src/share/vm/gc_implementation/g1/heapRegion.hpp

Tue, 19 May 2009 04:05:31 -0700

author
apetrusenko
date
Tue, 19 May 2009 04:05:31 -0700
changeset 1231
29e7d79232b9
parent 1112
96b229c54d1e
child 1246
830ca2573896
permissions
-rw-r--r--

6819065: G1: eliminate high serial card table clearing time
Reviewed-by: iveresov, tonyp

ysr@777 1 /*
xdono@1014 2 * Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
ysr@777 19 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
ysr@777 20 * CA 95054 USA or visit www.sun.com if you need additional information or
ysr@777 21 * have any questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
ysr@777 25 #ifndef SERIALGC
ysr@777 26
ysr@777 27 // A HeapRegion is the smallest piece of a G1CollectedHeap that
ysr@777 28 // can be collected independently.
ysr@777 29
ysr@777 30 // NOTE: Although a HeapRegion is a Space, its
ysr@777 31 // Space::initDirtyCardClosure method must not be called.
ysr@777 32 // The problem is that the existence of this method breaks
ysr@777 33 // the independence of barrier sets from remembered sets.
ysr@777 34 // The solution is to remove this method from the definition
ysr@777 35 // of a Space.
ysr@777 36
ysr@777 37 class CompactibleSpace;
ysr@777 38 class ContiguousSpace;
ysr@777 39 class HeapRegionRemSet;
ysr@777 40 class HeapRegionRemSetIterator;
ysr@777 41 class HeapRegion;
ysr@777 42
ysr@777 43 // A dirty card to oop closure for heap regions. It
ysr@777 44 // knows how to get the G1 heap and how to use the bitmap
ysr@777 45 // in the concurrent marker used by G1 to filter remembered
ysr@777 46 // sets.
ysr@777 47
ysr@777 48 class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
ysr@777 49 public:
ysr@777 50 // Specification of possible DirtyCardToOopClosure filtering.
ysr@777 51 enum FilterKind {
ysr@777 52 NoFilterKind,
ysr@777 53 IntoCSFilterKind,
ysr@777 54 OutOfRegionFilterKind
ysr@777 55 };
ysr@777 56
ysr@777 57 protected:
ysr@777 58 HeapRegion* _hr;
ysr@777 59 FilterKind _fk;
ysr@777 60 G1CollectedHeap* _g1;
ysr@777 61
ysr@777 62 void walk_mem_region_with_cl(MemRegion mr,
ysr@777 63 HeapWord* bottom, HeapWord* top,
ysr@777 64 OopClosure* cl);
ysr@777 65
ysr@777 66 // We don't specialize this for FilteringClosure; filtering is handled by
ysr@777 67 // the "FilterKind" mechanism. But we provide this to avoid a compiler
ysr@777 68 // warning.
ysr@777 69 void walk_mem_region_with_cl(MemRegion mr,
ysr@777 70 HeapWord* bottom, HeapWord* top,
ysr@777 71 FilteringClosure* cl) {
ysr@777 72 HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
ysr@777 73 (OopClosure*)cl);
ysr@777 74 }
ysr@777 75
ysr@777 76 // Get the actual top of the area on which the closure will
ysr@777 77 // operate, given where the top is assumed to be (the end of the
ysr@777 78 // memory region passed to do_MemRegion) and where the object
ysr@777 79 // at the top is assumed to start. For example, an object may
ysr@777 80 // start at the top but actually extend past the assumed top,
ysr@777 81 // in which case the top becomes the end of the object.
ysr@777 82 HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
ysr@777 83 return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
ysr@777 84 }
ysr@777 85
ysr@777 86 // Walk the given memory region from bottom to (actual) top
ysr@777 87 // looking for objects and applying the oop closure (_cl) to
ysr@777 88 // them. The base implementation of this treats the area as
ysr@777 89 // blocks, where a block may or may not be an object. Sub-
ysr@777 90 // classes should override this to provide more accurate
ysr@777 91 // or possibly more efficient walking.
ysr@777 92 void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
ysr@777 93 Filtering_DCTOC::walk_mem_region(mr, bottom, top);
ysr@777 94 }
ysr@777 95
ysr@777 96 public:
ysr@777 97 HeapRegionDCTOC(G1CollectedHeap* g1,
ysr@777 98 HeapRegion* hr, OopClosure* cl,
ysr@777 99 CardTableModRefBS::PrecisionStyle precision,
ysr@777 100 FilterKind fk);
ysr@777 101 };
ysr@777 102
ysr@777 103
ysr@777 104 // The complicating factor is that BlockOffsetTable diverged
ysr@777 105 // significantly, and we need functionality that is only in the G1 version.
ysr@777 106 // So I copied that code, which led to an alternate G1 version of
ysr@777 107 // OffsetTableContigSpace. If the two versions of BlockOffsetTable could
ysr@777 108 // be reconciled, then G1OffsetTableContigSpace could go away.
ysr@777 109
ysr@777 110 // The idea behind time stamps is the following. Doing a save_marks on
ysr@777 111 // all regions at every GC pause is time consuming (if I remember
ysr@777 112 // well, 10ms or so). So, we would like to do that only for regions
ysr@777 113 // that are GC alloc regions. To achieve this, we use time
ysr@777 114 // stamps. For every evacuation pause, G1CollectedHeap generates a
ysr@777 115 // unique time stamp (essentially a counter that gets
ysr@777 116 // incremented). Every time we want to call save_marks on a region,
ysr@777 117 // we set the saved_mark_word to top and also copy the current GC
ysr@777 118 // time stamp to the time stamp field of the space. Reading the
ysr@777 119 // saved_mark_word involves checking the time stamp of the
ysr@777 120 // region. If it is the same as the current GC time stamp, then we
ysr@777 121 // can safely read the saved_mark_word field, as it is valid. If the
ysr@777 122 // time stamp of the region is not the same as the current GC time
ysr@777 123 // stamp, then we instead read top, as the saved_mark_word field is
ysr@777 124 // invalid. Time stamps (on the regions and also on the
ysr@777 125 // G1CollectedHeap) are reset at every cleanup (we iterate over
ysr@777 126 // the regions anyway) and at the end of a Full GC. The current scheme
ysr@777 127 // that uses sequential unsigned ints will fail only if we have 4b
ysr@777 128 // evacuation pauses between two cleanups, which is _highly_ unlikely.
ysr@777 129
ysr@777 130 class G1OffsetTableContigSpace: public ContiguousSpace {
ysr@777 131 friend class VMStructs;
ysr@777 132 protected:
ysr@777 133 G1BlockOffsetArrayContigSpace _offsets;
ysr@777 134 Mutex _par_alloc_lock;
ysr@777 135 volatile unsigned _gc_time_stamp;
ysr@777 136
ysr@777 137 public:
ysr@777 138 // Constructor. If "is_zeroed" is true, the MemRegion "mr" may be
ysr@777 139 // assumed to contain zeros.
ysr@777 140 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
ysr@777 141 MemRegion mr, bool is_zeroed = false);
ysr@777 142
ysr@777 143 void set_bottom(HeapWord* value);
ysr@777 144 void set_end(HeapWord* value);
ysr@777 145
ysr@777 146 virtual HeapWord* saved_mark_word() const;
ysr@777 147 virtual void set_saved_mark();
ysr@777 148 void reset_gc_time_stamp() { _gc_time_stamp = 0; }
ysr@777 149
tonyp@791 150 virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
tonyp@791 151 virtual void clear(bool mangle_space);
ysr@777 152
ysr@777 153 HeapWord* block_start(const void* p);
ysr@777 154 HeapWord* block_start_const(const void* p) const;
ysr@777 155
ysr@777 156 // Add offset table update.
ysr@777 157 virtual HeapWord* allocate(size_t word_size);
ysr@777 158 HeapWord* par_allocate(size_t word_size);
ysr@777 159
ysr@777 160 // MarkSweep support phase3
ysr@777 161 virtual HeapWord* initialize_threshold();
ysr@777 162 virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
ysr@777 163
ysr@777 164 virtual void print() const;
ysr@777 165 };
ysr@777 166
ysr@777 167 class HeapRegion: public G1OffsetTableContigSpace {
ysr@777 168 friend class VMStructs;
ysr@777 169 private:
ysr@777 170
tonyp@790 171 enum HumongousType {
tonyp@790 172 NotHumongous = 0,
tonyp@790 173 StartsHumongous,
tonyp@790 174 ContinuesHumongous
tonyp@790 175 };
tonyp@790 176
ysr@777 177 // The next filter kind that should be used for a "new_dcto_cl" call with
ysr@777 178 // the "traditional" signature.
ysr@777 179 HeapRegionDCTOC::FilterKind _next_fk;
ysr@777 180
ysr@777 181 // Requires that the region "mr" be dense with objects, and begin and end
ysr@777 182 // with an object.
ysr@777 183 void oops_in_mr_iterate(MemRegion mr, OopClosure* cl);
ysr@777 184
ysr@777 185 // The remembered set for this region.
ysr@777 186 // (Might want to make this "inline" later, to avoid some alloc failure
ysr@777 187 // issues.)
ysr@777 188 HeapRegionRemSet* _rem_set;
ysr@777 189
ysr@777 190 G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
ysr@777 191
ysr@777 192 protected:
ysr@777 193 // If this region is a member of a HeapRegionSeq, the index in that
ysr@777 194 // sequence, otherwise -1.
ysr@777 195 int _hrs_index;
ysr@777 196
tonyp@790 197 HumongousType _humongous_type;
ysr@777 198 // For a humongous region, region in which it starts.
ysr@777 199 HeapRegion* _humongous_start_region;
ysr@777 200 // For the start region of a humongous sequence, it's original end().
ysr@777 201 HeapWord* _orig_end;
ysr@777 202
ysr@777 203 // True iff the region is in current collection_set.
ysr@777 204 bool _in_collection_set;
ysr@777 205
ysr@777 206 // True iff the region is on the unclean list, waiting to be zero filled.
ysr@777 207 bool _is_on_unclean_list;
ysr@777 208
ysr@777 209 // True iff the region is on the free list, ready for allocation.
ysr@777 210 bool _is_on_free_list;
ysr@777 211
ysr@777 212 // Is this or has it been an allocation region in the current collection
ysr@777 213 // pause.
ysr@777 214 bool _is_gc_alloc_region;
ysr@777 215
ysr@777 216 // True iff an attempt to evacuate an object in the region failed.
ysr@777 217 bool _evacuation_failed;
ysr@777 218
ysr@777 219 // A heap region may be a member one of a number of special subsets, each
ysr@777 220 // represented as linked lists through the field below. Currently, these
ysr@777 221 // sets include:
ysr@777 222 // The collection set.
ysr@777 223 // The set of allocation regions used in a collection pause.
ysr@777 224 // Spaces that may contain gray objects.
ysr@777 225 HeapRegion* _next_in_special_set;
ysr@777 226
ysr@777 227 // next region in the young "generation" region set
ysr@777 228 HeapRegion* _next_young_region;
ysr@777 229
apetrusenko@1231 230 // Next region whose cards need cleaning
apetrusenko@1231 231 HeapRegion* _next_dirty_cards_region;
apetrusenko@1231 232
ysr@777 233 // For parallel heapRegion traversal.
ysr@777 234 jint _claimed;
ysr@777 235
ysr@777 236 // We use concurrent marking to determine the amount of live data
ysr@777 237 // in each heap region.
ysr@777 238 size_t _prev_marked_bytes; // Bytes known to be live via last completed marking.
ysr@777 239 size_t _next_marked_bytes; // Bytes known to be live via in-progress marking.
ysr@777 240
ysr@777 241 // See "sort_index" method. -1 means is not in the array.
ysr@777 242 int _sort_index;
ysr@777 243
ysr@777 244 // <PREDICTION>
ysr@777 245 double _gc_efficiency;
ysr@777 246 // </PREDICTION>
ysr@777 247
ysr@777 248 enum YoungType {
ysr@777 249 NotYoung, // a region is not young
ysr@777 250 ScanOnly, // a region is young and scan-only
ysr@777 251 Young, // a region is young
ysr@777 252 Survivor // a region is young and it contains
ysr@777 253 // survivor
ysr@777 254 };
ysr@777 255
ysr@777 256 YoungType _young_type;
ysr@777 257 int _young_index_in_cset;
ysr@777 258 SurvRateGroup* _surv_rate_group;
ysr@777 259 int _age_index;
ysr@777 260
ysr@777 261 // The start of the unmarked area. The unmarked area extends from this
ysr@777 262 // word until the top and/or end of the region, and is the part
ysr@777 263 // of the region for which no marking was done, i.e. objects may
ysr@777 264 // have been allocated in this part since the last mark phase.
ysr@777 265 // "prev" is the top at the start of the last completed marking.
ysr@777 266 // "next" is the top at the start of the in-progress marking (if any.)
ysr@777 267 HeapWord* _prev_top_at_mark_start;
ysr@777 268 HeapWord* _next_top_at_mark_start;
ysr@777 269 // If a collection pause is in progress, this is the top at the start
ysr@777 270 // of that pause.
ysr@777 271
ysr@777 272 // We've counted the marked bytes of objects below here.
ysr@777 273 HeapWord* _top_at_conc_mark_count;
ysr@777 274
ysr@777 275 void init_top_at_mark_start() {
ysr@777 276 assert(_prev_marked_bytes == 0 &&
ysr@777 277 _next_marked_bytes == 0,
ysr@777 278 "Must be called after zero_marked_bytes.");
ysr@777 279 HeapWord* bot = bottom();
ysr@777 280 _prev_top_at_mark_start = bot;
ysr@777 281 _next_top_at_mark_start = bot;
ysr@777 282 _top_at_conc_mark_count = bot;
ysr@777 283 }
ysr@777 284
ysr@777 285 jint _zfs; // A member of ZeroFillState. Protected by ZF_lock.
ysr@777 286 Thread* _zero_filler; // If _zfs is ZeroFilling, the thread that (last)
ysr@777 287 // made it so.
ysr@777 288
ysr@777 289 void set_young_type(YoungType new_type) {
ysr@777 290 //assert(_young_type != new_type, "setting the same type" );
ysr@777 291 // TODO: add more assertions here
ysr@777 292 _young_type = new_type;
ysr@777 293 }
ysr@777 294
ysr@777 295 public:
ysr@777 296 // If "is_zeroed" is "true", the region "mr" can be assumed to contain zeros.
ysr@777 297 HeapRegion(G1BlockOffsetSharedArray* sharedOffsetArray,
ysr@777 298 MemRegion mr, bool is_zeroed);
ysr@777 299
ysr@777 300 enum SomePublicConstants {
ysr@777 301 // HeapRegions are GrainBytes-aligned
ysr@777 302 // and have sizes that are multiples of GrainBytes.
ysr@777 303 LogOfHRGrainBytes = 20,
ysr@777 304 LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize,
ysr@777 305 GrainBytes = 1 << LogOfHRGrainBytes,
ysr@777 306 GrainWords = 1 <<LogOfHRGrainWords,
ysr@777 307 MaxAge = 2, NoOfAges = MaxAge+1
ysr@777 308 };
ysr@777 309
tonyp@790 310 enum ClaimValues {
tonyp@790 311 InitialClaimValue = 0,
tonyp@790 312 FinalCountClaimValue = 1,
tonyp@790 313 NoteEndClaimValue = 2,
tonyp@825 314 ScrubRemSetClaimValue = 3,
apetrusenko@1061 315 ParVerifyClaimValue = 4,
apetrusenko@1061 316 RebuildRSClaimValue = 5
tonyp@790 317 };
tonyp@790 318
ysr@777 319 // Concurrent refinement requires contiguous heap regions (in which TLABs
ysr@777 320 // might be allocated) to be zero-filled. Each region therefore has a
ysr@777 321 // zero-fill-state.
ysr@777 322 enum ZeroFillState {
ysr@777 323 NotZeroFilled,
ysr@777 324 ZeroFilling,
ysr@777 325 ZeroFilled,
ysr@777 326 Allocated
ysr@777 327 };
ysr@777 328
ysr@777 329 // If this region is a member of a HeapRegionSeq, the index in that
ysr@777 330 // sequence, otherwise -1.
ysr@777 331 int hrs_index() const { return _hrs_index; }
ysr@777 332 void set_hrs_index(int index) { _hrs_index = index; }
ysr@777 333
ysr@777 334 // The number of bytes marked live in the region in the last marking phase.
ysr@777 335 size_t marked_bytes() { return _prev_marked_bytes; }
ysr@777 336 // The number of bytes counted in the next marking.
ysr@777 337 size_t next_marked_bytes() { return _next_marked_bytes; }
ysr@777 338 // The number of bytes live wrt the next marking.
ysr@777 339 size_t next_live_bytes() {
ysr@777 340 return (top() - next_top_at_mark_start())
ysr@777 341 * HeapWordSize
ysr@777 342 + next_marked_bytes();
ysr@777 343 }
ysr@777 344
ysr@777 345 // A lower bound on the amount of garbage bytes in the region.
ysr@777 346 size_t garbage_bytes() {
ysr@777 347 size_t used_at_mark_start_bytes =
ysr@777 348 (prev_top_at_mark_start() - bottom()) * HeapWordSize;
ysr@777 349 assert(used_at_mark_start_bytes >= marked_bytes(),
ysr@777 350 "Can't mark more than we have.");
ysr@777 351 return used_at_mark_start_bytes - marked_bytes();
ysr@777 352 }
ysr@777 353
ysr@777 354 // An upper bound on the number of live bytes in the region.
ysr@777 355 size_t max_live_bytes() { return used() - garbage_bytes(); }
ysr@777 356
ysr@777 357 void add_to_marked_bytes(size_t incr_bytes) {
ysr@777 358 _next_marked_bytes = _next_marked_bytes + incr_bytes;
ysr@777 359 guarantee( _next_marked_bytes <= used(), "invariant" );
ysr@777 360 }
ysr@777 361
ysr@777 362 void zero_marked_bytes() {
ysr@777 363 _prev_marked_bytes = _next_marked_bytes = 0;
ysr@777 364 }
ysr@777 365
tonyp@790 366 bool isHumongous() const { return _humongous_type != NotHumongous; }
tonyp@790 367 bool startsHumongous() const { return _humongous_type == StartsHumongous; }
tonyp@790 368 bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
ysr@777 369 // For a humongous region, region in which it starts.
ysr@777 370 HeapRegion* humongous_start_region() const {
ysr@777 371 return _humongous_start_region;
ysr@777 372 }
ysr@777 373
ysr@777 374 // Causes the current region to represent a humongous object spanning "n"
ysr@777 375 // regions.
ysr@777 376 virtual void set_startsHumongous();
ysr@777 377
ysr@777 378 // The regions that continue a humongous sequence should be added using
ysr@777 379 // this method, in increasing address order.
ysr@777 380 void set_continuesHumongous(HeapRegion* start);
ysr@777 381
ysr@777 382 void add_continuingHumongousRegion(HeapRegion* cont);
ysr@777 383
ysr@777 384 // If the region has a remembered set, return a pointer to it.
ysr@777 385 HeapRegionRemSet* rem_set() const {
ysr@777 386 return _rem_set;
ysr@777 387 }
ysr@777 388
ysr@777 389 // True iff the region is in current collection_set.
ysr@777 390 bool in_collection_set() const {
ysr@777 391 return _in_collection_set;
ysr@777 392 }
ysr@777 393 void set_in_collection_set(bool b) {
ysr@777 394 _in_collection_set = b;
ysr@777 395 }
ysr@777 396 HeapRegion* next_in_collection_set() {
ysr@777 397 assert(in_collection_set(), "should only invoke on member of CS.");
ysr@777 398 assert(_next_in_special_set == NULL ||
ysr@777 399 _next_in_special_set->in_collection_set(),
ysr@777 400 "Malformed CS.");
ysr@777 401 return _next_in_special_set;
ysr@777 402 }
ysr@777 403 void set_next_in_collection_set(HeapRegion* r) {
ysr@777 404 assert(in_collection_set(), "should only invoke on member of CS.");
ysr@777 405 assert(r == NULL || r->in_collection_set(), "Malformed CS.");
ysr@777 406 _next_in_special_set = r;
ysr@777 407 }
ysr@777 408
ysr@777 409 // True iff it is or has been an allocation region in the current
ysr@777 410 // collection pause.
ysr@777 411 bool is_gc_alloc_region() const {
ysr@777 412 return _is_gc_alloc_region;
ysr@777 413 }
ysr@777 414 void set_is_gc_alloc_region(bool b) {
ysr@777 415 _is_gc_alloc_region = b;
ysr@777 416 }
ysr@777 417 HeapRegion* next_gc_alloc_region() {
ysr@777 418 assert(is_gc_alloc_region(), "should only invoke on member of CS.");
ysr@777 419 assert(_next_in_special_set == NULL ||
ysr@777 420 _next_in_special_set->is_gc_alloc_region(),
ysr@777 421 "Malformed CS.");
ysr@777 422 return _next_in_special_set;
ysr@777 423 }
ysr@777 424 void set_next_gc_alloc_region(HeapRegion* r) {
ysr@777 425 assert(is_gc_alloc_region(), "should only invoke on member of CS.");
ysr@777 426 assert(r == NULL || r->is_gc_alloc_region(), "Malformed CS.");
ysr@777 427 _next_in_special_set = r;
ysr@777 428 }
ysr@777 429
ysr@777 430 bool is_on_free_list() {
ysr@777 431 return _is_on_free_list;
ysr@777 432 }
ysr@777 433
ysr@777 434 void set_on_free_list(bool b) {
ysr@777 435 _is_on_free_list = b;
ysr@777 436 }
ysr@777 437
ysr@777 438 HeapRegion* next_from_free_list() {
ysr@777 439 assert(is_on_free_list(),
ysr@777 440 "Should only invoke on free space.");
ysr@777 441 assert(_next_in_special_set == NULL ||
ysr@777 442 _next_in_special_set->is_on_free_list(),
ysr@777 443 "Malformed Free List.");
ysr@777 444 return _next_in_special_set;
ysr@777 445 }
ysr@777 446
ysr@777 447 void set_next_on_free_list(HeapRegion* r) {
ysr@777 448 assert(r == NULL || r->is_on_free_list(), "Malformed free list.");
ysr@777 449 _next_in_special_set = r;
ysr@777 450 }
ysr@777 451
ysr@777 452 bool is_on_unclean_list() {
ysr@777 453 return _is_on_unclean_list;
ysr@777 454 }
ysr@777 455
ysr@777 456 void set_on_unclean_list(bool b);
ysr@777 457
ysr@777 458 HeapRegion* next_from_unclean_list() {
ysr@777 459 assert(is_on_unclean_list(),
ysr@777 460 "Should only invoke on unclean space.");
ysr@777 461 assert(_next_in_special_set == NULL ||
ysr@777 462 _next_in_special_set->is_on_unclean_list(),
ysr@777 463 "Malformed unclean List.");
ysr@777 464 return _next_in_special_set;
ysr@777 465 }
ysr@777 466
ysr@777 467 void set_next_on_unclean_list(HeapRegion* r);
ysr@777 468
ysr@777 469 HeapRegion* get_next_young_region() { return _next_young_region; }
ysr@777 470 void set_next_young_region(HeapRegion* hr) {
ysr@777 471 _next_young_region = hr;
ysr@777 472 }
ysr@777 473
apetrusenko@1231 474 HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
apetrusenko@1231 475 HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
apetrusenko@1231 476 void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
apetrusenko@1231 477 bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
apetrusenko@1231 478
ysr@777 479 // Allows logical separation between objects allocated before and after.
ysr@777 480 void save_marks();
ysr@777 481
ysr@777 482 // Reset HR stuff to default values.
ysr@777 483 void hr_clear(bool par, bool clear_space);
ysr@777 484
tonyp@791 485 void initialize(MemRegion mr, bool clear_space, bool mangle_space);
ysr@777 486
ysr@777 487 // Ensure that "this" is zero-filled.
ysr@777 488 void ensure_zero_filled();
ysr@777 489 // This one requires that the calling thread holds ZF_mon.
ysr@777 490 void ensure_zero_filled_locked();
ysr@777 491
ysr@777 492 // Get the start of the unmarked area in this region.
ysr@777 493 HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
ysr@777 494 HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
ysr@777 495
ysr@777 496 // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
ysr@777 497 // allocated in the current region before the last call to "save_mark".
ysr@777 498 void oop_before_save_marks_iterate(OopClosure* cl);
ysr@777 499
ysr@777 500 // This call determines the "filter kind" argument that will be used for
ysr@777 501 // the next call to "new_dcto_cl" on this region with the "traditional"
ysr@777 502 // signature (i.e., the call below.) The default, in the absence of a
ysr@777 503 // preceding call to this method, is "NoFilterKind", and a call to this
ysr@777 504 // method is necessary for each such call, or else it reverts to the
ysr@777 505 // default.
ysr@777 506 // (This is really ugly, but all other methods I could think of changed a
ysr@777 507 // lot of main-line code for G1.)
ysr@777 508 void set_next_filter_kind(HeapRegionDCTOC::FilterKind nfk) {
ysr@777 509 _next_fk = nfk;
ysr@777 510 }
ysr@777 511
ysr@777 512 DirtyCardToOopClosure*
ysr@777 513 new_dcto_closure(OopClosure* cl,
ysr@777 514 CardTableModRefBS::PrecisionStyle precision,
ysr@777 515 HeapRegionDCTOC::FilterKind fk);
ysr@777 516
ysr@777 517 #if WHASSUP
ysr@777 518 DirtyCardToOopClosure*
ysr@777 519 new_dcto_closure(OopClosure* cl,
ysr@777 520 CardTableModRefBS::PrecisionStyle precision,
ysr@777 521 HeapWord* boundary) {
ysr@777 522 assert(boundary == NULL, "This arg doesn't make sense here.");
ysr@777 523 DirtyCardToOopClosure* res = new_dcto_closure(cl, precision, _next_fk);
ysr@777 524 _next_fk = HeapRegionDCTOC::NoFilterKind;
ysr@777 525 return res;
ysr@777 526 }
ysr@777 527 #endif
ysr@777 528
ysr@777 529 //
ysr@777 530 // Note the start or end of marking. This tells the heap region
ysr@777 531 // that the collector is about to start or has finished (concurrently)
ysr@777 532 // marking the heap.
ysr@777 533 //
ysr@777 534
ysr@777 535 // Note the start of a marking phase. Record the
ysr@777 536 // start of the unmarked area of the region here.
ysr@777 537 void note_start_of_marking(bool during_initial_mark) {
ysr@777 538 init_top_at_conc_mark_count();
ysr@777 539 _next_marked_bytes = 0;
ysr@777 540 if (during_initial_mark && is_young() && !is_survivor())
ysr@777 541 _next_top_at_mark_start = bottom();
ysr@777 542 else
ysr@777 543 _next_top_at_mark_start = top();
ysr@777 544 }
ysr@777 545
ysr@777 546 // Note the end of a marking phase. Install the start of
ysr@777 547 // the unmarked area that was captured at start of marking.
ysr@777 548 void note_end_of_marking() {
ysr@777 549 _prev_top_at_mark_start = _next_top_at_mark_start;
ysr@777 550 _prev_marked_bytes = _next_marked_bytes;
ysr@777 551 _next_marked_bytes = 0;
ysr@777 552
ysr@777 553 guarantee(_prev_marked_bytes <=
ysr@777 554 (size_t) (prev_top_at_mark_start() - bottom()) * HeapWordSize,
ysr@777 555 "invariant");
ysr@777 556 }
ysr@777 557
ysr@777 558 // After an evacuation, we need to update _next_top_at_mark_start
ysr@777 559 // to be the current top. Note this is only valid if we have only
ysr@777 560 // ever evacuated into this region. If we evacuate, allocate, and
ysr@777 561 // then evacuate we are in deep doodoo.
ysr@777 562 void note_end_of_copying() {
ysr@777 563 assert(top() >= _next_top_at_mark_start,
ysr@777 564 "Increase only");
apetrusenko@980 565 // Survivor regions will be scanned on the start of concurrent
apetrusenko@980 566 // marking.
apetrusenko@980 567 if (!is_survivor()) {
apetrusenko@980 568 _next_top_at_mark_start = top();
apetrusenko@980 569 }
ysr@777 570 }
ysr@777 571
ysr@777 572 // Returns "false" iff no object in the region was allocated when the
ysr@777 573 // last mark phase ended.
ysr@777 574 bool is_marked() { return _prev_top_at_mark_start != bottom(); }
ysr@777 575
ysr@777 576 // If "is_marked()" is true, then this is the index of the region in
ysr@777 577 // an array constructed at the end of marking of the regions in a
ysr@777 578 // "desirability" order.
ysr@777 579 int sort_index() {
ysr@777 580 return _sort_index;
ysr@777 581 }
ysr@777 582 void set_sort_index(int i) {
ysr@777 583 _sort_index = i;
ysr@777 584 }
ysr@777 585
ysr@777 586 void init_top_at_conc_mark_count() {
ysr@777 587 _top_at_conc_mark_count = bottom();
ysr@777 588 }
ysr@777 589
ysr@777 590 void set_top_at_conc_mark_count(HeapWord *cur) {
ysr@777 591 assert(bottom() <= cur && cur <= end(), "Sanity.");
ysr@777 592 _top_at_conc_mark_count = cur;
ysr@777 593 }
ysr@777 594
ysr@777 595 HeapWord* top_at_conc_mark_count() {
ysr@777 596 return _top_at_conc_mark_count;
ysr@777 597 }
ysr@777 598
ysr@777 599 void reset_during_compaction() {
ysr@777 600 guarantee( isHumongous() && startsHumongous(),
ysr@777 601 "should only be called for humongous regions");
ysr@777 602
ysr@777 603 zero_marked_bytes();
ysr@777 604 init_top_at_mark_start();
ysr@777 605 }
ysr@777 606
ysr@777 607 // <PREDICTION>
ysr@777 608 void calc_gc_efficiency(void);
ysr@777 609 double gc_efficiency() { return _gc_efficiency;}
ysr@777 610 // </PREDICTION>
ysr@777 611
ysr@777 612 bool is_young() const { return _young_type != NotYoung; }
ysr@777 613 bool is_scan_only() const { return _young_type == ScanOnly; }
ysr@777 614 bool is_survivor() const { return _young_type == Survivor; }
ysr@777 615
ysr@777 616 int young_index_in_cset() const { return _young_index_in_cset; }
ysr@777 617 void set_young_index_in_cset(int index) {
ysr@777 618 assert( (index == -1) || is_young(), "pre-condition" );
ysr@777 619 _young_index_in_cset = index;
ysr@777 620 }
ysr@777 621
ysr@777 622 int age_in_surv_rate_group() {
ysr@777 623 assert( _surv_rate_group != NULL, "pre-condition" );
ysr@777 624 assert( _age_index > -1, "pre-condition" );
ysr@777 625 return _surv_rate_group->age_in_group(_age_index);
ysr@777 626 }
ysr@777 627
ysr@777 628 void recalculate_age_in_surv_rate_group() {
ysr@777 629 assert( _surv_rate_group != NULL, "pre-condition" );
ysr@777 630 assert( _age_index > -1, "pre-condition" );
ysr@777 631 _age_index = _surv_rate_group->recalculate_age_index(_age_index);
ysr@777 632 }
ysr@777 633
ysr@777 634 void record_surv_words_in_group(size_t words_survived) {
ysr@777 635 assert( _surv_rate_group != NULL, "pre-condition" );
ysr@777 636 assert( _age_index > -1, "pre-condition" );
ysr@777 637 int age_in_group = age_in_surv_rate_group();
ysr@777 638 _surv_rate_group->record_surviving_words(age_in_group, words_survived);
ysr@777 639 }
ysr@777 640
ysr@777 641 int age_in_surv_rate_group_cond() {
ysr@777 642 if (_surv_rate_group != NULL)
ysr@777 643 return age_in_surv_rate_group();
ysr@777 644 else
ysr@777 645 return -1;
ysr@777 646 }
ysr@777 647
ysr@777 648 SurvRateGroup* surv_rate_group() {
ysr@777 649 return _surv_rate_group;
ysr@777 650 }
ysr@777 651
ysr@777 652 void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
ysr@777 653 assert( surv_rate_group != NULL, "pre-condition" );
ysr@777 654 assert( _surv_rate_group == NULL, "pre-condition" );
ysr@777 655 assert( is_young(), "pre-condition" );
ysr@777 656
ysr@777 657 _surv_rate_group = surv_rate_group;
ysr@777 658 _age_index = surv_rate_group->next_age_index();
ysr@777 659 }
ysr@777 660
ysr@777 661 void uninstall_surv_rate_group() {
ysr@777 662 if (_surv_rate_group != NULL) {
ysr@777 663 assert( _age_index > -1, "pre-condition" );
ysr@777 664 assert( is_young(), "pre-condition" );
ysr@777 665
ysr@777 666 _surv_rate_group = NULL;
ysr@777 667 _age_index = -1;
ysr@777 668 } else {
ysr@777 669 assert( _age_index == -1, "pre-condition" );
ysr@777 670 }
ysr@777 671 }
ysr@777 672
ysr@777 673 void set_young() { set_young_type(Young); }
ysr@777 674
ysr@777 675 void set_scan_only() { set_young_type(ScanOnly); }
ysr@777 676
ysr@777 677 void set_survivor() { set_young_type(Survivor); }
ysr@777 678
ysr@777 679 void set_not_young() { set_young_type(NotYoung); }
ysr@777 680
ysr@777 681 // Determine if an object has been allocated since the last
ysr@777 682 // mark performed by the collector. This returns true iff the object
ysr@777 683 // is within the unmarked area of the region.
ysr@777 684 bool obj_allocated_since_prev_marking(oop obj) const {
ysr@777 685 return (HeapWord *) obj >= prev_top_at_mark_start();
ysr@777 686 }
ysr@777 687 bool obj_allocated_since_next_marking(oop obj) const {
ysr@777 688 return (HeapWord *) obj >= next_top_at_mark_start();
ysr@777 689 }
ysr@777 690
ysr@777 691 // For parallel heapRegion traversal.
ysr@777 692 bool claimHeapRegion(int claimValue);
ysr@777 693 jint claim_value() { return _claimed; }
ysr@777 694 // Use this carefully: only when you're sure no one is claiming...
ysr@777 695 void set_claim_value(int claimValue) { _claimed = claimValue; }
ysr@777 696
ysr@777 697 // Returns the "evacuation_failed" property of the region.
ysr@777 698 bool evacuation_failed() { return _evacuation_failed; }
ysr@777 699
ysr@777 700 // Sets the "evacuation_failed" property of the region.
ysr@777 701 void set_evacuation_failed(bool b) {
ysr@777 702 _evacuation_failed = b;
ysr@777 703
ysr@777 704 if (b) {
ysr@777 705 init_top_at_conc_mark_count();
ysr@777 706 _next_marked_bytes = 0;
ysr@777 707 }
ysr@777 708 }
ysr@777 709
ysr@777 710 // Requires that "mr" be entirely within the region.
ysr@777 711 // Apply "cl->do_object" to all objects that intersect with "mr".
ysr@777 712 // If the iteration encounters an unparseable portion of the region,
ysr@777 713 // or if "cl->abort()" is true after a closure application,
ysr@777 714 // terminate the iteration and return the address of the start of the
ysr@777 715 // subregion that isn't done. (The two can be distinguished by querying
ysr@777 716 // "cl->abort()".) Return of "NULL" indicates that the iteration
ysr@777 717 // completed.
ysr@777 718 HeapWord*
ysr@777 719 object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
ysr@777 720
ysr@777 721 HeapWord*
ysr@777 722 oops_on_card_seq_iterate_careful(MemRegion mr,
ysr@777 723 FilterOutOfRegionClosure* cl);
ysr@777 724
ysr@777 725 // The region "mr" is entirely in "this", and starts and ends at block
ysr@777 726 // boundaries. The caller declares that all the contained blocks are
ysr@777 727 // coalesced into one.
ysr@777 728 void declare_filled_region_to_BOT(MemRegion mr) {
ysr@777 729 _offsets.single_block(mr.start(), mr.end());
ysr@777 730 }
ysr@777 731
ysr@777 732 // A version of block start that is guaranteed to find *some* block
ysr@777 733 // boundary at or before "p", but does not object iteration, and may
ysr@777 734 // therefore be used safely when the heap is unparseable.
ysr@777 735 HeapWord* block_start_careful(const void* p) const {
ysr@777 736 return _offsets.block_start_careful(p);
ysr@777 737 }
ysr@777 738
ysr@777 739 // Requires that "addr" is within the region. Returns the start of the
ysr@777 740 // first ("careful") block that starts at or after "addr", or else the
ysr@777 741 // "end" of the region if there is no such block.
ysr@777 742 HeapWord* next_block_start_careful(HeapWord* addr);
ysr@777 743
ysr@777 744 // Returns the zero-fill-state of the current region.
ysr@777 745 ZeroFillState zero_fill_state() { return (ZeroFillState)_zfs; }
ysr@777 746 bool zero_fill_is_allocated() { return _zfs == Allocated; }
ysr@777 747 Thread* zero_filler() { return _zero_filler; }
ysr@777 748
ysr@777 749 // Indicate that the contents of the region are unknown, and therefore
ysr@777 750 // might require zero-filling.
ysr@777 751 void set_zero_fill_needed() {
ysr@777 752 set_zero_fill_state_work(NotZeroFilled);
ysr@777 753 }
ysr@777 754 void set_zero_fill_in_progress(Thread* t) {
ysr@777 755 set_zero_fill_state_work(ZeroFilling);
ysr@777 756 _zero_filler = t;
ysr@777 757 }
ysr@777 758 void set_zero_fill_complete();
ysr@777 759 void set_zero_fill_allocated() {
ysr@777 760 set_zero_fill_state_work(Allocated);
ysr@777 761 }
ysr@777 762
ysr@777 763 void set_zero_fill_state_work(ZeroFillState zfs);
ysr@777 764
ysr@777 765 // This is called when a full collection shrinks the heap.
ysr@777 766 // We want to set the heap region to a value which says
ysr@777 767 // it is no longer part of the heap. For now, we'll let "NotZF" fill
ysr@777 768 // that role.
ysr@777 769 void reset_zero_fill() {
ysr@777 770 set_zero_fill_state_work(NotZeroFilled);
ysr@777 771 _zero_filler = NULL;
ysr@777 772 }
ysr@777 773
ysr@777 774 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
ysr@777 775 virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
ysr@777 776 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
ysr@777 777
ysr@777 778 CompactibleSpace* next_compaction_space() const;
ysr@777 779
ysr@777 780 virtual void reset_after_compaction();
ysr@777 781
ysr@777 782 void print() const;
ysr@777 783 void print_on(outputStream* st) const;
ysr@777 784
ysr@777 785 // Override
ysr@777 786 virtual void verify(bool allow_dirty) const;
ysr@777 787
ysr@777 788 #ifdef DEBUG
ysr@777 789 HeapWord* allocate(size_t size);
ysr@777 790 #endif
ysr@777 791 };
ysr@777 792
ysr@777 793 // HeapRegionClosure is used for iterating over regions.
ysr@777 794 // Terminates the iteration when the "doHeapRegion" method returns "true".
ysr@777 795 class HeapRegionClosure : public StackObj {
ysr@777 796 friend class HeapRegionSeq;
ysr@777 797 friend class G1CollectedHeap;
ysr@777 798
ysr@777 799 bool _complete;
ysr@777 800 void incomplete() { _complete = false; }
ysr@777 801
ysr@777 802 public:
ysr@777 803 HeapRegionClosure(): _complete(true) {}
ysr@777 804
ysr@777 805 // Typically called on each region until it returns true.
ysr@777 806 virtual bool doHeapRegion(HeapRegion* r) = 0;
ysr@777 807
ysr@777 808 // True after iteration if the closure was applied to all heap regions
ysr@777 809 // and returned "false" in all cases.
ysr@777 810 bool complete() { return _complete; }
ysr@777 811 };
ysr@777 812
ysr@777 813 // A linked lists of heap regions. It leaves the "next" field
ysr@777 814 // unspecified; that's up to subtypes.
apetrusenko@984 815 class RegionList VALUE_OBJ_CLASS_SPEC {
ysr@777 816 protected:
ysr@777 817 virtual HeapRegion* get_next(HeapRegion* chr) = 0;
ysr@777 818 virtual void set_next(HeapRegion* chr,
ysr@777 819 HeapRegion* new_next) = 0;
ysr@777 820
ysr@777 821 HeapRegion* _hd;
ysr@777 822 HeapRegion* _tl;
ysr@777 823 size_t _sz;
ysr@777 824
ysr@777 825 // Protected constructor because this type is only meaningful
ysr@777 826 // when the _get/_set next functions are defined.
ysr@777 827 RegionList() : _hd(NULL), _tl(NULL), _sz(0) {}
ysr@777 828 public:
ysr@777 829 void reset() {
ysr@777 830 _hd = NULL;
ysr@777 831 _tl = NULL;
ysr@777 832 _sz = 0;
ysr@777 833 }
ysr@777 834 HeapRegion* hd() { return _hd; }
ysr@777 835 HeapRegion* tl() { return _tl; }
ysr@777 836 size_t sz() { return _sz; }
ysr@777 837 size_t length();
ysr@777 838
ysr@777 839 bool well_formed() {
ysr@777 840 return
ysr@777 841 ((hd() == NULL && tl() == NULL && sz() == 0)
ysr@777 842 || (hd() != NULL && tl() != NULL && sz() > 0))
ysr@777 843 && (sz() == length());
ysr@777 844 }
ysr@777 845 virtual void insert_before_head(HeapRegion* r);
ysr@777 846 void prepend_list(RegionList* new_list);
ysr@777 847 virtual HeapRegion* pop();
ysr@777 848 void dec_sz() { _sz--; }
ysr@777 849 // Requires that "r" is an element of the list, and is not the tail.
ysr@777 850 void delete_after(HeapRegion* r);
ysr@777 851 };
ysr@777 852
ysr@777 853 class EmptyNonHRegionList: public RegionList {
ysr@777 854 protected:
ysr@777 855 // Protected constructor because this type is only meaningful
ysr@777 856 // when the _get/_set next functions are defined.
ysr@777 857 EmptyNonHRegionList() : RegionList() {}
ysr@777 858
ysr@777 859 public:
ysr@777 860 void insert_before_head(HeapRegion* r) {
ysr@777 861 // assert(r->is_empty(), "Better be empty");
ysr@777 862 assert(!r->isHumongous(), "Better not be humongous.");
ysr@777 863 RegionList::insert_before_head(r);
ysr@777 864 }
ysr@777 865 void prepend_list(EmptyNonHRegionList* new_list) {
ysr@777 866 // assert(new_list->hd() == NULL || new_list->hd()->is_empty(),
ysr@777 867 // "Better be empty");
ysr@777 868 assert(new_list->hd() == NULL || !new_list->hd()->isHumongous(),
ysr@777 869 "Better not be humongous.");
ysr@777 870 // assert(new_list->tl() == NULL || new_list->tl()->is_empty(),
ysr@777 871 // "Better be empty");
ysr@777 872 assert(new_list->tl() == NULL || !new_list->tl()->isHumongous(),
ysr@777 873 "Better not be humongous.");
ysr@777 874 RegionList::prepend_list(new_list);
ysr@777 875 }
ysr@777 876 };
ysr@777 877
ysr@777 878 class UncleanRegionList: public EmptyNonHRegionList {
ysr@777 879 public:
ysr@777 880 HeapRegion* get_next(HeapRegion* hr) {
ysr@777 881 return hr->next_from_unclean_list();
ysr@777 882 }
ysr@777 883 void set_next(HeapRegion* hr, HeapRegion* new_next) {
ysr@777 884 hr->set_next_on_unclean_list(new_next);
ysr@777 885 }
ysr@777 886
ysr@777 887 UncleanRegionList() : EmptyNonHRegionList() {}
ysr@777 888
ysr@777 889 void insert_before_head(HeapRegion* r) {
ysr@777 890 assert(!r->is_on_free_list(),
ysr@777 891 "Better not already be on free list");
ysr@777 892 assert(!r->is_on_unclean_list(),
ysr@777 893 "Better not already be on unclean list");
ysr@777 894 r->set_zero_fill_needed();
ysr@777 895 r->set_on_unclean_list(true);
ysr@777 896 EmptyNonHRegionList::insert_before_head(r);
ysr@777 897 }
ysr@777 898 void prepend_list(UncleanRegionList* new_list) {
ysr@777 899 assert(new_list->tl() == NULL || !new_list->tl()->is_on_free_list(),
ysr@777 900 "Better not already be on free list");
ysr@777 901 assert(new_list->tl() == NULL || new_list->tl()->is_on_unclean_list(),
ysr@777 902 "Better already be marked as on unclean list");
ysr@777 903 assert(new_list->hd() == NULL || !new_list->hd()->is_on_free_list(),
ysr@777 904 "Better not already be on free list");
ysr@777 905 assert(new_list->hd() == NULL || new_list->hd()->is_on_unclean_list(),
ysr@777 906 "Better already be marked as on unclean list");
ysr@777 907 EmptyNonHRegionList::prepend_list(new_list);
ysr@777 908 }
ysr@777 909 HeapRegion* pop() {
ysr@777 910 HeapRegion* res = RegionList::pop();
ysr@777 911 if (res != NULL) res->set_on_unclean_list(false);
ysr@777 912 return res;
ysr@777 913 }
ysr@777 914 };
ysr@777 915
ysr@777 916 // Local Variables: ***
ysr@777 917 // c-indentation-style: gnu ***
ysr@777 918 // End: ***
ysr@777 919
ysr@777 920 #endif // SERIALGC

mercurial