src/share/vm/opto/escape.cpp

Wed, 09 Dec 2009 19:50:14 -0800

author
kvn
date
Wed, 09 Dec 2009 19:50:14 -0800
changeset 1536
7fee0a6cc6d4
parent 1535
f96a1a986f7b
child 1571
4b84186a8248
permissions
-rw-r--r--

6896727: nsk/logging/LoggingPermission/LoggingPermission/logperm002 fails with G1, EscapeAnalisys
Summary: Move instance store's memory users to corresponding memory slices when updating its memory edge.
Reviewed-by: never

duke@435 1 /*
xdono@1279 2 * Copyright 2005-2009 Sun Microsystems, Inc. All Rights Reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
duke@435 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
duke@435 20 * CA 95054 USA or visit www.sun.com if you need additional information or
duke@435 21 * have any questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 #include "incls/_precompiled.incl"
duke@435 26 #include "incls/_escape.cpp.incl"
duke@435 27
duke@435 28 void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
duke@435 29 uint v = (targIdx << EdgeShift) + ((uint) et);
duke@435 30 if (_edges == NULL) {
duke@435 31 Arena *a = Compile::current()->comp_arena();
duke@435 32 _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
duke@435 33 }
duke@435 34 _edges->append_if_missing(v);
duke@435 35 }
duke@435 36
duke@435 37 void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
duke@435 38 uint v = (targIdx << EdgeShift) + ((uint) et);
duke@435 39
duke@435 40 _edges->remove(v);
duke@435 41 }
duke@435 42
duke@435 43 #ifndef PRODUCT
kvn@512 44 static const char *node_type_names[] = {
duke@435 45 "UnknownType",
duke@435 46 "JavaObject",
duke@435 47 "LocalVar",
duke@435 48 "Field"
duke@435 49 };
duke@435 50
kvn@512 51 static const char *esc_names[] = {
duke@435 52 "UnknownEscape",
kvn@500 53 "NoEscape",
kvn@500 54 "ArgEscape",
kvn@500 55 "GlobalEscape"
duke@435 56 };
duke@435 57
kvn@512 58 static const char *edge_type_suffix[] = {
duke@435 59 "?", // UnknownEdge
duke@435 60 "P", // PointsToEdge
duke@435 61 "D", // DeferredEdge
duke@435 62 "F" // FieldEdge
duke@435 63 };
duke@435 64
kvn@688 65 void PointsToNode::dump(bool print_state) const {
duke@435 66 NodeType nt = node_type();
kvn@688 67 tty->print("%s ", node_type_names[(int) nt]);
kvn@688 68 if (print_state) {
kvn@688 69 EscapeState es = escape_state();
kvn@688 70 tty->print("%s %s ", esc_names[(int) es], _scalar_replaceable ? "":"NSR");
kvn@688 71 }
kvn@688 72 tty->print("[[");
duke@435 73 for (uint i = 0; i < edge_count(); i++) {
duke@435 74 tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
duke@435 75 }
duke@435 76 tty->print("]] ");
duke@435 77 if (_node == NULL)
duke@435 78 tty->print_cr("<null>");
duke@435 79 else
duke@435 80 _node->dump();
duke@435 81 }
duke@435 82 #endif
duke@435 83
kvn@679 84 ConnectionGraph::ConnectionGraph(Compile * C) :
kvn@679 85 _nodes(C->comp_arena(), C->unique(), C->unique(), PointsToNode()),
kvn@679 86 _processed(C->comp_arena()),
kvn@679 87 _collecting(true),
kvn@679 88 _compile(C),
kvn@679 89 _node_map(C->comp_arena()) {
kvn@679 90
kvn@688 91 _phantom_object = C->top()->_idx,
kvn@688 92 add_node(C->top(), PointsToNode::JavaObject, PointsToNode::GlobalEscape,true);
kvn@688 93
kvn@688 94 // Add ConP(#NULL) and ConN(#NULL) nodes.
kvn@688 95 PhaseGVN* igvn = C->initial_gvn();
kvn@688 96 Node* oop_null = igvn->zerocon(T_OBJECT);
kvn@688 97 _oop_null = oop_null->_idx;
kvn@688 98 assert(_oop_null < C->unique(), "should be created already");
kvn@688 99 add_node(oop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
kvn@688 100
kvn@688 101 if (UseCompressedOops) {
kvn@688 102 Node* noop_null = igvn->zerocon(T_NARROWOOP);
kvn@688 103 _noop_null = noop_null->_idx;
kvn@688 104 assert(_noop_null < C->unique(), "should be created already");
kvn@688 105 add_node(noop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
kvn@688 106 }
duke@435 107 }
duke@435 108
duke@435 109 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
duke@435 110 PointsToNode *f = ptnode_adr(from_i);
duke@435 111 PointsToNode *t = ptnode_adr(to_i);
duke@435 112
duke@435 113 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 114 assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
duke@435 115 assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
duke@435 116 f->add_edge(to_i, PointsToNode::PointsToEdge);
duke@435 117 }
duke@435 118
duke@435 119 void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
duke@435 120 PointsToNode *f = ptnode_adr(from_i);
duke@435 121 PointsToNode *t = ptnode_adr(to_i);
duke@435 122
duke@435 123 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 124 assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
duke@435 125 assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
duke@435 126 // don't add a self-referential edge, this can occur during removal of
duke@435 127 // deferred edges
duke@435 128 if (from_i != to_i)
duke@435 129 f->add_edge(to_i, PointsToNode::DeferredEdge);
duke@435 130 }
duke@435 131
kvn@500 132 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
kvn@500 133 const Type *adr_type = phase->type(adr);
kvn@500 134 if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
kvn@500 135 adr->in(AddPNode::Address)->is_Proj() &&
kvn@500 136 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
kvn@500 137 // We are computing a raw address for a store captured by an Initialize
kvn@500 138 // compute an appropriate address type. AddP cases #3 and #5 (see below).
kvn@500 139 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 140 assert(offs != Type::OffsetBot ||
kvn@500 141 adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
kvn@500 142 "offset must be a constant or it is initialization of array");
kvn@500 143 return offs;
kvn@500 144 }
kvn@500 145 const TypePtr *t_ptr = adr_type->isa_ptr();
duke@435 146 assert(t_ptr != NULL, "must be a pointer type");
duke@435 147 return t_ptr->offset();
duke@435 148 }
duke@435 149
duke@435 150 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
duke@435 151 PointsToNode *f = ptnode_adr(from_i);
duke@435 152 PointsToNode *t = ptnode_adr(to_i);
duke@435 153
duke@435 154 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 155 assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
duke@435 156 assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
duke@435 157 assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
duke@435 158 t->set_offset(offset);
duke@435 159
duke@435 160 f->add_edge(to_i, PointsToNode::FieldEdge);
duke@435 161 }
duke@435 162
duke@435 163 void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
duke@435 164 PointsToNode *npt = ptnode_adr(ni);
duke@435 165 PointsToNode::EscapeState old_es = npt->escape_state();
duke@435 166 if (es > old_es)
duke@435 167 npt->set_escape_state(es);
duke@435 168 }
duke@435 169
kvn@500 170 void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
kvn@500 171 PointsToNode::EscapeState es, bool done) {
kvn@500 172 PointsToNode* ptadr = ptnode_adr(n->_idx);
kvn@500 173 ptadr->_node = n;
kvn@500 174 ptadr->set_node_type(nt);
kvn@500 175
kvn@500 176 // inline set_escape_state(idx, es);
kvn@500 177 PointsToNode::EscapeState old_es = ptadr->escape_state();
kvn@500 178 if (es > old_es)
kvn@500 179 ptadr->set_escape_state(es);
kvn@500 180
kvn@500 181 if (done)
kvn@500 182 _processed.set(n->_idx);
kvn@500 183 }
kvn@500 184
duke@435 185 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n, PhaseTransform *phase) {
duke@435 186 uint idx = n->_idx;
duke@435 187 PointsToNode::EscapeState es;
duke@435 188
kvn@500 189 // If we are still collecting or there were no non-escaping allocations
kvn@500 190 // we don't know the answer yet
kvn@679 191 if (_collecting)
duke@435 192 return PointsToNode::UnknownEscape;
duke@435 193
duke@435 194 // if the node was created after the escape computation, return
duke@435 195 // UnknownEscape
kvn@679 196 if (idx >= nodes_size())
duke@435 197 return PointsToNode::UnknownEscape;
duke@435 198
kvn@679 199 es = ptnode_adr(idx)->escape_state();
duke@435 200
duke@435 201 // if we have already computed a value, return it
kvn@895 202 if (es != PointsToNode::UnknownEscape &&
kvn@895 203 ptnode_adr(idx)->node_type() == PointsToNode::JavaObject)
duke@435 204 return es;
duke@435 205
kvn@679 206 // PointsTo() calls n->uncast() which can return a new ideal node.
kvn@679 207 if (n->uncast()->_idx >= nodes_size())
kvn@679 208 return PointsToNode::UnknownEscape;
kvn@679 209
duke@435 210 // compute max escape state of anything this node could point to
duke@435 211 VectorSet ptset(Thread::current()->resource_area());
duke@435 212 PointsTo(ptset, n, phase);
kvn@500 213 for(VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i) {
duke@435 214 uint pt = i.elem;
kvn@679 215 PointsToNode::EscapeState pes = ptnode_adr(pt)->escape_state();
duke@435 216 if (pes > es)
duke@435 217 es = pes;
duke@435 218 }
duke@435 219 // cache the computed escape state
duke@435 220 assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
kvn@679 221 ptnode_adr(idx)->set_escape_state(es);
duke@435 222 return es;
duke@435 223 }
duke@435 224
duke@435 225 void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n, PhaseTransform *phase) {
duke@435 226 VectorSet visited(Thread::current()->resource_area());
duke@435 227 GrowableArray<uint> worklist;
duke@435 228
kvn@559 229 #ifdef ASSERT
kvn@559 230 Node *orig_n = n;
kvn@559 231 #endif
kvn@559 232
kvn@500 233 n = n->uncast();
kvn@679 234 PointsToNode* npt = ptnode_adr(n->_idx);
duke@435 235
duke@435 236 // If we have a JavaObject, return just that object
kvn@679 237 if (npt->node_type() == PointsToNode::JavaObject) {
duke@435 238 ptset.set(n->_idx);
duke@435 239 return;
duke@435 240 }
kvn@559 241 #ifdef ASSERT
kvn@679 242 if (npt->_node == NULL) {
kvn@559 243 if (orig_n != n)
kvn@559 244 orig_n->dump();
kvn@559 245 n->dump();
kvn@679 246 assert(npt->_node != NULL, "unregistered node");
kvn@559 247 }
kvn@559 248 #endif
duke@435 249 worklist.push(n->_idx);
duke@435 250 while(worklist.length() > 0) {
duke@435 251 int ni = worklist.pop();
kvn@679 252 if (visited.test_set(ni))
kvn@679 253 continue;
duke@435 254
kvn@679 255 PointsToNode* pn = ptnode_adr(ni);
kvn@679 256 // ensure that all inputs of a Phi have been processed
kvn@679 257 assert(!_collecting || !pn->_node->is_Phi() || _processed.test(ni),"");
kvn@679 258
kvn@679 259 int edges_processed = 0;
kvn@679 260 uint e_cnt = pn->edge_count();
kvn@679 261 for (uint e = 0; e < e_cnt; e++) {
kvn@679 262 uint etgt = pn->edge_target(e);
kvn@679 263 PointsToNode::EdgeType et = pn->edge_type(e);
kvn@679 264 if (et == PointsToNode::PointsToEdge) {
kvn@679 265 ptset.set(etgt);
kvn@679 266 edges_processed++;
kvn@679 267 } else if (et == PointsToNode::DeferredEdge) {
kvn@679 268 worklist.push(etgt);
kvn@679 269 edges_processed++;
kvn@679 270 } else {
kvn@679 271 assert(false,"neither PointsToEdge or DeferredEdge");
duke@435 272 }
kvn@679 273 }
kvn@679 274 if (edges_processed == 0) {
kvn@679 275 // no deferred or pointsto edges found. Assume the value was set
kvn@679 276 // outside this method. Add the phantom object to the pointsto set.
kvn@679 277 ptset.set(_phantom_object);
duke@435 278 }
duke@435 279 }
duke@435 280 }
duke@435 281
kvn@536 282 void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited) {
kvn@536 283 // This method is most expensive during ConnectionGraph construction.
kvn@536 284 // Reuse vectorSet and an additional growable array for deferred edges.
kvn@536 285 deferred_edges->clear();
kvn@536 286 visited->Clear();
duke@435 287
kvn@679 288 visited->set(ni);
duke@435 289 PointsToNode *ptn = ptnode_adr(ni);
duke@435 290
kvn@536 291 // Mark current edges as visited and move deferred edges to separate array.
kvn@679 292 for (uint i = 0; i < ptn->edge_count(); ) {
kvn@500 293 uint t = ptn->edge_target(i);
kvn@536 294 #ifdef ASSERT
kvn@536 295 assert(!visited->test_set(t), "expecting no duplications");
kvn@536 296 #else
kvn@536 297 visited->set(t);
kvn@536 298 #endif
kvn@536 299 if (ptn->edge_type(i) == PointsToNode::DeferredEdge) {
kvn@536 300 ptn->remove_edge(t, PointsToNode::DeferredEdge);
kvn@536 301 deferred_edges->append(t);
kvn@559 302 } else {
kvn@559 303 i++;
kvn@536 304 }
kvn@536 305 }
kvn@536 306 for (int next = 0; next < deferred_edges->length(); ++next) {
kvn@536 307 uint t = deferred_edges->at(next);
kvn@500 308 PointsToNode *ptt = ptnode_adr(t);
kvn@679 309 uint e_cnt = ptt->edge_count();
kvn@679 310 for (uint e = 0; e < e_cnt; e++) {
kvn@679 311 uint etgt = ptt->edge_target(e);
kvn@679 312 if (visited->test_set(etgt))
kvn@536 313 continue;
kvn@679 314
kvn@679 315 PointsToNode::EdgeType et = ptt->edge_type(e);
kvn@679 316 if (et == PointsToNode::PointsToEdge) {
kvn@679 317 add_pointsto_edge(ni, etgt);
kvn@679 318 if(etgt == _phantom_object) {
kvn@679 319 // Special case - field set outside (globally escaping).
kvn@679 320 ptn->set_escape_state(PointsToNode::GlobalEscape);
kvn@679 321 }
kvn@679 322 } else if (et == PointsToNode::DeferredEdge) {
kvn@679 323 deferred_edges->append(etgt);
kvn@679 324 } else {
kvn@679 325 assert(false,"invalid connection graph");
duke@435 326 }
duke@435 327 }
duke@435 328 }
duke@435 329 }
duke@435 330
duke@435 331
duke@435 332 // Add an edge to node given by "to_i" from any field of adr_i whose offset
duke@435 333 // matches "offset" A deferred edge is added if to_i is a LocalVar, and
duke@435 334 // a pointsto edge is added if it is a JavaObject
duke@435 335
duke@435 336 void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
kvn@679 337 PointsToNode* an = ptnode_adr(adr_i);
kvn@679 338 PointsToNode* to = ptnode_adr(to_i);
kvn@679 339 bool deferred = (to->node_type() == PointsToNode::LocalVar);
duke@435 340
kvn@679 341 for (uint fe = 0; fe < an->edge_count(); fe++) {
kvn@679 342 assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
kvn@679 343 int fi = an->edge_target(fe);
kvn@679 344 PointsToNode* pf = ptnode_adr(fi);
kvn@679 345 int po = pf->offset();
duke@435 346 if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
duke@435 347 if (deferred)
duke@435 348 add_deferred_edge(fi, to_i);
duke@435 349 else
duke@435 350 add_pointsto_edge(fi, to_i);
duke@435 351 }
duke@435 352 }
duke@435 353 }
duke@435 354
kvn@500 355 // Add a deferred edge from node given by "from_i" to any field of adr_i
kvn@500 356 // whose offset matches "offset".
duke@435 357 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
kvn@679 358 PointsToNode* an = ptnode_adr(adr_i);
kvn@679 359 for (uint fe = 0; fe < an->edge_count(); fe++) {
kvn@679 360 assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
kvn@679 361 int fi = an->edge_target(fe);
kvn@679 362 PointsToNode* pf = ptnode_adr(fi);
kvn@679 363 int po = pf->offset();
kvn@679 364 if (pf->edge_count() == 0) {
duke@435 365 // we have not seen any stores to this field, assume it was set outside this method
duke@435 366 add_pointsto_edge(fi, _phantom_object);
duke@435 367 }
duke@435 368 if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
duke@435 369 add_deferred_edge(from_i, fi);
duke@435 370 }
duke@435 371 }
duke@435 372 }
duke@435 373
kvn@500 374 // Helper functions
kvn@500 375
kvn@500 376 static Node* get_addp_base(Node *addp) {
kvn@500 377 assert(addp->is_AddP(), "must be AddP");
kvn@500 378 //
kvn@500 379 // AddP cases for Base and Address inputs:
kvn@500 380 // case #1. Direct object's field reference:
kvn@500 381 // Allocate
kvn@500 382 // |
kvn@500 383 // Proj #5 ( oop result )
kvn@500 384 // |
kvn@500 385 // CheckCastPP (cast to instance type)
kvn@500 386 // | |
kvn@500 387 // AddP ( base == address )
kvn@500 388 //
kvn@500 389 // case #2. Indirect object's field reference:
kvn@500 390 // Phi
kvn@500 391 // |
kvn@500 392 // CastPP (cast to instance type)
kvn@500 393 // | |
kvn@500 394 // AddP ( base == address )
kvn@500 395 //
kvn@500 396 // case #3. Raw object's field reference for Initialize node:
kvn@500 397 // Allocate
kvn@500 398 // |
kvn@500 399 // Proj #5 ( oop result )
kvn@500 400 // top |
kvn@500 401 // \ |
kvn@500 402 // AddP ( base == top )
kvn@500 403 //
kvn@500 404 // case #4. Array's element reference:
kvn@500 405 // {CheckCastPP | CastPP}
kvn@500 406 // | | |
kvn@500 407 // | AddP ( array's element offset )
kvn@500 408 // | |
kvn@500 409 // AddP ( array's offset )
kvn@500 410 //
kvn@500 411 // case #5. Raw object's field reference for arraycopy stub call:
kvn@500 412 // The inline_native_clone() case when the arraycopy stub is called
kvn@500 413 // after the allocation before Initialize and CheckCastPP nodes.
kvn@500 414 // Allocate
kvn@500 415 // |
kvn@500 416 // Proj #5 ( oop result )
kvn@500 417 // | |
kvn@500 418 // AddP ( base == address )
kvn@500 419 //
kvn@512 420 // case #6. Constant Pool, ThreadLocal, CastX2P or
kvn@512 421 // Raw object's field reference:
kvn@512 422 // {ConP, ThreadLocal, CastX2P, raw Load}
kvn@500 423 // top |
kvn@500 424 // \ |
kvn@500 425 // AddP ( base == top )
kvn@500 426 //
kvn@512 427 // case #7. Klass's field reference.
kvn@512 428 // LoadKlass
kvn@512 429 // | |
kvn@512 430 // AddP ( base == address )
kvn@512 431 //
kvn@599 432 // case #8. narrow Klass's field reference.
kvn@599 433 // LoadNKlass
kvn@599 434 // |
kvn@599 435 // DecodeN
kvn@599 436 // | |
kvn@599 437 // AddP ( base == address )
kvn@599 438 //
kvn@500 439 Node *base = addp->in(AddPNode::Base)->uncast();
kvn@500 440 if (base->is_top()) { // The AddP case #3 and #6.
kvn@500 441 base = addp->in(AddPNode::Address)->uncast();
kvn@1392 442 while (base->is_AddP()) {
kvn@1392 443 // Case #6 (unsafe access) may have several chained AddP nodes.
kvn@1392 444 assert(base->in(AddPNode::Base)->is_top(), "expected unsafe access address only");
kvn@1392 445 base = base->in(AddPNode::Address)->uncast();
kvn@1392 446 }
kvn@500 447 assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
kvn@603 448 base->Opcode() == Op_CastX2P || base->is_DecodeN() ||
kvn@512 449 (base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL) ||
kvn@512 450 (base->is_Proj() && base->in(0)->is_Allocate()), "sanity");
duke@435 451 }
kvn@500 452 return base;
kvn@500 453 }
kvn@500 454
kvn@500 455 static Node* find_second_addp(Node* addp, Node* n) {
kvn@500 456 assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
kvn@500 457
kvn@500 458 Node* addp2 = addp->raw_out(0);
kvn@500 459 if (addp->outcnt() == 1 && addp2->is_AddP() &&
kvn@500 460 addp2->in(AddPNode::Base) == n &&
kvn@500 461 addp2->in(AddPNode::Address) == addp) {
kvn@500 462
kvn@500 463 assert(addp->in(AddPNode::Base) == n, "expecting the same base");
kvn@500 464 //
kvn@500 465 // Find array's offset to push it on worklist first and
kvn@500 466 // as result process an array's element offset first (pushed second)
kvn@500 467 // to avoid CastPP for the array's offset.
kvn@500 468 // Otherwise the inserted CastPP (LocalVar) will point to what
kvn@500 469 // the AddP (Field) points to. Which would be wrong since
kvn@500 470 // the algorithm expects the CastPP has the same point as
kvn@500 471 // as AddP's base CheckCastPP (LocalVar).
kvn@500 472 //
kvn@500 473 // ArrayAllocation
kvn@500 474 // |
kvn@500 475 // CheckCastPP
kvn@500 476 // |
kvn@500 477 // memProj (from ArrayAllocation CheckCastPP)
kvn@500 478 // | ||
kvn@500 479 // | || Int (element index)
kvn@500 480 // | || | ConI (log(element size))
kvn@500 481 // | || | /
kvn@500 482 // | || LShift
kvn@500 483 // | || /
kvn@500 484 // | AddP (array's element offset)
kvn@500 485 // | |
kvn@500 486 // | | ConI (array's offset: #12(32-bits) or #24(64-bits))
kvn@500 487 // | / /
kvn@500 488 // AddP (array's offset)
kvn@500 489 // |
kvn@500 490 // Load/Store (memory operation on array's element)
kvn@500 491 //
kvn@500 492 return addp2;
kvn@500 493 }
kvn@500 494 return NULL;
duke@435 495 }
duke@435 496
duke@435 497 //
duke@435 498 // Adjust the type and inputs of an AddP which computes the
duke@435 499 // address of a field of an instance
duke@435 500 //
kvn@728 501 bool ConnectionGraph::split_AddP(Node *addp, Node *base, PhaseGVN *igvn) {
kvn@500 502 const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
kvn@658 503 assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
duke@435 504 const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
kvn@500 505 if (t == NULL) {
kvn@500 506 // We are computing a raw address for a store captured by an Initialize
kvn@728 507 // compute an appropriate address type (cases #3 and #5).
kvn@500 508 assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
kvn@500 509 assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
kvn@741 510 intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 511 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@500 512 t = base_t->add_offset(offs)->is_oopptr();
kvn@500 513 }
kvn@658 514 int inst_id = base_t->instance_id();
kvn@658 515 assert(!t->is_known_instance() || t->instance_id() == inst_id,
duke@435 516 "old type must be non-instance or match new type");
kvn@728 517
kvn@728 518 // The type 't' could be subclass of 'base_t'.
kvn@728 519 // As result t->offset() could be large then base_t's size and it will
kvn@728 520 // cause the failure in add_offset() with narrow oops since TypeOopPtr()
kvn@728 521 // constructor verifies correctness of the offset.
kvn@728 522 //
twisti@1040 523 // It could happened on subclass's branch (from the type profiling
kvn@728 524 // inlining) which was not eliminated during parsing since the exactness
kvn@728 525 // of the allocation type was not propagated to the subclass type check.
kvn@728 526 //
kvn@1423 527 // Or the type 't' could be not related to 'base_t' at all.
kvn@1423 528 // It could happened when CHA type is different from MDO type on a dead path
kvn@1423 529 // (for example, from instanceof check) which is not collapsed during parsing.
kvn@1423 530 //
kvn@728 531 // Do nothing for such AddP node and don't process its users since
kvn@728 532 // this code branch will go away.
kvn@728 533 //
kvn@728 534 if (!t->is_known_instance() &&
kvn@1423 535 !base_t->klass()->is_subtype_of(t->klass())) {
kvn@728 536 return false; // bail out
kvn@728 537 }
kvn@728 538
duke@435 539 const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
kvn@1497 540 // Do NOT remove the next line: ensure a new alias index is allocated
kvn@1497 541 // for the instance type. Note: C++ will not remove it since the call
kvn@1497 542 // has side effect.
duke@435 543 int alias_idx = _compile->get_alias_index(tinst);
duke@435 544 igvn->set_type(addp, tinst);
duke@435 545 // record the allocation in the node map
kvn@1536 546 assert(ptnode_adr(addp->_idx)->_node != NULL, "should be registered");
duke@435 547 set_map(addp->_idx, get_map(base->_idx));
kvn@688 548
kvn@688 549 // Set addp's Base and Address to 'base'.
kvn@688 550 Node *abase = addp->in(AddPNode::Base);
kvn@688 551 Node *adr = addp->in(AddPNode::Address);
kvn@688 552 if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
kvn@688 553 adr->in(0)->_idx == (uint)inst_id) {
kvn@688 554 // Skip AddP cases #3 and #5.
kvn@688 555 } else {
kvn@688 556 assert(!abase->is_top(), "sanity"); // AddP case #3
kvn@688 557 if (abase != base) {
kvn@688 558 igvn->hash_delete(addp);
kvn@688 559 addp->set_req(AddPNode::Base, base);
kvn@688 560 if (abase == adr) {
kvn@688 561 addp->set_req(AddPNode::Address, base);
kvn@688 562 } else {
kvn@688 563 // AddP case #4 (adr is array's element offset AddP node)
kvn@688 564 #ifdef ASSERT
kvn@688 565 const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
kvn@688 566 assert(adr->is_AddP() && atype != NULL &&
kvn@688 567 atype->instance_id() == inst_id, "array's element offset should be processed first");
kvn@688 568 #endif
kvn@688 569 }
kvn@688 570 igvn->hash_insert(addp);
duke@435 571 }
duke@435 572 }
kvn@500 573 // Put on IGVN worklist since at least addp's type was changed above.
kvn@500 574 record_for_optimizer(addp);
kvn@728 575 return true;
duke@435 576 }
duke@435 577
duke@435 578 //
duke@435 579 // Create a new version of orig_phi if necessary. Returns either the newly
duke@435 580 // created phi or an existing phi. Sets create_new to indicate wheter a new
duke@435 581 // phi was created. Cache the last newly created phi in the node map.
duke@435 582 //
duke@435 583 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn, bool &new_created) {
duke@435 584 Compile *C = _compile;
duke@435 585 new_created = false;
duke@435 586 int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
duke@435 587 // nothing to do if orig_phi is bottom memory or matches alias_idx
kvn@500 588 if (phi_alias_idx == alias_idx) {
duke@435 589 return orig_phi;
duke@435 590 }
kvn@1286 591 // Have we recently created a Phi for this alias index?
duke@435 592 PhiNode *result = get_map_phi(orig_phi->_idx);
duke@435 593 if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
duke@435 594 return result;
duke@435 595 }
kvn@1286 596 // Previous check may fail when the same wide memory Phi was split into Phis
kvn@1286 597 // for different memory slices. Search all Phis for this region.
kvn@1286 598 if (result != NULL) {
kvn@1286 599 Node* region = orig_phi->in(0);
kvn@1286 600 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
kvn@1286 601 Node* phi = region->fast_out(i);
kvn@1286 602 if (phi->is_Phi() &&
kvn@1286 603 C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
kvn@1286 604 assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
kvn@1286 605 return phi->as_Phi();
kvn@1286 606 }
kvn@1286 607 }
kvn@1286 608 }
kvn@473 609 if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
kvn@473 610 if (C->do_escape_analysis() == true && !C->failing()) {
kvn@473 611 // Retry compilation without escape analysis.
kvn@473 612 // If this is the first failure, the sentinel string will "stick"
kvn@473 613 // to the Compile object, and the C2Compiler will see it and retry.
kvn@473 614 C->record_failure(C2Compiler::retry_no_escape_analysis());
kvn@473 615 }
kvn@473 616 return NULL;
kvn@473 617 }
duke@435 618 orig_phi_worklist.append_if_missing(orig_phi);
kvn@500 619 const TypePtr *atype = C->get_adr_type(alias_idx);
duke@435 620 result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
kvn@1286 621 C->copy_node_notes_to(result, orig_phi);
duke@435 622 igvn->set_type(result, result->bottom_type());
duke@435 623 record_for_optimizer(result);
kvn@1536 624
kvn@1536 625 debug_only(Node* pn = ptnode_adr(orig_phi->_idx)->_node;)
kvn@1536 626 assert(pn == NULL || pn == orig_phi, "wrong node");
kvn@1536 627 set_map(orig_phi->_idx, result);
kvn@1536 628 ptnode_adr(orig_phi->_idx)->_node = orig_phi;
kvn@1536 629
duke@435 630 new_created = true;
duke@435 631 return result;
duke@435 632 }
duke@435 633
duke@435 634 //
duke@435 635 // Return a new version of Memory Phi "orig_phi" with the inputs having the
duke@435 636 // specified alias index.
duke@435 637 //
duke@435 638 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn) {
duke@435 639
duke@435 640 assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
duke@435 641 Compile *C = _compile;
duke@435 642 bool new_phi_created;
kvn@500 643 PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
duke@435 644 if (!new_phi_created) {
duke@435 645 return result;
duke@435 646 }
duke@435 647
duke@435 648 GrowableArray<PhiNode *> phi_list;
duke@435 649 GrowableArray<uint> cur_input;
duke@435 650
duke@435 651 PhiNode *phi = orig_phi;
duke@435 652 uint idx = 1;
duke@435 653 bool finished = false;
duke@435 654 while(!finished) {
duke@435 655 while (idx < phi->req()) {
kvn@500 656 Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
duke@435 657 if (mem != NULL && mem->is_Phi()) {
kvn@500 658 PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
duke@435 659 if (new_phi_created) {
duke@435 660 // found an phi for which we created a new split, push current one on worklist and begin
duke@435 661 // processing new one
duke@435 662 phi_list.push(phi);
duke@435 663 cur_input.push(idx);
duke@435 664 phi = mem->as_Phi();
kvn@500 665 result = newphi;
duke@435 666 idx = 1;
duke@435 667 continue;
duke@435 668 } else {
kvn@500 669 mem = newphi;
duke@435 670 }
duke@435 671 }
kvn@473 672 if (C->failing()) {
kvn@473 673 return NULL;
kvn@473 674 }
duke@435 675 result->set_req(idx++, mem);
duke@435 676 }
duke@435 677 #ifdef ASSERT
duke@435 678 // verify that the new Phi has an input for each input of the original
duke@435 679 assert( phi->req() == result->req(), "must have same number of inputs.");
duke@435 680 assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
kvn@500 681 #endif
kvn@500 682 // Check if all new phi's inputs have specified alias index.
kvn@500 683 // Otherwise use old phi.
duke@435 684 for (uint i = 1; i < phi->req(); i++) {
kvn@500 685 Node* in = result->in(i);
kvn@500 686 assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
duke@435 687 }
duke@435 688 // we have finished processing a Phi, see if there are any more to do
duke@435 689 finished = (phi_list.length() == 0 );
duke@435 690 if (!finished) {
duke@435 691 phi = phi_list.pop();
duke@435 692 idx = cur_input.pop();
kvn@500 693 PhiNode *prev_result = get_map_phi(phi->_idx);
kvn@500 694 prev_result->set_req(idx++, result);
kvn@500 695 result = prev_result;
duke@435 696 }
duke@435 697 }
duke@435 698 return result;
duke@435 699 }
duke@435 700
kvn@500 701
kvn@500 702 //
kvn@500 703 // The next methods are derived from methods in MemNode.
kvn@500 704 //
kvn@500 705 static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *tinst) {
kvn@500 706 Node *mem = mmem;
kvn@500 707 // TypeInstPtr::NOTNULL+any is an OOP with unknown offset - generally
kvn@500 708 // means an array I have not precisely typed yet. Do not do any
kvn@500 709 // alias stuff with it any time soon.
kvn@500 710 if( tinst->base() != Type::AnyPtr &&
kvn@500 711 !(tinst->klass()->is_java_lang_Object() &&
kvn@500 712 tinst->offset() == Type::OffsetBot) ) {
kvn@500 713 mem = mmem->memory_at(alias_idx);
kvn@500 714 // Update input if it is progress over what we have now
kvn@500 715 }
kvn@500 716 return mem;
kvn@500 717 }
kvn@500 718
kvn@500 719 //
kvn@1536 720 // Move memory users to their memory slices.
kvn@1536 721 //
kvn@1536 722 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *> &orig_phis, PhaseGVN *igvn) {
kvn@1536 723 Compile* C = _compile;
kvn@1536 724
kvn@1536 725 const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
kvn@1536 726 assert(tp != NULL, "ptr type");
kvn@1536 727 int alias_idx = C->get_alias_index(tp);
kvn@1536 728 int general_idx = C->get_general_index(alias_idx);
kvn@1536 729
kvn@1536 730 // Move users first
kvn@1536 731 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@1536 732 Node* use = n->fast_out(i);
kvn@1536 733 if (use->is_MergeMem()) {
kvn@1536 734 MergeMemNode* mmem = use->as_MergeMem();
kvn@1536 735 assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
kvn@1536 736 if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
kvn@1536 737 continue; // Nothing to do
kvn@1536 738 }
kvn@1536 739 // Replace previous general reference to mem node.
kvn@1536 740 uint orig_uniq = C->unique();
kvn@1536 741 Node* m = find_inst_mem(n, general_idx, orig_phis, igvn);
kvn@1536 742 assert(orig_uniq == C->unique(), "no new nodes");
kvn@1536 743 mmem->set_memory_at(general_idx, m);
kvn@1536 744 --imax;
kvn@1536 745 --i;
kvn@1536 746 } else if (use->is_MemBar()) {
kvn@1536 747 assert(!use->is_Initialize(), "initializing stores should not be moved");
kvn@1536 748 if (use->req() > MemBarNode::Precedent &&
kvn@1536 749 use->in(MemBarNode::Precedent) == n) {
kvn@1536 750 // Don't move related membars.
kvn@1536 751 record_for_optimizer(use);
kvn@1536 752 continue;
kvn@1536 753 }
kvn@1536 754 tp = use->as_MemBar()->adr_type()->isa_ptr();
kvn@1536 755 if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
kvn@1536 756 alias_idx == general_idx) {
kvn@1536 757 continue; // Nothing to do
kvn@1536 758 }
kvn@1536 759 // Move to general memory slice.
kvn@1536 760 uint orig_uniq = C->unique();
kvn@1536 761 Node* m = find_inst_mem(n, general_idx, orig_phis, igvn);
kvn@1536 762 assert(orig_uniq == C->unique(), "no new nodes");
kvn@1536 763 igvn->hash_delete(use);
kvn@1536 764 imax -= use->replace_edge(n, m);
kvn@1536 765 igvn->hash_insert(use);
kvn@1536 766 record_for_optimizer(use);
kvn@1536 767 --i;
kvn@1536 768 #ifdef ASSERT
kvn@1536 769 } else if (use->is_Mem()) {
kvn@1536 770 if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
kvn@1536 771 // Don't move related cardmark.
kvn@1536 772 continue;
kvn@1536 773 }
kvn@1536 774 // Memory nodes should have new memory input.
kvn@1536 775 tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
kvn@1536 776 assert(tp != NULL, "ptr type");
kvn@1536 777 int idx = C->get_alias_index(tp);
kvn@1536 778 assert(get_map(use->_idx) != NULL || idx == alias_idx,
kvn@1536 779 "Following memory nodes should have new memory input or be on the same memory slice");
kvn@1536 780 } else if (use->is_Phi()) {
kvn@1536 781 // Phi nodes should be split and moved already.
kvn@1536 782 tp = use->as_Phi()->adr_type()->isa_ptr();
kvn@1536 783 assert(tp != NULL, "ptr type");
kvn@1536 784 int idx = C->get_alias_index(tp);
kvn@1536 785 assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
kvn@1536 786 } else {
kvn@1536 787 use->dump();
kvn@1536 788 assert(false, "should not be here");
kvn@1536 789 #endif
kvn@1536 790 }
kvn@1536 791 }
kvn@1536 792 }
kvn@1536 793
kvn@1536 794 //
kvn@500 795 // Search memory chain of "mem" to find a MemNode whose address
kvn@500 796 // is the specified alias index.
kvn@500 797 //
kvn@500 798 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *> &orig_phis, PhaseGVN *phase) {
kvn@500 799 if (orig_mem == NULL)
kvn@500 800 return orig_mem;
kvn@500 801 Compile* C = phase->C;
kvn@500 802 const TypeOopPtr *tinst = C->get_adr_type(alias_idx)->isa_oopptr();
kvn@658 803 bool is_instance = (tinst != NULL) && tinst->is_known_instance();
kvn@688 804 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@500 805 Node *prev = NULL;
kvn@500 806 Node *result = orig_mem;
kvn@500 807 while (prev != result) {
kvn@500 808 prev = result;
kvn@688 809 if (result == start_mem)
twisti@1040 810 break; // hit one of our sentinels
kvn@500 811 if (result->is_Mem()) {
kvn@688 812 const Type *at = phase->type(result->in(MemNode::Address));
kvn@500 813 if (at != Type::TOP) {
kvn@500 814 assert (at->isa_ptr() != NULL, "pointer type required.");
kvn@500 815 int idx = C->get_alias_index(at->is_ptr());
kvn@500 816 if (idx == alias_idx)
kvn@500 817 break;
kvn@500 818 }
kvn@688 819 result = result->in(MemNode::Memory);
kvn@500 820 }
kvn@500 821 if (!is_instance)
kvn@500 822 continue; // don't search further for non-instance types
kvn@500 823 // skip over a call which does not affect this memory slice
kvn@500 824 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
kvn@500 825 Node *proj_in = result->in(0);
kvn@688 826 if (proj_in->is_Allocate() && proj_in->_idx == (uint)tinst->instance_id()) {
twisti@1040 827 break; // hit one of our sentinels
kvn@688 828 } else if (proj_in->is_Call()) {
kvn@500 829 CallNode *call = proj_in->as_Call();
kvn@500 830 if (!call->may_modify(tinst, phase)) {
kvn@500 831 result = call->in(TypeFunc::Memory);
kvn@500 832 }
kvn@500 833 } else if (proj_in->is_Initialize()) {
kvn@500 834 AllocateNode* alloc = proj_in->as_Initialize()->allocation();
kvn@500 835 // Stop if this is the initialization for the object instance which
kvn@500 836 // which contains this memory slice, otherwise skip over it.
kvn@658 837 if (alloc == NULL || alloc->_idx != (uint)tinst->instance_id()) {
kvn@500 838 result = proj_in->in(TypeFunc::Memory);
kvn@500 839 }
kvn@500 840 } else if (proj_in->is_MemBar()) {
kvn@500 841 result = proj_in->in(TypeFunc::Memory);
kvn@500 842 }
kvn@500 843 } else if (result->is_MergeMem()) {
kvn@500 844 MergeMemNode *mmem = result->as_MergeMem();
kvn@500 845 result = step_through_mergemem(mmem, alias_idx, tinst);
kvn@500 846 if (result == mmem->base_memory()) {
kvn@500 847 // Didn't find instance memory, search through general slice recursively.
kvn@500 848 result = mmem->memory_at(C->get_general_index(alias_idx));
kvn@500 849 result = find_inst_mem(result, alias_idx, orig_phis, phase);
kvn@500 850 if (C->failing()) {
kvn@500 851 return NULL;
kvn@500 852 }
kvn@500 853 mmem->set_memory_at(alias_idx, result);
kvn@500 854 }
kvn@500 855 } else if (result->is_Phi() &&
kvn@500 856 C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
kvn@500 857 Node *un = result->as_Phi()->unique_input(phase);
kvn@500 858 if (un != NULL) {
kvn@1536 859 orig_phis.append_if_missing(result->as_Phi());
kvn@500 860 result = un;
kvn@500 861 } else {
kvn@500 862 break;
kvn@500 863 }
kvn@1535 864 } else if (result->is_ClearArray()) {
kvn@1535 865 if (!ClearArrayNode::step_through(&result, (uint)tinst->instance_id(), phase)) {
kvn@1535 866 // Can not bypass initialization of the instance
kvn@1535 867 // we are looking for.
kvn@1535 868 break;
kvn@1535 869 }
kvn@1535 870 // Otherwise skip it (the call updated 'result' value).
kvn@1019 871 } else if (result->Opcode() == Op_SCMemProj) {
kvn@1019 872 assert(result->in(0)->is_LoadStore(), "sanity");
kvn@1019 873 const Type *at = phase->type(result->in(0)->in(MemNode::Address));
kvn@1019 874 if (at != Type::TOP) {
kvn@1019 875 assert (at->isa_ptr() != NULL, "pointer type required.");
kvn@1019 876 int idx = C->get_alias_index(at->is_ptr());
kvn@1019 877 assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
kvn@1019 878 break;
kvn@1019 879 }
kvn@1019 880 result = result->in(0)->in(MemNode::Memory);
kvn@500 881 }
kvn@500 882 }
kvn@682 883 if (result->is_Phi()) {
kvn@500 884 PhiNode *mphi = result->as_Phi();
kvn@500 885 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
kvn@500 886 const TypePtr *t = mphi->adr_type();
kvn@500 887 if (C->get_alias_index(t) != alias_idx) {
kvn@682 888 // Create a new Phi with the specified alias index type.
kvn@500 889 result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
kvn@682 890 } else if (!is_instance) {
kvn@682 891 // Push all non-instance Phis on the orig_phis worklist to update inputs
kvn@682 892 // during Phase 4 if needed.
kvn@682 893 orig_phis.append_if_missing(mphi);
kvn@500 894 }
kvn@500 895 }
kvn@500 896 // the result is either MemNode, PhiNode, InitializeNode.
kvn@500 897 return result;
kvn@500 898 }
kvn@500 899
duke@435 900 //
duke@435 901 // Convert the types of unescaped object to instance types where possible,
duke@435 902 // propagate the new type information through the graph, and update memory
duke@435 903 // edges and MergeMem inputs to reflect the new type.
duke@435 904 //
duke@435 905 // We start with allocations (and calls which may be allocations) on alloc_worklist.
duke@435 906 // The processing is done in 4 phases:
duke@435 907 //
duke@435 908 // Phase 1: Process possible allocations from alloc_worklist. Create instance
duke@435 909 // types for the CheckCastPP for allocations where possible.
duke@435 910 // Propagate the the new types through users as follows:
duke@435 911 // casts and Phi: push users on alloc_worklist
duke@435 912 // AddP: cast Base and Address inputs to the instance type
duke@435 913 // push any AddP users on alloc_worklist and push any memnode
duke@435 914 // users onto memnode_worklist.
duke@435 915 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 916 // search the Memory chain for a store with the appropriate type
duke@435 917 // address type. If a Phi is found, create a new version with
twisti@1040 918 // the appropriate memory slices from each of the Phi inputs.
duke@435 919 // For stores, process the users as follows:
duke@435 920 // MemNode: push on memnode_worklist
duke@435 921 // MergeMem: push on mergemem_worklist
duke@435 922 // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice
duke@435 923 // moving the first node encountered of each instance type to the
duke@435 924 // the input corresponding to its alias index.
duke@435 925 // appropriate memory slice.
duke@435 926 // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes.
duke@435 927 //
duke@435 928 // In the following example, the CheckCastPP nodes are the cast of allocation
duke@435 929 // results and the allocation of node 29 is unescaped and eligible to be an
duke@435 930 // instance type.
duke@435 931 //
duke@435 932 // We start with:
duke@435 933 //
duke@435 934 // 7 Parm #memory
duke@435 935 // 10 ConI "12"
duke@435 936 // 19 CheckCastPP "Foo"
duke@435 937 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 938 // 29 CheckCastPP "Foo"
duke@435 939 // 30 AddP _ 29 29 10 Foo+12 alias_index=4
duke@435 940 //
duke@435 941 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 942 // 50 StoreP 35 40 30 ... alias_index=4
duke@435 943 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 944 // 70 LoadP _ 60 30 ... alias_index=4
duke@435 945 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 946 // 90 LoadP _ 80 30 ... alias_index=4
duke@435 947 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 948 //
duke@435 949 //
duke@435 950 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
duke@435 951 // and creating a new alias index for node 30. This gives:
duke@435 952 //
duke@435 953 // 7 Parm #memory
duke@435 954 // 10 ConI "12"
duke@435 955 // 19 CheckCastPP "Foo"
duke@435 956 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 957 // 29 CheckCastPP "Foo" iid=24
duke@435 958 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 959 //
duke@435 960 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 961 // 50 StoreP 35 40 30 ... alias_index=6
duke@435 962 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 963 // 70 LoadP _ 60 30 ... alias_index=6
duke@435 964 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 965 // 90 LoadP _ 80 30 ... alias_index=6
duke@435 966 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 967 //
duke@435 968 // In phase 2, new memory inputs are computed for the loads and stores,
duke@435 969 // And a new version of the phi is created. In phase 4, the inputs to
duke@435 970 // node 80 are updated and then the memory nodes are updated with the
duke@435 971 // values computed in phase 2. This results in:
duke@435 972 //
duke@435 973 // 7 Parm #memory
duke@435 974 // 10 ConI "12"
duke@435 975 // 19 CheckCastPP "Foo"
duke@435 976 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 977 // 29 CheckCastPP "Foo" iid=24
duke@435 978 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 979 //
duke@435 980 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 981 // 50 StoreP 35 7 30 ... alias_index=6
duke@435 982 // 60 StoreP 45 40 20 ... alias_index=4
duke@435 983 // 70 LoadP _ 50 30 ... alias_index=6
duke@435 984 // 80 Phi 75 40 60 Memory alias_index=4
duke@435 985 // 120 Phi 75 50 50 Memory alias_index=6
duke@435 986 // 90 LoadP _ 120 30 ... alias_index=6
duke@435 987 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 988 //
duke@435 989 void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist) {
duke@435 990 GrowableArray<Node *> memnode_worklist;
duke@435 991 GrowableArray<PhiNode *> orig_phis;
kvn@1536 992
duke@435 993 PhaseGVN *igvn = _compile->initial_gvn();
duke@435 994 uint new_index_start = (uint) _compile->num_alias_types();
kvn@1536 995 Arena* arena = Thread::current()->resource_area();
kvn@1536 996 VectorSet visited(arena);
kvn@1536 997 VectorSet ptset(arena);
duke@435 998
kvn@500 999
kvn@500 1000 // Phase 1: Process possible allocations from alloc_worklist.
kvn@500 1001 // Create instance types for the CheckCastPP for allocations where possible.
kvn@679 1002 //
kvn@679 1003 // (Note: don't forget to change the order of the second AddP node on
kvn@679 1004 // the alloc_worklist if the order of the worklist processing is changed,
kvn@679 1005 // see the comment in find_second_addp().)
kvn@679 1006 //
duke@435 1007 while (alloc_worklist.length() != 0) {
duke@435 1008 Node *n = alloc_worklist.pop();
duke@435 1009 uint ni = n->_idx;
kvn@500 1010 const TypeOopPtr* tinst = NULL;
duke@435 1011 if (n->is_Call()) {
duke@435 1012 CallNode *alloc = n->as_Call();
duke@435 1013 // copy escape information to call node
kvn@679 1014 PointsToNode* ptn = ptnode_adr(alloc->_idx);
duke@435 1015 PointsToNode::EscapeState es = escape_state(alloc, igvn);
kvn@500 1016 // We have an allocation or call which returns a Java object,
kvn@500 1017 // see if it is unescaped.
kvn@500 1018 if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable)
duke@435 1019 continue;
kvn@1219 1020
kvn@1219 1021 // Find CheckCastPP for the allocate or for the return value of a call
kvn@1219 1022 n = alloc->result_cast();
kvn@1219 1023 if (n == NULL) { // No uses except Initialize node
kvn@1219 1024 if (alloc->is_Allocate()) {
kvn@1219 1025 // Set the scalar_replaceable flag for allocation
kvn@1219 1026 // so it could be eliminated if it has no uses.
kvn@1219 1027 alloc->as_Allocate()->_is_scalar_replaceable = true;
kvn@1219 1028 }
kvn@1219 1029 continue;
kvn@474 1030 }
kvn@1219 1031 if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
kvn@1219 1032 assert(!alloc->is_Allocate(), "allocation should have unique type");
kvn@500 1033 continue;
kvn@1219 1034 }
kvn@1219 1035
kvn@500 1036 // The inline code for Object.clone() casts the allocation result to
kvn@682 1037 // java.lang.Object and then to the actual type of the allocated
kvn@500 1038 // object. Detect this case and use the second cast.
kvn@682 1039 // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
kvn@682 1040 // the allocation result is cast to java.lang.Object and then
kvn@682 1041 // to the actual Array type.
kvn@500 1042 if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
kvn@682 1043 && (alloc->is_AllocateArray() ||
kvn@682 1044 igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
kvn@500 1045 Node *cast2 = NULL;
kvn@500 1046 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 1047 Node *use = n->fast_out(i);
kvn@500 1048 if (use->is_CheckCastPP()) {
kvn@500 1049 cast2 = use;
kvn@500 1050 break;
kvn@500 1051 }
kvn@500 1052 }
kvn@500 1053 if (cast2 != NULL) {
kvn@500 1054 n = cast2;
kvn@500 1055 } else {
kvn@1219 1056 // Non-scalar replaceable if the allocation type is unknown statically
kvn@1219 1057 // (reflection allocation), the object can't be restored during
kvn@1219 1058 // deoptimization without precise type.
kvn@500 1059 continue;
kvn@500 1060 }
kvn@500 1061 }
kvn@1219 1062 if (alloc->is_Allocate()) {
kvn@1219 1063 // Set the scalar_replaceable flag for allocation
kvn@1219 1064 // so it could be eliminated.
kvn@1219 1065 alloc->as_Allocate()->_is_scalar_replaceable = true;
kvn@1219 1066 }
kvn@500 1067 set_escape_state(n->_idx, es);
kvn@682 1068 // in order for an object to be scalar-replaceable, it must be:
kvn@500 1069 // - a direct allocation (not a call returning an object)
kvn@500 1070 // - non-escaping
kvn@500 1071 // - eligible to be a unique type
kvn@500 1072 // - not determined to be ineligible by escape analysis
kvn@1536 1073 assert(ptnode_adr(alloc->_idx)->_node != NULL &&
kvn@1536 1074 ptnode_adr(n->_idx)->_node != NULL, "should be registered");
duke@435 1075 set_map(alloc->_idx, n);
duke@435 1076 set_map(n->_idx, alloc);
kvn@500 1077 const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
kvn@500 1078 if (t == NULL)
duke@435 1079 continue; // not a TypeInstPtr
kvn@682 1080 tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
duke@435 1081 igvn->hash_delete(n);
duke@435 1082 igvn->set_type(n, tinst);
duke@435 1083 n->raise_bottom_type(tinst);
duke@435 1084 igvn->hash_insert(n);
kvn@500 1085 record_for_optimizer(n);
kvn@500 1086 if (alloc->is_Allocate() && ptn->_scalar_replaceable &&
kvn@500 1087 (t->isa_instptr() || t->isa_aryptr())) {
kvn@598 1088
kvn@598 1089 // First, put on the worklist all Field edges from Connection Graph
kvn@598 1090 // which is more accurate then putting immediate users from Ideal Graph.
kvn@598 1091 for (uint e = 0; e < ptn->edge_count(); e++) {
kvn@679 1092 Node *use = ptnode_adr(ptn->edge_target(e))->_node;
kvn@598 1093 assert(ptn->edge_type(e) == PointsToNode::FieldEdge && use->is_AddP(),
kvn@598 1094 "only AddP nodes are Field edges in CG");
kvn@598 1095 if (use->outcnt() > 0) { // Don't process dead nodes
kvn@598 1096 Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
kvn@598 1097 if (addp2 != NULL) {
kvn@598 1098 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@598 1099 alloc_worklist.append_if_missing(addp2);
kvn@598 1100 }
kvn@598 1101 alloc_worklist.append_if_missing(use);
kvn@598 1102 }
kvn@598 1103 }
kvn@598 1104
kvn@500 1105 // An allocation may have an Initialize which has raw stores. Scan
kvn@500 1106 // the users of the raw allocation result and push AddP users
kvn@500 1107 // on alloc_worklist.
kvn@500 1108 Node *raw_result = alloc->proj_out(TypeFunc::Parms);
kvn@500 1109 assert (raw_result != NULL, "must have an allocation result");
kvn@500 1110 for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
kvn@500 1111 Node *use = raw_result->fast_out(i);
kvn@500 1112 if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
kvn@500 1113 Node* addp2 = find_second_addp(use, raw_result);
kvn@500 1114 if (addp2 != NULL) {
kvn@500 1115 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@500 1116 alloc_worklist.append_if_missing(addp2);
kvn@500 1117 }
kvn@500 1118 alloc_worklist.append_if_missing(use);
kvn@1535 1119 } else if (use->is_MemBar()) {
kvn@500 1120 memnode_worklist.append_if_missing(use);
kvn@500 1121 }
kvn@500 1122 }
kvn@500 1123 }
duke@435 1124 } else if (n->is_AddP()) {
duke@435 1125 ptset.Clear();
kvn@500 1126 PointsTo(ptset, get_addp_base(n), igvn);
duke@435 1127 assert(ptset.Size() == 1, "AddP address is unique");
kvn@500 1128 uint elem = ptset.getelem(); // Allocation node's index
kvn@1535 1129 if (elem == _phantom_object) {
kvn@1535 1130 assert(false, "escaped allocation");
kvn@500 1131 continue; // Assume the value was set outside this method.
kvn@1535 1132 }
kvn@500 1133 Node *base = get_map(elem); // CheckCastPP node
kvn@1535 1134 if (!split_AddP(n, base, igvn)) continue; // wrong type from dead path
kvn@500 1135 tinst = igvn->type(base)->isa_oopptr();
kvn@500 1136 } else if (n->is_Phi() ||
kvn@500 1137 n->is_CheckCastPP() ||
kvn@603 1138 n->is_EncodeP() ||
kvn@603 1139 n->is_DecodeN() ||
kvn@500 1140 (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
duke@435 1141 if (visited.test_set(n->_idx)) {
duke@435 1142 assert(n->is_Phi(), "loops only through Phi's");
duke@435 1143 continue; // already processed
duke@435 1144 }
duke@435 1145 ptset.Clear();
duke@435 1146 PointsTo(ptset, n, igvn);
duke@435 1147 if (ptset.Size() == 1) {
kvn@500 1148 uint elem = ptset.getelem(); // Allocation node's index
kvn@1535 1149 if (elem == _phantom_object) {
kvn@1535 1150 assert(false, "escaped allocation");
kvn@500 1151 continue; // Assume the value was set outside this method.
kvn@1535 1152 }
kvn@500 1153 Node *val = get_map(elem); // CheckCastPP node
duke@435 1154 TypeNode *tn = n->as_Type();
kvn@500 1155 tinst = igvn->type(val)->isa_oopptr();
kvn@658 1156 assert(tinst != NULL && tinst->is_known_instance() &&
kvn@658 1157 (uint)tinst->instance_id() == elem , "instance type expected.");
kvn@598 1158
kvn@598 1159 const Type *tn_type = igvn->type(tn);
kvn@658 1160 const TypeOopPtr *tn_t;
kvn@658 1161 if (tn_type->isa_narrowoop()) {
kvn@658 1162 tn_t = tn_type->make_ptr()->isa_oopptr();
kvn@658 1163 } else {
kvn@658 1164 tn_t = tn_type->isa_oopptr();
kvn@658 1165 }
duke@435 1166
kvn@1535 1167 if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
kvn@598 1168 if (tn_type->isa_narrowoop()) {
kvn@598 1169 tn_type = tinst->make_narrowoop();
kvn@598 1170 } else {
kvn@598 1171 tn_type = tinst;
kvn@598 1172 }
duke@435 1173 igvn->hash_delete(tn);
kvn@598 1174 igvn->set_type(tn, tn_type);
kvn@598 1175 tn->set_type(tn_type);
duke@435 1176 igvn->hash_insert(tn);
kvn@500 1177 record_for_optimizer(n);
kvn@728 1178 } else {
kvn@1535 1179 assert(tn_type == TypePtr::NULL_PTR ||
kvn@1535 1180 tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
kvn@1535 1181 "unexpected type");
kvn@1535 1182 continue; // Skip dead path with different type
duke@435 1183 }
duke@435 1184 }
duke@435 1185 } else {
kvn@1535 1186 debug_only(n->dump();)
kvn@1535 1187 assert(false, "EA: unexpected node");
duke@435 1188 continue;
duke@435 1189 }
kvn@1535 1190 // push allocation's users on appropriate worklist
duke@435 1191 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1192 Node *use = n->fast_out(i);
duke@435 1193 if(use->is_Mem() && use->in(MemNode::Address) == n) {
kvn@1535 1194 // Load/store to instance's field
kvn@500 1195 memnode_worklist.append_if_missing(use);
kvn@1535 1196 } else if (use->is_MemBar()) {
kvn@500 1197 memnode_worklist.append_if_missing(use);
kvn@500 1198 } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
kvn@500 1199 Node* addp2 = find_second_addp(use, n);
kvn@500 1200 if (addp2 != NULL) {
kvn@500 1201 alloc_worklist.append_if_missing(addp2);
kvn@500 1202 }
kvn@500 1203 alloc_worklist.append_if_missing(use);
kvn@500 1204 } else if (use->is_Phi() ||
kvn@500 1205 use->is_CheckCastPP() ||
kvn@603 1206 use->is_EncodeP() ||
kvn@603 1207 use->is_DecodeN() ||
kvn@500 1208 (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
kvn@500 1209 alloc_worklist.append_if_missing(use);
kvn@1535 1210 #ifdef ASSERT
kvn@1535 1211 } else if (use->is_Mem()) {
kvn@1535 1212 assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
kvn@1535 1213 } else if (use->is_MergeMem()) {
kvn@1535 1214 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 1215 } else if (use->is_SafePoint()) {
kvn@1535 1216 // Look for MergeMem nodes for calls which reference unique allocation
kvn@1535 1217 // (through CheckCastPP nodes) even for debug info.
kvn@1535 1218 Node* m = use->in(TypeFunc::Memory);
kvn@1535 1219 if (m->is_MergeMem()) {
kvn@1535 1220 assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 1221 }
kvn@1535 1222 } else {
kvn@1535 1223 uint op = use->Opcode();
kvn@1535 1224 if (!(op == Op_CmpP || op == Op_Conv2B ||
kvn@1535 1225 op == Op_CastP2X || op == Op_StoreCM ||
kvn@1535 1226 op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
kvn@1535 1227 op == Op_StrEquals || op == Op_StrIndexOf)) {
kvn@1535 1228 n->dump();
kvn@1535 1229 use->dump();
kvn@1535 1230 assert(false, "EA: missing allocation reference path");
kvn@1535 1231 }
kvn@1535 1232 #endif
duke@435 1233 }
duke@435 1234 }
duke@435 1235
duke@435 1236 }
kvn@500 1237 // New alias types were created in split_AddP().
duke@435 1238 uint new_index_end = (uint) _compile->num_alias_types();
duke@435 1239
duke@435 1240 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 1241 // compute new values for Memory inputs (the Memory inputs are not
duke@435 1242 // actually updated until phase 4.)
duke@435 1243 if (memnode_worklist.length() == 0)
duke@435 1244 return; // nothing to do
duke@435 1245
duke@435 1246 while (memnode_worklist.length() != 0) {
duke@435 1247 Node *n = memnode_worklist.pop();
kvn@500 1248 if (visited.test_set(n->_idx))
kvn@500 1249 continue;
kvn@1535 1250 if (n->is_Phi() || n->is_ClearArray()) {
kvn@1535 1251 // we don't need to do anything, but the users must be pushed
kvn@1535 1252 } else if (n->is_MemBar()) { // Initialize, MemBar nodes
kvn@1535 1253 // we don't need to do anything, but the users must be pushed
kvn@1535 1254 n = n->as_MemBar()->proj_out(TypeFunc::Memory);
kvn@500 1255 if (n == NULL)
duke@435 1256 continue;
duke@435 1257 } else {
duke@435 1258 assert(n->is_Mem(), "memory node required.");
duke@435 1259 Node *addr = n->in(MemNode::Address);
duke@435 1260 const Type *addr_t = igvn->type(addr);
duke@435 1261 if (addr_t == Type::TOP)
duke@435 1262 continue;
duke@435 1263 assert (addr_t->isa_ptr() != NULL, "pointer type required.");
duke@435 1264 int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
kvn@500 1265 assert ((uint)alias_idx < new_index_end, "wrong alias index");
kvn@500 1266 Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
kvn@473 1267 if (_compile->failing()) {
kvn@473 1268 return;
kvn@473 1269 }
kvn@500 1270 if (mem != n->in(MemNode::Memory)) {
kvn@1536 1271 // We delay the memory edge update since we need old one in
kvn@1536 1272 // MergeMem code below when instances memory slices are separated.
kvn@1536 1273 debug_only(Node* pn = ptnode_adr(n->_idx)->_node;)
kvn@1536 1274 assert(pn == NULL || pn == n, "wrong node");
duke@435 1275 set_map(n->_idx, mem);
kvn@679 1276 ptnode_adr(n->_idx)->_node = n;
kvn@500 1277 }
duke@435 1278 if (n->is_Load()) {
duke@435 1279 continue; // don't push users
duke@435 1280 } else if (n->is_LoadStore()) {
duke@435 1281 // get the memory projection
duke@435 1282 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1283 Node *use = n->fast_out(i);
duke@435 1284 if (use->Opcode() == Op_SCMemProj) {
duke@435 1285 n = use;
duke@435 1286 break;
duke@435 1287 }
duke@435 1288 }
duke@435 1289 assert(n->Opcode() == Op_SCMemProj, "memory projection required");
duke@435 1290 }
duke@435 1291 }
duke@435 1292 // push user on appropriate worklist
duke@435 1293 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1294 Node *use = n->fast_out(i);
kvn@1535 1295 if (use->is_Phi() || use->is_ClearArray()) {
kvn@500 1296 memnode_worklist.append_if_missing(use);
duke@435 1297 } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
kvn@1535 1298 if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
kvn@1535 1299 continue;
kvn@500 1300 memnode_worklist.append_if_missing(use);
kvn@1535 1301 } else if (use->is_MemBar()) {
kvn@500 1302 memnode_worklist.append_if_missing(use);
kvn@1535 1303 #ifdef ASSERT
kvn@1535 1304 } else if(use->is_Mem()) {
kvn@1535 1305 assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
duke@435 1306 } else if (use->is_MergeMem()) {
kvn@1535 1307 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 1308 } else {
kvn@1535 1309 uint op = use->Opcode();
kvn@1535 1310 if (!(op == Op_StoreCM ||
kvn@1535 1311 (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
kvn@1535 1312 strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
kvn@1535 1313 op == Op_AryEq || op == Op_StrComp ||
kvn@1535 1314 op == Op_StrEquals || op == Op_StrIndexOf)) {
kvn@1535 1315 n->dump();
kvn@1535 1316 use->dump();
kvn@1535 1317 assert(false, "EA: missing memory path");
kvn@1535 1318 }
kvn@1535 1319 #endif
duke@435 1320 }
duke@435 1321 }
duke@435 1322 }
duke@435 1323
kvn@500 1324 // Phase 3: Process MergeMem nodes from mergemem_worklist.
kvn@1535 1325 // Walk each memory slice moving the first node encountered of each
kvn@500 1326 // instance type to the the input corresponding to its alias index.
kvn@1535 1327 uint length = _mergemem_worklist.length();
kvn@1535 1328 for( uint next = 0; next < length; ++next ) {
kvn@1535 1329 MergeMemNode* nmm = _mergemem_worklist.at(next);
kvn@1535 1330 assert(!visited.test_set(nmm->_idx), "should not be visited before");
duke@435 1331 // Note: we don't want to use MergeMemStream here because we only want to
kvn@1535 1332 // scan inputs which exist at the start, not ones we add during processing.
kvn@1535 1333 // Note 2: MergeMem may already contains instance memory slices added
kvn@1535 1334 // during find_inst_mem() call when memory nodes were processed above.
kvn@1535 1335 igvn->hash_delete(nmm);
duke@435 1336 uint nslices = nmm->req();
duke@435 1337 for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
kvn@500 1338 Node* mem = nmm->in(i);
kvn@500 1339 Node* cur = NULL;
duke@435 1340 if (mem == NULL || mem->is_top())
duke@435 1341 continue;
kvn@1536 1342 // First, update mergemem by moving memory nodes to corresponding slices
kvn@1536 1343 // if their type became more precise since this mergemem was created.
duke@435 1344 while (mem->is_Mem()) {
duke@435 1345 const Type *at = igvn->type(mem->in(MemNode::Address));
duke@435 1346 if (at != Type::TOP) {
duke@435 1347 assert (at->isa_ptr() != NULL, "pointer type required.");
duke@435 1348 uint idx = (uint)_compile->get_alias_index(at->is_ptr());
duke@435 1349 if (idx == i) {
duke@435 1350 if (cur == NULL)
duke@435 1351 cur = mem;
duke@435 1352 } else {
duke@435 1353 if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
duke@435 1354 nmm->set_memory_at(idx, mem);
duke@435 1355 }
duke@435 1356 }
duke@435 1357 }
duke@435 1358 mem = mem->in(MemNode::Memory);
duke@435 1359 }
duke@435 1360 nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
kvn@500 1361 // Find any instance of the current type if we haven't encountered
kvn@1536 1362 // already a memory slice of the instance along the memory chain.
kvn@500 1363 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@500 1364 if((uint)_compile->get_general_index(ni) == i) {
kvn@500 1365 Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
kvn@500 1366 if (nmm->is_empty_memory(m)) {
kvn@500 1367 Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
kvn@500 1368 if (_compile->failing()) {
kvn@500 1369 return;
kvn@500 1370 }
kvn@500 1371 nmm->set_memory_at(ni, result);
kvn@500 1372 }
kvn@500 1373 }
kvn@500 1374 }
kvn@500 1375 }
kvn@500 1376 // Find the rest of instances values
kvn@500 1377 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@1536 1378 const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
kvn@500 1379 Node* result = step_through_mergemem(nmm, ni, tinst);
kvn@500 1380 if (result == nmm->base_memory()) {
kvn@500 1381 // Didn't find instance memory, search through general slice recursively.
kvn@1536 1382 result = nmm->memory_at(_compile->get_general_index(ni));
kvn@500 1383 result = find_inst_mem(result, ni, orig_phis, igvn);
kvn@500 1384 if (_compile->failing()) {
kvn@500 1385 return;
kvn@500 1386 }
kvn@500 1387 nmm->set_memory_at(ni, result);
kvn@500 1388 }
kvn@500 1389 }
kvn@500 1390 igvn->hash_insert(nmm);
kvn@500 1391 record_for_optimizer(nmm);
duke@435 1392 }
duke@435 1393
kvn@500 1394 // Phase 4: Update the inputs of non-instance memory Phis and
kvn@500 1395 // the Memory input of memnodes
duke@435 1396 // First update the inputs of any non-instance Phi's from
duke@435 1397 // which we split out an instance Phi. Note we don't have
duke@435 1398 // to recursively process Phi's encounted on the input memory
duke@435 1399 // chains as is done in split_memory_phi() since they will
duke@435 1400 // also be processed here.
kvn@682 1401 for (int j = 0; j < orig_phis.length(); j++) {
kvn@682 1402 PhiNode *phi = orig_phis.at(j);
duke@435 1403 int alias_idx = _compile->get_alias_index(phi->adr_type());
duke@435 1404 igvn->hash_delete(phi);
duke@435 1405 for (uint i = 1; i < phi->req(); i++) {
duke@435 1406 Node *mem = phi->in(i);
kvn@500 1407 Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
kvn@500 1408 if (_compile->failing()) {
kvn@500 1409 return;
kvn@500 1410 }
duke@435 1411 if (mem != new_mem) {
duke@435 1412 phi->set_req(i, new_mem);
duke@435 1413 }
duke@435 1414 }
duke@435 1415 igvn->hash_insert(phi);
duke@435 1416 record_for_optimizer(phi);
duke@435 1417 }
duke@435 1418
duke@435 1419 // Update the memory inputs of MemNodes with the value we computed
kvn@1536 1420 // in Phase 2 and move stores memory users to corresponding memory slices.
kvn@1536 1421 #ifdef ASSERT
kvn@1536 1422 visited.Clear();
kvn@1536 1423 Node_Stack old_mems(arena, _compile->unique() >> 2);
kvn@1536 1424 #endif
kvn@679 1425 for (uint i = 0; i < nodes_size(); i++) {
duke@435 1426 Node *nmem = get_map(i);
duke@435 1427 if (nmem != NULL) {
kvn@679 1428 Node *n = ptnode_adr(i)->_node;
kvn@1536 1429 assert(n != NULL, "sanity");
kvn@1536 1430 if (n->is_Mem()) {
kvn@1536 1431 #ifdef ASSERT
kvn@1536 1432 Node* old_mem = n->in(MemNode::Memory);
kvn@1536 1433 if (!visited.test_set(old_mem->_idx)) {
kvn@1536 1434 old_mems.push(old_mem, old_mem->outcnt());
kvn@1536 1435 }
kvn@1536 1436 #endif
kvn@1536 1437 assert(n->in(MemNode::Memory) != nmem, "sanity");
kvn@1536 1438 if (!n->is_Load()) {
kvn@1536 1439 // Move memory users of a store first.
kvn@1536 1440 move_inst_mem(n, orig_phis, igvn);
kvn@1536 1441 }
kvn@1536 1442 // Now update memory input
duke@435 1443 igvn->hash_delete(n);
duke@435 1444 n->set_req(MemNode::Memory, nmem);
duke@435 1445 igvn->hash_insert(n);
duke@435 1446 record_for_optimizer(n);
kvn@1536 1447 } else {
kvn@1536 1448 assert(n->is_Allocate() || n->is_CheckCastPP() ||
kvn@1536 1449 n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
duke@435 1450 }
duke@435 1451 }
duke@435 1452 }
kvn@1536 1453 #ifdef ASSERT
kvn@1536 1454 // Verify that memory was split correctly
kvn@1536 1455 while (old_mems.is_nonempty()) {
kvn@1536 1456 Node* old_mem = old_mems.node();
kvn@1536 1457 uint old_cnt = old_mems.index();
kvn@1536 1458 old_mems.pop();
kvn@1536 1459 assert(old_cnt = old_mem->outcnt(), "old mem could be lost");
kvn@1536 1460 }
kvn@1536 1461 #endif
duke@435 1462 }
duke@435 1463
kvn@679 1464 bool ConnectionGraph::has_candidates(Compile *C) {
kvn@679 1465 // EA brings benefits only when the code has allocations and/or locks which
kvn@679 1466 // are represented by ideal Macro nodes.
kvn@679 1467 int cnt = C->macro_count();
kvn@679 1468 for( int i=0; i < cnt; i++ ) {
kvn@679 1469 Node *n = C->macro_node(i);
kvn@679 1470 if ( n->is_Allocate() )
kvn@679 1471 return true;
kvn@679 1472 if( n->is_Lock() ) {
kvn@679 1473 Node* obj = n->as_Lock()->obj_node()->uncast();
kvn@679 1474 if( !(obj->is_Parm() || obj->is_Con()) )
kvn@679 1475 return true;
kvn@679 1476 }
kvn@679 1477 }
kvn@679 1478 return false;
kvn@679 1479 }
kvn@679 1480
kvn@679 1481 bool ConnectionGraph::compute_escape() {
kvn@679 1482 Compile* C = _compile;
duke@435 1483
kvn@598 1484 // 1. Populate Connection Graph (CG) with Ideal nodes.
duke@435 1485
kvn@500 1486 Unique_Node_List worklist_init;
kvn@679 1487 worklist_init.map(C->unique(), NULL); // preallocate space
kvn@500 1488
kvn@500 1489 // Initialize worklist
kvn@679 1490 if (C->root() != NULL) {
kvn@679 1491 worklist_init.push(C->root());
kvn@500 1492 }
kvn@500 1493
kvn@500 1494 GrowableArray<int> cg_worklist;
kvn@679 1495 PhaseGVN* igvn = C->initial_gvn();
kvn@500 1496 bool has_allocations = false;
kvn@500 1497
kvn@500 1498 // Push all useful nodes onto CG list and set their type.
kvn@500 1499 for( uint next = 0; next < worklist_init.size(); ++next ) {
kvn@500 1500 Node* n = worklist_init.at(next);
kvn@500 1501 record_for_escape_analysis(n, igvn);
kvn@679 1502 // Only allocations and java static calls results are checked
kvn@679 1503 // for an escape status. See process_call_result() below.
kvn@679 1504 if (n->is_Allocate() || n->is_CallStaticJava() &&
kvn@679 1505 ptnode_adr(n->_idx)->node_type() == PointsToNode::JavaObject) {
kvn@500 1506 has_allocations = true;
kvn@500 1507 }
kvn@1535 1508 if(n->is_AddP()) {
kvn@1535 1509 // Collect address nodes which directly reference an allocation.
kvn@1535 1510 // Use them during stage 3 below to build initial connection graph
kvn@1535 1511 // field edges. Other field edges could be added after StoreP/LoadP
kvn@1535 1512 // nodes are processed during stage 4 below.
kvn@1535 1513 Node* base = get_addp_base(n);
kvn@1535 1514 if(base->is_Proj() && base->in(0)->is_Allocate()) {
kvn@1535 1515 cg_worklist.append(n->_idx);
kvn@1535 1516 }
kvn@1535 1517 } else if (n->is_MergeMem()) {
kvn@1535 1518 // Collect all MergeMem nodes to add memory slices for
kvn@1535 1519 // scalar replaceable objects in split_unique_types().
kvn@1535 1520 _mergemem_worklist.append(n->as_MergeMem());
kvn@1535 1521 }
kvn@500 1522 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 1523 Node* m = n->fast_out(i); // Get user
kvn@500 1524 worklist_init.push(m);
kvn@500 1525 }
kvn@500 1526 }
kvn@500 1527
kvn@679 1528 if (!has_allocations) {
kvn@500 1529 _collecting = false;
kvn@679 1530 return false; // Nothing to do.
kvn@500 1531 }
kvn@500 1532
kvn@500 1533 // 2. First pass to create simple CG edges (doesn't require to walk CG).
kvn@679 1534 uint delayed_size = _delayed_worklist.size();
kvn@679 1535 for( uint next = 0; next < delayed_size; ++next ) {
kvn@500 1536 Node* n = _delayed_worklist.at(next);
kvn@500 1537 build_connection_graph(n, igvn);
kvn@500 1538 }
kvn@500 1539
kvn@500 1540 // 3. Pass to create fields edges (Allocate -F-> AddP).
kvn@679 1541 uint cg_length = cg_worklist.length();
kvn@679 1542 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1543 int ni = cg_worklist.at(next);
kvn@679 1544 build_connection_graph(ptnode_adr(ni)->_node, igvn);
kvn@500 1545 }
kvn@500 1546
kvn@500 1547 cg_worklist.clear();
kvn@500 1548 cg_worklist.append(_phantom_object);
kvn@500 1549
kvn@500 1550 // 4. Build Connection Graph which need
kvn@500 1551 // to walk the connection graph.
kvn@679 1552 for (uint ni = 0; ni < nodes_size(); ni++) {
kvn@679 1553 PointsToNode* ptn = ptnode_adr(ni);
kvn@500 1554 Node *n = ptn->_node;
kvn@500 1555 if (n != NULL) { // Call, AddP, LoadP, StoreP
kvn@500 1556 build_connection_graph(n, igvn);
kvn@500 1557 if (ptn->node_type() != PointsToNode::UnknownType)
kvn@500 1558 cg_worklist.append(n->_idx); // Collect CG nodes
kvn@500 1559 }
duke@435 1560 }
duke@435 1561
kvn@1535 1562 Arena* arena = Thread::current()->resource_area();
kvn@1535 1563 VectorSet ptset(arena);
kvn@536 1564 GrowableArray<uint> deferred_edges;
kvn@1535 1565 VectorSet visited(arena);
duke@435 1566
kvn@1535 1567 // 5. Remove deferred edges from the graph and adjust
kvn@1535 1568 // escape state of nonescaping objects.
kvn@679 1569 cg_length = cg_worklist.length();
kvn@679 1570 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1571 int ni = cg_worklist.at(next);
kvn@679 1572 PointsToNode* ptn = ptnode_adr(ni);
duke@435 1573 PointsToNode::NodeType nt = ptn->node_type();
duke@435 1574 if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
kvn@536 1575 remove_deferred(ni, &deferred_edges, &visited);
kvn@679 1576 Node *n = ptn->_node;
duke@435 1577 if (n->is_AddP()) {
kvn@1535 1578 // Search for objects which are not scalar replaceable
kvn@1535 1579 // and adjust their escape state.
kvn@1535 1580 verify_escape_state(ni, ptset, igvn);
duke@435 1581 }
duke@435 1582 }
duke@435 1583 }
kvn@500 1584
kvn@679 1585 // 6. Propagate escape states.
kvn@679 1586 GrowableArray<int> worklist;
kvn@679 1587 bool has_non_escaping_obj = false;
kvn@679 1588
duke@435 1589 // push all GlobalEscape nodes on the worklist
kvn@679 1590 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1591 int nk = cg_worklist.at(next);
kvn@679 1592 if (ptnode_adr(nk)->escape_state() == PointsToNode::GlobalEscape)
kvn@679 1593 worklist.push(nk);
duke@435 1594 }
kvn@679 1595 // mark all nodes reachable from GlobalEscape nodes
duke@435 1596 while(worklist.length() > 0) {
kvn@679 1597 PointsToNode* ptn = ptnode_adr(worklist.pop());
kvn@679 1598 uint e_cnt = ptn->edge_count();
kvn@679 1599 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@679 1600 uint npi = ptn->edge_target(ei);
duke@435 1601 PointsToNode *np = ptnode_adr(npi);
kvn@500 1602 if (np->escape_state() < PointsToNode::GlobalEscape) {
duke@435 1603 np->set_escape_state(PointsToNode::GlobalEscape);
kvn@679 1604 worklist.push(npi);
duke@435 1605 }
duke@435 1606 }
duke@435 1607 }
duke@435 1608
duke@435 1609 // push all ArgEscape nodes on the worklist
kvn@679 1610 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1611 int nk = cg_worklist.at(next);
kvn@679 1612 if (ptnode_adr(nk)->escape_state() == PointsToNode::ArgEscape)
duke@435 1613 worklist.push(nk);
duke@435 1614 }
kvn@679 1615 // mark all nodes reachable from ArgEscape nodes
duke@435 1616 while(worklist.length() > 0) {
kvn@679 1617 PointsToNode* ptn = ptnode_adr(worklist.pop());
kvn@679 1618 if (ptn->node_type() == PointsToNode::JavaObject)
kvn@679 1619 has_non_escaping_obj = true; // Non GlobalEscape
kvn@679 1620 uint e_cnt = ptn->edge_count();
kvn@679 1621 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@679 1622 uint npi = ptn->edge_target(ei);
duke@435 1623 PointsToNode *np = ptnode_adr(npi);
kvn@500 1624 if (np->escape_state() < PointsToNode::ArgEscape) {
duke@435 1625 np->set_escape_state(PointsToNode::ArgEscape);
kvn@679 1626 worklist.push(npi);
duke@435 1627 }
duke@435 1628 }
duke@435 1629 }
kvn@500 1630
kvn@679 1631 GrowableArray<Node*> alloc_worklist;
kvn@679 1632
kvn@500 1633 // push all NoEscape nodes on the worklist
kvn@679 1634 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1635 int nk = cg_worklist.at(next);
kvn@679 1636 if (ptnode_adr(nk)->escape_state() == PointsToNode::NoEscape)
kvn@500 1637 worklist.push(nk);
kvn@500 1638 }
kvn@679 1639 // mark all nodes reachable from NoEscape nodes
kvn@500 1640 while(worklist.length() > 0) {
kvn@679 1641 PointsToNode* ptn = ptnode_adr(worklist.pop());
kvn@679 1642 if (ptn->node_type() == PointsToNode::JavaObject)
kvn@679 1643 has_non_escaping_obj = true; // Non GlobalEscape
kvn@679 1644 Node* n = ptn->_node;
kvn@679 1645 if (n->is_Allocate() && ptn->_scalar_replaceable ) {
twisti@1040 1646 // Push scalar replaceable allocations on alloc_worklist
kvn@679 1647 // for processing in split_unique_types().
kvn@679 1648 alloc_worklist.append(n);
kvn@679 1649 }
kvn@679 1650 uint e_cnt = ptn->edge_count();
kvn@679 1651 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@679 1652 uint npi = ptn->edge_target(ei);
kvn@500 1653 PointsToNode *np = ptnode_adr(npi);
kvn@500 1654 if (np->escape_state() < PointsToNode::NoEscape) {
kvn@500 1655 np->set_escape_state(PointsToNode::NoEscape);
kvn@679 1656 worklist.push(npi);
kvn@500 1657 }
kvn@500 1658 }
kvn@500 1659 }
kvn@500 1660
duke@435 1661 _collecting = false;
kvn@679 1662 assert(C->unique() == nodes_size(), "there should be no new ideal nodes during ConnectionGraph build");
duke@435 1663
kvn@679 1664 bool has_scalar_replaceable_candidates = alloc_worklist.length() > 0;
kvn@679 1665 if ( has_scalar_replaceable_candidates &&
kvn@679 1666 C->AliasLevel() >= 3 && EliminateAllocations ) {
kvn@473 1667
kvn@679 1668 // Now use the escape information to create unique types for
kvn@679 1669 // scalar replaceable objects.
kvn@679 1670 split_unique_types(alloc_worklist);
duke@435 1671
kvn@679 1672 if (C->failing()) return false;
duke@435 1673
kvn@500 1674 // Clean up after split unique types.
kvn@500 1675 ResourceMark rm;
kvn@679 1676 PhaseRemoveUseless pru(C->initial_gvn(), C->for_igvn());
kvn@679 1677
kvn@679 1678 C->print_method("After Escape Analysis", 2);
duke@435 1679
kvn@500 1680 #ifdef ASSERT
kvn@679 1681 } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
kvn@500 1682 tty->print("=== No allocations eliminated for ");
kvn@679 1683 C->method()->print_short_name();
kvn@500 1684 if(!EliminateAllocations) {
kvn@500 1685 tty->print(" since EliminateAllocations is off ===");
kvn@679 1686 } else if(!has_scalar_replaceable_candidates) {
kvn@679 1687 tty->print(" since there are no scalar replaceable candidates ===");
kvn@679 1688 } else if(C->AliasLevel() < 3) {
kvn@500 1689 tty->print(" since AliasLevel < 3 ===");
duke@435 1690 }
kvn@500 1691 tty->cr();
kvn@500 1692 #endif
duke@435 1693 }
kvn@679 1694 return has_non_escaping_obj;
duke@435 1695 }
duke@435 1696
kvn@1535 1697 // Search for objects which are not scalar replaceable.
kvn@1535 1698 void ConnectionGraph::verify_escape_state(int nidx, VectorSet& ptset, PhaseTransform* phase) {
kvn@1535 1699 PointsToNode* ptn = ptnode_adr(nidx);
kvn@1535 1700 Node* n = ptn->_node;
kvn@1535 1701 assert(n->is_AddP(), "Should be called for AddP nodes only");
kvn@1535 1702 // Search for objects which are not scalar replaceable.
kvn@1535 1703 // Mark their escape state as ArgEscape to propagate the state
kvn@1535 1704 // to referenced objects.
kvn@1535 1705 // Note: currently there are no difference in compiler optimizations
kvn@1535 1706 // for ArgEscape objects and NoEscape objects which are not
kvn@1535 1707 // scalar replaceable.
kvn@1535 1708
kvn@1535 1709 Compile* C = _compile;
kvn@1535 1710
kvn@1535 1711 int offset = ptn->offset();
kvn@1535 1712 Node* base = get_addp_base(n);
kvn@1535 1713 ptset.Clear();
kvn@1535 1714 PointsTo(ptset, base, phase);
kvn@1535 1715 int ptset_size = ptset.Size();
kvn@1535 1716
kvn@1535 1717 // Check if a oop field's initializing value is recorded and add
kvn@1535 1718 // a corresponding NULL field's value if it is not recorded.
kvn@1535 1719 // Connection Graph does not record a default initialization by NULL
kvn@1535 1720 // captured by Initialize node.
kvn@1535 1721 //
kvn@1535 1722 // Note: it will disable scalar replacement in some cases:
kvn@1535 1723 //
kvn@1535 1724 // Point p[] = new Point[1];
kvn@1535 1725 // p[0] = new Point(); // Will be not scalar replaced
kvn@1535 1726 //
kvn@1535 1727 // but it will save us from incorrect optimizations in next cases:
kvn@1535 1728 //
kvn@1535 1729 // Point p[] = new Point[1];
kvn@1535 1730 // if ( x ) p[0] = new Point(); // Will be not scalar replaced
kvn@1535 1731 //
kvn@1535 1732 // Do a simple control flow analysis to distinguish above cases.
kvn@1535 1733 //
kvn@1535 1734 if (offset != Type::OffsetBot && ptset_size == 1) {
kvn@1535 1735 uint elem = ptset.getelem(); // Allocation node's index
kvn@1535 1736 // It does not matter if it is not Allocation node since
kvn@1535 1737 // only non-escaping allocations are scalar replaced.
kvn@1535 1738 if (ptnode_adr(elem)->_node->is_Allocate() &&
kvn@1535 1739 ptnode_adr(elem)->escape_state() == PointsToNode::NoEscape) {
kvn@1535 1740 AllocateNode* alloc = ptnode_adr(elem)->_node->as_Allocate();
kvn@1535 1741 InitializeNode* ini = alloc->initialization();
kvn@1535 1742
kvn@1535 1743 // Check only oop fields.
kvn@1535 1744 const Type* adr_type = n->as_AddP()->bottom_type();
kvn@1535 1745 BasicType basic_field_type = T_INT;
kvn@1535 1746 if (adr_type->isa_instptr()) {
kvn@1535 1747 ciField* field = C->alias_type(adr_type->isa_instptr())->field();
kvn@1535 1748 if (field != NULL) {
kvn@1535 1749 basic_field_type = field->layout_type();
kvn@1535 1750 } else {
kvn@1535 1751 // Ignore non field load (for example, klass load)
kvn@1535 1752 }
kvn@1535 1753 } else if (adr_type->isa_aryptr()) {
kvn@1535 1754 const Type* elemtype = adr_type->isa_aryptr()->elem();
kvn@1535 1755 basic_field_type = elemtype->array_element_basic_type();
kvn@1535 1756 } else {
kvn@1535 1757 // Raw pointers are used for initializing stores so skip it.
kvn@1535 1758 assert(adr_type->isa_rawptr() && base->is_Proj() &&
kvn@1535 1759 (base->in(0) == alloc),"unexpected pointer type");
kvn@1535 1760 }
kvn@1535 1761 if (basic_field_type == T_OBJECT ||
kvn@1535 1762 basic_field_type == T_NARROWOOP ||
kvn@1535 1763 basic_field_type == T_ARRAY) {
kvn@1535 1764 Node* value = NULL;
kvn@1535 1765 if (ini != NULL) {
kvn@1535 1766 BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT;
kvn@1535 1767 Node* store = ini->find_captured_store(offset, type2aelembytes(ft), phase);
kvn@1535 1768 if (store != NULL && store->is_Store()) {
kvn@1535 1769 value = store->in(MemNode::ValueIn);
kvn@1535 1770 } else if (ptn->edge_count() > 0) { // Are there oop stores?
kvn@1535 1771 // Check for a store which follows allocation without branches.
kvn@1535 1772 // For example, a volatile field store is not collected
kvn@1535 1773 // by Initialize node. TODO: it would be nice to use idom() here.
kvn@1535 1774 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@1535 1775 store = n->fast_out(i);
kvn@1535 1776 if (store->is_Store() && store->in(0) != NULL) {
kvn@1535 1777 Node* ctrl = store->in(0);
kvn@1535 1778 while(!(ctrl == ini || ctrl == alloc || ctrl == NULL ||
kvn@1535 1779 ctrl == C->root() || ctrl == C->top() || ctrl->is_Region() ||
kvn@1535 1780 ctrl->is_IfTrue() || ctrl->is_IfFalse())) {
kvn@1535 1781 ctrl = ctrl->in(0);
kvn@1535 1782 }
kvn@1535 1783 if (ctrl == ini || ctrl == alloc) {
kvn@1535 1784 value = store->in(MemNode::ValueIn);
kvn@1535 1785 break;
kvn@1535 1786 }
kvn@1535 1787 }
kvn@1535 1788 }
kvn@1535 1789 }
kvn@1535 1790 }
kvn@1535 1791 if (value == NULL || value != ptnode_adr(value->_idx)->_node) {
kvn@1535 1792 // A field's initializing value was not recorded. Add NULL.
kvn@1535 1793 uint null_idx = UseCompressedOops ? _noop_null : _oop_null;
kvn@1535 1794 add_pointsto_edge(nidx, null_idx);
kvn@1535 1795 }
kvn@1535 1796 }
kvn@1535 1797 }
kvn@1535 1798 }
kvn@1535 1799
kvn@1535 1800 // An object is not scalar replaceable if the field which may point
kvn@1535 1801 // to it has unknown offset (unknown element of an array of objects).
kvn@1535 1802 //
kvn@1535 1803 if (offset == Type::OffsetBot) {
kvn@1535 1804 uint e_cnt = ptn->edge_count();
kvn@1535 1805 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@1535 1806 uint npi = ptn->edge_target(ei);
kvn@1535 1807 set_escape_state(npi, PointsToNode::ArgEscape);
kvn@1535 1808 ptnode_adr(npi)->_scalar_replaceable = false;
kvn@1535 1809 }
kvn@1535 1810 }
kvn@1535 1811
kvn@1535 1812 // Currently an object is not scalar replaceable if a LoadStore node
kvn@1535 1813 // access its field since the field value is unknown after it.
kvn@1535 1814 //
kvn@1535 1815 bool has_LoadStore = false;
kvn@1535 1816 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@1535 1817 Node *use = n->fast_out(i);
kvn@1535 1818 if (use->is_LoadStore()) {
kvn@1535 1819 has_LoadStore = true;
kvn@1535 1820 break;
kvn@1535 1821 }
kvn@1535 1822 }
kvn@1535 1823 // An object is not scalar replaceable if the address points
kvn@1535 1824 // to unknown field (unknown element for arrays, offset is OffsetBot).
kvn@1535 1825 //
kvn@1535 1826 // Or the address may point to more then one object. This may produce
kvn@1535 1827 // the false positive result (set scalar_replaceable to false)
kvn@1535 1828 // since the flow-insensitive escape analysis can't separate
kvn@1535 1829 // the case when stores overwrite the field's value from the case
kvn@1535 1830 // when stores happened on different control branches.
kvn@1535 1831 //
kvn@1535 1832 if (ptset_size > 1 || ptset_size != 0 &&
kvn@1535 1833 (has_LoadStore || offset == Type::OffsetBot)) {
kvn@1535 1834 for( VectorSetI j(&ptset); j.test(); ++j ) {
kvn@1535 1835 set_escape_state(j.elem, PointsToNode::ArgEscape);
kvn@1535 1836 ptnode_adr(j.elem)->_scalar_replaceable = false;
kvn@1535 1837 }
kvn@1535 1838 }
kvn@1535 1839 }
kvn@1535 1840
duke@435 1841 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
duke@435 1842
duke@435 1843 switch (call->Opcode()) {
kvn@500 1844 #ifdef ASSERT
duke@435 1845 case Op_Allocate:
duke@435 1846 case Op_AllocateArray:
duke@435 1847 case Op_Lock:
duke@435 1848 case Op_Unlock:
kvn@500 1849 assert(false, "should be done already");
duke@435 1850 break;
kvn@500 1851 #endif
kvn@1535 1852 case Op_CallLeaf:
kvn@500 1853 case Op_CallLeafNoFP:
kvn@500 1854 {
kvn@500 1855 // Stub calls, objects do not escape but they are not scale replaceable.
kvn@500 1856 // Adjust escape state for outgoing arguments.
kvn@500 1857 const TypeTuple * d = call->tf()->domain();
kvn@500 1858 VectorSet ptset(Thread::current()->resource_area());
kvn@500 1859 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@500 1860 const Type* at = d->field_at(i);
kvn@500 1861 Node *arg = call->in(i)->uncast();
kvn@500 1862 const Type *aat = phase->type(arg);
kvn@1535 1863 if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr() &&
kvn@1535 1864 ptnode_adr(arg->_idx)->escape_state() < PointsToNode::ArgEscape) {
kvn@1535 1865
kvn@500 1866 assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
kvn@500 1867 aat->isa_ptr() != NULL, "expecting an Ptr");
kvn@1535 1868 #ifdef ASSERT
kvn@1535 1869 if (!(call->Opcode() == Op_CallLeafNoFP &&
kvn@1535 1870 call->as_CallLeaf()->_name != NULL &&
kvn@1535 1871 (strstr(call->as_CallLeaf()->_name, "arraycopy") != 0) ||
kvn@1535 1872 call->as_CallLeaf()->_name != NULL &&
kvn@1535 1873 (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre") == 0 ||
kvn@1535 1874 strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ))
kvn@1535 1875 ) {
kvn@1535 1876 call->dump();
kvn@1535 1877 assert(false, "EA: unexpected CallLeaf");
kvn@1535 1878 }
kvn@1535 1879 #endif
kvn@500 1880 set_escape_state(arg->_idx, PointsToNode::ArgEscape);
kvn@500 1881 if (arg->is_AddP()) {
kvn@500 1882 //
kvn@500 1883 // The inline_native_clone() case when the arraycopy stub is called
kvn@500 1884 // after the allocation before Initialize and CheckCastPP nodes.
kvn@500 1885 //
kvn@500 1886 // Set AddP's base (Allocate) as not scalar replaceable since
kvn@500 1887 // pointer to the base (with offset) is passed as argument.
kvn@500 1888 //
kvn@500 1889 arg = get_addp_base(arg);
kvn@500 1890 }
kvn@500 1891 ptset.Clear();
kvn@500 1892 PointsTo(ptset, arg, phase);
kvn@500 1893 for( VectorSetI j(&ptset); j.test(); ++j ) {
kvn@500 1894 uint pt = j.elem;
kvn@500 1895 set_escape_state(pt, PointsToNode::ArgEscape);
kvn@500 1896 }
kvn@500 1897 }
kvn@500 1898 }
kvn@500 1899 break;
kvn@500 1900 }
duke@435 1901
duke@435 1902 case Op_CallStaticJava:
duke@435 1903 // For a static call, we know exactly what method is being called.
duke@435 1904 // Use bytecode estimator to record the call's escape affects
duke@435 1905 {
duke@435 1906 ciMethod *meth = call->as_CallJava()->method();
kvn@500 1907 BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
kvn@500 1908 // fall-through if not a Java method or no analyzer information
kvn@500 1909 if (call_analyzer != NULL) {
duke@435 1910 const TypeTuple * d = call->tf()->domain();
duke@435 1911 VectorSet ptset(Thread::current()->resource_area());
kvn@500 1912 bool copy_dependencies = false;
duke@435 1913 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 1914 const Type* at = d->field_at(i);
duke@435 1915 int k = i - TypeFunc::Parms;
kvn@1535 1916 Node *arg = call->in(i)->uncast();
duke@435 1917
kvn@1535 1918 if (at->isa_oopptr() != NULL &&
kvn@1535 1919 ptnode_adr(arg->_idx)->escape_state() < PointsToNode::ArgEscape) {
duke@435 1920
kvn@500 1921 bool global_escapes = false;
kvn@500 1922 bool fields_escapes = false;
kvn@500 1923 if (!call_analyzer->is_arg_stack(k)) {
duke@435 1924 // The argument global escapes, mark everything it could point to
kvn@500 1925 set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
kvn@500 1926 global_escapes = true;
kvn@500 1927 } else {
kvn@500 1928 if (!call_analyzer->is_arg_local(k)) {
kvn@500 1929 // The argument itself doesn't escape, but any fields might
kvn@500 1930 fields_escapes = true;
kvn@500 1931 }
kvn@500 1932 set_escape_state(arg->_idx, PointsToNode::ArgEscape);
kvn@500 1933 copy_dependencies = true;
kvn@500 1934 }
duke@435 1935
kvn@500 1936 ptset.Clear();
kvn@500 1937 PointsTo(ptset, arg, phase);
kvn@500 1938 for( VectorSetI j(&ptset); j.test(); ++j ) {
kvn@500 1939 uint pt = j.elem;
kvn@500 1940 if (global_escapes) {
kvn@500 1941 //The argument global escapes, mark everything it could point to
duke@435 1942 set_escape_state(pt, PointsToNode::GlobalEscape);
kvn@500 1943 } else {
kvn@500 1944 if (fields_escapes) {
kvn@500 1945 // The argument itself doesn't escape, but any fields might
kvn@500 1946 add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
kvn@500 1947 }
kvn@500 1948 set_escape_state(pt, PointsToNode::ArgEscape);
duke@435 1949 }
duke@435 1950 }
duke@435 1951 }
duke@435 1952 }
kvn@500 1953 if (copy_dependencies)
kvn@679 1954 call_analyzer->copy_dependencies(_compile->dependencies());
duke@435 1955 break;
duke@435 1956 }
duke@435 1957 }
duke@435 1958
duke@435 1959 default:
kvn@500 1960 // Fall-through here if not a Java method or no analyzer information
kvn@500 1961 // or some other type of call, assume the worst case: all arguments
duke@435 1962 // globally escape.
duke@435 1963 {
duke@435 1964 // adjust escape state for outgoing arguments
duke@435 1965 const TypeTuple * d = call->tf()->domain();
duke@435 1966 VectorSet ptset(Thread::current()->resource_area());
duke@435 1967 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 1968 const Type* at = d->field_at(i);
duke@435 1969 if (at->isa_oopptr() != NULL) {
kvn@500 1970 Node *arg = call->in(i)->uncast();
kvn@500 1971 set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
duke@435 1972 ptset.Clear();
duke@435 1973 PointsTo(ptset, arg, phase);
duke@435 1974 for( VectorSetI j(&ptset); j.test(); ++j ) {
duke@435 1975 uint pt = j.elem;
duke@435 1976 set_escape_state(pt, PointsToNode::GlobalEscape);
duke@435 1977 }
duke@435 1978 }
duke@435 1979 }
duke@435 1980 }
duke@435 1981 }
duke@435 1982 }
duke@435 1983 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
kvn@679 1984 CallNode *call = resproj->in(0)->as_Call();
kvn@679 1985 uint call_idx = call->_idx;
kvn@679 1986 uint resproj_idx = resproj->_idx;
duke@435 1987
duke@435 1988 switch (call->Opcode()) {
duke@435 1989 case Op_Allocate:
duke@435 1990 {
duke@435 1991 Node *k = call->in(AllocateNode::KlassNode);
duke@435 1992 const TypeKlassPtr *kt;
duke@435 1993 if (k->Opcode() == Op_LoadKlass) {
duke@435 1994 kt = k->as_Load()->type()->isa_klassptr();
duke@435 1995 } else {
kvn@599 1996 // Also works for DecodeN(LoadNKlass).
duke@435 1997 kt = k->as_Type()->type()->isa_klassptr();
duke@435 1998 }
duke@435 1999 assert(kt != NULL, "TypeKlassPtr required.");
duke@435 2000 ciKlass* cik = kt->klass();
duke@435 2001 ciInstanceKlass* ciik = cik->as_instance_klass();
duke@435 2002
kvn@500 2003 PointsToNode::EscapeState es;
kvn@500 2004 uint edge_to;
duke@435 2005 if (cik->is_subclass_of(_compile->env()->Thread_klass()) || ciik->has_finalizer()) {
kvn@500 2006 es = PointsToNode::GlobalEscape;
kvn@500 2007 edge_to = _phantom_object; // Could not be worse
duke@435 2008 } else {
kvn@500 2009 es = PointsToNode::NoEscape;
kvn@679 2010 edge_to = call_idx;
duke@435 2011 }
kvn@679 2012 set_escape_state(call_idx, es);
kvn@679 2013 add_pointsto_edge(resproj_idx, edge_to);
kvn@679 2014 _processed.set(resproj_idx);
duke@435 2015 break;
duke@435 2016 }
duke@435 2017
duke@435 2018 case Op_AllocateArray:
duke@435 2019 {
kvn@500 2020 int length = call->in(AllocateNode::ALength)->find_int_con(-1);
kvn@500 2021 if (length < 0 || length > EliminateAllocationArraySizeLimit) {
kvn@500 2022 // Not scalar replaceable if the length is not constant or too big.
kvn@679 2023 ptnode_adr(call_idx)->_scalar_replaceable = false;
kvn@500 2024 }
kvn@679 2025 set_escape_state(call_idx, PointsToNode::NoEscape);
kvn@679 2026 add_pointsto_edge(resproj_idx, call_idx);
kvn@679 2027 _processed.set(resproj_idx);
duke@435 2028 break;
duke@435 2029 }
duke@435 2030
duke@435 2031 case Op_CallStaticJava:
duke@435 2032 // For a static call, we know exactly what method is being called.
duke@435 2033 // Use bytecode estimator to record whether the call's return value escapes
duke@435 2034 {
kvn@500 2035 bool done = true;
duke@435 2036 const TypeTuple *r = call->tf()->range();
duke@435 2037 const Type* ret_type = NULL;
duke@435 2038
duke@435 2039 if (r->cnt() > TypeFunc::Parms)
duke@435 2040 ret_type = r->field_at(TypeFunc::Parms);
duke@435 2041
duke@435 2042 // Note: we use isa_ptr() instead of isa_oopptr() here because the
duke@435 2043 // _multianewarray functions return a TypeRawPtr.
kvn@500 2044 if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
kvn@679 2045 _processed.set(resproj_idx);
duke@435 2046 break; // doesn't return a pointer type
kvn@500 2047 }
duke@435 2048 ciMethod *meth = call->as_CallJava()->method();
kvn@500 2049 const TypeTuple * d = call->tf()->domain();
duke@435 2050 if (meth == NULL) {
duke@435 2051 // not a Java method, assume global escape
kvn@679 2052 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 2053 add_pointsto_edge(resproj_idx, _phantom_object);
duke@435 2054 } else {
kvn@500 2055 BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
kvn@500 2056 bool copy_dependencies = false;
duke@435 2057
kvn@500 2058 if (call_analyzer->is_return_allocated()) {
kvn@500 2059 // Returns a newly allocated unescaped object, simply
kvn@500 2060 // update dependency information.
kvn@500 2061 // Mark it as NoEscape so that objects referenced by
kvn@500 2062 // it's fields will be marked as NoEscape at least.
kvn@679 2063 set_escape_state(call_idx, PointsToNode::NoEscape);
kvn@679 2064 add_pointsto_edge(resproj_idx, call_idx);
kvn@500 2065 copy_dependencies = true;
kvn@679 2066 } else if (call_analyzer->is_return_local()) {
duke@435 2067 // determine whether any arguments are returned
kvn@679 2068 set_escape_state(call_idx, PointsToNode::NoEscape);
kvn@742 2069 bool ret_arg = false;
duke@435 2070 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 2071 const Type* at = d->field_at(i);
duke@435 2072
duke@435 2073 if (at->isa_oopptr() != NULL) {
kvn@500 2074 Node *arg = call->in(i)->uncast();
duke@435 2075
kvn@500 2076 if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
kvn@742 2077 ret_arg = true;
kvn@679 2078 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
kvn@500 2079 if (arg_esp->node_type() == PointsToNode::UnknownType)
kvn@500 2080 done = false;
kvn@500 2081 else if (arg_esp->node_type() == PointsToNode::JavaObject)
kvn@679 2082 add_pointsto_edge(resproj_idx, arg->_idx);
duke@435 2083 else
kvn@679 2084 add_deferred_edge(resproj_idx, arg->_idx);
duke@435 2085 arg_esp->_hidden_alias = true;
duke@435 2086 }
duke@435 2087 }
duke@435 2088 }
kvn@742 2089 if (done && !ret_arg) {
kvn@742 2090 // Returns unknown object.
kvn@742 2091 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@742 2092 add_pointsto_edge(resproj_idx, _phantom_object);
kvn@742 2093 }
kvn@500 2094 copy_dependencies = true;
duke@435 2095 } else {
kvn@679 2096 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 2097 add_pointsto_edge(resproj_idx, _phantom_object);
kvn@500 2098 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@500 2099 const Type* at = d->field_at(i);
kvn@500 2100 if (at->isa_oopptr() != NULL) {
kvn@500 2101 Node *arg = call->in(i)->uncast();
kvn@679 2102 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
kvn@500 2103 arg_esp->_hidden_alias = true;
kvn@500 2104 }
kvn@500 2105 }
duke@435 2106 }
kvn@500 2107 if (copy_dependencies)
kvn@679 2108 call_analyzer->copy_dependencies(_compile->dependencies());
duke@435 2109 }
kvn@500 2110 if (done)
kvn@679 2111 _processed.set(resproj_idx);
duke@435 2112 break;
duke@435 2113 }
duke@435 2114
duke@435 2115 default:
duke@435 2116 // Some other type of call, assume the worst case that the
duke@435 2117 // returned value, if any, globally escapes.
duke@435 2118 {
duke@435 2119 const TypeTuple *r = call->tf()->range();
duke@435 2120 if (r->cnt() > TypeFunc::Parms) {
duke@435 2121 const Type* ret_type = r->field_at(TypeFunc::Parms);
duke@435 2122
duke@435 2123 // Note: we use isa_ptr() instead of isa_oopptr() here because the
duke@435 2124 // _multianewarray functions return a TypeRawPtr.
duke@435 2125 if (ret_type->isa_ptr() != NULL) {
kvn@679 2126 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 2127 add_pointsto_edge(resproj_idx, _phantom_object);
duke@435 2128 }
duke@435 2129 }
kvn@679 2130 _processed.set(resproj_idx);
duke@435 2131 }
duke@435 2132 }
duke@435 2133 }
duke@435 2134
kvn@500 2135 // Populate Connection Graph with Ideal nodes and create simple
kvn@500 2136 // connection graph edges (do not need to check the node_type of inputs
kvn@500 2137 // or to call PointsTo() to walk the connection graph).
kvn@500 2138 void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
kvn@500 2139 if (_processed.test(n->_idx))
kvn@500 2140 return; // No need to redefine node's state.
kvn@500 2141
kvn@500 2142 if (n->is_Call()) {
kvn@500 2143 // Arguments to allocation and locking don't escape.
kvn@500 2144 if (n->is_Allocate()) {
kvn@500 2145 add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
kvn@500 2146 record_for_optimizer(n);
kvn@500 2147 } else if (n->is_Lock() || n->is_Unlock()) {
kvn@500 2148 // Put Lock and Unlock nodes on IGVN worklist to process them during
kvn@500 2149 // the first IGVN optimization when escape information is still available.
kvn@500 2150 record_for_optimizer(n);
kvn@500 2151 _processed.set(n->_idx);
kvn@500 2152 } else {
kvn@1535 2153 // Don't mark as processed since call's arguments have to be processed.
kvn@500 2154 PointsToNode::NodeType nt = PointsToNode::UnknownType;
kvn@1535 2155 PointsToNode::EscapeState es = PointsToNode::UnknownEscape;
kvn@500 2156
kvn@500 2157 // Check if a call returns an object.
kvn@500 2158 const TypeTuple *r = n->as_Call()->tf()->range();
kvn@1535 2159 if (r->cnt() > TypeFunc::Parms &&
kvn@1535 2160 r->field_at(TypeFunc::Parms)->isa_ptr() &&
kvn@500 2161 n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
kvn@1535 2162 nt = PointsToNode::JavaObject;
kvn@1535 2163 if (!n->is_CallStaticJava()) {
kvn@1535 2164 // Since the called mathod is statically unknown assume
kvn@1535 2165 // the worst case that the returned value globally escapes.
kvn@1535 2166 es = PointsToNode::GlobalEscape;
kvn@500 2167 }
duke@435 2168 }
kvn@1535 2169 add_node(n, nt, es, false);
duke@435 2170 }
kvn@500 2171 return;
duke@435 2172 }
kvn@500 2173
kvn@500 2174 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
kvn@500 2175 // ThreadLocal has RawPrt type.
kvn@500 2176 switch (n->Opcode()) {
kvn@500 2177 case Op_AddP:
kvn@500 2178 {
kvn@500 2179 add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
kvn@500 2180 break;
kvn@500 2181 }
kvn@500 2182 case Op_CastX2P:
kvn@500 2183 { // "Unsafe" memory access.
kvn@500 2184 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@500 2185 break;
kvn@500 2186 }
kvn@500 2187 case Op_CastPP:
kvn@500 2188 case Op_CheckCastPP:
kvn@559 2189 case Op_EncodeP:
kvn@559 2190 case Op_DecodeN:
kvn@500 2191 {
kvn@500 2192 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 2193 int ti = n->in(1)->_idx;
kvn@679 2194 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 2195 if (nt == PointsToNode::UnknownType) {
kvn@500 2196 _delayed_worklist.push(n); // Process it later.
kvn@500 2197 break;
kvn@500 2198 } else if (nt == PointsToNode::JavaObject) {
kvn@500 2199 add_pointsto_edge(n->_idx, ti);
kvn@500 2200 } else {
kvn@500 2201 add_deferred_edge(n->_idx, ti);
kvn@500 2202 }
kvn@500 2203 _processed.set(n->_idx);
kvn@500 2204 break;
kvn@500 2205 }
kvn@500 2206 case Op_ConP:
kvn@500 2207 {
kvn@500 2208 // assume all pointer constants globally escape except for null
kvn@500 2209 PointsToNode::EscapeState es;
kvn@500 2210 if (phase->type(n) == TypePtr::NULL_PTR)
kvn@500 2211 es = PointsToNode::NoEscape;
kvn@500 2212 else
kvn@500 2213 es = PointsToNode::GlobalEscape;
kvn@500 2214
kvn@500 2215 add_node(n, PointsToNode::JavaObject, es, true);
kvn@500 2216 break;
kvn@500 2217 }
coleenp@548 2218 case Op_ConN:
coleenp@548 2219 {
coleenp@548 2220 // assume all narrow oop constants globally escape except for null
coleenp@548 2221 PointsToNode::EscapeState es;
coleenp@548 2222 if (phase->type(n) == TypeNarrowOop::NULL_PTR)
coleenp@548 2223 es = PointsToNode::NoEscape;
coleenp@548 2224 else
coleenp@548 2225 es = PointsToNode::GlobalEscape;
coleenp@548 2226
coleenp@548 2227 add_node(n, PointsToNode::JavaObject, es, true);
coleenp@548 2228 break;
coleenp@548 2229 }
kvn@559 2230 case Op_CreateEx:
kvn@559 2231 {
kvn@559 2232 // assume that all exception objects globally escape
kvn@559 2233 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@559 2234 break;
kvn@559 2235 }
kvn@500 2236 case Op_LoadKlass:
kvn@599 2237 case Op_LoadNKlass:
kvn@500 2238 {
kvn@500 2239 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@500 2240 break;
kvn@500 2241 }
kvn@500 2242 case Op_LoadP:
coleenp@548 2243 case Op_LoadN:
kvn@500 2244 {
kvn@500 2245 const Type *t = phase->type(n);
kvn@688 2246 if (t->make_ptr() == NULL) {
kvn@500 2247 _processed.set(n->_idx);
kvn@500 2248 return;
kvn@500 2249 }
kvn@500 2250 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 2251 break;
kvn@500 2252 }
kvn@500 2253 case Op_Parm:
kvn@500 2254 {
kvn@500 2255 _processed.set(n->_idx); // No need to redefine it state.
kvn@500 2256 uint con = n->as_Proj()->_con;
kvn@500 2257 if (con < TypeFunc::Parms)
kvn@500 2258 return;
kvn@500 2259 const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
kvn@500 2260 if (t->isa_ptr() == NULL)
kvn@500 2261 return;
kvn@500 2262 // We have to assume all input parameters globally escape
kvn@500 2263 // (Note: passing 'false' since _processed is already set).
kvn@500 2264 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
kvn@500 2265 break;
kvn@500 2266 }
kvn@500 2267 case Op_Phi:
kvn@500 2268 {
kvn@688 2269 const Type *t = n->as_Phi()->type();
kvn@688 2270 if (t->make_ptr() == NULL) {
kvn@688 2271 // nothing to do if not an oop or narrow oop
kvn@500 2272 _processed.set(n->_idx);
kvn@500 2273 return;
kvn@500 2274 }
kvn@500 2275 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 2276 uint i;
kvn@500 2277 for (i = 1; i < n->req() ; i++) {
kvn@500 2278 Node* in = n->in(i);
kvn@500 2279 if (in == NULL)
kvn@500 2280 continue; // ignore NULL
kvn@500 2281 in = in->uncast();
kvn@500 2282 if (in->is_top() || in == n)
kvn@500 2283 continue; // ignore top or inputs which go back this node
kvn@500 2284 int ti = in->_idx;
kvn@679 2285 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 2286 if (nt == PointsToNode::UnknownType) {
kvn@500 2287 break;
kvn@500 2288 } else if (nt == PointsToNode::JavaObject) {
kvn@500 2289 add_pointsto_edge(n->_idx, ti);
kvn@500 2290 } else {
kvn@500 2291 add_deferred_edge(n->_idx, ti);
kvn@500 2292 }
kvn@500 2293 }
kvn@500 2294 if (i >= n->req())
kvn@500 2295 _processed.set(n->_idx);
kvn@500 2296 else
kvn@500 2297 _delayed_worklist.push(n);
kvn@500 2298 break;
kvn@500 2299 }
kvn@500 2300 case Op_Proj:
kvn@500 2301 {
kvn@1535 2302 // we are only interested in the oop result projection from a call
kvn@500 2303 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
kvn@1535 2304 const TypeTuple *r = n->in(0)->as_Call()->tf()->range();
kvn@1535 2305 assert(r->cnt() > TypeFunc::Parms, "sanity");
kvn@1535 2306 if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
kvn@1535 2307 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@1535 2308 int ti = n->in(0)->_idx;
kvn@1535 2309 // The call may not be registered yet (since not all its inputs are registered)
kvn@1535 2310 // if this is the projection from backbranch edge of Phi.
kvn@1535 2311 if (ptnode_adr(ti)->node_type() != PointsToNode::UnknownType) {
kvn@1535 2312 process_call_result(n->as_Proj(), phase);
kvn@1535 2313 }
kvn@1535 2314 if (!_processed.test(n->_idx)) {
kvn@1535 2315 // The call's result may need to be processed later if the call
kvn@1535 2316 // returns it's argument and the argument is not processed yet.
kvn@1535 2317 _delayed_worklist.push(n);
kvn@1535 2318 }
kvn@1535 2319 break;
kvn@500 2320 }
kvn@500 2321 }
kvn@1535 2322 _processed.set(n->_idx);
kvn@500 2323 break;
kvn@500 2324 }
kvn@500 2325 case Op_Return:
kvn@500 2326 {
kvn@500 2327 if( n->req() > TypeFunc::Parms &&
kvn@500 2328 phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
kvn@500 2329 // Treat Return value as LocalVar with GlobalEscape escape state.
kvn@500 2330 add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
kvn@500 2331 int ti = n->in(TypeFunc::Parms)->_idx;
kvn@679 2332 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 2333 if (nt == PointsToNode::UnknownType) {
kvn@500 2334 _delayed_worklist.push(n); // Process it later.
kvn@500 2335 break;
kvn@500 2336 } else if (nt == PointsToNode::JavaObject) {
kvn@500 2337 add_pointsto_edge(n->_idx, ti);
kvn@500 2338 } else {
kvn@500 2339 add_deferred_edge(n->_idx, ti);
kvn@500 2340 }
kvn@500 2341 }
kvn@500 2342 _processed.set(n->_idx);
kvn@500 2343 break;
kvn@500 2344 }
kvn@500 2345 case Op_StoreP:
coleenp@548 2346 case Op_StoreN:
kvn@500 2347 {
kvn@500 2348 const Type *adr_type = phase->type(n->in(MemNode::Address));
kvn@656 2349 adr_type = adr_type->make_ptr();
kvn@500 2350 if (adr_type->isa_oopptr()) {
kvn@500 2351 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 2352 } else {
kvn@500 2353 Node* adr = n->in(MemNode::Address);
kvn@500 2354 if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
kvn@500 2355 adr->in(AddPNode::Address)->is_Proj() &&
kvn@500 2356 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
kvn@500 2357 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 2358 // We are computing a raw address for a store captured
kvn@500 2359 // by an Initialize compute an appropriate address type.
kvn@500 2360 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 2361 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@500 2362 } else {
kvn@500 2363 _processed.set(n->_idx);
kvn@500 2364 return;
kvn@500 2365 }
kvn@500 2366 }
kvn@500 2367 break;
kvn@500 2368 }
kvn@500 2369 case Op_StorePConditional:
kvn@500 2370 case Op_CompareAndSwapP:
coleenp@548 2371 case Op_CompareAndSwapN:
kvn@500 2372 {
kvn@500 2373 const Type *adr_type = phase->type(n->in(MemNode::Address));
kvn@656 2374 adr_type = adr_type->make_ptr();
kvn@500 2375 if (adr_type->isa_oopptr()) {
kvn@500 2376 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 2377 } else {
kvn@500 2378 _processed.set(n->_idx);
kvn@500 2379 return;
kvn@500 2380 }
kvn@500 2381 break;
kvn@500 2382 }
kvn@1535 2383 case Op_AryEq:
kvn@1535 2384 case Op_StrComp:
kvn@1535 2385 case Op_StrEquals:
kvn@1535 2386 case Op_StrIndexOf:
kvn@1535 2387 {
kvn@1535 2388 // char[] arrays passed to string intrinsics are not scalar replaceable.
kvn@1535 2389 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@1535 2390 break;
kvn@1535 2391 }
kvn@500 2392 case Op_ThreadLocal:
kvn@500 2393 {
kvn@500 2394 add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
kvn@500 2395 break;
kvn@500 2396 }
kvn@500 2397 default:
kvn@500 2398 ;
kvn@500 2399 // nothing to do
kvn@500 2400 }
kvn@500 2401 return;
duke@435 2402 }
duke@435 2403
kvn@500 2404 void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
kvn@679 2405 uint n_idx = n->_idx;
kvn@1535 2406 assert(ptnode_adr(n_idx)->_node != NULL, "node should be registered");
kvn@679 2407
kvn@500 2408 // Don't set processed bit for AddP, LoadP, StoreP since
kvn@500 2409 // they may need more then one pass to process.
kvn@679 2410 if (_processed.test(n_idx))
kvn@500 2411 return; // No need to redefine node's state.
duke@435 2412
duke@435 2413 if (n->is_Call()) {
duke@435 2414 CallNode *call = n->as_Call();
duke@435 2415 process_call_arguments(call, phase);
kvn@679 2416 _processed.set(n_idx);
duke@435 2417 return;
duke@435 2418 }
duke@435 2419
kvn@500 2420 switch (n->Opcode()) {
duke@435 2421 case Op_AddP:
duke@435 2422 {
kvn@500 2423 Node *base = get_addp_base(n);
kvn@500 2424 // Create a field edge to this node from everything base could point to.
duke@435 2425 VectorSet ptset(Thread::current()->resource_area());
duke@435 2426 PointsTo(ptset, base, phase);
duke@435 2427 for( VectorSetI i(&ptset); i.test(); ++i ) {
duke@435 2428 uint pt = i.elem;
kvn@679 2429 add_field_edge(pt, n_idx, address_offset(n, phase));
kvn@500 2430 }
kvn@500 2431 break;
kvn@500 2432 }
kvn@500 2433 case Op_CastX2P:
kvn@500 2434 {
kvn@500 2435 assert(false, "Op_CastX2P");
kvn@500 2436 break;
kvn@500 2437 }
kvn@500 2438 case Op_CastPP:
kvn@500 2439 case Op_CheckCastPP:
coleenp@548 2440 case Op_EncodeP:
coleenp@548 2441 case Op_DecodeN:
kvn@500 2442 {
kvn@500 2443 int ti = n->in(1)->_idx;
kvn@1535 2444 assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "all nodes should be registered");
kvn@679 2445 if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
kvn@679 2446 add_pointsto_edge(n_idx, ti);
kvn@500 2447 } else {
kvn@679 2448 add_deferred_edge(n_idx, ti);
kvn@500 2449 }
kvn@679 2450 _processed.set(n_idx);
kvn@500 2451 break;
kvn@500 2452 }
kvn@500 2453 case Op_ConP:
kvn@500 2454 {
kvn@500 2455 assert(false, "Op_ConP");
kvn@500 2456 break;
kvn@500 2457 }
kvn@598 2458 case Op_ConN:
kvn@598 2459 {
kvn@598 2460 assert(false, "Op_ConN");
kvn@598 2461 break;
kvn@598 2462 }
kvn@500 2463 case Op_CreateEx:
kvn@500 2464 {
kvn@500 2465 assert(false, "Op_CreateEx");
kvn@500 2466 break;
kvn@500 2467 }
kvn@500 2468 case Op_LoadKlass:
kvn@599 2469 case Op_LoadNKlass:
kvn@500 2470 {
kvn@500 2471 assert(false, "Op_LoadKlass");
kvn@500 2472 break;
kvn@500 2473 }
kvn@500 2474 case Op_LoadP:
kvn@559 2475 case Op_LoadN:
kvn@500 2476 {
kvn@500 2477 const Type *t = phase->type(n);
kvn@500 2478 #ifdef ASSERT
kvn@688 2479 if (t->make_ptr() == NULL)
kvn@500 2480 assert(false, "Op_LoadP");
kvn@500 2481 #endif
kvn@500 2482
kvn@500 2483 Node* adr = n->in(MemNode::Address)->uncast();
kvn@500 2484 Node* adr_base;
kvn@500 2485 if (adr->is_AddP()) {
kvn@500 2486 adr_base = get_addp_base(adr);
kvn@500 2487 } else {
kvn@500 2488 adr_base = adr;
kvn@500 2489 }
kvn@500 2490
kvn@500 2491 // For everything "adr_base" could point to, create a deferred edge from
kvn@500 2492 // this node to each field with the same offset.
kvn@500 2493 VectorSet ptset(Thread::current()->resource_area());
kvn@500 2494 PointsTo(ptset, adr_base, phase);
kvn@500 2495 int offset = address_offset(adr, phase);
kvn@500 2496 for( VectorSetI i(&ptset); i.test(); ++i ) {
kvn@500 2497 uint pt = i.elem;
kvn@679 2498 add_deferred_edge_to_fields(n_idx, pt, offset);
duke@435 2499 }
duke@435 2500 break;
duke@435 2501 }
duke@435 2502 case Op_Parm:
duke@435 2503 {
kvn@500 2504 assert(false, "Op_Parm");
kvn@500 2505 break;
kvn@500 2506 }
kvn@500 2507 case Op_Phi:
kvn@500 2508 {
kvn@500 2509 #ifdef ASSERT
kvn@688 2510 const Type *t = n->as_Phi()->type();
kvn@688 2511 if (t->make_ptr() == NULL)
kvn@500 2512 assert(false, "Op_Phi");
kvn@500 2513 #endif
kvn@500 2514 for (uint i = 1; i < n->req() ; i++) {
kvn@500 2515 Node* in = n->in(i);
kvn@500 2516 if (in == NULL)
kvn@500 2517 continue; // ignore NULL
kvn@500 2518 in = in->uncast();
kvn@500 2519 if (in->is_top() || in == n)
kvn@500 2520 continue; // ignore top or inputs which go back this node
kvn@500 2521 int ti = in->_idx;
kvn@742 2522 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@742 2523 assert(nt != PointsToNode::UnknownType, "all nodes should be known");
kvn@742 2524 if (nt == PointsToNode::JavaObject) {
kvn@679 2525 add_pointsto_edge(n_idx, ti);
kvn@500 2526 } else {
kvn@679 2527 add_deferred_edge(n_idx, ti);
kvn@500 2528 }
duke@435 2529 }
kvn@679 2530 _processed.set(n_idx);
duke@435 2531 break;
duke@435 2532 }
kvn@500 2533 case Op_Proj:
duke@435 2534 {
kvn@1535 2535 // we are only interested in the oop result projection from a call
kvn@500 2536 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
kvn@1535 2537 assert(ptnode_adr(n->in(0)->_idx)->node_type() != PointsToNode::UnknownType,
kvn@1535 2538 "all nodes should be registered");
kvn@1535 2539 const TypeTuple *r = n->in(0)->as_Call()->tf()->range();
kvn@1535 2540 assert(r->cnt() > TypeFunc::Parms, "sanity");
kvn@1535 2541 if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
kvn@1535 2542 process_call_result(n->as_Proj(), phase);
kvn@1535 2543 assert(_processed.test(n_idx), "all call results should be processed");
kvn@1535 2544 break;
kvn@1535 2545 }
kvn@500 2546 }
kvn@1535 2547 assert(false, "Op_Proj");
duke@435 2548 break;
duke@435 2549 }
kvn@500 2550 case Op_Return:
duke@435 2551 {
kvn@500 2552 #ifdef ASSERT
kvn@500 2553 if( n->req() <= TypeFunc::Parms ||
kvn@500 2554 !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
kvn@500 2555 assert(false, "Op_Return");
kvn@500 2556 }
kvn@500 2557 #endif
kvn@500 2558 int ti = n->in(TypeFunc::Parms)->_idx;
kvn@1535 2559 assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "node should be registered");
kvn@679 2560 if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
kvn@679 2561 add_pointsto_edge(n_idx, ti);
kvn@500 2562 } else {
kvn@679 2563 add_deferred_edge(n_idx, ti);
kvn@500 2564 }
kvn@679 2565 _processed.set(n_idx);
duke@435 2566 break;
duke@435 2567 }
duke@435 2568 case Op_StoreP:
kvn@559 2569 case Op_StoreN:
duke@435 2570 case Op_StorePConditional:
duke@435 2571 case Op_CompareAndSwapP:
kvn@559 2572 case Op_CompareAndSwapN:
duke@435 2573 {
duke@435 2574 Node *adr = n->in(MemNode::Address);
kvn@656 2575 const Type *adr_type = phase->type(adr)->make_ptr();
kvn@500 2576 #ifdef ASSERT
duke@435 2577 if (!adr_type->isa_oopptr())
kvn@500 2578 assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
kvn@500 2579 #endif
duke@435 2580
kvn@500 2581 assert(adr->is_AddP(), "expecting an AddP");
kvn@500 2582 Node *adr_base = get_addp_base(adr);
kvn@500 2583 Node *val = n->in(MemNode::ValueIn)->uncast();
kvn@500 2584 // For everything "adr_base" could point to, create a deferred edge
kvn@500 2585 // to "val" from each field with the same offset.
duke@435 2586 VectorSet ptset(Thread::current()->resource_area());
duke@435 2587 PointsTo(ptset, adr_base, phase);
duke@435 2588 for( VectorSetI i(&ptset); i.test(); ++i ) {
duke@435 2589 uint pt = i.elem;
kvn@500 2590 add_edge_from_fields(pt, val->_idx, address_offset(adr, phase));
duke@435 2591 }
duke@435 2592 break;
duke@435 2593 }
kvn@1535 2594 case Op_AryEq:
kvn@1535 2595 case Op_StrComp:
kvn@1535 2596 case Op_StrEquals:
kvn@1535 2597 case Op_StrIndexOf:
kvn@1535 2598 {
kvn@1535 2599 // char[] arrays passed to string intrinsic do not escape but
kvn@1535 2600 // they are not scalar replaceable. Adjust escape state for them.
kvn@1535 2601 // Start from in(2) edge since in(1) is memory edge.
kvn@1535 2602 for (uint i = 2; i < n->req(); i++) {
kvn@1535 2603 Node* adr = n->in(i)->uncast();
kvn@1535 2604 const Type *at = phase->type(adr);
kvn@1535 2605 if (!adr->is_top() && at->isa_ptr()) {
kvn@1535 2606 assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
kvn@1535 2607 at->isa_ptr() != NULL, "expecting an Ptr");
kvn@1535 2608 if (adr->is_AddP()) {
kvn@1535 2609 adr = get_addp_base(adr);
kvn@1535 2610 }
kvn@1535 2611 // Mark as ArgEscape everything "adr" could point to.
kvn@1535 2612 set_escape_state(adr->_idx, PointsToNode::ArgEscape);
kvn@1535 2613 }
kvn@1535 2614 }
kvn@1535 2615 _processed.set(n_idx);
kvn@1535 2616 break;
kvn@1535 2617 }
kvn@500 2618 case Op_ThreadLocal:
duke@435 2619 {
kvn@500 2620 assert(false, "Op_ThreadLocal");
duke@435 2621 break;
duke@435 2622 }
duke@435 2623 default:
kvn@1535 2624 // This method should be called only for EA specific nodes.
kvn@1535 2625 ShouldNotReachHere();
duke@435 2626 }
duke@435 2627 }
duke@435 2628
duke@435 2629 #ifndef PRODUCT
duke@435 2630 void ConnectionGraph::dump() {
duke@435 2631 PhaseGVN *igvn = _compile->initial_gvn();
duke@435 2632 bool first = true;
duke@435 2633
kvn@679 2634 uint size = nodes_size();
kvn@500 2635 for (uint ni = 0; ni < size; ni++) {
kvn@679 2636 PointsToNode *ptn = ptnode_adr(ni);
kvn@500 2637 PointsToNode::NodeType ptn_type = ptn->node_type();
kvn@500 2638
kvn@500 2639 if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
duke@435 2640 continue;
kvn@500 2641 PointsToNode::EscapeState es = escape_state(ptn->_node, igvn);
kvn@500 2642 if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
kvn@500 2643 if (first) {
kvn@500 2644 tty->cr();
kvn@500 2645 tty->print("======== Connection graph for ");
kvn@679 2646 _compile->method()->print_short_name();
kvn@500 2647 tty->cr();
kvn@500 2648 first = false;
kvn@500 2649 }
kvn@500 2650 tty->print("%6d ", ni);
kvn@500 2651 ptn->dump();
kvn@500 2652 // Print all locals which reference this allocation
kvn@500 2653 for (uint li = ni; li < size; li++) {
kvn@679 2654 PointsToNode *ptn_loc = ptnode_adr(li);
kvn@500 2655 PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
kvn@500 2656 if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
kvn@500 2657 ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
kvn@688 2658 ptnode_adr(li)->dump(false);
duke@435 2659 }
duke@435 2660 }
kvn@500 2661 if (Verbose) {
kvn@500 2662 // Print all fields which reference this allocation
kvn@500 2663 for (uint i = 0; i < ptn->edge_count(); i++) {
kvn@500 2664 uint ei = ptn->edge_target(i);
kvn@688 2665 ptnode_adr(ei)->dump(false);
kvn@500 2666 }
kvn@500 2667 }
kvn@500 2668 tty->cr();
duke@435 2669 }
duke@435 2670 }
duke@435 2671 }
duke@435 2672 #endif

mercurial