src/share/vm/gc_implementation/g1/heapRegion.hpp

Fri, 05 Sep 2014 09:49:19 +0200

author
sjohanss
date
Fri, 05 Sep 2014 09:49:19 +0200
changeset 7118
227a9e5e4b4a
parent 7100
edb5f3b38aab
child 7131
d35872270666
permissions
-rw-r--r--

8057536: Refactor G1 to allow context specific allocations
Summary: Splitting out a g1 allocator class to simply specialized allocators which can associate each allocation with a given context.
Reviewed-by: mgerdin, brutisso

ysr@777 1 /*
drchase@6680 2 * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
stefank@2314 27
sjohanss@7118 28 #include "gc_implementation/g1/g1AllocationContext.hpp"
mgerdin@6987 29 #include "gc_implementation/g1/g1BlockOffsetTable.hpp"
stefank@2314 30 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
stefank@2314 31 #include "gc_implementation/g1/survRateGroup.hpp"
stefank@2314 32 #include "gc_implementation/shared/ageTable.hpp"
stefank@2314 33 #include "gc_implementation/shared/spaceDecorator.hpp"
stefank@2314 34 #include "memory/space.inline.hpp"
stefank@2314 35 #include "memory/watermark.hpp"
jprovino@4542 36 #include "utilities/macros.hpp"
stefank@2314 37
jprovino@4542 38 #if INCLUDE_ALL_GCS
ysr@777 39
ysr@777 40 // A HeapRegion is the smallest piece of a G1CollectedHeap that
ysr@777 41 // can be collected independently.
ysr@777 42
ysr@777 43 // NOTE: Although a HeapRegion is a Space, its
ysr@777 44 // Space::initDirtyCardClosure method must not be called.
ysr@777 45 // The problem is that the existence of this method breaks
ysr@777 46 // the independence of barrier sets from remembered sets.
ysr@777 47 // The solution is to remove this method from the definition
ysr@777 48 // of a Space.
ysr@777 49
ysr@777 50 class HeapRegionRemSet;
ysr@777 51 class HeapRegionRemSetIterator;
ysr@777 52 class HeapRegion;
tonyp@2472 53 class HeapRegionSetBase;
johnc@5548 54 class nmethod;
tonyp@2472 55
tonyp@3713 56 #define HR_FORMAT "%u:(%s)["PTR_FORMAT","PTR_FORMAT","PTR_FORMAT"]"
tonyp@2963 57 #define HR_FORMAT_PARAMS(_hr_) \
tschatzl@7091 58 (_hr_)->hrm_index(), \
tonyp@3957 59 (_hr_)->is_survivor() ? "S" : (_hr_)->is_young() ? "E" : \
tonyp@3957 60 (_hr_)->startsHumongous() ? "HS" : \
tonyp@3957 61 (_hr_)->continuesHumongous() ? "HC" : \
tonyp@3957 62 !(_hr_)->is_empty() ? "O" : "F", \
drchase@6680 63 p2i((_hr_)->bottom()), p2i((_hr_)->top()), p2i((_hr_)->end())
ysr@777 64
tschatzl@7091 65 // sentinel value for hrm_index
tschatzl@7091 66 #define G1_NO_HRM_INDEX ((uint) -1)
tonyp@3713 67
ysr@777 68 // A dirty card to oop closure for heap regions. It
ysr@777 69 // knows how to get the G1 heap and how to use the bitmap
ysr@777 70 // in the concurrent marker used by G1 to filter remembered
ysr@777 71 // sets.
ysr@777 72
mgerdin@6986 73 class HeapRegionDCTOC : public DirtyCardToOopClosure {
ysr@777 74 public:
ysr@777 75 // Specification of possible DirtyCardToOopClosure filtering.
ysr@777 76 enum FilterKind {
ysr@777 77 NoFilterKind,
ysr@777 78 IntoCSFilterKind,
ysr@777 79 OutOfRegionFilterKind
ysr@777 80 };
ysr@777 81
ysr@777 82 protected:
ysr@777 83 HeapRegion* _hr;
ysr@777 84 FilterKind _fk;
ysr@777 85 G1CollectedHeap* _g1;
ysr@777 86
ysr@777 87 // Walk the given memory region from bottom to (actual) top
ysr@777 88 // looking for objects and applying the oop closure (_cl) to
ysr@777 89 // them. The base implementation of this treats the area as
ysr@777 90 // blocks, where a block may or may not be an object. Sub-
ysr@777 91 // classes should override this to provide more accurate
ysr@777 92 // or possibly more efficient walking.
mgerdin@6986 93 void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
ysr@777 94
ysr@777 95 public:
ysr@777 96 HeapRegionDCTOC(G1CollectedHeap* g1,
coleenp@4037 97 HeapRegion* hr, ExtendedOopClosure* cl,
ysr@777 98 CardTableModRefBS::PrecisionStyle precision,
ysr@777 99 FilterKind fk);
ysr@777 100 };
ysr@777 101
ysr@777 102 // The complicating factor is that BlockOffsetTable diverged
ysr@777 103 // significantly, and we need functionality that is only in the G1 version.
ysr@777 104 // So I copied that code, which led to an alternate G1 version of
ysr@777 105 // OffsetTableContigSpace. If the two versions of BlockOffsetTable could
ysr@777 106 // be reconciled, then G1OffsetTableContigSpace could go away.
ysr@777 107
ysr@777 108 // The idea behind time stamps is the following. Doing a save_marks on
ysr@777 109 // all regions at every GC pause is time consuming (if I remember
ysr@777 110 // well, 10ms or so). So, we would like to do that only for regions
ysr@777 111 // that are GC alloc regions. To achieve this, we use time
ysr@777 112 // stamps. For every evacuation pause, G1CollectedHeap generates a
ysr@777 113 // unique time stamp (essentially a counter that gets
ysr@777 114 // incremented). Every time we want to call save_marks on a region,
ysr@777 115 // we set the saved_mark_word to top and also copy the current GC
ysr@777 116 // time stamp to the time stamp field of the space. Reading the
ysr@777 117 // saved_mark_word involves checking the time stamp of the
ysr@777 118 // region. If it is the same as the current GC time stamp, then we
ysr@777 119 // can safely read the saved_mark_word field, as it is valid. If the
ysr@777 120 // time stamp of the region is not the same as the current GC time
ysr@777 121 // stamp, then we instead read top, as the saved_mark_word field is
ysr@777 122 // invalid. Time stamps (on the regions and also on the
ysr@777 123 // G1CollectedHeap) are reset at every cleanup (we iterate over
ysr@777 124 // the regions anyway) and at the end of a Full GC. The current scheme
ysr@777 125 // that uses sequential unsigned ints will fail only if we have 4b
ysr@777 126 // evacuation pauses between two cleanups, which is _highly_ unlikely.
mgerdin@6990 127 class G1OffsetTableContigSpace: public CompactibleSpace {
ysr@777 128 friend class VMStructs;
mgerdin@6990 129 HeapWord* _top;
ysr@777 130 protected:
ysr@777 131 G1BlockOffsetArrayContigSpace _offsets;
ysr@777 132 Mutex _par_alloc_lock;
ysr@777 133 volatile unsigned _gc_time_stamp;
tonyp@2715 134 // When we need to retire an allocation region, while other threads
tonyp@2715 135 // are also concurrently trying to allocate into it, we typically
tonyp@2715 136 // allocate a dummy object at the end of the region to ensure that
tonyp@2715 137 // no more allocations can take place in it. However, sometimes we
tonyp@2715 138 // want to know where the end of the last "real" object we allocated
tonyp@2715 139 // into the region was and this is what this keeps track.
tonyp@2715 140 HeapWord* _pre_dummy_top;
ysr@777 141
ysr@777 142 public:
ysr@777 143 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
johnc@4065 144 MemRegion mr);
ysr@777 145
mgerdin@6990 146 void set_top(HeapWord* value) { _top = value; }
mgerdin@6990 147 HeapWord* top() const { return _top; }
mgerdin@6990 148
mgerdin@6990 149 protected:
tschatzl@7050 150 // Reset the G1OffsetTableContigSpace.
tschatzl@7050 151 virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
tschatzl@7050 152
mgerdin@6990 153 HeapWord** top_addr() { return &_top; }
mgerdin@6990 154 // Allocation helpers (return NULL if full).
mgerdin@6990 155 inline HeapWord* allocate_impl(size_t word_size, HeapWord* end_value);
mgerdin@6990 156 inline HeapWord* par_allocate_impl(size_t word_size, HeapWord* end_value);
mgerdin@6990 157
mgerdin@6990 158 public:
mgerdin@6990 159 void reset_after_compaction() { set_top(compaction_top()); }
mgerdin@6990 160
mgerdin@6990 161 size_t used() const { return byte_size(bottom(), top()); }
mgerdin@6990 162 size_t free() const { return byte_size(top(), end()); }
mgerdin@6990 163 bool is_free_block(const HeapWord* p) const { return p >= top(); }
mgerdin@6990 164
mgerdin@6990 165 MemRegion used_region() const { return MemRegion(bottom(), top()); }
mgerdin@6990 166
mgerdin@6990 167 void object_iterate(ObjectClosure* blk);
mgerdin@6990 168 void safe_object_iterate(ObjectClosure* blk);
mgerdin@6990 169
ysr@777 170 void set_bottom(HeapWord* value);
ysr@777 171 void set_end(HeapWord* value);
ysr@777 172
ysr@777 173 virtual HeapWord* saved_mark_word() const;
mgerdin@6988 174 void record_top_and_timestamp();
ysr@777 175 void reset_gc_time_stamp() { _gc_time_stamp = 0; }
tonyp@3957 176 unsigned get_gc_time_stamp() { return _gc_time_stamp; }
ysr@777 177
tonyp@2715 178 // See the comment above in the declaration of _pre_dummy_top for an
tonyp@2715 179 // explanation of what it is.
tonyp@2715 180 void set_pre_dummy_top(HeapWord* pre_dummy_top) {
tonyp@2715 181 assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
tonyp@2715 182 _pre_dummy_top = pre_dummy_top;
tonyp@2715 183 }
tonyp@2715 184 HeapWord* pre_dummy_top() {
tonyp@2715 185 return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
tonyp@2715 186 }
tonyp@2715 187 void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
tonyp@2715 188
tonyp@791 189 virtual void clear(bool mangle_space);
ysr@777 190
ysr@777 191 HeapWord* block_start(const void* p);
ysr@777 192 HeapWord* block_start_const(const void* p) const;
ysr@777 193
mgerdin@6990 194 void prepare_for_compaction(CompactPoint* cp);
mgerdin@6990 195
ysr@777 196 // Add offset table update.
ysr@777 197 virtual HeapWord* allocate(size_t word_size);
ysr@777 198 HeapWord* par_allocate(size_t word_size);
ysr@777 199
ysr@777 200 // MarkSweep support phase3
ysr@777 201 virtual HeapWord* initialize_threshold();
ysr@777 202 virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
ysr@777 203
ysr@777 204 virtual void print() const;
tonyp@2453 205
tonyp@2453 206 void reset_bot() {
tschatzl@7050 207 _offsets.reset_bot();
tonyp@2453 208 }
tonyp@2453 209
tonyp@2453 210 void update_bot_for_object(HeapWord* start, size_t word_size) {
tonyp@2453 211 _offsets.alloc_block(start, word_size);
tonyp@2453 212 }
tonyp@2453 213
tonyp@2453 214 void print_bot_on(outputStream* out) {
tonyp@2453 215 _offsets.print_on(out);
tonyp@2453 216 }
ysr@777 217 };
ysr@777 218
ysr@777 219 class HeapRegion: public G1OffsetTableContigSpace {
ysr@777 220 friend class VMStructs;
ysr@777 221 private:
ysr@777 222
tonyp@790 223 enum HumongousType {
tonyp@790 224 NotHumongous = 0,
tonyp@790 225 StartsHumongous,
tonyp@790 226 ContinuesHumongous
tonyp@790 227 };
tonyp@790 228
ysr@777 229 // The remembered set for this region.
ysr@777 230 // (Might want to make this "inline" later, to avoid some alloc failure
ysr@777 231 // issues.)
ysr@777 232 HeapRegionRemSet* _rem_set;
ysr@777 233
ysr@777 234 G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
ysr@777 235
ysr@777 236 protected:
tonyp@2963 237 // The index of this region in the heap region sequence.
tschatzl@7091 238 uint _hrm_index;
ysr@777 239
sjohanss@7118 240 AllocationContext_t _allocation_context;
sjohanss@7118 241
tonyp@790 242 HumongousType _humongous_type;
ysr@777 243 // For a humongous region, region in which it starts.
ysr@777 244 HeapRegion* _humongous_start_region;
ysr@777 245 // For the start region of a humongous sequence, it's original end().
ysr@777 246 HeapWord* _orig_end;
ysr@777 247
ysr@777 248 // True iff the region is in current collection_set.
ysr@777 249 bool _in_collection_set;
ysr@777 250
ysr@777 251 // True iff an attempt to evacuate an object in the region failed.
ysr@777 252 bool _evacuation_failed;
ysr@777 253
ysr@777 254 // A heap region may be a member one of a number of special subsets, each
stefank@6992 255 // represented as linked lists through the field below. Currently, there
stefank@6992 256 // is only one set:
ysr@777 257 // The collection set.
ysr@777 258 HeapRegion* _next_in_special_set;
ysr@777 259
ysr@777 260 // next region in the young "generation" region set
ysr@777 261 HeapRegion* _next_young_region;
ysr@777 262
apetrusenko@1231 263 // Next region whose cards need cleaning
apetrusenko@1231 264 HeapRegion* _next_dirty_cards_region;
apetrusenko@1231 265
tonyp@2472 266 // Fields used by the HeapRegionSetBase class and subclasses.
tonyp@2472 267 HeapRegion* _next;
jwilhelm@6422 268 HeapRegion* _prev;
tonyp@2472 269 #ifdef ASSERT
tonyp@2472 270 HeapRegionSetBase* _containing_set;
tonyp@2472 271 #endif // ASSERT
tonyp@2472 272
ysr@777 273 // For parallel heapRegion traversal.
ysr@777 274 jint _claimed;
ysr@777 275
ysr@777 276 // We use concurrent marking to determine the amount of live data
ysr@777 277 // in each heap region.
ysr@777 278 size_t _prev_marked_bytes; // Bytes known to be live via last completed marking.
ysr@777 279 size_t _next_marked_bytes; // Bytes known to be live via in-progress marking.
ysr@777 280
tonyp@3714 281 // The calculated GC efficiency of the region.
ysr@777 282 double _gc_efficiency;
ysr@777 283
ysr@777 284 enum YoungType {
ysr@777 285 NotYoung, // a region is not young
ysr@777 286 Young, // a region is young
tonyp@2963 287 Survivor // a region is young and it contains survivors
ysr@777 288 };
ysr@777 289
johnc@2021 290 volatile YoungType _young_type;
ysr@777 291 int _young_index_in_cset;
ysr@777 292 SurvRateGroup* _surv_rate_group;
ysr@777 293 int _age_index;
ysr@777 294
ysr@777 295 // The start of the unmarked area. The unmarked area extends from this
ysr@777 296 // word until the top and/or end of the region, and is the part
ysr@777 297 // of the region for which no marking was done, i.e. objects may
ysr@777 298 // have been allocated in this part since the last mark phase.
ysr@777 299 // "prev" is the top at the start of the last completed marking.
ysr@777 300 // "next" is the top at the start of the in-progress marking (if any.)
ysr@777 301 HeapWord* _prev_top_at_mark_start;
ysr@777 302 HeapWord* _next_top_at_mark_start;
ysr@777 303 // If a collection pause is in progress, this is the top at the start
ysr@777 304 // of that pause.
ysr@777 305
ysr@777 306 void init_top_at_mark_start() {
ysr@777 307 assert(_prev_marked_bytes == 0 &&
ysr@777 308 _next_marked_bytes == 0,
ysr@777 309 "Must be called after zero_marked_bytes.");
ysr@777 310 HeapWord* bot = bottom();
ysr@777 311 _prev_top_at_mark_start = bot;
ysr@777 312 _next_top_at_mark_start = bot;
ysr@777 313 }
ysr@777 314
ysr@777 315 void set_young_type(YoungType new_type) {
ysr@777 316 //assert(_young_type != new_type, "setting the same type" );
ysr@777 317 // TODO: add more assertions here
ysr@777 318 _young_type = new_type;
ysr@777 319 }
ysr@777 320
johnc@1829 321 // Cached attributes used in the collection set policy information
johnc@1829 322
johnc@1829 323 // The RSet length that was added to the total value
johnc@1829 324 // for the collection set.
johnc@1829 325 size_t _recorded_rs_length;
johnc@1829 326
johnc@1829 327 // The predicted elapsed time that was added to total value
johnc@1829 328 // for the collection set.
johnc@1829 329 double _predicted_elapsed_time_ms;
johnc@1829 330
johnc@1829 331 // The predicted number of bytes to copy that was added to
johnc@1829 332 // the total value for the collection set.
johnc@1829 333 size_t _predicted_bytes_to_copy;
johnc@1829 334
ysr@777 335 public:
tschatzl@7091 336 HeapRegion(uint hrm_index,
tonyp@2963 337 G1BlockOffsetSharedArray* sharedOffsetArray,
sjohanss@7118 338 MemRegion mr,
sjohanss@7118 339 AllocationContext_t context = AllocationContext::system());
ysr@777 340
tschatzl@7050 341 // Initializing the HeapRegion not only resets the data structure, but also
tschatzl@7050 342 // resets the BOT for that heap region.
tschatzl@7050 343 // The default values for clear_space means that we will do the clearing if
tschatzl@7050 344 // there's clearing to be done ourselves. We also always mangle the space.
tschatzl@7050 345 virtual void initialize(MemRegion mr, bool clear_space = false, bool mangle_space = SpaceDecorator::Mangle);
tschatzl@7050 346
johnc@3182 347 static int LogOfHRGrainBytes;
johnc@3182 348 static int LogOfHRGrainWords;
johnc@3182 349
johnc@3182 350 static size_t GrainBytes;
johnc@3182 351 static size_t GrainWords;
johnc@3182 352 static size_t CardsPerRegion;
tonyp@1377 353
tonyp@3176 354 static size_t align_up_to_region_byte_size(size_t sz) {
tonyp@3176 355 return (sz + (size_t) GrainBytes - 1) &
tonyp@3176 356 ~((1 << (size_t) LogOfHRGrainBytes) - 1);
tonyp@3176 357 }
tonyp@3176 358
tschatzl@5701 359 static size_t max_region_size();
tschatzl@5701 360
tonyp@1377 361 // It sets up the heap region size (GrainBytes / GrainWords), as
tonyp@1377 362 // well as other related fields that are based on the heap region
tonyp@1377 363 // size (LogOfHRGrainBytes / LogOfHRGrainWords /
tonyp@1377 364 // CardsPerRegion). All those fields are considered constant
tonyp@1377 365 // throughout the JVM's execution, therefore they should only be set
tonyp@1377 366 // up once during initialization time.
brutisso@5646 367 static void setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size);
ysr@777 368
tonyp@790 369 enum ClaimValues {
johnc@3296 370 InitialClaimValue = 0,
johnc@3296 371 FinalCountClaimValue = 1,
johnc@3296 372 NoteEndClaimValue = 2,
johnc@3296 373 ScrubRemSetClaimValue = 3,
johnc@3296 374 ParVerifyClaimValue = 4,
johnc@3296 375 RebuildRSClaimValue = 5,
tonyp@3691 376 ParEvacFailureClaimValue = 6,
tonyp@3691 377 AggregateCountClaimValue = 7,
johnc@5548 378 VerifyCountClaimValue = 8,
johnc@5548 379 ParMarkRootClaimValue = 9
tonyp@790 380 };
tonyp@790 381
mgerdin@6990 382 // All allocated blocks are occupied by objects in a HeapRegion
mgerdin@6990 383 bool block_is_obj(const HeapWord* p) const;
mgerdin@6990 384
mgerdin@6990 385 // Returns the object size for all valid block starts
mgerdin@6990 386 // and the amount of unallocated words if called on top()
mgerdin@6990 387 size_t block_size(const HeapWord* p) const;
mgerdin@6990 388
mgerdin@6990 389 inline HeapWord* par_allocate_no_bot_updates(size_t word_size);
mgerdin@6990 390 inline HeapWord* allocate_no_bot_updates(size_t word_size);
tonyp@2454 391
tschatzl@7091 392 // If this region is a member of a HeapRegionManager, the index in that
ysr@777 393 // sequence, otherwise -1.
tschatzl@7091 394 uint hrm_index() const { return _hrm_index; }
ysr@777 395
ysr@777 396 // The number of bytes marked live in the region in the last marking phase.
ysr@777 397 size_t marked_bytes() { return _prev_marked_bytes; }
tonyp@2717 398 size_t live_bytes() {
tonyp@2717 399 return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
tonyp@2717 400 }
tonyp@2717 401
ysr@777 402 // The number of bytes counted in the next marking.
ysr@777 403 size_t next_marked_bytes() { return _next_marked_bytes; }
ysr@777 404 // The number of bytes live wrt the next marking.
ysr@777 405 size_t next_live_bytes() {
tonyp@2717 406 return
tonyp@2717 407 (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
ysr@777 408 }
ysr@777 409
ysr@777 410 // A lower bound on the amount of garbage bytes in the region.
ysr@777 411 size_t garbage_bytes() {
ysr@777 412 size_t used_at_mark_start_bytes =
ysr@777 413 (prev_top_at_mark_start() - bottom()) * HeapWordSize;
ysr@777 414 assert(used_at_mark_start_bytes >= marked_bytes(),
ysr@777 415 "Can't mark more than we have.");
ysr@777 416 return used_at_mark_start_bytes - marked_bytes();
ysr@777 417 }
ysr@777 418
tonyp@3539 419 // Return the amount of bytes we'll reclaim if we collect this
tonyp@3539 420 // region. This includes not only the known garbage bytes in the
tonyp@3539 421 // region but also any unallocated space in it, i.e., [top, end),
tonyp@3539 422 // since it will also be reclaimed if we collect the region.
tonyp@3539 423 size_t reclaimable_bytes() {
tonyp@3539 424 size_t known_live_bytes = live_bytes();
tonyp@3539 425 assert(known_live_bytes <= capacity(), "sanity");
tonyp@3539 426 return capacity() - known_live_bytes;
tonyp@3539 427 }
tonyp@3539 428
ysr@777 429 // An upper bound on the number of live bytes in the region.
ysr@777 430 size_t max_live_bytes() { return used() - garbage_bytes(); }
ysr@777 431
ysr@777 432 void add_to_marked_bytes(size_t incr_bytes) {
ysr@777 433 _next_marked_bytes = _next_marked_bytes + incr_bytes;
johnc@3292 434 assert(_next_marked_bytes <= used(), "invariant" );
ysr@777 435 }
ysr@777 436
ysr@777 437 void zero_marked_bytes() {
ysr@777 438 _prev_marked_bytes = _next_marked_bytes = 0;
ysr@777 439 }
ysr@777 440
tonyp@790 441 bool isHumongous() const { return _humongous_type != NotHumongous; }
tonyp@790 442 bool startsHumongous() const { return _humongous_type == StartsHumongous; }
tonyp@790 443 bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
ysr@777 444 // For a humongous region, region in which it starts.
ysr@777 445 HeapRegion* humongous_start_region() const {
ysr@777 446 return _humongous_start_region;
ysr@777 447 }
ysr@777 448
tonyp@3957 449 // Return the number of distinct regions that are covered by this region:
tonyp@3957 450 // 1 if the region is not humongous, >= 1 if the region is humongous.
tonyp@3957 451 uint region_num() const {
tonyp@3957 452 if (!isHumongous()) {
tonyp@3957 453 return 1U;
tonyp@3957 454 } else {
tonyp@3957 455 assert(startsHumongous(), "doesn't make sense on HC regions");
tonyp@3957 456 assert(capacity() % HeapRegion::GrainBytes == 0, "sanity");
tonyp@3957 457 return (uint) (capacity() >> HeapRegion::LogOfHRGrainBytes);
tonyp@3957 458 }
tonyp@3957 459 }
tonyp@3957 460
tonyp@3957 461 // Return the index + 1 of the last HC regions that's associated
tonyp@3957 462 // with this HS region.
tonyp@3957 463 uint last_hc_index() const {
tonyp@3957 464 assert(startsHumongous(), "don't call this otherwise");
tschatzl@7091 465 return hrm_index() + region_num();
tonyp@3957 466 }
tonyp@3957 467
brutisso@3216 468 // Same as Space::is_in_reserved, but will use the original size of the region.
brutisso@3216 469 // The original size is different only for start humongous regions. They get
brutisso@3216 470 // their _end set up to be the end of the last continues region of the
brutisso@3216 471 // corresponding humongous object.
brutisso@3216 472 bool is_in_reserved_raw(const void* p) const {
brutisso@3216 473 return _bottom <= p && p < _orig_end;
brutisso@3216 474 }
brutisso@3216 475
tonyp@2453 476 // Makes the current region be a "starts humongous" region, i.e.,
tonyp@2453 477 // the first region in a series of one or more contiguous regions
tonyp@2453 478 // that will contain a single "humongous" object. The two parameters
tonyp@2453 479 // are as follows:
tonyp@2453 480 //
tonyp@2453 481 // new_top : The new value of the top field of this region which
tonyp@2453 482 // points to the end of the humongous object that's being
tonyp@2453 483 // allocated. If there is more than one region in the series, top
tonyp@2453 484 // will lie beyond this region's original end field and on the last
tonyp@2453 485 // region in the series.
tonyp@2453 486 //
tonyp@2453 487 // new_end : The new value of the end field of this region which
tonyp@2453 488 // points to the end of the last region in the series. If there is
tonyp@2453 489 // one region in the series (namely: this one) end will be the same
tonyp@2453 490 // as the original end of this region.
tonyp@2453 491 //
tonyp@2453 492 // Updating top and end as described above makes this region look as
tonyp@2453 493 // if it spans the entire space taken up by all the regions in the
tonyp@2453 494 // series and an single allocation moved its top to new_top. This
tonyp@2453 495 // ensures that the space (capacity / allocated) taken up by all
tonyp@2453 496 // humongous regions can be calculated by just looking at the
tonyp@2453 497 // "starts humongous" regions and by ignoring the "continues
tonyp@2453 498 // humongous" regions.
tonyp@2453 499 void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);
ysr@777 500
tonyp@2453 501 // Makes the current region be a "continues humongous'
tonyp@2453 502 // region. first_hr is the "start humongous" region of the series
tonyp@2453 503 // which this region will be part of.
tonyp@2453 504 void set_continuesHumongous(HeapRegion* first_hr);
ysr@777 505
tonyp@2472 506 // Unsets the humongous-related fields on the region.
tonyp@2472 507 void set_notHumongous();
tonyp@2472 508
ysr@777 509 // If the region has a remembered set, return a pointer to it.
ysr@777 510 HeapRegionRemSet* rem_set() const {
ysr@777 511 return _rem_set;
ysr@777 512 }
ysr@777 513
ysr@777 514 // True iff the region is in current collection_set.
ysr@777 515 bool in_collection_set() const {
ysr@777 516 return _in_collection_set;
ysr@777 517 }
ysr@777 518 void set_in_collection_set(bool b) {
ysr@777 519 _in_collection_set = b;
ysr@777 520 }
ysr@777 521 HeapRegion* next_in_collection_set() {
ysr@777 522 assert(in_collection_set(), "should only invoke on member of CS.");
ysr@777 523 assert(_next_in_special_set == NULL ||
ysr@777 524 _next_in_special_set->in_collection_set(),
ysr@777 525 "Malformed CS.");
ysr@777 526 return _next_in_special_set;
ysr@777 527 }
ysr@777 528 void set_next_in_collection_set(HeapRegion* r) {
ysr@777 529 assert(in_collection_set(), "should only invoke on member of CS.");
ysr@777 530 assert(r == NULL || r->in_collection_set(), "Malformed CS.");
ysr@777 531 _next_in_special_set = r;
ysr@777 532 }
ysr@777 533
sjohanss@7118 534 void set_allocation_context(AllocationContext_t context) {
sjohanss@7118 535 _allocation_context = context;
sjohanss@7118 536 }
sjohanss@7118 537
sjohanss@7118 538 AllocationContext_t allocation_context() const {
sjohanss@7118 539 return _allocation_context;
sjohanss@7118 540 }
sjohanss@7118 541
tonyp@2472 542 // Methods used by the HeapRegionSetBase class and subclasses.
tonyp@2472 543
jwilhelm@6422 544 // Getter and setter for the next and prev fields used to link regions into
tonyp@2472 545 // linked lists.
tonyp@2472 546 HeapRegion* next() { return _next; }
jwilhelm@6422 547 HeapRegion* prev() { return _prev; }
tonyp@2472 548
tonyp@2472 549 void set_next(HeapRegion* next) { _next = next; }
jwilhelm@6422 550 void set_prev(HeapRegion* prev) { _prev = prev; }
tonyp@2472 551
tonyp@2472 552 // Every region added to a set is tagged with a reference to that
tonyp@2472 553 // set. This is used for doing consistency checking to make sure that
tonyp@2472 554 // the contents of a set are as they should be and it's only
tonyp@2472 555 // available in non-product builds.
tonyp@2472 556 #ifdef ASSERT
tonyp@2472 557 void set_containing_set(HeapRegionSetBase* containing_set) {
tonyp@2472 558 assert((containing_set == NULL && _containing_set != NULL) ||
tonyp@2472 559 (containing_set != NULL && _containing_set == NULL),
tonyp@2472 560 err_msg("containing_set: "PTR_FORMAT" "
tonyp@2472 561 "_containing_set: "PTR_FORMAT,
drchase@6680 562 p2i(containing_set), p2i(_containing_set)));
tonyp@2472 563
tonyp@2472 564 _containing_set = containing_set;
tonyp@2643 565 }
tonyp@2472 566
tonyp@2472 567 HeapRegionSetBase* containing_set() { return _containing_set; }
tonyp@2472 568 #else // ASSERT
tonyp@2472 569 void set_containing_set(HeapRegionSetBase* containing_set) { }
tonyp@2472 570
tonyp@2643 571 // containing_set() is only used in asserts so there's no reason
tonyp@2472 572 // to provide a dummy version of it.
tonyp@2472 573 #endif // ASSERT
tonyp@2472 574
ysr@777 575 HeapRegion* get_next_young_region() { return _next_young_region; }
ysr@777 576 void set_next_young_region(HeapRegion* hr) {
ysr@777 577 _next_young_region = hr;
ysr@777 578 }
ysr@777 579
apetrusenko@1231 580 HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
apetrusenko@1231 581 HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
apetrusenko@1231 582 void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
apetrusenko@1231 583 bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
apetrusenko@1231 584
tschatzl@7100 585 HeapWord* orig_end() const { return _orig_end; }
tonyp@2963 586
ysr@777 587 // Reset HR stuff to default values.
tschatzl@6404 588 void hr_clear(bool par, bool clear_space, bool locked = false);
tonyp@2849 589 void par_clear();
ysr@777 590
ysr@777 591 // Get the start of the unmarked area in this region.
ysr@777 592 HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
ysr@777 593 HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
ysr@777 594
ysr@777 595 // Note the start or end of marking. This tells the heap region
ysr@777 596 // that the collector is about to start or has finished (concurrently)
ysr@777 597 // marking the heap.
ysr@777 598
tonyp@3416 599 // Notify the region that concurrent marking is starting. Initialize
tonyp@3416 600 // all fields related to the next marking info.
tonyp@3416 601 inline void note_start_of_marking();
ysr@777 602
tonyp@3416 603 // Notify the region that concurrent marking has finished. Copy the
tonyp@3416 604 // (now finalized) next marking info fields into the prev marking
tonyp@3416 605 // info fields.
tonyp@3416 606 inline void note_end_of_marking();
ysr@777 607
tonyp@3416 608 // Notify the region that it will be used as to-space during a GC
tonyp@3416 609 // and we are about to start copying objects into it.
tonyp@3416 610 inline void note_start_of_copying(bool during_initial_mark);
ysr@777 611
tonyp@3416 612 // Notify the region that it ceases being to-space during a GC and
tonyp@3416 613 // we will not copy objects into it any more.
tonyp@3416 614 inline void note_end_of_copying(bool during_initial_mark);
tonyp@3416 615
tonyp@3416 616 // Notify the region that we are about to start processing
tonyp@3416 617 // self-forwarded objects during evac failure handling.
tonyp@3416 618 void note_self_forwarding_removal_start(bool during_initial_mark,
tonyp@3416 619 bool during_conc_mark);
tonyp@3416 620
tonyp@3416 621 // Notify the region that we have finished processing self-forwarded
tonyp@3416 622 // objects during evac failure handling.
tonyp@3416 623 void note_self_forwarding_removal_end(bool during_initial_mark,
tonyp@3416 624 bool during_conc_mark,
tonyp@3416 625 size_t marked_bytes);
ysr@777 626
ysr@777 627 // Returns "false" iff no object in the region was allocated when the
ysr@777 628 // last mark phase ended.
ysr@777 629 bool is_marked() { return _prev_top_at_mark_start != bottom(); }
ysr@777 630
ysr@777 631 void reset_during_compaction() {
tonyp@3957 632 assert(isHumongous() && startsHumongous(),
tonyp@3957 633 "should only be called for starts humongous regions");
ysr@777 634
ysr@777 635 zero_marked_bytes();
ysr@777 636 init_top_at_mark_start();
ysr@777 637 }
ysr@777 638
ysr@777 639 void calc_gc_efficiency(void);
ysr@777 640 double gc_efficiency() { return _gc_efficiency;}
ysr@777 641
ysr@777 642 bool is_young() const { return _young_type != NotYoung; }
ysr@777 643 bool is_survivor() const { return _young_type == Survivor; }
ysr@777 644
ysr@777 645 int young_index_in_cset() const { return _young_index_in_cset; }
ysr@777 646 void set_young_index_in_cset(int index) {
ysr@777 647 assert( (index == -1) || is_young(), "pre-condition" );
ysr@777 648 _young_index_in_cset = index;
ysr@777 649 }
ysr@777 650
ysr@777 651 int age_in_surv_rate_group() {
ysr@777 652 assert( _surv_rate_group != NULL, "pre-condition" );
ysr@777 653 assert( _age_index > -1, "pre-condition" );
ysr@777 654 return _surv_rate_group->age_in_group(_age_index);
ysr@777 655 }
ysr@777 656
ysr@777 657 void record_surv_words_in_group(size_t words_survived) {
ysr@777 658 assert( _surv_rate_group != NULL, "pre-condition" );
ysr@777 659 assert( _age_index > -1, "pre-condition" );
ysr@777 660 int age_in_group = age_in_surv_rate_group();
ysr@777 661 _surv_rate_group->record_surviving_words(age_in_group, words_survived);
ysr@777 662 }
ysr@777 663
ysr@777 664 int age_in_surv_rate_group_cond() {
ysr@777 665 if (_surv_rate_group != NULL)
ysr@777 666 return age_in_surv_rate_group();
ysr@777 667 else
ysr@777 668 return -1;
ysr@777 669 }
ysr@777 670
ysr@777 671 SurvRateGroup* surv_rate_group() {
ysr@777 672 return _surv_rate_group;
ysr@777 673 }
ysr@777 674
ysr@777 675 void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
ysr@777 676 assert( surv_rate_group != NULL, "pre-condition" );
ysr@777 677 assert( _surv_rate_group == NULL, "pre-condition" );
ysr@777 678 assert( is_young(), "pre-condition" );
ysr@777 679
ysr@777 680 _surv_rate_group = surv_rate_group;
ysr@777 681 _age_index = surv_rate_group->next_age_index();
ysr@777 682 }
ysr@777 683
ysr@777 684 void uninstall_surv_rate_group() {
ysr@777 685 if (_surv_rate_group != NULL) {
ysr@777 686 assert( _age_index > -1, "pre-condition" );
ysr@777 687 assert( is_young(), "pre-condition" );
ysr@777 688
ysr@777 689 _surv_rate_group = NULL;
ysr@777 690 _age_index = -1;
ysr@777 691 } else {
ysr@777 692 assert( _age_index == -1, "pre-condition" );
ysr@777 693 }
ysr@777 694 }
ysr@777 695
ysr@777 696 void set_young() { set_young_type(Young); }
ysr@777 697
ysr@777 698 void set_survivor() { set_young_type(Survivor); }
ysr@777 699
ysr@777 700 void set_not_young() { set_young_type(NotYoung); }
ysr@777 701
ysr@777 702 // Determine if an object has been allocated since the last
ysr@777 703 // mark performed by the collector. This returns true iff the object
ysr@777 704 // is within the unmarked area of the region.
ysr@777 705 bool obj_allocated_since_prev_marking(oop obj) const {
ysr@777 706 return (HeapWord *) obj >= prev_top_at_mark_start();
ysr@777 707 }
ysr@777 708 bool obj_allocated_since_next_marking(oop obj) const {
ysr@777 709 return (HeapWord *) obj >= next_top_at_mark_start();
ysr@777 710 }
ysr@777 711
ysr@777 712 // For parallel heapRegion traversal.
ysr@777 713 bool claimHeapRegion(int claimValue);
ysr@777 714 jint claim_value() { return _claimed; }
ysr@777 715 // Use this carefully: only when you're sure no one is claiming...
ysr@777 716 void set_claim_value(int claimValue) { _claimed = claimValue; }
ysr@777 717
ysr@777 718 // Returns the "evacuation_failed" property of the region.
ysr@777 719 bool evacuation_failed() { return _evacuation_failed; }
ysr@777 720
ysr@777 721 // Sets the "evacuation_failed" property of the region.
ysr@777 722 void set_evacuation_failed(bool b) {
ysr@777 723 _evacuation_failed = b;
ysr@777 724
ysr@777 725 if (b) {
ysr@777 726 _next_marked_bytes = 0;
ysr@777 727 }
ysr@777 728 }
ysr@777 729
ysr@777 730 // Requires that "mr" be entirely within the region.
ysr@777 731 // Apply "cl->do_object" to all objects that intersect with "mr".
ysr@777 732 // If the iteration encounters an unparseable portion of the region,
ysr@777 733 // or if "cl->abort()" is true after a closure application,
ysr@777 734 // terminate the iteration and return the address of the start of the
ysr@777 735 // subregion that isn't done. (The two can be distinguished by querying
ysr@777 736 // "cl->abort()".) Return of "NULL" indicates that the iteration
ysr@777 737 // completed.
ysr@777 738 HeapWord*
ysr@777 739 object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
ysr@777 740
tonyp@2849 741 // filter_young: if true and the region is a young region then we
tonyp@2849 742 // skip the iteration.
tonyp@2849 743 // card_ptr: if not NULL, and we decide that the card is not young
tonyp@2849 744 // and we iterate over it, we'll clean the card before we start the
tonyp@2849 745 // iteration.
ysr@777 746 HeapWord*
ysr@777 747 oops_on_card_seq_iterate_careful(MemRegion mr,
johnc@2021 748 FilterOutOfRegionClosure* cl,
tonyp@2849 749 bool filter_young,
tonyp@2849 750 jbyte* card_ptr);
ysr@777 751
ysr@777 752 // A version of block start that is guaranteed to find *some* block
ysr@777 753 // boundary at or before "p", but does not object iteration, and may
ysr@777 754 // therefore be used safely when the heap is unparseable.
ysr@777 755 HeapWord* block_start_careful(const void* p) const {
ysr@777 756 return _offsets.block_start_careful(p);
ysr@777 757 }
ysr@777 758
ysr@777 759 // Requires that "addr" is within the region. Returns the start of the
ysr@777 760 // first ("careful") block that starts at or after "addr", or else the
ysr@777 761 // "end" of the region if there is no such block.
ysr@777 762 HeapWord* next_block_start_careful(HeapWord* addr);
ysr@777 763
johnc@1829 764 size_t recorded_rs_length() const { return _recorded_rs_length; }
johnc@1829 765 double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
johnc@1829 766 size_t predicted_bytes_to_copy() const { return _predicted_bytes_to_copy; }
johnc@1829 767
johnc@1829 768 void set_recorded_rs_length(size_t rs_length) {
johnc@1829 769 _recorded_rs_length = rs_length;
johnc@1829 770 }
johnc@1829 771
johnc@1829 772 void set_predicted_elapsed_time_ms(double ms) {
johnc@1829 773 _predicted_elapsed_time_ms = ms;
johnc@1829 774 }
johnc@1829 775
johnc@1829 776 void set_predicted_bytes_to_copy(size_t bytes) {
johnc@1829 777 _predicted_bytes_to_copy = bytes;
johnc@1829 778 }
johnc@1829 779
tonyp@3957 780 virtual CompactibleSpace* next_compaction_space() const;
ysr@777 781
ysr@777 782 virtual void reset_after_compaction();
ysr@777 783
johnc@5548 784 // Routines for managing a list of code roots (attached to the
johnc@5548 785 // this region's RSet) that point into this heap region.
johnc@5548 786 void add_strong_code_root(nmethod* nm);
johnc@5548 787 void remove_strong_code_root(nmethod* nm);
johnc@5548 788
johnc@5548 789 // During a collection, migrate the successfully evacuated
johnc@5548 790 // strong code roots that referenced into this region to the
johnc@5548 791 // new regions that they now point into. Unsuccessfully
johnc@5548 792 // evacuated code roots are not migrated.
johnc@5548 793 void migrate_strong_code_roots();
johnc@5548 794
johnc@5548 795 // Applies blk->do_code_blob() to each of the entries in
johnc@5548 796 // the strong code roots list for this region
johnc@5548 797 void strong_code_roots_do(CodeBlobClosure* blk) const;
johnc@5548 798
johnc@5548 799 // Verify that the entries on the strong code root list for this
johnc@5548 800 // region are live and include at least one pointer into this region.
johnc@5548 801 void verify_strong_code_roots(VerifyOption vo, bool* failures) const;
johnc@5548 802
ysr@777 803 void print() const;
ysr@777 804 void print_on(outputStream* st) const;
ysr@777 805
johnc@2969 806 // vo == UsePrevMarking -> use "prev" marking information,
johnc@2969 807 // vo == UseNextMarking -> use "next" marking information
johnc@2969 808 // vo == UseMarkWord -> use the mark word in the object header
johnc@2969 809 //
tonyp@1246 810 // NOTE: Only the "prev" marking information is guaranteed to be
tonyp@1246 811 // consistent most of the time, so most calls to this should use
johnc@2969 812 // vo == UsePrevMarking.
johnc@2969 813 // Currently, there is only one case where this is called with
johnc@2969 814 // vo == UseNextMarking, which is to verify the "next" marking
johnc@2969 815 // information at the end of remark.
johnc@2969 816 // Currently there is only one place where this is called with
johnc@2969 817 // vo == UseMarkWord, which is to verify the marking during a
johnc@2969 818 // full GC.
brutisso@3711 819 void verify(VerifyOption vo, bool *failures) const;
tonyp@1246 820
tonyp@1246 821 // Override; it uses the "prev" marking information
brutisso@3711 822 virtual void verify() const;
ysr@777 823 };
ysr@777 824
ysr@777 825 // HeapRegionClosure is used for iterating over regions.
ysr@777 826 // Terminates the iteration when the "doHeapRegion" method returns "true".
ysr@777 827 class HeapRegionClosure : public StackObj {
tschatzl@7091 828 friend class HeapRegionManager;
ysr@777 829 friend class G1CollectedHeap;
ysr@777 830
ysr@777 831 bool _complete;
ysr@777 832 void incomplete() { _complete = false; }
ysr@777 833
ysr@777 834 public:
ysr@777 835 HeapRegionClosure(): _complete(true) {}
ysr@777 836
ysr@777 837 // Typically called on each region until it returns true.
ysr@777 838 virtual bool doHeapRegion(HeapRegion* r) = 0;
ysr@777 839
ysr@777 840 // True after iteration if the closure was applied to all heap regions
ysr@777 841 // and returned "false" in all cases.
ysr@777 842 bool complete() { return _complete; }
ysr@777 843 };
ysr@777 844
jprovino@4542 845 #endif // INCLUDE_ALL_GCS
stefank@2314 846
stefank@2314 847 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP

mercurial