src/share/vm/opto/escape.cpp

Tue, 23 Nov 2010 13:22:55 -0800

author
stefank
date
Tue, 23 Nov 2010 13:22:55 -0800
changeset 2314
f95d63e2154a
parent 2276
e4fcbeb5a698
child 2409
a21ff35351ec
permissions
-rw-r--r--

6989984: Use standard include model for Hospot
Summary: Replaced MakeDeps and the includeDB files with more standardized solutions.
Reviewed-by: coleenp, kvn, kamg

duke@435 1 /*
stefank@2314 2 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "ci/bcEscapeAnalyzer.hpp"
stefank@2314 27 #include "libadt/vectset.hpp"
stefank@2314 28 #include "memory/allocation.hpp"
stefank@2314 29 #include "opto/c2compiler.hpp"
stefank@2314 30 #include "opto/callnode.hpp"
stefank@2314 31 #include "opto/cfgnode.hpp"
stefank@2314 32 #include "opto/compile.hpp"
stefank@2314 33 #include "opto/escape.hpp"
stefank@2314 34 #include "opto/phaseX.hpp"
stefank@2314 35 #include "opto/rootnode.hpp"
duke@435 36
duke@435 37 void PointsToNode::add_edge(uint targIdx, PointsToNode::EdgeType et) {
duke@435 38 uint v = (targIdx << EdgeShift) + ((uint) et);
duke@435 39 if (_edges == NULL) {
duke@435 40 Arena *a = Compile::current()->comp_arena();
duke@435 41 _edges = new(a) GrowableArray<uint>(a, INITIAL_EDGE_COUNT, 0, 0);
duke@435 42 }
duke@435 43 _edges->append_if_missing(v);
duke@435 44 }
duke@435 45
duke@435 46 void PointsToNode::remove_edge(uint targIdx, PointsToNode::EdgeType et) {
duke@435 47 uint v = (targIdx << EdgeShift) + ((uint) et);
duke@435 48
duke@435 49 _edges->remove(v);
duke@435 50 }
duke@435 51
duke@435 52 #ifndef PRODUCT
kvn@512 53 static const char *node_type_names[] = {
duke@435 54 "UnknownType",
duke@435 55 "JavaObject",
duke@435 56 "LocalVar",
duke@435 57 "Field"
duke@435 58 };
duke@435 59
kvn@512 60 static const char *esc_names[] = {
duke@435 61 "UnknownEscape",
kvn@500 62 "NoEscape",
kvn@500 63 "ArgEscape",
kvn@500 64 "GlobalEscape"
duke@435 65 };
duke@435 66
kvn@512 67 static const char *edge_type_suffix[] = {
duke@435 68 "?", // UnknownEdge
duke@435 69 "P", // PointsToEdge
duke@435 70 "D", // DeferredEdge
duke@435 71 "F" // FieldEdge
duke@435 72 };
duke@435 73
kvn@688 74 void PointsToNode::dump(bool print_state) const {
duke@435 75 NodeType nt = node_type();
kvn@688 76 tty->print("%s ", node_type_names[(int) nt]);
kvn@688 77 if (print_state) {
kvn@688 78 EscapeState es = escape_state();
kvn@688 79 tty->print("%s %s ", esc_names[(int) es], _scalar_replaceable ? "":"NSR");
kvn@688 80 }
kvn@688 81 tty->print("[[");
duke@435 82 for (uint i = 0; i < edge_count(); i++) {
duke@435 83 tty->print(" %d%s", edge_target(i), edge_type_suffix[(int) edge_type(i)]);
duke@435 84 }
duke@435 85 tty->print("]] ");
duke@435 86 if (_node == NULL)
duke@435 87 tty->print_cr("<null>");
duke@435 88 else
duke@435 89 _node->dump();
duke@435 90 }
duke@435 91 #endif
duke@435 92
kvn@1989 93 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
kvn@679 94 _nodes(C->comp_arena(), C->unique(), C->unique(), PointsToNode()),
kvn@679 95 _processed(C->comp_arena()),
kvn@679 96 _collecting(true),
kvn@2276 97 _progress(false),
kvn@679 98 _compile(C),
kvn@1989 99 _igvn(igvn),
kvn@679 100 _node_map(C->comp_arena()) {
kvn@679 101
kvn@688 102 _phantom_object = C->top()->_idx,
kvn@688 103 add_node(C->top(), PointsToNode::JavaObject, PointsToNode::GlobalEscape,true);
kvn@688 104
kvn@688 105 // Add ConP(#NULL) and ConN(#NULL) nodes.
kvn@688 106 Node* oop_null = igvn->zerocon(T_OBJECT);
kvn@688 107 _oop_null = oop_null->_idx;
kvn@688 108 assert(_oop_null < C->unique(), "should be created already");
kvn@688 109 add_node(oop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
kvn@688 110
kvn@688 111 if (UseCompressedOops) {
kvn@688 112 Node* noop_null = igvn->zerocon(T_NARROWOOP);
kvn@688 113 _noop_null = noop_null->_idx;
kvn@688 114 assert(_noop_null < C->unique(), "should be created already");
kvn@688 115 add_node(noop_null, PointsToNode::JavaObject, PointsToNode::NoEscape, true);
kvn@688 116 }
duke@435 117 }
duke@435 118
duke@435 119 void ConnectionGraph::add_pointsto_edge(uint from_i, uint to_i) {
duke@435 120 PointsToNode *f = ptnode_adr(from_i);
duke@435 121 PointsToNode *t = ptnode_adr(to_i);
duke@435 122
duke@435 123 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 124 assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of PointsTo edge");
duke@435 125 assert(t->node_type() == PointsToNode::JavaObject, "invalid destination of PointsTo edge");
kvn@2276 126 add_edge(f, to_i, PointsToNode::PointsToEdge);
duke@435 127 }
duke@435 128
duke@435 129 void ConnectionGraph::add_deferred_edge(uint from_i, uint to_i) {
duke@435 130 PointsToNode *f = ptnode_adr(from_i);
duke@435 131 PointsToNode *t = ptnode_adr(to_i);
duke@435 132
duke@435 133 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 134 assert(f->node_type() == PointsToNode::LocalVar || f->node_type() == PointsToNode::Field, "invalid source of Deferred edge");
duke@435 135 assert(t->node_type() == PointsToNode::LocalVar || t->node_type() == PointsToNode::Field, "invalid destination of Deferred edge");
duke@435 136 // don't add a self-referential edge, this can occur during removal of
duke@435 137 // deferred edges
duke@435 138 if (from_i != to_i)
kvn@2276 139 add_edge(f, to_i, PointsToNode::DeferredEdge);
duke@435 140 }
duke@435 141
kvn@500 142 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
kvn@500 143 const Type *adr_type = phase->type(adr);
kvn@500 144 if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
kvn@500 145 adr->in(AddPNode::Address)->is_Proj() &&
kvn@500 146 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
kvn@500 147 // We are computing a raw address for a store captured by an Initialize
kvn@500 148 // compute an appropriate address type. AddP cases #3 and #5 (see below).
kvn@500 149 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 150 assert(offs != Type::OffsetBot ||
kvn@500 151 adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
kvn@500 152 "offset must be a constant or it is initialization of array");
kvn@500 153 return offs;
kvn@500 154 }
kvn@500 155 const TypePtr *t_ptr = adr_type->isa_ptr();
duke@435 156 assert(t_ptr != NULL, "must be a pointer type");
duke@435 157 return t_ptr->offset();
duke@435 158 }
duke@435 159
duke@435 160 void ConnectionGraph::add_field_edge(uint from_i, uint to_i, int offset) {
duke@435 161 PointsToNode *f = ptnode_adr(from_i);
duke@435 162 PointsToNode *t = ptnode_adr(to_i);
duke@435 163
duke@435 164 assert(f->node_type() != PointsToNode::UnknownType && t->node_type() != PointsToNode::UnknownType, "node types must be set");
duke@435 165 assert(f->node_type() == PointsToNode::JavaObject, "invalid destination of Field edge");
duke@435 166 assert(t->node_type() == PointsToNode::Field, "invalid destination of Field edge");
duke@435 167 assert (t->offset() == -1 || t->offset() == offset, "conflicting field offsets");
duke@435 168 t->set_offset(offset);
duke@435 169
kvn@2276 170 add_edge(f, to_i, PointsToNode::FieldEdge);
duke@435 171 }
duke@435 172
duke@435 173 void ConnectionGraph::set_escape_state(uint ni, PointsToNode::EscapeState es) {
duke@435 174 PointsToNode *npt = ptnode_adr(ni);
duke@435 175 PointsToNode::EscapeState old_es = npt->escape_state();
duke@435 176 if (es > old_es)
duke@435 177 npt->set_escape_state(es);
duke@435 178 }
duke@435 179
kvn@500 180 void ConnectionGraph::add_node(Node *n, PointsToNode::NodeType nt,
kvn@500 181 PointsToNode::EscapeState es, bool done) {
kvn@500 182 PointsToNode* ptadr = ptnode_adr(n->_idx);
kvn@500 183 ptadr->_node = n;
kvn@500 184 ptadr->set_node_type(nt);
kvn@500 185
kvn@500 186 // inline set_escape_state(idx, es);
kvn@500 187 PointsToNode::EscapeState old_es = ptadr->escape_state();
kvn@500 188 if (es > old_es)
kvn@500 189 ptadr->set_escape_state(es);
kvn@500 190
kvn@500 191 if (done)
kvn@500 192 _processed.set(n->_idx);
kvn@500 193 }
kvn@500 194
kvn@1989 195 PointsToNode::EscapeState ConnectionGraph::escape_state(Node *n) {
duke@435 196 uint idx = n->_idx;
duke@435 197 PointsToNode::EscapeState es;
duke@435 198
kvn@500 199 // If we are still collecting or there were no non-escaping allocations
kvn@500 200 // we don't know the answer yet
kvn@679 201 if (_collecting)
duke@435 202 return PointsToNode::UnknownEscape;
duke@435 203
duke@435 204 // if the node was created after the escape computation, return
duke@435 205 // UnknownEscape
kvn@679 206 if (idx >= nodes_size())
duke@435 207 return PointsToNode::UnknownEscape;
duke@435 208
kvn@679 209 es = ptnode_adr(idx)->escape_state();
duke@435 210
duke@435 211 // if we have already computed a value, return it
kvn@895 212 if (es != PointsToNode::UnknownEscape &&
kvn@895 213 ptnode_adr(idx)->node_type() == PointsToNode::JavaObject)
duke@435 214 return es;
duke@435 215
kvn@679 216 // PointsTo() calls n->uncast() which can return a new ideal node.
kvn@679 217 if (n->uncast()->_idx >= nodes_size())
kvn@679 218 return PointsToNode::UnknownEscape;
kvn@679 219
kvn@1989 220 PointsToNode::EscapeState orig_es = es;
kvn@1989 221
duke@435 222 // compute max escape state of anything this node could point to
duke@435 223 VectorSet ptset(Thread::current()->resource_area());
kvn@1989 224 PointsTo(ptset, n);
kvn@500 225 for(VectorSetI i(&ptset); i.test() && es != PointsToNode::GlobalEscape; ++i) {
duke@435 226 uint pt = i.elem;
kvn@679 227 PointsToNode::EscapeState pes = ptnode_adr(pt)->escape_state();
duke@435 228 if (pes > es)
duke@435 229 es = pes;
duke@435 230 }
kvn@1989 231 if (orig_es != es) {
kvn@1989 232 // cache the computed escape state
kvn@1989 233 assert(es != PointsToNode::UnknownEscape, "should have computed an escape state");
kvn@1989 234 ptnode_adr(idx)->set_escape_state(es);
kvn@1989 235 } // orig_es could be PointsToNode::UnknownEscape
duke@435 236 return es;
duke@435 237 }
duke@435 238
kvn@1989 239 void ConnectionGraph::PointsTo(VectorSet &ptset, Node * n) {
duke@435 240 VectorSet visited(Thread::current()->resource_area());
duke@435 241 GrowableArray<uint> worklist;
duke@435 242
kvn@559 243 #ifdef ASSERT
kvn@559 244 Node *orig_n = n;
kvn@559 245 #endif
kvn@559 246
kvn@500 247 n = n->uncast();
kvn@679 248 PointsToNode* npt = ptnode_adr(n->_idx);
duke@435 249
duke@435 250 // If we have a JavaObject, return just that object
kvn@679 251 if (npt->node_type() == PointsToNode::JavaObject) {
duke@435 252 ptset.set(n->_idx);
duke@435 253 return;
duke@435 254 }
kvn@559 255 #ifdef ASSERT
kvn@679 256 if (npt->_node == NULL) {
kvn@559 257 if (orig_n != n)
kvn@559 258 orig_n->dump();
kvn@559 259 n->dump();
kvn@679 260 assert(npt->_node != NULL, "unregistered node");
kvn@559 261 }
kvn@559 262 #endif
duke@435 263 worklist.push(n->_idx);
duke@435 264 while(worklist.length() > 0) {
duke@435 265 int ni = worklist.pop();
kvn@679 266 if (visited.test_set(ni))
kvn@679 267 continue;
duke@435 268
kvn@679 269 PointsToNode* pn = ptnode_adr(ni);
kvn@679 270 // ensure that all inputs of a Phi have been processed
kvn@679 271 assert(!_collecting || !pn->_node->is_Phi() || _processed.test(ni),"");
kvn@679 272
kvn@679 273 int edges_processed = 0;
kvn@679 274 uint e_cnt = pn->edge_count();
kvn@679 275 for (uint e = 0; e < e_cnt; e++) {
kvn@679 276 uint etgt = pn->edge_target(e);
kvn@679 277 PointsToNode::EdgeType et = pn->edge_type(e);
kvn@679 278 if (et == PointsToNode::PointsToEdge) {
kvn@679 279 ptset.set(etgt);
kvn@679 280 edges_processed++;
kvn@679 281 } else if (et == PointsToNode::DeferredEdge) {
kvn@679 282 worklist.push(etgt);
kvn@679 283 edges_processed++;
kvn@679 284 } else {
kvn@679 285 assert(false,"neither PointsToEdge or DeferredEdge");
duke@435 286 }
kvn@679 287 }
kvn@679 288 if (edges_processed == 0) {
kvn@679 289 // no deferred or pointsto edges found. Assume the value was set
kvn@679 290 // outside this method. Add the phantom object to the pointsto set.
kvn@679 291 ptset.set(_phantom_object);
duke@435 292 }
duke@435 293 }
duke@435 294 }
duke@435 295
kvn@536 296 void ConnectionGraph::remove_deferred(uint ni, GrowableArray<uint>* deferred_edges, VectorSet* visited) {
kvn@536 297 // This method is most expensive during ConnectionGraph construction.
kvn@536 298 // Reuse vectorSet and an additional growable array for deferred edges.
kvn@536 299 deferred_edges->clear();
kvn@536 300 visited->Clear();
duke@435 301
kvn@679 302 visited->set(ni);
duke@435 303 PointsToNode *ptn = ptnode_adr(ni);
duke@435 304
kvn@536 305 // Mark current edges as visited and move deferred edges to separate array.
kvn@679 306 for (uint i = 0; i < ptn->edge_count(); ) {
kvn@500 307 uint t = ptn->edge_target(i);
kvn@536 308 #ifdef ASSERT
kvn@536 309 assert(!visited->test_set(t), "expecting no duplications");
kvn@536 310 #else
kvn@536 311 visited->set(t);
kvn@536 312 #endif
kvn@536 313 if (ptn->edge_type(i) == PointsToNode::DeferredEdge) {
kvn@536 314 ptn->remove_edge(t, PointsToNode::DeferredEdge);
kvn@536 315 deferred_edges->append(t);
kvn@559 316 } else {
kvn@559 317 i++;
kvn@536 318 }
kvn@536 319 }
kvn@536 320 for (int next = 0; next < deferred_edges->length(); ++next) {
kvn@536 321 uint t = deferred_edges->at(next);
kvn@500 322 PointsToNode *ptt = ptnode_adr(t);
kvn@679 323 uint e_cnt = ptt->edge_count();
kvn@679 324 for (uint e = 0; e < e_cnt; e++) {
kvn@679 325 uint etgt = ptt->edge_target(e);
kvn@679 326 if (visited->test_set(etgt))
kvn@536 327 continue;
kvn@679 328
kvn@679 329 PointsToNode::EdgeType et = ptt->edge_type(e);
kvn@679 330 if (et == PointsToNode::PointsToEdge) {
kvn@679 331 add_pointsto_edge(ni, etgt);
kvn@679 332 if(etgt == _phantom_object) {
kvn@679 333 // Special case - field set outside (globally escaping).
kvn@679 334 ptn->set_escape_state(PointsToNode::GlobalEscape);
kvn@679 335 }
kvn@679 336 } else if (et == PointsToNode::DeferredEdge) {
kvn@679 337 deferred_edges->append(etgt);
kvn@679 338 } else {
kvn@679 339 assert(false,"invalid connection graph");
duke@435 340 }
duke@435 341 }
duke@435 342 }
duke@435 343 }
duke@435 344
duke@435 345
duke@435 346 // Add an edge to node given by "to_i" from any field of adr_i whose offset
duke@435 347 // matches "offset" A deferred edge is added if to_i is a LocalVar, and
duke@435 348 // a pointsto edge is added if it is a JavaObject
duke@435 349
duke@435 350 void ConnectionGraph::add_edge_from_fields(uint adr_i, uint to_i, int offs) {
kvn@679 351 PointsToNode* an = ptnode_adr(adr_i);
kvn@679 352 PointsToNode* to = ptnode_adr(to_i);
kvn@679 353 bool deferred = (to->node_type() == PointsToNode::LocalVar);
duke@435 354
kvn@679 355 for (uint fe = 0; fe < an->edge_count(); fe++) {
kvn@679 356 assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
kvn@679 357 int fi = an->edge_target(fe);
kvn@679 358 PointsToNode* pf = ptnode_adr(fi);
kvn@679 359 int po = pf->offset();
duke@435 360 if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
duke@435 361 if (deferred)
duke@435 362 add_deferred_edge(fi, to_i);
duke@435 363 else
duke@435 364 add_pointsto_edge(fi, to_i);
duke@435 365 }
duke@435 366 }
duke@435 367 }
duke@435 368
kvn@500 369 // Add a deferred edge from node given by "from_i" to any field of adr_i
kvn@500 370 // whose offset matches "offset".
duke@435 371 void ConnectionGraph::add_deferred_edge_to_fields(uint from_i, uint adr_i, int offs) {
kvn@679 372 PointsToNode* an = ptnode_adr(adr_i);
kvn@679 373 for (uint fe = 0; fe < an->edge_count(); fe++) {
kvn@679 374 assert(an->edge_type(fe) == PointsToNode::FieldEdge, "expecting a field edge");
kvn@679 375 int fi = an->edge_target(fe);
kvn@679 376 PointsToNode* pf = ptnode_adr(fi);
kvn@679 377 int po = pf->offset();
kvn@679 378 if (pf->edge_count() == 0) {
duke@435 379 // we have not seen any stores to this field, assume it was set outside this method
duke@435 380 add_pointsto_edge(fi, _phantom_object);
duke@435 381 }
duke@435 382 if (po == offs || po == Type::OffsetBot || offs == Type::OffsetBot) {
duke@435 383 add_deferred_edge(from_i, fi);
duke@435 384 }
duke@435 385 }
duke@435 386 }
duke@435 387
kvn@500 388 // Helper functions
kvn@500 389
kvn@500 390 static Node* get_addp_base(Node *addp) {
kvn@500 391 assert(addp->is_AddP(), "must be AddP");
kvn@500 392 //
kvn@500 393 // AddP cases for Base and Address inputs:
kvn@500 394 // case #1. Direct object's field reference:
kvn@500 395 // Allocate
kvn@500 396 // |
kvn@500 397 // Proj #5 ( oop result )
kvn@500 398 // |
kvn@500 399 // CheckCastPP (cast to instance type)
kvn@500 400 // | |
kvn@500 401 // AddP ( base == address )
kvn@500 402 //
kvn@500 403 // case #2. Indirect object's field reference:
kvn@500 404 // Phi
kvn@500 405 // |
kvn@500 406 // CastPP (cast to instance type)
kvn@500 407 // | |
kvn@500 408 // AddP ( base == address )
kvn@500 409 //
kvn@500 410 // case #3. Raw object's field reference for Initialize node:
kvn@500 411 // Allocate
kvn@500 412 // |
kvn@500 413 // Proj #5 ( oop result )
kvn@500 414 // top |
kvn@500 415 // \ |
kvn@500 416 // AddP ( base == top )
kvn@500 417 //
kvn@500 418 // case #4. Array's element reference:
kvn@500 419 // {CheckCastPP | CastPP}
kvn@500 420 // | | |
kvn@500 421 // | AddP ( array's element offset )
kvn@500 422 // | |
kvn@500 423 // AddP ( array's offset )
kvn@500 424 //
kvn@500 425 // case #5. Raw object's field reference for arraycopy stub call:
kvn@500 426 // The inline_native_clone() case when the arraycopy stub is called
kvn@500 427 // after the allocation before Initialize and CheckCastPP nodes.
kvn@500 428 // Allocate
kvn@500 429 // |
kvn@500 430 // Proj #5 ( oop result )
kvn@500 431 // | |
kvn@500 432 // AddP ( base == address )
kvn@500 433 //
kvn@512 434 // case #6. Constant Pool, ThreadLocal, CastX2P or
kvn@512 435 // Raw object's field reference:
kvn@512 436 // {ConP, ThreadLocal, CastX2P, raw Load}
kvn@500 437 // top |
kvn@500 438 // \ |
kvn@500 439 // AddP ( base == top )
kvn@500 440 //
kvn@512 441 // case #7. Klass's field reference.
kvn@512 442 // LoadKlass
kvn@512 443 // | |
kvn@512 444 // AddP ( base == address )
kvn@512 445 //
kvn@599 446 // case #8. narrow Klass's field reference.
kvn@599 447 // LoadNKlass
kvn@599 448 // |
kvn@599 449 // DecodeN
kvn@599 450 // | |
kvn@599 451 // AddP ( base == address )
kvn@599 452 //
kvn@500 453 Node *base = addp->in(AddPNode::Base)->uncast();
kvn@500 454 if (base->is_top()) { // The AddP case #3 and #6.
kvn@500 455 base = addp->in(AddPNode::Address)->uncast();
kvn@1392 456 while (base->is_AddP()) {
kvn@1392 457 // Case #6 (unsafe access) may have several chained AddP nodes.
kvn@1392 458 assert(base->in(AddPNode::Base)->is_top(), "expected unsafe access address only");
kvn@1392 459 base = base->in(AddPNode::Address)->uncast();
kvn@1392 460 }
kvn@500 461 assert(base->Opcode() == Op_ConP || base->Opcode() == Op_ThreadLocal ||
kvn@603 462 base->Opcode() == Op_CastX2P || base->is_DecodeN() ||
kvn@512 463 (base->is_Mem() && base->bottom_type() == TypeRawPtr::NOTNULL) ||
kvn@512 464 (base->is_Proj() && base->in(0)->is_Allocate()), "sanity");
duke@435 465 }
kvn@500 466 return base;
kvn@500 467 }
kvn@500 468
kvn@500 469 static Node* find_second_addp(Node* addp, Node* n) {
kvn@500 470 assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
kvn@500 471
kvn@500 472 Node* addp2 = addp->raw_out(0);
kvn@500 473 if (addp->outcnt() == 1 && addp2->is_AddP() &&
kvn@500 474 addp2->in(AddPNode::Base) == n &&
kvn@500 475 addp2->in(AddPNode::Address) == addp) {
kvn@500 476
kvn@500 477 assert(addp->in(AddPNode::Base) == n, "expecting the same base");
kvn@500 478 //
kvn@500 479 // Find array's offset to push it on worklist first and
kvn@500 480 // as result process an array's element offset first (pushed second)
kvn@500 481 // to avoid CastPP for the array's offset.
kvn@500 482 // Otherwise the inserted CastPP (LocalVar) will point to what
kvn@500 483 // the AddP (Field) points to. Which would be wrong since
kvn@500 484 // the algorithm expects the CastPP has the same point as
kvn@500 485 // as AddP's base CheckCastPP (LocalVar).
kvn@500 486 //
kvn@500 487 // ArrayAllocation
kvn@500 488 // |
kvn@500 489 // CheckCastPP
kvn@500 490 // |
kvn@500 491 // memProj (from ArrayAllocation CheckCastPP)
kvn@500 492 // | ||
kvn@500 493 // | || Int (element index)
kvn@500 494 // | || | ConI (log(element size))
kvn@500 495 // | || | /
kvn@500 496 // | || LShift
kvn@500 497 // | || /
kvn@500 498 // | AddP (array's element offset)
kvn@500 499 // | |
kvn@500 500 // | | ConI (array's offset: #12(32-bits) or #24(64-bits))
kvn@500 501 // | / /
kvn@500 502 // AddP (array's offset)
kvn@500 503 // |
kvn@500 504 // Load/Store (memory operation on array's element)
kvn@500 505 //
kvn@500 506 return addp2;
kvn@500 507 }
kvn@500 508 return NULL;
duke@435 509 }
duke@435 510
duke@435 511 //
duke@435 512 // Adjust the type and inputs of an AddP which computes the
duke@435 513 // address of a field of an instance
duke@435 514 //
kvn@728 515 bool ConnectionGraph::split_AddP(Node *addp, Node *base, PhaseGVN *igvn) {
kvn@500 516 const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
kvn@658 517 assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
duke@435 518 const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
kvn@500 519 if (t == NULL) {
kvn@500 520 // We are computing a raw address for a store captured by an Initialize
kvn@728 521 // compute an appropriate address type (cases #3 and #5).
kvn@500 522 assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
kvn@500 523 assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
kvn@741 524 intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 525 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@500 526 t = base_t->add_offset(offs)->is_oopptr();
kvn@500 527 }
kvn@658 528 int inst_id = base_t->instance_id();
kvn@658 529 assert(!t->is_known_instance() || t->instance_id() == inst_id,
duke@435 530 "old type must be non-instance or match new type");
kvn@728 531
kvn@728 532 // The type 't' could be subclass of 'base_t'.
kvn@728 533 // As result t->offset() could be large then base_t's size and it will
kvn@728 534 // cause the failure in add_offset() with narrow oops since TypeOopPtr()
kvn@728 535 // constructor verifies correctness of the offset.
kvn@728 536 //
twisti@1040 537 // It could happened on subclass's branch (from the type profiling
kvn@728 538 // inlining) which was not eliminated during parsing since the exactness
kvn@728 539 // of the allocation type was not propagated to the subclass type check.
kvn@728 540 //
kvn@1423 541 // Or the type 't' could be not related to 'base_t' at all.
kvn@1423 542 // It could happened when CHA type is different from MDO type on a dead path
kvn@1423 543 // (for example, from instanceof check) which is not collapsed during parsing.
kvn@1423 544 //
kvn@728 545 // Do nothing for such AddP node and don't process its users since
kvn@728 546 // this code branch will go away.
kvn@728 547 //
kvn@728 548 if (!t->is_known_instance() &&
kvn@1423 549 !base_t->klass()->is_subtype_of(t->klass())) {
kvn@728 550 return false; // bail out
kvn@728 551 }
kvn@728 552
duke@435 553 const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
kvn@1497 554 // Do NOT remove the next line: ensure a new alias index is allocated
kvn@1497 555 // for the instance type. Note: C++ will not remove it since the call
kvn@1497 556 // has side effect.
duke@435 557 int alias_idx = _compile->get_alias_index(tinst);
duke@435 558 igvn->set_type(addp, tinst);
duke@435 559 // record the allocation in the node map
kvn@1536 560 assert(ptnode_adr(addp->_idx)->_node != NULL, "should be registered");
duke@435 561 set_map(addp->_idx, get_map(base->_idx));
kvn@688 562
kvn@688 563 // Set addp's Base and Address to 'base'.
kvn@688 564 Node *abase = addp->in(AddPNode::Base);
kvn@688 565 Node *adr = addp->in(AddPNode::Address);
kvn@688 566 if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
kvn@688 567 adr->in(0)->_idx == (uint)inst_id) {
kvn@688 568 // Skip AddP cases #3 and #5.
kvn@688 569 } else {
kvn@688 570 assert(!abase->is_top(), "sanity"); // AddP case #3
kvn@688 571 if (abase != base) {
kvn@688 572 igvn->hash_delete(addp);
kvn@688 573 addp->set_req(AddPNode::Base, base);
kvn@688 574 if (abase == adr) {
kvn@688 575 addp->set_req(AddPNode::Address, base);
kvn@688 576 } else {
kvn@688 577 // AddP case #4 (adr is array's element offset AddP node)
kvn@688 578 #ifdef ASSERT
kvn@688 579 const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
kvn@688 580 assert(adr->is_AddP() && atype != NULL &&
kvn@688 581 atype->instance_id() == inst_id, "array's element offset should be processed first");
kvn@688 582 #endif
kvn@688 583 }
kvn@688 584 igvn->hash_insert(addp);
duke@435 585 }
duke@435 586 }
kvn@500 587 // Put on IGVN worklist since at least addp's type was changed above.
kvn@500 588 record_for_optimizer(addp);
kvn@728 589 return true;
duke@435 590 }
duke@435 591
duke@435 592 //
duke@435 593 // Create a new version of orig_phi if necessary. Returns either the newly
duke@435 594 // created phi or an existing phi. Sets create_new to indicate wheter a new
duke@435 595 // phi was created. Cache the last newly created phi in the node map.
duke@435 596 //
duke@435 597 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn, bool &new_created) {
duke@435 598 Compile *C = _compile;
duke@435 599 new_created = false;
duke@435 600 int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
duke@435 601 // nothing to do if orig_phi is bottom memory or matches alias_idx
kvn@500 602 if (phi_alias_idx == alias_idx) {
duke@435 603 return orig_phi;
duke@435 604 }
kvn@1286 605 // Have we recently created a Phi for this alias index?
duke@435 606 PhiNode *result = get_map_phi(orig_phi->_idx);
duke@435 607 if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
duke@435 608 return result;
duke@435 609 }
kvn@1286 610 // Previous check may fail when the same wide memory Phi was split into Phis
kvn@1286 611 // for different memory slices. Search all Phis for this region.
kvn@1286 612 if (result != NULL) {
kvn@1286 613 Node* region = orig_phi->in(0);
kvn@1286 614 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
kvn@1286 615 Node* phi = region->fast_out(i);
kvn@1286 616 if (phi->is_Phi() &&
kvn@1286 617 C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
kvn@1286 618 assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
kvn@1286 619 return phi->as_Phi();
kvn@1286 620 }
kvn@1286 621 }
kvn@1286 622 }
kvn@473 623 if ((int)C->unique() + 2*NodeLimitFudgeFactor > MaxNodeLimit) {
kvn@473 624 if (C->do_escape_analysis() == true && !C->failing()) {
kvn@473 625 // Retry compilation without escape analysis.
kvn@473 626 // If this is the first failure, the sentinel string will "stick"
kvn@473 627 // to the Compile object, and the C2Compiler will see it and retry.
kvn@473 628 C->record_failure(C2Compiler::retry_no_escape_analysis());
kvn@473 629 }
kvn@473 630 return NULL;
kvn@473 631 }
duke@435 632 orig_phi_worklist.append_if_missing(orig_phi);
kvn@500 633 const TypePtr *atype = C->get_adr_type(alias_idx);
duke@435 634 result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
kvn@1286 635 C->copy_node_notes_to(result, orig_phi);
duke@435 636 igvn->set_type(result, result->bottom_type());
duke@435 637 record_for_optimizer(result);
kvn@1536 638
kvn@1536 639 debug_only(Node* pn = ptnode_adr(orig_phi->_idx)->_node;)
kvn@1536 640 assert(pn == NULL || pn == orig_phi, "wrong node");
kvn@1536 641 set_map(orig_phi->_idx, result);
kvn@1536 642 ptnode_adr(orig_phi->_idx)->_node = orig_phi;
kvn@1536 643
duke@435 644 new_created = true;
duke@435 645 return result;
duke@435 646 }
duke@435 647
duke@435 648 //
duke@435 649 // Return a new version of Memory Phi "orig_phi" with the inputs having the
duke@435 650 // specified alias index.
duke@435 651 //
duke@435 652 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, PhaseGVN *igvn) {
duke@435 653
duke@435 654 assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
duke@435 655 Compile *C = _compile;
duke@435 656 bool new_phi_created;
kvn@500 657 PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, igvn, new_phi_created);
duke@435 658 if (!new_phi_created) {
duke@435 659 return result;
duke@435 660 }
duke@435 661
duke@435 662 GrowableArray<PhiNode *> phi_list;
duke@435 663 GrowableArray<uint> cur_input;
duke@435 664
duke@435 665 PhiNode *phi = orig_phi;
duke@435 666 uint idx = 1;
duke@435 667 bool finished = false;
duke@435 668 while(!finished) {
duke@435 669 while (idx < phi->req()) {
kvn@500 670 Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist, igvn);
duke@435 671 if (mem != NULL && mem->is_Phi()) {
kvn@500 672 PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, igvn, new_phi_created);
duke@435 673 if (new_phi_created) {
duke@435 674 // found an phi for which we created a new split, push current one on worklist and begin
duke@435 675 // processing new one
duke@435 676 phi_list.push(phi);
duke@435 677 cur_input.push(idx);
duke@435 678 phi = mem->as_Phi();
kvn@500 679 result = newphi;
duke@435 680 idx = 1;
duke@435 681 continue;
duke@435 682 } else {
kvn@500 683 mem = newphi;
duke@435 684 }
duke@435 685 }
kvn@473 686 if (C->failing()) {
kvn@473 687 return NULL;
kvn@473 688 }
duke@435 689 result->set_req(idx++, mem);
duke@435 690 }
duke@435 691 #ifdef ASSERT
duke@435 692 // verify that the new Phi has an input for each input of the original
duke@435 693 assert( phi->req() == result->req(), "must have same number of inputs.");
duke@435 694 assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
kvn@500 695 #endif
kvn@500 696 // Check if all new phi's inputs have specified alias index.
kvn@500 697 // Otherwise use old phi.
duke@435 698 for (uint i = 1; i < phi->req(); i++) {
kvn@500 699 Node* in = result->in(i);
kvn@500 700 assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
duke@435 701 }
duke@435 702 // we have finished processing a Phi, see if there are any more to do
duke@435 703 finished = (phi_list.length() == 0 );
duke@435 704 if (!finished) {
duke@435 705 phi = phi_list.pop();
duke@435 706 idx = cur_input.pop();
kvn@500 707 PhiNode *prev_result = get_map_phi(phi->_idx);
kvn@500 708 prev_result->set_req(idx++, result);
kvn@500 709 result = prev_result;
duke@435 710 }
duke@435 711 }
duke@435 712 return result;
duke@435 713 }
duke@435 714
kvn@500 715
kvn@500 716 //
kvn@500 717 // The next methods are derived from methods in MemNode.
kvn@500 718 //
never@2170 719 static Node *step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
kvn@500 720 Node *mem = mmem;
never@2170 721 // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
kvn@500 722 // means an array I have not precisely typed yet. Do not do any
kvn@500 723 // alias stuff with it any time soon.
never@2170 724 if( toop->base() != Type::AnyPtr &&
never@2170 725 !(toop->klass() != NULL &&
never@2170 726 toop->klass()->is_java_lang_Object() &&
never@2170 727 toop->offset() == Type::OffsetBot) ) {
kvn@500 728 mem = mmem->memory_at(alias_idx);
kvn@500 729 // Update input if it is progress over what we have now
kvn@500 730 }
kvn@500 731 return mem;
kvn@500 732 }
kvn@500 733
kvn@500 734 //
kvn@1536 735 // Move memory users to their memory slices.
kvn@1536 736 //
kvn@1536 737 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *> &orig_phis, PhaseGVN *igvn) {
kvn@1536 738 Compile* C = _compile;
kvn@1536 739
kvn@1536 740 const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
kvn@1536 741 assert(tp != NULL, "ptr type");
kvn@1536 742 int alias_idx = C->get_alias_index(tp);
kvn@1536 743 int general_idx = C->get_general_index(alias_idx);
kvn@1536 744
kvn@1536 745 // Move users first
kvn@1536 746 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@1536 747 Node* use = n->fast_out(i);
kvn@1536 748 if (use->is_MergeMem()) {
kvn@1536 749 MergeMemNode* mmem = use->as_MergeMem();
kvn@1536 750 assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
kvn@1536 751 if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
kvn@1536 752 continue; // Nothing to do
kvn@1536 753 }
kvn@1536 754 // Replace previous general reference to mem node.
kvn@1536 755 uint orig_uniq = C->unique();
kvn@1536 756 Node* m = find_inst_mem(n, general_idx, orig_phis, igvn);
kvn@1536 757 assert(orig_uniq == C->unique(), "no new nodes");
kvn@1536 758 mmem->set_memory_at(general_idx, m);
kvn@1536 759 --imax;
kvn@1536 760 --i;
kvn@1536 761 } else if (use->is_MemBar()) {
kvn@1536 762 assert(!use->is_Initialize(), "initializing stores should not be moved");
kvn@1536 763 if (use->req() > MemBarNode::Precedent &&
kvn@1536 764 use->in(MemBarNode::Precedent) == n) {
kvn@1536 765 // Don't move related membars.
kvn@1536 766 record_for_optimizer(use);
kvn@1536 767 continue;
kvn@1536 768 }
kvn@1536 769 tp = use->as_MemBar()->adr_type()->isa_ptr();
kvn@1536 770 if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
kvn@1536 771 alias_idx == general_idx) {
kvn@1536 772 continue; // Nothing to do
kvn@1536 773 }
kvn@1536 774 // Move to general memory slice.
kvn@1536 775 uint orig_uniq = C->unique();
kvn@1536 776 Node* m = find_inst_mem(n, general_idx, orig_phis, igvn);
kvn@1536 777 assert(orig_uniq == C->unique(), "no new nodes");
kvn@1536 778 igvn->hash_delete(use);
kvn@1536 779 imax -= use->replace_edge(n, m);
kvn@1536 780 igvn->hash_insert(use);
kvn@1536 781 record_for_optimizer(use);
kvn@1536 782 --i;
kvn@1536 783 #ifdef ASSERT
kvn@1536 784 } else if (use->is_Mem()) {
kvn@1536 785 if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
kvn@1536 786 // Don't move related cardmark.
kvn@1536 787 continue;
kvn@1536 788 }
kvn@1536 789 // Memory nodes should have new memory input.
kvn@1536 790 tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
kvn@1536 791 assert(tp != NULL, "ptr type");
kvn@1536 792 int idx = C->get_alias_index(tp);
kvn@1536 793 assert(get_map(use->_idx) != NULL || idx == alias_idx,
kvn@1536 794 "Following memory nodes should have new memory input or be on the same memory slice");
kvn@1536 795 } else if (use->is_Phi()) {
kvn@1536 796 // Phi nodes should be split and moved already.
kvn@1536 797 tp = use->as_Phi()->adr_type()->isa_ptr();
kvn@1536 798 assert(tp != NULL, "ptr type");
kvn@1536 799 int idx = C->get_alias_index(tp);
kvn@1536 800 assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
kvn@1536 801 } else {
kvn@1536 802 use->dump();
kvn@1536 803 assert(false, "should not be here");
kvn@1536 804 #endif
kvn@1536 805 }
kvn@1536 806 }
kvn@1536 807 }
kvn@1536 808
kvn@1536 809 //
kvn@500 810 // Search memory chain of "mem" to find a MemNode whose address
kvn@500 811 // is the specified alias index.
kvn@500 812 //
kvn@500 813 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *> &orig_phis, PhaseGVN *phase) {
kvn@500 814 if (orig_mem == NULL)
kvn@500 815 return orig_mem;
kvn@500 816 Compile* C = phase->C;
never@2170 817 const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
never@2170 818 bool is_instance = (toop != NULL) && toop->is_known_instance();
kvn@688 819 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@500 820 Node *prev = NULL;
kvn@500 821 Node *result = orig_mem;
kvn@500 822 while (prev != result) {
kvn@500 823 prev = result;
kvn@688 824 if (result == start_mem)
twisti@1040 825 break; // hit one of our sentinels
kvn@500 826 if (result->is_Mem()) {
kvn@688 827 const Type *at = phase->type(result->in(MemNode::Address));
kvn@500 828 if (at != Type::TOP) {
kvn@500 829 assert (at->isa_ptr() != NULL, "pointer type required.");
kvn@500 830 int idx = C->get_alias_index(at->is_ptr());
kvn@500 831 if (idx == alias_idx)
kvn@500 832 break;
kvn@500 833 }
kvn@688 834 result = result->in(MemNode::Memory);
kvn@500 835 }
kvn@500 836 if (!is_instance)
kvn@500 837 continue; // don't search further for non-instance types
kvn@500 838 // skip over a call which does not affect this memory slice
kvn@500 839 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
kvn@500 840 Node *proj_in = result->in(0);
never@2170 841 if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
twisti@1040 842 break; // hit one of our sentinels
kvn@688 843 } else if (proj_in->is_Call()) {
kvn@500 844 CallNode *call = proj_in->as_Call();
never@2170 845 if (!call->may_modify(toop, phase)) {
kvn@500 846 result = call->in(TypeFunc::Memory);
kvn@500 847 }
kvn@500 848 } else if (proj_in->is_Initialize()) {
kvn@500 849 AllocateNode* alloc = proj_in->as_Initialize()->allocation();
kvn@500 850 // Stop if this is the initialization for the object instance which
kvn@500 851 // which contains this memory slice, otherwise skip over it.
never@2170 852 if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
kvn@500 853 result = proj_in->in(TypeFunc::Memory);
kvn@500 854 }
kvn@500 855 } else if (proj_in->is_MemBar()) {
kvn@500 856 result = proj_in->in(TypeFunc::Memory);
kvn@500 857 }
kvn@500 858 } else if (result->is_MergeMem()) {
kvn@500 859 MergeMemNode *mmem = result->as_MergeMem();
never@2170 860 result = step_through_mergemem(mmem, alias_idx, toop);
kvn@500 861 if (result == mmem->base_memory()) {
kvn@500 862 // Didn't find instance memory, search through general slice recursively.
kvn@500 863 result = mmem->memory_at(C->get_general_index(alias_idx));
kvn@500 864 result = find_inst_mem(result, alias_idx, orig_phis, phase);
kvn@500 865 if (C->failing()) {
kvn@500 866 return NULL;
kvn@500 867 }
kvn@500 868 mmem->set_memory_at(alias_idx, result);
kvn@500 869 }
kvn@500 870 } else if (result->is_Phi() &&
kvn@500 871 C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
kvn@500 872 Node *un = result->as_Phi()->unique_input(phase);
kvn@500 873 if (un != NULL) {
kvn@1536 874 orig_phis.append_if_missing(result->as_Phi());
kvn@500 875 result = un;
kvn@500 876 } else {
kvn@500 877 break;
kvn@500 878 }
kvn@1535 879 } else if (result->is_ClearArray()) {
never@2170 880 if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), phase)) {
kvn@1535 881 // Can not bypass initialization of the instance
kvn@1535 882 // we are looking for.
kvn@1535 883 break;
kvn@1535 884 }
kvn@1535 885 // Otherwise skip it (the call updated 'result' value).
kvn@1019 886 } else if (result->Opcode() == Op_SCMemProj) {
kvn@1019 887 assert(result->in(0)->is_LoadStore(), "sanity");
kvn@1019 888 const Type *at = phase->type(result->in(0)->in(MemNode::Address));
kvn@1019 889 if (at != Type::TOP) {
kvn@1019 890 assert (at->isa_ptr() != NULL, "pointer type required.");
kvn@1019 891 int idx = C->get_alias_index(at->is_ptr());
kvn@1019 892 assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
kvn@1019 893 break;
kvn@1019 894 }
kvn@1019 895 result = result->in(0)->in(MemNode::Memory);
kvn@500 896 }
kvn@500 897 }
kvn@682 898 if (result->is_Phi()) {
kvn@500 899 PhiNode *mphi = result->as_Phi();
kvn@500 900 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
kvn@500 901 const TypePtr *t = mphi->adr_type();
kvn@500 902 if (C->get_alias_index(t) != alias_idx) {
kvn@682 903 // Create a new Phi with the specified alias index type.
kvn@500 904 result = split_memory_phi(mphi, alias_idx, orig_phis, phase);
kvn@682 905 } else if (!is_instance) {
kvn@682 906 // Push all non-instance Phis on the orig_phis worklist to update inputs
kvn@682 907 // during Phase 4 if needed.
kvn@682 908 orig_phis.append_if_missing(mphi);
kvn@500 909 }
kvn@500 910 }
kvn@500 911 // the result is either MemNode, PhiNode, InitializeNode.
kvn@500 912 return result;
kvn@500 913 }
kvn@500 914
duke@435 915 //
duke@435 916 // Convert the types of unescaped object to instance types where possible,
duke@435 917 // propagate the new type information through the graph, and update memory
duke@435 918 // edges and MergeMem inputs to reflect the new type.
duke@435 919 //
duke@435 920 // We start with allocations (and calls which may be allocations) on alloc_worklist.
duke@435 921 // The processing is done in 4 phases:
duke@435 922 //
duke@435 923 // Phase 1: Process possible allocations from alloc_worklist. Create instance
duke@435 924 // types for the CheckCastPP for allocations where possible.
duke@435 925 // Propagate the the new types through users as follows:
duke@435 926 // casts and Phi: push users on alloc_worklist
duke@435 927 // AddP: cast Base and Address inputs to the instance type
duke@435 928 // push any AddP users on alloc_worklist and push any memnode
duke@435 929 // users onto memnode_worklist.
duke@435 930 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 931 // search the Memory chain for a store with the appropriate type
duke@435 932 // address type. If a Phi is found, create a new version with
twisti@1040 933 // the appropriate memory slices from each of the Phi inputs.
duke@435 934 // For stores, process the users as follows:
duke@435 935 // MemNode: push on memnode_worklist
duke@435 936 // MergeMem: push on mergemem_worklist
duke@435 937 // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice
duke@435 938 // moving the first node encountered of each instance type to the
duke@435 939 // the input corresponding to its alias index.
duke@435 940 // appropriate memory slice.
duke@435 941 // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes.
duke@435 942 //
duke@435 943 // In the following example, the CheckCastPP nodes are the cast of allocation
duke@435 944 // results and the allocation of node 29 is unescaped and eligible to be an
duke@435 945 // instance type.
duke@435 946 //
duke@435 947 // We start with:
duke@435 948 //
duke@435 949 // 7 Parm #memory
duke@435 950 // 10 ConI "12"
duke@435 951 // 19 CheckCastPP "Foo"
duke@435 952 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 953 // 29 CheckCastPP "Foo"
duke@435 954 // 30 AddP _ 29 29 10 Foo+12 alias_index=4
duke@435 955 //
duke@435 956 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 957 // 50 StoreP 35 40 30 ... alias_index=4
duke@435 958 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 959 // 70 LoadP _ 60 30 ... alias_index=4
duke@435 960 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 961 // 90 LoadP _ 80 30 ... alias_index=4
duke@435 962 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 963 //
duke@435 964 //
duke@435 965 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
duke@435 966 // and creating a new alias index for node 30. This gives:
duke@435 967 //
duke@435 968 // 7 Parm #memory
duke@435 969 // 10 ConI "12"
duke@435 970 // 19 CheckCastPP "Foo"
duke@435 971 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 972 // 29 CheckCastPP "Foo" iid=24
duke@435 973 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 974 //
duke@435 975 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 976 // 50 StoreP 35 40 30 ... alias_index=6
duke@435 977 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 978 // 70 LoadP _ 60 30 ... alias_index=6
duke@435 979 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 980 // 90 LoadP _ 80 30 ... alias_index=6
duke@435 981 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 982 //
duke@435 983 // In phase 2, new memory inputs are computed for the loads and stores,
duke@435 984 // And a new version of the phi is created. In phase 4, the inputs to
duke@435 985 // node 80 are updated and then the memory nodes are updated with the
duke@435 986 // values computed in phase 2. This results in:
duke@435 987 //
duke@435 988 // 7 Parm #memory
duke@435 989 // 10 ConI "12"
duke@435 990 // 19 CheckCastPP "Foo"
duke@435 991 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 992 // 29 CheckCastPP "Foo" iid=24
duke@435 993 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 994 //
duke@435 995 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 996 // 50 StoreP 35 7 30 ... alias_index=6
duke@435 997 // 60 StoreP 45 40 20 ... alias_index=4
duke@435 998 // 70 LoadP _ 50 30 ... alias_index=6
duke@435 999 // 80 Phi 75 40 60 Memory alias_index=4
duke@435 1000 // 120 Phi 75 50 50 Memory alias_index=6
duke@435 1001 // 90 LoadP _ 120 30 ... alias_index=6
duke@435 1002 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 1003 //
duke@435 1004 void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist) {
duke@435 1005 GrowableArray<Node *> memnode_worklist;
duke@435 1006 GrowableArray<PhiNode *> orig_phis;
kvn@1536 1007
kvn@2276 1008 PhaseIterGVN *igvn = _igvn;
duke@435 1009 uint new_index_start = (uint) _compile->num_alias_types();
kvn@1536 1010 Arena* arena = Thread::current()->resource_area();
kvn@1536 1011 VectorSet visited(arena);
kvn@1536 1012 VectorSet ptset(arena);
duke@435 1013
kvn@500 1014
kvn@500 1015 // Phase 1: Process possible allocations from alloc_worklist.
kvn@500 1016 // Create instance types for the CheckCastPP for allocations where possible.
kvn@679 1017 //
kvn@679 1018 // (Note: don't forget to change the order of the second AddP node on
kvn@679 1019 // the alloc_worklist if the order of the worklist processing is changed,
kvn@679 1020 // see the comment in find_second_addp().)
kvn@679 1021 //
duke@435 1022 while (alloc_worklist.length() != 0) {
duke@435 1023 Node *n = alloc_worklist.pop();
duke@435 1024 uint ni = n->_idx;
kvn@500 1025 const TypeOopPtr* tinst = NULL;
duke@435 1026 if (n->is_Call()) {
duke@435 1027 CallNode *alloc = n->as_Call();
duke@435 1028 // copy escape information to call node
kvn@679 1029 PointsToNode* ptn = ptnode_adr(alloc->_idx);
kvn@1989 1030 PointsToNode::EscapeState es = escape_state(alloc);
kvn@500 1031 // We have an allocation or call which returns a Java object,
kvn@500 1032 // see if it is unescaped.
kvn@500 1033 if (es != PointsToNode::NoEscape || !ptn->_scalar_replaceable)
duke@435 1034 continue;
kvn@1219 1035
kvn@1219 1036 // Find CheckCastPP for the allocate or for the return value of a call
kvn@1219 1037 n = alloc->result_cast();
kvn@1219 1038 if (n == NULL) { // No uses except Initialize node
kvn@1219 1039 if (alloc->is_Allocate()) {
kvn@1219 1040 // Set the scalar_replaceable flag for allocation
kvn@1219 1041 // so it could be eliminated if it has no uses.
kvn@1219 1042 alloc->as_Allocate()->_is_scalar_replaceable = true;
kvn@1219 1043 }
kvn@1219 1044 continue;
kvn@474 1045 }
kvn@1219 1046 if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
kvn@1219 1047 assert(!alloc->is_Allocate(), "allocation should have unique type");
kvn@500 1048 continue;
kvn@1219 1049 }
kvn@1219 1050
kvn@500 1051 // The inline code for Object.clone() casts the allocation result to
kvn@682 1052 // java.lang.Object and then to the actual type of the allocated
kvn@500 1053 // object. Detect this case and use the second cast.
kvn@682 1054 // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
kvn@682 1055 // the allocation result is cast to java.lang.Object and then
kvn@682 1056 // to the actual Array type.
kvn@500 1057 if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
kvn@682 1058 && (alloc->is_AllocateArray() ||
kvn@682 1059 igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
kvn@500 1060 Node *cast2 = NULL;
kvn@500 1061 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 1062 Node *use = n->fast_out(i);
kvn@500 1063 if (use->is_CheckCastPP()) {
kvn@500 1064 cast2 = use;
kvn@500 1065 break;
kvn@500 1066 }
kvn@500 1067 }
kvn@500 1068 if (cast2 != NULL) {
kvn@500 1069 n = cast2;
kvn@500 1070 } else {
kvn@1219 1071 // Non-scalar replaceable if the allocation type is unknown statically
kvn@1219 1072 // (reflection allocation), the object can't be restored during
kvn@1219 1073 // deoptimization without precise type.
kvn@500 1074 continue;
kvn@500 1075 }
kvn@500 1076 }
kvn@1219 1077 if (alloc->is_Allocate()) {
kvn@1219 1078 // Set the scalar_replaceable flag for allocation
kvn@1219 1079 // so it could be eliminated.
kvn@1219 1080 alloc->as_Allocate()->_is_scalar_replaceable = true;
kvn@1219 1081 }
kvn@500 1082 set_escape_state(n->_idx, es);
kvn@682 1083 // in order for an object to be scalar-replaceable, it must be:
kvn@500 1084 // - a direct allocation (not a call returning an object)
kvn@500 1085 // - non-escaping
kvn@500 1086 // - eligible to be a unique type
kvn@500 1087 // - not determined to be ineligible by escape analysis
kvn@1536 1088 assert(ptnode_adr(alloc->_idx)->_node != NULL &&
kvn@1536 1089 ptnode_adr(n->_idx)->_node != NULL, "should be registered");
duke@435 1090 set_map(alloc->_idx, n);
duke@435 1091 set_map(n->_idx, alloc);
kvn@500 1092 const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
kvn@500 1093 if (t == NULL)
duke@435 1094 continue; // not a TypeInstPtr
kvn@682 1095 tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
duke@435 1096 igvn->hash_delete(n);
duke@435 1097 igvn->set_type(n, tinst);
duke@435 1098 n->raise_bottom_type(tinst);
duke@435 1099 igvn->hash_insert(n);
kvn@500 1100 record_for_optimizer(n);
kvn@500 1101 if (alloc->is_Allocate() && ptn->_scalar_replaceable &&
kvn@500 1102 (t->isa_instptr() || t->isa_aryptr())) {
kvn@598 1103
kvn@598 1104 // First, put on the worklist all Field edges from Connection Graph
kvn@598 1105 // which is more accurate then putting immediate users from Ideal Graph.
kvn@598 1106 for (uint e = 0; e < ptn->edge_count(); e++) {
kvn@679 1107 Node *use = ptnode_adr(ptn->edge_target(e))->_node;
kvn@598 1108 assert(ptn->edge_type(e) == PointsToNode::FieldEdge && use->is_AddP(),
kvn@598 1109 "only AddP nodes are Field edges in CG");
kvn@598 1110 if (use->outcnt() > 0) { // Don't process dead nodes
kvn@598 1111 Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
kvn@598 1112 if (addp2 != NULL) {
kvn@598 1113 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@598 1114 alloc_worklist.append_if_missing(addp2);
kvn@598 1115 }
kvn@598 1116 alloc_worklist.append_if_missing(use);
kvn@598 1117 }
kvn@598 1118 }
kvn@598 1119
kvn@500 1120 // An allocation may have an Initialize which has raw stores. Scan
kvn@500 1121 // the users of the raw allocation result and push AddP users
kvn@500 1122 // on alloc_worklist.
kvn@500 1123 Node *raw_result = alloc->proj_out(TypeFunc::Parms);
kvn@500 1124 assert (raw_result != NULL, "must have an allocation result");
kvn@500 1125 for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
kvn@500 1126 Node *use = raw_result->fast_out(i);
kvn@500 1127 if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
kvn@500 1128 Node* addp2 = find_second_addp(use, raw_result);
kvn@500 1129 if (addp2 != NULL) {
kvn@500 1130 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@500 1131 alloc_worklist.append_if_missing(addp2);
kvn@500 1132 }
kvn@500 1133 alloc_worklist.append_if_missing(use);
kvn@1535 1134 } else if (use->is_MemBar()) {
kvn@500 1135 memnode_worklist.append_if_missing(use);
kvn@500 1136 }
kvn@500 1137 }
kvn@500 1138 }
duke@435 1139 } else if (n->is_AddP()) {
duke@435 1140 ptset.Clear();
kvn@1989 1141 PointsTo(ptset, get_addp_base(n));
duke@435 1142 assert(ptset.Size() == 1, "AddP address is unique");
kvn@500 1143 uint elem = ptset.getelem(); // Allocation node's index
kvn@1535 1144 if (elem == _phantom_object) {
kvn@1535 1145 assert(false, "escaped allocation");
kvn@500 1146 continue; // Assume the value was set outside this method.
kvn@1535 1147 }
kvn@500 1148 Node *base = get_map(elem); // CheckCastPP node
kvn@1535 1149 if (!split_AddP(n, base, igvn)) continue; // wrong type from dead path
kvn@500 1150 tinst = igvn->type(base)->isa_oopptr();
kvn@500 1151 } else if (n->is_Phi() ||
kvn@500 1152 n->is_CheckCastPP() ||
kvn@603 1153 n->is_EncodeP() ||
kvn@603 1154 n->is_DecodeN() ||
kvn@500 1155 (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
duke@435 1156 if (visited.test_set(n->_idx)) {
duke@435 1157 assert(n->is_Phi(), "loops only through Phi's");
duke@435 1158 continue; // already processed
duke@435 1159 }
duke@435 1160 ptset.Clear();
kvn@1989 1161 PointsTo(ptset, n);
duke@435 1162 if (ptset.Size() == 1) {
kvn@500 1163 uint elem = ptset.getelem(); // Allocation node's index
kvn@1535 1164 if (elem == _phantom_object) {
kvn@1535 1165 assert(false, "escaped allocation");
kvn@500 1166 continue; // Assume the value was set outside this method.
kvn@1535 1167 }
kvn@500 1168 Node *val = get_map(elem); // CheckCastPP node
duke@435 1169 TypeNode *tn = n->as_Type();
kvn@500 1170 tinst = igvn->type(val)->isa_oopptr();
kvn@658 1171 assert(tinst != NULL && tinst->is_known_instance() &&
kvn@658 1172 (uint)tinst->instance_id() == elem , "instance type expected.");
kvn@598 1173
kvn@598 1174 const Type *tn_type = igvn->type(tn);
kvn@658 1175 const TypeOopPtr *tn_t;
kvn@658 1176 if (tn_type->isa_narrowoop()) {
kvn@658 1177 tn_t = tn_type->make_ptr()->isa_oopptr();
kvn@658 1178 } else {
kvn@658 1179 tn_t = tn_type->isa_oopptr();
kvn@658 1180 }
duke@435 1181
kvn@1535 1182 if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
kvn@598 1183 if (tn_type->isa_narrowoop()) {
kvn@598 1184 tn_type = tinst->make_narrowoop();
kvn@598 1185 } else {
kvn@598 1186 tn_type = tinst;
kvn@598 1187 }
duke@435 1188 igvn->hash_delete(tn);
kvn@598 1189 igvn->set_type(tn, tn_type);
kvn@598 1190 tn->set_type(tn_type);
duke@435 1191 igvn->hash_insert(tn);
kvn@500 1192 record_for_optimizer(n);
kvn@728 1193 } else {
kvn@1535 1194 assert(tn_type == TypePtr::NULL_PTR ||
kvn@1535 1195 tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
kvn@1535 1196 "unexpected type");
kvn@1535 1197 continue; // Skip dead path with different type
duke@435 1198 }
duke@435 1199 }
duke@435 1200 } else {
kvn@1535 1201 debug_only(n->dump();)
kvn@1535 1202 assert(false, "EA: unexpected node");
duke@435 1203 continue;
duke@435 1204 }
kvn@1535 1205 // push allocation's users on appropriate worklist
duke@435 1206 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1207 Node *use = n->fast_out(i);
duke@435 1208 if(use->is_Mem() && use->in(MemNode::Address) == n) {
kvn@1535 1209 // Load/store to instance's field
kvn@500 1210 memnode_worklist.append_if_missing(use);
kvn@1535 1211 } else if (use->is_MemBar()) {
kvn@500 1212 memnode_worklist.append_if_missing(use);
kvn@500 1213 } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
kvn@500 1214 Node* addp2 = find_second_addp(use, n);
kvn@500 1215 if (addp2 != NULL) {
kvn@500 1216 alloc_worklist.append_if_missing(addp2);
kvn@500 1217 }
kvn@500 1218 alloc_worklist.append_if_missing(use);
kvn@500 1219 } else if (use->is_Phi() ||
kvn@500 1220 use->is_CheckCastPP() ||
kvn@603 1221 use->is_EncodeP() ||
kvn@603 1222 use->is_DecodeN() ||
kvn@500 1223 (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
kvn@500 1224 alloc_worklist.append_if_missing(use);
kvn@1535 1225 #ifdef ASSERT
kvn@1535 1226 } else if (use->is_Mem()) {
kvn@1535 1227 assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
kvn@1535 1228 } else if (use->is_MergeMem()) {
kvn@1535 1229 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 1230 } else if (use->is_SafePoint()) {
kvn@1535 1231 // Look for MergeMem nodes for calls which reference unique allocation
kvn@1535 1232 // (through CheckCastPP nodes) even for debug info.
kvn@1535 1233 Node* m = use->in(TypeFunc::Memory);
kvn@1535 1234 if (m->is_MergeMem()) {
kvn@1535 1235 assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 1236 }
kvn@1535 1237 } else {
kvn@1535 1238 uint op = use->Opcode();
kvn@1535 1239 if (!(op == Op_CmpP || op == Op_Conv2B ||
kvn@1535 1240 op == Op_CastP2X || op == Op_StoreCM ||
kvn@1535 1241 op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
kvn@1535 1242 op == Op_StrEquals || op == Op_StrIndexOf)) {
kvn@1535 1243 n->dump();
kvn@1535 1244 use->dump();
kvn@1535 1245 assert(false, "EA: missing allocation reference path");
kvn@1535 1246 }
kvn@1535 1247 #endif
duke@435 1248 }
duke@435 1249 }
duke@435 1250
duke@435 1251 }
kvn@500 1252 // New alias types were created in split_AddP().
duke@435 1253 uint new_index_end = (uint) _compile->num_alias_types();
duke@435 1254
duke@435 1255 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 1256 // compute new values for Memory inputs (the Memory inputs are not
duke@435 1257 // actually updated until phase 4.)
duke@435 1258 if (memnode_worklist.length() == 0)
duke@435 1259 return; // nothing to do
duke@435 1260
duke@435 1261 while (memnode_worklist.length() != 0) {
duke@435 1262 Node *n = memnode_worklist.pop();
kvn@500 1263 if (visited.test_set(n->_idx))
kvn@500 1264 continue;
kvn@1535 1265 if (n->is_Phi() || n->is_ClearArray()) {
kvn@1535 1266 // we don't need to do anything, but the users must be pushed
kvn@1535 1267 } else if (n->is_MemBar()) { // Initialize, MemBar nodes
kvn@1535 1268 // we don't need to do anything, but the users must be pushed
kvn@1535 1269 n = n->as_MemBar()->proj_out(TypeFunc::Memory);
kvn@500 1270 if (n == NULL)
duke@435 1271 continue;
duke@435 1272 } else {
duke@435 1273 assert(n->is_Mem(), "memory node required.");
duke@435 1274 Node *addr = n->in(MemNode::Address);
duke@435 1275 const Type *addr_t = igvn->type(addr);
duke@435 1276 if (addr_t == Type::TOP)
duke@435 1277 continue;
duke@435 1278 assert (addr_t->isa_ptr() != NULL, "pointer type required.");
duke@435 1279 int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
kvn@500 1280 assert ((uint)alias_idx < new_index_end, "wrong alias index");
kvn@500 1281 Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis, igvn);
kvn@473 1282 if (_compile->failing()) {
kvn@473 1283 return;
kvn@473 1284 }
kvn@500 1285 if (mem != n->in(MemNode::Memory)) {
kvn@1536 1286 // We delay the memory edge update since we need old one in
kvn@1536 1287 // MergeMem code below when instances memory slices are separated.
kvn@1536 1288 debug_only(Node* pn = ptnode_adr(n->_idx)->_node;)
kvn@1536 1289 assert(pn == NULL || pn == n, "wrong node");
duke@435 1290 set_map(n->_idx, mem);
kvn@679 1291 ptnode_adr(n->_idx)->_node = n;
kvn@500 1292 }
duke@435 1293 if (n->is_Load()) {
duke@435 1294 continue; // don't push users
duke@435 1295 } else if (n->is_LoadStore()) {
duke@435 1296 // get the memory projection
duke@435 1297 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1298 Node *use = n->fast_out(i);
duke@435 1299 if (use->Opcode() == Op_SCMemProj) {
duke@435 1300 n = use;
duke@435 1301 break;
duke@435 1302 }
duke@435 1303 }
duke@435 1304 assert(n->Opcode() == Op_SCMemProj, "memory projection required");
duke@435 1305 }
duke@435 1306 }
duke@435 1307 // push user on appropriate worklist
duke@435 1308 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 1309 Node *use = n->fast_out(i);
kvn@1535 1310 if (use->is_Phi() || use->is_ClearArray()) {
kvn@500 1311 memnode_worklist.append_if_missing(use);
duke@435 1312 } else if(use->is_Mem() && use->in(MemNode::Memory) == n) {
kvn@1535 1313 if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
kvn@1535 1314 continue;
kvn@500 1315 memnode_worklist.append_if_missing(use);
kvn@1535 1316 } else if (use->is_MemBar()) {
kvn@500 1317 memnode_worklist.append_if_missing(use);
kvn@1535 1318 #ifdef ASSERT
kvn@1535 1319 } else if(use->is_Mem()) {
kvn@1535 1320 assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
duke@435 1321 } else if (use->is_MergeMem()) {
kvn@1535 1322 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 1323 } else {
kvn@1535 1324 uint op = use->Opcode();
kvn@1535 1325 if (!(op == Op_StoreCM ||
kvn@1535 1326 (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
kvn@1535 1327 strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
kvn@1535 1328 op == Op_AryEq || op == Op_StrComp ||
kvn@1535 1329 op == Op_StrEquals || op == Op_StrIndexOf)) {
kvn@1535 1330 n->dump();
kvn@1535 1331 use->dump();
kvn@1535 1332 assert(false, "EA: missing memory path");
kvn@1535 1333 }
kvn@1535 1334 #endif
duke@435 1335 }
duke@435 1336 }
duke@435 1337 }
duke@435 1338
kvn@500 1339 // Phase 3: Process MergeMem nodes from mergemem_worklist.
kvn@1535 1340 // Walk each memory slice moving the first node encountered of each
kvn@500 1341 // instance type to the the input corresponding to its alias index.
kvn@1535 1342 uint length = _mergemem_worklist.length();
kvn@1535 1343 for( uint next = 0; next < length; ++next ) {
kvn@1535 1344 MergeMemNode* nmm = _mergemem_worklist.at(next);
kvn@1535 1345 assert(!visited.test_set(nmm->_idx), "should not be visited before");
duke@435 1346 // Note: we don't want to use MergeMemStream here because we only want to
kvn@1535 1347 // scan inputs which exist at the start, not ones we add during processing.
kvn@1535 1348 // Note 2: MergeMem may already contains instance memory slices added
kvn@1535 1349 // during find_inst_mem() call when memory nodes were processed above.
kvn@1535 1350 igvn->hash_delete(nmm);
duke@435 1351 uint nslices = nmm->req();
duke@435 1352 for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
kvn@500 1353 Node* mem = nmm->in(i);
kvn@500 1354 Node* cur = NULL;
duke@435 1355 if (mem == NULL || mem->is_top())
duke@435 1356 continue;
kvn@1536 1357 // First, update mergemem by moving memory nodes to corresponding slices
kvn@1536 1358 // if their type became more precise since this mergemem was created.
duke@435 1359 while (mem->is_Mem()) {
duke@435 1360 const Type *at = igvn->type(mem->in(MemNode::Address));
duke@435 1361 if (at != Type::TOP) {
duke@435 1362 assert (at->isa_ptr() != NULL, "pointer type required.");
duke@435 1363 uint idx = (uint)_compile->get_alias_index(at->is_ptr());
duke@435 1364 if (idx == i) {
duke@435 1365 if (cur == NULL)
duke@435 1366 cur = mem;
duke@435 1367 } else {
duke@435 1368 if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
duke@435 1369 nmm->set_memory_at(idx, mem);
duke@435 1370 }
duke@435 1371 }
duke@435 1372 }
duke@435 1373 mem = mem->in(MemNode::Memory);
duke@435 1374 }
duke@435 1375 nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
kvn@500 1376 // Find any instance of the current type if we haven't encountered
kvn@1536 1377 // already a memory slice of the instance along the memory chain.
kvn@500 1378 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@500 1379 if((uint)_compile->get_general_index(ni) == i) {
kvn@500 1380 Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
kvn@500 1381 if (nmm->is_empty_memory(m)) {
kvn@500 1382 Node* result = find_inst_mem(mem, ni, orig_phis, igvn);
kvn@500 1383 if (_compile->failing()) {
kvn@500 1384 return;
kvn@500 1385 }
kvn@500 1386 nmm->set_memory_at(ni, result);
kvn@500 1387 }
kvn@500 1388 }
kvn@500 1389 }
kvn@500 1390 }
kvn@500 1391 // Find the rest of instances values
kvn@500 1392 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@1536 1393 const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
kvn@500 1394 Node* result = step_through_mergemem(nmm, ni, tinst);
kvn@500 1395 if (result == nmm->base_memory()) {
kvn@500 1396 // Didn't find instance memory, search through general slice recursively.
kvn@1536 1397 result = nmm->memory_at(_compile->get_general_index(ni));
kvn@500 1398 result = find_inst_mem(result, ni, orig_phis, igvn);
kvn@500 1399 if (_compile->failing()) {
kvn@500 1400 return;
kvn@500 1401 }
kvn@500 1402 nmm->set_memory_at(ni, result);
kvn@500 1403 }
kvn@500 1404 }
kvn@500 1405 igvn->hash_insert(nmm);
kvn@500 1406 record_for_optimizer(nmm);
duke@435 1407 }
duke@435 1408
kvn@500 1409 // Phase 4: Update the inputs of non-instance memory Phis and
kvn@500 1410 // the Memory input of memnodes
duke@435 1411 // First update the inputs of any non-instance Phi's from
duke@435 1412 // which we split out an instance Phi. Note we don't have
duke@435 1413 // to recursively process Phi's encounted on the input memory
duke@435 1414 // chains as is done in split_memory_phi() since they will
duke@435 1415 // also be processed here.
kvn@682 1416 for (int j = 0; j < orig_phis.length(); j++) {
kvn@682 1417 PhiNode *phi = orig_phis.at(j);
duke@435 1418 int alias_idx = _compile->get_alias_index(phi->adr_type());
duke@435 1419 igvn->hash_delete(phi);
duke@435 1420 for (uint i = 1; i < phi->req(); i++) {
duke@435 1421 Node *mem = phi->in(i);
kvn@500 1422 Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis, igvn);
kvn@500 1423 if (_compile->failing()) {
kvn@500 1424 return;
kvn@500 1425 }
duke@435 1426 if (mem != new_mem) {
duke@435 1427 phi->set_req(i, new_mem);
duke@435 1428 }
duke@435 1429 }
duke@435 1430 igvn->hash_insert(phi);
duke@435 1431 record_for_optimizer(phi);
duke@435 1432 }
duke@435 1433
duke@435 1434 // Update the memory inputs of MemNodes with the value we computed
kvn@1536 1435 // in Phase 2 and move stores memory users to corresponding memory slices.
kvn@1536 1436 #ifdef ASSERT
kvn@1536 1437 visited.Clear();
kvn@1536 1438 Node_Stack old_mems(arena, _compile->unique() >> 2);
kvn@1536 1439 #endif
kvn@679 1440 for (uint i = 0; i < nodes_size(); i++) {
duke@435 1441 Node *nmem = get_map(i);
duke@435 1442 if (nmem != NULL) {
kvn@679 1443 Node *n = ptnode_adr(i)->_node;
kvn@1536 1444 assert(n != NULL, "sanity");
kvn@1536 1445 if (n->is_Mem()) {
kvn@1536 1446 #ifdef ASSERT
kvn@1536 1447 Node* old_mem = n->in(MemNode::Memory);
kvn@1536 1448 if (!visited.test_set(old_mem->_idx)) {
kvn@1536 1449 old_mems.push(old_mem, old_mem->outcnt());
kvn@1536 1450 }
kvn@1536 1451 #endif
kvn@1536 1452 assert(n->in(MemNode::Memory) != nmem, "sanity");
kvn@1536 1453 if (!n->is_Load()) {
kvn@1536 1454 // Move memory users of a store first.
kvn@1536 1455 move_inst_mem(n, orig_phis, igvn);
kvn@1536 1456 }
kvn@1536 1457 // Now update memory input
duke@435 1458 igvn->hash_delete(n);
duke@435 1459 n->set_req(MemNode::Memory, nmem);
duke@435 1460 igvn->hash_insert(n);
duke@435 1461 record_for_optimizer(n);
kvn@1536 1462 } else {
kvn@1536 1463 assert(n->is_Allocate() || n->is_CheckCastPP() ||
kvn@1536 1464 n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
duke@435 1465 }
duke@435 1466 }
duke@435 1467 }
kvn@1536 1468 #ifdef ASSERT
kvn@1536 1469 // Verify that memory was split correctly
kvn@1536 1470 while (old_mems.is_nonempty()) {
kvn@1536 1471 Node* old_mem = old_mems.node();
kvn@1536 1472 uint old_cnt = old_mems.index();
kvn@1536 1473 old_mems.pop();
kvn@1536 1474 assert(old_cnt = old_mem->outcnt(), "old mem could be lost");
kvn@1536 1475 }
kvn@1536 1476 #endif
duke@435 1477 }
duke@435 1478
kvn@679 1479 bool ConnectionGraph::has_candidates(Compile *C) {
kvn@679 1480 // EA brings benefits only when the code has allocations and/or locks which
kvn@679 1481 // are represented by ideal Macro nodes.
kvn@679 1482 int cnt = C->macro_count();
kvn@679 1483 for( int i=0; i < cnt; i++ ) {
kvn@679 1484 Node *n = C->macro_node(i);
kvn@679 1485 if ( n->is_Allocate() )
kvn@679 1486 return true;
kvn@679 1487 if( n->is_Lock() ) {
kvn@679 1488 Node* obj = n->as_Lock()->obj_node()->uncast();
kvn@679 1489 if( !(obj->is_Parm() || obj->is_Con()) )
kvn@679 1490 return true;
kvn@679 1491 }
kvn@679 1492 }
kvn@679 1493 return false;
kvn@679 1494 }
kvn@679 1495
kvn@1989 1496 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
kvn@1989 1497 // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
kvn@1989 1498 // to create space for them in ConnectionGraph::_nodes[].
kvn@1989 1499 Node* oop_null = igvn->zerocon(T_OBJECT);
kvn@1989 1500 Node* noop_null = igvn->zerocon(T_NARROWOOP);
kvn@1989 1501
kvn@1989 1502 ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
kvn@1989 1503 // Perform escape analysis
kvn@1989 1504 if (congraph->compute_escape()) {
kvn@1989 1505 // There are non escaping objects.
kvn@1989 1506 C->set_congraph(congraph);
kvn@1989 1507 }
kvn@1989 1508
kvn@1989 1509 // Cleanup.
kvn@1989 1510 if (oop_null->outcnt() == 0)
kvn@1989 1511 igvn->hash_delete(oop_null);
kvn@1989 1512 if (noop_null->outcnt() == 0)
kvn@1989 1513 igvn->hash_delete(noop_null);
kvn@1989 1514 }
kvn@1989 1515
kvn@679 1516 bool ConnectionGraph::compute_escape() {
kvn@679 1517 Compile* C = _compile;
duke@435 1518
kvn@598 1519 // 1. Populate Connection Graph (CG) with Ideal nodes.
duke@435 1520
kvn@500 1521 Unique_Node_List worklist_init;
kvn@679 1522 worklist_init.map(C->unique(), NULL); // preallocate space
kvn@500 1523
kvn@500 1524 // Initialize worklist
kvn@679 1525 if (C->root() != NULL) {
kvn@679 1526 worklist_init.push(C->root());
kvn@500 1527 }
kvn@500 1528
kvn@500 1529 GrowableArray<int> cg_worklist;
kvn@1989 1530 PhaseGVN* igvn = _igvn;
kvn@500 1531 bool has_allocations = false;
kvn@500 1532
kvn@500 1533 // Push all useful nodes onto CG list and set their type.
kvn@500 1534 for( uint next = 0; next < worklist_init.size(); ++next ) {
kvn@500 1535 Node* n = worklist_init.at(next);
kvn@500 1536 record_for_escape_analysis(n, igvn);
kvn@679 1537 // Only allocations and java static calls results are checked
kvn@679 1538 // for an escape status. See process_call_result() below.
kvn@679 1539 if (n->is_Allocate() || n->is_CallStaticJava() &&
kvn@679 1540 ptnode_adr(n->_idx)->node_type() == PointsToNode::JavaObject) {
kvn@500 1541 has_allocations = true;
kvn@500 1542 }
kvn@1535 1543 if(n->is_AddP()) {
kvn@2276 1544 // Collect address nodes. Use them during stage 3 below
kvn@2276 1545 // to build initial connection graph field edges.
kvn@2276 1546 cg_worklist.append(n->_idx);
kvn@1535 1547 } else if (n->is_MergeMem()) {
kvn@1535 1548 // Collect all MergeMem nodes to add memory slices for
kvn@1535 1549 // scalar replaceable objects in split_unique_types().
kvn@1535 1550 _mergemem_worklist.append(n->as_MergeMem());
kvn@1535 1551 }
kvn@500 1552 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 1553 Node* m = n->fast_out(i); // Get user
kvn@500 1554 worklist_init.push(m);
kvn@500 1555 }
kvn@500 1556 }
kvn@500 1557
kvn@679 1558 if (!has_allocations) {
kvn@500 1559 _collecting = false;
kvn@679 1560 return false; // Nothing to do.
kvn@500 1561 }
kvn@500 1562
kvn@500 1563 // 2. First pass to create simple CG edges (doesn't require to walk CG).
kvn@679 1564 uint delayed_size = _delayed_worklist.size();
kvn@679 1565 for( uint next = 0; next < delayed_size; ++next ) {
kvn@500 1566 Node* n = _delayed_worklist.at(next);
kvn@500 1567 build_connection_graph(n, igvn);
kvn@500 1568 }
kvn@500 1569
kvn@2276 1570 // 3. Pass to create initial fields edges (JavaObject -F-> AddP)
kvn@2276 1571 // to reduce number of iterations during stage 4 below.
kvn@679 1572 uint cg_length = cg_worklist.length();
kvn@679 1573 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1574 int ni = cg_worklist.at(next);
kvn@2276 1575 Node* n = ptnode_adr(ni)->_node;
kvn@2276 1576 Node* base = get_addp_base(n);
kvn@2276 1577 if (base->is_Proj())
kvn@2276 1578 base = base->in(0);
kvn@2276 1579 PointsToNode::NodeType nt = ptnode_adr(base->_idx)->node_type();
kvn@2276 1580 if (nt == PointsToNode::JavaObject) {
kvn@2276 1581 build_connection_graph(n, igvn);
kvn@2276 1582 }
kvn@500 1583 }
kvn@500 1584
kvn@500 1585 cg_worklist.clear();
kvn@500 1586 cg_worklist.append(_phantom_object);
kvn@2276 1587 GrowableArray<uint> worklist;
kvn@500 1588
kvn@500 1589 // 4. Build Connection Graph which need
kvn@500 1590 // to walk the connection graph.
kvn@2276 1591 _progress = false;
kvn@679 1592 for (uint ni = 0; ni < nodes_size(); ni++) {
kvn@679 1593 PointsToNode* ptn = ptnode_adr(ni);
kvn@500 1594 Node *n = ptn->_node;
kvn@500 1595 if (n != NULL) { // Call, AddP, LoadP, StoreP
kvn@500 1596 build_connection_graph(n, igvn);
kvn@500 1597 if (ptn->node_type() != PointsToNode::UnknownType)
kvn@500 1598 cg_worklist.append(n->_idx); // Collect CG nodes
kvn@2276 1599 if (!_processed.test(n->_idx))
kvn@2276 1600 worklist.append(n->_idx); // Collect C/A/L/S nodes
kvn@500 1601 }
duke@435 1602 }
duke@435 1603
kvn@2276 1604 // After IGVN user nodes may have smaller _idx than
kvn@2276 1605 // their inputs so they will be processed first in
kvn@2276 1606 // previous loop. Because of that not all Graph
kvn@2276 1607 // edges will be created. Walk over interesting
kvn@2276 1608 // nodes again until no new edges are created.
kvn@2276 1609 //
kvn@2276 1610 // Normally only 1-3 passes needed to build
kvn@2276 1611 // Connection Graph depending on graph complexity.
kvn@2276 1612 // Set limit to 10 to catch situation when something
kvn@2276 1613 // did go wrong and recompile the method without EA.
kvn@2276 1614
kvn@2276 1615 #define CG_BUILD_ITER_LIMIT 10
kvn@2276 1616
kvn@2276 1617 uint length = worklist.length();
kvn@2276 1618 int iterations = 0;
kvn@2276 1619 while(_progress && (iterations++ < CG_BUILD_ITER_LIMIT)) {
kvn@2276 1620 _progress = false;
kvn@2276 1621 for( uint next = 0; next < length; ++next ) {
kvn@2276 1622 int ni = worklist.at(next);
kvn@2276 1623 PointsToNode* ptn = ptnode_adr(ni);
kvn@2276 1624 Node* n = ptn->_node;
kvn@2276 1625 assert(n != NULL, "should be known node");
kvn@2276 1626 build_connection_graph(n, igvn);
kvn@2276 1627 }
kvn@2276 1628 }
kvn@2276 1629 if (iterations >= CG_BUILD_ITER_LIMIT) {
kvn@2276 1630 assert(iterations < CG_BUILD_ITER_LIMIT,
kvn@2276 1631 err_msg("infinite EA connection graph build with %d nodes and worklist size %d",
kvn@2276 1632 nodes_size(), length));
kvn@2276 1633 // Possible infinite build_connection_graph loop,
kvn@2276 1634 // retry compilation without escape analysis.
kvn@2276 1635 C->record_failure(C2Compiler::retry_no_escape_analysis());
kvn@2276 1636 _collecting = false;
kvn@2276 1637 return false;
kvn@2276 1638 }
kvn@2276 1639 #undef CG_BUILD_ITER_LIMIT
kvn@2276 1640
kvn@1535 1641 Arena* arena = Thread::current()->resource_area();
kvn@1535 1642 VectorSet ptset(arena);
kvn@1535 1643 VectorSet visited(arena);
kvn@2276 1644 worklist.clear();
duke@435 1645
kvn@1535 1646 // 5. Remove deferred edges from the graph and adjust
kvn@1535 1647 // escape state of nonescaping objects.
kvn@679 1648 cg_length = cg_worklist.length();
kvn@679 1649 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1650 int ni = cg_worklist.at(next);
kvn@679 1651 PointsToNode* ptn = ptnode_adr(ni);
duke@435 1652 PointsToNode::NodeType nt = ptn->node_type();
duke@435 1653 if (nt == PointsToNode::LocalVar || nt == PointsToNode::Field) {
kvn@2276 1654 remove_deferred(ni, &worklist, &visited);
kvn@679 1655 Node *n = ptn->_node;
duke@435 1656 if (n->is_AddP()) {
kvn@1535 1657 // Search for objects which are not scalar replaceable
kvn@1535 1658 // and adjust their escape state.
kvn@1535 1659 verify_escape_state(ni, ptset, igvn);
duke@435 1660 }
duke@435 1661 }
duke@435 1662 }
kvn@500 1663
kvn@679 1664 // 6. Propagate escape states.
kvn@2276 1665 worklist.clear();
kvn@679 1666 bool has_non_escaping_obj = false;
kvn@679 1667
duke@435 1668 // push all GlobalEscape nodes on the worklist
kvn@679 1669 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1670 int nk = cg_worklist.at(next);
kvn@679 1671 if (ptnode_adr(nk)->escape_state() == PointsToNode::GlobalEscape)
kvn@679 1672 worklist.push(nk);
duke@435 1673 }
kvn@679 1674 // mark all nodes reachable from GlobalEscape nodes
duke@435 1675 while(worklist.length() > 0) {
kvn@679 1676 PointsToNode* ptn = ptnode_adr(worklist.pop());
kvn@679 1677 uint e_cnt = ptn->edge_count();
kvn@679 1678 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@679 1679 uint npi = ptn->edge_target(ei);
duke@435 1680 PointsToNode *np = ptnode_adr(npi);
kvn@500 1681 if (np->escape_state() < PointsToNode::GlobalEscape) {
duke@435 1682 np->set_escape_state(PointsToNode::GlobalEscape);
kvn@679 1683 worklist.push(npi);
duke@435 1684 }
duke@435 1685 }
duke@435 1686 }
duke@435 1687
duke@435 1688 // push all ArgEscape nodes on the worklist
kvn@679 1689 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1690 int nk = cg_worklist.at(next);
kvn@679 1691 if (ptnode_adr(nk)->escape_state() == PointsToNode::ArgEscape)
duke@435 1692 worklist.push(nk);
duke@435 1693 }
kvn@679 1694 // mark all nodes reachable from ArgEscape nodes
duke@435 1695 while(worklist.length() > 0) {
kvn@679 1696 PointsToNode* ptn = ptnode_adr(worklist.pop());
kvn@679 1697 if (ptn->node_type() == PointsToNode::JavaObject)
kvn@679 1698 has_non_escaping_obj = true; // Non GlobalEscape
kvn@679 1699 uint e_cnt = ptn->edge_count();
kvn@679 1700 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@679 1701 uint npi = ptn->edge_target(ei);
duke@435 1702 PointsToNode *np = ptnode_adr(npi);
kvn@500 1703 if (np->escape_state() < PointsToNode::ArgEscape) {
duke@435 1704 np->set_escape_state(PointsToNode::ArgEscape);
kvn@679 1705 worklist.push(npi);
duke@435 1706 }
duke@435 1707 }
duke@435 1708 }
kvn@500 1709
kvn@679 1710 GrowableArray<Node*> alloc_worklist;
kvn@679 1711
kvn@500 1712 // push all NoEscape nodes on the worklist
kvn@679 1713 for( uint next = 0; next < cg_length; ++next ) {
kvn@500 1714 int nk = cg_worklist.at(next);
kvn@679 1715 if (ptnode_adr(nk)->escape_state() == PointsToNode::NoEscape)
kvn@500 1716 worklist.push(nk);
kvn@500 1717 }
kvn@679 1718 // mark all nodes reachable from NoEscape nodes
kvn@500 1719 while(worklist.length() > 0) {
kvn@679 1720 PointsToNode* ptn = ptnode_adr(worklist.pop());
kvn@679 1721 if (ptn->node_type() == PointsToNode::JavaObject)
kvn@679 1722 has_non_escaping_obj = true; // Non GlobalEscape
kvn@679 1723 Node* n = ptn->_node;
kvn@679 1724 if (n->is_Allocate() && ptn->_scalar_replaceable ) {
twisti@1040 1725 // Push scalar replaceable allocations on alloc_worklist
kvn@679 1726 // for processing in split_unique_types().
kvn@679 1727 alloc_worklist.append(n);
kvn@679 1728 }
kvn@679 1729 uint e_cnt = ptn->edge_count();
kvn@679 1730 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@679 1731 uint npi = ptn->edge_target(ei);
kvn@500 1732 PointsToNode *np = ptnode_adr(npi);
kvn@500 1733 if (np->escape_state() < PointsToNode::NoEscape) {
kvn@500 1734 np->set_escape_state(PointsToNode::NoEscape);
kvn@679 1735 worklist.push(npi);
kvn@500 1736 }
kvn@500 1737 }
kvn@500 1738 }
kvn@500 1739
duke@435 1740 _collecting = false;
kvn@679 1741 assert(C->unique() == nodes_size(), "there should be no new ideal nodes during ConnectionGraph build");
duke@435 1742
kvn@1989 1743 #ifndef PRODUCT
kvn@1989 1744 if (PrintEscapeAnalysis) {
kvn@1989 1745 dump(); // Dump ConnectionGraph
kvn@1989 1746 }
kvn@1989 1747 #endif
kvn@1989 1748
kvn@679 1749 bool has_scalar_replaceable_candidates = alloc_worklist.length() > 0;
kvn@679 1750 if ( has_scalar_replaceable_candidates &&
kvn@679 1751 C->AliasLevel() >= 3 && EliminateAllocations ) {
kvn@473 1752
kvn@679 1753 // Now use the escape information to create unique types for
kvn@679 1754 // scalar replaceable objects.
kvn@679 1755 split_unique_types(alloc_worklist);
duke@435 1756
kvn@679 1757 if (C->failing()) return false;
duke@435 1758
kvn@679 1759 C->print_method("After Escape Analysis", 2);
duke@435 1760
kvn@500 1761 #ifdef ASSERT
kvn@679 1762 } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
kvn@500 1763 tty->print("=== No allocations eliminated for ");
kvn@679 1764 C->method()->print_short_name();
kvn@500 1765 if(!EliminateAllocations) {
kvn@500 1766 tty->print(" since EliminateAllocations is off ===");
kvn@679 1767 } else if(!has_scalar_replaceable_candidates) {
kvn@679 1768 tty->print(" since there are no scalar replaceable candidates ===");
kvn@679 1769 } else if(C->AliasLevel() < 3) {
kvn@500 1770 tty->print(" since AliasLevel < 3 ===");
duke@435 1771 }
kvn@500 1772 tty->cr();
kvn@500 1773 #endif
duke@435 1774 }
kvn@679 1775 return has_non_escaping_obj;
duke@435 1776 }
duke@435 1777
kvn@1535 1778 // Search for objects which are not scalar replaceable.
kvn@1535 1779 void ConnectionGraph::verify_escape_state(int nidx, VectorSet& ptset, PhaseTransform* phase) {
kvn@1535 1780 PointsToNode* ptn = ptnode_adr(nidx);
kvn@1535 1781 Node* n = ptn->_node;
kvn@1535 1782 assert(n->is_AddP(), "Should be called for AddP nodes only");
kvn@1535 1783 // Search for objects which are not scalar replaceable.
kvn@1535 1784 // Mark their escape state as ArgEscape to propagate the state
kvn@1535 1785 // to referenced objects.
kvn@1535 1786 // Note: currently there are no difference in compiler optimizations
kvn@1535 1787 // for ArgEscape objects and NoEscape objects which are not
kvn@1535 1788 // scalar replaceable.
kvn@1535 1789
kvn@1535 1790 Compile* C = _compile;
kvn@1535 1791
kvn@1535 1792 int offset = ptn->offset();
kvn@1535 1793 Node* base = get_addp_base(n);
kvn@1535 1794 ptset.Clear();
kvn@1989 1795 PointsTo(ptset, base);
kvn@1535 1796 int ptset_size = ptset.Size();
kvn@1535 1797
kvn@1535 1798 // Check if a oop field's initializing value is recorded and add
kvn@1535 1799 // a corresponding NULL field's value if it is not recorded.
kvn@1535 1800 // Connection Graph does not record a default initialization by NULL
kvn@1535 1801 // captured by Initialize node.
kvn@1535 1802 //
kvn@1535 1803 // Note: it will disable scalar replacement in some cases:
kvn@1535 1804 //
kvn@1535 1805 // Point p[] = new Point[1];
kvn@1535 1806 // p[0] = new Point(); // Will be not scalar replaced
kvn@1535 1807 //
kvn@1535 1808 // but it will save us from incorrect optimizations in next cases:
kvn@1535 1809 //
kvn@1535 1810 // Point p[] = new Point[1];
kvn@1535 1811 // if ( x ) p[0] = new Point(); // Will be not scalar replaced
kvn@1535 1812 //
kvn@1535 1813 // Do a simple control flow analysis to distinguish above cases.
kvn@1535 1814 //
kvn@1535 1815 if (offset != Type::OffsetBot && ptset_size == 1) {
kvn@1535 1816 uint elem = ptset.getelem(); // Allocation node's index
kvn@1535 1817 // It does not matter if it is not Allocation node since
kvn@1535 1818 // only non-escaping allocations are scalar replaced.
kvn@1535 1819 if (ptnode_adr(elem)->_node->is_Allocate() &&
kvn@1535 1820 ptnode_adr(elem)->escape_state() == PointsToNode::NoEscape) {
kvn@1535 1821 AllocateNode* alloc = ptnode_adr(elem)->_node->as_Allocate();
kvn@1535 1822 InitializeNode* ini = alloc->initialization();
kvn@1535 1823
kvn@1535 1824 // Check only oop fields.
kvn@1535 1825 const Type* adr_type = n->as_AddP()->bottom_type();
kvn@1535 1826 BasicType basic_field_type = T_INT;
kvn@1535 1827 if (adr_type->isa_instptr()) {
kvn@1535 1828 ciField* field = C->alias_type(adr_type->isa_instptr())->field();
kvn@1535 1829 if (field != NULL) {
kvn@1535 1830 basic_field_type = field->layout_type();
kvn@1535 1831 } else {
kvn@1535 1832 // Ignore non field load (for example, klass load)
kvn@1535 1833 }
kvn@1535 1834 } else if (adr_type->isa_aryptr()) {
kvn@1535 1835 const Type* elemtype = adr_type->isa_aryptr()->elem();
kvn@1535 1836 basic_field_type = elemtype->array_element_basic_type();
kvn@1535 1837 } else {
kvn@1535 1838 // Raw pointers are used for initializing stores so skip it.
kvn@1535 1839 assert(adr_type->isa_rawptr() && base->is_Proj() &&
kvn@1535 1840 (base->in(0) == alloc),"unexpected pointer type");
kvn@1535 1841 }
kvn@1535 1842 if (basic_field_type == T_OBJECT ||
kvn@1535 1843 basic_field_type == T_NARROWOOP ||
kvn@1535 1844 basic_field_type == T_ARRAY) {
kvn@1535 1845 Node* value = NULL;
kvn@1535 1846 if (ini != NULL) {
kvn@1535 1847 BasicType ft = UseCompressedOops ? T_NARROWOOP : T_OBJECT;
kvn@1535 1848 Node* store = ini->find_captured_store(offset, type2aelembytes(ft), phase);
kvn@1535 1849 if (store != NULL && store->is_Store()) {
kvn@1535 1850 value = store->in(MemNode::ValueIn);
kvn@1535 1851 } else if (ptn->edge_count() > 0) { // Are there oop stores?
kvn@1535 1852 // Check for a store which follows allocation without branches.
kvn@1535 1853 // For example, a volatile field store is not collected
kvn@1535 1854 // by Initialize node. TODO: it would be nice to use idom() here.
kvn@1535 1855 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@1535 1856 store = n->fast_out(i);
kvn@1535 1857 if (store->is_Store() && store->in(0) != NULL) {
kvn@1535 1858 Node* ctrl = store->in(0);
kvn@1535 1859 while(!(ctrl == ini || ctrl == alloc || ctrl == NULL ||
kvn@1535 1860 ctrl == C->root() || ctrl == C->top() || ctrl->is_Region() ||
kvn@1535 1861 ctrl->is_IfTrue() || ctrl->is_IfFalse())) {
kvn@1535 1862 ctrl = ctrl->in(0);
kvn@1535 1863 }
kvn@1535 1864 if (ctrl == ini || ctrl == alloc) {
kvn@1535 1865 value = store->in(MemNode::ValueIn);
kvn@1535 1866 break;
kvn@1535 1867 }
kvn@1535 1868 }
kvn@1535 1869 }
kvn@1535 1870 }
kvn@1535 1871 }
kvn@1535 1872 if (value == NULL || value != ptnode_adr(value->_idx)->_node) {
kvn@1535 1873 // A field's initializing value was not recorded. Add NULL.
kvn@1535 1874 uint null_idx = UseCompressedOops ? _noop_null : _oop_null;
kvn@1535 1875 add_pointsto_edge(nidx, null_idx);
kvn@1535 1876 }
kvn@1535 1877 }
kvn@1535 1878 }
kvn@1535 1879 }
kvn@1535 1880
kvn@1535 1881 // An object is not scalar replaceable if the field which may point
kvn@1535 1882 // to it has unknown offset (unknown element of an array of objects).
kvn@1535 1883 //
kvn@1535 1884 if (offset == Type::OffsetBot) {
kvn@1535 1885 uint e_cnt = ptn->edge_count();
kvn@1535 1886 for (uint ei = 0; ei < e_cnt; ei++) {
kvn@1535 1887 uint npi = ptn->edge_target(ei);
kvn@1535 1888 set_escape_state(npi, PointsToNode::ArgEscape);
kvn@1535 1889 ptnode_adr(npi)->_scalar_replaceable = false;
kvn@1535 1890 }
kvn@1535 1891 }
kvn@1535 1892
kvn@1535 1893 // Currently an object is not scalar replaceable if a LoadStore node
kvn@1535 1894 // access its field since the field value is unknown after it.
kvn@1535 1895 //
kvn@1535 1896 bool has_LoadStore = false;
kvn@1535 1897 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@1535 1898 Node *use = n->fast_out(i);
kvn@1535 1899 if (use->is_LoadStore()) {
kvn@1535 1900 has_LoadStore = true;
kvn@1535 1901 break;
kvn@1535 1902 }
kvn@1535 1903 }
kvn@1535 1904 // An object is not scalar replaceable if the address points
kvn@1535 1905 // to unknown field (unknown element for arrays, offset is OffsetBot).
kvn@1535 1906 //
kvn@1535 1907 // Or the address may point to more then one object. This may produce
kvn@1535 1908 // the false positive result (set scalar_replaceable to false)
kvn@1535 1909 // since the flow-insensitive escape analysis can't separate
kvn@1535 1910 // the case when stores overwrite the field's value from the case
kvn@1535 1911 // when stores happened on different control branches.
kvn@1535 1912 //
kvn@1535 1913 if (ptset_size > 1 || ptset_size != 0 &&
kvn@1535 1914 (has_LoadStore || offset == Type::OffsetBot)) {
kvn@1535 1915 for( VectorSetI j(&ptset); j.test(); ++j ) {
kvn@1535 1916 set_escape_state(j.elem, PointsToNode::ArgEscape);
kvn@1535 1917 ptnode_adr(j.elem)->_scalar_replaceable = false;
kvn@1535 1918 }
kvn@1535 1919 }
kvn@1535 1920 }
kvn@1535 1921
duke@435 1922 void ConnectionGraph::process_call_arguments(CallNode *call, PhaseTransform *phase) {
duke@435 1923
duke@435 1924 switch (call->Opcode()) {
kvn@500 1925 #ifdef ASSERT
duke@435 1926 case Op_Allocate:
duke@435 1927 case Op_AllocateArray:
duke@435 1928 case Op_Lock:
duke@435 1929 case Op_Unlock:
kvn@500 1930 assert(false, "should be done already");
duke@435 1931 break;
kvn@500 1932 #endif
kvn@1535 1933 case Op_CallLeaf:
kvn@500 1934 case Op_CallLeafNoFP:
kvn@500 1935 {
kvn@500 1936 // Stub calls, objects do not escape but they are not scale replaceable.
kvn@500 1937 // Adjust escape state for outgoing arguments.
kvn@500 1938 const TypeTuple * d = call->tf()->domain();
kvn@500 1939 VectorSet ptset(Thread::current()->resource_area());
kvn@500 1940 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@500 1941 const Type* at = d->field_at(i);
kvn@500 1942 Node *arg = call->in(i)->uncast();
kvn@500 1943 const Type *aat = phase->type(arg);
kvn@1535 1944 if (!arg->is_top() && at->isa_ptr() && aat->isa_ptr() &&
kvn@1535 1945 ptnode_adr(arg->_idx)->escape_state() < PointsToNode::ArgEscape) {
kvn@1535 1946
kvn@500 1947 assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
kvn@500 1948 aat->isa_ptr() != NULL, "expecting an Ptr");
kvn@1535 1949 #ifdef ASSERT
kvn@1535 1950 if (!(call->Opcode() == Op_CallLeafNoFP &&
kvn@1535 1951 call->as_CallLeaf()->_name != NULL &&
kvn@1535 1952 (strstr(call->as_CallLeaf()->_name, "arraycopy") != 0) ||
kvn@1535 1953 call->as_CallLeaf()->_name != NULL &&
kvn@1535 1954 (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre") == 0 ||
kvn@1535 1955 strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ))
kvn@1535 1956 ) {
kvn@1535 1957 call->dump();
kvn@1535 1958 assert(false, "EA: unexpected CallLeaf");
kvn@1535 1959 }
kvn@1535 1960 #endif
kvn@500 1961 set_escape_state(arg->_idx, PointsToNode::ArgEscape);
kvn@500 1962 if (arg->is_AddP()) {
kvn@500 1963 //
kvn@500 1964 // The inline_native_clone() case when the arraycopy stub is called
kvn@500 1965 // after the allocation before Initialize and CheckCastPP nodes.
kvn@500 1966 //
kvn@500 1967 // Set AddP's base (Allocate) as not scalar replaceable since
kvn@500 1968 // pointer to the base (with offset) is passed as argument.
kvn@500 1969 //
kvn@500 1970 arg = get_addp_base(arg);
kvn@500 1971 }
kvn@500 1972 ptset.Clear();
kvn@1989 1973 PointsTo(ptset, arg);
kvn@500 1974 for( VectorSetI j(&ptset); j.test(); ++j ) {
kvn@500 1975 uint pt = j.elem;
kvn@500 1976 set_escape_state(pt, PointsToNode::ArgEscape);
kvn@500 1977 }
kvn@500 1978 }
kvn@500 1979 }
kvn@500 1980 break;
kvn@500 1981 }
duke@435 1982
duke@435 1983 case Op_CallStaticJava:
duke@435 1984 // For a static call, we know exactly what method is being called.
duke@435 1985 // Use bytecode estimator to record the call's escape affects
duke@435 1986 {
duke@435 1987 ciMethod *meth = call->as_CallJava()->method();
kvn@500 1988 BCEscapeAnalyzer *call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
kvn@500 1989 // fall-through if not a Java method or no analyzer information
kvn@500 1990 if (call_analyzer != NULL) {
duke@435 1991 const TypeTuple * d = call->tf()->domain();
duke@435 1992 VectorSet ptset(Thread::current()->resource_area());
kvn@500 1993 bool copy_dependencies = false;
duke@435 1994 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 1995 const Type* at = d->field_at(i);
duke@435 1996 int k = i - TypeFunc::Parms;
kvn@1535 1997 Node *arg = call->in(i)->uncast();
duke@435 1998
kvn@1535 1999 if (at->isa_oopptr() != NULL &&
kvn@1571 2000 ptnode_adr(arg->_idx)->escape_state() < PointsToNode::GlobalEscape) {
duke@435 2001
kvn@500 2002 bool global_escapes = false;
kvn@500 2003 bool fields_escapes = false;
kvn@500 2004 if (!call_analyzer->is_arg_stack(k)) {
duke@435 2005 // The argument global escapes, mark everything it could point to
kvn@500 2006 set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
kvn@500 2007 global_escapes = true;
kvn@500 2008 } else {
kvn@500 2009 if (!call_analyzer->is_arg_local(k)) {
kvn@500 2010 // The argument itself doesn't escape, but any fields might
kvn@500 2011 fields_escapes = true;
kvn@500 2012 }
kvn@500 2013 set_escape_state(arg->_idx, PointsToNode::ArgEscape);
kvn@500 2014 copy_dependencies = true;
kvn@500 2015 }
duke@435 2016
kvn@500 2017 ptset.Clear();
kvn@1989 2018 PointsTo(ptset, arg);
kvn@500 2019 for( VectorSetI j(&ptset); j.test(); ++j ) {
kvn@500 2020 uint pt = j.elem;
kvn@500 2021 if (global_escapes) {
kvn@500 2022 //The argument global escapes, mark everything it could point to
duke@435 2023 set_escape_state(pt, PointsToNode::GlobalEscape);
kvn@500 2024 } else {
kvn@500 2025 if (fields_escapes) {
kvn@500 2026 // The argument itself doesn't escape, but any fields might
kvn@500 2027 add_edge_from_fields(pt, _phantom_object, Type::OffsetBot);
kvn@500 2028 }
kvn@500 2029 set_escape_state(pt, PointsToNode::ArgEscape);
duke@435 2030 }
duke@435 2031 }
duke@435 2032 }
duke@435 2033 }
kvn@500 2034 if (copy_dependencies)
kvn@679 2035 call_analyzer->copy_dependencies(_compile->dependencies());
duke@435 2036 break;
duke@435 2037 }
duke@435 2038 }
duke@435 2039
duke@435 2040 default:
kvn@500 2041 // Fall-through here if not a Java method or no analyzer information
kvn@500 2042 // or some other type of call, assume the worst case: all arguments
duke@435 2043 // globally escape.
duke@435 2044 {
duke@435 2045 // adjust escape state for outgoing arguments
duke@435 2046 const TypeTuple * d = call->tf()->domain();
duke@435 2047 VectorSet ptset(Thread::current()->resource_area());
duke@435 2048 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 2049 const Type* at = d->field_at(i);
duke@435 2050 if (at->isa_oopptr() != NULL) {
kvn@500 2051 Node *arg = call->in(i)->uncast();
kvn@500 2052 set_escape_state(arg->_idx, PointsToNode::GlobalEscape);
duke@435 2053 ptset.Clear();
kvn@1989 2054 PointsTo(ptset, arg);
duke@435 2055 for( VectorSetI j(&ptset); j.test(); ++j ) {
duke@435 2056 uint pt = j.elem;
duke@435 2057 set_escape_state(pt, PointsToNode::GlobalEscape);
duke@435 2058 }
duke@435 2059 }
duke@435 2060 }
duke@435 2061 }
duke@435 2062 }
duke@435 2063 }
duke@435 2064 void ConnectionGraph::process_call_result(ProjNode *resproj, PhaseTransform *phase) {
kvn@679 2065 CallNode *call = resproj->in(0)->as_Call();
kvn@679 2066 uint call_idx = call->_idx;
kvn@679 2067 uint resproj_idx = resproj->_idx;
duke@435 2068
duke@435 2069 switch (call->Opcode()) {
duke@435 2070 case Op_Allocate:
duke@435 2071 {
duke@435 2072 Node *k = call->in(AllocateNode::KlassNode);
kvn@1894 2073 const TypeKlassPtr *kt = k->bottom_type()->isa_klassptr();
duke@435 2074 assert(kt != NULL, "TypeKlassPtr required.");
duke@435 2075 ciKlass* cik = kt->klass();
duke@435 2076
kvn@500 2077 PointsToNode::EscapeState es;
kvn@500 2078 uint edge_to;
kvn@1894 2079 if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
kvn@1894 2080 !cik->is_instance_klass() || // StressReflectiveCode
kvn@1894 2081 cik->as_instance_klass()->has_finalizer()) {
kvn@500 2082 es = PointsToNode::GlobalEscape;
kvn@500 2083 edge_to = _phantom_object; // Could not be worse
duke@435 2084 } else {
kvn@500 2085 es = PointsToNode::NoEscape;
kvn@679 2086 edge_to = call_idx;
duke@435 2087 }
kvn@679 2088 set_escape_state(call_idx, es);
kvn@679 2089 add_pointsto_edge(resproj_idx, edge_to);
kvn@679 2090 _processed.set(resproj_idx);
duke@435 2091 break;
duke@435 2092 }
duke@435 2093
duke@435 2094 case Op_AllocateArray:
duke@435 2095 {
kvn@1894 2096
kvn@1894 2097 Node *k = call->in(AllocateNode::KlassNode);
kvn@1894 2098 const TypeKlassPtr *kt = k->bottom_type()->isa_klassptr();
kvn@1894 2099 assert(kt != NULL, "TypeKlassPtr required.");
kvn@1894 2100 ciKlass* cik = kt->klass();
kvn@1894 2101
kvn@1894 2102 PointsToNode::EscapeState es;
kvn@1894 2103 uint edge_to;
kvn@1894 2104 if (!cik->is_array_klass()) { // StressReflectiveCode
kvn@1894 2105 es = PointsToNode::GlobalEscape;
kvn@1894 2106 edge_to = _phantom_object;
kvn@1894 2107 } else {
kvn@1894 2108 es = PointsToNode::NoEscape;
kvn@1894 2109 edge_to = call_idx;
kvn@1894 2110 int length = call->in(AllocateNode::ALength)->find_int_con(-1);
kvn@1894 2111 if (length < 0 || length > EliminateAllocationArraySizeLimit) {
kvn@1894 2112 // Not scalar replaceable if the length is not constant or too big.
kvn@1894 2113 ptnode_adr(call_idx)->_scalar_replaceable = false;
kvn@1894 2114 }
kvn@500 2115 }
kvn@1894 2116 set_escape_state(call_idx, es);
kvn@1894 2117 add_pointsto_edge(resproj_idx, edge_to);
kvn@679 2118 _processed.set(resproj_idx);
duke@435 2119 break;
duke@435 2120 }
duke@435 2121
duke@435 2122 case Op_CallStaticJava:
duke@435 2123 // For a static call, we know exactly what method is being called.
duke@435 2124 // Use bytecode estimator to record whether the call's return value escapes
duke@435 2125 {
kvn@500 2126 bool done = true;
duke@435 2127 const TypeTuple *r = call->tf()->range();
duke@435 2128 const Type* ret_type = NULL;
duke@435 2129
duke@435 2130 if (r->cnt() > TypeFunc::Parms)
duke@435 2131 ret_type = r->field_at(TypeFunc::Parms);
duke@435 2132
duke@435 2133 // Note: we use isa_ptr() instead of isa_oopptr() here because the
duke@435 2134 // _multianewarray functions return a TypeRawPtr.
kvn@500 2135 if (ret_type == NULL || ret_type->isa_ptr() == NULL) {
kvn@679 2136 _processed.set(resproj_idx);
duke@435 2137 break; // doesn't return a pointer type
kvn@500 2138 }
duke@435 2139 ciMethod *meth = call->as_CallJava()->method();
kvn@500 2140 const TypeTuple * d = call->tf()->domain();
duke@435 2141 if (meth == NULL) {
duke@435 2142 // not a Java method, assume global escape
kvn@679 2143 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 2144 add_pointsto_edge(resproj_idx, _phantom_object);
duke@435 2145 } else {
kvn@500 2146 BCEscapeAnalyzer *call_analyzer = meth->get_bcea();
kvn@500 2147 bool copy_dependencies = false;
duke@435 2148
kvn@500 2149 if (call_analyzer->is_return_allocated()) {
kvn@500 2150 // Returns a newly allocated unescaped object, simply
kvn@500 2151 // update dependency information.
kvn@500 2152 // Mark it as NoEscape so that objects referenced by
kvn@500 2153 // it's fields will be marked as NoEscape at least.
kvn@679 2154 set_escape_state(call_idx, PointsToNode::NoEscape);
kvn@679 2155 add_pointsto_edge(resproj_idx, call_idx);
kvn@500 2156 copy_dependencies = true;
kvn@679 2157 } else if (call_analyzer->is_return_local()) {
duke@435 2158 // determine whether any arguments are returned
kvn@679 2159 set_escape_state(call_idx, PointsToNode::NoEscape);
kvn@742 2160 bool ret_arg = false;
duke@435 2161 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
duke@435 2162 const Type* at = d->field_at(i);
duke@435 2163
duke@435 2164 if (at->isa_oopptr() != NULL) {
kvn@500 2165 Node *arg = call->in(i)->uncast();
duke@435 2166
kvn@500 2167 if (call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
kvn@742 2168 ret_arg = true;
kvn@679 2169 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
kvn@500 2170 if (arg_esp->node_type() == PointsToNode::UnknownType)
kvn@500 2171 done = false;
kvn@500 2172 else if (arg_esp->node_type() == PointsToNode::JavaObject)
kvn@679 2173 add_pointsto_edge(resproj_idx, arg->_idx);
duke@435 2174 else
kvn@679 2175 add_deferred_edge(resproj_idx, arg->_idx);
duke@435 2176 arg_esp->_hidden_alias = true;
duke@435 2177 }
duke@435 2178 }
duke@435 2179 }
kvn@742 2180 if (done && !ret_arg) {
kvn@742 2181 // Returns unknown object.
kvn@742 2182 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@742 2183 add_pointsto_edge(resproj_idx, _phantom_object);
kvn@742 2184 }
kvn@500 2185 copy_dependencies = true;
duke@435 2186 } else {
kvn@679 2187 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 2188 add_pointsto_edge(resproj_idx, _phantom_object);
kvn@500 2189 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@500 2190 const Type* at = d->field_at(i);
kvn@500 2191 if (at->isa_oopptr() != NULL) {
kvn@500 2192 Node *arg = call->in(i)->uncast();
kvn@679 2193 PointsToNode *arg_esp = ptnode_adr(arg->_idx);
kvn@500 2194 arg_esp->_hidden_alias = true;
kvn@500 2195 }
kvn@500 2196 }
duke@435 2197 }
kvn@500 2198 if (copy_dependencies)
kvn@679 2199 call_analyzer->copy_dependencies(_compile->dependencies());
duke@435 2200 }
kvn@500 2201 if (done)
kvn@679 2202 _processed.set(resproj_idx);
duke@435 2203 break;
duke@435 2204 }
duke@435 2205
duke@435 2206 default:
duke@435 2207 // Some other type of call, assume the worst case that the
duke@435 2208 // returned value, if any, globally escapes.
duke@435 2209 {
duke@435 2210 const TypeTuple *r = call->tf()->range();
duke@435 2211 if (r->cnt() > TypeFunc::Parms) {
duke@435 2212 const Type* ret_type = r->field_at(TypeFunc::Parms);
duke@435 2213
duke@435 2214 // Note: we use isa_ptr() instead of isa_oopptr() here because the
duke@435 2215 // _multianewarray functions return a TypeRawPtr.
duke@435 2216 if (ret_type->isa_ptr() != NULL) {
kvn@679 2217 set_escape_state(call_idx, PointsToNode::GlobalEscape);
kvn@679 2218 add_pointsto_edge(resproj_idx, _phantom_object);
duke@435 2219 }
duke@435 2220 }
kvn@679 2221 _processed.set(resproj_idx);
duke@435 2222 }
duke@435 2223 }
duke@435 2224 }
duke@435 2225
kvn@500 2226 // Populate Connection Graph with Ideal nodes and create simple
kvn@500 2227 // connection graph edges (do not need to check the node_type of inputs
kvn@500 2228 // or to call PointsTo() to walk the connection graph).
kvn@500 2229 void ConnectionGraph::record_for_escape_analysis(Node *n, PhaseTransform *phase) {
kvn@500 2230 if (_processed.test(n->_idx))
kvn@500 2231 return; // No need to redefine node's state.
kvn@500 2232
kvn@500 2233 if (n->is_Call()) {
kvn@500 2234 // Arguments to allocation and locking don't escape.
kvn@500 2235 if (n->is_Allocate()) {
kvn@500 2236 add_node(n, PointsToNode::JavaObject, PointsToNode::UnknownEscape, true);
kvn@500 2237 record_for_optimizer(n);
kvn@500 2238 } else if (n->is_Lock() || n->is_Unlock()) {
kvn@500 2239 // Put Lock and Unlock nodes on IGVN worklist to process them during
kvn@500 2240 // the first IGVN optimization when escape information is still available.
kvn@500 2241 record_for_optimizer(n);
kvn@500 2242 _processed.set(n->_idx);
kvn@500 2243 } else {
kvn@1535 2244 // Don't mark as processed since call's arguments have to be processed.
kvn@500 2245 PointsToNode::NodeType nt = PointsToNode::UnknownType;
kvn@1535 2246 PointsToNode::EscapeState es = PointsToNode::UnknownEscape;
kvn@500 2247
kvn@500 2248 // Check if a call returns an object.
kvn@500 2249 const TypeTuple *r = n->as_Call()->tf()->range();
kvn@1535 2250 if (r->cnt() > TypeFunc::Parms &&
kvn@1535 2251 r->field_at(TypeFunc::Parms)->isa_ptr() &&
kvn@500 2252 n->as_Call()->proj_out(TypeFunc::Parms) != NULL) {
kvn@1535 2253 nt = PointsToNode::JavaObject;
kvn@1535 2254 if (!n->is_CallStaticJava()) {
kvn@1535 2255 // Since the called mathod is statically unknown assume
kvn@1535 2256 // the worst case that the returned value globally escapes.
kvn@1535 2257 es = PointsToNode::GlobalEscape;
kvn@500 2258 }
duke@435 2259 }
kvn@1535 2260 add_node(n, nt, es, false);
duke@435 2261 }
kvn@500 2262 return;
duke@435 2263 }
kvn@500 2264
kvn@500 2265 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
kvn@500 2266 // ThreadLocal has RawPrt type.
kvn@500 2267 switch (n->Opcode()) {
kvn@500 2268 case Op_AddP:
kvn@500 2269 {
kvn@500 2270 add_node(n, PointsToNode::Field, PointsToNode::UnknownEscape, false);
kvn@500 2271 break;
kvn@500 2272 }
kvn@500 2273 case Op_CastX2P:
kvn@500 2274 { // "Unsafe" memory access.
kvn@500 2275 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@500 2276 break;
kvn@500 2277 }
kvn@500 2278 case Op_CastPP:
kvn@500 2279 case Op_CheckCastPP:
kvn@559 2280 case Op_EncodeP:
kvn@559 2281 case Op_DecodeN:
kvn@500 2282 {
kvn@500 2283 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 2284 int ti = n->in(1)->_idx;
kvn@679 2285 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 2286 if (nt == PointsToNode::UnknownType) {
kvn@500 2287 _delayed_worklist.push(n); // Process it later.
kvn@500 2288 break;
kvn@500 2289 } else if (nt == PointsToNode::JavaObject) {
kvn@500 2290 add_pointsto_edge(n->_idx, ti);
kvn@500 2291 } else {
kvn@500 2292 add_deferred_edge(n->_idx, ti);
kvn@500 2293 }
kvn@500 2294 _processed.set(n->_idx);
kvn@500 2295 break;
kvn@500 2296 }
kvn@500 2297 case Op_ConP:
kvn@500 2298 {
kvn@500 2299 // assume all pointer constants globally escape except for null
kvn@500 2300 PointsToNode::EscapeState es;
kvn@500 2301 if (phase->type(n) == TypePtr::NULL_PTR)
kvn@500 2302 es = PointsToNode::NoEscape;
kvn@500 2303 else
kvn@500 2304 es = PointsToNode::GlobalEscape;
kvn@500 2305
kvn@500 2306 add_node(n, PointsToNode::JavaObject, es, true);
kvn@500 2307 break;
kvn@500 2308 }
coleenp@548 2309 case Op_ConN:
coleenp@548 2310 {
coleenp@548 2311 // assume all narrow oop constants globally escape except for null
coleenp@548 2312 PointsToNode::EscapeState es;
coleenp@548 2313 if (phase->type(n) == TypeNarrowOop::NULL_PTR)
coleenp@548 2314 es = PointsToNode::NoEscape;
coleenp@548 2315 else
coleenp@548 2316 es = PointsToNode::GlobalEscape;
coleenp@548 2317
coleenp@548 2318 add_node(n, PointsToNode::JavaObject, es, true);
coleenp@548 2319 break;
coleenp@548 2320 }
kvn@559 2321 case Op_CreateEx:
kvn@559 2322 {
kvn@559 2323 // assume that all exception objects globally escape
kvn@559 2324 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@559 2325 break;
kvn@559 2326 }
kvn@500 2327 case Op_LoadKlass:
kvn@599 2328 case Op_LoadNKlass:
kvn@500 2329 {
kvn@500 2330 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, true);
kvn@500 2331 break;
kvn@500 2332 }
kvn@500 2333 case Op_LoadP:
coleenp@548 2334 case Op_LoadN:
kvn@500 2335 {
kvn@500 2336 const Type *t = phase->type(n);
kvn@688 2337 if (t->make_ptr() == NULL) {
kvn@500 2338 _processed.set(n->_idx);
kvn@500 2339 return;
kvn@500 2340 }
kvn@500 2341 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 2342 break;
kvn@500 2343 }
kvn@500 2344 case Op_Parm:
kvn@500 2345 {
kvn@500 2346 _processed.set(n->_idx); // No need to redefine it state.
kvn@500 2347 uint con = n->as_Proj()->_con;
kvn@500 2348 if (con < TypeFunc::Parms)
kvn@500 2349 return;
kvn@500 2350 const Type *t = n->in(0)->as_Start()->_domain->field_at(con);
kvn@500 2351 if (t->isa_ptr() == NULL)
kvn@500 2352 return;
kvn@500 2353 // We have to assume all input parameters globally escape
kvn@500 2354 // (Note: passing 'false' since _processed is already set).
kvn@500 2355 add_node(n, PointsToNode::JavaObject, PointsToNode::GlobalEscape, false);
kvn@500 2356 break;
kvn@500 2357 }
kvn@500 2358 case Op_Phi:
kvn@500 2359 {
kvn@688 2360 const Type *t = n->as_Phi()->type();
kvn@688 2361 if (t->make_ptr() == NULL) {
kvn@688 2362 // nothing to do if not an oop or narrow oop
kvn@500 2363 _processed.set(n->_idx);
kvn@500 2364 return;
kvn@500 2365 }
kvn@500 2366 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@500 2367 uint i;
kvn@500 2368 for (i = 1; i < n->req() ; i++) {
kvn@500 2369 Node* in = n->in(i);
kvn@500 2370 if (in == NULL)
kvn@500 2371 continue; // ignore NULL
kvn@500 2372 in = in->uncast();
kvn@500 2373 if (in->is_top() || in == n)
kvn@500 2374 continue; // ignore top or inputs which go back this node
kvn@500 2375 int ti = in->_idx;
kvn@679 2376 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 2377 if (nt == PointsToNode::UnknownType) {
kvn@500 2378 break;
kvn@500 2379 } else if (nt == PointsToNode::JavaObject) {
kvn@500 2380 add_pointsto_edge(n->_idx, ti);
kvn@500 2381 } else {
kvn@500 2382 add_deferred_edge(n->_idx, ti);
kvn@500 2383 }
kvn@500 2384 }
kvn@500 2385 if (i >= n->req())
kvn@500 2386 _processed.set(n->_idx);
kvn@500 2387 else
kvn@500 2388 _delayed_worklist.push(n);
kvn@500 2389 break;
kvn@500 2390 }
kvn@500 2391 case Op_Proj:
kvn@500 2392 {
kvn@1535 2393 // we are only interested in the oop result projection from a call
kvn@500 2394 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
kvn@1535 2395 const TypeTuple *r = n->in(0)->as_Call()->tf()->range();
kvn@1535 2396 assert(r->cnt() > TypeFunc::Parms, "sanity");
kvn@1535 2397 if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
kvn@1535 2398 add_node(n, PointsToNode::LocalVar, PointsToNode::UnknownEscape, false);
kvn@1535 2399 int ti = n->in(0)->_idx;
kvn@1535 2400 // The call may not be registered yet (since not all its inputs are registered)
kvn@1535 2401 // if this is the projection from backbranch edge of Phi.
kvn@1535 2402 if (ptnode_adr(ti)->node_type() != PointsToNode::UnknownType) {
kvn@1535 2403 process_call_result(n->as_Proj(), phase);
kvn@1535 2404 }
kvn@1535 2405 if (!_processed.test(n->_idx)) {
kvn@1535 2406 // The call's result may need to be processed later if the call
kvn@1535 2407 // returns it's argument and the argument is not processed yet.
kvn@1535 2408 _delayed_worklist.push(n);
kvn@1535 2409 }
kvn@1535 2410 break;
kvn@500 2411 }
kvn@500 2412 }
kvn@1535 2413 _processed.set(n->_idx);
kvn@500 2414 break;
kvn@500 2415 }
kvn@500 2416 case Op_Return:
kvn@500 2417 {
kvn@500 2418 if( n->req() > TypeFunc::Parms &&
kvn@500 2419 phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
kvn@500 2420 // Treat Return value as LocalVar with GlobalEscape escape state.
kvn@500 2421 add_node(n, PointsToNode::LocalVar, PointsToNode::GlobalEscape, false);
kvn@500 2422 int ti = n->in(TypeFunc::Parms)->_idx;
kvn@679 2423 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@500 2424 if (nt == PointsToNode::UnknownType) {
kvn@500 2425 _delayed_worklist.push(n); // Process it later.
kvn@500 2426 break;
kvn@500 2427 } else if (nt == PointsToNode::JavaObject) {
kvn@500 2428 add_pointsto_edge(n->_idx, ti);
kvn@500 2429 } else {
kvn@500 2430 add_deferred_edge(n->_idx, ti);
kvn@500 2431 }
kvn@500 2432 }
kvn@500 2433 _processed.set(n->_idx);
kvn@500 2434 break;
kvn@500 2435 }
kvn@500 2436 case Op_StoreP:
coleenp@548 2437 case Op_StoreN:
kvn@500 2438 {
kvn@500 2439 const Type *adr_type = phase->type(n->in(MemNode::Address));
kvn@656 2440 adr_type = adr_type->make_ptr();
kvn@500 2441 if (adr_type->isa_oopptr()) {
kvn@500 2442 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 2443 } else {
kvn@500 2444 Node* adr = n->in(MemNode::Address);
kvn@500 2445 if (adr->is_AddP() && phase->type(adr) == TypeRawPtr::NOTNULL &&
kvn@500 2446 adr->in(AddPNode::Address)->is_Proj() &&
kvn@500 2447 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
kvn@500 2448 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 2449 // We are computing a raw address for a store captured
kvn@500 2450 // by an Initialize compute an appropriate address type.
kvn@500 2451 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 2452 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@500 2453 } else {
kvn@500 2454 _processed.set(n->_idx);
kvn@500 2455 return;
kvn@500 2456 }
kvn@500 2457 }
kvn@500 2458 break;
kvn@500 2459 }
kvn@500 2460 case Op_StorePConditional:
kvn@500 2461 case Op_CompareAndSwapP:
coleenp@548 2462 case Op_CompareAndSwapN:
kvn@500 2463 {
kvn@500 2464 const Type *adr_type = phase->type(n->in(MemNode::Address));
kvn@656 2465 adr_type = adr_type->make_ptr();
kvn@500 2466 if (adr_type->isa_oopptr()) {
kvn@500 2467 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@500 2468 } else {
kvn@500 2469 _processed.set(n->_idx);
kvn@500 2470 return;
kvn@500 2471 }
kvn@500 2472 break;
kvn@500 2473 }
kvn@1535 2474 case Op_AryEq:
kvn@1535 2475 case Op_StrComp:
kvn@1535 2476 case Op_StrEquals:
kvn@1535 2477 case Op_StrIndexOf:
kvn@1535 2478 {
kvn@1535 2479 // char[] arrays passed to string intrinsics are not scalar replaceable.
kvn@1535 2480 add_node(n, PointsToNode::UnknownType, PointsToNode::UnknownEscape, false);
kvn@1535 2481 break;
kvn@1535 2482 }
kvn@500 2483 case Op_ThreadLocal:
kvn@500 2484 {
kvn@500 2485 add_node(n, PointsToNode::JavaObject, PointsToNode::ArgEscape, true);
kvn@500 2486 break;
kvn@500 2487 }
kvn@500 2488 default:
kvn@500 2489 ;
kvn@500 2490 // nothing to do
kvn@500 2491 }
kvn@500 2492 return;
duke@435 2493 }
duke@435 2494
kvn@500 2495 void ConnectionGraph::build_connection_graph(Node *n, PhaseTransform *phase) {
kvn@679 2496 uint n_idx = n->_idx;
kvn@1535 2497 assert(ptnode_adr(n_idx)->_node != NULL, "node should be registered");
kvn@679 2498
kvn@500 2499 // Don't set processed bit for AddP, LoadP, StoreP since
kvn@500 2500 // they may need more then one pass to process.
kvn@2276 2501 // Also don't mark as processed Call nodes since their
kvn@2276 2502 // arguments may need more then one pass to process.
kvn@679 2503 if (_processed.test(n_idx))
kvn@500 2504 return; // No need to redefine node's state.
duke@435 2505
duke@435 2506 if (n->is_Call()) {
duke@435 2507 CallNode *call = n->as_Call();
duke@435 2508 process_call_arguments(call, phase);
duke@435 2509 return;
duke@435 2510 }
duke@435 2511
kvn@500 2512 switch (n->Opcode()) {
duke@435 2513 case Op_AddP:
duke@435 2514 {
kvn@500 2515 Node *base = get_addp_base(n);
kvn@500 2516 // Create a field edge to this node from everything base could point to.
duke@435 2517 VectorSet ptset(Thread::current()->resource_area());
kvn@1989 2518 PointsTo(ptset, base);
duke@435 2519 for( VectorSetI i(&ptset); i.test(); ++i ) {
duke@435 2520 uint pt = i.elem;
kvn@679 2521 add_field_edge(pt, n_idx, address_offset(n, phase));
kvn@500 2522 }
kvn@500 2523 break;
kvn@500 2524 }
kvn@500 2525 case Op_CastX2P:
kvn@500 2526 {
kvn@500 2527 assert(false, "Op_CastX2P");
kvn@500 2528 break;
kvn@500 2529 }
kvn@500 2530 case Op_CastPP:
kvn@500 2531 case Op_CheckCastPP:
coleenp@548 2532 case Op_EncodeP:
coleenp@548 2533 case Op_DecodeN:
kvn@500 2534 {
kvn@500 2535 int ti = n->in(1)->_idx;
kvn@1535 2536 assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "all nodes should be registered");
kvn@679 2537 if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
kvn@679 2538 add_pointsto_edge(n_idx, ti);
kvn@500 2539 } else {
kvn@679 2540 add_deferred_edge(n_idx, ti);
kvn@500 2541 }
kvn@679 2542 _processed.set(n_idx);
kvn@500 2543 break;
kvn@500 2544 }
kvn@500 2545 case Op_ConP:
kvn@500 2546 {
kvn@500 2547 assert(false, "Op_ConP");
kvn@500 2548 break;
kvn@500 2549 }
kvn@598 2550 case Op_ConN:
kvn@598 2551 {
kvn@598 2552 assert(false, "Op_ConN");
kvn@598 2553 break;
kvn@598 2554 }
kvn@500 2555 case Op_CreateEx:
kvn@500 2556 {
kvn@500 2557 assert(false, "Op_CreateEx");
kvn@500 2558 break;
kvn@500 2559 }
kvn@500 2560 case Op_LoadKlass:
kvn@599 2561 case Op_LoadNKlass:
kvn@500 2562 {
kvn@500 2563 assert(false, "Op_LoadKlass");
kvn@500 2564 break;
kvn@500 2565 }
kvn@500 2566 case Op_LoadP:
kvn@559 2567 case Op_LoadN:
kvn@500 2568 {
kvn@500 2569 const Type *t = phase->type(n);
kvn@500 2570 #ifdef ASSERT
kvn@688 2571 if (t->make_ptr() == NULL)
kvn@500 2572 assert(false, "Op_LoadP");
kvn@500 2573 #endif
kvn@500 2574
kvn@500 2575 Node* adr = n->in(MemNode::Address)->uncast();
kvn@500 2576 Node* adr_base;
kvn@500 2577 if (adr->is_AddP()) {
kvn@500 2578 adr_base = get_addp_base(adr);
kvn@500 2579 } else {
kvn@500 2580 adr_base = adr;
kvn@500 2581 }
kvn@500 2582
kvn@500 2583 // For everything "adr_base" could point to, create a deferred edge from
kvn@500 2584 // this node to each field with the same offset.
kvn@500 2585 VectorSet ptset(Thread::current()->resource_area());
kvn@1989 2586 PointsTo(ptset, adr_base);
kvn@500 2587 int offset = address_offset(adr, phase);
kvn@500 2588 for( VectorSetI i(&ptset); i.test(); ++i ) {
kvn@500 2589 uint pt = i.elem;
kvn@679 2590 add_deferred_edge_to_fields(n_idx, pt, offset);
duke@435 2591 }
duke@435 2592 break;
duke@435 2593 }
duke@435 2594 case Op_Parm:
duke@435 2595 {
kvn@500 2596 assert(false, "Op_Parm");
kvn@500 2597 break;
kvn@500 2598 }
kvn@500 2599 case Op_Phi:
kvn@500 2600 {
kvn@500 2601 #ifdef ASSERT
kvn@688 2602 const Type *t = n->as_Phi()->type();
kvn@688 2603 if (t->make_ptr() == NULL)
kvn@500 2604 assert(false, "Op_Phi");
kvn@500 2605 #endif
kvn@500 2606 for (uint i = 1; i < n->req() ; i++) {
kvn@500 2607 Node* in = n->in(i);
kvn@500 2608 if (in == NULL)
kvn@500 2609 continue; // ignore NULL
kvn@500 2610 in = in->uncast();
kvn@500 2611 if (in->is_top() || in == n)
kvn@500 2612 continue; // ignore top or inputs which go back this node
kvn@500 2613 int ti = in->_idx;
kvn@742 2614 PointsToNode::NodeType nt = ptnode_adr(ti)->node_type();
kvn@742 2615 assert(nt != PointsToNode::UnknownType, "all nodes should be known");
kvn@742 2616 if (nt == PointsToNode::JavaObject) {
kvn@679 2617 add_pointsto_edge(n_idx, ti);
kvn@500 2618 } else {
kvn@679 2619 add_deferred_edge(n_idx, ti);
kvn@500 2620 }
duke@435 2621 }
kvn@679 2622 _processed.set(n_idx);
duke@435 2623 break;
duke@435 2624 }
kvn@500 2625 case Op_Proj:
duke@435 2626 {
kvn@1535 2627 // we are only interested in the oop result projection from a call
kvn@500 2628 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() ) {
kvn@1535 2629 assert(ptnode_adr(n->in(0)->_idx)->node_type() != PointsToNode::UnknownType,
kvn@1535 2630 "all nodes should be registered");
kvn@1535 2631 const TypeTuple *r = n->in(0)->as_Call()->tf()->range();
kvn@1535 2632 assert(r->cnt() > TypeFunc::Parms, "sanity");
kvn@1535 2633 if (r->field_at(TypeFunc::Parms)->isa_ptr() != NULL) {
kvn@1535 2634 process_call_result(n->as_Proj(), phase);
kvn@1535 2635 assert(_processed.test(n_idx), "all call results should be processed");
kvn@1535 2636 break;
kvn@1535 2637 }
kvn@500 2638 }
kvn@1535 2639 assert(false, "Op_Proj");
duke@435 2640 break;
duke@435 2641 }
kvn@500 2642 case Op_Return:
duke@435 2643 {
kvn@500 2644 #ifdef ASSERT
kvn@500 2645 if( n->req() <= TypeFunc::Parms ||
kvn@500 2646 !phase->type(n->in(TypeFunc::Parms))->isa_oopptr() ) {
kvn@500 2647 assert(false, "Op_Return");
kvn@500 2648 }
kvn@500 2649 #endif
kvn@500 2650 int ti = n->in(TypeFunc::Parms)->_idx;
kvn@1535 2651 assert(ptnode_adr(ti)->node_type() != PointsToNode::UnknownType, "node should be registered");
kvn@679 2652 if (ptnode_adr(ti)->node_type() == PointsToNode::JavaObject) {
kvn@679 2653 add_pointsto_edge(n_idx, ti);
kvn@500 2654 } else {
kvn@679 2655 add_deferred_edge(n_idx, ti);
kvn@500 2656 }
kvn@679 2657 _processed.set(n_idx);
duke@435 2658 break;
duke@435 2659 }
duke@435 2660 case Op_StoreP:
kvn@559 2661 case Op_StoreN:
duke@435 2662 case Op_StorePConditional:
duke@435 2663 case Op_CompareAndSwapP:
kvn@559 2664 case Op_CompareAndSwapN:
duke@435 2665 {
duke@435 2666 Node *adr = n->in(MemNode::Address);
kvn@656 2667 const Type *adr_type = phase->type(adr)->make_ptr();
kvn@500 2668 #ifdef ASSERT
duke@435 2669 if (!adr_type->isa_oopptr())
kvn@500 2670 assert(phase->type(adr) == TypeRawPtr::NOTNULL, "Op_StoreP");
kvn@500 2671 #endif
duke@435 2672
kvn@500 2673 assert(adr->is_AddP(), "expecting an AddP");
kvn@500 2674 Node *adr_base = get_addp_base(adr);
kvn@500 2675 Node *val = n->in(MemNode::ValueIn)->uncast();
kvn@500 2676 // For everything "adr_base" could point to, create a deferred edge
kvn@500 2677 // to "val" from each field with the same offset.
duke@435 2678 VectorSet ptset(Thread::current()->resource_area());
kvn@1989 2679 PointsTo(ptset, adr_base);
duke@435 2680 for( VectorSetI i(&ptset); i.test(); ++i ) {
duke@435 2681 uint pt = i.elem;
kvn@500 2682 add_edge_from_fields(pt, val->_idx, address_offset(adr, phase));
duke@435 2683 }
duke@435 2684 break;
duke@435 2685 }
kvn@1535 2686 case Op_AryEq:
kvn@1535 2687 case Op_StrComp:
kvn@1535 2688 case Op_StrEquals:
kvn@1535 2689 case Op_StrIndexOf:
kvn@1535 2690 {
kvn@1535 2691 // char[] arrays passed to string intrinsic do not escape but
kvn@1535 2692 // they are not scalar replaceable. Adjust escape state for them.
kvn@1535 2693 // Start from in(2) edge since in(1) is memory edge.
kvn@1535 2694 for (uint i = 2; i < n->req(); i++) {
kvn@1535 2695 Node* adr = n->in(i)->uncast();
kvn@1535 2696 const Type *at = phase->type(adr);
kvn@1535 2697 if (!adr->is_top() && at->isa_ptr()) {
kvn@1535 2698 assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
kvn@1535 2699 at->isa_ptr() != NULL, "expecting an Ptr");
kvn@1535 2700 if (adr->is_AddP()) {
kvn@1535 2701 adr = get_addp_base(adr);
kvn@1535 2702 }
kvn@1535 2703 // Mark as ArgEscape everything "adr" could point to.
kvn@1535 2704 set_escape_state(adr->_idx, PointsToNode::ArgEscape);
kvn@1535 2705 }
kvn@1535 2706 }
kvn@1535 2707 _processed.set(n_idx);
kvn@1535 2708 break;
kvn@1535 2709 }
kvn@500 2710 case Op_ThreadLocal:
duke@435 2711 {
kvn@500 2712 assert(false, "Op_ThreadLocal");
duke@435 2713 break;
duke@435 2714 }
duke@435 2715 default:
kvn@1535 2716 // This method should be called only for EA specific nodes.
kvn@1535 2717 ShouldNotReachHere();
duke@435 2718 }
duke@435 2719 }
duke@435 2720
duke@435 2721 #ifndef PRODUCT
duke@435 2722 void ConnectionGraph::dump() {
duke@435 2723 bool first = true;
duke@435 2724
kvn@679 2725 uint size = nodes_size();
kvn@500 2726 for (uint ni = 0; ni < size; ni++) {
kvn@679 2727 PointsToNode *ptn = ptnode_adr(ni);
kvn@500 2728 PointsToNode::NodeType ptn_type = ptn->node_type();
kvn@500 2729
kvn@500 2730 if (ptn_type != PointsToNode::JavaObject || ptn->_node == NULL)
duke@435 2731 continue;
kvn@1989 2732 PointsToNode::EscapeState es = escape_state(ptn->_node);
kvn@500 2733 if (ptn->_node->is_Allocate() && (es == PointsToNode::NoEscape || Verbose)) {
kvn@500 2734 if (first) {
kvn@500 2735 tty->cr();
kvn@500 2736 tty->print("======== Connection graph for ");
kvn@679 2737 _compile->method()->print_short_name();
kvn@500 2738 tty->cr();
kvn@500 2739 first = false;
kvn@500 2740 }
kvn@500 2741 tty->print("%6d ", ni);
kvn@500 2742 ptn->dump();
kvn@500 2743 // Print all locals which reference this allocation
kvn@500 2744 for (uint li = ni; li < size; li++) {
kvn@679 2745 PointsToNode *ptn_loc = ptnode_adr(li);
kvn@500 2746 PointsToNode::NodeType ptn_loc_type = ptn_loc->node_type();
kvn@500 2747 if ( ptn_loc_type == PointsToNode::LocalVar && ptn_loc->_node != NULL &&
kvn@500 2748 ptn_loc->edge_count() == 1 && ptn_loc->edge_target(0) == ni ) {
kvn@688 2749 ptnode_adr(li)->dump(false);
duke@435 2750 }
duke@435 2751 }
kvn@500 2752 if (Verbose) {
kvn@500 2753 // Print all fields which reference this allocation
kvn@500 2754 for (uint i = 0; i < ptn->edge_count(); i++) {
kvn@500 2755 uint ei = ptn->edge_target(i);
kvn@688 2756 ptnode_adr(ei)->dump(false);
kvn@500 2757 }
kvn@500 2758 }
kvn@500 2759 tty->cr();
duke@435 2760 }
duke@435 2761 }
duke@435 2762 }
duke@435 2763 #endif

mercurial