src/share/vm/gc_implementation/g1/heapRegion.hpp

Wed, 05 Oct 2011 08:44:10 -0700

author
johnc
date
Wed, 05 Oct 2011 08:44:10 -0700
changeset 3182
65a8ff39a6da
parent 3176
8229bd737950
child 3216
5e5d4821bf07
permissions
-rw-r--r--

7095194: G1: HeapRegion::GrainBytes, GrainWords, and CardsPerRegion should be size_t
Summary: Declare GrainBytes, GrainWords, and CardsPerRegion as size_t.
Reviewed-by: jcoomes, tonyp, jmasa

ysr@777 1 /*
tonyp@2453 2 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
stefank@2314 29 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
stefank@2314 30 #include "gc_implementation/g1/survRateGroup.hpp"
stefank@2314 31 #include "gc_implementation/shared/ageTable.hpp"
stefank@2314 32 #include "gc_implementation/shared/spaceDecorator.hpp"
stefank@2314 33 #include "memory/space.inline.hpp"
stefank@2314 34 #include "memory/watermark.hpp"
stefank@2314 35
ysr@777 36 #ifndef SERIALGC
ysr@777 37
ysr@777 38 // A HeapRegion is the smallest piece of a G1CollectedHeap that
ysr@777 39 // can be collected independently.
ysr@777 40
ysr@777 41 // NOTE: Although a HeapRegion is a Space, its
ysr@777 42 // Space::initDirtyCardClosure method must not be called.
ysr@777 43 // The problem is that the existence of this method breaks
ysr@777 44 // the independence of barrier sets from remembered sets.
ysr@777 45 // The solution is to remove this method from the definition
ysr@777 46 // of a Space.
ysr@777 47
ysr@777 48 class CompactibleSpace;
ysr@777 49 class ContiguousSpace;
ysr@777 50 class HeapRegionRemSet;
ysr@777 51 class HeapRegionRemSetIterator;
ysr@777 52 class HeapRegion;
tonyp@2472 53 class HeapRegionSetBase;
tonyp@2472 54
tonyp@2963 55 #define HR_FORMAT SIZE_FORMAT":(%s)["PTR_FORMAT","PTR_FORMAT","PTR_FORMAT"]"
tonyp@2963 56 #define HR_FORMAT_PARAMS(_hr_) \
tonyp@2963 57 (_hr_)->hrs_index(), \
tonyp@2963 58 (_hr_)->is_survivor() ? "S" : (_hr_)->is_young() ? "E" : "-", \
tonyp@2963 59 (_hr_)->bottom(), (_hr_)->top(), (_hr_)->end()
ysr@777 60
ysr@777 61 // A dirty card to oop closure for heap regions. It
ysr@777 62 // knows how to get the G1 heap and how to use the bitmap
ysr@777 63 // in the concurrent marker used by G1 to filter remembered
ysr@777 64 // sets.
ysr@777 65
ysr@777 66 class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
ysr@777 67 public:
ysr@777 68 // Specification of possible DirtyCardToOopClosure filtering.
ysr@777 69 enum FilterKind {
ysr@777 70 NoFilterKind,
ysr@777 71 IntoCSFilterKind,
ysr@777 72 OutOfRegionFilterKind
ysr@777 73 };
ysr@777 74
ysr@777 75 protected:
ysr@777 76 HeapRegion* _hr;
ysr@777 77 FilterKind _fk;
ysr@777 78 G1CollectedHeap* _g1;
ysr@777 79
ysr@777 80 void walk_mem_region_with_cl(MemRegion mr,
ysr@777 81 HeapWord* bottom, HeapWord* top,
ysr@777 82 OopClosure* cl);
ysr@777 83
ysr@777 84 // We don't specialize this for FilteringClosure; filtering is handled by
ysr@777 85 // the "FilterKind" mechanism. But we provide this to avoid a compiler
ysr@777 86 // warning.
ysr@777 87 void walk_mem_region_with_cl(MemRegion mr,
ysr@777 88 HeapWord* bottom, HeapWord* top,
ysr@777 89 FilteringClosure* cl) {
ysr@777 90 HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
ysr@777 91 (OopClosure*)cl);
ysr@777 92 }
ysr@777 93
ysr@777 94 // Get the actual top of the area on which the closure will
ysr@777 95 // operate, given where the top is assumed to be (the end of the
ysr@777 96 // memory region passed to do_MemRegion) and where the object
ysr@777 97 // at the top is assumed to start. For example, an object may
ysr@777 98 // start at the top but actually extend past the assumed top,
ysr@777 99 // in which case the top becomes the end of the object.
ysr@777 100 HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
ysr@777 101 return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
ysr@777 102 }
ysr@777 103
ysr@777 104 // Walk the given memory region from bottom to (actual) top
ysr@777 105 // looking for objects and applying the oop closure (_cl) to
ysr@777 106 // them. The base implementation of this treats the area as
ysr@777 107 // blocks, where a block may or may not be an object. Sub-
ysr@777 108 // classes should override this to provide more accurate
ysr@777 109 // or possibly more efficient walking.
ysr@777 110 void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
ysr@777 111 Filtering_DCTOC::walk_mem_region(mr, bottom, top);
ysr@777 112 }
ysr@777 113
ysr@777 114 public:
ysr@777 115 HeapRegionDCTOC(G1CollectedHeap* g1,
ysr@777 116 HeapRegion* hr, OopClosure* cl,
ysr@777 117 CardTableModRefBS::PrecisionStyle precision,
ysr@777 118 FilterKind fk);
ysr@777 119 };
ysr@777 120
ysr@777 121 // The complicating factor is that BlockOffsetTable diverged
ysr@777 122 // significantly, and we need functionality that is only in the G1 version.
ysr@777 123 // So I copied that code, which led to an alternate G1 version of
ysr@777 124 // OffsetTableContigSpace. If the two versions of BlockOffsetTable could
ysr@777 125 // be reconciled, then G1OffsetTableContigSpace could go away.
ysr@777 126
ysr@777 127 // The idea behind time stamps is the following. Doing a save_marks on
ysr@777 128 // all regions at every GC pause is time consuming (if I remember
ysr@777 129 // well, 10ms or so). So, we would like to do that only for regions
ysr@777 130 // that are GC alloc regions. To achieve this, we use time
ysr@777 131 // stamps. For every evacuation pause, G1CollectedHeap generates a
ysr@777 132 // unique time stamp (essentially a counter that gets
ysr@777 133 // incremented). Every time we want to call save_marks on a region,
ysr@777 134 // we set the saved_mark_word to top and also copy the current GC
ysr@777 135 // time stamp to the time stamp field of the space. Reading the
ysr@777 136 // saved_mark_word involves checking the time stamp of the
ysr@777 137 // region. If it is the same as the current GC time stamp, then we
ysr@777 138 // can safely read the saved_mark_word field, as it is valid. If the
ysr@777 139 // time stamp of the region is not the same as the current GC time
ysr@777 140 // stamp, then we instead read top, as the saved_mark_word field is
ysr@777 141 // invalid. Time stamps (on the regions and also on the
ysr@777 142 // G1CollectedHeap) are reset at every cleanup (we iterate over
ysr@777 143 // the regions anyway) and at the end of a Full GC. The current scheme
ysr@777 144 // that uses sequential unsigned ints will fail only if we have 4b
ysr@777 145 // evacuation pauses between two cleanups, which is _highly_ unlikely.
ysr@777 146
ysr@777 147 class G1OffsetTableContigSpace: public ContiguousSpace {
ysr@777 148 friend class VMStructs;
ysr@777 149 protected:
ysr@777 150 G1BlockOffsetArrayContigSpace _offsets;
ysr@777 151 Mutex _par_alloc_lock;
ysr@777 152 volatile unsigned _gc_time_stamp;
tonyp@2715 153 // When we need to retire an allocation region, while other threads
tonyp@2715 154 // are also concurrently trying to allocate into it, we typically
tonyp@2715 155 // allocate a dummy object at the end of the region to ensure that
tonyp@2715 156 // no more allocations can take place in it. However, sometimes we
tonyp@2715 157 // want to know where the end of the last "real" object we allocated
tonyp@2715 158 // into the region was and this is what this keeps track.
tonyp@2715 159 HeapWord* _pre_dummy_top;
ysr@777 160
ysr@777 161 public:
ysr@777 162 // Constructor. If "is_zeroed" is true, the MemRegion "mr" may be
ysr@777 163 // assumed to contain zeros.
ysr@777 164 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
ysr@777 165 MemRegion mr, bool is_zeroed = false);
ysr@777 166
ysr@777 167 void set_bottom(HeapWord* value);
ysr@777 168 void set_end(HeapWord* value);
ysr@777 169
ysr@777 170 virtual HeapWord* saved_mark_word() const;
ysr@777 171 virtual void set_saved_mark();
ysr@777 172 void reset_gc_time_stamp() { _gc_time_stamp = 0; }
ysr@777 173
tonyp@2715 174 // See the comment above in the declaration of _pre_dummy_top for an
tonyp@2715 175 // explanation of what it is.
tonyp@2715 176 void set_pre_dummy_top(HeapWord* pre_dummy_top) {
tonyp@2715 177 assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
tonyp@2715 178 _pre_dummy_top = pre_dummy_top;
tonyp@2715 179 }
tonyp@2715 180 HeapWord* pre_dummy_top() {
tonyp@2715 181 return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
tonyp@2715 182 }
tonyp@2715 183 void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
tonyp@2715 184
tonyp@791 185 virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
tonyp@791 186 virtual void clear(bool mangle_space);
ysr@777 187
ysr@777 188 HeapWord* block_start(const void* p);
ysr@777 189 HeapWord* block_start_const(const void* p) const;
ysr@777 190
ysr@777 191 // Add offset table update.
ysr@777 192 virtual HeapWord* allocate(size_t word_size);
ysr@777 193 HeapWord* par_allocate(size_t word_size);
ysr@777 194
ysr@777 195 // MarkSweep support phase3
ysr@777 196 virtual HeapWord* initialize_threshold();
ysr@777 197 virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
ysr@777 198
ysr@777 199 virtual void print() const;
tonyp@2453 200
tonyp@2453 201 void reset_bot() {
tonyp@2453 202 _offsets.zero_bottom_entry();
tonyp@2453 203 _offsets.initialize_threshold();
tonyp@2453 204 }
tonyp@2453 205
tonyp@2453 206 void update_bot_for_object(HeapWord* start, size_t word_size) {
tonyp@2453 207 _offsets.alloc_block(start, word_size);
tonyp@2453 208 }
tonyp@2453 209
tonyp@2453 210 void print_bot_on(outputStream* out) {
tonyp@2453 211 _offsets.print_on(out);
tonyp@2453 212 }
ysr@777 213 };
ysr@777 214
ysr@777 215 class HeapRegion: public G1OffsetTableContigSpace {
ysr@777 216 friend class VMStructs;
ysr@777 217 private:
ysr@777 218
tonyp@790 219 enum HumongousType {
tonyp@790 220 NotHumongous = 0,
tonyp@790 221 StartsHumongous,
tonyp@790 222 ContinuesHumongous
tonyp@790 223 };
tonyp@790 224
ysr@777 225 // Requires that the region "mr" be dense with objects, and begin and end
ysr@777 226 // with an object.
ysr@777 227 void oops_in_mr_iterate(MemRegion mr, OopClosure* cl);
ysr@777 228
ysr@777 229 // The remembered set for this region.
ysr@777 230 // (Might want to make this "inline" later, to avoid some alloc failure
ysr@777 231 // issues.)
ysr@777 232 HeapRegionRemSet* _rem_set;
ysr@777 233
ysr@777 234 G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
ysr@777 235
ysr@777 236 protected:
tonyp@2963 237 // The index of this region in the heap region sequence.
tonyp@2963 238 size_t _hrs_index;
ysr@777 239
tonyp@790 240 HumongousType _humongous_type;
ysr@777 241 // For a humongous region, region in which it starts.
ysr@777 242 HeapRegion* _humongous_start_region;
ysr@777 243 // For the start region of a humongous sequence, it's original end().
ysr@777 244 HeapWord* _orig_end;
ysr@777 245
ysr@777 246 // True iff the region is in current collection_set.
ysr@777 247 bool _in_collection_set;
ysr@777 248
ysr@777 249 // True iff an attempt to evacuate an object in the region failed.
ysr@777 250 bool _evacuation_failed;
ysr@777 251
ysr@777 252 // A heap region may be a member one of a number of special subsets, each
ysr@777 253 // represented as linked lists through the field below. Currently, these
ysr@777 254 // sets include:
ysr@777 255 // The collection set.
ysr@777 256 // The set of allocation regions used in a collection pause.
ysr@777 257 // Spaces that may contain gray objects.
ysr@777 258 HeapRegion* _next_in_special_set;
ysr@777 259
ysr@777 260 // next region in the young "generation" region set
ysr@777 261 HeapRegion* _next_young_region;
ysr@777 262
apetrusenko@1231 263 // Next region whose cards need cleaning
apetrusenko@1231 264 HeapRegion* _next_dirty_cards_region;
apetrusenko@1231 265
tonyp@2472 266 // Fields used by the HeapRegionSetBase class and subclasses.
tonyp@2472 267 HeapRegion* _next;
tonyp@2472 268 #ifdef ASSERT
tonyp@2472 269 HeapRegionSetBase* _containing_set;
tonyp@2472 270 #endif // ASSERT
tonyp@2472 271 bool _pending_removal;
tonyp@2472 272
ysr@777 273 // For parallel heapRegion traversal.
ysr@777 274 jint _claimed;
ysr@777 275
ysr@777 276 // We use concurrent marking to determine the amount of live data
ysr@777 277 // in each heap region.
ysr@777 278 size_t _prev_marked_bytes; // Bytes known to be live via last completed marking.
ysr@777 279 size_t _next_marked_bytes; // Bytes known to be live via in-progress marking.
ysr@777 280
ysr@777 281 // See "sort_index" method. -1 means is not in the array.
ysr@777 282 int _sort_index;
ysr@777 283
ysr@777 284 // <PREDICTION>
ysr@777 285 double _gc_efficiency;
ysr@777 286 // </PREDICTION>
ysr@777 287
ysr@777 288 enum YoungType {
ysr@777 289 NotYoung, // a region is not young
ysr@777 290 Young, // a region is young
tonyp@2963 291 Survivor // a region is young and it contains survivors
ysr@777 292 };
ysr@777 293
johnc@2021 294 volatile YoungType _young_type;
ysr@777 295 int _young_index_in_cset;
ysr@777 296 SurvRateGroup* _surv_rate_group;
ysr@777 297 int _age_index;
ysr@777 298
ysr@777 299 // The start of the unmarked area. The unmarked area extends from this
ysr@777 300 // word until the top and/or end of the region, and is the part
ysr@777 301 // of the region for which no marking was done, i.e. objects may
ysr@777 302 // have been allocated in this part since the last mark phase.
ysr@777 303 // "prev" is the top at the start of the last completed marking.
ysr@777 304 // "next" is the top at the start of the in-progress marking (if any.)
ysr@777 305 HeapWord* _prev_top_at_mark_start;
ysr@777 306 HeapWord* _next_top_at_mark_start;
ysr@777 307 // If a collection pause is in progress, this is the top at the start
ysr@777 308 // of that pause.
ysr@777 309
ysr@777 310 // We've counted the marked bytes of objects below here.
ysr@777 311 HeapWord* _top_at_conc_mark_count;
ysr@777 312
ysr@777 313 void init_top_at_mark_start() {
ysr@777 314 assert(_prev_marked_bytes == 0 &&
ysr@777 315 _next_marked_bytes == 0,
ysr@777 316 "Must be called after zero_marked_bytes.");
ysr@777 317 HeapWord* bot = bottom();
ysr@777 318 _prev_top_at_mark_start = bot;
ysr@777 319 _next_top_at_mark_start = bot;
ysr@777 320 _top_at_conc_mark_count = bot;
ysr@777 321 }
ysr@777 322
ysr@777 323 void set_young_type(YoungType new_type) {
ysr@777 324 //assert(_young_type != new_type, "setting the same type" );
ysr@777 325 // TODO: add more assertions here
ysr@777 326 _young_type = new_type;
ysr@777 327 }
ysr@777 328
johnc@1829 329 // Cached attributes used in the collection set policy information
johnc@1829 330
johnc@1829 331 // The RSet length that was added to the total value
johnc@1829 332 // for the collection set.
johnc@1829 333 size_t _recorded_rs_length;
johnc@1829 334
johnc@1829 335 // The predicted elapsed time that was added to total value
johnc@1829 336 // for the collection set.
johnc@1829 337 double _predicted_elapsed_time_ms;
johnc@1829 338
johnc@1829 339 // The predicted number of bytes to copy that was added to
johnc@1829 340 // the total value for the collection set.
johnc@1829 341 size_t _predicted_bytes_to_copy;
johnc@1829 342
ysr@777 343 public:
ysr@777 344 // If "is_zeroed" is "true", the region "mr" can be assumed to contain zeros.
tonyp@2963 345 HeapRegion(size_t hrs_index,
tonyp@2963 346 G1BlockOffsetSharedArray* sharedOffsetArray,
ysr@777 347 MemRegion mr, bool is_zeroed);
ysr@777 348
johnc@3182 349 static int LogOfHRGrainBytes;
johnc@3182 350 static int LogOfHRGrainWords;
johnc@3182 351
johnc@3182 352 static size_t GrainBytes;
johnc@3182 353 static size_t GrainWords;
johnc@3182 354 static size_t CardsPerRegion;
tonyp@1377 355
tonyp@3176 356 static size_t align_up_to_region_byte_size(size_t sz) {
tonyp@3176 357 return (sz + (size_t) GrainBytes - 1) &
tonyp@3176 358 ~((1 << (size_t) LogOfHRGrainBytes) - 1);
tonyp@3176 359 }
tonyp@3176 360
tonyp@1377 361 // It sets up the heap region size (GrainBytes / GrainWords), as
tonyp@1377 362 // well as other related fields that are based on the heap region
tonyp@1377 363 // size (LogOfHRGrainBytes / LogOfHRGrainWords /
tonyp@1377 364 // CardsPerRegion). All those fields are considered constant
tonyp@1377 365 // throughout the JVM's execution, therefore they should only be set
tonyp@1377 366 // up once during initialization time.
tonyp@1377 367 static void setup_heap_region_size(uintx min_heap_size);
ysr@777 368
tonyp@790 369 enum ClaimValues {
tonyp@790 370 InitialClaimValue = 0,
tonyp@790 371 FinalCountClaimValue = 1,
tonyp@790 372 NoteEndClaimValue = 2,
tonyp@825 373 ScrubRemSetClaimValue = 3,
apetrusenko@1061 374 ParVerifyClaimValue = 4,
apetrusenko@1061 375 RebuildRSClaimValue = 5
tonyp@790 376 };
tonyp@790 377
tonyp@2454 378 inline HeapWord* par_allocate_no_bot_updates(size_t word_size) {
tonyp@2454 379 assert(is_young(), "we can only skip BOT updates on young regions");
tonyp@2454 380 return ContiguousSpace::par_allocate(word_size);
tonyp@2454 381 }
tonyp@2454 382 inline HeapWord* allocate_no_bot_updates(size_t word_size) {
tonyp@2454 383 assert(is_young(), "we can only skip BOT updates on young regions");
tonyp@2454 384 return ContiguousSpace::allocate(word_size);
tonyp@2454 385 }
tonyp@2454 386
ysr@777 387 // If this region is a member of a HeapRegionSeq, the index in that
ysr@777 388 // sequence, otherwise -1.
tonyp@2963 389 size_t hrs_index() const { return _hrs_index; }
ysr@777 390
ysr@777 391 // The number of bytes marked live in the region in the last marking phase.
ysr@777 392 size_t marked_bytes() { return _prev_marked_bytes; }
tonyp@2717 393 size_t live_bytes() {
tonyp@2717 394 return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
tonyp@2717 395 }
tonyp@2717 396
ysr@777 397 // The number of bytes counted in the next marking.
ysr@777 398 size_t next_marked_bytes() { return _next_marked_bytes; }
ysr@777 399 // The number of bytes live wrt the next marking.
ysr@777 400 size_t next_live_bytes() {
tonyp@2717 401 return
tonyp@2717 402 (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
ysr@777 403 }
ysr@777 404
ysr@777 405 // A lower bound on the amount of garbage bytes in the region.
ysr@777 406 size_t garbage_bytes() {
ysr@777 407 size_t used_at_mark_start_bytes =
ysr@777 408 (prev_top_at_mark_start() - bottom()) * HeapWordSize;
ysr@777 409 assert(used_at_mark_start_bytes >= marked_bytes(),
ysr@777 410 "Can't mark more than we have.");
ysr@777 411 return used_at_mark_start_bytes - marked_bytes();
ysr@777 412 }
ysr@777 413
ysr@777 414 // An upper bound on the number of live bytes in the region.
ysr@777 415 size_t max_live_bytes() { return used() - garbage_bytes(); }
ysr@777 416
ysr@777 417 void add_to_marked_bytes(size_t incr_bytes) {
ysr@777 418 _next_marked_bytes = _next_marked_bytes + incr_bytes;
ysr@777 419 guarantee( _next_marked_bytes <= used(), "invariant" );
ysr@777 420 }
ysr@777 421
ysr@777 422 void zero_marked_bytes() {
ysr@777 423 _prev_marked_bytes = _next_marked_bytes = 0;
ysr@777 424 }
ysr@777 425
tonyp@790 426 bool isHumongous() const { return _humongous_type != NotHumongous; }
tonyp@790 427 bool startsHumongous() const { return _humongous_type == StartsHumongous; }
tonyp@790 428 bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
ysr@777 429 // For a humongous region, region in which it starts.
ysr@777 430 HeapRegion* humongous_start_region() const {
ysr@777 431 return _humongous_start_region;
ysr@777 432 }
ysr@777 433
tonyp@2453 434 // Makes the current region be a "starts humongous" region, i.e.,
tonyp@2453 435 // the first region in a series of one or more contiguous regions
tonyp@2453 436 // that will contain a single "humongous" object. The two parameters
tonyp@2453 437 // are as follows:
tonyp@2453 438 //
tonyp@2453 439 // new_top : The new value of the top field of this region which
tonyp@2453 440 // points to the end of the humongous object that's being
tonyp@2453 441 // allocated. If there is more than one region in the series, top
tonyp@2453 442 // will lie beyond this region's original end field and on the last
tonyp@2453 443 // region in the series.
tonyp@2453 444 //
tonyp@2453 445 // new_end : The new value of the end field of this region which
tonyp@2453 446 // points to the end of the last region in the series. If there is
tonyp@2453 447 // one region in the series (namely: this one) end will be the same
tonyp@2453 448 // as the original end of this region.
tonyp@2453 449 //
tonyp@2453 450 // Updating top and end as described above makes this region look as
tonyp@2453 451 // if it spans the entire space taken up by all the regions in the
tonyp@2453 452 // series and an single allocation moved its top to new_top. This
tonyp@2453 453 // ensures that the space (capacity / allocated) taken up by all
tonyp@2453 454 // humongous regions can be calculated by just looking at the
tonyp@2453 455 // "starts humongous" regions and by ignoring the "continues
tonyp@2453 456 // humongous" regions.
tonyp@2453 457 void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);
ysr@777 458
tonyp@2453 459 // Makes the current region be a "continues humongous'
tonyp@2453 460 // region. first_hr is the "start humongous" region of the series
tonyp@2453 461 // which this region will be part of.
tonyp@2453 462 void set_continuesHumongous(HeapRegion* first_hr);
ysr@777 463
tonyp@2472 464 // Unsets the humongous-related fields on the region.
tonyp@2472 465 void set_notHumongous();
tonyp@2472 466
ysr@777 467 // If the region has a remembered set, return a pointer to it.
ysr@777 468 HeapRegionRemSet* rem_set() const {
ysr@777 469 return _rem_set;
ysr@777 470 }
ysr@777 471
ysr@777 472 // True iff the region is in current collection_set.
ysr@777 473 bool in_collection_set() const {
ysr@777 474 return _in_collection_set;
ysr@777 475 }
ysr@777 476 void set_in_collection_set(bool b) {
ysr@777 477 _in_collection_set = b;
ysr@777 478 }
ysr@777 479 HeapRegion* next_in_collection_set() {
ysr@777 480 assert(in_collection_set(), "should only invoke on member of CS.");
ysr@777 481 assert(_next_in_special_set == NULL ||
ysr@777 482 _next_in_special_set->in_collection_set(),
ysr@777 483 "Malformed CS.");
ysr@777 484 return _next_in_special_set;
ysr@777 485 }
ysr@777 486 void set_next_in_collection_set(HeapRegion* r) {
ysr@777 487 assert(in_collection_set(), "should only invoke on member of CS.");
ysr@777 488 assert(r == NULL || r->in_collection_set(), "Malformed CS.");
ysr@777 489 _next_in_special_set = r;
ysr@777 490 }
ysr@777 491
tonyp@2472 492 // Methods used by the HeapRegionSetBase class and subclasses.
tonyp@2472 493
tonyp@2472 494 // Getter and setter for the next field used to link regions into
tonyp@2472 495 // linked lists.
tonyp@2472 496 HeapRegion* next() { return _next; }
tonyp@2472 497
tonyp@2472 498 void set_next(HeapRegion* next) { _next = next; }
tonyp@2472 499
tonyp@2472 500 // Every region added to a set is tagged with a reference to that
tonyp@2472 501 // set. This is used for doing consistency checking to make sure that
tonyp@2472 502 // the contents of a set are as they should be and it's only
tonyp@2472 503 // available in non-product builds.
tonyp@2472 504 #ifdef ASSERT
tonyp@2472 505 void set_containing_set(HeapRegionSetBase* containing_set) {
tonyp@2472 506 assert((containing_set == NULL && _containing_set != NULL) ||
tonyp@2472 507 (containing_set != NULL && _containing_set == NULL),
tonyp@2472 508 err_msg("containing_set: "PTR_FORMAT" "
tonyp@2472 509 "_containing_set: "PTR_FORMAT,
tonyp@2472 510 containing_set, _containing_set));
tonyp@2472 511
tonyp@2472 512 _containing_set = containing_set;
tonyp@2643 513 }
tonyp@2472 514
tonyp@2472 515 HeapRegionSetBase* containing_set() { return _containing_set; }
tonyp@2472 516 #else // ASSERT
tonyp@2472 517 void set_containing_set(HeapRegionSetBase* containing_set) { }
tonyp@2472 518
tonyp@2643 519 // containing_set() is only used in asserts so there's no reason
tonyp@2472 520 // to provide a dummy version of it.
tonyp@2472 521 #endif // ASSERT
tonyp@2472 522
tonyp@2472 523 // If we want to remove regions from a list in bulk we can simply tag
tonyp@2472 524 // them with the pending_removal tag and call the
tonyp@2472 525 // remove_all_pending() method on the list.
tonyp@2472 526
tonyp@2472 527 bool pending_removal() { return _pending_removal; }
tonyp@2472 528
tonyp@2472 529 void set_pending_removal(bool pending_removal) {
tonyp@2643 530 if (pending_removal) {
tonyp@2643 531 assert(!_pending_removal && containing_set() != NULL,
tonyp@2643 532 "can only set pending removal to true if it's false and "
tonyp@2643 533 "the region belongs to a region set");
tonyp@2643 534 } else {
tonyp@2643 535 assert( _pending_removal && containing_set() == NULL,
tonyp@2643 536 "can only set pending removal to false if it's true and "
tonyp@2643 537 "the region does not belong to a region set");
tonyp@2643 538 }
tonyp@2472 539
tonyp@2472 540 _pending_removal = pending_removal;
ysr@777 541 }
ysr@777 542
ysr@777 543 HeapRegion* get_next_young_region() { return _next_young_region; }
ysr@777 544 void set_next_young_region(HeapRegion* hr) {
ysr@777 545 _next_young_region = hr;
ysr@777 546 }
ysr@777 547
apetrusenko@1231 548 HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
apetrusenko@1231 549 HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
apetrusenko@1231 550 void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
apetrusenko@1231 551 bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
apetrusenko@1231 552
tonyp@2963 553 HeapWord* orig_end() { return _orig_end; }
tonyp@2963 554
ysr@777 555 // Allows logical separation between objects allocated before and after.
ysr@777 556 void save_marks();
ysr@777 557
ysr@777 558 // Reset HR stuff to default values.
ysr@777 559 void hr_clear(bool par, bool clear_space);
tonyp@2849 560 void par_clear();
ysr@777 561
tonyp@791 562 void initialize(MemRegion mr, bool clear_space, bool mangle_space);
ysr@777 563
ysr@777 564 // Get the start of the unmarked area in this region.
ysr@777 565 HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
ysr@777 566 HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
ysr@777 567
ysr@777 568 // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
ysr@777 569 // allocated in the current region before the last call to "save_mark".
ysr@777 570 void oop_before_save_marks_iterate(OopClosure* cl);
ysr@777 571
ysr@777 572 DirtyCardToOopClosure*
ysr@777 573 new_dcto_closure(OopClosure* cl,
ysr@777 574 CardTableModRefBS::PrecisionStyle precision,
ysr@777 575 HeapRegionDCTOC::FilterKind fk);
ysr@777 576
ysr@777 577 // Note the start or end of marking. This tells the heap region
ysr@777 578 // that the collector is about to start or has finished (concurrently)
ysr@777 579 // marking the heap.
ysr@777 580
ysr@777 581 // Note the start of a marking phase. Record the
ysr@777 582 // start of the unmarked area of the region here.
ysr@777 583 void note_start_of_marking(bool during_initial_mark) {
ysr@777 584 init_top_at_conc_mark_count();
ysr@777 585 _next_marked_bytes = 0;
ysr@777 586 if (during_initial_mark && is_young() && !is_survivor())
ysr@777 587 _next_top_at_mark_start = bottom();
ysr@777 588 else
ysr@777 589 _next_top_at_mark_start = top();
ysr@777 590 }
ysr@777 591
ysr@777 592 // Note the end of a marking phase. Install the start of
ysr@777 593 // the unmarked area that was captured at start of marking.
ysr@777 594 void note_end_of_marking() {
ysr@777 595 _prev_top_at_mark_start = _next_top_at_mark_start;
ysr@777 596 _prev_marked_bytes = _next_marked_bytes;
ysr@777 597 _next_marked_bytes = 0;
ysr@777 598
ysr@777 599 guarantee(_prev_marked_bytes <=
ysr@777 600 (size_t) (prev_top_at_mark_start() - bottom()) * HeapWordSize,
ysr@777 601 "invariant");
ysr@777 602 }
ysr@777 603
ysr@777 604 // After an evacuation, we need to update _next_top_at_mark_start
ysr@777 605 // to be the current top. Note this is only valid if we have only
ysr@777 606 // ever evacuated into this region. If we evacuate, allocate, and
ysr@777 607 // then evacuate we are in deep doodoo.
ysr@777 608 void note_end_of_copying() {
tonyp@1456 609 assert(top() >= _next_top_at_mark_start, "Increase only");
tonyp@1456 610 _next_top_at_mark_start = top();
ysr@777 611 }
ysr@777 612
ysr@777 613 // Returns "false" iff no object in the region was allocated when the
ysr@777 614 // last mark phase ended.
ysr@777 615 bool is_marked() { return _prev_top_at_mark_start != bottom(); }
ysr@777 616
ysr@777 617 // If "is_marked()" is true, then this is the index of the region in
ysr@777 618 // an array constructed at the end of marking of the regions in a
ysr@777 619 // "desirability" order.
ysr@777 620 int sort_index() {
ysr@777 621 return _sort_index;
ysr@777 622 }
ysr@777 623 void set_sort_index(int i) {
ysr@777 624 _sort_index = i;
ysr@777 625 }
ysr@777 626
ysr@777 627 void init_top_at_conc_mark_count() {
ysr@777 628 _top_at_conc_mark_count = bottom();
ysr@777 629 }
ysr@777 630
ysr@777 631 void set_top_at_conc_mark_count(HeapWord *cur) {
ysr@777 632 assert(bottom() <= cur && cur <= end(), "Sanity.");
ysr@777 633 _top_at_conc_mark_count = cur;
ysr@777 634 }
ysr@777 635
ysr@777 636 HeapWord* top_at_conc_mark_count() {
ysr@777 637 return _top_at_conc_mark_count;
ysr@777 638 }
ysr@777 639
ysr@777 640 void reset_during_compaction() {
ysr@777 641 guarantee( isHumongous() && startsHumongous(),
ysr@777 642 "should only be called for humongous regions");
ysr@777 643
ysr@777 644 zero_marked_bytes();
ysr@777 645 init_top_at_mark_start();
ysr@777 646 }
ysr@777 647
ysr@777 648 // <PREDICTION>
ysr@777 649 void calc_gc_efficiency(void);
ysr@777 650 double gc_efficiency() { return _gc_efficiency;}
ysr@777 651 // </PREDICTION>
ysr@777 652
ysr@777 653 bool is_young() const { return _young_type != NotYoung; }
ysr@777 654 bool is_survivor() const { return _young_type == Survivor; }
ysr@777 655
ysr@777 656 int young_index_in_cset() const { return _young_index_in_cset; }
ysr@777 657 void set_young_index_in_cset(int index) {
ysr@777 658 assert( (index == -1) || is_young(), "pre-condition" );
ysr@777 659 _young_index_in_cset = index;
ysr@777 660 }
ysr@777 661
ysr@777 662 int age_in_surv_rate_group() {
ysr@777 663 assert( _surv_rate_group != NULL, "pre-condition" );
ysr@777 664 assert( _age_index > -1, "pre-condition" );
ysr@777 665 return _surv_rate_group->age_in_group(_age_index);
ysr@777 666 }
ysr@777 667
ysr@777 668 void record_surv_words_in_group(size_t words_survived) {
ysr@777 669 assert( _surv_rate_group != NULL, "pre-condition" );
ysr@777 670 assert( _age_index > -1, "pre-condition" );
ysr@777 671 int age_in_group = age_in_surv_rate_group();
ysr@777 672 _surv_rate_group->record_surviving_words(age_in_group, words_survived);
ysr@777 673 }
ysr@777 674
ysr@777 675 int age_in_surv_rate_group_cond() {
ysr@777 676 if (_surv_rate_group != NULL)
ysr@777 677 return age_in_surv_rate_group();
ysr@777 678 else
ysr@777 679 return -1;
ysr@777 680 }
ysr@777 681
ysr@777 682 SurvRateGroup* surv_rate_group() {
ysr@777 683 return _surv_rate_group;
ysr@777 684 }
ysr@777 685
ysr@777 686 void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
ysr@777 687 assert( surv_rate_group != NULL, "pre-condition" );
ysr@777 688 assert( _surv_rate_group == NULL, "pre-condition" );
ysr@777 689 assert( is_young(), "pre-condition" );
ysr@777 690
ysr@777 691 _surv_rate_group = surv_rate_group;
ysr@777 692 _age_index = surv_rate_group->next_age_index();
ysr@777 693 }
ysr@777 694
ysr@777 695 void uninstall_surv_rate_group() {
ysr@777 696 if (_surv_rate_group != NULL) {
ysr@777 697 assert( _age_index > -1, "pre-condition" );
ysr@777 698 assert( is_young(), "pre-condition" );
ysr@777 699
ysr@777 700 _surv_rate_group = NULL;
ysr@777 701 _age_index = -1;
ysr@777 702 } else {
ysr@777 703 assert( _age_index == -1, "pre-condition" );
ysr@777 704 }
ysr@777 705 }
ysr@777 706
ysr@777 707 void set_young() { set_young_type(Young); }
ysr@777 708
ysr@777 709 void set_survivor() { set_young_type(Survivor); }
ysr@777 710
ysr@777 711 void set_not_young() { set_young_type(NotYoung); }
ysr@777 712
ysr@777 713 // Determine if an object has been allocated since the last
ysr@777 714 // mark performed by the collector. This returns true iff the object
ysr@777 715 // is within the unmarked area of the region.
ysr@777 716 bool obj_allocated_since_prev_marking(oop obj) const {
ysr@777 717 return (HeapWord *) obj >= prev_top_at_mark_start();
ysr@777 718 }
ysr@777 719 bool obj_allocated_since_next_marking(oop obj) const {
ysr@777 720 return (HeapWord *) obj >= next_top_at_mark_start();
ysr@777 721 }
ysr@777 722
ysr@777 723 // For parallel heapRegion traversal.
ysr@777 724 bool claimHeapRegion(int claimValue);
ysr@777 725 jint claim_value() { return _claimed; }
ysr@777 726 // Use this carefully: only when you're sure no one is claiming...
ysr@777 727 void set_claim_value(int claimValue) { _claimed = claimValue; }
ysr@777 728
ysr@777 729 // Returns the "evacuation_failed" property of the region.
ysr@777 730 bool evacuation_failed() { return _evacuation_failed; }
ysr@777 731
ysr@777 732 // Sets the "evacuation_failed" property of the region.
ysr@777 733 void set_evacuation_failed(bool b) {
ysr@777 734 _evacuation_failed = b;
ysr@777 735
ysr@777 736 if (b) {
ysr@777 737 init_top_at_conc_mark_count();
ysr@777 738 _next_marked_bytes = 0;
ysr@777 739 }
ysr@777 740 }
ysr@777 741
ysr@777 742 // Requires that "mr" be entirely within the region.
ysr@777 743 // Apply "cl->do_object" to all objects that intersect with "mr".
ysr@777 744 // If the iteration encounters an unparseable portion of the region,
ysr@777 745 // or if "cl->abort()" is true after a closure application,
ysr@777 746 // terminate the iteration and return the address of the start of the
ysr@777 747 // subregion that isn't done. (The two can be distinguished by querying
ysr@777 748 // "cl->abort()".) Return of "NULL" indicates that the iteration
ysr@777 749 // completed.
ysr@777 750 HeapWord*
ysr@777 751 object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
ysr@777 752
tonyp@2849 753 // filter_young: if true and the region is a young region then we
tonyp@2849 754 // skip the iteration.
tonyp@2849 755 // card_ptr: if not NULL, and we decide that the card is not young
tonyp@2849 756 // and we iterate over it, we'll clean the card before we start the
tonyp@2849 757 // iteration.
ysr@777 758 HeapWord*
ysr@777 759 oops_on_card_seq_iterate_careful(MemRegion mr,
johnc@2021 760 FilterOutOfRegionClosure* cl,
tonyp@2849 761 bool filter_young,
tonyp@2849 762 jbyte* card_ptr);
ysr@777 763
ysr@777 764 // A version of block start that is guaranteed to find *some* block
ysr@777 765 // boundary at or before "p", but does not object iteration, and may
ysr@777 766 // therefore be used safely when the heap is unparseable.
ysr@777 767 HeapWord* block_start_careful(const void* p) const {
ysr@777 768 return _offsets.block_start_careful(p);
ysr@777 769 }
ysr@777 770
ysr@777 771 // Requires that "addr" is within the region. Returns the start of the
ysr@777 772 // first ("careful") block that starts at or after "addr", or else the
ysr@777 773 // "end" of the region if there is no such block.
ysr@777 774 HeapWord* next_block_start_careful(HeapWord* addr);
ysr@777 775
johnc@1829 776 size_t recorded_rs_length() const { return _recorded_rs_length; }
johnc@1829 777 double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
johnc@1829 778 size_t predicted_bytes_to_copy() const { return _predicted_bytes_to_copy; }
johnc@1829 779
johnc@1829 780 void set_recorded_rs_length(size_t rs_length) {
johnc@1829 781 _recorded_rs_length = rs_length;
johnc@1829 782 }
johnc@1829 783
johnc@1829 784 void set_predicted_elapsed_time_ms(double ms) {
johnc@1829 785 _predicted_elapsed_time_ms = ms;
johnc@1829 786 }
johnc@1829 787
johnc@1829 788 void set_predicted_bytes_to_copy(size_t bytes) {
johnc@1829 789 _predicted_bytes_to_copy = bytes;
johnc@1829 790 }
johnc@1829 791
ysr@777 792 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
ysr@777 793 virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
ysr@777 794 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
ysr@777 795
ysr@777 796 CompactibleSpace* next_compaction_space() const;
ysr@777 797
ysr@777 798 virtual void reset_after_compaction();
ysr@777 799
ysr@777 800 void print() const;
ysr@777 801 void print_on(outputStream* st) const;
ysr@777 802
johnc@2969 803 // vo == UsePrevMarking -> use "prev" marking information,
johnc@2969 804 // vo == UseNextMarking -> use "next" marking information
johnc@2969 805 // vo == UseMarkWord -> use the mark word in the object header
johnc@2969 806 //
tonyp@1246 807 // NOTE: Only the "prev" marking information is guaranteed to be
tonyp@1246 808 // consistent most of the time, so most calls to this should use
johnc@2969 809 // vo == UsePrevMarking.
johnc@2969 810 // Currently, there is only one case where this is called with
johnc@2969 811 // vo == UseNextMarking, which is to verify the "next" marking
johnc@2969 812 // information at the end of remark.
johnc@2969 813 // Currently there is only one place where this is called with
johnc@2969 814 // vo == UseMarkWord, which is to verify the marking during a
johnc@2969 815 // full GC.
johnc@2969 816 void verify(bool allow_dirty, VerifyOption vo, bool *failures) const;
tonyp@1246 817
tonyp@1246 818 // Override; it uses the "prev" marking information
ysr@777 819 virtual void verify(bool allow_dirty) const;
ysr@777 820 };
ysr@777 821
ysr@777 822 // HeapRegionClosure is used for iterating over regions.
ysr@777 823 // Terminates the iteration when the "doHeapRegion" method returns "true".
ysr@777 824 class HeapRegionClosure : public StackObj {
ysr@777 825 friend class HeapRegionSeq;
ysr@777 826 friend class G1CollectedHeap;
ysr@777 827
ysr@777 828 bool _complete;
ysr@777 829 void incomplete() { _complete = false; }
ysr@777 830
ysr@777 831 public:
ysr@777 832 HeapRegionClosure(): _complete(true) {}
ysr@777 833
ysr@777 834 // Typically called on each region until it returns true.
ysr@777 835 virtual bool doHeapRegion(HeapRegion* r) = 0;
ysr@777 836
ysr@777 837 // True after iteration if the closure was applied to all heap regions
ysr@777 838 // and returned "false" in all cases.
ysr@777 839 bool complete() { return _complete; }
ysr@777 840 };
ysr@777 841
ysr@777 842 #endif // SERIALGC
stefank@2314 843
stefank@2314 844 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP

mercurial