src/share/vm/gc_implementation/g1/heapRegion.hpp

Wed, 12 Jan 2011 16:34:25 -0500

author
tonyp
date
Wed, 12 Jan 2011 16:34:25 -0500
changeset 2454
b158bed62ef5
parent 2453
2250ee17e258
child 2472
0fa27f37d4d4
permissions
-rw-r--r--

6994297: G1: do first-level slow-path allocations with a CAS
Summary: First attempt to allocate out the current alloc region using a CAS instead of taking the Heap_lock (first level of G1's slow allocation path). Only if that fails and it's necessary to replace the current alloc region take the Heap_lock (that's the second level of G1's slow allocation path).
Reviewed-by: johnc, brutisso, ysr

ysr@777 1 /*
tonyp@2453 2 * Copyright (c) 2001, 2011, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
stefank@2314 29 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
stefank@2314 30 #include "gc_implementation/g1/survRateGroup.hpp"
stefank@2314 31 #include "gc_implementation/shared/ageTable.hpp"
stefank@2314 32 #include "gc_implementation/shared/spaceDecorator.hpp"
stefank@2314 33 #include "memory/space.inline.hpp"
stefank@2314 34 #include "memory/watermark.hpp"
stefank@2314 35
ysr@777 36 #ifndef SERIALGC
ysr@777 37
ysr@777 38 // A HeapRegion is the smallest piece of a G1CollectedHeap that
ysr@777 39 // can be collected independently.
ysr@777 40
ysr@777 41 // NOTE: Although a HeapRegion is a Space, its
ysr@777 42 // Space::initDirtyCardClosure method must not be called.
ysr@777 43 // The problem is that the existence of this method breaks
ysr@777 44 // the independence of barrier sets from remembered sets.
ysr@777 45 // The solution is to remove this method from the definition
ysr@777 46 // of a Space.
ysr@777 47
ysr@777 48 class CompactibleSpace;
ysr@777 49 class ContiguousSpace;
ysr@777 50 class HeapRegionRemSet;
ysr@777 51 class HeapRegionRemSetIterator;
ysr@777 52 class HeapRegion;
ysr@777 53
ysr@777 54 // A dirty card to oop closure for heap regions. It
ysr@777 55 // knows how to get the G1 heap and how to use the bitmap
ysr@777 56 // in the concurrent marker used by G1 to filter remembered
ysr@777 57 // sets.
ysr@777 58
ysr@777 59 class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
ysr@777 60 public:
ysr@777 61 // Specification of possible DirtyCardToOopClosure filtering.
ysr@777 62 enum FilterKind {
ysr@777 63 NoFilterKind,
ysr@777 64 IntoCSFilterKind,
ysr@777 65 OutOfRegionFilterKind
ysr@777 66 };
ysr@777 67
ysr@777 68 protected:
ysr@777 69 HeapRegion* _hr;
ysr@777 70 FilterKind _fk;
ysr@777 71 G1CollectedHeap* _g1;
ysr@777 72
ysr@777 73 void walk_mem_region_with_cl(MemRegion mr,
ysr@777 74 HeapWord* bottom, HeapWord* top,
ysr@777 75 OopClosure* cl);
ysr@777 76
ysr@777 77 // We don't specialize this for FilteringClosure; filtering is handled by
ysr@777 78 // the "FilterKind" mechanism. But we provide this to avoid a compiler
ysr@777 79 // warning.
ysr@777 80 void walk_mem_region_with_cl(MemRegion mr,
ysr@777 81 HeapWord* bottom, HeapWord* top,
ysr@777 82 FilteringClosure* cl) {
ysr@777 83 HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
ysr@777 84 (OopClosure*)cl);
ysr@777 85 }
ysr@777 86
ysr@777 87 // Get the actual top of the area on which the closure will
ysr@777 88 // operate, given where the top is assumed to be (the end of the
ysr@777 89 // memory region passed to do_MemRegion) and where the object
ysr@777 90 // at the top is assumed to start. For example, an object may
ysr@777 91 // start at the top but actually extend past the assumed top,
ysr@777 92 // in which case the top becomes the end of the object.
ysr@777 93 HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
ysr@777 94 return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
ysr@777 95 }
ysr@777 96
ysr@777 97 // Walk the given memory region from bottom to (actual) top
ysr@777 98 // looking for objects and applying the oop closure (_cl) to
ysr@777 99 // them. The base implementation of this treats the area as
ysr@777 100 // blocks, where a block may or may not be an object. Sub-
ysr@777 101 // classes should override this to provide more accurate
ysr@777 102 // or possibly more efficient walking.
ysr@777 103 void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
ysr@777 104 Filtering_DCTOC::walk_mem_region(mr, bottom, top);
ysr@777 105 }
ysr@777 106
ysr@777 107 public:
ysr@777 108 HeapRegionDCTOC(G1CollectedHeap* g1,
ysr@777 109 HeapRegion* hr, OopClosure* cl,
ysr@777 110 CardTableModRefBS::PrecisionStyle precision,
ysr@777 111 FilterKind fk);
ysr@777 112 };
ysr@777 113
ysr@777 114
ysr@777 115 // The complicating factor is that BlockOffsetTable diverged
ysr@777 116 // significantly, and we need functionality that is only in the G1 version.
ysr@777 117 // So I copied that code, which led to an alternate G1 version of
ysr@777 118 // OffsetTableContigSpace. If the two versions of BlockOffsetTable could
ysr@777 119 // be reconciled, then G1OffsetTableContigSpace could go away.
ysr@777 120
ysr@777 121 // The idea behind time stamps is the following. Doing a save_marks on
ysr@777 122 // all regions at every GC pause is time consuming (if I remember
ysr@777 123 // well, 10ms or so). So, we would like to do that only for regions
ysr@777 124 // that are GC alloc regions. To achieve this, we use time
ysr@777 125 // stamps. For every evacuation pause, G1CollectedHeap generates a
ysr@777 126 // unique time stamp (essentially a counter that gets
ysr@777 127 // incremented). Every time we want to call save_marks on a region,
ysr@777 128 // we set the saved_mark_word to top and also copy the current GC
ysr@777 129 // time stamp to the time stamp field of the space. Reading the
ysr@777 130 // saved_mark_word involves checking the time stamp of the
ysr@777 131 // region. If it is the same as the current GC time stamp, then we
ysr@777 132 // can safely read the saved_mark_word field, as it is valid. If the
ysr@777 133 // time stamp of the region is not the same as the current GC time
ysr@777 134 // stamp, then we instead read top, as the saved_mark_word field is
ysr@777 135 // invalid. Time stamps (on the regions and also on the
ysr@777 136 // G1CollectedHeap) are reset at every cleanup (we iterate over
ysr@777 137 // the regions anyway) and at the end of a Full GC. The current scheme
ysr@777 138 // that uses sequential unsigned ints will fail only if we have 4b
ysr@777 139 // evacuation pauses between two cleanups, which is _highly_ unlikely.
ysr@777 140
ysr@777 141 class G1OffsetTableContigSpace: public ContiguousSpace {
ysr@777 142 friend class VMStructs;
ysr@777 143 protected:
ysr@777 144 G1BlockOffsetArrayContigSpace _offsets;
ysr@777 145 Mutex _par_alloc_lock;
ysr@777 146 volatile unsigned _gc_time_stamp;
ysr@777 147
ysr@777 148 public:
ysr@777 149 // Constructor. If "is_zeroed" is true, the MemRegion "mr" may be
ysr@777 150 // assumed to contain zeros.
ysr@777 151 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
ysr@777 152 MemRegion mr, bool is_zeroed = false);
ysr@777 153
ysr@777 154 void set_bottom(HeapWord* value);
ysr@777 155 void set_end(HeapWord* value);
ysr@777 156
ysr@777 157 virtual HeapWord* saved_mark_word() const;
ysr@777 158 virtual void set_saved_mark();
ysr@777 159 void reset_gc_time_stamp() { _gc_time_stamp = 0; }
ysr@777 160
tonyp@791 161 virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
tonyp@791 162 virtual void clear(bool mangle_space);
ysr@777 163
ysr@777 164 HeapWord* block_start(const void* p);
ysr@777 165 HeapWord* block_start_const(const void* p) const;
ysr@777 166
ysr@777 167 // Add offset table update.
ysr@777 168 virtual HeapWord* allocate(size_t word_size);
ysr@777 169 HeapWord* par_allocate(size_t word_size);
ysr@777 170
ysr@777 171 // MarkSweep support phase3
ysr@777 172 virtual HeapWord* initialize_threshold();
ysr@777 173 virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
ysr@777 174
ysr@777 175 virtual void print() const;
tonyp@2453 176
tonyp@2453 177 void reset_bot() {
tonyp@2453 178 _offsets.zero_bottom_entry();
tonyp@2453 179 _offsets.initialize_threshold();
tonyp@2453 180 }
tonyp@2453 181
tonyp@2453 182 void update_bot_for_object(HeapWord* start, size_t word_size) {
tonyp@2453 183 _offsets.alloc_block(start, word_size);
tonyp@2453 184 }
tonyp@2453 185
tonyp@2453 186 void print_bot_on(outputStream* out) {
tonyp@2453 187 _offsets.print_on(out);
tonyp@2453 188 }
ysr@777 189 };
ysr@777 190
ysr@777 191 class HeapRegion: public G1OffsetTableContigSpace {
ysr@777 192 friend class VMStructs;
ysr@777 193 private:
ysr@777 194
tonyp@790 195 enum HumongousType {
tonyp@790 196 NotHumongous = 0,
tonyp@790 197 StartsHumongous,
tonyp@790 198 ContinuesHumongous
tonyp@790 199 };
tonyp@790 200
ysr@777 201 // The next filter kind that should be used for a "new_dcto_cl" call with
ysr@777 202 // the "traditional" signature.
ysr@777 203 HeapRegionDCTOC::FilterKind _next_fk;
ysr@777 204
ysr@777 205 // Requires that the region "mr" be dense with objects, and begin and end
ysr@777 206 // with an object.
ysr@777 207 void oops_in_mr_iterate(MemRegion mr, OopClosure* cl);
ysr@777 208
ysr@777 209 // The remembered set for this region.
ysr@777 210 // (Might want to make this "inline" later, to avoid some alloc failure
ysr@777 211 // issues.)
ysr@777 212 HeapRegionRemSet* _rem_set;
ysr@777 213
ysr@777 214 G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
ysr@777 215
ysr@777 216 protected:
ysr@777 217 // If this region is a member of a HeapRegionSeq, the index in that
ysr@777 218 // sequence, otherwise -1.
ysr@777 219 int _hrs_index;
ysr@777 220
tonyp@790 221 HumongousType _humongous_type;
ysr@777 222 // For a humongous region, region in which it starts.
ysr@777 223 HeapRegion* _humongous_start_region;
ysr@777 224 // For the start region of a humongous sequence, it's original end().
ysr@777 225 HeapWord* _orig_end;
ysr@777 226
ysr@777 227 // True iff the region is in current collection_set.
ysr@777 228 bool _in_collection_set;
ysr@777 229
ysr@777 230 // True iff the region is on the unclean list, waiting to be zero filled.
ysr@777 231 bool _is_on_unclean_list;
ysr@777 232
ysr@777 233 // True iff the region is on the free list, ready for allocation.
ysr@777 234 bool _is_on_free_list;
ysr@777 235
ysr@777 236 // Is this or has it been an allocation region in the current collection
ysr@777 237 // pause.
ysr@777 238 bool _is_gc_alloc_region;
ysr@777 239
ysr@777 240 // True iff an attempt to evacuate an object in the region failed.
ysr@777 241 bool _evacuation_failed;
ysr@777 242
ysr@777 243 // A heap region may be a member one of a number of special subsets, each
ysr@777 244 // represented as linked lists through the field below. Currently, these
ysr@777 245 // sets include:
ysr@777 246 // The collection set.
ysr@777 247 // The set of allocation regions used in a collection pause.
ysr@777 248 // Spaces that may contain gray objects.
ysr@777 249 HeapRegion* _next_in_special_set;
ysr@777 250
ysr@777 251 // next region in the young "generation" region set
ysr@777 252 HeapRegion* _next_young_region;
ysr@777 253
apetrusenko@1231 254 // Next region whose cards need cleaning
apetrusenko@1231 255 HeapRegion* _next_dirty_cards_region;
apetrusenko@1231 256
ysr@777 257 // For parallel heapRegion traversal.
ysr@777 258 jint _claimed;
ysr@777 259
ysr@777 260 // We use concurrent marking to determine the amount of live data
ysr@777 261 // in each heap region.
ysr@777 262 size_t _prev_marked_bytes; // Bytes known to be live via last completed marking.
ysr@777 263 size_t _next_marked_bytes; // Bytes known to be live via in-progress marking.
ysr@777 264
ysr@777 265 // See "sort_index" method. -1 means is not in the array.
ysr@777 266 int _sort_index;
ysr@777 267
ysr@777 268 // <PREDICTION>
ysr@777 269 double _gc_efficiency;
ysr@777 270 // </PREDICTION>
ysr@777 271
ysr@777 272 enum YoungType {
ysr@777 273 NotYoung, // a region is not young
ysr@777 274 Young, // a region is young
ysr@777 275 Survivor // a region is young and it contains
ysr@777 276 // survivor
ysr@777 277 };
ysr@777 278
johnc@2021 279 volatile YoungType _young_type;
ysr@777 280 int _young_index_in_cset;
ysr@777 281 SurvRateGroup* _surv_rate_group;
ysr@777 282 int _age_index;
ysr@777 283
ysr@777 284 // The start of the unmarked area. The unmarked area extends from this
ysr@777 285 // word until the top and/or end of the region, and is the part
ysr@777 286 // of the region for which no marking was done, i.e. objects may
ysr@777 287 // have been allocated in this part since the last mark phase.
ysr@777 288 // "prev" is the top at the start of the last completed marking.
ysr@777 289 // "next" is the top at the start of the in-progress marking (if any.)
ysr@777 290 HeapWord* _prev_top_at_mark_start;
ysr@777 291 HeapWord* _next_top_at_mark_start;
ysr@777 292 // If a collection pause is in progress, this is the top at the start
ysr@777 293 // of that pause.
ysr@777 294
ysr@777 295 // We've counted the marked bytes of objects below here.
ysr@777 296 HeapWord* _top_at_conc_mark_count;
ysr@777 297
ysr@777 298 void init_top_at_mark_start() {
ysr@777 299 assert(_prev_marked_bytes == 0 &&
ysr@777 300 _next_marked_bytes == 0,
ysr@777 301 "Must be called after zero_marked_bytes.");
ysr@777 302 HeapWord* bot = bottom();
ysr@777 303 _prev_top_at_mark_start = bot;
ysr@777 304 _next_top_at_mark_start = bot;
ysr@777 305 _top_at_conc_mark_count = bot;
ysr@777 306 }
ysr@777 307
ysr@777 308 jint _zfs; // A member of ZeroFillState. Protected by ZF_lock.
ysr@777 309 Thread* _zero_filler; // If _zfs is ZeroFilling, the thread that (last)
ysr@777 310 // made it so.
ysr@777 311
ysr@777 312 void set_young_type(YoungType new_type) {
ysr@777 313 //assert(_young_type != new_type, "setting the same type" );
ysr@777 314 // TODO: add more assertions here
ysr@777 315 _young_type = new_type;
ysr@777 316 }
ysr@777 317
johnc@1829 318 // Cached attributes used in the collection set policy information
johnc@1829 319
johnc@1829 320 // The RSet length that was added to the total value
johnc@1829 321 // for the collection set.
johnc@1829 322 size_t _recorded_rs_length;
johnc@1829 323
johnc@1829 324 // The predicted elapsed time that was added to total value
johnc@1829 325 // for the collection set.
johnc@1829 326 double _predicted_elapsed_time_ms;
johnc@1829 327
johnc@1829 328 // The predicted number of bytes to copy that was added to
johnc@1829 329 // the total value for the collection set.
johnc@1829 330 size_t _predicted_bytes_to_copy;
johnc@1829 331
ysr@777 332 public:
ysr@777 333 // If "is_zeroed" is "true", the region "mr" can be assumed to contain zeros.
ysr@777 334 HeapRegion(G1BlockOffsetSharedArray* sharedOffsetArray,
ysr@777 335 MemRegion mr, bool is_zeroed);
ysr@777 336
tonyp@1377 337 static int LogOfHRGrainBytes;
tonyp@1377 338 static int LogOfHRGrainWords;
tonyp@1377 339 // The normal type of these should be size_t. However, they used to
tonyp@1377 340 // be members of an enum before and they are assumed by the
tonyp@1377 341 // compilers to be ints. To avoid going and fixing all their uses,
tonyp@1377 342 // I'm declaring them as ints. I'm not anticipating heap region
tonyp@1377 343 // sizes to reach anywhere near 2g, so using an int here is safe.
tonyp@1377 344 static int GrainBytes;
tonyp@1377 345 static int GrainWords;
tonyp@1377 346 static int CardsPerRegion;
tonyp@1377 347
tonyp@1377 348 // It sets up the heap region size (GrainBytes / GrainWords), as
tonyp@1377 349 // well as other related fields that are based on the heap region
tonyp@1377 350 // size (LogOfHRGrainBytes / LogOfHRGrainWords /
tonyp@1377 351 // CardsPerRegion). All those fields are considered constant
tonyp@1377 352 // throughout the JVM's execution, therefore they should only be set
tonyp@1377 353 // up once during initialization time.
tonyp@1377 354 static void setup_heap_region_size(uintx min_heap_size);
ysr@777 355
tonyp@790 356 enum ClaimValues {
tonyp@790 357 InitialClaimValue = 0,
tonyp@790 358 FinalCountClaimValue = 1,
tonyp@790 359 NoteEndClaimValue = 2,
tonyp@825 360 ScrubRemSetClaimValue = 3,
apetrusenko@1061 361 ParVerifyClaimValue = 4,
apetrusenko@1061 362 RebuildRSClaimValue = 5
tonyp@790 363 };
tonyp@790 364
ysr@777 365 // Concurrent refinement requires contiguous heap regions (in which TLABs
ysr@777 366 // might be allocated) to be zero-filled. Each region therefore has a
ysr@777 367 // zero-fill-state.
ysr@777 368 enum ZeroFillState {
ysr@777 369 NotZeroFilled,
ysr@777 370 ZeroFilling,
ysr@777 371 ZeroFilled,
ysr@777 372 Allocated
ysr@777 373 };
ysr@777 374
tonyp@2454 375 inline HeapWord* par_allocate_no_bot_updates(size_t word_size) {
tonyp@2454 376 assert(is_young(), "we can only skip BOT updates on young regions");
tonyp@2454 377 return ContiguousSpace::par_allocate(word_size);
tonyp@2454 378 }
tonyp@2454 379 inline HeapWord* allocate_no_bot_updates(size_t word_size) {
tonyp@2454 380 assert(is_young(), "we can only skip BOT updates on young regions");
tonyp@2454 381 return ContiguousSpace::allocate(word_size);
tonyp@2454 382 }
tonyp@2454 383
ysr@777 384 // If this region is a member of a HeapRegionSeq, the index in that
ysr@777 385 // sequence, otherwise -1.
ysr@777 386 int hrs_index() const { return _hrs_index; }
ysr@777 387 void set_hrs_index(int index) { _hrs_index = index; }
ysr@777 388
ysr@777 389 // The number of bytes marked live in the region in the last marking phase.
ysr@777 390 size_t marked_bytes() { return _prev_marked_bytes; }
ysr@777 391 // The number of bytes counted in the next marking.
ysr@777 392 size_t next_marked_bytes() { return _next_marked_bytes; }
ysr@777 393 // The number of bytes live wrt the next marking.
ysr@777 394 size_t next_live_bytes() {
ysr@777 395 return (top() - next_top_at_mark_start())
ysr@777 396 * HeapWordSize
ysr@777 397 + next_marked_bytes();
ysr@777 398 }
ysr@777 399
ysr@777 400 // A lower bound on the amount of garbage bytes in the region.
ysr@777 401 size_t garbage_bytes() {
ysr@777 402 size_t used_at_mark_start_bytes =
ysr@777 403 (prev_top_at_mark_start() - bottom()) * HeapWordSize;
ysr@777 404 assert(used_at_mark_start_bytes >= marked_bytes(),
ysr@777 405 "Can't mark more than we have.");
ysr@777 406 return used_at_mark_start_bytes - marked_bytes();
ysr@777 407 }
ysr@777 408
ysr@777 409 // An upper bound on the number of live bytes in the region.
ysr@777 410 size_t max_live_bytes() { return used() - garbage_bytes(); }
ysr@777 411
ysr@777 412 void add_to_marked_bytes(size_t incr_bytes) {
ysr@777 413 _next_marked_bytes = _next_marked_bytes + incr_bytes;
ysr@777 414 guarantee( _next_marked_bytes <= used(), "invariant" );
ysr@777 415 }
ysr@777 416
ysr@777 417 void zero_marked_bytes() {
ysr@777 418 _prev_marked_bytes = _next_marked_bytes = 0;
ysr@777 419 }
ysr@777 420
tonyp@790 421 bool isHumongous() const { return _humongous_type != NotHumongous; }
tonyp@790 422 bool startsHumongous() const { return _humongous_type == StartsHumongous; }
tonyp@790 423 bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
ysr@777 424 // For a humongous region, region in which it starts.
ysr@777 425 HeapRegion* humongous_start_region() const {
ysr@777 426 return _humongous_start_region;
ysr@777 427 }
ysr@777 428
tonyp@2453 429 // Makes the current region be a "starts humongous" region, i.e.,
tonyp@2453 430 // the first region in a series of one or more contiguous regions
tonyp@2453 431 // that will contain a single "humongous" object. The two parameters
tonyp@2453 432 // are as follows:
tonyp@2453 433 //
tonyp@2453 434 // new_top : The new value of the top field of this region which
tonyp@2453 435 // points to the end of the humongous object that's being
tonyp@2453 436 // allocated. If there is more than one region in the series, top
tonyp@2453 437 // will lie beyond this region's original end field and on the last
tonyp@2453 438 // region in the series.
tonyp@2453 439 //
tonyp@2453 440 // new_end : The new value of the end field of this region which
tonyp@2453 441 // points to the end of the last region in the series. If there is
tonyp@2453 442 // one region in the series (namely: this one) end will be the same
tonyp@2453 443 // as the original end of this region.
tonyp@2453 444 //
tonyp@2453 445 // Updating top and end as described above makes this region look as
tonyp@2453 446 // if it spans the entire space taken up by all the regions in the
tonyp@2453 447 // series and an single allocation moved its top to new_top. This
tonyp@2453 448 // ensures that the space (capacity / allocated) taken up by all
tonyp@2453 449 // humongous regions can be calculated by just looking at the
tonyp@2453 450 // "starts humongous" regions and by ignoring the "continues
tonyp@2453 451 // humongous" regions.
tonyp@2453 452 void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);
ysr@777 453
tonyp@2453 454 // Makes the current region be a "continues humongous'
tonyp@2453 455 // region. first_hr is the "start humongous" region of the series
tonyp@2453 456 // which this region will be part of.
tonyp@2453 457 void set_continuesHumongous(HeapRegion* first_hr);
ysr@777 458
ysr@777 459 // If the region has a remembered set, return a pointer to it.
ysr@777 460 HeapRegionRemSet* rem_set() const {
ysr@777 461 return _rem_set;
ysr@777 462 }
ysr@777 463
ysr@777 464 // True iff the region is in current collection_set.
ysr@777 465 bool in_collection_set() const {
ysr@777 466 return _in_collection_set;
ysr@777 467 }
ysr@777 468 void set_in_collection_set(bool b) {
ysr@777 469 _in_collection_set = b;
ysr@777 470 }
ysr@777 471 HeapRegion* next_in_collection_set() {
ysr@777 472 assert(in_collection_set(), "should only invoke on member of CS.");
ysr@777 473 assert(_next_in_special_set == NULL ||
ysr@777 474 _next_in_special_set->in_collection_set(),
ysr@777 475 "Malformed CS.");
ysr@777 476 return _next_in_special_set;
ysr@777 477 }
ysr@777 478 void set_next_in_collection_set(HeapRegion* r) {
ysr@777 479 assert(in_collection_set(), "should only invoke on member of CS.");
ysr@777 480 assert(r == NULL || r->in_collection_set(), "Malformed CS.");
ysr@777 481 _next_in_special_set = r;
ysr@777 482 }
ysr@777 483
ysr@777 484 // True iff it is or has been an allocation region in the current
ysr@777 485 // collection pause.
ysr@777 486 bool is_gc_alloc_region() const {
ysr@777 487 return _is_gc_alloc_region;
ysr@777 488 }
ysr@777 489 void set_is_gc_alloc_region(bool b) {
ysr@777 490 _is_gc_alloc_region = b;
ysr@777 491 }
ysr@777 492 HeapRegion* next_gc_alloc_region() {
ysr@777 493 assert(is_gc_alloc_region(), "should only invoke on member of CS.");
ysr@777 494 assert(_next_in_special_set == NULL ||
ysr@777 495 _next_in_special_set->is_gc_alloc_region(),
ysr@777 496 "Malformed CS.");
ysr@777 497 return _next_in_special_set;
ysr@777 498 }
ysr@777 499 void set_next_gc_alloc_region(HeapRegion* r) {
ysr@777 500 assert(is_gc_alloc_region(), "should only invoke on member of CS.");
ysr@777 501 assert(r == NULL || r->is_gc_alloc_region(), "Malformed CS.");
ysr@777 502 _next_in_special_set = r;
ysr@777 503 }
ysr@777 504
ysr@777 505 bool is_on_free_list() {
ysr@777 506 return _is_on_free_list;
ysr@777 507 }
ysr@777 508
ysr@777 509 void set_on_free_list(bool b) {
ysr@777 510 _is_on_free_list = b;
ysr@777 511 }
ysr@777 512
ysr@777 513 HeapRegion* next_from_free_list() {
ysr@777 514 assert(is_on_free_list(),
ysr@777 515 "Should only invoke on free space.");
ysr@777 516 assert(_next_in_special_set == NULL ||
ysr@777 517 _next_in_special_set->is_on_free_list(),
ysr@777 518 "Malformed Free List.");
ysr@777 519 return _next_in_special_set;
ysr@777 520 }
ysr@777 521
ysr@777 522 void set_next_on_free_list(HeapRegion* r) {
ysr@777 523 assert(r == NULL || r->is_on_free_list(), "Malformed free list.");
ysr@777 524 _next_in_special_set = r;
ysr@777 525 }
ysr@777 526
ysr@777 527 bool is_on_unclean_list() {
ysr@777 528 return _is_on_unclean_list;
ysr@777 529 }
ysr@777 530
ysr@777 531 void set_on_unclean_list(bool b);
ysr@777 532
ysr@777 533 HeapRegion* next_from_unclean_list() {
ysr@777 534 assert(is_on_unclean_list(),
ysr@777 535 "Should only invoke on unclean space.");
ysr@777 536 assert(_next_in_special_set == NULL ||
ysr@777 537 _next_in_special_set->is_on_unclean_list(),
ysr@777 538 "Malformed unclean List.");
ysr@777 539 return _next_in_special_set;
ysr@777 540 }
ysr@777 541
ysr@777 542 void set_next_on_unclean_list(HeapRegion* r);
ysr@777 543
ysr@777 544 HeapRegion* get_next_young_region() { return _next_young_region; }
ysr@777 545 void set_next_young_region(HeapRegion* hr) {
ysr@777 546 _next_young_region = hr;
ysr@777 547 }
ysr@777 548
apetrusenko@1231 549 HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
apetrusenko@1231 550 HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
apetrusenko@1231 551 void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
apetrusenko@1231 552 bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
apetrusenko@1231 553
ysr@777 554 // Allows logical separation between objects allocated before and after.
ysr@777 555 void save_marks();
ysr@777 556
ysr@777 557 // Reset HR stuff to default values.
ysr@777 558 void hr_clear(bool par, bool clear_space);
ysr@777 559
tonyp@791 560 void initialize(MemRegion mr, bool clear_space, bool mangle_space);
ysr@777 561
ysr@777 562 // Ensure that "this" is zero-filled.
ysr@777 563 void ensure_zero_filled();
ysr@777 564 // This one requires that the calling thread holds ZF_mon.
ysr@777 565 void ensure_zero_filled_locked();
ysr@777 566
ysr@777 567 // Get the start of the unmarked area in this region.
ysr@777 568 HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
ysr@777 569 HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
ysr@777 570
ysr@777 571 // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
ysr@777 572 // allocated in the current region before the last call to "save_mark".
ysr@777 573 void oop_before_save_marks_iterate(OopClosure* cl);
ysr@777 574
ysr@777 575 // This call determines the "filter kind" argument that will be used for
ysr@777 576 // the next call to "new_dcto_cl" on this region with the "traditional"
ysr@777 577 // signature (i.e., the call below.) The default, in the absence of a
ysr@777 578 // preceding call to this method, is "NoFilterKind", and a call to this
ysr@777 579 // method is necessary for each such call, or else it reverts to the
ysr@777 580 // default.
ysr@777 581 // (This is really ugly, but all other methods I could think of changed a
ysr@777 582 // lot of main-line code for G1.)
ysr@777 583 void set_next_filter_kind(HeapRegionDCTOC::FilterKind nfk) {
ysr@777 584 _next_fk = nfk;
ysr@777 585 }
ysr@777 586
ysr@777 587 DirtyCardToOopClosure*
ysr@777 588 new_dcto_closure(OopClosure* cl,
ysr@777 589 CardTableModRefBS::PrecisionStyle precision,
ysr@777 590 HeapRegionDCTOC::FilterKind fk);
ysr@777 591
ysr@777 592 #if WHASSUP
ysr@777 593 DirtyCardToOopClosure*
ysr@777 594 new_dcto_closure(OopClosure* cl,
ysr@777 595 CardTableModRefBS::PrecisionStyle precision,
ysr@777 596 HeapWord* boundary) {
ysr@777 597 assert(boundary == NULL, "This arg doesn't make sense here.");
ysr@777 598 DirtyCardToOopClosure* res = new_dcto_closure(cl, precision, _next_fk);
ysr@777 599 _next_fk = HeapRegionDCTOC::NoFilterKind;
ysr@777 600 return res;
ysr@777 601 }
ysr@777 602 #endif
ysr@777 603
ysr@777 604 //
ysr@777 605 // Note the start or end of marking. This tells the heap region
ysr@777 606 // that the collector is about to start or has finished (concurrently)
ysr@777 607 // marking the heap.
ysr@777 608 //
ysr@777 609
ysr@777 610 // Note the start of a marking phase. Record the
ysr@777 611 // start of the unmarked area of the region here.
ysr@777 612 void note_start_of_marking(bool during_initial_mark) {
ysr@777 613 init_top_at_conc_mark_count();
ysr@777 614 _next_marked_bytes = 0;
ysr@777 615 if (during_initial_mark && is_young() && !is_survivor())
ysr@777 616 _next_top_at_mark_start = bottom();
ysr@777 617 else
ysr@777 618 _next_top_at_mark_start = top();
ysr@777 619 }
ysr@777 620
ysr@777 621 // Note the end of a marking phase. Install the start of
ysr@777 622 // the unmarked area that was captured at start of marking.
ysr@777 623 void note_end_of_marking() {
ysr@777 624 _prev_top_at_mark_start = _next_top_at_mark_start;
ysr@777 625 _prev_marked_bytes = _next_marked_bytes;
ysr@777 626 _next_marked_bytes = 0;
ysr@777 627
ysr@777 628 guarantee(_prev_marked_bytes <=
ysr@777 629 (size_t) (prev_top_at_mark_start() - bottom()) * HeapWordSize,
ysr@777 630 "invariant");
ysr@777 631 }
ysr@777 632
ysr@777 633 // After an evacuation, we need to update _next_top_at_mark_start
ysr@777 634 // to be the current top. Note this is only valid if we have only
ysr@777 635 // ever evacuated into this region. If we evacuate, allocate, and
ysr@777 636 // then evacuate we are in deep doodoo.
ysr@777 637 void note_end_of_copying() {
tonyp@1456 638 assert(top() >= _next_top_at_mark_start, "Increase only");
tonyp@1456 639 _next_top_at_mark_start = top();
ysr@777 640 }
ysr@777 641
ysr@777 642 // Returns "false" iff no object in the region was allocated when the
ysr@777 643 // last mark phase ended.
ysr@777 644 bool is_marked() { return _prev_top_at_mark_start != bottom(); }
ysr@777 645
ysr@777 646 // If "is_marked()" is true, then this is the index of the region in
ysr@777 647 // an array constructed at the end of marking of the regions in a
ysr@777 648 // "desirability" order.
ysr@777 649 int sort_index() {
ysr@777 650 return _sort_index;
ysr@777 651 }
ysr@777 652 void set_sort_index(int i) {
ysr@777 653 _sort_index = i;
ysr@777 654 }
ysr@777 655
ysr@777 656 void init_top_at_conc_mark_count() {
ysr@777 657 _top_at_conc_mark_count = bottom();
ysr@777 658 }
ysr@777 659
ysr@777 660 void set_top_at_conc_mark_count(HeapWord *cur) {
ysr@777 661 assert(bottom() <= cur && cur <= end(), "Sanity.");
ysr@777 662 _top_at_conc_mark_count = cur;
ysr@777 663 }
ysr@777 664
ysr@777 665 HeapWord* top_at_conc_mark_count() {
ysr@777 666 return _top_at_conc_mark_count;
ysr@777 667 }
ysr@777 668
ysr@777 669 void reset_during_compaction() {
ysr@777 670 guarantee( isHumongous() && startsHumongous(),
ysr@777 671 "should only be called for humongous regions");
ysr@777 672
ysr@777 673 zero_marked_bytes();
ysr@777 674 init_top_at_mark_start();
ysr@777 675 }
ysr@777 676
ysr@777 677 // <PREDICTION>
ysr@777 678 void calc_gc_efficiency(void);
ysr@777 679 double gc_efficiency() { return _gc_efficiency;}
ysr@777 680 // </PREDICTION>
ysr@777 681
ysr@777 682 bool is_young() const { return _young_type != NotYoung; }
ysr@777 683 bool is_survivor() const { return _young_type == Survivor; }
ysr@777 684
ysr@777 685 int young_index_in_cset() const { return _young_index_in_cset; }
ysr@777 686 void set_young_index_in_cset(int index) {
ysr@777 687 assert( (index == -1) || is_young(), "pre-condition" );
ysr@777 688 _young_index_in_cset = index;
ysr@777 689 }
ysr@777 690
ysr@777 691 int age_in_surv_rate_group() {
ysr@777 692 assert( _surv_rate_group != NULL, "pre-condition" );
ysr@777 693 assert( _age_index > -1, "pre-condition" );
ysr@777 694 return _surv_rate_group->age_in_group(_age_index);
ysr@777 695 }
ysr@777 696
ysr@777 697 void record_surv_words_in_group(size_t words_survived) {
ysr@777 698 assert( _surv_rate_group != NULL, "pre-condition" );
ysr@777 699 assert( _age_index > -1, "pre-condition" );
ysr@777 700 int age_in_group = age_in_surv_rate_group();
ysr@777 701 _surv_rate_group->record_surviving_words(age_in_group, words_survived);
ysr@777 702 }
ysr@777 703
ysr@777 704 int age_in_surv_rate_group_cond() {
ysr@777 705 if (_surv_rate_group != NULL)
ysr@777 706 return age_in_surv_rate_group();
ysr@777 707 else
ysr@777 708 return -1;
ysr@777 709 }
ysr@777 710
ysr@777 711 SurvRateGroup* surv_rate_group() {
ysr@777 712 return _surv_rate_group;
ysr@777 713 }
ysr@777 714
ysr@777 715 void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
ysr@777 716 assert( surv_rate_group != NULL, "pre-condition" );
ysr@777 717 assert( _surv_rate_group == NULL, "pre-condition" );
ysr@777 718 assert( is_young(), "pre-condition" );
ysr@777 719
ysr@777 720 _surv_rate_group = surv_rate_group;
ysr@777 721 _age_index = surv_rate_group->next_age_index();
ysr@777 722 }
ysr@777 723
ysr@777 724 void uninstall_surv_rate_group() {
ysr@777 725 if (_surv_rate_group != NULL) {
ysr@777 726 assert( _age_index > -1, "pre-condition" );
ysr@777 727 assert( is_young(), "pre-condition" );
ysr@777 728
ysr@777 729 _surv_rate_group = NULL;
ysr@777 730 _age_index = -1;
ysr@777 731 } else {
ysr@777 732 assert( _age_index == -1, "pre-condition" );
ysr@777 733 }
ysr@777 734 }
ysr@777 735
ysr@777 736 void set_young() { set_young_type(Young); }
ysr@777 737
ysr@777 738 void set_survivor() { set_young_type(Survivor); }
ysr@777 739
ysr@777 740 void set_not_young() { set_young_type(NotYoung); }
ysr@777 741
ysr@777 742 // Determine if an object has been allocated since the last
ysr@777 743 // mark performed by the collector. This returns true iff the object
ysr@777 744 // is within the unmarked area of the region.
ysr@777 745 bool obj_allocated_since_prev_marking(oop obj) const {
ysr@777 746 return (HeapWord *) obj >= prev_top_at_mark_start();
ysr@777 747 }
ysr@777 748 bool obj_allocated_since_next_marking(oop obj) const {
ysr@777 749 return (HeapWord *) obj >= next_top_at_mark_start();
ysr@777 750 }
ysr@777 751
ysr@777 752 // For parallel heapRegion traversal.
ysr@777 753 bool claimHeapRegion(int claimValue);
ysr@777 754 jint claim_value() { return _claimed; }
ysr@777 755 // Use this carefully: only when you're sure no one is claiming...
ysr@777 756 void set_claim_value(int claimValue) { _claimed = claimValue; }
ysr@777 757
ysr@777 758 // Returns the "evacuation_failed" property of the region.
ysr@777 759 bool evacuation_failed() { return _evacuation_failed; }
ysr@777 760
ysr@777 761 // Sets the "evacuation_failed" property of the region.
ysr@777 762 void set_evacuation_failed(bool b) {
ysr@777 763 _evacuation_failed = b;
ysr@777 764
ysr@777 765 if (b) {
ysr@777 766 init_top_at_conc_mark_count();
ysr@777 767 _next_marked_bytes = 0;
ysr@777 768 }
ysr@777 769 }
ysr@777 770
ysr@777 771 // Requires that "mr" be entirely within the region.
ysr@777 772 // Apply "cl->do_object" to all objects that intersect with "mr".
ysr@777 773 // If the iteration encounters an unparseable portion of the region,
ysr@777 774 // or if "cl->abort()" is true after a closure application,
ysr@777 775 // terminate the iteration and return the address of the start of the
ysr@777 776 // subregion that isn't done. (The two can be distinguished by querying
ysr@777 777 // "cl->abort()".) Return of "NULL" indicates that the iteration
ysr@777 778 // completed.
ysr@777 779 HeapWord*
ysr@777 780 object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
ysr@777 781
johnc@2021 782 // In this version - if filter_young is true and the region
johnc@2021 783 // is a young region then we skip the iteration.
ysr@777 784 HeapWord*
ysr@777 785 oops_on_card_seq_iterate_careful(MemRegion mr,
johnc@2021 786 FilterOutOfRegionClosure* cl,
johnc@2021 787 bool filter_young);
ysr@777 788
ysr@777 789 // A version of block start that is guaranteed to find *some* block
ysr@777 790 // boundary at or before "p", but does not object iteration, and may
ysr@777 791 // therefore be used safely when the heap is unparseable.
ysr@777 792 HeapWord* block_start_careful(const void* p) const {
ysr@777 793 return _offsets.block_start_careful(p);
ysr@777 794 }
ysr@777 795
ysr@777 796 // Requires that "addr" is within the region. Returns the start of the
ysr@777 797 // first ("careful") block that starts at or after "addr", or else the
ysr@777 798 // "end" of the region if there is no such block.
ysr@777 799 HeapWord* next_block_start_careful(HeapWord* addr);
ysr@777 800
ysr@777 801 // Returns the zero-fill-state of the current region.
ysr@777 802 ZeroFillState zero_fill_state() { return (ZeroFillState)_zfs; }
ysr@777 803 bool zero_fill_is_allocated() { return _zfs == Allocated; }
ysr@777 804 Thread* zero_filler() { return _zero_filler; }
ysr@777 805
ysr@777 806 // Indicate that the contents of the region are unknown, and therefore
ysr@777 807 // might require zero-filling.
ysr@777 808 void set_zero_fill_needed() {
ysr@777 809 set_zero_fill_state_work(NotZeroFilled);
ysr@777 810 }
ysr@777 811 void set_zero_fill_in_progress(Thread* t) {
ysr@777 812 set_zero_fill_state_work(ZeroFilling);
ysr@777 813 _zero_filler = t;
ysr@777 814 }
ysr@777 815 void set_zero_fill_complete();
ysr@777 816 void set_zero_fill_allocated() {
ysr@777 817 set_zero_fill_state_work(Allocated);
ysr@777 818 }
ysr@777 819
ysr@777 820 void set_zero_fill_state_work(ZeroFillState zfs);
ysr@777 821
ysr@777 822 // This is called when a full collection shrinks the heap.
ysr@777 823 // We want to set the heap region to a value which says
ysr@777 824 // it is no longer part of the heap. For now, we'll let "NotZF" fill
ysr@777 825 // that role.
ysr@777 826 void reset_zero_fill() {
ysr@777 827 set_zero_fill_state_work(NotZeroFilled);
ysr@777 828 _zero_filler = NULL;
ysr@777 829 }
ysr@777 830
johnc@1829 831 size_t recorded_rs_length() const { return _recorded_rs_length; }
johnc@1829 832 double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
johnc@1829 833 size_t predicted_bytes_to_copy() const { return _predicted_bytes_to_copy; }
johnc@1829 834
johnc@1829 835 void set_recorded_rs_length(size_t rs_length) {
johnc@1829 836 _recorded_rs_length = rs_length;
johnc@1829 837 }
johnc@1829 838
johnc@1829 839 void set_predicted_elapsed_time_ms(double ms) {
johnc@1829 840 _predicted_elapsed_time_ms = ms;
johnc@1829 841 }
johnc@1829 842
johnc@1829 843 void set_predicted_bytes_to_copy(size_t bytes) {
johnc@1829 844 _predicted_bytes_to_copy = bytes;
johnc@1829 845 }
johnc@1829 846
ysr@777 847 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
ysr@777 848 virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
ysr@777 849 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
ysr@777 850
ysr@777 851 CompactibleSpace* next_compaction_space() const;
ysr@777 852
ysr@777 853 virtual void reset_after_compaction();
ysr@777 854
ysr@777 855 void print() const;
ysr@777 856 void print_on(outputStream* st) const;
ysr@777 857
tonyp@1246 858 // use_prev_marking == true -> use "prev" marking information,
tonyp@1246 859 // use_prev_marking == false -> use "next" marking information
tonyp@1246 860 // NOTE: Only the "prev" marking information is guaranteed to be
tonyp@1246 861 // consistent most of the time, so most calls to this should use
tonyp@1246 862 // use_prev_marking == true. Currently, there is only one case where
tonyp@1246 863 // this is called with use_prev_marking == false, which is to verify
tonyp@1246 864 // the "next" marking information at the end of remark.
tonyp@1455 865 void verify(bool allow_dirty, bool use_prev_marking, bool *failures) const;
tonyp@1246 866
tonyp@1246 867 // Override; it uses the "prev" marking information
ysr@777 868 virtual void verify(bool allow_dirty) const;
ysr@777 869
ysr@777 870 #ifdef DEBUG
ysr@777 871 HeapWord* allocate(size_t size);
ysr@777 872 #endif
ysr@777 873 };
ysr@777 874
ysr@777 875 // HeapRegionClosure is used for iterating over regions.
ysr@777 876 // Terminates the iteration when the "doHeapRegion" method returns "true".
ysr@777 877 class HeapRegionClosure : public StackObj {
ysr@777 878 friend class HeapRegionSeq;
ysr@777 879 friend class G1CollectedHeap;
ysr@777 880
ysr@777 881 bool _complete;
ysr@777 882 void incomplete() { _complete = false; }
ysr@777 883
ysr@777 884 public:
ysr@777 885 HeapRegionClosure(): _complete(true) {}
ysr@777 886
ysr@777 887 // Typically called on each region until it returns true.
ysr@777 888 virtual bool doHeapRegion(HeapRegion* r) = 0;
ysr@777 889
ysr@777 890 // True after iteration if the closure was applied to all heap regions
ysr@777 891 // and returned "false" in all cases.
ysr@777 892 bool complete() { return _complete; }
ysr@777 893 };
ysr@777 894
ysr@777 895 // A linked lists of heap regions. It leaves the "next" field
ysr@777 896 // unspecified; that's up to subtypes.
apetrusenko@984 897 class RegionList VALUE_OBJ_CLASS_SPEC {
ysr@777 898 protected:
ysr@777 899 virtual HeapRegion* get_next(HeapRegion* chr) = 0;
ysr@777 900 virtual void set_next(HeapRegion* chr,
ysr@777 901 HeapRegion* new_next) = 0;
ysr@777 902
ysr@777 903 HeapRegion* _hd;
ysr@777 904 HeapRegion* _tl;
ysr@777 905 size_t _sz;
ysr@777 906
ysr@777 907 // Protected constructor because this type is only meaningful
ysr@777 908 // when the _get/_set next functions are defined.
ysr@777 909 RegionList() : _hd(NULL), _tl(NULL), _sz(0) {}
ysr@777 910 public:
ysr@777 911 void reset() {
ysr@777 912 _hd = NULL;
ysr@777 913 _tl = NULL;
ysr@777 914 _sz = 0;
ysr@777 915 }
ysr@777 916 HeapRegion* hd() { return _hd; }
ysr@777 917 HeapRegion* tl() { return _tl; }
ysr@777 918 size_t sz() { return _sz; }
ysr@777 919 size_t length();
ysr@777 920
ysr@777 921 bool well_formed() {
ysr@777 922 return
ysr@777 923 ((hd() == NULL && tl() == NULL && sz() == 0)
ysr@777 924 || (hd() != NULL && tl() != NULL && sz() > 0))
ysr@777 925 && (sz() == length());
ysr@777 926 }
ysr@777 927 virtual void insert_before_head(HeapRegion* r);
ysr@777 928 void prepend_list(RegionList* new_list);
ysr@777 929 virtual HeapRegion* pop();
ysr@777 930 void dec_sz() { _sz--; }
ysr@777 931 // Requires that "r" is an element of the list, and is not the tail.
ysr@777 932 void delete_after(HeapRegion* r);
ysr@777 933 };
ysr@777 934
ysr@777 935 class EmptyNonHRegionList: public RegionList {
ysr@777 936 protected:
ysr@777 937 // Protected constructor because this type is only meaningful
ysr@777 938 // when the _get/_set next functions are defined.
ysr@777 939 EmptyNonHRegionList() : RegionList() {}
ysr@777 940
ysr@777 941 public:
ysr@777 942 void insert_before_head(HeapRegion* r) {
ysr@777 943 // assert(r->is_empty(), "Better be empty");
ysr@777 944 assert(!r->isHumongous(), "Better not be humongous.");
ysr@777 945 RegionList::insert_before_head(r);
ysr@777 946 }
ysr@777 947 void prepend_list(EmptyNonHRegionList* new_list) {
ysr@777 948 // assert(new_list->hd() == NULL || new_list->hd()->is_empty(),
ysr@777 949 // "Better be empty");
ysr@777 950 assert(new_list->hd() == NULL || !new_list->hd()->isHumongous(),
ysr@777 951 "Better not be humongous.");
ysr@777 952 // assert(new_list->tl() == NULL || new_list->tl()->is_empty(),
ysr@777 953 // "Better be empty");
ysr@777 954 assert(new_list->tl() == NULL || !new_list->tl()->isHumongous(),
ysr@777 955 "Better not be humongous.");
ysr@777 956 RegionList::prepend_list(new_list);
ysr@777 957 }
ysr@777 958 };
ysr@777 959
ysr@777 960 class UncleanRegionList: public EmptyNonHRegionList {
ysr@777 961 public:
ysr@777 962 HeapRegion* get_next(HeapRegion* hr) {
ysr@777 963 return hr->next_from_unclean_list();
ysr@777 964 }
ysr@777 965 void set_next(HeapRegion* hr, HeapRegion* new_next) {
ysr@777 966 hr->set_next_on_unclean_list(new_next);
ysr@777 967 }
ysr@777 968
ysr@777 969 UncleanRegionList() : EmptyNonHRegionList() {}
ysr@777 970
ysr@777 971 void insert_before_head(HeapRegion* r) {
ysr@777 972 assert(!r->is_on_free_list(),
ysr@777 973 "Better not already be on free list");
ysr@777 974 assert(!r->is_on_unclean_list(),
ysr@777 975 "Better not already be on unclean list");
ysr@777 976 r->set_zero_fill_needed();
ysr@777 977 r->set_on_unclean_list(true);
ysr@777 978 EmptyNonHRegionList::insert_before_head(r);
ysr@777 979 }
ysr@777 980 void prepend_list(UncleanRegionList* new_list) {
ysr@777 981 assert(new_list->tl() == NULL || !new_list->tl()->is_on_free_list(),
ysr@777 982 "Better not already be on free list");
ysr@777 983 assert(new_list->tl() == NULL || new_list->tl()->is_on_unclean_list(),
ysr@777 984 "Better already be marked as on unclean list");
ysr@777 985 assert(new_list->hd() == NULL || !new_list->hd()->is_on_free_list(),
ysr@777 986 "Better not already be on free list");
ysr@777 987 assert(new_list->hd() == NULL || new_list->hd()->is_on_unclean_list(),
ysr@777 988 "Better already be marked as on unclean list");
ysr@777 989 EmptyNonHRegionList::prepend_list(new_list);
ysr@777 990 }
ysr@777 991 HeapRegion* pop() {
ysr@777 992 HeapRegion* res = RegionList::pop();
ysr@777 993 if (res != NULL) res->set_on_unclean_list(false);
ysr@777 994 return res;
ysr@777 995 }
ysr@777 996 };
ysr@777 997
ysr@777 998 // Local Variables: ***
ysr@777 999 // c-indentation-style: gnu ***
ysr@777 1000 // End: ***
ysr@777 1001
ysr@777 1002 #endif // SERIALGC
stefank@2314 1003
stefank@2314 1004 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP

mercurial