src/share/vm/opto/escape.cpp

Mon, 12 Mar 2012 10:46:47 -0700

author
kvn
date
Mon, 12 Mar 2012 10:46:47 -0700
changeset 3651
ee138854b3a6
parent 3604
9a72c7ece7fb
child 3657
ed4c92f54c2d
permissions
-rw-r--r--

7147744: CTW: assert(false) failed: infinite EA connection graph build
Summary: rewrote Connection graph construction code in EA to reduce time spent there.
Reviewed-by: never

duke@435 1 /*
kvn@3564 2 * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "ci/bcEscapeAnalyzer.hpp"
kvn@3651 27 #include "compiler/compileLog.hpp"
stefank@2314 28 #include "libadt/vectset.hpp"
stefank@2314 29 #include "memory/allocation.hpp"
stefank@2314 30 #include "opto/c2compiler.hpp"
stefank@2314 31 #include "opto/callnode.hpp"
stefank@2314 32 #include "opto/cfgnode.hpp"
stefank@2314 33 #include "opto/compile.hpp"
stefank@2314 34 #include "opto/escape.hpp"
stefank@2314 35 #include "opto/phaseX.hpp"
stefank@2314 36 #include "opto/rootnode.hpp"
duke@435 37
kvn@1989 38 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
kvn@3651 39 _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
kvn@679 40 _collecting(true),
kvn@3651 41 _verify(false),
kvn@679 42 _compile(C),
kvn@1989 43 _igvn(igvn),
kvn@679 44 _node_map(C->comp_arena()) {
kvn@3651 45 // Add unknown java object.
kvn@3651 46 add_java_object(C->top(), PointsToNode::GlobalEscape);
kvn@3651 47 phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
kvn@688 48 // Add ConP(#NULL) and ConN(#NULL) nodes.
kvn@688 49 Node* oop_null = igvn->zerocon(T_OBJECT);
kvn@3651 50 assert(oop_null->_idx < nodes_size(), "should be created already");
kvn@3651 51 add_java_object(oop_null, PointsToNode::NoEscape);
kvn@3651 52 null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
kvn@688 53 if (UseCompressedOops) {
kvn@688 54 Node* noop_null = igvn->zerocon(T_NARROWOOP);
kvn@3651 55 assert(noop_null->_idx < nodes_size(), "should be created already");
kvn@3651 56 map_ideal_node(noop_null, null_obj);
kvn@688 57 }
kvn@3309 58 _pcmp_neq = NULL; // Should be initialized
kvn@3309 59 _pcmp_eq = NULL;
duke@435 60 }
duke@435 61
kvn@3651 62 bool ConnectionGraph::has_candidates(Compile *C) {
kvn@3651 63 // EA brings benefits only when the code has allocations and/or locks which
kvn@3651 64 // are represented by ideal Macro nodes.
kvn@3651 65 int cnt = C->macro_count();
kvn@3651 66 for( int i=0; i < cnt; i++ ) {
kvn@3651 67 Node *n = C->macro_node(i);
kvn@3651 68 if ( n->is_Allocate() )
kvn@3651 69 return true;
kvn@3651 70 if( n->is_Lock() ) {
kvn@3651 71 Node* obj = n->as_Lock()->obj_node()->uncast();
kvn@3651 72 if( !(obj->is_Parm() || obj->is_Con()) )
kvn@3651 73 return true;
kvn@3318 74 }
kvn@3318 75 }
kvn@3651 76 return false;
duke@435 77 }
duke@435 78
kvn@3651 79 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
kvn@3651 80 Compile::TracePhase t2("escapeAnalysis", &Phase::_t_escapeAnalysis, true);
kvn@3651 81 ResourceMark rm;
duke@435 82
kvn@3651 83 // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
kvn@3651 84 // to create space for them in ConnectionGraph::_nodes[].
kvn@3651 85 Node* oop_null = igvn->zerocon(T_OBJECT);
kvn@3651 86 Node* noop_null = igvn->zerocon(T_NARROWOOP);
kvn@3651 87 ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
kvn@3651 88 // Perform escape analysis
kvn@3651 89 if (congraph->compute_escape()) {
kvn@3651 90 // There are non escaping objects.
kvn@3651 91 C->set_congraph(congraph);
kvn@3651 92 }
kvn@3651 93 // Cleanup.
kvn@3651 94 if (oop_null->outcnt() == 0)
kvn@3651 95 igvn->hash_delete(oop_null);
kvn@3651 96 if (noop_null->outcnt() == 0)
kvn@3651 97 igvn->hash_delete(noop_null);
duke@435 98 }
duke@435 99
kvn@3651 100 bool ConnectionGraph::compute_escape() {
kvn@3651 101 Compile* C = _compile;
kvn@3651 102 PhaseGVN* igvn = _igvn;
kvn@3651 103
kvn@3651 104 // Worklists used by EA.
kvn@3651 105 Unique_Node_List delayed_worklist;
kvn@3651 106 GrowableArray<Node*> alloc_worklist;
kvn@3651 107 GrowableArray<Node*> ptr_cmp_worklist;
kvn@3651 108 GrowableArray<Node*> storestore_worklist;
kvn@3651 109 GrowableArray<PointsToNode*> ptnodes_worklist;
kvn@3651 110 GrowableArray<JavaObjectNode*> java_objects_worklist;
kvn@3651 111 GrowableArray<JavaObjectNode*> non_escaped_worklist;
kvn@3651 112 GrowableArray<FieldNode*> oop_fields_worklist;
kvn@3651 113 DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
kvn@3651 114
kvn@3651 115 { Compile::TracePhase t3("connectionGraph", &Phase::_t_connectionGraph, true);
kvn@3651 116
kvn@3651 117 // 1. Populate Connection Graph (CG) with PointsTo nodes.
kvn@3651 118 ideal_nodes.map(C->unique(), NULL); // preallocate space
kvn@3651 119 // Initialize worklist
kvn@3651 120 if (C->root() != NULL) {
kvn@3651 121 ideal_nodes.push(C->root());
kvn@3651 122 }
kvn@3651 123 for( uint next = 0; next < ideal_nodes.size(); ++next ) {
kvn@3651 124 Node* n = ideal_nodes.at(next);
kvn@3651 125 // Create PointsTo nodes and add them to Connection Graph. Called
kvn@3651 126 // only once per ideal node since ideal_nodes is Unique_Node list.
kvn@3651 127 add_node_to_connection_graph(n, &delayed_worklist);
kvn@3651 128 PointsToNode* ptn = ptnode_adr(n->_idx);
kvn@3651 129 if (ptn != NULL) {
kvn@3651 130 ptnodes_worklist.append(ptn);
kvn@3651 131 if (ptn->is_JavaObject()) {
kvn@3651 132 java_objects_worklist.append(ptn->as_JavaObject());
kvn@3651 133 if ((n->is_Allocate() || n->is_CallStaticJava()) &&
kvn@3651 134 (ptn->escape_state() < PointsToNode::GlobalEscape)) {
kvn@3651 135 // Only allocations and java static calls results are interesting.
kvn@3651 136 non_escaped_worklist.append(ptn->as_JavaObject());
kvn@3651 137 }
kvn@3651 138 } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
kvn@3651 139 oop_fields_worklist.append(ptn->as_Field());
kvn@3651 140 }
kvn@3651 141 }
kvn@3651 142 if (n->is_MergeMem()) {
kvn@3651 143 // Collect all MergeMem nodes to add memory slices for
kvn@3651 144 // scalar replaceable objects in split_unique_types().
kvn@3651 145 _mergemem_worklist.append(n->as_MergeMem());
kvn@3651 146 } else if (OptimizePtrCompare && n->is_Cmp() &&
kvn@3651 147 (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
kvn@3651 148 // Collect compare pointers nodes.
kvn@3651 149 ptr_cmp_worklist.append(n);
kvn@3651 150 } else if (n->is_MemBarStoreStore()) {
kvn@3651 151 // Collect all MemBarStoreStore nodes so that depending on the
kvn@3651 152 // escape status of the associated Allocate node some of them
kvn@3651 153 // may be eliminated.
kvn@3651 154 storestore_worklist.append(n);
kvn@3651 155 #ifdef ASSERT
kvn@3651 156 } else if(n->is_AddP()) {
kvn@3651 157 // Collect address nodes for graph verification.
kvn@3651 158 addp_worklist.append(n);
kvn@3651 159 #endif
kvn@3651 160 }
kvn@3651 161 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@3651 162 Node* m = n->fast_out(i); // Get user
kvn@3651 163 ideal_nodes.push(m);
kvn@3651 164 }
kvn@3651 165 }
kvn@3651 166 if (non_escaped_worklist.length() == 0) {
kvn@3651 167 _collecting = false;
kvn@3651 168 return false; // Nothing to do.
kvn@3651 169 }
kvn@3651 170 // Add final simple edges to graph.
kvn@3651 171 while(delayed_worklist.size() > 0) {
kvn@3651 172 Node* n = delayed_worklist.pop();
kvn@3651 173 add_final_edges(n);
kvn@3651 174 }
kvn@3651 175 int ptnodes_length = ptnodes_worklist.length();
kvn@3651 176
kvn@3651 177 #ifdef ASSERT
kvn@3651 178 if (VerifyConnectionGraph) {
kvn@3651 179 // Verify that no new simple edges could be created and all
kvn@3651 180 // local vars has edges.
kvn@3651 181 _verify = true;
kvn@3651 182 for (int next = 0; next < ptnodes_length; ++next) {
kvn@3651 183 PointsToNode* ptn = ptnodes_worklist.at(next);
kvn@3651 184 add_final_edges(ptn->ideal_node());
kvn@3651 185 if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
kvn@3651 186 ptn->dump();
kvn@3651 187 assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
kvn@3651 188 }
kvn@3651 189 }
kvn@3651 190 _verify = false;
kvn@3651 191 }
kvn@3651 192 #endif
kvn@3651 193
kvn@3651 194 // 2. Finish Graph construction by propagating references to all
kvn@3651 195 // java objects through graph.
kvn@3651 196 if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
kvn@3651 197 java_objects_worklist, oop_fields_worklist)) {
kvn@3651 198 // All objects escaped or hit time or iterations limits.
kvn@3651 199 _collecting = false;
kvn@3651 200 return false;
kvn@3651 201 }
kvn@3651 202
kvn@3651 203 // 3. Adjust scalar_replaceable state of nonescaping objects and push
kvn@3651 204 // scalar replaceable allocations on alloc_worklist for processing
kvn@3651 205 // in split_unique_types().
kvn@3651 206 int non_escaped_length = non_escaped_worklist.length();
kvn@3651 207 for (int next = 0; next < non_escaped_length; next++) {
kvn@3651 208 JavaObjectNode* ptn = non_escaped_worklist.at(next);
kvn@3651 209 if (ptn->escape_state() == PointsToNode::NoEscape &&
kvn@3651 210 ptn->scalar_replaceable()) {
kvn@3651 211 adjust_scalar_replaceable_state(ptn);
kvn@3651 212 if (ptn->scalar_replaceable()) {
kvn@3651 213 alloc_worklist.append(ptn->ideal_node());
kvn@3651 214 }
kvn@3651 215 }
kvn@3651 216 }
kvn@3651 217
kvn@3651 218 #ifdef ASSERT
kvn@3651 219 if (VerifyConnectionGraph) {
kvn@3651 220 // Verify that graph is complete - no new edges could be added or needed.
kvn@3651 221 verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
kvn@3651 222 java_objects_worklist, addp_worklist);
kvn@3651 223 }
kvn@3651 224 assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
kvn@3651 225 assert(null_obj->escape_state() == PointsToNode::NoEscape &&
kvn@3651 226 null_obj->edge_count() == 0 &&
kvn@3651 227 !null_obj->arraycopy_src() &&
kvn@3651 228 !null_obj->arraycopy_dst(), "sanity");
kvn@3651 229 #endif
kvn@3651 230
kvn@3651 231 _collecting = false;
kvn@3651 232
kvn@3651 233 } // TracePhase t3("connectionGraph")
kvn@3651 234
kvn@3651 235 // 4. Optimize ideal graph based on EA information.
kvn@3651 236 bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
kvn@3651 237 if (has_non_escaping_obj) {
kvn@3651 238 optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
kvn@3651 239 }
kvn@3651 240
kvn@3651 241 #ifndef PRODUCT
kvn@3651 242 if (PrintEscapeAnalysis) {
kvn@3651 243 dump(ptnodes_worklist); // Dump ConnectionGraph
kvn@3651 244 }
kvn@3651 245 #endif
kvn@3651 246
kvn@3651 247 bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
kvn@3651 248 #ifdef ASSERT
kvn@3651 249 if (VerifyConnectionGraph) {
kvn@3651 250 int alloc_length = alloc_worklist.length();
kvn@3651 251 for (int next = 0; next < alloc_length; ++next) {
kvn@3651 252 Node* n = alloc_worklist.at(next);
kvn@3651 253 PointsToNode* ptn = ptnode_adr(n->_idx);
kvn@3651 254 assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
kvn@3651 255 }
kvn@3651 256 }
kvn@3651 257 #endif
kvn@3651 258
kvn@3651 259 // 5. Separate memory graph for scalar replaceable allcations.
kvn@3651 260 if (has_scalar_replaceable_candidates &&
kvn@3651 261 C->AliasLevel() >= 3 && EliminateAllocations) {
kvn@3651 262 // Now use the escape information to create unique types for
kvn@3651 263 // scalar replaceable objects.
kvn@3651 264 split_unique_types(alloc_worklist);
kvn@3651 265 if (C->failing()) return false;
kvn@3651 266 C->print_method("After Escape Analysis", 2);
kvn@3651 267
kvn@3651 268 #ifdef ASSERT
kvn@3651 269 } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
kvn@3651 270 tty->print("=== No allocations eliminated for ");
kvn@3651 271 C->method()->print_short_name();
kvn@3651 272 if(!EliminateAllocations) {
kvn@3651 273 tty->print(" since EliminateAllocations is off ===");
kvn@3651 274 } else if(!has_scalar_replaceable_candidates) {
kvn@3651 275 tty->print(" since there are no scalar replaceable candidates ===");
kvn@3651 276 } else if(C->AliasLevel() < 3) {
kvn@3651 277 tty->print(" since AliasLevel < 3 ===");
kvn@3651 278 }
kvn@3651 279 tty->cr();
kvn@3651 280 #endif
kvn@3651 281 }
kvn@3651 282 return has_non_escaping_obj;
kvn@3651 283 }
kvn@3651 284
kvn@3651 285 // Populate Connection Graph with PointsTo nodes and create simple
kvn@3651 286 // connection graph edges.
kvn@3651 287 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
kvn@3651 288 assert(!_verify, "this method sould not be called for verification");
kvn@3651 289 PhaseGVN* igvn = _igvn;
kvn@3651 290 uint n_idx = n->_idx;
kvn@3651 291 PointsToNode* n_ptn = ptnode_adr(n_idx);
kvn@3651 292 if (n_ptn != NULL)
kvn@3651 293 return; // No need to redefine PointsTo node during first iteration.
kvn@3651 294
kvn@3651 295 if (n->is_Call()) {
kvn@3651 296 // Arguments to allocation and locking don't escape.
kvn@3651 297 if (n->is_AbstractLock()) {
kvn@3651 298 // Put Lock and Unlock nodes on IGVN worklist to process them during
kvn@3651 299 // first IGVN optimization when escape information is still available.
kvn@3651 300 record_for_optimizer(n);
kvn@3651 301 } else if (n->is_Allocate()) {
kvn@3651 302 add_call_node(n->as_Call());
kvn@3651 303 record_for_optimizer(n);
kvn@3651 304 } else {
kvn@3651 305 if (n->is_CallStaticJava()) {
kvn@3651 306 const char* name = n->as_CallStaticJava()->_name;
kvn@3651 307 if (name != NULL && strcmp(name, "uncommon_trap") == 0)
kvn@3651 308 return; // Skip uncommon traps
kvn@3651 309 }
kvn@3651 310 // Don't mark as processed since call's arguments have to be processed.
kvn@3651 311 delayed_worklist->push(n);
kvn@3651 312 // Check if a call returns an object.
kvn@3651 313 if (n->as_Call()->returns_pointer() &&
kvn@3651 314 n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
kvn@3651 315 add_call_node(n->as_Call());
kvn@3651 316 }
kvn@3651 317 }
kvn@3651 318 return;
kvn@3651 319 }
kvn@3651 320 // Put this check here to process call arguments since some call nodes
kvn@3651 321 // point to phantom_obj.
kvn@3651 322 if (n_ptn == phantom_obj || n_ptn == null_obj)
kvn@3651 323 return; // Skip predefined nodes.
kvn@3651 324
kvn@3651 325 int opcode = n->Opcode();
kvn@3651 326 switch (opcode) {
kvn@3651 327 case Op_AddP: {
kvn@3651 328 Node* base = get_addp_base(n);
kvn@3651 329 PointsToNode* ptn_base = ptnode_adr(base->_idx);
kvn@3651 330 // Field nodes are created for all field types. They are used in
kvn@3651 331 // adjust_scalar_replaceable_state() and split_unique_types().
kvn@3651 332 // Note, non-oop fields will have only base edges in Connection
kvn@3651 333 // Graph because such fields are not used for oop loads and stores.
kvn@3651 334 int offset = address_offset(n, igvn);
kvn@3651 335 add_field(n, PointsToNode::NoEscape, offset);
kvn@3651 336 if (ptn_base == NULL) {
kvn@3651 337 delayed_worklist->push(n); // Process it later.
kvn@3651 338 } else {
kvn@3651 339 n_ptn = ptnode_adr(n_idx);
kvn@3651 340 add_base(n_ptn->as_Field(), ptn_base);
kvn@3651 341 }
kvn@3651 342 break;
kvn@3651 343 }
kvn@3651 344 case Op_CastX2P: {
kvn@3651 345 map_ideal_node(n, phantom_obj);
kvn@3651 346 break;
kvn@3651 347 }
kvn@3651 348 case Op_CastPP:
kvn@3651 349 case Op_CheckCastPP:
kvn@3651 350 case Op_EncodeP:
kvn@3651 351 case Op_DecodeN: {
kvn@3651 352 add_local_var_and_edge(n, PointsToNode::NoEscape,
kvn@3651 353 n->in(1), delayed_worklist);
kvn@3651 354 break;
kvn@3651 355 }
kvn@3651 356 case Op_CMoveP: {
kvn@3651 357 add_local_var(n, PointsToNode::NoEscape);
kvn@3651 358 // Do not add edges during first iteration because some could be
kvn@3651 359 // not defined yet.
kvn@3651 360 delayed_worklist->push(n);
kvn@3651 361 break;
kvn@3651 362 }
kvn@3651 363 case Op_ConP:
kvn@3651 364 case Op_ConN: {
kvn@3651 365 // assume all oop constants globally escape except for null
kvn@3651 366 PointsToNode::EscapeState es;
kvn@3651 367 if (igvn->type(n) == TypePtr::NULL_PTR ||
kvn@3651 368 igvn->type(n) == TypeNarrowOop::NULL_PTR) {
kvn@3651 369 es = PointsToNode::NoEscape;
kvn@3651 370 } else {
kvn@3651 371 es = PointsToNode::GlobalEscape;
kvn@3651 372 }
kvn@3651 373 add_java_object(n, es);
kvn@3651 374 break;
kvn@3651 375 }
kvn@3651 376 case Op_CreateEx: {
kvn@3651 377 // assume that all exception objects globally escape
kvn@3651 378 add_java_object(n, PointsToNode::GlobalEscape);
kvn@3651 379 break;
kvn@3651 380 }
kvn@3651 381 case Op_LoadKlass:
kvn@3651 382 case Op_LoadNKlass: {
kvn@3651 383 // Unknown class is loaded
kvn@3651 384 map_ideal_node(n, phantom_obj);
kvn@3651 385 break;
kvn@3651 386 }
kvn@3651 387 case Op_LoadP:
kvn@3651 388 case Op_LoadN:
kvn@3651 389 case Op_LoadPLocked: {
kvn@3651 390 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
kvn@3651 391 // ThreadLocal has RawPrt type.
kvn@3651 392 const Type* t = igvn->type(n);
kvn@3651 393 if (t->make_ptr() != NULL) {
kvn@3651 394 Node* adr = n->in(MemNode::Address);
kvn@3651 395 #ifdef ASSERT
kvn@3651 396 if (!adr->is_AddP()) {
kvn@3651 397 assert(igvn->type(adr)->isa_rawptr(), "sanity");
kvn@3651 398 } else {
kvn@3651 399 assert((ptnode_adr(adr->_idx) == NULL ||
kvn@3651 400 ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
kvn@3651 401 }
kvn@3651 402 #endif
kvn@3651 403 add_local_var_and_edge(n, PointsToNode::NoEscape,
kvn@3651 404 adr, delayed_worklist);
kvn@3651 405 }
kvn@3651 406 break;
kvn@3651 407 }
kvn@3651 408 case Op_Parm: {
kvn@3651 409 map_ideal_node(n, phantom_obj);
kvn@3651 410 break;
kvn@3651 411 }
kvn@3651 412 case Op_PartialSubtypeCheck: {
kvn@3651 413 // Produces Null or notNull and is used in only in CmpP so
kvn@3651 414 // phantom_obj could be used.
kvn@3651 415 map_ideal_node(n, phantom_obj); // Result is unknown
kvn@3651 416 break;
kvn@3651 417 }
kvn@3651 418 case Op_Phi: {
kvn@3651 419 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
kvn@3651 420 // ThreadLocal has RawPrt type.
kvn@3651 421 const Type* t = n->as_Phi()->type();
kvn@3651 422 if (t->make_ptr() != NULL) {
kvn@3651 423 add_local_var(n, PointsToNode::NoEscape);
kvn@3651 424 // Do not add edges during first iteration because some could be
kvn@3651 425 // not defined yet.
kvn@3651 426 delayed_worklist->push(n);
kvn@3651 427 }
kvn@3651 428 break;
kvn@3651 429 }
kvn@3651 430 case Op_Proj: {
kvn@3651 431 // we are only interested in the oop result projection from a call
kvn@3651 432 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
kvn@3651 433 n->in(0)->as_Call()->returns_pointer()) {
kvn@3651 434 add_local_var_and_edge(n, PointsToNode::NoEscape,
kvn@3651 435 n->in(0), delayed_worklist);
kvn@3651 436 }
kvn@3651 437 break;
kvn@3651 438 }
kvn@3651 439 case Op_Rethrow: // Exception object escapes
kvn@3651 440 case Op_Return: {
kvn@3651 441 if (n->req() > TypeFunc::Parms &&
kvn@3651 442 igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
kvn@3651 443 // Treat Return value as LocalVar with GlobalEscape escape state.
kvn@3651 444 add_local_var_and_edge(n, PointsToNode::GlobalEscape,
kvn@3651 445 n->in(TypeFunc::Parms), delayed_worklist);
kvn@3651 446 }
kvn@3651 447 break;
kvn@3651 448 }
kvn@3651 449 case Op_StoreP:
kvn@3651 450 case Op_StoreN:
kvn@3651 451 case Op_StorePConditional:
kvn@3651 452 case Op_CompareAndSwapP:
kvn@3651 453 case Op_CompareAndSwapN: {
kvn@3651 454 Node* adr = n->in(MemNode::Address);
kvn@3651 455 const Type *adr_type = igvn->type(adr);
kvn@3651 456 adr_type = adr_type->make_ptr();
kvn@3651 457 if (adr_type->isa_oopptr() ||
kvn@3651 458 (opcode == Op_StoreP || opcode == Op_StoreN) &&
kvn@3651 459 (adr_type == TypeRawPtr::NOTNULL &&
kvn@3651 460 adr->in(AddPNode::Address)->is_Proj() &&
kvn@3651 461 adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
kvn@3651 462 delayed_worklist->push(n); // Process it later.
kvn@3651 463 #ifdef ASSERT
kvn@3651 464 assert(adr->is_AddP(), "expecting an AddP");
kvn@3651 465 if (adr_type == TypeRawPtr::NOTNULL) {
kvn@3651 466 // Verify a raw address for a store captured by Initialize node.
kvn@3651 467 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@3651 468 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@3651 469 }
kvn@3651 470 } else {
kvn@3651 471 // Ignore copy the displaced header to the BoxNode (OSR compilation).
kvn@3651 472 if (adr->is_BoxLock())
kvn@3651 473 break;
kvn@3651 474
kvn@3651 475 if (!adr->is_AddP()) {
kvn@3651 476 n->dump(1);
kvn@3651 477 assert(adr->is_AddP(), "expecting an AddP");
kvn@3651 478 }
kvn@3651 479 // Ignore G1 barrier's stores.
kvn@3651 480 if (!UseG1GC || (opcode != Op_StoreP) ||
kvn@3651 481 (adr_type != TypeRawPtr::BOTTOM)) {
kvn@3651 482 n->dump(1);
kvn@3651 483 assert(false, "not G1 barrier raw StoreP");
kvn@3651 484 }
kvn@3651 485 #endif
kvn@3651 486 }
kvn@3651 487 break;
kvn@3651 488 }
kvn@3651 489 case Op_AryEq:
kvn@3651 490 case Op_StrComp:
kvn@3651 491 case Op_StrEquals:
kvn@3651 492 case Op_StrIndexOf: {
kvn@3651 493 add_local_var(n, PointsToNode::ArgEscape);
kvn@3651 494 delayed_worklist->push(n); // Process it later.
kvn@3651 495 break;
kvn@3651 496 }
kvn@3651 497 case Op_ThreadLocal: {
kvn@3651 498 add_java_object(n, PointsToNode::ArgEscape);
kvn@3651 499 break;
kvn@3651 500 }
kvn@3651 501 default:
kvn@3651 502 ; // Do nothing for nodes not related to EA.
kvn@3651 503 }
kvn@3651 504 return;
kvn@3651 505 }
kvn@3651 506
kvn@3651 507 #ifdef ASSERT
kvn@3651 508 #define ELSE_FAIL(name) \
kvn@3651 509 /* Should not be called for not pointer type. */ \
kvn@3651 510 n->dump(1); \
kvn@3651 511 assert(false, name); \
kvn@3651 512 break;
kvn@3651 513 #else
kvn@3651 514 #define ELSE_FAIL(name) \
kvn@3651 515 break;
kvn@3651 516 #endif
kvn@3651 517
kvn@3651 518 // Add final simple edges to graph.
kvn@3651 519 void ConnectionGraph::add_final_edges(Node *n) {
kvn@3651 520 PointsToNode* n_ptn = ptnode_adr(n->_idx);
kvn@3651 521 #ifdef ASSERT
kvn@3651 522 if (_verify && n_ptn->is_JavaObject())
kvn@3651 523 return; // This method does not change graph for JavaObject.
kvn@3651 524 #endif
kvn@3651 525
kvn@3651 526 if (n->is_Call()) {
kvn@3651 527 process_call_arguments(n->as_Call());
kvn@3651 528 return;
kvn@3651 529 }
kvn@3651 530 assert(n->is_Store() || n->is_LoadStore() ||
kvn@3651 531 (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
kvn@3651 532 "node should be registered already");
kvn@3651 533 int opcode = n->Opcode();
kvn@3651 534 switch (opcode) {
kvn@3651 535 case Op_AddP: {
kvn@3651 536 Node* base = get_addp_base(n);
kvn@3651 537 PointsToNode* ptn_base = ptnode_adr(base->_idx);
kvn@3651 538 assert(ptn_base != NULL, "field's base should be registered");
kvn@3651 539 add_base(n_ptn->as_Field(), ptn_base);
kvn@3651 540 break;
kvn@3651 541 }
kvn@3651 542 case Op_CastPP:
kvn@3651 543 case Op_CheckCastPP:
kvn@3651 544 case Op_EncodeP:
kvn@3651 545 case Op_DecodeN: {
kvn@3651 546 add_local_var_and_edge(n, PointsToNode::NoEscape,
kvn@3651 547 n->in(1), NULL);
kvn@3651 548 break;
kvn@3651 549 }
kvn@3651 550 case Op_CMoveP: {
kvn@3651 551 for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
kvn@3651 552 Node* in = n->in(i);
kvn@3651 553 if (in == NULL)
kvn@3651 554 continue; // ignore NULL
kvn@3651 555 Node* uncast_in = in->uncast();
kvn@3651 556 if (uncast_in->is_top() || uncast_in == n)
kvn@3651 557 continue; // ignore top or inputs which go back this node
kvn@3651 558 PointsToNode* ptn = ptnode_adr(in->_idx);
kvn@3651 559 assert(ptn != NULL, "node should be registered");
kvn@3651 560 add_edge(n_ptn, ptn);
kvn@3651 561 }
kvn@3651 562 break;
kvn@3651 563 }
kvn@3651 564 case Op_LoadP:
kvn@3651 565 case Op_LoadN:
kvn@3651 566 case Op_LoadPLocked: {
kvn@3651 567 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
kvn@3651 568 // ThreadLocal has RawPrt type.
kvn@3651 569 const Type* t = _igvn->type(n);
kvn@3651 570 if (t->make_ptr() != NULL) {
kvn@3651 571 Node* adr = n->in(MemNode::Address);
kvn@3651 572 add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
kvn@3651 573 break;
kvn@3651 574 }
kvn@3651 575 ELSE_FAIL("Op_LoadP");
kvn@3651 576 }
kvn@3651 577 case Op_Phi: {
kvn@3651 578 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
kvn@3651 579 // ThreadLocal has RawPrt type.
kvn@3651 580 const Type* t = n->as_Phi()->type();
kvn@3651 581 if (t->make_ptr() != NULL) {
kvn@3651 582 for (uint i = 1; i < n->req(); i++) {
kvn@3651 583 Node* in = n->in(i);
kvn@3651 584 if (in == NULL)
kvn@3651 585 continue; // ignore NULL
kvn@3651 586 Node* uncast_in = in->uncast();
kvn@3651 587 if (uncast_in->is_top() || uncast_in == n)
kvn@3651 588 continue; // ignore top or inputs which go back this node
kvn@3651 589 PointsToNode* ptn = ptnode_adr(in->_idx);
kvn@3651 590 assert(ptn != NULL, "node should be registered");
kvn@3651 591 add_edge(n_ptn, ptn);
kvn@3651 592 }
kvn@3651 593 break;
kvn@3651 594 }
kvn@3651 595 ELSE_FAIL("Op_Phi");
kvn@3651 596 }
kvn@3651 597 case Op_Proj: {
kvn@3651 598 // we are only interested in the oop result projection from a call
kvn@3651 599 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
kvn@3651 600 n->in(0)->as_Call()->returns_pointer()) {
kvn@3651 601 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
kvn@3651 602 break;
kvn@3651 603 }
kvn@3651 604 ELSE_FAIL("Op_Proj");
kvn@3651 605 }
kvn@3651 606 case Op_Rethrow: // Exception object escapes
kvn@3651 607 case Op_Return: {
kvn@3651 608 if (n->req() > TypeFunc::Parms &&
kvn@3651 609 _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
kvn@3651 610 // Treat Return value as LocalVar with GlobalEscape escape state.
kvn@3651 611 add_local_var_and_edge(n, PointsToNode::GlobalEscape,
kvn@3651 612 n->in(TypeFunc::Parms), NULL);
kvn@3651 613 break;
kvn@3651 614 }
kvn@3651 615 ELSE_FAIL("Op_Return");
kvn@3651 616 }
kvn@3651 617 case Op_StoreP:
kvn@3651 618 case Op_StoreN:
kvn@3651 619 case Op_StorePConditional:
kvn@3651 620 case Op_CompareAndSwapP:
kvn@3651 621 case Op_CompareAndSwapN: {
kvn@3651 622 Node* adr = n->in(MemNode::Address);
kvn@3651 623 const Type *adr_type = _igvn->type(adr);
kvn@3651 624 adr_type = adr_type->make_ptr();
kvn@3651 625 if (adr_type->isa_oopptr() ||
kvn@3651 626 (opcode == Op_StoreP || opcode == Op_StoreN) &&
kvn@3651 627 (adr_type == TypeRawPtr::NOTNULL &&
kvn@3651 628 adr->in(AddPNode::Address)->is_Proj() &&
kvn@3651 629 adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
kvn@3651 630 // Point Address to Value
kvn@3651 631 PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
kvn@3651 632 assert(adr_ptn != NULL &&
kvn@3651 633 adr_ptn->as_Field()->is_oop(), "node should be registered");
kvn@3651 634 Node *val = n->in(MemNode::ValueIn);
kvn@3651 635 PointsToNode* ptn = ptnode_adr(val->_idx);
kvn@3651 636 assert(ptn != NULL, "node should be registered");
kvn@3651 637 add_edge(adr_ptn, ptn);
kvn@3651 638 break;
kvn@3651 639 }
kvn@3651 640 ELSE_FAIL("Op_StoreP");
kvn@3651 641 }
kvn@3651 642 case Op_AryEq:
kvn@3651 643 case Op_StrComp:
kvn@3651 644 case Op_StrEquals:
kvn@3651 645 case Op_StrIndexOf: {
kvn@3651 646 // char[] arrays passed to string intrinsic do not escape but
kvn@3651 647 // they are not scalar replaceable. Adjust escape state for them.
kvn@3651 648 // Start from in(2) edge since in(1) is memory edge.
kvn@3651 649 for (uint i = 2; i < n->req(); i++) {
kvn@3651 650 Node* adr = n->in(i);
kvn@3651 651 const Type* at = _igvn->type(adr);
kvn@3651 652 if (!adr->is_top() && at->isa_ptr()) {
kvn@3651 653 assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
kvn@3651 654 at->isa_ptr() != NULL, "expecting a pointer");
kvn@3651 655 if (adr->is_AddP()) {
kvn@3651 656 adr = get_addp_base(adr);
kvn@3651 657 }
kvn@3651 658 PointsToNode* ptn = ptnode_adr(adr->_idx);
kvn@3651 659 assert(ptn != NULL, "node should be registered");
kvn@3651 660 add_edge(n_ptn, ptn);
kvn@3651 661 }
kvn@3651 662 }
kvn@3651 663 break;
kvn@3651 664 }
kvn@3651 665 default: {
kvn@3651 666 // This method should be called only for EA specific nodes which may
kvn@3651 667 // miss some edges when they were created.
kvn@3651 668 #ifdef ASSERT
kvn@3651 669 n->dump(1);
kvn@3651 670 #endif
kvn@3651 671 guarantee(false, "unknown node");
kvn@3651 672 }
kvn@3651 673 }
kvn@3651 674 return;
kvn@3651 675 }
kvn@3651 676
kvn@3651 677 void ConnectionGraph::add_call_node(CallNode* call) {
kvn@3651 678 assert(call->returns_pointer(), "only for call which returns pointer");
kvn@3651 679 uint call_idx = call->_idx;
kvn@3651 680 if (call->is_Allocate()) {
kvn@3651 681 Node* k = call->in(AllocateNode::KlassNode);
kvn@3651 682 const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
kvn@3651 683 assert(kt != NULL, "TypeKlassPtr required.");
kvn@3651 684 ciKlass* cik = kt->klass();
kvn@3651 685 PointsToNode::EscapeState es = PointsToNode::NoEscape;
kvn@3651 686 bool scalar_replaceable = true;
kvn@3651 687 if (call->is_AllocateArray()) {
kvn@3651 688 if (!cik->is_array_klass()) { // StressReflectiveCode
kvn@3651 689 es = PointsToNode::GlobalEscape;
kvn@3651 690 } else {
kvn@3651 691 int length = call->in(AllocateNode::ALength)->find_int_con(-1);
kvn@3651 692 if (length < 0 || length > EliminateAllocationArraySizeLimit) {
kvn@3651 693 // Not scalar replaceable if the length is not constant or too big.
kvn@3651 694 scalar_replaceable = false;
kvn@3651 695 }
kvn@3651 696 }
kvn@3651 697 } else { // Allocate instance
kvn@3651 698 if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
kvn@3651 699 !cik->is_instance_klass() || // StressReflectiveCode
kvn@3651 700 cik->as_instance_klass()->has_finalizer()) {
kvn@3651 701 es = PointsToNode::GlobalEscape;
kvn@3651 702 }
kvn@3651 703 }
kvn@3651 704 add_java_object(call, es);
kvn@3651 705 PointsToNode* ptn = ptnode_adr(call_idx);
kvn@3651 706 if (!scalar_replaceable && ptn->scalar_replaceable()) {
kvn@3651 707 ptn->set_scalar_replaceable(false);
kvn@3651 708 }
kvn@3651 709 } else if (call->is_CallStaticJava()) {
kvn@3651 710 // Call nodes could be different types:
kvn@3651 711 //
kvn@3651 712 // 1. CallDynamicJavaNode (what happened during call is unknown):
kvn@3651 713 //
kvn@3651 714 // - mapped to GlobalEscape JavaObject node if oop is returned;
kvn@3651 715 //
kvn@3651 716 // - all oop arguments are escaping globally;
kvn@3651 717 //
kvn@3651 718 // 2. CallStaticJavaNode (execute bytecode analysis if possible):
kvn@3651 719 //
kvn@3651 720 // - the same as CallDynamicJavaNode if can't do bytecode analysis;
kvn@3651 721 //
kvn@3651 722 // - mapped to GlobalEscape JavaObject node if unknown oop is returned;
kvn@3651 723 // - mapped to NoEscape JavaObject node if non-escaping object allocated
kvn@3651 724 // during call is returned;
kvn@3651 725 // - mapped to ArgEscape LocalVar node pointed to object arguments
kvn@3651 726 // which are returned and does not escape during call;
kvn@3651 727 //
kvn@3651 728 // - oop arguments escaping status is defined by bytecode analysis;
kvn@3651 729 //
kvn@3651 730 // For a static call, we know exactly what method is being called.
kvn@3651 731 // Use bytecode estimator to record whether the call's return value escapes.
kvn@3651 732 ciMethod* meth = call->as_CallJava()->method();
kvn@3651 733 if (meth == NULL) {
kvn@3651 734 const char* name = call->as_CallStaticJava()->_name;
kvn@3651 735 assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
kvn@3651 736 // Returns a newly allocated unescaped object.
kvn@3651 737 add_java_object(call, PointsToNode::NoEscape);
kvn@3651 738 ptnode_adr(call_idx)->set_scalar_replaceable(false);
kvn@3651 739 } else {
kvn@3651 740 BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
kvn@3651 741 call_analyzer->copy_dependencies(_compile->dependencies());
kvn@3651 742 if (call_analyzer->is_return_allocated()) {
kvn@3651 743 // Returns a newly allocated unescaped object, simply
kvn@3651 744 // update dependency information.
kvn@3651 745 // Mark it as NoEscape so that objects referenced by
kvn@3651 746 // it's fields will be marked as NoEscape at least.
kvn@3651 747 add_java_object(call, PointsToNode::NoEscape);
kvn@3651 748 ptnode_adr(call_idx)->set_scalar_replaceable(false);
kvn@3651 749 } else {
kvn@3651 750 // Determine whether any arguments are returned.
kvn@3651 751 const TypeTuple* d = call->tf()->domain();
kvn@3651 752 bool ret_arg = false;
kvn@3651 753 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@3651 754 if (d->field_at(i)->isa_ptr() != NULL &&
kvn@3651 755 call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
kvn@3651 756 ret_arg = true;
kvn@3651 757 break;
kvn@3651 758 }
kvn@3651 759 }
kvn@3651 760 if (ret_arg) {
kvn@3651 761 add_local_var(call, PointsToNode::ArgEscape);
kvn@3651 762 } else {
kvn@3651 763 // Returns unknown object.
kvn@3651 764 map_ideal_node(call, phantom_obj);
kvn@3651 765 }
kvn@3651 766 }
kvn@3651 767 }
kvn@3651 768 } else {
kvn@3651 769 // An other type of call, assume the worst case:
kvn@3651 770 // returned value is unknown and globally escapes.
kvn@3651 771 assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
kvn@3651 772 map_ideal_node(call, phantom_obj);
kvn@3651 773 }
kvn@3651 774 }
kvn@3651 775
kvn@3651 776 void ConnectionGraph::process_call_arguments(CallNode *call) {
kvn@3651 777 bool is_arraycopy = false;
kvn@3651 778 switch (call->Opcode()) {
kvn@3651 779 #ifdef ASSERT
kvn@3651 780 case Op_Allocate:
kvn@3651 781 case Op_AllocateArray:
kvn@3651 782 case Op_Lock:
kvn@3651 783 case Op_Unlock:
kvn@3651 784 assert(false, "should be done already");
kvn@3651 785 break;
kvn@3651 786 #endif
kvn@3651 787 case Op_CallLeafNoFP:
kvn@3651 788 is_arraycopy = (call->as_CallLeaf()->_name != NULL &&
kvn@3651 789 strstr(call->as_CallLeaf()->_name, "arraycopy") != 0);
kvn@3651 790 // fall through
kvn@3651 791 case Op_CallLeaf: {
kvn@3651 792 // Stub calls, objects do not escape but they are not scale replaceable.
kvn@3651 793 // Adjust escape state for outgoing arguments.
kvn@3651 794 const TypeTuple * d = call->tf()->domain();
kvn@3651 795 bool src_has_oops = false;
kvn@3651 796 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@3651 797 const Type* at = d->field_at(i);
kvn@3651 798 Node *arg = call->in(i);
kvn@3651 799 const Type *aat = _igvn->type(arg);
kvn@3651 800 if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
kvn@3651 801 continue;
kvn@3651 802 if (arg->is_AddP()) {
kvn@3651 803 //
kvn@3651 804 // The inline_native_clone() case when the arraycopy stub is called
kvn@3651 805 // after the allocation before Initialize and CheckCastPP nodes.
kvn@3651 806 // Or normal arraycopy for object arrays case.
kvn@3651 807 //
kvn@3651 808 // Set AddP's base (Allocate) as not scalar replaceable since
kvn@3651 809 // pointer to the base (with offset) is passed as argument.
kvn@3651 810 //
kvn@3651 811 arg = get_addp_base(arg);
kvn@3651 812 }
kvn@3651 813 PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
kvn@3651 814 assert(arg_ptn != NULL, "should be registered");
kvn@3651 815 PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
kvn@3651 816 if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
kvn@3651 817 assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
kvn@3651 818 aat->isa_ptr() != NULL, "expecting an Ptr");
kvn@3651 819 bool arg_has_oops = aat->isa_oopptr() &&
kvn@3651 820 (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
kvn@3651 821 (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
kvn@3651 822 if (i == TypeFunc::Parms) {
kvn@3651 823 src_has_oops = arg_has_oops;
kvn@3651 824 }
kvn@3651 825 //
kvn@3651 826 // src or dst could be j.l.Object when other is basic type array:
kvn@3651 827 //
kvn@3651 828 // arraycopy(char[],0,Object*,0,size);
kvn@3651 829 // arraycopy(Object*,0,char[],0,size);
kvn@3651 830 //
kvn@3651 831 // Don't add edges in such cases.
kvn@3651 832 //
kvn@3651 833 bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
kvn@3651 834 arg_has_oops && (i > TypeFunc::Parms);
kvn@3651 835 #ifdef ASSERT
kvn@3651 836 if (!(is_arraycopy ||
kvn@3651 837 call->as_CallLeaf()->_name != NULL &&
kvn@3651 838 (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre") == 0 ||
kvn@3651 839 strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ))
kvn@3651 840 ) {
kvn@3651 841 call->dump();
kvn@3651 842 assert(false, "EA: unexpected CallLeaf");
kvn@3651 843 }
kvn@3651 844 #endif
kvn@3651 845 // Always process arraycopy's destination object since
kvn@3651 846 // we need to add all possible edges to references in
kvn@3651 847 // source object.
kvn@3651 848 if (arg_esc >= PointsToNode::ArgEscape &&
kvn@3651 849 !arg_is_arraycopy_dest) {
kvn@3651 850 continue;
kvn@3651 851 }
kvn@3651 852 set_escape_state(arg_ptn, PointsToNode::ArgEscape);
kvn@3651 853 if (arg_is_arraycopy_dest) {
kvn@3651 854 Node* src = call->in(TypeFunc::Parms);
kvn@3651 855 if (src->is_AddP()) {
kvn@3651 856 src = get_addp_base(src);
kvn@3651 857 }
kvn@3651 858 PointsToNode* src_ptn = ptnode_adr(src->_idx);
kvn@3651 859 assert(src_ptn != NULL, "should be registered");
kvn@3651 860 if (arg_ptn != src_ptn) {
kvn@3651 861 // Special arraycopy edge:
kvn@3651 862 // A destination object's field can't have the source object
kvn@3651 863 // as base since objects escape states are not related.
kvn@3651 864 // Only escape state of destination object's fields affects
kvn@3651 865 // escape state of fields in source object.
kvn@3651 866 add_arraycopy(call, PointsToNode::ArgEscape, src_ptn, arg_ptn);
kvn@3651 867 }
kvn@3651 868 }
kvn@3651 869 }
kvn@3651 870 }
kvn@3651 871 break;
kvn@3651 872 }
kvn@3651 873 case Op_CallStaticJava: {
kvn@3651 874 // For a static call, we know exactly what method is being called.
kvn@3651 875 // Use bytecode estimator to record the call's escape affects
kvn@3651 876 #ifdef ASSERT
kvn@3651 877 const char* name = call->as_CallStaticJava()->_name;
kvn@3651 878 assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
kvn@3651 879 #endif
kvn@3651 880 ciMethod* meth = call->as_CallJava()->method();
kvn@3651 881 BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
kvn@3651 882 // fall-through if not a Java method or no analyzer information
kvn@3651 883 if (call_analyzer != NULL) {
kvn@3651 884 PointsToNode* call_ptn = ptnode_adr(call->_idx);
kvn@3651 885 const TypeTuple* d = call->tf()->domain();
kvn@3651 886 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@3651 887 const Type* at = d->field_at(i);
kvn@3651 888 int k = i - TypeFunc::Parms;
kvn@3651 889 Node* arg = call->in(i);
kvn@3651 890 PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
kvn@3651 891 if (at->isa_ptr() != NULL &&
kvn@3651 892 call_analyzer->is_arg_returned(k)) {
kvn@3651 893 // The call returns arguments.
kvn@3651 894 if (call_ptn != NULL) { // Is call's result used?
kvn@3651 895 assert(call_ptn->is_LocalVar(), "node should be registered");
kvn@3651 896 assert(arg_ptn != NULL, "node should be registered");
kvn@3651 897 add_edge(call_ptn, arg_ptn);
kvn@3651 898 }
kvn@3651 899 }
kvn@3651 900 if (at->isa_oopptr() != NULL &&
kvn@3651 901 arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
kvn@3651 902 if (!call_analyzer->is_arg_stack(k)) {
kvn@3651 903 // The argument global escapes
kvn@3651 904 set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
kvn@3651 905 } else {
kvn@3651 906 set_escape_state(arg_ptn, PointsToNode::ArgEscape);
kvn@3651 907 if (!call_analyzer->is_arg_local(k)) {
kvn@3651 908 // The argument itself doesn't escape, but any fields might
kvn@3651 909 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
kvn@3651 910 }
kvn@3651 911 }
kvn@3651 912 }
kvn@3651 913 }
kvn@3651 914 if (call_ptn != NULL && call_ptn->is_LocalVar()) {
kvn@3651 915 // The call returns arguments.
kvn@3651 916 assert(call_ptn->edge_count() > 0, "sanity");
kvn@3651 917 if (!call_analyzer->is_return_local()) {
kvn@3651 918 // Returns also unknown object.
kvn@3651 919 add_edge(call_ptn, phantom_obj);
kvn@3651 920 }
kvn@3651 921 }
kvn@3651 922 break;
kvn@3651 923 }
kvn@3651 924 }
kvn@3651 925 default: {
kvn@3651 926 // Fall-through here if not a Java method or no analyzer information
kvn@3651 927 // or some other type of call, assume the worst case: all arguments
kvn@3651 928 // globally escape.
kvn@3651 929 const TypeTuple* d = call->tf()->domain();
kvn@3651 930 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@3651 931 const Type* at = d->field_at(i);
kvn@3651 932 if (at->isa_oopptr() != NULL) {
kvn@3651 933 Node* arg = call->in(i);
kvn@3651 934 if (arg->is_AddP()) {
kvn@3651 935 arg = get_addp_base(arg);
kvn@3651 936 }
kvn@3651 937 assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
kvn@3651 938 set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
kvn@3651 939 }
kvn@3651 940 }
kvn@3651 941 }
kvn@3651 942 }
kvn@3651 943 }
kvn@3651 944
kvn@3651 945
kvn@3651 946 // Finish Graph construction.
kvn@3651 947 bool ConnectionGraph::complete_connection_graph(
kvn@3651 948 GrowableArray<PointsToNode*>& ptnodes_worklist,
kvn@3651 949 GrowableArray<JavaObjectNode*>& non_escaped_worklist,
kvn@3651 950 GrowableArray<JavaObjectNode*>& java_objects_worklist,
kvn@3651 951 GrowableArray<FieldNode*>& oop_fields_worklist) {
kvn@3651 952 // Normally only 1-3 passes needed to build Connection Graph depending
kvn@3651 953 // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
kvn@3651 954 // Set limit to 20 to catch situation when something did go wrong and
kvn@3651 955 // bailout Escape Analysis.
kvn@3651 956 // Also limit build time to 30 sec (60 in debug VM).
kvn@3651 957 #define CG_BUILD_ITER_LIMIT 20
kvn@3651 958 #ifdef ASSERT
kvn@3651 959 #define CG_BUILD_TIME_LIMIT 60.0
kvn@3651 960 #else
kvn@3651 961 #define CG_BUILD_TIME_LIMIT 30.0
kvn@3651 962 #endif
kvn@3651 963
kvn@3651 964 // Propagate GlobalEscape and ArgEscape escape states and check that
kvn@3651 965 // we still have non-escaping objects. The method pushs on _worklist
kvn@3651 966 // Field nodes which reference phantom_object.
kvn@3651 967 if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
kvn@3651 968 return false; // Nothing to do.
kvn@3651 969 }
kvn@3651 970 // Now propagate references to all JavaObject nodes.
kvn@3651 971 int java_objects_length = java_objects_worklist.length();
kvn@3651 972 elapsedTimer time;
kvn@3651 973 int new_edges = 1;
kvn@3651 974 int iterations = 0;
kvn@3651 975 do {
kvn@3651 976 while ((new_edges > 0) &&
kvn@3651 977 (iterations++ < CG_BUILD_ITER_LIMIT) &&
kvn@3651 978 (time.seconds() < CG_BUILD_TIME_LIMIT)) {
kvn@3651 979 time.start();
kvn@3651 980 new_edges = 0;
kvn@3651 981 // Propagate references to phantom_object for nodes pushed on _worklist
kvn@3651 982 // by find_non_escaped_objects() and find_field_value().
kvn@3651 983 new_edges += add_java_object_edges(phantom_obj, false);
kvn@3651 984 for (int next = 0; next < java_objects_length; ++next) {
kvn@3651 985 JavaObjectNode* ptn = java_objects_worklist.at(next);
kvn@3651 986 new_edges += add_java_object_edges(ptn, true);
kvn@3651 987 }
kvn@3651 988 if (new_edges > 0) {
kvn@3651 989 // Update escape states on each iteration if graph was updated.
kvn@3651 990 if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
kvn@3651 991 return false; // Nothing to do.
kvn@3651 992 }
kvn@3651 993 }
kvn@3651 994 time.stop();
kvn@3651 995 }
kvn@3651 996 if ((iterations < CG_BUILD_ITER_LIMIT) &&
kvn@3651 997 (time.seconds() < CG_BUILD_TIME_LIMIT)) {
kvn@3651 998 time.start();
kvn@3651 999 // Find fields which have unknown value.
kvn@3651 1000 int fields_length = oop_fields_worklist.length();
kvn@3651 1001 for (int next = 0; next < fields_length; next++) {
kvn@3651 1002 FieldNode* field = oop_fields_worklist.at(next);
kvn@3651 1003 if (field->edge_count() == 0) {
kvn@3651 1004 new_edges += find_field_value(field);
kvn@3651 1005 // This code may added new edges to phantom_object.
kvn@3651 1006 // Need an other cycle to propagate references to phantom_object.
kvn@3651 1007 }
kvn@3651 1008 }
kvn@3651 1009 time.stop();
kvn@3651 1010 } else {
kvn@3651 1011 new_edges = 0; // Bailout
kvn@3651 1012 }
kvn@3651 1013 } while (new_edges > 0);
kvn@3651 1014
kvn@3651 1015 // Bailout if passed limits.
kvn@3651 1016 if ((iterations >= CG_BUILD_ITER_LIMIT) ||
kvn@3651 1017 (time.seconds() >= CG_BUILD_TIME_LIMIT)) {
kvn@3651 1018 Compile* C = _compile;
kvn@3651 1019 if (C->log() != NULL) {
kvn@3651 1020 C->log()->begin_elem("connectionGraph_bailout reason='reached ");
kvn@3651 1021 C->log()->text("%s", (iterations >= CG_BUILD_ITER_LIMIT) ? "iterations" : "time");
kvn@3651 1022 C->log()->end_elem(" limit'");
kvn@3651 1023 }
kvn@3651 1024 assert(false, err_msg("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
kvn@3651 1025 time.seconds(), iterations, nodes_size(), ptnodes_worklist.length()));
kvn@3651 1026 // Possible infinite build_connection_graph loop,
kvn@3651 1027 // bailout (no changes to ideal graph were made).
kvn@3651 1028 return false;
kvn@3651 1029 }
kvn@3651 1030 #ifdef ASSERT
kvn@3651 1031 if (Verbose && PrintEscapeAnalysis) {
kvn@3651 1032 tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
kvn@3651 1033 iterations, nodes_size(), ptnodes_worklist.length());
kvn@3651 1034 }
kvn@3651 1035 #endif
kvn@3651 1036
kvn@3651 1037 #undef CG_BUILD_ITER_LIMIT
kvn@3651 1038 #undef CG_BUILD_TIME_LIMIT
kvn@3651 1039
kvn@3651 1040 // Find fields initialized by NULL for non-escaping Allocations.
kvn@3651 1041 int non_escaped_length = non_escaped_worklist.length();
kvn@3651 1042 for (int next = 0; next < non_escaped_length; next++) {
kvn@3651 1043 JavaObjectNode* ptn = non_escaped_worklist.at(next);
kvn@3651 1044 PointsToNode::EscapeState es = ptn->escape_state();
kvn@3651 1045 assert(es <= PointsToNode::ArgEscape, "sanity");
kvn@3651 1046 if (es == PointsToNode::NoEscape) {
kvn@3651 1047 if (find_init_values(ptn, null_obj, _igvn) > 0) {
kvn@3651 1048 // Adding references to NULL object does not change escape states
kvn@3651 1049 // since it does not escape. Also no fields are added to NULL object.
kvn@3651 1050 add_java_object_edges(null_obj, false);
kvn@3651 1051 }
kvn@3651 1052 }
kvn@3651 1053 Node* n = ptn->ideal_node();
kvn@3651 1054 if (n->is_Allocate()) {
kvn@3651 1055 // The object allocated by this Allocate node will never be
kvn@3651 1056 // seen by an other thread. Mark it so that when it is
kvn@3651 1057 // expanded no MemBarStoreStore is added.
kvn@3651 1058 InitializeNode* ini = n->as_Allocate()->initialization();
kvn@3651 1059 if (ini != NULL)
kvn@3651 1060 ini->set_does_not_escape();
kvn@3651 1061 }
kvn@3651 1062 }
kvn@3651 1063 return true; // Finished graph construction.
kvn@3651 1064 }
kvn@3651 1065
kvn@3651 1066 // Propagate GlobalEscape and ArgEscape escape states to all nodes
kvn@3651 1067 // and check that we still have non-escaping java objects.
kvn@3651 1068 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
kvn@3651 1069 GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
kvn@3651 1070 GrowableArray<PointsToNode*> escape_worklist;
kvn@3651 1071 // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
kvn@3651 1072 int ptnodes_length = ptnodes_worklist.length();
kvn@3651 1073 for (int next = 0; next < ptnodes_length; ++next) {
kvn@3651 1074 PointsToNode* ptn = ptnodes_worklist.at(next);
kvn@3651 1075 if (ptn->escape_state() >= PointsToNode::ArgEscape ||
kvn@3651 1076 ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
kvn@3651 1077 escape_worklist.push(ptn);
kvn@3651 1078 }
kvn@3651 1079 }
kvn@3651 1080 // Set escape states to referenced nodes (edges list).
kvn@3651 1081 while (escape_worklist.length() > 0) {
kvn@3651 1082 PointsToNode* ptn = escape_worklist.pop();
kvn@3651 1083 PointsToNode::EscapeState es = ptn->escape_state();
kvn@3651 1084 PointsToNode::EscapeState field_es = ptn->fields_escape_state();
kvn@3651 1085 if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
kvn@3651 1086 es >= PointsToNode::ArgEscape) {
kvn@3651 1087 // GlobalEscape or ArgEscape state of field means it has unknown value.
kvn@3651 1088 if (add_edge(ptn, phantom_obj)) {
kvn@3651 1089 // New edge was added
kvn@3651 1090 add_field_uses_to_worklist(ptn->as_Field());
kvn@3651 1091 }
kvn@3651 1092 }
kvn@3651 1093 for (EdgeIterator i(ptn); i.has_next(); i.next()) {
kvn@3651 1094 PointsToNode* e = i.get();
kvn@3651 1095 if (e->is_Arraycopy()) {
kvn@3651 1096 assert(ptn->arraycopy_dst(), "sanity");
kvn@3651 1097 // Propagate only fields escape state through arraycopy edge.
kvn@3651 1098 if (e->fields_escape_state() < field_es) {
kvn@3651 1099 set_fields_escape_state(e, field_es);
kvn@3651 1100 escape_worklist.push(e);
kvn@3651 1101 }
kvn@3651 1102 } else if (es >= field_es) {
kvn@3651 1103 // fields_escape_state is also set to 'es' if it is less than 'es'.
kvn@3651 1104 if (e->escape_state() < es) {
kvn@3651 1105 set_escape_state(e, es);
kvn@3651 1106 escape_worklist.push(e);
kvn@3651 1107 }
kvn@3651 1108 } else {
kvn@3651 1109 // Propagate field escape state.
kvn@3651 1110 bool es_changed = false;
kvn@3651 1111 if (e->fields_escape_state() < field_es) {
kvn@3651 1112 set_fields_escape_state(e, field_es);
kvn@3651 1113 es_changed = true;
kvn@3651 1114 }
kvn@3651 1115 if ((e->escape_state() < field_es) &&
kvn@3651 1116 e->is_Field() && ptn->is_JavaObject() &&
kvn@3651 1117 e->as_Field()->is_oop()) {
kvn@3651 1118 // Change escape state of referenced fileds.
kvn@3651 1119 set_escape_state(e, field_es);
kvn@3651 1120 es_changed = true;;
kvn@3651 1121 } else if (e->escape_state() < es) {
kvn@3651 1122 set_escape_state(e, es);
kvn@3651 1123 es_changed = true;;
kvn@3651 1124 }
kvn@3651 1125 if (es_changed) {
kvn@3651 1126 escape_worklist.push(e);
kvn@3651 1127 }
kvn@3651 1128 }
kvn@3651 1129 }
kvn@3651 1130 }
kvn@3651 1131 // Remove escaped objects from non_escaped list.
kvn@3651 1132 for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
kvn@3651 1133 JavaObjectNode* ptn = non_escaped_worklist.at(next);
kvn@3651 1134 if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
kvn@3651 1135 non_escaped_worklist.delete_at(next);
kvn@3651 1136 }
kvn@3651 1137 if (ptn->escape_state() == PointsToNode::NoEscape) {
kvn@3651 1138 // Find fields in non-escaped allocations which have unknown value.
kvn@3651 1139 find_init_values(ptn, phantom_obj, NULL);
kvn@3651 1140 }
kvn@3651 1141 }
kvn@3651 1142 return (non_escaped_worklist.length() > 0);
kvn@3651 1143 }
kvn@3651 1144
kvn@3651 1145 // Add all references to JavaObject node by walking over all uses.
kvn@3651 1146 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
kvn@3651 1147 int new_edges = 0;
kvn@3651 1148 if (populate_worklist) {
kvn@3651 1149 // Populate _worklist by uses of jobj's uses.
kvn@3651 1150 for (UseIterator i(jobj); i.has_next(); i.next()) {
kvn@3651 1151 PointsToNode* use = i.get();
kvn@3651 1152 if (use->is_Arraycopy())
kvn@3651 1153 continue;
kvn@3651 1154 add_uses_to_worklist(use);
kvn@3651 1155 if (use->is_Field() && use->as_Field()->is_oop()) {
kvn@3651 1156 // Put on worklist all field's uses (loads) and
kvn@3651 1157 // related field nodes (same base and offset).
kvn@3651 1158 add_field_uses_to_worklist(use->as_Field());
kvn@3651 1159 }
kvn@3651 1160 }
kvn@3651 1161 }
kvn@3651 1162 while(_worklist.length() > 0) {
kvn@3651 1163 PointsToNode* use = _worklist.pop();
kvn@3651 1164 if (PointsToNode::is_base_use(use)) {
kvn@3651 1165 // Add reference from jobj to field and from field to jobj (field's base).
kvn@3651 1166 use = PointsToNode::get_use_node(use)->as_Field();
kvn@3651 1167 if (add_base(use->as_Field(), jobj)) {
kvn@3651 1168 new_edges++;
kvn@3651 1169 }
kvn@3651 1170 continue;
kvn@3651 1171 }
kvn@3651 1172 assert(!use->is_JavaObject(), "sanity");
kvn@3651 1173 if (use->is_Arraycopy()) {
kvn@3651 1174 if (jobj == null_obj) // NULL object does not have field edges
kvn@3651 1175 continue;
kvn@3651 1176 // Added edge from Arraycopy node to arraycopy's source java object
kvn@3651 1177 if (add_edge(use, jobj)) {
kvn@3651 1178 jobj->set_arraycopy_src();
kvn@3651 1179 new_edges++;
kvn@3651 1180 }
kvn@3651 1181 // and stop here.
kvn@3651 1182 continue;
kvn@3651 1183 }
kvn@3651 1184 if (!add_edge(use, jobj))
kvn@3651 1185 continue; // No new edge added, there was such edge already.
kvn@3651 1186 new_edges++;
kvn@3651 1187 if (use->is_LocalVar()) {
kvn@3651 1188 add_uses_to_worklist(use);
kvn@3651 1189 if (use->arraycopy_dst()) {
kvn@3651 1190 for (EdgeIterator i(use); i.has_next(); i.next()) {
kvn@3651 1191 PointsToNode* e = i.get();
kvn@3651 1192 if (e->is_Arraycopy()) {
kvn@3651 1193 if (jobj == null_obj) // NULL object does not have field edges
kvn@3651 1194 continue;
kvn@3651 1195 // Add edge from arraycopy's destination java object to Arraycopy node.
kvn@3651 1196 if (add_edge(jobj, e)) {
kvn@3651 1197 new_edges++;
kvn@3651 1198 jobj->set_arraycopy_dst();
kvn@3651 1199 }
kvn@3651 1200 }
kvn@3651 1201 }
kvn@3651 1202 }
kvn@3651 1203 } else {
kvn@3651 1204 // Added new edge to stored in field values.
kvn@3651 1205 // Put on worklist all field's uses (loads) and
kvn@3651 1206 // related field nodes (same base and offset).
kvn@3651 1207 add_field_uses_to_worklist(use->as_Field());
kvn@3651 1208 }
kvn@3651 1209 }
kvn@3651 1210 return new_edges;
kvn@3651 1211 }
kvn@3651 1212
kvn@3651 1213 // Put on worklist all related field nodes.
kvn@3651 1214 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
kvn@3651 1215 assert(field->is_oop(), "sanity");
kvn@3651 1216 int offset = field->offset();
kvn@3651 1217 add_uses_to_worklist(field);
kvn@3651 1218 // Loop over all bases of this field and push on worklist Field nodes
kvn@3651 1219 // with the same offset and base (since they may reference the same field).
kvn@3651 1220 for (BaseIterator i(field); i.has_next(); i.next()) {
kvn@3651 1221 PointsToNode* base = i.get();
kvn@3651 1222 add_fields_to_worklist(field, base);
kvn@3651 1223 // Check if the base was source object of arraycopy and go over arraycopy's
kvn@3651 1224 // destination objects since values stored to a field of source object are
kvn@3651 1225 // accessable by uses (loads) of fields of destination objects.
kvn@3651 1226 if (base->arraycopy_src()) {
kvn@3651 1227 for (UseIterator j(base); j.has_next(); j.next()) {
kvn@3651 1228 PointsToNode* arycp = j.get();
kvn@3651 1229 if (arycp->is_Arraycopy()) {
kvn@3651 1230 for (UseIterator k(arycp); k.has_next(); k.next()) {
kvn@3651 1231 PointsToNode* abase = k.get();
kvn@3651 1232 if (abase->arraycopy_dst() && abase != base) {
kvn@3651 1233 // Look for the same arracopy reference.
kvn@3651 1234 add_fields_to_worklist(field, abase);
kvn@3651 1235 }
kvn@3651 1236 }
kvn@3651 1237 }
kvn@3651 1238 }
kvn@3651 1239 }
kvn@3651 1240 }
kvn@3651 1241 }
kvn@3651 1242
kvn@3651 1243 // Put on worklist all related field nodes.
kvn@3651 1244 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
kvn@3651 1245 int offset = field->offset();
kvn@3651 1246 if (base->is_LocalVar()) {
kvn@3651 1247 for (UseIterator j(base); j.has_next(); j.next()) {
kvn@3651 1248 PointsToNode* f = j.get();
kvn@3651 1249 if (PointsToNode::is_base_use(f)) { // Field
kvn@3651 1250 f = PointsToNode::get_use_node(f);
kvn@3651 1251 if (f == field || !f->as_Field()->is_oop())
kvn@3651 1252 continue;
kvn@3651 1253 int offs = f->as_Field()->offset();
kvn@3651 1254 if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
kvn@3651 1255 add_to_worklist(f);
kvn@3651 1256 }
kvn@3651 1257 }
kvn@3651 1258 }
kvn@3651 1259 } else {
kvn@3651 1260 assert(base->is_JavaObject(), "sanity");
kvn@3651 1261 if (// Skip phantom_object since it is only used to indicate that
kvn@3651 1262 // this field's content globally escapes.
kvn@3651 1263 (base != phantom_obj) &&
kvn@3651 1264 // NULL object node does not have fields.
kvn@3651 1265 (base != null_obj)) {
kvn@3651 1266 for (EdgeIterator i(base); i.has_next(); i.next()) {
kvn@3651 1267 PointsToNode* f = i.get();
kvn@3651 1268 // Skip arraycopy edge since store to destination object field
kvn@3651 1269 // does not update value in source object field.
kvn@3651 1270 if (f->is_Arraycopy()) {
kvn@3651 1271 assert(base->arraycopy_dst(), "sanity");
kvn@3651 1272 continue;
kvn@3651 1273 }
kvn@3651 1274 if (f == field || !f->as_Field()->is_oop())
kvn@3651 1275 continue;
kvn@3651 1276 int offs = f->as_Field()->offset();
kvn@3651 1277 if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
kvn@3651 1278 add_to_worklist(f);
kvn@3651 1279 }
kvn@3651 1280 }
kvn@3651 1281 }
kvn@3651 1282 }
kvn@3651 1283 }
kvn@3651 1284
kvn@3651 1285 // Find fields which have unknown value.
kvn@3651 1286 int ConnectionGraph::find_field_value(FieldNode* field) {
kvn@3651 1287 // Escaped fields should have init value already.
kvn@3651 1288 assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
kvn@3651 1289 int new_edges = 0;
kvn@3651 1290 for (BaseIterator i(field); i.has_next(); i.next()) {
kvn@3651 1291 PointsToNode* base = i.get();
kvn@3651 1292 if (base->is_JavaObject()) {
kvn@3651 1293 // Skip Allocate's fields which will be processed later.
kvn@3651 1294 if (base->ideal_node()->is_Allocate())
kvn@3651 1295 return 0;
kvn@3651 1296 assert(base == null_obj, "only NULL ptr base expected here");
kvn@3651 1297 }
kvn@3651 1298 }
kvn@3651 1299 if (add_edge(field, phantom_obj)) {
kvn@3651 1300 // New edge was added
kvn@3651 1301 new_edges++;
kvn@3651 1302 add_field_uses_to_worklist(field);
kvn@3651 1303 }
kvn@3651 1304 return new_edges;
kvn@3651 1305 }
kvn@3651 1306
kvn@3651 1307 // Find fields initializing values for allocations.
kvn@3651 1308 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
kvn@3651 1309 assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
kvn@3651 1310 int new_edges = 0;
kvn@3651 1311 Node* alloc = pta->ideal_node();
kvn@3651 1312 if (init_val == phantom_obj) {
kvn@3651 1313 // Do nothing for Allocate nodes since its fields values are "known".
kvn@3651 1314 if (alloc->is_Allocate())
kvn@3651 1315 return 0;
kvn@3651 1316 assert(alloc->as_CallStaticJava(), "sanity");
kvn@3651 1317 #ifdef ASSERT
kvn@3651 1318 if (alloc->as_CallStaticJava()->method() == NULL) {
kvn@3651 1319 const char* name = alloc->as_CallStaticJava()->_name;
kvn@3651 1320 assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
kvn@3651 1321 }
kvn@3651 1322 #endif
kvn@3651 1323 // Non-escaped allocation returned from Java or runtime call have
kvn@3651 1324 // unknown values in fields.
kvn@3651 1325 for (EdgeIterator i(pta); i.has_next(); i.next()) {
kvn@3651 1326 PointsToNode* ptn = i.get();
kvn@3651 1327 if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
kvn@3651 1328 if (add_edge(ptn, phantom_obj)) {
kvn@3651 1329 // New edge was added
kvn@3651 1330 new_edges++;
kvn@3651 1331 add_field_uses_to_worklist(ptn->as_Field());
kvn@3651 1332 }
kvn@3651 1333 }
kvn@3651 1334 }
kvn@3651 1335 return new_edges;
kvn@3651 1336 }
kvn@3651 1337 assert(init_val == null_obj, "sanity");
kvn@3651 1338 // Do nothing for Call nodes since its fields values are unknown.
kvn@3651 1339 if (!alloc->is_Allocate())
kvn@3651 1340 return 0;
kvn@3651 1341
kvn@3651 1342 InitializeNode* ini = alloc->as_Allocate()->initialization();
kvn@3651 1343 Compile* C = _compile;
kvn@3651 1344 bool visited_bottom_offset = false;
kvn@3651 1345 GrowableArray<int> offsets_worklist;
kvn@3651 1346
kvn@3651 1347 // Check if an oop field's initializing value is recorded and add
kvn@3651 1348 // a corresponding NULL if field's value if it is not recorded.
kvn@3651 1349 // Connection Graph does not record a default initialization by NULL
kvn@3651 1350 // captured by Initialize node.
kvn@3651 1351 //
kvn@3651 1352 for (EdgeIterator i(pta); i.has_next(); i.next()) {
kvn@3651 1353 PointsToNode* ptn = i.get(); // Field (AddP)
kvn@3651 1354 if (!ptn->is_Field() || !ptn->as_Field()->is_oop())
kvn@3651 1355 continue; // Not oop field
kvn@3651 1356 int offset = ptn->as_Field()->offset();
kvn@3651 1357 if (offset == Type::OffsetBot) {
kvn@3651 1358 if (!visited_bottom_offset) {
kvn@3651 1359 // OffsetBot is used to reference array's element,
kvn@3651 1360 // always add reference to NULL to all Field nodes since we don't
kvn@3651 1361 // known which element is referenced.
kvn@3651 1362 if (add_edge(ptn, null_obj)) {
kvn@3651 1363 // New edge was added
kvn@3651 1364 new_edges++;
kvn@3651 1365 add_field_uses_to_worklist(ptn->as_Field());
kvn@3651 1366 visited_bottom_offset = true;
kvn@3651 1367 }
kvn@3651 1368 }
kvn@3651 1369 } else {
kvn@3651 1370 // Check only oop fields.
kvn@3651 1371 const Type* adr_type = ptn->ideal_node()->as_AddP()->bottom_type();
kvn@3651 1372 if (adr_type->isa_rawptr()) {
kvn@3651 1373 #ifdef ASSERT
kvn@3651 1374 // Raw pointers are used for initializing stores so skip it
kvn@3651 1375 // since it should be recorded already
kvn@3651 1376 Node* base = get_addp_base(ptn->ideal_node());
kvn@3651 1377 assert(adr_type->isa_rawptr() && base->is_Proj() &&
kvn@3651 1378 (base->in(0) == alloc),"unexpected pointer type");
kvn@3651 1379 #endif
kvn@3651 1380 continue;
kvn@3651 1381 }
kvn@3651 1382 if (!offsets_worklist.contains(offset)) {
kvn@3651 1383 offsets_worklist.append(offset);
kvn@3651 1384 Node* value = NULL;
kvn@3651 1385 if (ini != NULL) {
kvn@3651 1386 BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT;
kvn@3651 1387 Node* store = ini->find_captured_store(offset, type2aelembytes(ft), phase);
kvn@3651 1388 if (store != NULL && store->is_Store()) {
kvn@3651 1389 value = store->in(MemNode::ValueIn);
kvn@3651 1390 } else {
kvn@3651 1391 // There could be initializing stores which follow allocation.
kvn@3651 1392 // For example, a volatile field store is not collected
kvn@3651 1393 // by Initialize node.
kvn@3651 1394 //
kvn@3651 1395 // Need to check for dependent loads to separate such stores from
kvn@3651 1396 // stores which follow loads. For now, add initial value NULL so
kvn@3651 1397 // that compare pointers optimization works correctly.
kvn@3651 1398 }
kvn@3651 1399 }
kvn@3651 1400 if (value == NULL) {
kvn@3651 1401 // A field's initializing value was not recorded. Add NULL.
kvn@3651 1402 if (add_edge(ptn, null_obj)) {
kvn@3651 1403 // New edge was added
kvn@3651 1404 new_edges++;
kvn@3651 1405 add_field_uses_to_worklist(ptn->as_Field());
kvn@3651 1406 }
kvn@3651 1407 }
kvn@3651 1408 }
kvn@3651 1409 }
kvn@3651 1410 }
kvn@3651 1411 return new_edges;
kvn@3651 1412 }
kvn@3651 1413
kvn@3651 1414 // Adjust scalar_replaceable state after Connection Graph is built.
kvn@3651 1415 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
kvn@3651 1416 // Search for non-escaping objects which are not scalar replaceable
kvn@3651 1417 // and mark them to propagate the state to referenced objects.
kvn@3651 1418
kvn@3651 1419 // 1. An object is not scalar replaceable if the field into which it is
kvn@3651 1420 // stored has unknown offset (stored into unknown element of an array).
kvn@3651 1421 //
kvn@3651 1422 for (UseIterator i(jobj); i.has_next(); i.next()) {
kvn@3651 1423 PointsToNode* use = i.get();
kvn@3651 1424 assert(!use->is_Arraycopy(), "sanity");
kvn@3651 1425 if (use->is_Field()) {
kvn@3651 1426 FieldNode* field = use->as_Field();
kvn@3651 1427 assert(field->is_oop() && field->scalar_replaceable() &&
kvn@3651 1428 field->fields_escape_state() == PointsToNode::NoEscape, "sanity");
kvn@3651 1429 if (field->offset() == Type::OffsetBot) {
kvn@3651 1430 jobj->set_scalar_replaceable(false);
kvn@3651 1431 return;
kvn@3651 1432 }
kvn@3651 1433 }
kvn@3651 1434 assert(use->is_Field() || use->is_LocalVar(), "sanity");
kvn@3651 1435 // 2. An object is not scalar replaceable if it is merged with other objects.
kvn@3651 1436 for (EdgeIterator j(use); j.has_next(); j.next()) {
kvn@3651 1437 PointsToNode* ptn = j.get();
kvn@3651 1438 if (ptn->is_JavaObject() && ptn != jobj) {
kvn@3651 1439 // Mark all objects.
kvn@3651 1440 jobj->set_scalar_replaceable(false);
kvn@3651 1441 ptn->set_scalar_replaceable(false);
kvn@3651 1442 }
kvn@3651 1443 }
kvn@3651 1444 if (!jobj->scalar_replaceable()) {
kvn@3651 1445 return;
kvn@3651 1446 }
kvn@3651 1447 }
kvn@3651 1448
kvn@3651 1449 for (EdgeIterator j(jobj); j.has_next(); j.next()) {
kvn@3651 1450 // Non-escaping object node should point only to field nodes.
kvn@3651 1451 FieldNode* field = j.get()->as_Field();
kvn@3651 1452 int offset = field->as_Field()->offset();
kvn@3651 1453
kvn@3651 1454 // 3. An object is not scalar replaceable if it has a field with unknown
kvn@3651 1455 // offset (array's element is accessed in loop).
kvn@3651 1456 if (offset == Type::OffsetBot) {
kvn@3651 1457 jobj->set_scalar_replaceable(false);
kvn@3651 1458 return;
kvn@3651 1459 }
kvn@3651 1460 // 4. Currently an object is not scalar replaceable if a LoadStore node
kvn@3651 1461 // access its field since the field value is unknown after it.
kvn@3651 1462 //
kvn@3651 1463 Node* n = field->ideal_node();
kvn@3651 1464 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@3651 1465 if (n->fast_out(i)->is_LoadStore()) {
kvn@3651 1466 jobj->set_scalar_replaceable(false);
kvn@3651 1467 return;
kvn@3651 1468 }
kvn@3651 1469 }
kvn@3651 1470
kvn@3651 1471 // 5. Or the address may point to more then one object. This may produce
kvn@3651 1472 // the false positive result (set not scalar replaceable)
kvn@3651 1473 // since the flow-insensitive escape analysis can't separate
kvn@3651 1474 // the case when stores overwrite the field's value from the case
kvn@3651 1475 // when stores happened on different control branches.
kvn@3651 1476 //
kvn@3651 1477 // Note: it will disable scalar replacement in some cases:
kvn@3651 1478 //
kvn@3651 1479 // Point p[] = new Point[1];
kvn@3651 1480 // p[0] = new Point(); // Will be not scalar replaced
kvn@3651 1481 //
kvn@3651 1482 // but it will save us from incorrect optimizations in next cases:
kvn@3651 1483 //
kvn@3651 1484 // Point p[] = new Point[1];
kvn@3651 1485 // if ( x ) p[0] = new Point(); // Will be not scalar replaced
kvn@3651 1486 //
kvn@3651 1487 if (field->base_count() > 1) {
kvn@3651 1488 for (BaseIterator i(field); i.has_next(); i.next()) {
kvn@3651 1489 PointsToNode* base = i.get();
kvn@3651 1490 // Don't take into account LocalVar nodes which
kvn@3651 1491 // may point to only one object which should be also
kvn@3651 1492 // this field's base by now.
kvn@3651 1493 if (base->is_JavaObject() && base != jobj) {
kvn@3651 1494 // Mark all bases.
kvn@3651 1495 jobj->set_scalar_replaceable(false);
kvn@3651 1496 base->set_scalar_replaceable(false);
kvn@3651 1497 }
kvn@3651 1498 }
kvn@3651 1499 }
kvn@3651 1500 }
kvn@3651 1501 }
kvn@3651 1502
kvn@3651 1503 #ifdef ASSERT
kvn@3651 1504 void ConnectionGraph::verify_connection_graph(
kvn@3651 1505 GrowableArray<PointsToNode*>& ptnodes_worklist,
kvn@3651 1506 GrowableArray<JavaObjectNode*>& non_escaped_worklist,
kvn@3651 1507 GrowableArray<JavaObjectNode*>& java_objects_worklist,
kvn@3651 1508 GrowableArray<Node*>& addp_worklist) {
kvn@3651 1509 // Verify that graph is complete - no new edges could be added.
kvn@3651 1510 int java_objects_length = java_objects_worklist.length();
kvn@3651 1511 int non_escaped_length = non_escaped_worklist.length();
kvn@3651 1512 int new_edges = 0;
kvn@3651 1513 for (int next = 0; next < java_objects_length; ++next) {
kvn@3651 1514 JavaObjectNode* ptn = java_objects_worklist.at(next);
kvn@3651 1515 new_edges += add_java_object_edges(ptn, true);
kvn@3651 1516 }
kvn@3651 1517 assert(new_edges == 0, "graph was not complete");
kvn@3651 1518 // Verify that escape state is final.
kvn@3651 1519 int length = non_escaped_worklist.length();
kvn@3651 1520 find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
kvn@3651 1521 assert((non_escaped_length == non_escaped_worklist.length()) &&
kvn@3651 1522 (non_escaped_length == length) &&
kvn@3651 1523 (_worklist.length() == 0), "escape state was not final");
kvn@3651 1524
kvn@3651 1525 // Verify fields information.
kvn@3651 1526 int addp_length = addp_worklist.length();
kvn@3651 1527 for (int next = 0; next < addp_length; ++next ) {
kvn@3651 1528 Node* n = addp_worklist.at(next);
kvn@3651 1529 FieldNode* field = ptnode_adr(n->_idx)->as_Field();
kvn@3651 1530 if (field->is_oop()) {
kvn@3651 1531 // Verify that field has all bases
kvn@3651 1532 Node* base = get_addp_base(n);
kvn@3651 1533 PointsToNode* ptn = ptnode_adr(base->_idx);
kvn@3651 1534 if (ptn->is_JavaObject()) {
kvn@3651 1535 assert(field->has_base(ptn->as_JavaObject()), "sanity");
kvn@3651 1536 } else {
kvn@3651 1537 assert(ptn->is_LocalVar(), "sanity");
kvn@3651 1538 for (EdgeIterator i(ptn); i.has_next(); i.next()) {
kvn@3651 1539 PointsToNode* e = i.get();
kvn@3651 1540 if (e->is_JavaObject()) {
kvn@3651 1541 assert(field->has_base(e->as_JavaObject()), "sanity");
kvn@3651 1542 }
kvn@3651 1543 }
kvn@3651 1544 }
kvn@3651 1545 // Verify that all fields have initializing values.
kvn@3651 1546 if (field->edge_count() == 0) {
kvn@3651 1547 field->dump();
kvn@3651 1548 assert(field->edge_count() > 0, "sanity");
kvn@3651 1549 }
kvn@3651 1550 }
kvn@3651 1551 }
kvn@3651 1552 }
kvn@3651 1553 #endif
kvn@3651 1554
kvn@3651 1555 // Optimize ideal graph.
kvn@3651 1556 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
kvn@3651 1557 GrowableArray<Node*>& storestore_worklist) {
kvn@3651 1558 Compile* C = _compile;
kvn@3651 1559 PhaseIterGVN* igvn = _igvn;
kvn@3651 1560 if (EliminateLocks) {
kvn@3651 1561 // Mark locks before changing ideal graph.
kvn@3651 1562 int cnt = C->macro_count();
kvn@3651 1563 for( int i=0; i < cnt; i++ ) {
kvn@3651 1564 Node *n = C->macro_node(i);
kvn@3651 1565 if (n->is_AbstractLock()) { // Lock and Unlock nodes
kvn@3651 1566 AbstractLockNode* alock = n->as_AbstractLock();
kvn@3651 1567 if (!alock->is_non_esc_obj()) {
kvn@3651 1568 if (not_global_escape(alock->obj_node())) {
kvn@3651 1569 assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
kvn@3651 1570 // The lock could be marked eliminated by lock coarsening
kvn@3651 1571 // code during first IGVN before EA. Replace coarsened flag
kvn@3651 1572 // to eliminate all associated locks/unlocks.
kvn@3651 1573 alock->set_non_esc_obj();
kvn@3651 1574 }
kvn@3651 1575 }
kvn@3651 1576 }
kvn@3651 1577 }
kvn@3651 1578 }
kvn@3651 1579
kvn@3651 1580 if (OptimizePtrCompare) {
kvn@3651 1581 // Add ConI(#CC_GT) and ConI(#CC_EQ).
kvn@3651 1582 _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
kvn@3651 1583 _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
kvn@3651 1584 // Optimize objects compare.
kvn@3651 1585 while (ptr_cmp_worklist.length() != 0) {
kvn@3651 1586 Node *n = ptr_cmp_worklist.pop();
kvn@3651 1587 Node *res = optimize_ptr_compare(n);
kvn@3651 1588 if (res != NULL) {
kvn@3651 1589 #ifndef PRODUCT
kvn@3651 1590 if (PrintOptimizePtrCompare) {
kvn@3651 1591 tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
kvn@3651 1592 if (Verbose) {
kvn@3651 1593 n->dump(1);
kvn@3651 1594 }
kvn@3651 1595 }
kvn@3651 1596 #endif
kvn@3651 1597 igvn->replace_node(n, res);
kvn@3651 1598 }
kvn@3651 1599 }
kvn@3651 1600 // cleanup
kvn@3651 1601 if (_pcmp_neq->outcnt() == 0)
kvn@3651 1602 igvn->hash_delete(_pcmp_neq);
kvn@3651 1603 if (_pcmp_eq->outcnt() == 0)
kvn@3651 1604 igvn->hash_delete(_pcmp_eq);
kvn@3651 1605 }
kvn@3651 1606
kvn@3651 1607 // For MemBarStoreStore nodes added in library_call.cpp, check
kvn@3651 1608 // escape status of associated AllocateNode and optimize out
kvn@3651 1609 // MemBarStoreStore node if the allocated object never escapes.
kvn@3651 1610 while (storestore_worklist.length() != 0) {
kvn@3651 1611 Node *n = storestore_worklist.pop();
kvn@3651 1612 MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
kvn@3651 1613 Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
kvn@3651 1614 assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
kvn@3651 1615 if (not_global_escape(alloc)) {
kvn@3651 1616 MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
kvn@3651 1617 mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
kvn@3651 1618 mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
kvn@3651 1619 igvn->register_new_node_with_optimizer(mb);
kvn@3651 1620 igvn->replace_node(storestore, mb);
kvn@3651 1621 }
kvn@3651 1622 }
kvn@3651 1623 }
kvn@3651 1624
kvn@3651 1625 // Optimize objects compare.
kvn@3651 1626 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
kvn@3651 1627 assert(OptimizePtrCompare, "sanity");
kvn@3651 1628 PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
kvn@3651 1629 PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
kvn@3651 1630 JavaObjectNode* jobj1 = unique_java_object(n->in(1));
kvn@3651 1631 JavaObjectNode* jobj2 = unique_java_object(n->in(2));
kvn@3651 1632 assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
kvn@3651 1633 assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
kvn@3651 1634
kvn@3651 1635 // Check simple cases first.
kvn@3651 1636 if (jobj1 != NULL) {
kvn@3651 1637 if (jobj1->escape_state() == PointsToNode::NoEscape) {
kvn@3651 1638 if (jobj1 == jobj2) {
kvn@3651 1639 // Comparing the same not escaping object.
kvn@3651 1640 return _pcmp_eq;
kvn@3651 1641 }
kvn@3651 1642 Node* obj = jobj1->ideal_node();
kvn@3651 1643 // Comparing not escaping allocation.
kvn@3651 1644 if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
kvn@3651 1645 !ptn2->points_to(jobj1)) {
kvn@3651 1646 return _pcmp_neq; // This includes nullness check.
kvn@3651 1647 }
kvn@3651 1648 }
kvn@3651 1649 }
kvn@3651 1650 if (jobj2 != NULL) {
kvn@3651 1651 if (jobj2->escape_state() == PointsToNode::NoEscape) {
kvn@3651 1652 Node* obj = jobj2->ideal_node();
kvn@3651 1653 // Comparing not escaping allocation.
kvn@3651 1654 if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
kvn@3651 1655 !ptn1->points_to(jobj2)) {
kvn@3651 1656 return _pcmp_neq; // This includes nullness check.
kvn@3651 1657 }
kvn@3651 1658 }
kvn@3651 1659 }
kvn@3651 1660 if (jobj1 != NULL && jobj1 != phantom_obj &&
kvn@3651 1661 jobj2 != NULL && jobj2 != phantom_obj &&
kvn@3651 1662 jobj1->ideal_node()->is_Con() &&
kvn@3651 1663 jobj2->ideal_node()->is_Con()) {
kvn@3651 1664 // Klass or String constants compare. Need to be careful with
kvn@3651 1665 // compressed pointers - compare types of ConN and ConP instead of nodes.
kvn@3651 1666 const Type* t1 = jobj1->ideal_node()->bottom_type()->make_ptr();
kvn@3651 1667 const Type* t2 = jobj2->ideal_node()->bottom_type()->make_ptr();
kvn@3651 1668 assert(t1 != NULL && t2 != NULL, "sanity");
kvn@3651 1669 if (t1->make_ptr() == t2->make_ptr()) {
kvn@3651 1670 return _pcmp_eq;
kvn@3651 1671 } else {
kvn@3651 1672 return _pcmp_neq;
kvn@3651 1673 }
kvn@3651 1674 }
kvn@3651 1675 if (ptn1->meet(ptn2)) {
kvn@3651 1676 return NULL; // Sets are not disjoint
kvn@3651 1677 }
kvn@3651 1678
kvn@3651 1679 // Sets are disjoint.
kvn@3651 1680 bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
kvn@3651 1681 bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
kvn@3651 1682 bool set1_has_null_ptr = ptn1->points_to(null_obj);
kvn@3651 1683 bool set2_has_null_ptr = ptn2->points_to(null_obj);
kvn@3651 1684 if (set1_has_unknown_ptr && set2_has_null_ptr ||
kvn@3651 1685 set2_has_unknown_ptr && set1_has_null_ptr) {
kvn@3651 1686 // Check nullness of unknown object.
kvn@3651 1687 return NULL;
kvn@3651 1688 }
kvn@3651 1689
kvn@3651 1690 // Disjointness by itself is not sufficient since
kvn@3651 1691 // alias analysis is not complete for escaped objects.
kvn@3651 1692 // Disjoint sets are definitely unrelated only when
kvn@3651 1693 // at least one set has only not escaping allocations.
kvn@3651 1694 if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
kvn@3651 1695 if (ptn1->non_escaping_allocation()) {
kvn@3651 1696 return _pcmp_neq;
kvn@3651 1697 }
kvn@3651 1698 }
kvn@3651 1699 if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
kvn@3651 1700 if (ptn2->non_escaping_allocation()) {
kvn@3651 1701 return _pcmp_neq;
kvn@3651 1702 }
kvn@3651 1703 }
kvn@3651 1704 return NULL;
kvn@3651 1705 }
kvn@3651 1706
kvn@3651 1707 // Connection Graph constuction functions.
kvn@3651 1708
kvn@3651 1709 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
kvn@3651 1710 PointsToNode* ptadr = _nodes.at(n->_idx);
kvn@3651 1711 if (ptadr != NULL) {
kvn@3651 1712 assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
kvn@3651 1713 return;
kvn@3651 1714 }
kvn@3651 1715 Compile* C = _compile;
kvn@3651 1716 ptadr = new (C->comp_arena()) LocalVarNode(C, n, es);
kvn@3651 1717 _nodes.at_put(n->_idx, ptadr);
kvn@3651 1718 }
kvn@3651 1719
kvn@3651 1720 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
kvn@3651 1721 PointsToNode* ptadr = _nodes.at(n->_idx);
kvn@3651 1722 if (ptadr != NULL) {
kvn@3651 1723 assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
kvn@3651 1724 return;
kvn@3651 1725 }
kvn@3651 1726 Compile* C = _compile;
kvn@3651 1727 ptadr = new (C->comp_arena()) JavaObjectNode(C, n, es);
kvn@3651 1728 _nodes.at_put(n->_idx, ptadr);
kvn@3651 1729 }
kvn@3651 1730
kvn@3651 1731 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
kvn@3651 1732 PointsToNode* ptadr = _nodes.at(n->_idx);
kvn@3651 1733 if (ptadr != NULL) {
kvn@3651 1734 assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
kvn@3651 1735 return;
kvn@3651 1736 }
kvn@3651 1737 Compile* C = _compile;
kvn@3651 1738 bool is_oop = is_oop_field(n, offset);
kvn@3651 1739 FieldNode* field = new (C->comp_arena()) FieldNode(C, n, es, offset, is_oop);
kvn@3651 1740 _nodes.at_put(n->_idx, field);
kvn@3651 1741 }
kvn@3651 1742
kvn@3651 1743 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
kvn@3651 1744 PointsToNode* src, PointsToNode* dst) {
kvn@3651 1745 assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
kvn@3651 1746 assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
kvn@3651 1747 PointsToNode* ptadr = _nodes.at(n->_idx);
kvn@3651 1748 if (ptadr != NULL) {
kvn@3651 1749 assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
kvn@3651 1750 return;
kvn@3651 1751 }
kvn@3651 1752 Compile* C = _compile;
kvn@3651 1753 ptadr = new (C->comp_arena()) ArraycopyNode(C, n, es);
kvn@3651 1754 _nodes.at_put(n->_idx, ptadr);
kvn@3651 1755 // Add edge from arraycopy node to source object.
kvn@3651 1756 (void)add_edge(ptadr, src);
kvn@3651 1757 src->set_arraycopy_src();
kvn@3651 1758 // Add edge from destination object to arraycopy node.
kvn@3651 1759 (void)add_edge(dst, ptadr);
kvn@3651 1760 dst->set_arraycopy_dst();
kvn@3651 1761 }
kvn@3651 1762
kvn@3651 1763 bool ConnectionGraph::is_oop_field(Node* n, int offset) {
kvn@3651 1764 const Type* adr_type = n->as_AddP()->bottom_type();
kvn@3651 1765 BasicType bt = T_INT;
kvn@3651 1766 if (offset == Type::OffsetBot) {
kvn@3651 1767 // Check only oop fields.
kvn@3651 1768 if (!adr_type->isa_aryptr() ||
kvn@3651 1769 (adr_type->isa_aryptr()->klass() == NULL) ||
kvn@3651 1770 adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
kvn@3651 1771 // OffsetBot is used to reference array's element. Ignore first AddP.
kvn@3651 1772 if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
kvn@3651 1773 bt = T_OBJECT;
kvn@3651 1774 }
kvn@3651 1775 }
kvn@3651 1776 } else if (offset != oopDesc::klass_offset_in_bytes()) {
kvn@3651 1777 if (adr_type->isa_instptr()) {
kvn@3651 1778 ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
kvn@3651 1779 if (field != NULL) {
kvn@3651 1780 bt = field->layout_type();
kvn@3651 1781 } else {
kvn@3651 1782 // Ignore non field load (for example, klass load)
kvn@3651 1783 }
kvn@3651 1784 } else if (adr_type->isa_aryptr()) {
kvn@3651 1785 if (offset == arrayOopDesc::length_offset_in_bytes()) {
kvn@3651 1786 // Ignore array length load.
kvn@3651 1787 } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
kvn@3651 1788 // Ignore first AddP.
kvn@3651 1789 } else {
kvn@3651 1790 const Type* elemtype = adr_type->isa_aryptr()->elem();
kvn@3651 1791 bt = elemtype->array_element_basic_type();
kvn@3651 1792 }
kvn@3651 1793 } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
kvn@3651 1794 // Allocation initialization, ThreadLocal field access, unsafe access
kvn@3651 1795 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@3651 1796 int opcode = n->fast_out(i)->Opcode();
kvn@3651 1797 if (opcode == Op_StoreP || opcode == Op_LoadP ||
kvn@3651 1798 opcode == Op_StoreN || opcode == Op_LoadN) {
kvn@3651 1799 bt = T_OBJECT;
kvn@3651 1800 }
kvn@3651 1801 }
kvn@3651 1802 }
kvn@3651 1803 }
kvn@3651 1804 return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
kvn@3651 1805 }
kvn@3651 1806
kvn@3651 1807 // Returns unique pointed java object or NULL.
kvn@3651 1808 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
kvn@3651 1809 assert(!_collecting, "should not call when contructed graph");
kvn@3651 1810 // If the node was created after the escape computation we can't answer.
kvn@3651 1811 uint idx = n->_idx;
kvn@3651 1812 if (idx >= nodes_size()) {
kvn@3651 1813 return NULL;
kvn@3651 1814 }
kvn@3651 1815 PointsToNode* ptn = ptnode_adr(idx);
kvn@3651 1816 if (ptn->is_JavaObject()) {
kvn@3651 1817 return ptn->as_JavaObject();
kvn@3651 1818 }
kvn@3651 1819 assert(ptn->is_LocalVar(), "sanity");
kvn@3651 1820 // Check all java objects it points to.
kvn@3651 1821 JavaObjectNode* jobj = NULL;
kvn@3651 1822 for (EdgeIterator i(ptn); i.has_next(); i.next()) {
kvn@3651 1823 PointsToNode* e = i.get();
kvn@3651 1824 if (e->is_JavaObject()) {
kvn@3651 1825 if (jobj == NULL) {
kvn@3651 1826 jobj = e->as_JavaObject();
kvn@3651 1827 } else if (jobj != e) {
kvn@3651 1828 return NULL;
kvn@3651 1829 }
kvn@3651 1830 }
kvn@3651 1831 }
kvn@3651 1832 return jobj;
kvn@3651 1833 }
kvn@3651 1834
kvn@3651 1835 // Return true if this node points only to non-escaping allocations.
kvn@3651 1836 bool PointsToNode::non_escaping_allocation() {
kvn@3651 1837 if (is_JavaObject()) {
kvn@3651 1838 Node* n = ideal_node();
kvn@3651 1839 if (n->is_Allocate() || n->is_CallStaticJava()) {
kvn@3651 1840 return (escape_state() == PointsToNode::NoEscape);
kvn@3651 1841 } else {
kvn@3651 1842 return false;
kvn@3651 1843 }
kvn@3651 1844 }
kvn@3651 1845 assert(is_LocalVar(), "sanity");
kvn@3651 1846 // Check all java objects it points to.
kvn@3651 1847 for (EdgeIterator i(this); i.has_next(); i.next()) {
kvn@3651 1848 PointsToNode* e = i.get();
kvn@3651 1849 if (e->is_JavaObject()) {
kvn@3651 1850 Node* n = e->ideal_node();
kvn@3651 1851 if ((e->escape_state() != PointsToNode::NoEscape) ||
kvn@3651 1852 !(n->is_Allocate() || n->is_CallStaticJava())) {
kvn@3651 1853 return false;
kvn@3651 1854 }
kvn@3651 1855 }
kvn@3651 1856 }
kvn@3651 1857 return true;
kvn@3651 1858 }
kvn@3651 1859
kvn@3651 1860 // Return true if we know the node does not escape globally.
kvn@3651 1861 bool ConnectionGraph::not_global_escape(Node *n) {
kvn@3651 1862 assert(!_collecting, "should not call during graph construction");
kvn@3651 1863 // If the node was created after the escape computation we can't answer.
kvn@3651 1864 uint idx = n->_idx;
kvn@3651 1865 if (idx >= nodes_size()) {
kvn@3651 1866 return false;
kvn@3651 1867 }
kvn@3651 1868 PointsToNode* ptn = ptnode_adr(idx);
kvn@3651 1869 PointsToNode::EscapeState es = ptn->escape_state();
kvn@3651 1870 // If we have already computed a value, return it.
kvn@3651 1871 if (es >= PointsToNode::GlobalEscape)
kvn@3651 1872 return false;
kvn@3651 1873 if (ptn->is_JavaObject()) {
kvn@3651 1874 return true; // (es < PointsToNode::GlobalEscape);
kvn@3651 1875 }
kvn@3651 1876 assert(ptn->is_LocalVar(), "sanity");
kvn@3651 1877 // Check all java objects it points to.
kvn@3651 1878 for (EdgeIterator i(ptn); i.has_next(); i.next()) {
kvn@3651 1879 if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
kvn@3651 1880 return false;
kvn@3651 1881 }
kvn@3651 1882 return true;
kvn@3651 1883 }
kvn@3651 1884
kvn@3651 1885
kvn@3651 1886 // Helper functions
kvn@3651 1887
kvn@3651 1888 // Return true if this node points to specified node or nodes it points to.
kvn@3651 1889 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
kvn@3651 1890 if (is_JavaObject()) {
kvn@3651 1891 return (this == ptn);
kvn@3651 1892 }
kvn@3651 1893 assert(is_LocalVar(), "sanity");
kvn@3651 1894 for (EdgeIterator i(this); i.has_next(); i.next()) {
kvn@3651 1895 if (i.get() == ptn)
kvn@3651 1896 return true;
kvn@3651 1897 }
kvn@3651 1898 return false;
kvn@3651 1899 }
kvn@3651 1900
kvn@3651 1901 // Return true if one node points to an other.
kvn@3651 1902 bool PointsToNode::meet(PointsToNode* ptn) {
kvn@3651 1903 if (this == ptn) {
kvn@3651 1904 return true;
kvn@3651 1905 } else if (ptn->is_JavaObject()) {
kvn@3651 1906 return this->points_to(ptn->as_JavaObject());
kvn@3651 1907 } else if (this->is_JavaObject()) {
kvn@3651 1908 return ptn->points_to(this->as_JavaObject());
kvn@3651 1909 }
kvn@3651 1910 assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
kvn@3651 1911 int ptn_count = ptn->edge_count();
kvn@3651 1912 for (EdgeIterator i(this); i.has_next(); i.next()) {
kvn@3651 1913 PointsToNode* this_e = i.get();
kvn@3651 1914 for (int j = 0; j < ptn_count; j++) {
kvn@3651 1915 if (this_e == ptn->edge(j))
kvn@3651 1916 return true;
kvn@3651 1917 }
kvn@3651 1918 }
kvn@3651 1919 return false;
kvn@3651 1920 }
kvn@3651 1921
kvn@3651 1922 #ifdef ASSERT
kvn@3651 1923 // Return true if bases point to this java object.
kvn@3651 1924 bool FieldNode::has_base(JavaObjectNode* jobj) const {
kvn@3651 1925 for (BaseIterator i(this); i.has_next(); i.next()) {
kvn@3651 1926 if (i.get() == jobj)
kvn@3651 1927 return true;
kvn@3651 1928 }
kvn@3651 1929 return false;
kvn@3651 1930 }
kvn@3651 1931 #endif
kvn@3651 1932
kvn@500 1933 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
kvn@500 1934 const Type *adr_type = phase->type(adr);
kvn@500 1935 if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
kvn@500 1936 adr->in(AddPNode::Address)->is_Proj() &&
kvn@500 1937 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
kvn@500 1938 // We are computing a raw address for a store captured by an Initialize
kvn@500 1939 // compute an appropriate address type. AddP cases #3 and #5 (see below).
kvn@500 1940 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 1941 assert(offs != Type::OffsetBot ||
kvn@500 1942 adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
kvn@500 1943 "offset must be a constant or it is initialization of array");
kvn@500 1944 return offs;
kvn@500 1945 }
kvn@500 1946 const TypePtr *t_ptr = adr_type->isa_ptr();
duke@435 1947 assert(t_ptr != NULL, "must be a pointer type");
duke@435 1948 return t_ptr->offset();
duke@435 1949 }
duke@435 1950
kvn@3651 1951 Node* ConnectionGraph::get_addp_base(Node *addp) {
kvn@500 1952 assert(addp->is_AddP(), "must be AddP");
kvn@500 1953 //
kvn@500 1954 // AddP cases for Base and Address inputs:
kvn@500 1955 // case #1. Direct object's field reference:
kvn@500 1956 // Allocate
kvn@500 1957 // |
kvn@500 1958 // Proj #5 ( oop result )
kvn@500 1959 // |
kvn@500 1960 // CheckCastPP (cast to instance type)
kvn@500 1961 // | |
kvn@500 1962 // AddP ( base == address )
kvn@500 1963 //
kvn@500 1964 // case #2. Indirect object's field reference:
kvn@500 1965 // Phi
kvn@500 1966 // |
kvn@500 1967 // CastPP (cast to instance type)
kvn@500 1968 // | |
kvn@500 1969 // AddP ( base == address )
kvn@500 1970 //
kvn@500 1971 // case #3. Raw object's field reference for Initialize node:
kvn@500 1972 // Allocate
kvn@500 1973 // |
kvn@500 1974 // Proj #5 ( oop result )
kvn@500 1975 // top |
kvn@500 1976 // \ |
kvn@500 1977 // AddP ( base == top )
kvn@500 1978 //
kvn@500 1979 // case #4. Array's element reference:
kvn@500 1980 // {CheckCastPP | CastPP}
kvn@500 1981 // | | |
kvn@500 1982 // | AddP ( array's element offset )
kvn@500 1983 // | |
kvn@500 1984 // AddP ( array's offset )
kvn@500 1985 //
kvn@500 1986 // case #5. Raw object's field reference for arraycopy stub call:
kvn@500 1987 // The inline_native_clone() case when the arraycopy stub is called
kvn@500 1988 // after the allocation before Initialize and CheckCastPP nodes.
kvn@500 1989 // Allocate
kvn@500 1990 // |
kvn@500 1991 // Proj #5 ( oop result )
kvn@500 1992 // | |
kvn@500 1993 // AddP ( base == address )
kvn@500 1994 //
kvn@512 1995 // case #6. Constant Pool, ThreadLocal, CastX2P or
kvn@512 1996 // Raw object's field reference:
kvn@512 1997 // {ConP, ThreadLocal, CastX2P, raw Load}
kvn@500 1998 // top |
kvn@500 1999 // \ |
kvn@500 2000 // AddP ( base == top )
kvn@500 2001 //
kvn@512 2002 // case #7. Klass's field reference.
kvn@512 2003 // LoadKlass
kvn@512 2004 // | |
kvn@512 2005 // AddP ( base == address )
kvn@512 2006 //
kvn@599 2007 // case #8. narrow Klass's field reference.
kvn@599 2008 // LoadNKlass
kvn@599 2009 // |
kvn@599 2010 // DecodeN
kvn@599 2011 // | |
kvn@599 2012 // AddP ( base == address )
kvn@599 2013 //
kvn@3651 2014 Node *base = addp->in(AddPNode::Base);
kvn@3651 2015 if (base->uncast()->is_top()) { // The AddP case #3 and #6.
kvn@3651 2016 base = addp->in(AddPNode::Address);
kvn@1392 2017 while (base->is_AddP()) {
kvn@1392 2018 // Case #6 (unsafe access) may have several chained AddP nodes.
kvn@3651 2019 assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
kvn@3651 2020 base = base->in(AddPNode::Address);
kvn@1392 2021 }
kvn@3651 2022 Node* uncast_base = base->uncast();
kvn@3651 2023 int opcode = uncast_base->Opcode();
kvn@3651 2024 assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
kvn@3651 2025 opcode == Op_CastX2P || uncast_base->is_DecodeN() ||
kvn@3651 2026 (uncast_base->is_Mem() && uncast_base->bottom_type() == TypeRawPtr::NOTNULL) ||
kvn@3651 2027 (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
duke@435 2028 }
kvn@500 2029 return base;
kvn@500 2030 }
kvn@500 2031
kvn@3651 2032 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
kvn@500 2033 assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
kvn@500 2034 Node* addp2 = addp->raw_out(0);
kvn@500 2035 if (addp->outcnt() == 1 && addp2->is_AddP() &&
kvn@500 2036 addp2->in(AddPNode::Base) == n &&
kvn@500 2037 addp2->in(AddPNode::Address) == addp) {
kvn@500 2038 assert(addp->in(AddPNode::Base) == n, "expecting the same base");
kvn@500 2039 //
kvn@500 2040 // Find array's offset to push it on worklist first and
kvn@500 2041 // as result process an array's element offset first (pushed second)
kvn@500 2042 // to avoid CastPP for the array's offset.
kvn@500 2043 // Otherwise the inserted CastPP (LocalVar) will point to what
kvn@500 2044 // the AddP (Field) points to. Which would be wrong since
kvn@500 2045 // the algorithm expects the CastPP has the same point as
kvn@500 2046 // as AddP's base CheckCastPP (LocalVar).
kvn@500 2047 //
kvn@500 2048 // ArrayAllocation
kvn@500 2049 // |
kvn@500 2050 // CheckCastPP
kvn@500 2051 // |
kvn@500 2052 // memProj (from ArrayAllocation CheckCastPP)
kvn@500 2053 // | ||
kvn@500 2054 // | || Int (element index)
kvn@500 2055 // | || | ConI (log(element size))
kvn@500 2056 // | || | /
kvn@500 2057 // | || LShift
kvn@500 2058 // | || /
kvn@500 2059 // | AddP (array's element offset)
kvn@500 2060 // | |
kvn@500 2061 // | | ConI (array's offset: #12(32-bits) or #24(64-bits))
kvn@500 2062 // | / /
kvn@500 2063 // AddP (array's offset)
kvn@500 2064 // |
kvn@500 2065 // Load/Store (memory operation on array's element)
kvn@500 2066 //
kvn@500 2067 return addp2;
kvn@500 2068 }
kvn@500 2069 return NULL;
duke@435 2070 }
duke@435 2071
duke@435 2072 //
duke@435 2073 // Adjust the type and inputs of an AddP which computes the
duke@435 2074 // address of a field of an instance
duke@435 2075 //
kvn@3651 2076 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
kvn@3651 2077 PhaseGVN* igvn = _igvn;
kvn@500 2078 const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
kvn@658 2079 assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
duke@435 2080 const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
kvn@500 2081 if (t == NULL) {
kvn@500 2082 // We are computing a raw address for a store captured by an Initialize
kvn@728 2083 // compute an appropriate address type (cases #3 and #5).
kvn@500 2084 assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
kvn@500 2085 assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
kvn@741 2086 intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 2087 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@500 2088 t = base_t->add_offset(offs)->is_oopptr();
kvn@500 2089 }
kvn@658 2090 int inst_id = base_t->instance_id();
kvn@658 2091 assert(!t->is_known_instance() || t->instance_id() == inst_id,
duke@435 2092 "old type must be non-instance or match new type");
kvn@728 2093
kvn@728 2094 // The type 't' could be subclass of 'base_t'.
kvn@728 2095 // As result t->offset() could be large then base_t's size and it will
kvn@728 2096 // cause the failure in add_offset() with narrow oops since TypeOopPtr()
kvn@728 2097 // constructor verifies correctness of the offset.
kvn@728 2098 //
twisti@1040 2099 // It could happened on subclass's branch (from the type profiling
kvn@728 2100 // inlining) which was not eliminated during parsing since the exactness
kvn@728 2101 // of the allocation type was not propagated to the subclass type check.
kvn@728 2102 //
kvn@1423 2103 // Or the type 't' could be not related to 'base_t' at all.
kvn@1423 2104 // It could happened when CHA type is different from MDO type on a dead path
kvn@1423 2105 // (for example, from instanceof check) which is not collapsed during parsing.
kvn@1423 2106 //
kvn@728 2107 // Do nothing for such AddP node and don't process its users since
kvn@728 2108 // this code branch will go away.
kvn@728 2109 //
kvn@728 2110 if (!t->is_known_instance() &&
kvn@1423 2111 !base_t->klass()->is_subtype_of(t->klass())) {
kvn@728 2112 return false; // bail out
kvn@728 2113 }
duke@435 2114 const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
kvn@1497 2115 // Do NOT remove the next line: ensure a new alias index is allocated
kvn@1497 2116 // for the instance type. Note: C++ will not remove it since the call
kvn@1497 2117 // has side effect.
duke@435 2118 int alias_idx = _compile->get_alias_index(tinst);
duke@435 2119 igvn->set_type(addp, tinst);
duke@435 2120 // record the allocation in the node map
kvn@3651 2121 set_map(addp, get_map(base->_idx));
kvn@688 2122 // Set addp's Base and Address to 'base'.
kvn@688 2123 Node *abase = addp->in(AddPNode::Base);
kvn@688 2124 Node *adr = addp->in(AddPNode::Address);
kvn@688 2125 if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
kvn@688 2126 adr->in(0)->_idx == (uint)inst_id) {
kvn@688 2127 // Skip AddP cases #3 and #5.
kvn@688 2128 } else {
kvn@688 2129 assert(!abase->is_top(), "sanity"); // AddP case #3
kvn@688 2130 if (abase != base) {
kvn@688 2131 igvn->hash_delete(addp);
kvn@688 2132 addp->set_req(AddPNode::Base, base);
kvn@688 2133 if (abase == adr) {
kvn@688 2134 addp->set_req(AddPNode::Address, base);
kvn@688 2135 } else {
kvn@688 2136 // AddP case #4 (adr is array's element offset AddP node)
kvn@688 2137 #ifdef ASSERT
kvn@688 2138 const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
kvn@688 2139 assert(adr->is_AddP() && atype != NULL &&
kvn@688 2140 atype->instance_id() == inst_id, "array's element offset should be processed first");
kvn@688 2141 #endif
kvn@688 2142 }
kvn@688 2143 igvn->hash_insert(addp);
duke@435 2144 }
duke@435 2145 }
kvn@500 2146 // Put on IGVN worklist since at least addp's type was changed above.
kvn@500 2147 record_for_optimizer(addp);
kvn@728 2148 return true;
duke@435 2149 }
duke@435 2150
duke@435 2151 //
duke@435 2152 // Create a new version of orig_phi if necessary. Returns either the newly
kvn@2741 2153 // created phi or an existing phi. Sets create_new to indicate whether a new
duke@435 2154 // phi was created. Cache the last newly created phi in the node map.
duke@435 2155 //
kvn@3651 2156 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, bool &new_created) {
duke@435 2157 Compile *C = _compile;
kvn@3651 2158 PhaseGVN* igvn = _igvn;
duke@435 2159 new_created = false;
duke@435 2160 int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
duke@435 2161 // nothing to do if orig_phi is bottom memory or matches alias_idx
kvn@500 2162 if (phi_alias_idx == alias_idx) {
duke@435 2163 return orig_phi;
duke@435 2164 }
kvn@1286 2165 // Have we recently created a Phi for this alias index?
duke@435 2166 PhiNode *result = get_map_phi(orig_phi->_idx);
duke@435 2167 if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
duke@435 2168 return result;
duke@435 2169 }
kvn@1286 2170 // Previous check may fail when the same wide memory Phi was split into Phis
kvn@1286 2171 // for different memory slices. Search all Phis for this region.
kvn@1286 2172 if (result != NULL) {
kvn@1286 2173 Node* region = orig_phi->in(0);
kvn@1286 2174 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
kvn@1286 2175 Node* phi = region->fast_out(i);
kvn@1286 2176 if (phi->is_Phi() &&
kvn@1286 2177 C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
kvn@1286 2178 assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
kvn@1286 2179 return phi->as_Phi();
kvn@1286 2180 }
kvn@1286 2181 }
kvn@1286 2182 }
kvn@473 2183 if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
kvn@473 2184 if (C->do_escape_analysis() == true && !C->failing()) {
kvn@473 2185 // Retry compilation without escape analysis.
kvn@473 2186 // If this is the first failure, the sentinel string will "stick"
kvn@473 2187 // to the Compile object, and the C2Compiler will see it and retry.
kvn@473 2188 C->record_failure(C2Compiler::retry_no_escape_analysis());
kvn@473 2189 }
kvn@473 2190 return NULL;
kvn@473 2191 }
duke@435 2192 orig_phi_worklist.append_if_missing(orig_phi);
kvn@500 2193 const TypePtr *atype = C->get_adr_type(alias_idx);
duke@435 2194 result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
kvn@1286 2195 C->copy_node_notes_to(result, orig_phi);
duke@435 2196 igvn->set_type(result, result->bottom_type());
duke@435 2197 record_for_optimizer(result);
kvn@3651 2198 set_map(orig_phi, result);
duke@435 2199 new_created = true;
duke@435 2200 return result;
duke@435 2201 }
duke@435 2202
duke@435 2203 //
kvn@2741 2204 // Return a new version of Memory Phi "orig_phi" with the inputs having the
duke@435 2205 // specified alias index.
duke@435 2206 //
kvn@3651 2207 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist) {
duke@435 2208 assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
duke@435 2209 Compile *C = _compile;
kvn@3651 2210 PhaseGVN* igvn = _igvn;
duke@435 2211 bool new_phi_created;
kvn@3651 2212 PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
duke@435 2213 if (!new_phi_created) {
duke@435 2214 return result;
duke@435 2215 }
duke@435 2216 GrowableArray<PhiNode *> phi_list;
duke@435 2217 GrowableArray<uint> cur_input;
duke@435 2218 PhiNode *phi = orig_phi;
duke@435 2219 uint idx = 1;
duke@435 2220 bool finished = false;
duke@435 2221 while(!finished) {
duke@435 2222 while (idx < phi->req()) {
kvn@3651 2223 Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
duke@435 2224 if (mem != NULL && mem->is_Phi()) {
kvn@3651 2225 PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
duke@435 2226 if (new_phi_created) {
duke@435 2227 // found an phi for which we created a new split, push current one on worklist and begin
duke@435 2228 // processing new one
duke@435 2229 phi_list.push(phi);
duke@435 2230 cur_input.push(idx);
duke@435 2231 phi = mem->as_Phi();
kvn@500 2232 result = newphi;
duke@435 2233 idx = 1;
duke@435 2234 continue;
duke@435 2235 } else {
kvn@500 2236 mem = newphi;
duke@435 2237 }
duke@435 2238 }
kvn@473 2239 if (C->failing()) {
kvn@473 2240 return NULL;
kvn@473 2241 }
duke@435 2242 result->set_req(idx++, mem);
duke@435 2243 }
duke@435 2244 #ifdef ASSERT
duke@435 2245 // verify that the new Phi has an input for each input of the original
duke@435 2246 assert( phi->req() == result->req(), "must have same number of inputs.");
duke@435 2247 assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
kvn@500 2248 #endif
kvn@500 2249 // Check if all new phi's inputs have specified alias index.
kvn@500 2250 // Otherwise use old phi.
duke@435 2251 for (uint i = 1; i < phi->req(); i++) {
kvn@500 2252 Node* in = result->in(i);
kvn@500 2253 assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
duke@435 2254 }
duke@435 2255 // we have finished processing a Phi, see if there are any more to do
duke@435 2256 finished = (phi_list.length() == 0 );
duke@435 2257 if (!finished) {
duke@435 2258 phi = phi_list.pop();
duke@435 2259 idx = cur_input.pop();
kvn@500 2260 PhiNode *prev_result = get_map_phi(phi->_idx);
kvn@500 2261 prev_result->set_req(idx++, result);
kvn@500 2262 result = prev_result;
duke@435 2263 }
duke@435 2264 }
duke@435 2265 return result;
duke@435 2266 }
duke@435 2267
kvn@500 2268 //
kvn@500 2269 // The next methods are derived from methods in MemNode.
kvn@500 2270 //
kvn@3651 2271 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
kvn@500 2272 Node *mem = mmem;
never@2170 2273 // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
kvn@500 2274 // means an array I have not precisely typed yet. Do not do any
kvn@500 2275 // alias stuff with it any time soon.
kvn@3651 2276 if (toop->base() != Type::AnyPtr &&
never@2170 2277 !(toop->klass() != NULL &&
never@2170 2278 toop->klass()->is_java_lang_Object() &&
kvn@3651 2279 toop->offset() == Type::OffsetBot)) {
kvn@500 2280 mem = mmem->memory_at(alias_idx);
kvn@500 2281 // Update input if it is progress over what we have now
kvn@500 2282 }
kvn@500 2283 return mem;
kvn@500 2284 }
kvn@500 2285
kvn@500 2286 //
kvn@1536 2287 // Move memory users to their memory slices.
kvn@1536 2288 //
kvn@3651 2289 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *> &orig_phis) {
kvn@1536 2290 Compile* C = _compile;
kvn@3651 2291 PhaseGVN* igvn = _igvn;
kvn@1536 2292 const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
kvn@1536 2293 assert(tp != NULL, "ptr type");
kvn@1536 2294 int alias_idx = C->get_alias_index(tp);
kvn@1536 2295 int general_idx = C->get_general_index(alias_idx);
kvn@1536 2296
kvn@1536 2297 // Move users first
kvn@1536 2298 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@1536 2299 Node* use = n->fast_out(i);
kvn@1536 2300 if (use->is_MergeMem()) {
kvn@1536 2301 MergeMemNode* mmem = use->as_MergeMem();
kvn@1536 2302 assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
kvn@1536 2303 if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
kvn@1536 2304 continue; // Nothing to do
kvn@1536 2305 }
kvn@1536 2306 // Replace previous general reference to mem node.
kvn@1536 2307 uint orig_uniq = C->unique();
kvn@3651 2308 Node* m = find_inst_mem(n, general_idx, orig_phis);
kvn@1536 2309 assert(orig_uniq == C->unique(), "no new nodes");
kvn@1536 2310 mmem->set_memory_at(general_idx, m);
kvn@1536 2311 --imax;
kvn@1536 2312 --i;
kvn@1536 2313 } else if (use->is_MemBar()) {
kvn@1536 2314 assert(!use->is_Initialize(), "initializing stores should not be moved");
kvn@1536 2315 if (use->req() > MemBarNode::Precedent &&
kvn@1536 2316 use->in(MemBarNode::Precedent) == n) {
kvn@1536 2317 // Don't move related membars.
kvn@1536 2318 record_for_optimizer(use);
kvn@1536 2319 continue;
kvn@1536 2320 }
kvn@1536 2321 tp = use->as_MemBar()->adr_type()->isa_ptr();
kvn@1536 2322 if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
kvn@1536 2323 alias_idx == general_idx) {
kvn@1536 2324 continue; // Nothing to do
kvn@1536 2325 }
kvn@1536 2326 // Move to general memory slice.
kvn@1536 2327 uint orig_uniq = C->unique();
kvn@3651 2328 Node* m = find_inst_mem(n, general_idx, orig_phis);
kvn@1536 2329 assert(orig_uniq == C->unique(), "no new nodes");
kvn@1536 2330 igvn->hash_delete(use);
kvn@1536 2331 imax -= use->replace_edge(n, m);
kvn@1536 2332 igvn->hash_insert(use);
kvn@1536 2333 record_for_optimizer(use);
kvn@1536 2334 --i;
kvn@1536 2335 #ifdef ASSERT
kvn@1536 2336 } else if (use->is_Mem()) {
kvn@1536 2337 if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
kvn@1536 2338 // Don't move related cardmark.
kvn@1536 2339 continue;
kvn@1536 2340 }
kvn@1536 2341 // Memory nodes should have new memory input.
kvn@1536 2342 tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
kvn@1536 2343 assert(tp != NULL, "ptr type");
kvn@1536 2344 int idx = C->get_alias_index(tp);
kvn@1536 2345 assert(get_map(use->_idx) != NULL || idx == alias_idx,
kvn@1536 2346 "Following memory nodes should have new memory input or be on the same memory slice");
kvn@1536 2347 } else if (use->is_Phi()) {
kvn@1536 2348 // Phi nodes should be split and moved already.
kvn@1536 2349 tp = use->as_Phi()->adr_type()->isa_ptr();
kvn@1536 2350 assert(tp != NULL, "ptr type");
kvn@1536 2351 int idx = C->get_alias_index(tp);
kvn@1536 2352 assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
kvn@1536 2353 } else {
kvn@1536 2354 use->dump();
kvn@1536 2355 assert(false, "should not be here");
kvn@1536 2356 #endif
kvn@1536 2357 }
kvn@1536 2358 }
kvn@1536 2359 }
kvn@1536 2360
kvn@1536 2361 //
kvn@500 2362 // Search memory chain of "mem" to find a MemNode whose address
kvn@500 2363 // is the specified alias index.
kvn@500 2364 //
kvn@3651 2365 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *> &orig_phis) {
kvn@500 2366 if (orig_mem == NULL)
kvn@500 2367 return orig_mem;
kvn@3651 2368 Compile* C = _compile;
kvn@3651 2369 PhaseGVN* igvn = _igvn;
never@2170 2370 const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
never@2170 2371 bool is_instance = (toop != NULL) && toop->is_known_instance();
kvn@688 2372 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@500 2373 Node *prev = NULL;
kvn@500 2374 Node *result = orig_mem;
kvn@500 2375 while (prev != result) {
kvn@500 2376 prev = result;
kvn@688 2377 if (result == start_mem)
twisti@1040 2378 break; // hit one of our sentinels
kvn@500 2379 if (result->is_Mem()) {
kvn@3651 2380 const Type *at = igvn->type(result->in(MemNode::Address));
kvn@2741 2381 if (at == Type::TOP)
kvn@2741 2382 break; // Dead
kvn@2741 2383 assert (at->isa_ptr() != NULL, "pointer type required.");
kvn@2741 2384 int idx = C->get_alias_index(at->is_ptr());
kvn@2741 2385 if (idx == alias_idx)
kvn@2741 2386 break; // Found
kvn@2741 2387 if (!is_instance && (at->isa_oopptr() == NULL ||
kvn@2741 2388 !at->is_oopptr()->is_known_instance())) {
kvn@2741 2389 break; // Do not skip store to general memory slice.
kvn@500 2390 }
kvn@688 2391 result = result->in(MemNode::Memory);
kvn@500 2392 }
kvn@500 2393 if (!is_instance)
kvn@500 2394 continue; // don't search further for non-instance types
kvn@500 2395 // skip over a call which does not affect this memory slice
kvn@500 2396 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
kvn@500 2397 Node *proj_in = result->in(0);
never@2170 2398 if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
twisti@1040 2399 break; // hit one of our sentinels
kvn@688 2400 } else if (proj_in->is_Call()) {
kvn@500 2401 CallNode *call = proj_in->as_Call();
kvn@3651 2402 if (!call->may_modify(toop, igvn)) {
kvn@500 2403 result = call->in(TypeFunc::Memory);
kvn@500 2404 }
kvn@500 2405 } else if (proj_in->is_Initialize()) {
kvn@500 2406 AllocateNode* alloc = proj_in->as_Initialize()->allocation();
kvn@500 2407 // Stop if this is the initialization for the object instance which
kvn@500 2408 // which contains this memory slice, otherwise skip over it.
never@2170 2409 if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
kvn@500 2410 result = proj_in->in(TypeFunc::Memory);
kvn@500 2411 }
kvn@500 2412 } else if (proj_in->is_MemBar()) {
kvn@500 2413 result = proj_in->in(TypeFunc::Memory);
kvn@500 2414 }
kvn@500 2415 } else if (result->is_MergeMem()) {
kvn@500 2416 MergeMemNode *mmem = result->as_MergeMem();
never@2170 2417 result = step_through_mergemem(mmem, alias_idx, toop);
kvn@500 2418 if (result == mmem->base_memory()) {
kvn@500 2419 // Didn't find instance memory, search through general slice recursively.
kvn@500 2420 result = mmem->memory_at(C->get_general_index(alias_idx));
kvn@3651 2421 result = find_inst_mem(result, alias_idx, orig_phis);
kvn@500 2422 if (C->failing()) {
kvn@500 2423 return NULL;
kvn@500 2424 }
kvn@500 2425 mmem->set_memory_at(alias_idx, result);
kvn@500 2426 }
kvn@500 2427 } else if (result->is_Phi() &&
kvn@500 2428 C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
kvn@3651 2429 Node *un = result->as_Phi()->unique_input(igvn);
kvn@500 2430 if (un != NULL) {
kvn@1536 2431 orig_phis.append_if_missing(result->as_Phi());
kvn@500 2432 result = un;
kvn@500 2433 } else {
kvn@500 2434 break;
kvn@500 2435 }
kvn@1535 2436 } else if (result->is_ClearArray()) {
kvn@3651 2437 if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
kvn@1535 2438 // Can not bypass initialization of the instance
kvn@1535 2439 // we are looking for.
kvn@1535 2440 break;
kvn@1535 2441 }
kvn@1535 2442 // Otherwise skip it (the call updated 'result' value).
kvn@1019 2443 } else if (result->Opcode() == Op_SCMemProj) {
kvn@1019 2444 assert(result->in(0)->is_LoadStore(), "sanity");
kvn@3651 2445 const Type *at = igvn->type(result->in(0)->in(MemNode::Address));
kvn@1019 2446 if (at != Type::TOP) {
kvn@1019 2447 assert (at->isa_ptr() != NULL, "pointer type required.");
kvn@1019 2448 int idx = C->get_alias_index(at->is_ptr());
kvn@1019 2449 assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
kvn@1019 2450 break;
kvn@1019 2451 }
kvn@1019 2452 result = result->in(0)->in(MemNode::Memory);
kvn@500 2453 }
kvn@500 2454 }
kvn@682 2455 if (result->is_Phi()) {
kvn@500 2456 PhiNode *mphi = result->as_Phi();
kvn@500 2457 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
kvn@500 2458 const TypePtr *t = mphi->adr_type();
kvn@2741 2459 if (!is_instance) {
kvn@682 2460 // Push all non-instance Phis on the orig_phis worklist to update inputs
kvn@682 2461 // during Phase 4 if needed.
kvn@682 2462 orig_phis.append_if_missing(mphi);
kvn@2741 2463 } else if (C->get_alias_index(t) != alias_idx) {
kvn@2741 2464 // Create a new Phi with the specified alias index type.
kvn@3651 2465 result = split_memory_phi(mphi, alias_idx, orig_phis);
kvn@500 2466 }
kvn@500 2467 }
kvn@500 2468 // the result is either MemNode, PhiNode, InitializeNode.
kvn@500 2469 return result;
kvn@500 2470 }
kvn@500 2471
duke@435 2472 //
duke@435 2473 // Convert the types of unescaped object to instance types where possible,
duke@435 2474 // propagate the new type information through the graph, and update memory
duke@435 2475 // edges and MergeMem inputs to reflect the new type.
duke@435 2476 //
duke@435 2477 // We start with allocations (and calls which may be allocations) on alloc_worklist.
duke@435 2478 // The processing is done in 4 phases:
duke@435 2479 //
duke@435 2480 // Phase 1: Process possible allocations from alloc_worklist. Create instance
duke@435 2481 // types for the CheckCastPP for allocations where possible.
duke@435 2482 // Propagate the the new types through users as follows:
duke@435 2483 // casts and Phi: push users on alloc_worklist
duke@435 2484 // AddP: cast Base and Address inputs to the instance type
duke@435 2485 // push any AddP users on alloc_worklist and push any memnode
duke@435 2486 // users onto memnode_worklist.
duke@435 2487 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 2488 // search the Memory chain for a store with the appropriate type
duke@435 2489 // address type. If a Phi is found, create a new version with
twisti@1040 2490 // the appropriate memory slices from each of the Phi inputs.
duke@435 2491 // For stores, process the users as follows:
duke@435 2492 // MemNode: push on memnode_worklist
duke@435 2493 // MergeMem: push on mergemem_worklist
duke@435 2494 // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice
duke@435 2495 // moving the first node encountered of each instance type to the
duke@435 2496 // the input corresponding to its alias index.
duke@435 2497 // appropriate memory slice.
duke@435 2498 // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes.
duke@435 2499 //
duke@435 2500 // In the following example, the CheckCastPP nodes are the cast of allocation
duke@435 2501 // results and the allocation of node 29 is unescaped and eligible to be an
duke@435 2502 // instance type.
duke@435 2503 //
duke@435 2504 // We start with:
duke@435 2505 //
duke@435 2506 // 7 Parm #memory
duke@435 2507 // 10 ConI "12"
duke@435 2508 // 19 CheckCastPP "Foo"
duke@435 2509 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 2510 // 29 CheckCastPP "Foo"
duke@435 2511 // 30 AddP _ 29 29 10 Foo+12 alias_index=4
duke@435 2512 //
duke@435 2513 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 2514 // 50 StoreP 35 40 30 ... alias_index=4
duke@435 2515 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 2516 // 70 LoadP _ 60 30 ... alias_index=4
duke@435 2517 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 2518 // 90 LoadP _ 80 30 ... alias_index=4
duke@435 2519 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 2520 //
duke@435 2521 //
duke@435 2522 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
duke@435 2523 // and creating a new alias index for node 30. This gives:
duke@435 2524 //
duke@435 2525 // 7 Parm #memory
duke@435 2526 // 10 ConI "12"
duke@435 2527 // 19 CheckCastPP "Foo"
duke@435 2528 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 2529 // 29 CheckCastPP "Foo" iid=24
duke@435 2530 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 2531 //
duke@435 2532 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 2533 // 50 StoreP 35 40 30 ... alias_index=6
duke@435 2534 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 2535 // 70 LoadP _ 60 30 ... alias_index=6
duke@435 2536 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 2537 // 90 LoadP _ 80 30 ... alias_index=6
duke@435 2538 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 2539 //
duke@435 2540 // In phase 2, new memory inputs are computed for the loads and stores,
duke@435 2541 // And a new version of the phi is created. In phase 4, the inputs to
duke@435 2542 // node 80 are updated and then the memory nodes are updated with the
duke@435 2543 // values computed in phase 2. This results in:
duke@435 2544 //
duke@435 2545 // 7 Parm #memory
duke@435 2546 // 10 ConI "12"
duke@435 2547 // 19 CheckCastPP "Foo"
duke@435 2548 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 2549 // 29 CheckCastPP "Foo" iid=24
duke@435 2550 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 2551 //
duke@435 2552 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 2553 // 50 StoreP 35 7 30 ... alias_index=6
duke@435 2554 // 60 StoreP 45 40 20 ... alias_index=4
duke@435 2555 // 70 LoadP _ 50 30 ... alias_index=6
duke@435 2556 // 80 Phi 75 40 60 Memory alias_index=4
duke@435 2557 // 120 Phi 75 50 50 Memory alias_index=6
duke@435 2558 // 90 LoadP _ 120 30 ... alias_index=6
duke@435 2559 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 2560 //
duke@435 2561 void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist) {
duke@435 2562 GrowableArray<Node *> memnode_worklist;
duke@435 2563 GrowableArray<PhiNode *> orig_phis;
kvn@2276 2564 PhaseIterGVN *igvn = _igvn;
duke@435 2565 uint new_index_start = (uint) _compile->num_alias_types();
kvn@1536 2566 Arena* arena = Thread::current()->resource_area();
kvn@1536 2567 VectorSet visited(arena);
kvn@3651 2568 ideal_nodes.clear(); // Reset for use with set_map/get_map.
kvn@3651 2569 uint unique_old = _compile->unique();
kvn@500 2570
kvn@500 2571 // Phase 1: Process possible allocations from alloc_worklist.
kvn@500 2572 // Create instance types for the CheckCastPP for allocations where possible.
kvn@679 2573 //
kvn@679 2574 // (Note: don't forget to change the order of the second AddP node on
kvn@679 2575 // the alloc_worklist if the order of the worklist processing is changed,
kvn@679 2576 // see the comment in find_second_addp().)
kvn@679 2577 //
duke@435 2578 while (alloc_worklist.length() != 0) {
duke@435 2579 Node *n = alloc_worklist.pop();
duke@435 2580 uint ni = n->_idx;
duke@435 2581 if (n->is_Call()) {
duke@435 2582 CallNode *alloc = n->as_Call();
duke@435 2583 // copy escape information to call node
kvn@679 2584 PointsToNode* ptn = ptnode_adr(alloc->_idx);
kvn@3651 2585 PointsToNode::EscapeState es = ptn->escape_state();
kvn@500 2586 // We have an allocation or call which returns a Java object,
kvn@500 2587 // see if it is unescaped.
kvn@3254 2588 if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
duke@435 2589 continue;
kvn@1219 2590 // Find CheckCastPP for the allocate or for the return value of a call
kvn@1219 2591 n = alloc->result_cast();
kvn@1219 2592 if (n == NULL) { // No uses except Initialize node
kvn@1219 2593 if (alloc->is_Allocate()) {
kvn@1219 2594 // Set the scalar_replaceable flag for allocation
kvn@1219 2595 // so it could be eliminated if it has no uses.
kvn@1219 2596 alloc->as_Allocate()->_is_scalar_replaceable = true;
kvn@1219 2597 }
kvn@1219 2598 continue;
kvn@474 2599 }
kvn@1219 2600 if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
kvn@1219 2601 assert(!alloc->is_Allocate(), "allocation should have unique type");
kvn@500 2602 continue;
kvn@1219 2603 }
kvn@1219 2604
kvn@500 2605 // The inline code for Object.clone() casts the allocation result to
kvn@682 2606 // java.lang.Object and then to the actual type of the allocated
kvn@500 2607 // object. Detect this case and use the second cast.
kvn@682 2608 // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
kvn@682 2609 // the allocation result is cast to java.lang.Object and then
kvn@682 2610 // to the actual Array type.
kvn@500 2611 if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
kvn@682 2612 && (alloc->is_AllocateArray() ||
kvn@682 2613 igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
kvn@500 2614 Node *cast2 = NULL;
kvn@500 2615 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 2616 Node *use = n->fast_out(i);
kvn@500 2617 if (use->is_CheckCastPP()) {
kvn@500 2618 cast2 = use;
kvn@500 2619 break;
kvn@500 2620 }
kvn@500 2621 }
kvn@500 2622 if (cast2 != NULL) {
kvn@500 2623 n = cast2;
kvn@500 2624 } else {
kvn@1219 2625 // Non-scalar replaceable if the allocation type is unknown statically
kvn@1219 2626 // (reflection allocation), the object can't be restored during
kvn@1219 2627 // deoptimization without precise type.
kvn@500 2628 continue;
kvn@500 2629 }
kvn@500 2630 }
kvn@1219 2631 if (alloc->is_Allocate()) {
kvn@1219 2632 // Set the scalar_replaceable flag for allocation
kvn@1219 2633 // so it could be eliminated.
kvn@1219 2634 alloc->as_Allocate()->_is_scalar_replaceable = true;
kvn@1219 2635 }
kvn@3651 2636 set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
kvn@682 2637 // in order for an object to be scalar-replaceable, it must be:
kvn@500 2638 // - a direct allocation (not a call returning an object)
kvn@500 2639 // - non-escaping
kvn@500 2640 // - eligible to be a unique type
kvn@500 2641 // - not determined to be ineligible by escape analysis
kvn@3651 2642 set_map(alloc, n);
kvn@3651 2643 set_map(n, alloc);
kvn@500 2644 const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
kvn@500 2645 if (t == NULL)
kvn@3254 2646 continue; // not a TypeOopPtr
kvn@3651 2647 const TypeOopPtr* tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
duke@435 2648 igvn->hash_delete(n);
duke@435 2649 igvn->set_type(n, tinst);
duke@435 2650 n->raise_bottom_type(tinst);
duke@435 2651 igvn->hash_insert(n);
kvn@500 2652 record_for_optimizer(n);
kvn@3254 2653 if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
kvn@598 2654
kvn@598 2655 // First, put on the worklist all Field edges from Connection Graph
kvn@598 2656 // which is more accurate then putting immediate users from Ideal Graph.
kvn@3651 2657 for (EdgeIterator e(ptn); e.has_next(); e.next()) {
kvn@3651 2658 PointsToNode* tgt = e.get();
kvn@3651 2659 Node* use = tgt->ideal_node();
kvn@3651 2660 assert(tgt->is_Field() && use->is_AddP(),
kvn@598 2661 "only AddP nodes are Field edges in CG");
kvn@598 2662 if (use->outcnt() > 0) { // Don't process dead nodes
kvn@598 2663 Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
kvn@598 2664 if (addp2 != NULL) {
kvn@598 2665 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@598 2666 alloc_worklist.append_if_missing(addp2);
kvn@598 2667 }
kvn@598 2668 alloc_worklist.append_if_missing(use);
kvn@598 2669 }
kvn@598 2670 }
kvn@598 2671
kvn@500 2672 // An allocation may have an Initialize which has raw stores. Scan
kvn@500 2673 // the users of the raw allocation result and push AddP users
kvn@500 2674 // on alloc_worklist.
kvn@500 2675 Node *raw_result = alloc->proj_out(TypeFunc::Parms);
kvn@500 2676 assert (raw_result != NULL, "must have an allocation result");
kvn@500 2677 for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
kvn@500 2678 Node *use = raw_result->fast_out(i);
kvn@500 2679 if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
kvn@500 2680 Node* addp2 = find_second_addp(use, raw_result);
kvn@500 2681 if (addp2 != NULL) {
kvn@500 2682 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@500 2683 alloc_worklist.append_if_missing(addp2);
kvn@500 2684 }
kvn@500 2685 alloc_worklist.append_if_missing(use);
kvn@1535 2686 } else if (use->is_MemBar()) {
kvn@500 2687 memnode_worklist.append_if_missing(use);
kvn@500 2688 }
kvn@500 2689 }
kvn@500 2690 }
duke@435 2691 } else if (n->is_AddP()) {
kvn@3651 2692 JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
kvn@3651 2693 if (jobj == NULL || jobj == phantom_obj) {
kvn@3651 2694 #ifdef ASSERT
kvn@3651 2695 ptnode_adr(get_addp_base(n)->_idx)->dump();
kvn@3651 2696 ptnode_adr(n->_idx)->dump();
kvn@3651 2697 assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
kvn@3651 2698 #endif
kvn@3651 2699 _compile->record_failure(C2Compiler::retry_no_escape_analysis());
kvn@3651 2700 return;
kvn@1535 2701 }
kvn@3651 2702 Node *base = get_map(jobj->idx()); // CheckCastPP node
kvn@3651 2703 if (!split_AddP(n, base)) continue; // wrong type from dead path
kvn@500 2704 } else if (n->is_Phi() ||
kvn@500 2705 n->is_CheckCastPP() ||
kvn@603 2706 n->is_EncodeP() ||
kvn@603 2707 n->is_DecodeN() ||
kvn@500 2708 (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
duke@435 2709 if (visited.test_set(n->_idx)) {
duke@435 2710 assert(n->is_Phi(), "loops only through Phi's");
duke@435 2711 continue; // already processed
duke@435 2712 }
kvn@3651 2713 JavaObjectNode* jobj = unique_java_object(n);
kvn@3651 2714 if (jobj == NULL || jobj == phantom_obj) {
kvn@3651 2715 #ifdef ASSERT
kvn@3651 2716 ptnode_adr(n->_idx)->dump();
kvn@3651 2717 assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
kvn@3651 2718 #endif
kvn@3651 2719 _compile->record_failure(C2Compiler::retry_no_escape_analysis());
kvn@3651 2720 return;
kvn@3651 2721 } else {
kvn@3651 2722 Node *val = get_map(jobj->idx()); // CheckCastPP node
duke@435 2723 TypeNode *tn = n->as_Type();
kvn@3651 2724 const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
kvn@658 2725 assert(tinst != NULL && tinst->is_known_instance() &&
kvn@3651 2726 tinst->instance_id() == jobj->idx() , "instance type expected.");
kvn@598 2727
kvn@598 2728 const Type *tn_type = igvn->type(tn);
kvn@658 2729 const TypeOopPtr *tn_t;
kvn@658 2730 if (tn_type->isa_narrowoop()) {
kvn@658 2731 tn_t = tn_type->make_ptr()->isa_oopptr();
kvn@658 2732 } else {
kvn@658 2733 tn_t = tn_type->isa_oopptr();
kvn@658 2734 }
kvn@1535 2735 if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
kvn@598 2736 if (tn_type->isa_narrowoop()) {
kvn@598 2737 tn_type = tinst->make_narrowoop();
kvn@598 2738 } else {
kvn@598 2739 tn_type = tinst;
kvn@598 2740 }
duke@435 2741 igvn->hash_delete(tn);
kvn@598 2742 igvn->set_type(tn, tn_type);
kvn@598 2743 tn->set_type(tn_type);
duke@435 2744 igvn->hash_insert(tn);
kvn@500 2745 record_for_optimizer(n);
kvn@728 2746 } else {
kvn@1535 2747 assert(tn_type == TypePtr::NULL_PTR ||
kvn@1535 2748 tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
kvn@1535 2749 "unexpected type");
kvn@1535 2750 continue; // Skip dead path with different type
duke@435 2751 }
duke@435 2752 }
duke@435 2753 } else {
kvn@1535 2754 debug_only(n->dump();)
kvn@1535 2755 assert(false, "EA: unexpected node");
duke@435 2756 continue;
duke@435 2757 }
kvn@1535 2758 // push allocation's users on appropriate worklist
duke@435 2759 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 2760 Node *use = n->fast_out(i);
duke@435 2761 if(use->is_Mem() && use->in(MemNode::Address) == n) {
kvn@1535 2762 // Load/store to instance's field
kvn@500 2763 memnode_worklist.append_if_missing(use);
kvn@1535 2764 } else if (use->is_MemBar()) {
kvn@500 2765 memnode_worklist.append_if_missing(use);
kvn@500 2766 } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
kvn@500 2767 Node* addp2 = find_second_addp(use, n);
kvn@500 2768 if (addp2 != NULL) {
kvn@500 2769 alloc_worklist.append_if_missing(addp2);
kvn@500 2770 }
kvn@500 2771 alloc_worklist.append_if_missing(use);
kvn@500 2772 } else if (use->is_Phi() ||
kvn@500 2773 use->is_CheckCastPP() ||
kvn@603 2774 use->is_EncodeP() ||
kvn@603 2775 use->is_DecodeN() ||
kvn@500 2776 (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
kvn@500 2777 alloc_worklist.append_if_missing(use);
kvn@1535 2778 #ifdef ASSERT
kvn@1535 2779 } else if (use->is_Mem()) {
kvn@1535 2780 assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
kvn@1535 2781 } else if (use->is_MergeMem()) {
kvn@1535 2782 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 2783 } else if (use->is_SafePoint()) {
kvn@1535 2784 // Look for MergeMem nodes for calls which reference unique allocation
kvn@1535 2785 // (through CheckCastPP nodes) even for debug info.
kvn@1535 2786 Node* m = use->in(TypeFunc::Memory);
kvn@1535 2787 if (m->is_MergeMem()) {
kvn@1535 2788 assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 2789 }
kvn@1535 2790 } else {
kvn@1535 2791 uint op = use->Opcode();
kvn@1535 2792 if (!(op == Op_CmpP || op == Op_Conv2B ||
kvn@1535 2793 op == Op_CastP2X || op == Op_StoreCM ||
kvn@1535 2794 op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
kvn@1535 2795 op == Op_StrEquals || op == Op_StrIndexOf)) {
kvn@1535 2796 n->dump();
kvn@1535 2797 use->dump();
kvn@1535 2798 assert(false, "EA: missing allocation reference path");
kvn@1535 2799 }
kvn@1535 2800 #endif
duke@435 2801 }
duke@435 2802 }
duke@435 2803
duke@435 2804 }
kvn@500 2805 // New alias types were created in split_AddP().
duke@435 2806 uint new_index_end = (uint) _compile->num_alias_types();
kvn@3651 2807 assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
duke@435 2808
duke@435 2809 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 2810 // compute new values for Memory inputs (the Memory inputs are not
duke@435 2811 // actually updated until phase 4.)
duke@435 2812 if (memnode_worklist.length() == 0)
duke@435 2813 return; // nothing to do
duke@435 2814 while (memnode_worklist.length() != 0) {
duke@435 2815 Node *n = memnode_worklist.pop();
kvn@500 2816 if (visited.test_set(n->_idx))
kvn@500 2817 continue;
kvn@1535 2818 if (n->is_Phi() || n->is_ClearArray()) {
kvn@1535 2819 // we don't need to do anything, but the users must be pushed
kvn@1535 2820 } else if (n->is_MemBar()) { // Initialize, MemBar nodes
kvn@1535 2821 // we don't need to do anything, but the users must be pushed
kvn@1535 2822 n = n->as_MemBar()->proj_out(TypeFunc::Memory);
kvn@500 2823 if (n == NULL)
duke@435 2824 continue;
duke@435 2825 } else {
duke@435 2826 assert(n->is_Mem(), "memory node required.");
duke@435 2827 Node *addr = n->in(MemNode::Address);
duke@435 2828 const Type *addr_t = igvn->type(addr);
duke@435 2829 if (addr_t == Type::TOP)
duke@435 2830 continue;
duke@435 2831 assert (addr_t->isa_ptr() != NULL, "pointer type required.");
duke@435 2832 int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
kvn@500 2833 assert ((uint)alias_idx < new_index_end, "wrong alias index");
kvn@3651 2834 Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
kvn@473 2835 if (_compile->failing()) {
kvn@473 2836 return;
kvn@473 2837 }
kvn@500 2838 if (mem != n->in(MemNode::Memory)) {
kvn@1536 2839 // We delay the memory edge update since we need old one in
kvn@1536 2840 // MergeMem code below when instances memory slices are separated.
kvn@3651 2841 set_map(n, mem);
kvn@500 2842 }
duke@435 2843 if (n->is_Load()) {
duke@435 2844 continue; // don't push users
duke@435 2845 } else if (n->is_LoadStore()) {
duke@435 2846 // get the memory projection
duke@435 2847 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 2848 Node *use = n->fast_out(i);
duke@435 2849 if (use->Opcode() == Op_SCMemProj) {
duke@435 2850 n = use;
duke@435 2851 break;
duke@435 2852 }
duke@435 2853 }
duke@435 2854 assert(n->Opcode() == Op_SCMemProj, "memory projection required");
duke@435 2855 }
duke@435 2856 }
duke@435 2857 // push user on appropriate worklist
duke@435 2858 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 2859 Node *use = n->fast_out(i);
kvn@1535 2860 if (use->is_Phi() || use->is_ClearArray()) {
kvn@500 2861 memnode_worklist.append_if_missing(use);
duke@435 2862 } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
kvn@1535 2863 if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
kvn@1535 2864 continue;
kvn@500 2865 memnode_worklist.append_if_missing(use);
kvn@1535 2866 } else if (use->is_MemBar()) {
kvn@500 2867 memnode_worklist.append_if_missing(use);
kvn@1535 2868 #ifdef ASSERT
kvn@1535 2869 } else if(use->is_Mem()) {
kvn@1535 2870 assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
duke@435 2871 } else if (use->is_MergeMem()) {
kvn@1535 2872 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 2873 } else {
kvn@1535 2874 uint op = use->Opcode();
kvn@1535 2875 if (!(op == Op_StoreCM ||
kvn@1535 2876 (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
kvn@1535 2877 strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
kvn@1535 2878 op == Op_AryEq || op == Op_StrComp ||
kvn@1535 2879 op == Op_StrEquals || op == Op_StrIndexOf)) {
kvn@1535 2880 n->dump();
kvn@1535 2881 use->dump();
kvn@1535 2882 assert(false, "EA: missing memory path");
kvn@1535 2883 }
kvn@1535 2884 #endif
duke@435 2885 }
duke@435 2886 }
duke@435 2887 }
duke@435 2888
kvn@500 2889 // Phase 3: Process MergeMem nodes from mergemem_worklist.
kvn@1535 2890 // Walk each memory slice moving the first node encountered of each
kvn@500 2891 // instance type to the the input corresponding to its alias index.
kvn@1535 2892 uint length = _mergemem_worklist.length();
kvn@1535 2893 for( uint next = 0; next < length; ++next ) {
kvn@1535 2894 MergeMemNode* nmm = _mergemem_worklist.at(next);
kvn@1535 2895 assert(!visited.test_set(nmm->_idx), "should not be visited before");
duke@435 2896 // Note: we don't want to use MergeMemStream here because we only want to
kvn@1535 2897 // scan inputs which exist at the start, not ones we add during processing.
kvn@1535 2898 // Note 2: MergeMem may already contains instance memory slices added
kvn@1535 2899 // during find_inst_mem() call when memory nodes were processed above.
kvn@1535 2900 igvn->hash_delete(nmm);
duke@435 2901 uint nslices = nmm->req();
duke@435 2902 for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
kvn@500 2903 Node* mem = nmm->in(i);
kvn@500 2904 Node* cur = NULL;
duke@435 2905 if (mem == NULL || mem->is_top())
duke@435 2906 continue;
kvn@1536 2907 // First, update mergemem by moving memory nodes to corresponding slices
kvn@1536 2908 // if their type became more precise since this mergemem was created.
duke@435 2909 while (mem->is_Mem()) {
duke@435 2910 const Type *at = igvn->type(mem->in(MemNode::Address));
duke@435 2911 if (at != Type::TOP) {
duke@435 2912 assert (at->isa_ptr() != NULL, "pointer type required.");
duke@435 2913 uint idx = (uint)_compile->get_alias_index(at->is_ptr());
duke@435 2914 if (idx == i) {
duke@435 2915 if (cur == NULL)
duke@435 2916 cur = mem;
duke@435 2917 } else {
duke@435 2918 if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
duke@435 2919 nmm->set_memory_at(idx, mem);
duke@435 2920 }
duke@435 2921 }
duke@435 2922 }
duke@435 2923 mem = mem->in(MemNode::Memory);
duke@435 2924 }
duke@435 2925 nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
kvn@500 2926 // Find any instance of the current type if we haven't encountered
kvn@1536 2927 // already a memory slice of the instance along the memory chain.
kvn@500 2928 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@500 2929 if((uint)_compile->get_general_index(ni) == i) {
kvn@500 2930 Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
kvn@500 2931 if (nmm->is_empty_memory(m)) {
kvn@3651 2932 Node* result = find_inst_mem(mem, ni, orig_phis);
kvn@500 2933 if (_compile->failing()) {
kvn@500 2934 return;
kvn@500 2935 }
kvn@500 2936 nmm->set_memory_at(ni, result);
kvn@500 2937 }
kvn@500 2938 }
kvn@500 2939 }
kvn@500 2940 }
kvn@500 2941 // Find the rest of instances values
kvn@500 2942 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@1536 2943 const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
kvn@500 2944 Node* result = step_through_mergemem(nmm, ni, tinst);
kvn@500 2945 if (result == nmm->base_memory()) {
kvn@500 2946 // Didn't find instance memory, search through general slice recursively.
kvn@1536 2947 result = nmm->memory_at(_compile->get_general_index(ni));
kvn@3651 2948 result = find_inst_mem(result, ni, orig_phis);
kvn@500 2949 if (_compile->failing()) {
kvn@500 2950 return;
kvn@500 2951 }
kvn@500 2952 nmm->set_memory_at(ni, result);
kvn@500 2953 }
kvn@500 2954 }
kvn@500 2955 igvn->hash_insert(nmm);
kvn@500 2956 record_for_optimizer(nmm);
duke@435 2957 }
duke@435 2958
kvn@500 2959 // Phase 4: Update the inputs of non-instance memory Phis and
kvn@500 2960 // the Memory input of memnodes
duke@435 2961 // First update the inputs of any non-instance Phi's from
duke@435 2962 // which we split out an instance Phi. Note we don't have
duke@435 2963 // to recursively process Phi's encounted on the input memory
duke@435 2964 // chains as is done in split_memory_phi() since they will
duke@435 2965 // also be processed here.
kvn@682 2966 for (int j = 0; j < orig_phis.length(); j++) {
kvn@682 2967 PhiNode *phi = orig_phis.at(j);
duke@435 2968 int alias_idx = _compile->get_alias_index(phi->adr_type());
duke@435 2969 igvn->hash_delete(phi);
duke@435 2970 for (uint i = 1; i < phi->req(); i++) {
duke@435 2971 Node *mem = phi->in(i);
kvn@3651 2972 Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
kvn@500 2973 if (_compile->failing()) {
kvn@500 2974 return;
kvn@500 2975 }
duke@435 2976 if (mem != new_mem) {
duke@435 2977 phi->set_req(i, new_mem);
duke@435 2978 }
duke@435 2979 }
duke@435 2980 igvn->hash_insert(phi);
duke@435 2981 record_for_optimizer(phi);
duke@435 2982 }
duke@435 2983
duke@435 2984 // Update the memory inputs of MemNodes with the value we computed
kvn@1536 2985 // in Phase 2 and move stores memory users to corresponding memory slices.
kvn@2810 2986 // Disable memory split verification code until the fix for 6984348.
kvn@2810 2987 // Currently it produces false negative results since it does not cover all cases.
kvn@2810 2988 #if 0 // ifdef ASSERT
kvn@2556 2989 visited.Reset();
kvn@1536 2990 Node_Stack old_mems(arena, _compile->unique() >> 2);
kvn@1536 2991 #endif
kvn@3651 2992 for (uint i = 0; i < ideal_nodes.size(); i++) {
kvn@3651 2993 Node* n = ideal_nodes.at(i);
kvn@3651 2994 Node* nmem = get_map(n->_idx);
kvn@3651 2995 assert(nmem != NULL, "sanity");
kvn@3651 2996 if (n->is_Mem()) {
kvn@2810 2997 #if 0 // ifdef ASSERT
kvn@3651 2998 Node* old_mem = n->in(MemNode::Memory);
kvn@3651 2999 if (!visited.test_set(old_mem->_idx)) {
kvn@3651 3000 old_mems.push(old_mem, old_mem->outcnt());
kvn@3651 3001 }
kvn@1536 3002 #endif
kvn@3651 3003 assert(n->in(MemNode::Memory) != nmem, "sanity");
kvn@3651 3004 if (!n->is_Load()) {
kvn@3651 3005 // Move memory users of a store first.
kvn@3651 3006 move_inst_mem(n, orig_phis);
duke@435 3007 }
kvn@3651 3008 // Now update memory input
kvn@3651 3009 igvn->hash_delete(n);
kvn@3651 3010 n->set_req(MemNode::Memory, nmem);
kvn@3651 3011 igvn->hash_insert(n);
kvn@3651 3012 record_for_optimizer(n);
kvn@3651 3013 } else {
kvn@3651 3014 assert(n->is_Allocate() || n->is_CheckCastPP() ||
kvn@3651 3015 n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
duke@435 3016 }
duke@435 3017 }
kvn@2810 3018 #if 0 // ifdef ASSERT
kvn@1536 3019 // Verify that memory was split correctly
kvn@1536 3020 while (old_mems.is_nonempty()) {
kvn@1536 3021 Node* old_mem = old_mems.node();
kvn@1536 3022 uint old_cnt = old_mems.index();
kvn@1536 3023 old_mems.pop();
kvn@2810 3024 assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
kvn@1536 3025 }
kvn@1536 3026 #endif
duke@435 3027 }
duke@435 3028
kvn@3651 3029 #ifndef PRODUCT
kvn@3651 3030 static const char *node_type_names[] = {
kvn@3651 3031 "UnknownType",
kvn@3651 3032 "JavaObject",
kvn@3651 3033 "LocalVar",
kvn@3651 3034 "Field",
kvn@3651 3035 "Arraycopy"
kvn@3651 3036 };
kvn@3651 3037
kvn@3651 3038 static const char *esc_names[] = {
kvn@3651 3039 "UnknownEscape",
kvn@3651 3040 "NoEscape",
kvn@3651 3041 "ArgEscape",
kvn@3651 3042 "GlobalEscape"
kvn@3651 3043 };
kvn@3651 3044
kvn@3651 3045 void PointsToNode::dump(bool print_state) const {
kvn@3651 3046 NodeType nt = node_type();
kvn@3651 3047 tty->print("%s ", node_type_names[(int) nt]);
kvn@3651 3048 if (print_state) {
kvn@3651 3049 EscapeState es = escape_state();
kvn@3651 3050 EscapeState fields_es = fields_escape_state();
kvn@3651 3051 tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
kvn@3651 3052 if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
kvn@3651 3053 tty->print("NSR");
kvn@3651 3054 }
kvn@3651 3055 if (is_Field()) {
kvn@3651 3056 FieldNode* f = (FieldNode*)this;
kvn@3651 3057 tty->print("(");
kvn@3651 3058 for (BaseIterator i(f); i.has_next(); i.next()) {
kvn@3651 3059 PointsToNode* b = i.get();
kvn@3651 3060 tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
kvn@679 3061 }
kvn@3651 3062 tty->print(" )");
kvn@679 3063 }
kvn@3651 3064 tty->print("[");
kvn@3651 3065 for (EdgeIterator i(this); i.has_next(); i.next()) {
kvn@3651 3066 PointsToNode* e = i.get();
kvn@3651 3067 tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
kvn@3651 3068 }
kvn@3651 3069 tty->print(" [");
kvn@3651 3070 for (UseIterator i(this); i.has_next(); i.next()) {
kvn@3651 3071 PointsToNode* u = i.get();
kvn@3651 3072 bool is_base = false;
kvn@3651 3073 if (PointsToNode::is_base_use(u)) {
kvn@3651 3074 is_base = true;
kvn@3651 3075 u = PointsToNode::get_use_node(u)->as_Field();
kvn@3651 3076 }
kvn@3651 3077 tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
kvn@3651 3078 }
kvn@3651 3079 tty->print(" ]] ");
kvn@3651 3080 if (_node == NULL)
kvn@3651 3081 tty->print_cr("<null>");
kvn@3651 3082 else
kvn@3651 3083 _node->dump();
kvn@679 3084 }
kvn@679 3085
kvn@3651 3086 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
duke@435 3087 bool first = true;
kvn@3651 3088 int ptnodes_length = ptnodes_worklist.length();
kvn@3651 3089 for (int i = 0; i < ptnodes_length; i++) {
kvn@3651 3090 PointsToNode *ptn = ptnodes_worklist.at(i);
kvn@3651 3091 if (ptn == NULL || !ptn->is_JavaObject())
duke@435 3092 continue;
kvn@3651 3093 PointsToNode::EscapeState es = ptn->escape_state();
kvn@3651 3094 if (ptn->ideal_node()->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
kvn@500 3095 if (first) {
kvn@500 3096 tty->cr();
kvn@500 3097 tty->print("======== Connection graph for ");
kvn@679 3098 _compile->method()->print_short_name();
kvn@500 3099 tty->cr();
kvn@500 3100 first = false;
kvn@500 3101 }
kvn@500 3102 ptn->dump();
kvn@3651 3103 // Print all locals and fields which reference this allocation
kvn@3651 3104 for (UseIterator j(ptn); j.has_next(); j.next()) {
kvn@3651 3105 PointsToNode* use = j.get();
kvn@3651 3106 if (use->is_LocalVar()) {
kvn@3651 3107 use->dump(Verbose);
kvn@3651 3108 } else if (Verbose) {
kvn@3651 3109 use->dump();
kvn@500 3110 }
kvn@500 3111 }
kvn@500 3112 tty->cr();
duke@435 3113 }
duke@435 3114 }
duke@435 3115 }
duke@435 3116 #endif

mercurial