src/share/vm/gc_implementation/g1/heapRegion.hpp

Fri, 04 Mar 2011 17:13:19 -0500

author
tonyp
date
Fri, 04 Mar 2011 17:13:19 -0500
changeset 2643
1216415d8e35
parent 2472
0fa27f37d4d4
child 2715
abdfc822206f
permissions
-rw-r--r--

7014923: G1: code cleanup
Summary: Some G1 code cleanup.
Reviewed-by: johnc, jcoomes, jwilhelm

ysr@777 1 /*
tonyp@2453 2 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
stefank@2314 29 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
stefank@2314 30 #include "gc_implementation/g1/survRateGroup.hpp"
stefank@2314 31 #include "gc_implementation/shared/ageTable.hpp"
stefank@2314 32 #include "gc_implementation/shared/spaceDecorator.hpp"
stefank@2314 33 #include "memory/space.inline.hpp"
stefank@2314 34 #include "memory/watermark.hpp"
stefank@2314 35
ysr@777 36 #ifndef SERIALGC
ysr@777 37
ysr@777 38 // A HeapRegion is the smallest piece of a G1CollectedHeap that
ysr@777 39 // can be collected independently.
ysr@777 40
ysr@777 41 // NOTE: Although a HeapRegion is a Space, its
ysr@777 42 // Space::initDirtyCardClosure method must not be called.
ysr@777 43 // The problem is that the existence of this method breaks
ysr@777 44 // the independence of barrier sets from remembered sets.
ysr@777 45 // The solution is to remove this method from the definition
ysr@777 46 // of a Space.
ysr@777 47
ysr@777 48 class CompactibleSpace;
ysr@777 49 class ContiguousSpace;
ysr@777 50 class HeapRegionRemSet;
ysr@777 51 class HeapRegionRemSetIterator;
ysr@777 52 class HeapRegion;
tonyp@2472 53 class HeapRegionSetBase;
tonyp@2472 54
tonyp@2472 55 #define HR_FORMAT "%d:["PTR_FORMAT","PTR_FORMAT","PTR_FORMAT"]"
tonyp@2643 56 #define HR_FORMAT_PARAMS(_hr_) (_hr_)->hrs_index(), (_hr_)->bottom(), \
tonyp@2643 57 (_hr_)->top(), (_hr_)->end()
ysr@777 58
ysr@777 59 // A dirty card to oop closure for heap regions. It
ysr@777 60 // knows how to get the G1 heap and how to use the bitmap
ysr@777 61 // in the concurrent marker used by G1 to filter remembered
ysr@777 62 // sets.
ysr@777 63
ysr@777 64 class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
ysr@777 65 public:
ysr@777 66 // Specification of possible DirtyCardToOopClosure filtering.
ysr@777 67 enum FilterKind {
ysr@777 68 NoFilterKind,
ysr@777 69 IntoCSFilterKind,
ysr@777 70 OutOfRegionFilterKind
ysr@777 71 };
ysr@777 72
ysr@777 73 protected:
ysr@777 74 HeapRegion* _hr;
ysr@777 75 FilterKind _fk;
ysr@777 76 G1CollectedHeap* _g1;
ysr@777 77
ysr@777 78 void walk_mem_region_with_cl(MemRegion mr,
ysr@777 79 HeapWord* bottom, HeapWord* top,
ysr@777 80 OopClosure* cl);
ysr@777 81
ysr@777 82 // We don't specialize this for FilteringClosure; filtering is handled by
ysr@777 83 // the "FilterKind" mechanism. But we provide this to avoid a compiler
ysr@777 84 // warning.
ysr@777 85 void walk_mem_region_with_cl(MemRegion mr,
ysr@777 86 HeapWord* bottom, HeapWord* top,
ysr@777 87 FilteringClosure* cl) {
ysr@777 88 HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
ysr@777 89 (OopClosure*)cl);
ysr@777 90 }
ysr@777 91
ysr@777 92 // Get the actual top of the area on which the closure will
ysr@777 93 // operate, given where the top is assumed to be (the end of the
ysr@777 94 // memory region passed to do_MemRegion) and where the object
ysr@777 95 // at the top is assumed to start. For example, an object may
ysr@777 96 // start at the top but actually extend past the assumed top,
ysr@777 97 // in which case the top becomes the end of the object.
ysr@777 98 HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
ysr@777 99 return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
ysr@777 100 }
ysr@777 101
ysr@777 102 // Walk the given memory region from bottom to (actual) top
ysr@777 103 // looking for objects and applying the oop closure (_cl) to
ysr@777 104 // them. The base implementation of this treats the area as
ysr@777 105 // blocks, where a block may or may not be an object. Sub-
ysr@777 106 // classes should override this to provide more accurate
ysr@777 107 // or possibly more efficient walking.
ysr@777 108 void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
ysr@777 109 Filtering_DCTOC::walk_mem_region(mr, bottom, top);
ysr@777 110 }
ysr@777 111
ysr@777 112 public:
ysr@777 113 HeapRegionDCTOC(G1CollectedHeap* g1,
ysr@777 114 HeapRegion* hr, OopClosure* cl,
ysr@777 115 CardTableModRefBS::PrecisionStyle precision,
ysr@777 116 FilterKind fk);
ysr@777 117 };
ysr@777 118
ysr@777 119
ysr@777 120 // The complicating factor is that BlockOffsetTable diverged
ysr@777 121 // significantly, and we need functionality that is only in the G1 version.
ysr@777 122 // So I copied that code, which led to an alternate G1 version of
ysr@777 123 // OffsetTableContigSpace. If the two versions of BlockOffsetTable could
ysr@777 124 // be reconciled, then G1OffsetTableContigSpace could go away.
ysr@777 125
ysr@777 126 // The idea behind time stamps is the following. Doing a save_marks on
ysr@777 127 // all regions at every GC pause is time consuming (if I remember
ysr@777 128 // well, 10ms or so). So, we would like to do that only for regions
ysr@777 129 // that are GC alloc regions. To achieve this, we use time
ysr@777 130 // stamps. For every evacuation pause, G1CollectedHeap generates a
ysr@777 131 // unique time stamp (essentially a counter that gets
ysr@777 132 // incremented). Every time we want to call save_marks on a region,
ysr@777 133 // we set the saved_mark_word to top and also copy the current GC
ysr@777 134 // time stamp to the time stamp field of the space. Reading the
ysr@777 135 // saved_mark_word involves checking the time stamp of the
ysr@777 136 // region. If it is the same as the current GC time stamp, then we
ysr@777 137 // can safely read the saved_mark_word field, as it is valid. If the
ysr@777 138 // time stamp of the region is not the same as the current GC time
ysr@777 139 // stamp, then we instead read top, as the saved_mark_word field is
ysr@777 140 // invalid. Time stamps (on the regions and also on the
ysr@777 141 // G1CollectedHeap) are reset at every cleanup (we iterate over
ysr@777 142 // the regions anyway) and at the end of a Full GC. The current scheme
ysr@777 143 // that uses sequential unsigned ints will fail only if we have 4b
ysr@777 144 // evacuation pauses between two cleanups, which is _highly_ unlikely.
ysr@777 145
ysr@777 146 class G1OffsetTableContigSpace: public ContiguousSpace {
ysr@777 147 friend class VMStructs;
ysr@777 148 protected:
ysr@777 149 G1BlockOffsetArrayContigSpace _offsets;
ysr@777 150 Mutex _par_alloc_lock;
ysr@777 151 volatile unsigned _gc_time_stamp;
ysr@777 152
ysr@777 153 public:
ysr@777 154 // Constructor. If "is_zeroed" is true, the MemRegion "mr" may be
ysr@777 155 // assumed to contain zeros.
ysr@777 156 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
ysr@777 157 MemRegion mr, bool is_zeroed = false);
ysr@777 158
ysr@777 159 void set_bottom(HeapWord* value);
ysr@777 160 void set_end(HeapWord* value);
ysr@777 161
ysr@777 162 virtual HeapWord* saved_mark_word() const;
ysr@777 163 virtual void set_saved_mark();
ysr@777 164 void reset_gc_time_stamp() { _gc_time_stamp = 0; }
ysr@777 165
tonyp@791 166 virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
tonyp@791 167 virtual void clear(bool mangle_space);
ysr@777 168
ysr@777 169 HeapWord* block_start(const void* p);
ysr@777 170 HeapWord* block_start_const(const void* p) const;
ysr@777 171
ysr@777 172 // Add offset table update.
ysr@777 173 virtual HeapWord* allocate(size_t word_size);
ysr@777 174 HeapWord* par_allocate(size_t word_size);
ysr@777 175
ysr@777 176 // MarkSweep support phase3
ysr@777 177 virtual HeapWord* initialize_threshold();
ysr@777 178 virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
ysr@777 179
ysr@777 180 virtual void print() const;
tonyp@2453 181
tonyp@2453 182 void reset_bot() {
tonyp@2453 183 _offsets.zero_bottom_entry();
tonyp@2453 184 _offsets.initialize_threshold();
tonyp@2453 185 }
tonyp@2453 186
tonyp@2453 187 void update_bot_for_object(HeapWord* start, size_t word_size) {
tonyp@2453 188 _offsets.alloc_block(start, word_size);
tonyp@2453 189 }
tonyp@2453 190
tonyp@2453 191 void print_bot_on(outputStream* out) {
tonyp@2453 192 _offsets.print_on(out);
tonyp@2453 193 }
ysr@777 194 };
ysr@777 195
ysr@777 196 class HeapRegion: public G1OffsetTableContigSpace {
ysr@777 197 friend class VMStructs;
ysr@777 198 private:
ysr@777 199
tonyp@790 200 enum HumongousType {
tonyp@790 201 NotHumongous = 0,
tonyp@790 202 StartsHumongous,
tonyp@790 203 ContinuesHumongous
tonyp@790 204 };
tonyp@790 205
ysr@777 206 // The next filter kind that should be used for a "new_dcto_cl" call with
ysr@777 207 // the "traditional" signature.
ysr@777 208 HeapRegionDCTOC::FilterKind _next_fk;
ysr@777 209
ysr@777 210 // Requires that the region "mr" be dense with objects, and begin and end
ysr@777 211 // with an object.
ysr@777 212 void oops_in_mr_iterate(MemRegion mr, OopClosure* cl);
ysr@777 213
ysr@777 214 // The remembered set for this region.
ysr@777 215 // (Might want to make this "inline" later, to avoid some alloc failure
ysr@777 216 // issues.)
ysr@777 217 HeapRegionRemSet* _rem_set;
ysr@777 218
ysr@777 219 G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
ysr@777 220
ysr@777 221 protected:
ysr@777 222 // If this region is a member of a HeapRegionSeq, the index in that
ysr@777 223 // sequence, otherwise -1.
ysr@777 224 int _hrs_index;
ysr@777 225
tonyp@790 226 HumongousType _humongous_type;
ysr@777 227 // For a humongous region, region in which it starts.
ysr@777 228 HeapRegion* _humongous_start_region;
ysr@777 229 // For the start region of a humongous sequence, it's original end().
ysr@777 230 HeapWord* _orig_end;
ysr@777 231
ysr@777 232 // True iff the region is in current collection_set.
ysr@777 233 bool _in_collection_set;
ysr@777 234
ysr@777 235 // Is this or has it been an allocation region in the current collection
ysr@777 236 // pause.
ysr@777 237 bool _is_gc_alloc_region;
ysr@777 238
ysr@777 239 // True iff an attempt to evacuate an object in the region failed.
ysr@777 240 bool _evacuation_failed;
ysr@777 241
ysr@777 242 // A heap region may be a member one of a number of special subsets, each
ysr@777 243 // represented as linked lists through the field below. Currently, these
ysr@777 244 // sets include:
ysr@777 245 // The collection set.
ysr@777 246 // The set of allocation regions used in a collection pause.
ysr@777 247 // Spaces that may contain gray objects.
ysr@777 248 HeapRegion* _next_in_special_set;
ysr@777 249
ysr@777 250 // next region in the young "generation" region set
ysr@777 251 HeapRegion* _next_young_region;
ysr@777 252
apetrusenko@1231 253 // Next region whose cards need cleaning
apetrusenko@1231 254 HeapRegion* _next_dirty_cards_region;
apetrusenko@1231 255
tonyp@2472 256 // Fields used by the HeapRegionSetBase class and subclasses.
tonyp@2472 257 HeapRegion* _next;
tonyp@2472 258 #ifdef ASSERT
tonyp@2472 259 HeapRegionSetBase* _containing_set;
tonyp@2472 260 #endif // ASSERT
tonyp@2472 261 bool _pending_removal;
tonyp@2472 262
ysr@777 263 // For parallel heapRegion traversal.
ysr@777 264 jint _claimed;
ysr@777 265
ysr@777 266 // We use concurrent marking to determine the amount of live data
ysr@777 267 // in each heap region.
ysr@777 268 size_t _prev_marked_bytes; // Bytes known to be live via last completed marking.
ysr@777 269 size_t _next_marked_bytes; // Bytes known to be live via in-progress marking.
ysr@777 270
ysr@777 271 // See "sort_index" method. -1 means is not in the array.
ysr@777 272 int _sort_index;
ysr@777 273
ysr@777 274 // <PREDICTION>
ysr@777 275 double _gc_efficiency;
ysr@777 276 // </PREDICTION>
ysr@777 277
ysr@777 278 enum YoungType {
ysr@777 279 NotYoung, // a region is not young
ysr@777 280 Young, // a region is young
ysr@777 281 Survivor // a region is young and it contains
ysr@777 282 // survivor
ysr@777 283 };
ysr@777 284
johnc@2021 285 volatile YoungType _young_type;
ysr@777 286 int _young_index_in_cset;
ysr@777 287 SurvRateGroup* _surv_rate_group;
ysr@777 288 int _age_index;
ysr@777 289
ysr@777 290 // The start of the unmarked area. The unmarked area extends from this
ysr@777 291 // word until the top and/or end of the region, and is the part
ysr@777 292 // of the region for which no marking was done, i.e. objects may
ysr@777 293 // have been allocated in this part since the last mark phase.
ysr@777 294 // "prev" is the top at the start of the last completed marking.
ysr@777 295 // "next" is the top at the start of the in-progress marking (if any.)
ysr@777 296 HeapWord* _prev_top_at_mark_start;
ysr@777 297 HeapWord* _next_top_at_mark_start;
ysr@777 298 // If a collection pause is in progress, this is the top at the start
ysr@777 299 // of that pause.
ysr@777 300
ysr@777 301 // We've counted the marked bytes of objects below here.
ysr@777 302 HeapWord* _top_at_conc_mark_count;
ysr@777 303
ysr@777 304 void init_top_at_mark_start() {
ysr@777 305 assert(_prev_marked_bytes == 0 &&
ysr@777 306 _next_marked_bytes == 0,
ysr@777 307 "Must be called after zero_marked_bytes.");
ysr@777 308 HeapWord* bot = bottom();
ysr@777 309 _prev_top_at_mark_start = bot;
ysr@777 310 _next_top_at_mark_start = bot;
ysr@777 311 _top_at_conc_mark_count = bot;
ysr@777 312 }
ysr@777 313
ysr@777 314 void set_young_type(YoungType new_type) {
ysr@777 315 //assert(_young_type != new_type, "setting the same type" );
ysr@777 316 // TODO: add more assertions here
ysr@777 317 _young_type = new_type;
ysr@777 318 }
ysr@777 319
johnc@1829 320 // Cached attributes used in the collection set policy information
johnc@1829 321
johnc@1829 322 // The RSet length that was added to the total value
johnc@1829 323 // for the collection set.
johnc@1829 324 size_t _recorded_rs_length;
johnc@1829 325
johnc@1829 326 // The predicted elapsed time that was added to total value
johnc@1829 327 // for the collection set.
johnc@1829 328 double _predicted_elapsed_time_ms;
johnc@1829 329
johnc@1829 330 // The predicted number of bytes to copy that was added to
johnc@1829 331 // the total value for the collection set.
johnc@1829 332 size_t _predicted_bytes_to_copy;
johnc@1829 333
ysr@777 334 public:
ysr@777 335 // If "is_zeroed" is "true", the region "mr" can be assumed to contain zeros.
ysr@777 336 HeapRegion(G1BlockOffsetSharedArray* sharedOffsetArray,
ysr@777 337 MemRegion mr, bool is_zeroed);
ysr@777 338
tonyp@1377 339 static int LogOfHRGrainBytes;
tonyp@1377 340 static int LogOfHRGrainWords;
tonyp@1377 341 // The normal type of these should be size_t. However, they used to
tonyp@1377 342 // be members of an enum before and they are assumed by the
tonyp@1377 343 // compilers to be ints. To avoid going and fixing all their uses,
tonyp@1377 344 // I'm declaring them as ints. I'm not anticipating heap region
tonyp@1377 345 // sizes to reach anywhere near 2g, so using an int here is safe.
tonyp@1377 346 static int GrainBytes;
tonyp@1377 347 static int GrainWords;
tonyp@1377 348 static int CardsPerRegion;
tonyp@1377 349
tonyp@1377 350 // It sets up the heap region size (GrainBytes / GrainWords), as
tonyp@1377 351 // well as other related fields that are based on the heap region
tonyp@1377 352 // size (LogOfHRGrainBytes / LogOfHRGrainWords /
tonyp@1377 353 // CardsPerRegion). All those fields are considered constant
tonyp@1377 354 // throughout the JVM's execution, therefore they should only be set
tonyp@1377 355 // up once during initialization time.
tonyp@1377 356 static void setup_heap_region_size(uintx min_heap_size);
ysr@777 357
tonyp@790 358 enum ClaimValues {
tonyp@790 359 InitialClaimValue = 0,
tonyp@790 360 FinalCountClaimValue = 1,
tonyp@790 361 NoteEndClaimValue = 2,
tonyp@825 362 ScrubRemSetClaimValue = 3,
apetrusenko@1061 363 ParVerifyClaimValue = 4,
apetrusenko@1061 364 RebuildRSClaimValue = 5
tonyp@790 365 };
tonyp@790 366
tonyp@2454 367 inline HeapWord* par_allocate_no_bot_updates(size_t word_size) {
tonyp@2454 368 assert(is_young(), "we can only skip BOT updates on young regions");
tonyp@2454 369 return ContiguousSpace::par_allocate(word_size);
tonyp@2454 370 }
tonyp@2454 371 inline HeapWord* allocate_no_bot_updates(size_t word_size) {
tonyp@2454 372 assert(is_young(), "we can only skip BOT updates on young regions");
tonyp@2454 373 return ContiguousSpace::allocate(word_size);
tonyp@2454 374 }
tonyp@2454 375
ysr@777 376 // If this region is a member of a HeapRegionSeq, the index in that
ysr@777 377 // sequence, otherwise -1.
ysr@777 378 int hrs_index() const { return _hrs_index; }
ysr@777 379 void set_hrs_index(int index) { _hrs_index = index; }
ysr@777 380
ysr@777 381 // The number of bytes marked live in the region in the last marking phase.
ysr@777 382 size_t marked_bytes() { return _prev_marked_bytes; }
ysr@777 383 // The number of bytes counted in the next marking.
ysr@777 384 size_t next_marked_bytes() { return _next_marked_bytes; }
ysr@777 385 // The number of bytes live wrt the next marking.
ysr@777 386 size_t next_live_bytes() {
ysr@777 387 return (top() - next_top_at_mark_start())
ysr@777 388 * HeapWordSize
ysr@777 389 + next_marked_bytes();
ysr@777 390 }
ysr@777 391
ysr@777 392 // A lower bound on the amount of garbage bytes in the region.
ysr@777 393 size_t garbage_bytes() {
ysr@777 394 size_t used_at_mark_start_bytes =
ysr@777 395 (prev_top_at_mark_start() - bottom()) * HeapWordSize;
ysr@777 396 assert(used_at_mark_start_bytes >= marked_bytes(),
ysr@777 397 "Can't mark more than we have.");
ysr@777 398 return used_at_mark_start_bytes - marked_bytes();
ysr@777 399 }
ysr@777 400
ysr@777 401 // An upper bound on the number of live bytes in the region.
ysr@777 402 size_t max_live_bytes() { return used() - garbage_bytes(); }
ysr@777 403
ysr@777 404 void add_to_marked_bytes(size_t incr_bytes) {
ysr@777 405 _next_marked_bytes = _next_marked_bytes + incr_bytes;
ysr@777 406 guarantee( _next_marked_bytes <= used(), "invariant" );
ysr@777 407 }
ysr@777 408
ysr@777 409 void zero_marked_bytes() {
ysr@777 410 _prev_marked_bytes = _next_marked_bytes = 0;
ysr@777 411 }
ysr@777 412
tonyp@790 413 bool isHumongous() const { return _humongous_type != NotHumongous; }
tonyp@790 414 bool startsHumongous() const { return _humongous_type == StartsHumongous; }
tonyp@790 415 bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
ysr@777 416 // For a humongous region, region in which it starts.
ysr@777 417 HeapRegion* humongous_start_region() const {
ysr@777 418 return _humongous_start_region;
ysr@777 419 }
ysr@777 420
tonyp@2453 421 // Makes the current region be a "starts humongous" region, i.e.,
tonyp@2453 422 // the first region in a series of one or more contiguous regions
tonyp@2453 423 // that will contain a single "humongous" object. The two parameters
tonyp@2453 424 // are as follows:
tonyp@2453 425 //
tonyp@2453 426 // new_top : The new value of the top field of this region which
tonyp@2453 427 // points to the end of the humongous object that's being
tonyp@2453 428 // allocated. If there is more than one region in the series, top
tonyp@2453 429 // will lie beyond this region's original end field and on the last
tonyp@2453 430 // region in the series.
tonyp@2453 431 //
tonyp@2453 432 // new_end : The new value of the end field of this region which
tonyp@2453 433 // points to the end of the last region in the series. If there is
tonyp@2453 434 // one region in the series (namely: this one) end will be the same
tonyp@2453 435 // as the original end of this region.
tonyp@2453 436 //
tonyp@2453 437 // Updating top and end as described above makes this region look as
tonyp@2453 438 // if it spans the entire space taken up by all the regions in the
tonyp@2453 439 // series and an single allocation moved its top to new_top. This
tonyp@2453 440 // ensures that the space (capacity / allocated) taken up by all
tonyp@2453 441 // humongous regions can be calculated by just looking at the
tonyp@2453 442 // "starts humongous" regions and by ignoring the "continues
tonyp@2453 443 // humongous" regions.
tonyp@2453 444 void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);
ysr@777 445
tonyp@2453 446 // Makes the current region be a "continues humongous'
tonyp@2453 447 // region. first_hr is the "start humongous" region of the series
tonyp@2453 448 // which this region will be part of.
tonyp@2453 449 void set_continuesHumongous(HeapRegion* first_hr);
ysr@777 450
tonyp@2472 451 // Unsets the humongous-related fields on the region.
tonyp@2472 452 void set_notHumongous();
tonyp@2472 453
ysr@777 454 // If the region has a remembered set, return a pointer to it.
ysr@777 455 HeapRegionRemSet* rem_set() const {
ysr@777 456 return _rem_set;
ysr@777 457 }
ysr@777 458
ysr@777 459 // True iff the region is in current collection_set.
ysr@777 460 bool in_collection_set() const {
ysr@777 461 return _in_collection_set;
ysr@777 462 }
ysr@777 463 void set_in_collection_set(bool b) {
ysr@777 464 _in_collection_set = b;
ysr@777 465 }
ysr@777 466 HeapRegion* next_in_collection_set() {
ysr@777 467 assert(in_collection_set(), "should only invoke on member of CS.");
ysr@777 468 assert(_next_in_special_set == NULL ||
ysr@777 469 _next_in_special_set->in_collection_set(),
ysr@777 470 "Malformed CS.");
ysr@777 471 return _next_in_special_set;
ysr@777 472 }
ysr@777 473 void set_next_in_collection_set(HeapRegion* r) {
ysr@777 474 assert(in_collection_set(), "should only invoke on member of CS.");
ysr@777 475 assert(r == NULL || r->in_collection_set(), "Malformed CS.");
ysr@777 476 _next_in_special_set = r;
ysr@777 477 }
ysr@777 478
ysr@777 479 // True iff it is or has been an allocation region in the current
ysr@777 480 // collection pause.
ysr@777 481 bool is_gc_alloc_region() const {
ysr@777 482 return _is_gc_alloc_region;
ysr@777 483 }
ysr@777 484 void set_is_gc_alloc_region(bool b) {
ysr@777 485 _is_gc_alloc_region = b;
ysr@777 486 }
ysr@777 487 HeapRegion* next_gc_alloc_region() {
ysr@777 488 assert(is_gc_alloc_region(), "should only invoke on member of CS.");
ysr@777 489 assert(_next_in_special_set == NULL ||
ysr@777 490 _next_in_special_set->is_gc_alloc_region(),
ysr@777 491 "Malformed CS.");
ysr@777 492 return _next_in_special_set;
ysr@777 493 }
ysr@777 494 void set_next_gc_alloc_region(HeapRegion* r) {
ysr@777 495 assert(is_gc_alloc_region(), "should only invoke on member of CS.");
ysr@777 496 assert(r == NULL || r->is_gc_alloc_region(), "Malformed CS.");
ysr@777 497 _next_in_special_set = r;
ysr@777 498 }
ysr@777 499
tonyp@2472 500 // Methods used by the HeapRegionSetBase class and subclasses.
tonyp@2472 501
tonyp@2472 502 // Getter and setter for the next field used to link regions into
tonyp@2472 503 // linked lists.
tonyp@2472 504 HeapRegion* next() { return _next; }
tonyp@2472 505
tonyp@2472 506 void set_next(HeapRegion* next) { _next = next; }
tonyp@2472 507
tonyp@2472 508 // Every region added to a set is tagged with a reference to that
tonyp@2472 509 // set. This is used for doing consistency checking to make sure that
tonyp@2472 510 // the contents of a set are as they should be and it's only
tonyp@2472 511 // available in non-product builds.
tonyp@2472 512 #ifdef ASSERT
tonyp@2472 513 void set_containing_set(HeapRegionSetBase* containing_set) {
tonyp@2472 514 assert((containing_set == NULL && _containing_set != NULL) ||
tonyp@2472 515 (containing_set != NULL && _containing_set == NULL),
tonyp@2472 516 err_msg("containing_set: "PTR_FORMAT" "
tonyp@2472 517 "_containing_set: "PTR_FORMAT,
tonyp@2472 518 containing_set, _containing_set));
tonyp@2472 519
tonyp@2472 520 _containing_set = containing_set;
tonyp@2643 521 }
tonyp@2472 522
tonyp@2472 523 HeapRegionSetBase* containing_set() { return _containing_set; }
tonyp@2472 524 #else // ASSERT
tonyp@2472 525 void set_containing_set(HeapRegionSetBase* containing_set) { }
tonyp@2472 526
tonyp@2643 527 // containing_set() is only used in asserts so there's no reason
tonyp@2472 528 // to provide a dummy version of it.
tonyp@2472 529 #endif // ASSERT
tonyp@2472 530
tonyp@2472 531 // If we want to remove regions from a list in bulk we can simply tag
tonyp@2472 532 // them with the pending_removal tag and call the
tonyp@2472 533 // remove_all_pending() method on the list.
tonyp@2472 534
tonyp@2472 535 bool pending_removal() { return _pending_removal; }
tonyp@2472 536
tonyp@2472 537 void set_pending_removal(bool pending_removal) {
tonyp@2643 538 if (pending_removal) {
tonyp@2643 539 assert(!_pending_removal && containing_set() != NULL,
tonyp@2643 540 "can only set pending removal to true if it's false and "
tonyp@2643 541 "the region belongs to a region set");
tonyp@2643 542 } else {
tonyp@2643 543 assert( _pending_removal && containing_set() == NULL,
tonyp@2643 544 "can only set pending removal to false if it's true and "
tonyp@2643 545 "the region does not belong to a region set");
tonyp@2643 546 }
tonyp@2472 547
tonyp@2472 548 _pending_removal = pending_removal;
ysr@777 549 }
ysr@777 550
ysr@777 551 HeapRegion* get_next_young_region() { return _next_young_region; }
ysr@777 552 void set_next_young_region(HeapRegion* hr) {
ysr@777 553 _next_young_region = hr;
ysr@777 554 }
ysr@777 555
apetrusenko@1231 556 HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
apetrusenko@1231 557 HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
apetrusenko@1231 558 void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
apetrusenko@1231 559 bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
apetrusenko@1231 560
ysr@777 561 // Allows logical separation between objects allocated before and after.
ysr@777 562 void save_marks();
ysr@777 563
ysr@777 564 // Reset HR stuff to default values.
ysr@777 565 void hr_clear(bool par, bool clear_space);
ysr@777 566
tonyp@791 567 void initialize(MemRegion mr, bool clear_space, bool mangle_space);
ysr@777 568
ysr@777 569 // Get the start of the unmarked area in this region.
ysr@777 570 HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
ysr@777 571 HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
ysr@777 572
ysr@777 573 // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
ysr@777 574 // allocated in the current region before the last call to "save_mark".
ysr@777 575 void oop_before_save_marks_iterate(OopClosure* cl);
ysr@777 576
ysr@777 577 // This call determines the "filter kind" argument that will be used for
ysr@777 578 // the next call to "new_dcto_cl" on this region with the "traditional"
ysr@777 579 // signature (i.e., the call below.) The default, in the absence of a
ysr@777 580 // preceding call to this method, is "NoFilterKind", and a call to this
ysr@777 581 // method is necessary for each such call, or else it reverts to the
ysr@777 582 // default.
ysr@777 583 // (This is really ugly, but all other methods I could think of changed a
ysr@777 584 // lot of main-line code for G1.)
ysr@777 585 void set_next_filter_kind(HeapRegionDCTOC::FilterKind nfk) {
ysr@777 586 _next_fk = nfk;
ysr@777 587 }
ysr@777 588
ysr@777 589 DirtyCardToOopClosure*
ysr@777 590 new_dcto_closure(OopClosure* cl,
ysr@777 591 CardTableModRefBS::PrecisionStyle precision,
ysr@777 592 HeapRegionDCTOC::FilterKind fk);
ysr@777 593
ysr@777 594 #if WHASSUP
ysr@777 595 DirtyCardToOopClosure*
ysr@777 596 new_dcto_closure(OopClosure* cl,
ysr@777 597 CardTableModRefBS::PrecisionStyle precision,
ysr@777 598 HeapWord* boundary) {
ysr@777 599 assert(boundary == NULL, "This arg doesn't make sense here.");
ysr@777 600 DirtyCardToOopClosure* res = new_dcto_closure(cl, precision, _next_fk);
ysr@777 601 _next_fk = HeapRegionDCTOC::NoFilterKind;
ysr@777 602 return res;
ysr@777 603 }
ysr@777 604 #endif
ysr@777 605
ysr@777 606 //
ysr@777 607 // Note the start or end of marking. This tells the heap region
ysr@777 608 // that the collector is about to start or has finished (concurrently)
ysr@777 609 // marking the heap.
ysr@777 610 //
ysr@777 611
ysr@777 612 // Note the start of a marking phase. Record the
ysr@777 613 // start of the unmarked area of the region here.
ysr@777 614 void note_start_of_marking(bool during_initial_mark) {
ysr@777 615 init_top_at_conc_mark_count();
ysr@777 616 _next_marked_bytes = 0;
ysr@777 617 if (during_initial_mark && is_young() && !is_survivor())
ysr@777 618 _next_top_at_mark_start = bottom();
ysr@777 619 else
ysr@777 620 _next_top_at_mark_start = top();
ysr@777 621 }
ysr@777 622
ysr@777 623 // Note the end of a marking phase. Install the start of
ysr@777 624 // the unmarked area that was captured at start of marking.
ysr@777 625 void note_end_of_marking() {
ysr@777 626 _prev_top_at_mark_start = _next_top_at_mark_start;
ysr@777 627 _prev_marked_bytes = _next_marked_bytes;
ysr@777 628 _next_marked_bytes = 0;
ysr@777 629
ysr@777 630 guarantee(_prev_marked_bytes <=
ysr@777 631 (size_t) (prev_top_at_mark_start() - bottom()) * HeapWordSize,
ysr@777 632 "invariant");
ysr@777 633 }
ysr@777 634
ysr@777 635 // After an evacuation, we need to update _next_top_at_mark_start
ysr@777 636 // to be the current top. Note this is only valid if we have only
ysr@777 637 // ever evacuated into this region. If we evacuate, allocate, and
ysr@777 638 // then evacuate we are in deep doodoo.
ysr@777 639 void note_end_of_copying() {
tonyp@1456 640 assert(top() >= _next_top_at_mark_start, "Increase only");
tonyp@1456 641 _next_top_at_mark_start = top();
ysr@777 642 }
ysr@777 643
ysr@777 644 // Returns "false" iff no object in the region was allocated when the
ysr@777 645 // last mark phase ended.
ysr@777 646 bool is_marked() { return _prev_top_at_mark_start != bottom(); }
ysr@777 647
ysr@777 648 // If "is_marked()" is true, then this is the index of the region in
ysr@777 649 // an array constructed at the end of marking of the regions in a
ysr@777 650 // "desirability" order.
ysr@777 651 int sort_index() {
ysr@777 652 return _sort_index;
ysr@777 653 }
ysr@777 654 void set_sort_index(int i) {
ysr@777 655 _sort_index = i;
ysr@777 656 }
ysr@777 657
ysr@777 658 void init_top_at_conc_mark_count() {
ysr@777 659 _top_at_conc_mark_count = bottom();
ysr@777 660 }
ysr@777 661
ysr@777 662 void set_top_at_conc_mark_count(HeapWord *cur) {
ysr@777 663 assert(bottom() <= cur && cur <= end(), "Sanity.");
ysr@777 664 _top_at_conc_mark_count = cur;
ysr@777 665 }
ysr@777 666
ysr@777 667 HeapWord* top_at_conc_mark_count() {
ysr@777 668 return _top_at_conc_mark_count;
ysr@777 669 }
ysr@777 670
ysr@777 671 void reset_during_compaction() {
ysr@777 672 guarantee( isHumongous() && startsHumongous(),
ysr@777 673 "should only be called for humongous regions");
ysr@777 674
ysr@777 675 zero_marked_bytes();
ysr@777 676 init_top_at_mark_start();
ysr@777 677 }
ysr@777 678
ysr@777 679 // <PREDICTION>
ysr@777 680 void calc_gc_efficiency(void);
ysr@777 681 double gc_efficiency() { return _gc_efficiency;}
ysr@777 682 // </PREDICTION>
ysr@777 683
ysr@777 684 bool is_young() const { return _young_type != NotYoung; }
ysr@777 685 bool is_survivor() const { return _young_type == Survivor; }
ysr@777 686
ysr@777 687 int young_index_in_cset() const { return _young_index_in_cset; }
ysr@777 688 void set_young_index_in_cset(int index) {
ysr@777 689 assert( (index == -1) || is_young(), "pre-condition" );
ysr@777 690 _young_index_in_cset = index;
ysr@777 691 }
ysr@777 692
ysr@777 693 int age_in_surv_rate_group() {
ysr@777 694 assert( _surv_rate_group != NULL, "pre-condition" );
ysr@777 695 assert( _age_index > -1, "pre-condition" );
ysr@777 696 return _surv_rate_group->age_in_group(_age_index);
ysr@777 697 }
ysr@777 698
ysr@777 699 void record_surv_words_in_group(size_t words_survived) {
ysr@777 700 assert( _surv_rate_group != NULL, "pre-condition" );
ysr@777 701 assert( _age_index > -1, "pre-condition" );
ysr@777 702 int age_in_group = age_in_surv_rate_group();
ysr@777 703 _surv_rate_group->record_surviving_words(age_in_group, words_survived);
ysr@777 704 }
ysr@777 705
ysr@777 706 int age_in_surv_rate_group_cond() {
ysr@777 707 if (_surv_rate_group != NULL)
ysr@777 708 return age_in_surv_rate_group();
ysr@777 709 else
ysr@777 710 return -1;
ysr@777 711 }
ysr@777 712
ysr@777 713 SurvRateGroup* surv_rate_group() {
ysr@777 714 return _surv_rate_group;
ysr@777 715 }
ysr@777 716
ysr@777 717 void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
ysr@777 718 assert( surv_rate_group != NULL, "pre-condition" );
ysr@777 719 assert( _surv_rate_group == NULL, "pre-condition" );
ysr@777 720 assert( is_young(), "pre-condition" );
ysr@777 721
ysr@777 722 _surv_rate_group = surv_rate_group;
ysr@777 723 _age_index = surv_rate_group->next_age_index();
ysr@777 724 }
ysr@777 725
ysr@777 726 void uninstall_surv_rate_group() {
ysr@777 727 if (_surv_rate_group != NULL) {
ysr@777 728 assert( _age_index > -1, "pre-condition" );
ysr@777 729 assert( is_young(), "pre-condition" );
ysr@777 730
ysr@777 731 _surv_rate_group = NULL;
ysr@777 732 _age_index = -1;
ysr@777 733 } else {
ysr@777 734 assert( _age_index == -1, "pre-condition" );
ysr@777 735 }
ysr@777 736 }
ysr@777 737
ysr@777 738 void set_young() { set_young_type(Young); }
ysr@777 739
ysr@777 740 void set_survivor() { set_young_type(Survivor); }
ysr@777 741
ysr@777 742 void set_not_young() { set_young_type(NotYoung); }
ysr@777 743
ysr@777 744 // Determine if an object has been allocated since the last
ysr@777 745 // mark performed by the collector. This returns true iff the object
ysr@777 746 // is within the unmarked area of the region.
ysr@777 747 bool obj_allocated_since_prev_marking(oop obj) const {
ysr@777 748 return (HeapWord *) obj >= prev_top_at_mark_start();
ysr@777 749 }
ysr@777 750 bool obj_allocated_since_next_marking(oop obj) const {
ysr@777 751 return (HeapWord *) obj >= next_top_at_mark_start();
ysr@777 752 }
ysr@777 753
ysr@777 754 // For parallel heapRegion traversal.
ysr@777 755 bool claimHeapRegion(int claimValue);
ysr@777 756 jint claim_value() { return _claimed; }
ysr@777 757 // Use this carefully: only when you're sure no one is claiming...
ysr@777 758 void set_claim_value(int claimValue) { _claimed = claimValue; }
ysr@777 759
ysr@777 760 // Returns the "evacuation_failed" property of the region.
ysr@777 761 bool evacuation_failed() { return _evacuation_failed; }
ysr@777 762
ysr@777 763 // Sets the "evacuation_failed" property of the region.
ysr@777 764 void set_evacuation_failed(bool b) {
ysr@777 765 _evacuation_failed = b;
ysr@777 766
ysr@777 767 if (b) {
ysr@777 768 init_top_at_conc_mark_count();
ysr@777 769 _next_marked_bytes = 0;
ysr@777 770 }
ysr@777 771 }
ysr@777 772
ysr@777 773 // Requires that "mr" be entirely within the region.
ysr@777 774 // Apply "cl->do_object" to all objects that intersect with "mr".
ysr@777 775 // If the iteration encounters an unparseable portion of the region,
ysr@777 776 // or if "cl->abort()" is true after a closure application,
ysr@777 777 // terminate the iteration and return the address of the start of the
ysr@777 778 // subregion that isn't done. (The two can be distinguished by querying
ysr@777 779 // "cl->abort()".) Return of "NULL" indicates that the iteration
ysr@777 780 // completed.
ysr@777 781 HeapWord*
ysr@777 782 object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
ysr@777 783
johnc@2021 784 // In this version - if filter_young is true and the region
johnc@2021 785 // is a young region then we skip the iteration.
ysr@777 786 HeapWord*
ysr@777 787 oops_on_card_seq_iterate_careful(MemRegion mr,
johnc@2021 788 FilterOutOfRegionClosure* cl,
johnc@2021 789 bool filter_young);
ysr@777 790
ysr@777 791 // A version of block start that is guaranteed to find *some* block
ysr@777 792 // boundary at or before "p", but does not object iteration, and may
ysr@777 793 // therefore be used safely when the heap is unparseable.
ysr@777 794 HeapWord* block_start_careful(const void* p) const {
ysr@777 795 return _offsets.block_start_careful(p);
ysr@777 796 }
ysr@777 797
ysr@777 798 // Requires that "addr" is within the region. Returns the start of the
ysr@777 799 // first ("careful") block that starts at or after "addr", or else the
ysr@777 800 // "end" of the region if there is no such block.
ysr@777 801 HeapWord* next_block_start_careful(HeapWord* addr);
ysr@777 802
johnc@1829 803 size_t recorded_rs_length() const { return _recorded_rs_length; }
johnc@1829 804 double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
johnc@1829 805 size_t predicted_bytes_to_copy() const { return _predicted_bytes_to_copy; }
johnc@1829 806
johnc@1829 807 void set_recorded_rs_length(size_t rs_length) {
johnc@1829 808 _recorded_rs_length = rs_length;
johnc@1829 809 }
johnc@1829 810
johnc@1829 811 void set_predicted_elapsed_time_ms(double ms) {
johnc@1829 812 _predicted_elapsed_time_ms = ms;
johnc@1829 813 }
johnc@1829 814
johnc@1829 815 void set_predicted_bytes_to_copy(size_t bytes) {
johnc@1829 816 _predicted_bytes_to_copy = bytes;
johnc@1829 817 }
johnc@1829 818
ysr@777 819 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
ysr@777 820 virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
ysr@777 821 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
ysr@777 822
ysr@777 823 CompactibleSpace* next_compaction_space() const;
ysr@777 824
ysr@777 825 virtual void reset_after_compaction();
ysr@777 826
ysr@777 827 void print() const;
ysr@777 828 void print_on(outputStream* st) const;
ysr@777 829
tonyp@1246 830 // use_prev_marking == true -> use "prev" marking information,
tonyp@1246 831 // use_prev_marking == false -> use "next" marking information
tonyp@1246 832 // NOTE: Only the "prev" marking information is guaranteed to be
tonyp@1246 833 // consistent most of the time, so most calls to this should use
tonyp@1246 834 // use_prev_marking == true. Currently, there is only one case where
tonyp@1246 835 // this is called with use_prev_marking == false, which is to verify
tonyp@1246 836 // the "next" marking information at the end of remark.
tonyp@1455 837 void verify(bool allow_dirty, bool use_prev_marking, bool *failures) const;
tonyp@1246 838
tonyp@1246 839 // Override; it uses the "prev" marking information
ysr@777 840 virtual void verify(bool allow_dirty) const;
ysr@777 841 };
ysr@777 842
ysr@777 843 // HeapRegionClosure is used for iterating over regions.
ysr@777 844 // Terminates the iteration when the "doHeapRegion" method returns "true".
ysr@777 845 class HeapRegionClosure : public StackObj {
ysr@777 846 friend class HeapRegionSeq;
ysr@777 847 friend class G1CollectedHeap;
ysr@777 848
ysr@777 849 bool _complete;
ysr@777 850 void incomplete() { _complete = false; }
ysr@777 851
ysr@777 852 public:
ysr@777 853 HeapRegionClosure(): _complete(true) {}
ysr@777 854
ysr@777 855 // Typically called on each region until it returns true.
ysr@777 856 virtual bool doHeapRegion(HeapRegion* r) = 0;
ysr@777 857
ysr@777 858 // True after iteration if the closure was applied to all heap regions
ysr@777 859 // and returned "false" in all cases.
ysr@777 860 bool complete() { return _complete; }
ysr@777 861 };
ysr@777 862
ysr@777 863 #endif // SERIALGC
stefank@2314 864
stefank@2314 865 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP

mercurial