PointsTo(ptset, get_addp_base(n), igvn);
duke@435 1041 assert(ptset.Size() == 1, "AddP address is unique");
kvn@500 1042 uint elem = ptset.getelem(); // Allocation node's index
kvn@1535 1043 if (elem == _phantom_object) {
kvn@1535 1044 assert(false, "escaped allocation");
kvn@500 1045 continue; // Assume the value was set outside this method.
kvn@1535 1046 }
kvn@500 1047 Node *base = get_map(elem); // CheckCastPP node
kvn@1535 1048 if (!split_AddP(n, base, igvn)) continue; // wrong type from dead path
kvn@500 1049 tinst = igvn->type(base)->isa_oopptr();
kvn@500 1050 } else if (n->is_Phi() ||
kvn@500 1051 n->is_CheckCastPP() ||
kvn@603 1052 n->is_EncodeP() ||
kvn@603 1053 n->is_DecodeN() ||
kvn@500 1054 (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
duke@435 1055 if (visited.test_set(n->_idx)) {
duke@435 1056 assert(n->is_Phi(), "loops only through Phi's");
duke@435 1057 continue; // already processed
duke@435 1058 }
duke@435 1059 ptset.Clear();
duke@435 1060 PointsTo(ptset, n, igvn);
duke@435 1061 if (ptset.Size() == 1) {
kvn@500 1062 uint elem = ptset.getelem(); // Allocation node's index
kvn@1535 1063 if (elem == _phantom_object) {
kvn@1535 1064 assert(false, "escaped allocation");
kvn@500 1065 continue; // Assume the value was set outside this method.
kvn@1535 1066 }
kvn@500 1067 Node *val = get_map(elem); // CheckCastPP node
duke@435 1068 TypeNode *tn = n->as_Type();
kvn@500 1069 tinst = igvn->type(val)->isa_oopptr();
kvn@658 1070 assert(tinst != NULL && tinst->is_known_instance() &&
kvn@658 1071 (uint)tinst->instance_id() == elem , "instance type expected.");
kvn@598 1072
kvn@598 1073 const Type *tn_type = igvn->type(tn);
kvn@658 1074 const TypeOopPtr *tn_t;
kvn@658 1075 if (tn_type->isa_narrowoop()) {
kvn@658 1076 tn_t = tn_type->make_ptr()->isa_oopptr();
kvn@658 1077 } else {
kvn@658 1078 tn_t = tn_type->isa_oopptr();
kvn@658 1079 }
duke@435 1080
kvn@1535 1081 if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
kvn@598 1082 if (tn_type->isa_narrowoop()) {
kvn@598 1083 tn_type = tinst->make_narrowoop();
kvn@598 1084 } else {
kvn@598 1085 tn_type = tinst;
kvn@598 1086 }
duke@435 1087 igvn->hash_delete(tn);
kvn@598 1088 igvn->set_type(tn, tn_type);
kvn@598 1089 tn->set_type(tn_type);
duke@435 1090 igvn->hash_insert(tn);
kvn@500 1091 record_for_optimizer(n);
kvn@728 1092 } else {
kvn@1535 1093 assert(tn_type == TypePtr::NULL_PTR ||
kvn@1535 1094 tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
kvn@1535 1095 "unexpected type");
kvn@1535 1096 continue; // Skip dead path with different type
duke@435 1097 }
duke@435 1098 }
duke@435 1099 } else {
kvn@1535 1100 debug_only(n->dump();)
kvn@1535 1101 assert(false, "EA: unexpected node");
duke@435 1102 continue;
duke@435 1103 }
kvn@1535 1104 // push allocation's users on appropriate worklist
duke@435 1105 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1106 Node *use = n->fast_out(i);
duke@435 1107 if(use->is_Mem() && use->in(MemNode::Address) == n) {
kvn@1535 1108 // Load/store to instance's field
kvn@500 1109 memnode_worklist.append_if_missing(use);
kvn@1535 1110 } else if (use->is_MemBar()) {
kvn@500 1111 memnode_worklist.append_if_missing(use);
kvn@500 1112 } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
kvn@500 1113 Node* addp2 = find_second_addp(use, n);
kvn@500 1114 if (addp2 != NULL) {
kvn@500 1115 alloc_worklist.append_if_missing(addp2);
kvn@500 1116 }
kvn@500 1117 alloc_worklist.append_if_missing(use);
kvn@500 1118 } else if (use->is_Phi() ||
kvn@500 1119 use->is_CheckCastPP() ||
kvn@603 1120 use->is_EncodeP() ||
kvn@603 1121 use->is_DecodeN() ||
kvn@500 1122 (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
kvn@500 1123 alloc_worklist.append_if_missing(use);
kvn@1535 1124 #ifdef ASSERT
kvn@1535 1125 } else if (use->is_Mem()) {
kvn@1535 1126 assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
kvn@1535 1127 } else if (use->is_MergeMem()) {
kvn@1535 1128 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 1129 } else if (use->is_SafePoint()) {
kvn@1535 1130 // Look for MergeMem nodes for calls which reference unique allocation
kvn@1535 1131 // (through CheckCastPP nodes) even for debug info.
kvn@1535 1132 Node* m = use->in(TypeFunc::Memory);
kvn@1535 1133 if (m->is_MergeMem()) {
kvn@1535 1134 assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 1135 }
kvn@1535 1136 } else {
kvn@1535 1137 uint op = use->Opcode();
kvn@1535 1138 if (!(op == Op_CmpP || op == Op_Conv2B ||
kvn@1535 1139 op == Op_CastP2X || op == Op_StoreCM ||
kvn@1535 1140 op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
kvn@1535 1141 op == Op_StrEquals || op == Op_StrIndexOf)) {
kvn@1535 1142 n->dump();
kvn@1535 1143 use->dump();
kvn@1535 1144 assert(false, "EA: missing allocation reference path");
kvn@1535 1145 }
kvn@1535 1146 #endif
duke@435 1147 }
duke@435 1148 }
duke@435 1149
duke@435 1150 }
kvn@500 1151 // New alias types were created in split_AddP().
duke@435 1152 uint new_index_end = (uint) _compile->num_alias_types();
duke@435 1153
duke@435 1154 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 1155 // compute new values for Memory inputs (the Memory inputs are not
duke@435 1156 // actually updated until phase 4.)
duke@435 1157 if (memnode_worklist.length() == 0)
duke@435 1158 return; // nothing to do
duke@435 1159
duke@435 1160 while (memnode_worklist.length() != 0) {
duke@435 1161 Node *n = memnode_worklist.pop();
kvn@500 1162 if (visited.test_set(n->_idx))
kvn@500 1163 continue;
kvn@1535 1164 if (n->is_Phi() || n->is_ClearArray()) {
kvn@1535 1165 // we don't need to do anything, but the users must be pushed
kvn@1535 1166 } else if (n->is_MemBar()) { // Initialize, MemBar nodes
kvn@1535 1167 // we don't need to do anything, but the users must be pushed
kvn@1535 1168 n = n->as_MemBar()->proj_out(TypeFunc::Memory);
kvn@500 1169 if (n == NULL)
duke@435 1170 continue;
duke@435 1171 } else {
duke@435 1172 assert(n->is_Mem(), "memory node required.");
duke@435 1173 Node *addr = n->in(MemNode::Address);
duke@435 1174 const Type *addr_t = igvn->type(addr);
duke@435 1175 if (addr_t == Type::TOP)
duke@435 1176 continue;
duke@435 1177 assert (addr_t->isa_ptr() != NULL, "pointer type required.");
duke@435 1178 int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
kvn@500 1179 assert ((uint)alias_idx < new_index_end, "wrong alias index");
kvn@500 1180 Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
kvn@473 1181 if (_compile->failing()) {
kvn@473 1182 return;
kvn@473 1183 }
kvn@500 1184 if (mem != n->in(MemNode::Memory)) {
duke@435 1185 set_map(n->_idx, mem);
kvn@679 1186 ptnode_adr(n->_idx)->_node = n;
kvn@500 1187 }
duke@435 1188 if (n->is_Load()) {
duke@435 1189 continue; // don't push users
duke@435 1190 } else if (n->is_LoadStore()) {
duke@435 1191 // get the memory projection
duke@435 1192 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1193 Node *use = n->fast_out(i);
duke@435 1194 if (use->Opcode() == Op_SCMemProj) {
duke@435 1195 n = use;
duke@435 1196 break;
duke@435 1197 }
duke@435 1198 }
duke@435 1199 assert(n->Opcode() == Op_SCMemProj, "memory projection required");
duke@435 1200 }
duke@435 1201 }
duke@435 1202 // push user on appropriate worklist
duke@435 1203 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1204 Node *use = n->fast_out(i);
kvn@1535 1205 if (use->is_Phi() || use->is_ClearArray()) {
kvn@500 1206 memnode_worklist.append_if_missing(use);
duke@435 1207 } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
kvn@1535 1208 if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
kvn@1535 1209 continue;
kvn@500 1210 memnode_worklist.append_if_missing(use);
kvn@1535 1211 } else if (use->is_MemBar()) {
kvn@500 1212 memnode_worklist.append_if_missing(use);
kvn@1535 1213 #ifdef ASSERT
kvn@1535 1214 } else if(use->is_Mem()) {
kvn@1535 1215 assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
duke@435 1216 } else if (use->is_MergeMem()) {
kvn@1535 1217 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 1218 } else {
kvn@1535 1219 uint op = use->Opcode();
kvn@1535 1220 if (!(op == Op_StoreCM ||
kvn@1535 1221 (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
kvn@1535 1222 strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
kvn@1535 1223 op == Op_AryEq || op == Op_StrComp ||
kvn@1535 1224 op == Op_StrEquals || op == Op_StrIndexOf)) {
kvn@1535 1225 n->dump();
kvn@1535 1226 use->dump();
kvn@1535 1227 assert(false, "EA: missing memory path");
kvn@1535 1228 }
kvn@1535 1229 #endif
duke@435 1230 }
duke@435 1231 }
duke@435 1232 }
duke@435 1233
kvn@500 1234 // Phase 3: Process MergeMem nodes from mergemem_worklist.
kvn@1535 1235 // Walk each memory slice moving the first node encountered of each
kvn@500 1236 // instance type to the the input corresponding to its alias index.
kvn@1535 1237 uint length = _mergemem_worklist.length();
kvn@1535 1238 for( uint next = 0; next < length; ++next ) {
kvn@1535 1239 MergeMemNode* nmm = _mergemem_worklist.at(next);
kvn@1535 1240 assert(!visited.test_set(nmm->_idx), "should not be visited before");
duke@435 1241 // Note: we don't want to use MergeMemStream here because we only want to
kvn@1535 1242 // scan inputs which exist at the start, not ones we add during processing.
kvn@1535 1243 // Note 2: MergeMem may already contains instance memory slices added
kvn@1535 1244 // during find_inst_mem() call when memory nodes were processed above.
kvn@1535 1245 igvn->hash_delete(nmm);
duke@435 1246 uint nslices = nmm->req();
duke@435 1247 for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
kvn@500 1248 Node* mem = nmm->in(i);
kvn@500 1249 Node* cur = NULL;
duke@435 1250 if (mem == NULL || mem->is_top())
duke@435 1251 continue;
duke@435 1252 while (mem->is_Mem()) {
duke@435 1253 const Type *at = igvn->type(mem->in(MemNode::Address));
duke@435 1254 if (at != Type::TOP) {
duke@435 1255 assert (at->isa_ptr() != NULL, "pointer type required.");
duke@435 1256 uint idx = (uint)_compile->get_alias_index(at->is_ptr());
duke@435 1257 if (idx == i) {
duke@435 1258 if (cur == NULL)
duke@435 1259 cur = mem;
duke@435 1260 } else {
duke@435 1261 if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
duke@435 1262 nmm->set_memory_at(idx, mem);
duke@435 1263 }
duke@435 1264 }
duke@435 1265 }
duke@435 1266 mem = mem->in(MemNode::Memory);
duke@435 1267 }
duke@435 1268 nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
kvn@500 1269 // Find any instance of the current type if we haven't encountered
kvn@500 1270 // a value of the instance along the chain.
kvn@500 1271 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@500 1272 if((uint)_compile->get_general_index(ni) == i) {
kvn@500 1273 Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
kvn@500 1274 if (nmm->is_empty_memory(m)) {
kvn@500 1275 Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
kvn@500 1276 if (_compile->failing()) {
kvn@500 1277 return;
kvn@500 1278 }
kvn@500 1279 nmm->set_memory_at(ni, result);
kvn@500 1280 }
kvn@500 1281 }
kvn@500 1282 }
kvn@500 1283 }
kvn@500 1284 // Find the rest of instances values
kvn@500 1285 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@500 1286 const TypeOopPtr *tinst = igvn->C->get_adr_type(ni)->isa_oopptr();
kvn@500 1287 Node* result = step_through_mergemem(nmm, ni, tinst);
kvn@500 1288 if (result == nmm->base_memory()) {
kvn@500 1289 // Didn't find instance memory, search through general slice recursively.
kvn@500 1290 result = nmm->memory_at(igvn->C->get_general_index(ni));
kvn@500 1291 result = find_inst_mem(result, ni, orig_phis, igvn);
kvn@500 1292 if (_compile->failing()) {
kvn@500 1293 return;
kvn@500 1294 }
kvn@500 1295 nmm->set_memory_at(ni, result);
kvn@500 1296 }
kvn@500 1297 }
kvn@500 1298 igvn->hash_insert(nmm);
kvn@500 1299 record_for_optimizer(nmm);
duke@435 1300 }
duke@435 1301
kvn@500 1302 // Phase 4: Update the inputs of non-instance memory Phis and
kvn@500 1303 // the Memory input of memnodes
duke@435 1304 // First update the inputs of any non-instance Phi's from
duke@435 1305 // which we split out an instance Phi. Note we don't have
duke@435 1306 // to recursively process Phi's encounted on the input memory
duke@435 1307 // chains as is done in split_memory_phi() since they will
duke@435 1308 // also be processed here.
kvn@682 1309 for (int j = 0; j < orig_phis.length(); j++) {
kvn@682 1310 PhiNode *phi = orig_phis.at(j);
duke@435 1311 int alias_idx = _compile->get_alias_index(phi->adr_type());
duke@435 1312 igvn->hash_delete(phi);
duke@435 1313 for (uint i = 1; i < phi->req(); i++) {
duke@435 1314 Node *mem = phi->in(i);
kvn@500 1315 Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
kvn@500 1316 if (_compile->failing()) {
kvn@500 1317 return;
kvn@500 1318 }
duke@435 1319 if (mem != new_mem) {
duke@435 1320 phi->set_req(i, new_mem);
duke@435 1321 }
duke@435 1322 }
duke@435 1323 igvn->hash_insert(phi);
duke@435 1324 record_for_optimizer(phi);
duke@435 1325 }
duke@435 1326
duke@435 1327 // Update the memory inputs of MemNodes with the value we computed
duke@435 1328 // in Phase 2.
kvn@679 1329 for (uint i = 0; i < nodes_size(); i++) {
duke@435 1330 Node *nmem = get_map(i);
duke@435 1331 if (nmem != NULL) {
kvn@679 1332 Node *n = ptnode_adr(i)->_node;
duke@435 1333 if (n != NULL && n->is_Mem()) {
duke@435 1334 igvn->hash_delete(n);
duke@435 1335 n->set_req(MemNode::Memory, nmem);
duke@435 1336 igvn->hash_insert(n);
duke@435 1337 record_for_optimizer(n);
duke@435 1338 }
duke@435 1339 }
duke@435 1340 }
duke@435 1341 }
duke@435 1342
kvn@679 1343 bool ConnectionGraph::has_candidates(Compile *C) {
kvn@679 1344 // EA brings benefits only when the code has allocations and/or locks which
kvn@679 1345 // are represented by ideal Macro nodes.
kvn@679 1346 int cnt = C->macro_count();
kvn@679 1347 for( int i=0; i < cnt; i++ ) {
kvn@679 1348 Node *n = C->macro_node(i);
kvn@679 1349 if ( n->is_Allocate() )
kvn@679 1350 return true;
kvn@679 1351 if( n->is_Lock() ) {
kvn@679 1352 Node* obj = n->as_Lock()->obj_node()->uncast();
kvn@679 1353 if( !(obj->is_Parm() || obj->is_Con()) )
kvn@679 1354 return true;
kvn@679 1355 }
kvn@679 1356 }
kvn@679 1357 return false;
kvn@679 1358 }
kvn@679 1359
kvn@679 1360 bool ConnectionGraph::compute_escape() {
kvn@679 1361 Compile* C = _compile;
duke@435 1362
kvn@598 1363 // 1. Populate Connection Graph (CG) with Ideal nodes.
duke@435 1364
kvn@500 1365 Unique_Node_List worklist_init;
kvn@679 1366 worklist_init.map(C->unique(), NULL); // preallocate space
kvn@500 1367
kvn@500 1368 // Initialize worklist
kvn@679 1369 if (C->root() != NULL) {
kvn@679 1370 worklist_init.push(C->root());
kvn@500 1371 }
kvn@500 1372
kvn@500 1373 GrowableArray<int> cg_worklist;
kvn@679 1374 PhaseGVN* igvn = C->initial_gvn();
kvn@500 1375 bool has_allocations = false;
kvn@500 1376
kvn@500 1377 // Push all useful nodes onto CG list and set their type.
kvn@500 1378 for( uint next = 0; next < worklist_init.size(); ++next ) {
kvn@500 1379 Node* n = worklist_init.at(next);
kvn@500 1380 record_for_escape_analysis(n, igvn);
kvn@679 1381 // Only allocations and java static calls results are checked
kvn@679 1382 // for an escape status. See process_call_result() below.
kvn@679 1383 if (n->is_Allocate() || n->is_CallStaticJava() &&
kvn@679 1384 ptnode_adr(n->_idx)->node_type() == PointsToNode::JavaObject) {
kvn@500 1385 has_allocations = true;
kvn@500 1386 }
kvn@1535 1387 if(n->is_AddP()) {
kvn@1535 1388 // Collect address nodes which directly reference an allocation.
kvn@1535 1389 // Use them during stage 3 below to build initial connection graph
kvn@1535 1390 // field edges. Other field edges could be added after StoreP/LoadP
kvn@1535 1391 // nodes are processed during stage 4 below.
kvn@1535 1392 Node* base = get_addp_base(n);
kvn@1535 1393 if(base->is_Proj() && base->in(0)->is_Allocate()) {
kvn@1535 1394 cg_worklist.append(n->_idx);
kvn@1535 1395 }
kvn@1535 1396 } else if (n->is_MergeMem()) {
kvn@1535 1397 // Collect all MergeMem nodes to add memory slices for
kvn@1535 1398 // scalar replaceable objects in split_unique_types().
kvn@1535 1399 _mergemem_worklist.append(n->as_MergeMem());
kvn@1535 1400 }
kvn@500 1401 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 1402 Node* m = n->fast_out(i); // Get user
kvn@500 1403 worklist_init.push(m);
kvn@500 1404 }
kvn@500 1405 }
kvn@500 1406
kvn@679 1407 if (!has_allocations) {
kvn@500 1408 _collecting = false;
kvn@679 1409 return false; // Nothing to do.
kvn@500 1410 }
kvn@500 1411
kvn@500 1412 // 2. First pass to create simple CG edges (doesn't require to walk CG).
kvn@679 1413 uint delayed_size = _delayed_worklist.size();
kvn@679 1414 for( uint next = 0; next < delayed_size; ++next ) {
kvn@500 1415 Node* n = _delayed_worklist.at(next);
kvn@500 1416 build_connection_graph(n, igvn);
kvn@500 1417 }
kvn@500 1418
kvn@500 1419 // 3. Pass to create fields edges (Allocate -F-> AddP).
kvn@679 1420 uint cg_length = cg_worklist.length();
kvn@679 1421 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1422 int ni = cg_worklist.at(next);
kvn@679 1423 build_connection_graph(ptnode_adr(ni)->_node, igvn);
kvn@500 1424 }
kvn@500 1425
kvn@500 1426 cg_worklist.clear();
kvn@500 1427 cg_worklist.append(_phantom_object);
kvn@500 1428
kvn@500 1429 // 4. Build Connection Graph which need
kvn@500 1430 // to walk the connection graph.
kvn@679 1431 for (uint ni = 0; ni < nodes_size(); ni++) {
kvn@679 1432 PointsToNode* ptn = ptnode_adr(ni);
kvn@500 1433 Node *n = ptn->_node;
kvn@500 1434 if (n != NULL) { // Call, AddP, LoadP, StoreP
kvn@500 1435 build_connection_graph(n, igvn);
kvn@500 1436 if (ptn->node_type() != PointsToNode::UnknownType)
kvn@500 1437 cg_worklist.append(n->_idx); // Collect CG nodes
kvn@500 1438 }
duke@435 1439 }
duke@435 1440
kvn@1535 1441 Arena* arena = Thread::current()->resource_area();
kvn@1535 1442 VectorSet ptset(arena);
kvn@536 1443 GrowableArray<uint> deferred_edges;
kvn@1535 1444 VectorSet visited(arena);
duke@435 1445
kvn@1535 1446 // 5. Remove deferred edges from the graph and adjust
kvn@1535 1447 // escape state of nonescaping objects.
kvn@679 1448 cg_length = cg_worklist.length();
kvn@679 1449 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1450 int ni = cg_worklist.at(next);
kvn@679 1451 PointsToNode* ptn = ptnode_adr(ni);
duke@435 1452 PointsToNode::NodeType nt = ptn->node_type();
duke@435 1453 if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
kvn@536 1454 remove_deferred(ni, &deferred_edges, &visited);
kvn@679 1455 Node *n = ptn->_node;
duke@435 1456 if (n->is_AddP()) {
kvn@1535 1457 // Search for objects which are not scalar replaceable
kvn@1535 1458 // and adjust their escape state.
kvn@1535 1459 verify_escape_state(ni, ptset, igvn);
duke@435 1460 }
duke@435 1461 }
duke@435 1462 }
kvn@500 1463
kvn@679 1464 // 6. Propagate escape states.
kvn@679 1465 GrowableArray<int> worklist;
kvn@679 1466 bool has_non_escaping_obj = false;
kvn@679 1467
duke@435 1468 // push all GlobalEscape nodes on the worklist
kvn@679 1469 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1470 int nk = cg_worklist.at(next);
kvn@679 1471 if (ptnode_adr(nk)->escape_state() == PointsToNode::GlobalEscape)
kvn@679 1472 worklist.push(nk);
duke@435 1473 }
kvn@679 1474 // mark all nodes reachable from GlobalEscape nodes
duke@435 1475 while(worklist.length() > 0) {
kvn@679 1476 PointsToNode* ptn = ptnode_adr(worklist.pop());
kvn@679 1477 uint e_cnt = ptn->edge_count();
kvn@679 1478 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@679 1479 uint npi = ptn->edge_target(ei);
duke@435 1480 PointsToNode *np = ptnode_adr(npi);
kvn@500 1481 if (np->escape_state() < PointsToNode::GlobalEscape) {
duke@435 1482 np->set_escape_state(PointsToNode::GlobalEscape);
kvn@679 1483 worklist.push(npi);
duke@435 1484 }
duke@435 1485 }
duke@435 1486 }
duke@435 1487
duke@435 1488 // push all ArgEscape nodes on the worklist
kvn@679 1489 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1490 int nk = cg_worklist.at(next);
kvn@679 1491 if (ptnode_adr(nk)->escape_state() == PointsToNode::ArgEscape)
duke@435 1492 worklist.push(nk);
duke@435 1493 }
kvn@679 1494 // mark all nodes reachable from ArgEscape nodes
duke@435 1495 while(worklist.length() > 0) {
kvn@679 1496 PointsToNode* ptn = ptnode_adr(worklist.pop());
kvn@679 1497 if (ptn->node_type() == PointsToNode::JavaObject)
kvn@679 1498 has_non_escaping_obj = true; // Non GlobalEscape
kvn@679 1499 uint e_cnt = ptn->edge_count();
kvn@679 1500 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@679 1501 uint npi = ptn->edge_target(ei);
duke@435 1502 PointsToNode *np = ptnode_adr(npi);
kvn@500 1503 if (np->escape_state() < PointsToNode::ArgEscape) {
duke@435 1504 np->set_escape_state(PointsToNode::ArgEscape);
kvn@679 1505 worklist.push(npi);
duke@435 1506 }
duke@435 1507 }
duke@435 1508 }
kvn@500 1509
kvn@679 1510 GrowableArray<Node*> alloc_worklist;
kvn@679 1511
kvn@500 1512 // push all NoEscape nodes on the worklist
kvn@679 1513 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1514 int nk = cg_worklist.at(next);
kvn@679 1515 if (ptnode_adr(nk)->escape_state() == PointsToNode::NoEscape)
kvn@500 1516 worklist.push(nk);
kvn@500 1517 }
kvn@679 1518 // mark all nodes reachable from NoEscape nodes
kvn@500 1519 while(worklist.length() > 0) {
kvn@679 1520 PointsToNode* ptn = ptnode_adr(worklist.pop());
kvn@679 1521 if (ptn->node_type() == PointsToNode::JavaObject)
kvn@679 1522 has_non_escaping_obj = true; // Non GlobalEscape
kvn@679 1523 Node* n = ptn->_node;
kvn@679 1524 if (n->is_Allocate() && ptn->_scalar_replaceable ) {
twisti@1040 1525 // Push scalar replaceable allocations on alloc_worklist
kvn@679 1526 // for processing in split_unique_types().
kvn@679 1527 alloc_worklist.append(n);
kvn@679 1528 }
kvn@679 1529 uint e_cnt = ptn->edge_count();
kvn@679 1530 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@679 1531 uint npi = ptn->edge_target(ei);
kvn@500 1532 PointsToNode *np = ptnode_adr(npi);
kvn@500 1533 if (np->escape_state() < PointsToNode::NoEscape) {
kvn@500 1534 np->set_escape_state(PointsToNode::NoEscape);
kvn@679 1535 worklist.push(npi);
kvn@500 1536 }
kvn@500 1537 }
kvn@500 1538 }
kvn@500 1539
duke@435 1540 _collecting = false;
kvn@679 1541 assert(C->unique() == nodes_size(), "there should be no new ideal nodes during ConnectionGraph build");
duke@435 1542
kvn@679 1543 bool has_scalar_replaceable_candidates = alloc_worklist.length() > 0;
kvn@679 1544 if ( has_scalar_replaceable_candidates &&
kvn@679 1545 C->AliasLevel() >= 3 && EliminateAllocations ) {
kvn@473 1546
kvn@679 1547 // Now use the escape information to create unique types for
kvn@679 1548 // scalar replaceable objects.
kvn@679 1549 split_unique_types(alloc_worklist);
duke@435 1550
kvn@679 1551 if (C->failing()) return false;
duke@435 1552
kvn@500 1553 // Clean up after split unique types.
kvn@500 1554 ResourceMark rm;
kvn@679 1555 PhaseRemoveUseless pru(C->initial_gvn(), C->for_igvn());
kvn@679 1556
kvn@679 1557 C->print_method("After Escape Analysis", 2);
duke@435 1558
kvn@500 1559 #ifdef ASSERT
kvn@679 1560 } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
kvn@500 1561 tty->print("=== No allocations eliminated for ");
kvn@679 1562 C->method()->print_short_name();
kvn@500 1563 if(!EliminateAllocations) {
kvn@500 1564 tty->print(" since EliminateAllocations is off ===");
kvn@679 1565 } else if(!has_scalar_replaceable_candidates) {
kvn@679 1566 tty->print(" since there are no scalar replaceable candidates ===");
kvn@679 1567 } else if(C->AliasLevel() < 3) {
kvn@500 1568 tty->print(" since AliasLevel < 3 ===");
duke@435 1569 }
kvn@500 1570 tty->cr();
kvn@500 1571 #endif
duke@435 1572 }
kvn@679 1573 return has_non_escaping_obj;
duke@435 1574 }
duke@435 1575
kvn@1535 1576 // Search for objects which are not scalar replaceable.
kvn@1535 1577 void ConnectionGraph::verify_escape_state(int nidx, VectorSet& ptset, PhaseTransform* phase) {
kvn@1535 1578 PointsToNode* ptn = ptnode_adr(nidx);
kvn@1535 1579 Node* n = ptn->_node;
kvn@1535 1580 assert(n->is_AddP(), "Should be called for AddP nodes only");
kvn@1535 1581 // Search for objects which are not scalar replaceable.
kvn@1535 1582 // Mark their escape state as ArgEscape to propagate the state
kvn@1535 1583 // to referenced objects.
kvn@1535 1584 // Note: currently there are no difference in compiler optimizations
kvn@1535 1585 // for ArgEscape objects and NoEscape objects which are not
kvn@1535 1586 // scalar replaceable.
kvn@1535 1587
kvn@1535 1588 Compile* C = _compile;
kvn@1535 1589
kvn@1535 1590 int offset = ptn->offset();
kvn@1535 1591 Node* base = get_addp_base(n);
kvn@1535 1592 ptset.Clear();
kvn@1535 1593 PointsTo(ptset, base, phase);
kvn@1535 1594 int ptset_size = ptset.Size();
kvn@1535 1595
kvn@1535 1596 // Check if a oop field's initializing value is recorded and add
kvn@1535 1597 // a corresponding NULL field's value if it is not recorded.
kvn@1535 1598 // Connection Graph does not record a default initialization by NULL
kvn@1535 1599 // captured by Initialize node.
kvn@1535 1600 //
kvn@1535 1601 // Note: it will disable scalar replacement in some cases:
kvn@1535 1602 //
kvn@1535 1603 // Point p[] = new Point[1];
kvn@1535 1604 // p[0] = new Point(); // Will be not scalar replaced
kvn@1535 1605 //
kvn@1535 1606 // but it will save us from incorrect optimizations in next cases:
kvn@1535 1607 //
kvn@1535 1608 // Point p[] = new Point[1];
kvn@1535 1609 // if ( x ) p[0] = new Point(); // Will be not scalar replaced
kvn@1535 1610 //
kvn@1535 1611 // Do a simple control flow analysis to distinguish above cases.
kvn@1535 1612 //
kvn@1535 1613 if (offset != Type::OffsetBot && ptset_size == 1) {
kvn@1535 1614 uint elem = ptset.getelem(); // Allocation node's index
kvn@1535 1615 // It does not matter if it is not Allocation node since
kvn@1535 1616 // only non-escaping allocations are scalar replaced.
kvn@1535 1617 if (ptnode_adr(elem)->_node->is_Allocate() &&
kvn@1535 1618 ptnode_adr(elem)->escape_state() == PointsToNode::NoEscape) {
kvn@1535 1619 AllocateNode* alloc = ptnode_adr(elem)->_node->as_Allocate();
kvn@1535 1620 InitializeNode* ini = alloc->initialization();
kvn@1535 1621
kvn@1535 1622 // Check only oop fields.
kvn@1535 1623 const Type* adr_type = n->as_AddP()->bottom_type();
kvn@1535 1624 BasicType basic_field_type = T_INT;
kvn@1535 1625 if (adr_type->isa_instptr()) {
kvn@1535 1626 ciField* field = C->alias_type(adr_type->isa_instptr())->field();
kvn@1535 1627 if (field != NULL) {
kvn@1535 1628 basic_field_type = field->layout_type();
kvn@1535 1629 } else {
kvn@1535 1630 // Ignore non field load (for example, klass load)
kvn@1535 1631 }
kvn@1535 1632 } else if (adr_type->isa_aryptr()) {
kvn@1535 1633 const Type* elemtype = adr_type->isa_aryptr()->elem();
kvn@1535 1634 basic_field_type = elemtype->array_element_basic_type();
kvn@1535 1635 } else {
kvn@1535 1636 // Raw pointers are used for initializing stores so skip it.
kvn@1535 1637 assert(adr_type->isa_rawptr() && base->is_Proj() &&
kvn@1535 1638 (base->in(0) == alloc),"unexpected pointer type");
kvn@1535 1639 }
kvn@1535 1640 if (basic_field_type == T_OBJECT ||
kvn@1535 1641 basic_field_type == T_NARROWOOP ||
kvn@1535 1642 basic_field_type == T_ARRAY) {
kvn@1535 1643 Node* value = NULL;
kvn@1535 1644 if (ini != NULL) {
kvn@1535 1645 BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT;
kvn@1535 1646 Node* store = ini->find_captured_store(offset, type2aelembytes(ft), phase);
kvn@1535 1647 if (store != NULL && store->is_Store()) {
kvn@1535 1648 value = store->in(MemNode::ValueIn);
kvn@1535 1649 } else if (ptn->edge_count() > 0) { // Are there oop stores?
kvn@1535 1650 // Check for a store which follows allocation without branches.
kvn@1535 1651 // For example, a volatile field store is not collected
kvn@1535 1652 // by Initialize node. TODO: it would be nice to use idom() here.
kvn@1535 1653 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@1535 1654 store = n->fast_out(i);
kvn@1535 1655 if (store->is_Store() && store->in(0) != NULL) {
kvn@1535 1656 Node* ctrl = store->in(0);
kvn@1535 1657 while(!(ctrl == ini || ctrl == alloc || ctrl == NULL ||
kvn@1535 1658 ctrl == C->root() || ctrl == C->top() || ctrl->is_Region() ||
kvn@1535 1659 ctrl->is_IfTrue() || ctrl->is_IfFalse())) {
kvn@1535 1660 ctrl = ctrl->in(0);
kvn@1535 1661 }
kvn@1535 1662 if (ctrl == ini || ctrl == alloc) {
kvn@1535 1663 value = store->in(MemNode::ValueIn);
kvn@1535 1664 break;
kvn@1535 1665 }
kvn@1535 1666 }
kvn@1535 1667 }
kvn@1535 1668 }
kvn@1535 1669 }
kvn@1535 1670 if (value == NULL || value != ptnode_adr(value->_idx)->_node) {
kvn@1535 1671 // A field's initializing value was not recorded. Add NULL.
kvn@1535 1672 uint null_idx = UseCompressedOops ? _noop_null : _oop_null;
kvn@1535 1673 add_pointsto_edge(nidx, null_idx);
kvn@1535 1674 }
kvn@1535 1675 }
kvn@1535 1676 }
kvn@1535 1677 }
kvn@1535 1678
kvn@1535 1679 // An object is not scalar replaceable if the field which may point
kvn@1535 1680 // to it has unknown offset (unknown element of an array of objects).
kvn@1535 1681 //
kvn@1535 1682 if (offset == Type::OffsetBot) {
kvn@1535 1683 uint e_cnt = ptn->edge_count();
kvn@1535 1684 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@1535 1685 uint npi = ptn->edge_target(ei);
kvn@1535 1686 set_escape_state(npi, PointsToNode::ArgEscape);
kvn@1535 1687 ptnode_adr(npi)->_scalar_replaceable = false;
kvn@1535 1688 }
kvn@1535 1689 }
kvn@1535 1690
kvn@1535 1691 // Currently an object is not scalar replaceable if a LoadStore node
kvn@1535 1692 // access its field since the field value is unknown after it.
kvn@1535 1693 //
kvn@1535 1694 bool has_LoadStore = false;
kvn@1535 1695 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@1535 1696 Node *use = n->fast_out(i);
kvn@1535 1697 if (use->is_LoadStore()) {
kvn@1535 1698 has_LoadStore = true;
kvn@1535 1699 break;
kvn@1535 1700 }
kvn@1535 1701 }
kvn@1535 1702 // An object is not scalar replaceable if the address points
kvn@1535 1703 // to unknown field (unknown element for arrays, offset is OffsetBot).
kvn@1535 1704 //
kvn@1535 1705 // Or the address may point to more then one object. This may produce
kvn@1535 1706 // the false positive result (set scalar_replaceable to false)
kvn@1535 1707 // since the flow-insensitive escape analysis can't separate
kvn@1535 1708 // the case when stores overwrite the field's value from the case
kvn@1535 1709 // when stores happened on different control branches.
kvn@1535 1710 //
kvn@1535 1711 if (ptset_size > 1 || ptset_size != 0 &&
kvn@1535 1712 (has_LoadStore || offset == Type::OffsetBot)) {
kvn@1535 1713 for( VectorSetI j(&ptset); j.test(); ++j ) {
kvn@1535 1714 set_escape_state(j.elem, PointsToNode::ArgEscape);
kvn@1535 1715 ptnode_adr(j.elem)->_scalar_replaceable = false;
kvn@1535 1716 }
kvn@1535 1717 }
kvn@1535 1718 }
kvn@1535 1719
duke@435 1720 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
duke@435 1721
duke@435 1722 switch (call->Opcode()) {
kvn@500 1723 #ifdef ASSERT
duke@435 1724 case Op_Allocate:
duke@435 1725 case Op_AllocateArray:
duke@435 1726 case Op_Lock:
duke@435 1727 case Op_Unlock:
kvn@500 1728 assert(false, "should be done already");
duke@435 1729 break;
kvn@500 1730 #endif
kvn@1535 1731 case Op_CallLeaf:
kvn@500 1732 case Op_CallLeafNoFP:
kvn@500 1733 {
kvn@500 1734 // Stub calls, objects do not escape but they are not scale replaceable.
kvn@500 1735 // Adjust escape state for outgoing arguments.
kvn@500 1736 const TypeTuple * d = call->tf()->domain();
kvn@500 1737 VectorSet ptset(Thread::current()->resource_area());
kvn@500 1738 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@500 1739 const Type* at = d->field_at(i);
kvn@500 1740 Node *arg = call->in(i)->uncast();
kvn@500 1741 const Type *aat = phase->type(arg);
kvn@1535 1742 if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr() &&
kvn@1535 1743 ptnode_adr(arg->_idx)->escape_state() < PointsToNode::ArgEscape) {
kvn@1535 1744
kvn@500 1745 assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
kvn@500 1746 aat->isa_ptr() != NULL, "expecting an Ptr");
kvn@1535 1747 #ifdef ASSERT
kvn@1535 1748 if (!(call->Opcode() == Op_CallLeafNoFP &&
kvn@1535 1749 call->as_CallLeaf()->_name != NULL &&
kvn@1535 1750 (strstr(call->as_CallLeaf()->_name, "arraycopy") != 0) ||
kvn@1535 1751 call->as_CallLeaf()->_name != NULL &&
kvn@1535 1752 (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre") == 0 ||
kvn@1535 1753 strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ))
kvn@1535 1754 ) {
kvn@1535 1755 call->dump();
kvn@1535 1756 assert(false, "EA: unexpected CallLeaf");
kvn@1535 1757 }
kvn@1535 1758 #endif
kvn@500 1759 set_escape_state(arg->_idx, PointsToNode::ArgEscape);
kvn@500 1760 if (arg->is_AddP()) {
kvn@500 1761 //
kvn@500 1762 // The inline_native_clone() case when the arraycopy stub is called
kvn@500 1763 // after the allocation before Initialize and CheckCastPP nodes.
kvn@500 1764 //
kvn@500 1765 // Set AddP's base (Allocate) as not scalar replaceable since
kvn@500 1766 // pointer to the base (with offset) is passed as argument.
kvn@500 1767 //
kvn@500 1768 arg = get_addp_base(arg);
kvn@500 1769 }
kvn@500 1770 ptset.Clear();
kvn@500 1771 PointsTo(ptset, arg, phase);
kvn@500 1772 for( VectorSetI j(&ptset); j.test(); ++j ) {
kvn@500 1773 uint pt = j.elem;
kvn@500 1774 set_escape_state(pt, PointsToNode::ArgEscape);
kvn@500 1775 }
kvn@500 1776 }
kvn@500 1777 }
kvn@500 1778 break;
kvn@500 1779 }
duke@435 1780
duke@435 1781 case Op_CallStaticJava:
duke@435 1782 // For a static call, we know exactly what method is being called.
duke@435 1783 // Use bytecode estimator to record the call's escape affects
duke@435 1784 {
duke@435 1785 ciMethod *meth = call->as_CallJava()->method();
kvn@500 1786 BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
kvn@500 1787 // fall-through if not a Java method or no analyzer information
kvn@500 1788 if (call_analyzer != NULL) {
duke@435 1789 const TypeTuple * d = call->tf()->domain();
duke@435 1790 VectorSet ptset(Thread::current()->resource_area());
kvn@500 1791 bool copy_dependencies = false;
duke@435 1792 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 1793 const Type* at = d->field_at(i);
duke@435 1794 int k = i - TypeFunc::Parms;
kvn@1535 1795 Node *arg = call->in(i)->uncast();
duke@435 1796
kvn@1535 1797 if (at->isa_oopptr() != NULL &&
kvn@1535 1798 ptnode_adr(arg->_idx)->escape_state() < PointsToNode::ArgEscape) {
duke@435 1799
kvn@500 1800 bool global_escapes = false;
kvn@500 1801 bool fields_escapes = false;
kvn@500 1802 if (!call_analyzer->is_arg_stack(k)) {
duke@435 1803 // The argument global escapes, mark everything it could point to
kvn@500 1804 set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
kvn@500 1805 global_escapes = true;
kvn@500 1806 } else {
kvn@500 1807 if (!call_analyzer->is_arg_local(k)) {
kvn@500 1808 // The argument itself doesn't escape, but any fields might
kvn@500 1809 fields_escapes = true;
kvn@500 1810 }
kvn@500 1811 set_escape_state(arg->_idx, PointsToNode::ArgEscape);
kvn@500 1812 copy_dependencies = true;
kvn@500 1813 }
duke@435 1814
kvn@500 1815 ptset.Clear();
kvn@500 1816 PointsTo(ptset, arg, phase);
kvn@500 1817 for( VectorSetI j(&ptset); j.test(); ++j ) {
kvn@500 1818 uint pt = j.elem;
kvn@500 1819 if (global_escapes) {
kvn@500 1820 //The argument global escapes, mark everything it could point to
duke@435 1821 set_escape_state(pt, PointsToNode::GlobalEscape);
kvn@500 1822 } else {
kvn@500 1823 if (fields_escapes) {
kvn@500 1824 // The argument itself doesn't escape, but any fields might
kvn@500 1825 add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
kvn@500 1826 }
kvn@500 1827 set_escape_state(pt, PointsToNode::ArgEscape);
duke@435 1828 }
duke@435 1829 }
duke@435 1830 }
duke@435 1831 }
kvn@500 1832 if (copy_dependencies)
kvn@679 1833 call_analyzer->copy_dependencies(_compile->dependencies());
duke@435 1834 break;
duke@435 1835 }
duke@435 1836 }
duke@435 1837
duke@435 1838 default:
kvn@500 1839 // Fall-through here if not a Java method or no analyzer information
kvn@500 1840 // or some other type of call, assume the worst case: all arguments
duke@435 1841 // globally escape.
duke@435 1842 {
duke@435 1843 // adjust escape state for outgoing arguments
duke@435 1844 const TypeTuple * d = call->tf()->domain();
duke@435 1845 VectorSet ptset(Thread::current()->resource_area());
duke@435 1846 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 1847 const Type* at = d->field_at(i);
duke@435 1848 if (at->isa_oopptr() != NULL) {
kvn@500 1849 Node *arg = call->in(i)->uncast();
kvn@500 1850 set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
duke@435 1851 ptset.Clear();
duke@435 1852 PointsTo(ptset, arg, phase);
duke@435 1853 for( VectorSetI j(&ptset); j.test(); ++j ) {
duke@435 1854 uint pt = j.elem;
duke@435 1855 set_escape_state(pt, PointsToNode::GlobalEscape);
duke@435 1856 }
duke@435 1857 }
duke@435 1858 }
duke@435 1859 }
duke@435 1860 }
duke@435 1861 }
duke@435 1862 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
kvn@679 1863 CallNode *call = resproj->in(0)->as_Call();
kvn@679 1864 uint call_idx = call->_idx;
kvn@679 1865 uint resproj_idx = resproj->_idx;
duke@435 1866
duke@435 1867 switch (call->Opcode()) {
duke@435 1868 case Op_Allocate:
duke@435 1869 {
duke@435 1870 Node *k = call->in(AllocateNode::KlassNode);
duke@435 1871 const TypeKlassPtr *kt;
duke@435 1872 if (k->Opcode() == Op_LoadKlass) {
duke@435 1873 kt = k->as_Load()->type()->isa_klassptr();
duke@435 1874 } else {
kvn@599 1875 // Also works for DecodeN(LoadNKlass).
duke@435 1876 kt = k->as_Type()->type()->isa_klassptr();
duke@435 1877 }
duke@435 1878 assert(kt != NULL, "TypeKlassPtr required.");
duke@435 1879 ciKlass* cik = kt->klass();
duke@435 1880 ciInstanceKlass* ciik = cik->as_instance_klass();
duke@435 1881
kvn@500 1882 PointsToNode::EscapeState es;
kvn@500 1883 uint edge_to;
duke@435 1884 if (cik->is_subclass_of(_compile->env()->Thread_klass()) || ciik->has_finalizer()) {
kvn@500 1885 es = PointsToNode::GlobalEscape;
kvn@500 1886 edge_to = _phantom_object; // Could not be worse
duke@435 1887 } else {
kvn@500 1888 es = PointsToNode::NoEscape;
kvn@679 1889 edge_to = call_idx;
duke@435 1890 }
kvn@679 1891 set_escape_state(call_idx, es);
kvn@679 1892 add_pointsto_edge(resproj_idx, edge_to);
kvn@679 1893 _processed.set(resproj_idx);
duke@435 1894 break;
duke@435 1895 }
duke@435 1896
duke@435 1897 case Op_AllocateArray:
duke@435 1898 {
kvn@500 1899 int length = call->in(AllocateNode::ALength)->find_int_con(-1);
kvn@500 1900 if (length < 0 || length > EliminateAllocationArraySizeLimit) {
kvn@500 1901 // Not scalar replaceable if the length is not constant or too big.
kvn@679 1902 ptnode_adr(call_idx)->_scalar_replaceable = false;
kvn@500 1903 }
kvn@679 1904 set_escape_state(call_idx, PointsToNode::NoEscape);
kvn@679 1905 add_pointsto_edge(resproj_idx, call_idx);
kvn@679 1906 _processed.set(resproj_idx);
duke@435 1907 break;
duke@435 1908 }
duke@435 1909
duke@435 1910 case Op_CallStaticJava:
duke@435 1911 // For a static call, we know exactly what method is being called.
duke@435 1912 // Use bytecode estimator to record whether the call's return value escapes
duke@435 1913 {
kvn@500 1914 bool done = true;
duke@435 1915 const TypeTuple *r = call->tf()->range();
duke@435 1916 const Type* ret_type = NULL;
duke@435 1917
duke@435 1918 if (r->cnt() > TypeFunc::Parms)
duke@435 1919 ret_type = r->field_at(TypeFunc::Parms);
duke@435 1920
duke@435 1921 // Note: we use isa_ptr() instead of isa_oopptr() here because the
duke@435 1922 // _multianewarray functions return a TypeRawPtr.
kvn@500 1923 if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
kvn@679 1924 _processed.set(resproj_idx);
duke@435 1925 break; // doesn't return a pointer type
kvn@500 1926 }
duke@435 1927 ciMethod *meth = call->as_CallJava()->method();
kvn@500 1928 const TypeTuple * d = call->tf()->domain();
duke@435 1929 if (meth == NULL) {
duke@435 1930 // not a Java method, assume global escape
kvn@679 1931 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 1932 add_pointsto_edge(resproj_idx, _phantom_object);
duke@435 1933 } else {
kvn@500 1934 BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
kvn@500 1935 bool copy_dependencies = false;
duke@435 1936
kvn@500 1937 if (call_analyzer->is_return_allocated()) {
kvn@500 1938 // Returns a newly allocated unescaped object, simply
kvn@500 1939 // update dependency information.
kvn@500 1940 // Mark it as NoEscape so that objects referenced by
kvn@500 1941 // it's fields will be marked as NoEscape at least.
kvn@679 1942 set_escape_state(call_idx, PointsToNode::NoEscape);
kvn@679 1943 add_pointsto_edge(resproj_idx, call_idx);
kvn@500 1944 copy_dependencies = true;
kvn@679 1945 } else if (call_analyzer->is_return_local()) {
duke@435 1946 // determine whether any arguments are returned
kvn@679 1947 set_escape_state(call_idx, PointsToNode::NoEscape);
kvn@742 1948 bool ret_arg = false;
duke@435 1949 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 1950 const Type* at = d->field_at(i);
duke@435 1951
duke@435 1952 if (at->isa_oopptr() != NULL) {
kvn@500 1953 Node *arg = call->in(i)->uncast();
duke@435 1954
kvn@500 1955 if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
kvn@742 1956 ret_arg = true;
kvn@679 1957 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
kvn@500 1958 if (arg_esp->node_type() == PointsToNode::UnknownType)
kvn@500 1959 done = false;
kvn@500 1960 else if (arg_esp->node_type() == PointsToNode::JavaObject)
kvn@679 1961 add_pointsto_edge(resproj_idx, arg->_idx);
duke@435 1962 else
kvn@679 1963 add_deferred_edge(resproj_idx, arg->_idx);
duke@435 1964 arg_esp->_hidden_alias = true;
duke@435 1965 }
duke@435 1966 }
duke@435 1967 }
kvn@742 1968 if (done && !ret_arg) {
kvn@742 1969 // Returns unknown object.
kvn@742 1970 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@742 1971 add_pointsto_edge(resproj_idx, _phantom_object);
kvn@742 1972 }
kvn@500 1973 copy_dependencies = true;
duke@435 1974 } else {
kvn@679 1975 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 1976 add_pointsto_edge(resproj_idx, _phantom_object);
kvn@500 1977 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@500 1978 const Type* at = d->field_at(i);
kvn@500 1979 if (at->isa_oopptr() != NULL) {
kvn@500 1980 Node *arg = call->in(i)->uncast();
kvn@679 1981 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
kvn@500 1982 arg_esp->_hidden_alias = true;
kvn@500 1983 }
kvn@500 1984 }
duke@435 1985 }
kvn@500 1986 if (copy_dependencies)
kvn@679 1987 call_analyzer->copy_dependencies(_compile->dependencies());
duke@435 1988 }
kvn@500 1989 if (done)
kvn@679 1990 _processed.set(resproj_idx);
duke@435 1991 break;
duke@435 1992 }
duke@435 1993
duke@435 1994 default:
duke@435 1995 // Some other type of call, assume the worst case that the
duke@435 1996 // returned value, if any, globally escapes.
duke@435 1997 {
duke@435 1998 const TypeTuple *r = call->tf()->range();
duke@435 1999 if (r->cnt() > TypeFunc::Parms) {
duke@435 2000 const Type* ret_type = r->field_at(TypeFunc::Parms);
duke@435 2001
duke@435 2002 // Note: we use isa_ptr() instead of isa_oopptr() here because the
duke@435 2003 // _multianewarray functions return a TypeRawPtr.
duke@435 2004 if (ret_type->isa_ptr() != NULL) {
kvn@679 2005 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 2006 add_pointsto_edge(resproj_idx, _phantom_object);
duke@435 2007 }
duke@435 2008 }
kvn@679 2009 _processed.set(resproj_idx);
duke@435 2010 }
duke@435 2011 }
duke@435 2012 }
duke@435 2013
kvn@500 2014 // Populate Connection Graph with Ideal nodes and create simple
kvn@500 2015 // connection graph edges (do not need to check the node_type of inputs
kvn@500 2016 // or to call PointsTo() to walk the connection graph).
kvn@500 2017 void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
kvn@500 2018 if (_processed.test(n->_idx))
kvn@500 2019 return; // No need to redefine node's state.
kvn@500 2020
kvn@500 2021 if (n->is_Call()) {
kvn@500 2022 // Arguments to allocation and locking don't escape.
kvn@500 2023 if (n->is_Allocate()) {
kvn@500 2024 add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
kvn@500 2025 record_for_optimizer(n);
kvn@500 2026 } else if (n->is_Lock() || n->is_Unlock()) {
kvn@500 2027 // Put Lock and Unlock nodes on IGVN worklist to process them during
kvn@500 2028 // the first IGVN optimization when escape information is still available.
kvn@500 2029 record_for_optimizer(n);
kvn@500 2030 _processed.set(n->_idx);
kvn@500 2031 } else {
kvn@1535 2032 // Don't mark as processed since call's arguments have to be processed.
kvn@500 2033 PointsToNode::NodeType nt = PointsToNode::UnknownType;
kvn@1535 2034 PointsToNode::EscapeState es = PointsToNode::UnknownEscape;
kvn@500 2035
kvn@500 2036 // Check if a call returns an object.
kvn@500 2037 const TypeTuple *r = n->as_Call()->tf()->range();
kvn@1535 2038 if (r->cnt() > TypeFunc::Parms &&
kvn@1535 2039 r->field_at(TypeFunc::Parms)->isa_ptr() &&
kvn@500 2040 n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
kvn@1535 2041 nt = PointsToNode::JavaObject;
kvn@1535 2042 if (!n->is_CallStaticJava()) {
kvn@1535 2043 // Since the called mathod is statically unknown assume
kvn@1535 2044 // the worst case that the returned value globally escapes.
kvn@1535 2045 es = PointsToNode::GlobalEscape;
kvn@500 2046 }
duke@435 2047 }
kvn@1535 2048 add_node(n, nt, es, false);
duke@435 2049 }
kvn@500 2050 return;
duke@435 2051 }
kvn@500 2052
kvn@500 2053 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
kvn@500 2054 // ThreadLocal has RawPrt type.
kvn@500 2055 switch (n->Opcode()) {
kvn@500 2056 case Op_AddP:
kvn@500 2057 {
kvn@500 2058 add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
kvn@500 2059 break;
kvn@500 2060 }
kvn@500 2061 case Op_CastX2P:
kvn@500 2062 { // "Unsafe" memory access.
kvn@500 2063 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@500 2064 break;
kvn@500 2065 }
kvn@500 2066 case Op_CastPP:
kvn@500 2067 case Op_CheckCastPP:
kvn@559 2068 case Op_EncodeP:
kvn@559 2069 case Op_DecodeN:
kvn@500 2070 {
kvn@500 2071 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 2072 int ti = n->in(1)->_idx;
kvn@679 2073 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 2074 if (nt == PointsToNode::UnknownType) {
kvn@500 2075 _delayed_worklist.push(n); // Process it later.
kvn@500 2076 break;
kvn@500 2077 } else if (nt == PointsToNode::JavaObject) {
kvn@500 2078 add_pointsto_edge(n->_idx, ti);
kvn@500 2079 } else {
kvn@500 2080 add_deferred_edge(n->_idx, ti);
kvn@500 2081 }
kvn@500 2082 _processed.set(n->_idx);
kvn@500 2083 break;
kvn@500 2084 }
kvn@500 2085 case Op_ConP:
kvn@500 2086 {
kvn@500 2087 // assume all pointer constants globally escape except for null
kvn@500 2088 PointsToNode::EscapeState es;
kvn@500 2089 if (phase->type(n) == TypePtr::NULL_PTR)
kvn@500 2090 es = PointsToNode::NoEscape;
kvn@500 2091 else
kvn@500 2092 es = PointsToNode::GlobalEscape;
kvn@500 2093
kvn@500 2094 add_node(n, PointsToNode::JavaObject, es, true);
kvn@500 2095 break;
kvn@500 2096 }
coleenp@548 2097 case Op_ConN:
coleenp@548 2098 {
coleenp@548 2099 // assume all narrow oop constants globally escape except for null
coleenp@548 2100 PointsToNode::EscapeState es;
coleenp@548 2101 if (phase->type(n) == TypeNarrowOop::NULL_PTR)
coleenp@548 2102 es = PointsToNode::NoEscape;
coleenp@548 2103 else
coleenp@548 2104 es = PointsToNode::GlobalEscape;
coleenp@548 2105
coleenp@548 2106 add_node(n, PointsToNode::JavaObject, es, true);
coleenp@548 2107 break;
coleenp@548 2108 }
kvn@559 2109 case Op_CreateEx:
kvn@559 2110 {
kvn@559 2111 // assume that all exception objects globally escape
kvn@559 2112 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@559 2113 break;
kvn@559 2114 }
kvn@500 2115 case Op_LoadKlass:
kvn@599 2116 case Op_LoadNKlass:
kvn@500 2117 {
kvn@500 2118 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@500 2119 break;
kvn@500 2120 }
kvn@500 2121 case Op_LoadP:
coleenp@548 2122 case Op_LoadN:
kvn@500 2123 {
kvn@500 2124 const Type *t = phase->type(n);
kvn@688 2125 if (t->make_ptr() == NULL) {
kvn@500 2126 _processed.set(n->_idx);
kvn@500 2127 return;
kvn@500 2128 }
kvn@500 2129 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 2130 break;
kvn@500 2131 }
kvn@500 2132 case Op_Parm:
kvn@500 2133 {
kvn@500 2134 _processed.set(n->_idx); // No need to redefine it state.
kvn@500 2135 uint con = n->as_Proj()->_con;
kvn@500 2136 if (con < TypeFunc::Parms)
kvn@500 2137 return;
kvn@500 2138 const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
kvn@500 2139 if (t->isa_ptr() == NULL)
kvn@500 2140 return;
kvn@500 2141 // We have to assume all input parameters globally escape
kvn@500 2142 // (Note: passing 'false' since _processed is already set).
kvn@500 2143 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
kvn@500 2144 break;
kvn@500 2145 }
kvn@500 2146 case Op_Phi:
kvn@500 2147 {
kvn@688 2148 const Type *t = n->as_Phi()->type();
kvn@688 2149 if (t->make_ptr() == NULL) {
kvn@688 2150 // nothing to do if not an oop or narrow oop
kvn@500 2151 _processed.set(n->_idx);
kvn@500 2152 return;
kvn@500 2153 }
kvn@500 2154 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 2155 uint i;
kvn@500 2156 for (i = 1; i < n->req() ; i++) {
kvn@500 2157 Node* in = n->in(i);
kvn@500 2158 if (in == NULL)
kvn@500 2159 continue; // ignore NULL
kvn@500 2160 in = in->uncast();
kvn@500 2161 if (in->is_top() || in == n)
kvn@500 2162 continue; // ignore top or inputs which go back this node
kvn@500 2163 int ti = in->_idx;
kvn@679 2164 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 2165 if (nt == PointsToNode::UnknownType) {
kvn@500 2166 break;
kvn@500 2167 } else if (nt == PointsToNode::JavaObject) {
kvn@500 2168 add_pointsto_edge(n->_idx, ti);
kvn@500 2169 } else {
kvn@500 2170 add_deferred_edge(n->_idx, ti);
kvn@500 2171 }
kvn@500 2172 }
kvn@500 2173 if (i >= n->req())
kvn@500 2174 _processed.set(n->_idx);
kvn@500 2175 else
kvn@500 2176 _delayed_worklist.push(n);
kvn@500 2177 break;
kvn@500 2178 }
kvn@500 2179 case Op_Proj:
kvn@500 2180 {
kvn@1535 2181 // we are only interested in the oop result projection from a call
kvn@500 2182 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
kvn@1535 2183 const TypeTuple *r = n->in(0)->as_Call()->tf()->range();
kvn@1535 2184 assert(r->cnt() > TypeFunc::Parms, "sanity");
kvn@1535 2185 if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
kvn@1535 2186 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@1535 2187 int ti = n->in(0)->_idx;
kvn@1535 2188 // The call may not be registered yet (since not all its inputs are registered)
kvn@1535 2189 // if this is the projection from backbranch edge of Phi.
kvn@1535 2190 if (ptnode_adr(ti)->node_type() != PointsToNode::UnknownType) {
kvn@1535 2191 process_call_result(n->as_Proj(), phase);
kvn@1535 2192 }
kvn@1535 2193 if (!_processed.test(n->_idx)) {
kvn@1535 2194 // The call's result may need to be processed later if the call
kvn@1535 2195 // returns it's argument and the argument is not processed yet.
kvn@1535 2196 _delayed_worklist.push(n);
kvn@1535 2197 }
kvn@1535 2198 break;
kvn@500 2199 }
kvn@500 2200 }
kvn@1535 2201 _processed.set(n->_idx);
kvn@500 2202 break;
kvn@500 2203 }
kvn@500 2204 case Op_Return:
kvn@500 2205 {
kvn@500 2206 if( n->req() > TypeFunc::Parms &&
kvn@500 2207 phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
kvn@500 2208 // Treat Return value as LocalVar with GlobalEscape escape state.
kvn@500 2209 add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
kvn@500 2210 int ti = n->in(TypeFunc::Parms)->_idx;
kvn@679 2211 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 2212 if (nt == PointsToNode::UnknownType) {
kvn@500 2213 _delayed_worklist.push(n); // Process it later.
kvn@500 2214 break;
kvn@500 2215 } else if (nt == PointsToNode::JavaObject) {
kvn@500 2216 add_pointsto_edge(n->_idx, ti);
kvn@500 2217 } else {
kvn@500 2218 add_deferred_edge(n->_idx, ti);
kvn@500 2219 }
kvn@500 2220 }
kvn@500 2221 _processed.set(n->_idx);
kvn@500 2222 break;
kvn@500 2223 }
kvn@500 2224 case Op_StoreP:
coleenp@548 2225 case Op_StoreN:
kvn@500 2226 {
kvn@500 2227 const Type *adr_type = phase->type(n->in(MemNode::Address));
kvn@656 2228 adr_type = adr_type->make_ptr();
kvn@500 2229 if (adr_type->isa_oopptr()) {
kvn@500 2230 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 2231 } else {
kvn@500 2232 Node* adr = n->in(MemNode::Address);
kvn@500 2233 if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
kvn@500 2234 adr->in(AddPNode::Address)->is_Proj() &&
kvn@500 2235 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
kvn@500 2236 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 2237 // We are computing a raw address for a store captured
kvn@500 2238 // by an Initialize compute an appropriate address type.
kvn@500 2239 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 2240 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@500 2241 } else {
kvn@500 2242 _processed.set(n->_idx);
kvn@500 2243 return;
kvn@500 2244 }
kvn@500 2245 }
kvn@500 2246 break;
kvn@500 2247 }
kvn@500 2248 case Op_StorePConditional:
kvn@500 2249 case Op_CompareAndSwapP:
coleenp@548 2250 case Op_CompareAndSwapN:
kvn@500 2251 {
kvn@500 2252 const Type *adr_type = phase->type(n->in(MemNode::Address));
kvn@656 2253 adr_type = adr_type->make_ptr();
kvn@500 2254 if (adr_type->isa_oopptr()) {
kvn@500 2255 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 2256 } else {
kvn@500 2257 _processed.set(n->_idx);
kvn@500 2258 return;
kvn@500 2259 }
kvn@500 2260 break;
kvn@500 2261 }
kvn@1535 2262 case Op_AryEq:
kvn@1535 2263 case Op_StrComp:
kvn@1535 2264 case Op_StrEquals:
kvn@1535 2265 case Op_StrIndexOf:
kvn@1535 2266 {
kvn@1535 2267 // char[] arrays passed to string intrinsics are not scalar replaceable.
kvn@1535 2268 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@1535 2269 break;
kvn@1535 2270 }
kvn@500 2271 case Op_ThreadLocal:
kvn@500 2272 {
kvn@500 2273 add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
kvn@500 2274 break;
kvn@500 2275 }
kvn@500 2276 default:
kvn@500 2277 ;
kvn@500 2278 // nothing to do
kvn@500 2279 }
kvn@500 2280 return;
duke@435 2281 }
duke@435 2282
kvn@500 2283 void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
kvn@679 2284 uint n_idx = n->_idx;
kvn@1535 2285 assert(ptnode_adr(n_idx)->_node != NULL, "node should be registered");
kvn@679 2286
kvn@500 2287 // Don't set processed bit for AddP, LoadP, StoreP since
kvn@500 2288 // they may need more then one pass to process.
kvn@679 2289 if (_processed.test(n_idx))
kvn@500 2290 return; // No need to redefine node's state.
duke@435 2291
duke@435 2292 if (n->is_Call()) {
duke@435 2293 CallNode *call = n->as_Call();
duke@435 2294 process_call_arguments(call, phase);
kvn@679 2295 _processed.set(n_idx);
duke@435 2296 return;
duke@435 2297 }
duke@435 2298
kvn@500 2299 switch (n->Opcode()) {
duke@435 2300 case Op_AddP:
duke@435 2301 {
kvn@500 2302 Node *base = get_addp_base(n);
kvn@500 2303 // Create a field edge to this node from everything base could point to.
duke@435 2304 VectorSet ptset(Thread::current()->resource_area());
duke@435 2305 PointsTo(ptset, base, phase);
duke@435 2306 for( VectorSetI i(&ptset); i.test(); ++i ) {
duke@435 2307 uint pt = i.elem;
kvn@679 2308 add_field_edge(pt, n_idx, address_offset(n, phase));
kvn@500 2309 }
kvn@500 2310 break;
kvn@500 2311 }
kvn@500 2312 case Op_CastX2P:
kvn@500 2313 {
kvn@500 2314 assert(false, "Op_CastX2P");
kvn@500 2315 break;
kvn@500 2316 }
kvn@500 2317 case Op_CastPP:
kvn@500 2318 case Op_CheckCastPP:
coleenp@548 2319 case Op_EncodeP:
coleenp@548 2320 case Op_DecodeN:
kvn@500 2321 {
kvn@500 2322 int ti = n->in(1)->_idx;
kvn@1535 2323 assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "all nodes should be registered");
kvn@679 2324 if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
kvn@679 2325 add_pointsto_edge(n_idx, ti);
kvn@500 2326 } else {
kvn@679 2327 add_deferred_edge(n_idx, ti);
kvn@500 2328 }
kvn@679 2329 _processed.set(n_idx);
kvn@500 2330 break;
kvn@500 2331 }
kvn@500 2332 case Op_ConP:
kvn@500 2333 {
kvn@500 2334 assert(false, "Op_ConP");
kvn@500 2335 break;
kvn@500 2336 }
kvn@598 2337 case Op_ConN:
kvn@598 2338 {
kvn@598 2339 assert(false, "Op_ConN");
kvn@598 2340 break;
kvn@598 2341 }
kvn@500 2342 case Op_CreateEx:
kvn@500 2343 {
kvn@500 2344 assert(false, "Op_CreateEx");
kvn@500 2345 break;
kvn@500 2346 }
kvn@500 2347 case Op_LoadKlass:
kvn@599 2348 case Op_LoadNKlass:
kvn@500 2349 {
kvn@500 2350 assert(false, "Op_LoadKlass");
kvn@500 2351 break;
kvn@500 2352 }
kvn@500 2353 case Op_LoadP:
kvn@559 2354 case Op_LoadN:
kvn@500 2355 {
kvn@500 2356 const Type *t = phase->type(n);
kvn@500 2357 #ifdef ASSERT
kvn@688 2358 if (t->make_ptr() == NULL)
kvn@500 2359 assert(false, "Op_LoadP");
kvn@500 2360 #endif
kvn@500 2361
kvn@500 2362 Node* adr = n->in(MemNode::Address)->uncast();
kvn@500 2363 Node* adr_base;
kvn@500 2364 if (adr->is_AddP()) {
kvn@500 2365 adr_base = get_addp_base(adr);
kvn@500 2366 } else {
kvn@500 2367 adr_base = adr;
kvn@500 2368 }
kvn@500 2369
kvn@500 2370 // For everything "adr_base" could point to, create a deferred edge from
kvn@500 2371 // this node to each field with the same offset.
kvn@500 2372 VectorSet ptset(Thread::current()->resource_area());
kvn@500 2373 PointsTo(ptset, adr_base, phase);
kvn@500 2374 int offset = address_offset(adr, phase);
kvn@500 2375 for( VectorSetI i(&ptset); i.test(); ++i ) {
kvn@500 2376 uint pt = i.elem;
kvn@679 2377 add_deferred_edge_to_fields(n_idx, pt, offset);
duke@435 2378 }
duke@435 2379 break;
duke@435 2380 }
duke@435 2381 case Op_Parm:
duke@435 2382 {
kvn@500 2383 assert(false, "Op_Parm");
kvn@500 2384 break;
kvn@500 2385 }
kvn@500 2386 case Op_Phi:
kvn@500 2387 {
kvn@500 2388 #ifdef ASSERT
kvn@688 2389 const Type *t = n->as_Phi()->type();
kvn@688 2390 if (t->make_ptr() == NULL)
kvn@500 2391 assert(false, "Op_Phi");
kvn@500 2392 #endif
kvn@500 2393 for (uint i = 1; i < n->req() ; i++) {
kvn@500 2394 Node* in = n->in(i);
kvn@500 2395 if (in == NULL)
kvn@500 2396 continue; // ignore NULL
kvn@500 2397 in = in->uncast();
kvn@500 2398 if (in->is_top() || in == n)
kvn@500 2399 continue; // ignore top or inputs which go back this node
kvn@500 2400 int ti = in->_idx;
kvn@742 2401 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@742 2402 assert(nt != PointsToNode::UnknownType, "all nodes should be known");
kvn@742 2403 if (nt == PointsToNode::JavaObject) {
kvn@679 2404 add_pointsto_edge(n_idx, ti);
kvn@500 2405 } else {
kvn@679 2406 add_deferred_edge(n_idx, ti);
kvn@500 2407 }
duke@435 2408 }
kvn@679 2409 _processed.set(n_idx);
duke@435 2410 break;
duke@435 2411 }
kvn@500 2412 case Op_Proj:
duke@435 2413 {
kvn@1535 2414 // we are only interested in the oop result projection from a call
kvn@500 2415 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
kvn@1535 2416 assert(ptnode_adr(n->in(0)->_idx)->node_type() != PointsToNode::UnknownType,
kvn@1535 2417 "all nodes should be registered");
kvn@1535 2418 const TypeTuple *r = n->in(0)->as_Call()->tf()->range();
kvn@1535 2419 assert(r->cnt() > TypeFunc::Parms, "sanity");
kvn@1535 2420 if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
kvn@1535 2421 process_call_result(n->as_Proj(), phase);
kvn@1535 2422 assert(_processed.test(n_idx), "all call results should be processed");
kvn@1535 2423 break;
kvn@1535 2424 }
kvn@500 2425 }
kvn@1535 2426 assert(false, "Op_Proj");
duke@435 2427 break;
duke@435 2428 }
kvn@500 2429 case Op_Return:
duke@435 2430 {
kvn@500 2431 #ifdef ASSERT
kvn@500 2432 if( n->req() <= TypeFunc::Parms ||
kvn@500 2433 !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
kvn@500 2434 assert(false, "Op_Return");
kvn@500 2435 }
kvn@500 2436 #endif
kvn@500 2437 int ti = n->in(TypeFunc::Parms)->_idx;
kvn@1535 2438 assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "node should be registered");
kvn@679 2439 if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
kvn@679 2440 add_pointsto_edge(n_idx, ti);
kvn@500 2441 } else {
kvn@679 2442 add_deferred_edge(n_idx, ti);
kvn@500 2443 }
kvn@679 2444 _processed.set(n_idx);
duke@435 2445 break;
duke@435 2446 }
duke@435 2447 case Op_StoreP:
kvn@559 2448 case Op_StoreN:
duke@435 2449 case Op_StorePConditional:
duke@435 2450 case Op_CompareAndSwapP:
kvn@559 2451 case Op_CompareAndSwapN:
duke@435 2452 {
duke@435 2453 Node *adr = n->in(MemNode::Address);
kvn@656 2454 const Type *adr_type = phase->type(adr)->make_ptr();
kvn@500 2455 #ifdef ASSERT
duke@435 2456 if (!adr_type->isa_oopptr())
kvn@500 2457 assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
kvn@500 2458 #endif
duke@435 2459
kvn@500 2460 assert(adr->is_AddP(), "expecting an AddP");
kvn@500 2461 Node *adr_base = get_addp_base(adr);
kvn@500 2462 Node *val = n->in(MemNode::ValueIn)->uncast();
kvn@500 2463 // For everything "adr_base" could point to, create a deferred edge
kvn@500 2464 // to "val" from each field with the same offset.
duke@435 2465 VectorSet ptset(Thread::current()->resource_area());
duke@435 2466 PointsTo(ptset, adr_base, phase);
duke@435 2467 for( VectorSetI i(&ptset); i.test(); ++i ) {
duke@435 2468 uint pt = i.elem;
kvn@500 2469 add_edge_from_fields(pt, val->_idx, address_offset(adr, phase));
duke@435 2470 }
duke@435 2471 break;
duke@435 2472 }
kvn@1535 2473 case Op_AryEq:
kvn@1535 2474 case Op_StrComp:
kvn@1535 2475 case Op_StrEquals:
kvn@1535 2476 case Op_StrIndexOf:
kvn@1535 2477 {
kvn@1535 2478 // char[] arrays passed to string intrinsic do not escape but
kvn@1535 2479 // they are not scalar replaceable. Adjust escape state for them.
kvn@1535 2480 // Start from in(2) edge since in(1) is memory edge.
kvn@1535 2481 for (uint i = 2; i < n->req(); i++) {
kvn@1535 2482 Node* adr = n->in(i)->uncast();
kvn@1535 2483 const Type *at = phase->type(adr);
kvn@1535 2484 if (!adr->is_top() && at->isa_ptr()) {
kvn@1535 2485 assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
kvn@1535 2486 at->isa_ptr() != NULL, "expecting an Ptr");
kvn@1535 2487 if (adr->is_AddP()) {
kvn@1535 2488 adr = get_addp_base(adr);
kvn@1535 2489 }
kvn@1535 2490 // Mark as ArgEscape everything "adr" could point to.
kvn@1535 2491 set_escape_state(adr->_idx, PointsToNode::ArgEscape);
kvn@1535 2492 }
kvn@1535 2493 }
kvn@1535 2494 _processed.set(n_idx);
kvn@1535 2495 break;
kvn@1535 2496 }
kvn@500 2497 case Op_ThreadLocal:
duke@435 2498 {
kvn@500 2499 assert(false, "Op_ThreadLocal");
duke@435 2500 break;
duke@435 2501 }
duke@435 2502 default:
kvn@1535 2503 // This method should be called only for EA specific nodes.
kvn@1535 2504 ShouldNotReachHere();
duke@435 2505 }
duke@435 2506 }
duke@435 2507
duke@435 2508 #ifndef PRODUCT
duke@435 2509 void ConnectionGraph::dump() {
duke@435 2510 PhaseGVN *igvn = _compile->initial_gvn();
duke@435 2511 bool first = true;
duke@435 2512
kvn@679 2513 uint size = nodes_size();
kvn@500 2514 for (uint ni = 0; ni < size; ni++) {
kvn@679 2515 PointsToNode *ptn = ptnode_adr(ni);
kvn@500 2516 PointsToNode::NodeType ptn_type = ptn->node_type();
kvn@500 2517
kvn@500 2518 if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
duke@435 2519 continue;
kvn@500 2520 PointsToNode::EscapeState es = escape_state(ptn->_node, igvn);
kvn@500 2521 if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
kvn@500 2522 if (first) {
kvn@500 2523 tty->cr();
kvn@500 2524 tty->print("======== Connection graph for ");
kvn@679 2525 _compile->method()->print_short_name();
kvn@500 2526 tty->cr();
kvn@500 2527 first = false;
kvn@500 2528 }
kvn@500 2529 tty->print("%6d ", ni);
kvn@500 2530 ptn->dump();
kvn@500 2531 // Print all locals which reference this allocation
kvn@500 2532 for (uint li = ni; li < size; li++) {
kvn@679 2533 PointsToNode *ptn_loc = ptnode_adr(li);
kvn@500 2534 PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
kvn@500 2535 if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
kvn@500 2536 ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
kvn@688 2537 ptnode_adr(li)->dump(false);
duke@435 2538 }
duke@435 2539 }
kvn@500 2540 if (Verbose) {
kvn@500 2541 // Print all fields which reference this allocation
kvn@500 2542 for (uint i = 0; i < ptn->edge_count(); i++) {
kvn@500 2543 uint ei = ptn->edge_target(i);
kvn@688 2544 ptnode_adr(ei)->dump(false);
kvn@500 2545 }
kvn@500 2546 }
kvn@500 2547 tty->cr();
duke@435 2548 }
duke@435 2549 }
duke@435 2550 }
duke@435 2551 #endif

mercurial