src/share/vm/gc_implementation/g1/heapRegion.hpp

Wed, 19 Sep 2012 08:48:10 -0700

author
johnc
date
Wed, 19 Sep 2012 08:48:10 -0700
changeset 4065
8fbf05030e24
parent 4037
da91efe96a93
child 4542
db9981fd3124
permissions
-rw-r--r--

7016955: G1: remove the is_zeroed parameter from the HeapRegion constructor
Summary: The is_zeroed parameter is no longer used and so can be removed.
Reviewed-by: johnc, jmasa, brutisso
Contributed-by: Brandon Mitchell <brandon@twitter.com>

ysr@777 1 /*
johnc@3412 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
stefank@2314 29 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
stefank@2314 30 #include "gc_implementation/g1/survRateGroup.hpp"
stefank@2314 31 #include "gc_implementation/shared/ageTable.hpp"
stefank@2314 32 #include "gc_implementation/shared/spaceDecorator.hpp"
stefank@2314 33 #include "memory/space.inline.hpp"
stefank@2314 34 #include "memory/watermark.hpp"
stefank@2314 35
ysr@777 36 #ifndef SERIALGC
ysr@777 37
ysr@777 38 // A HeapRegion is the smallest piece of a G1CollectedHeap that
ysr@777 39 // can be collected independently.
ysr@777 40
ysr@777 41 // NOTE: Although a HeapRegion is a Space, its
ysr@777 42 // Space::initDirtyCardClosure method must not be called.
ysr@777 43 // The problem is that the existence of this method breaks
ysr@777 44 // the independence of barrier sets from remembered sets.
ysr@777 45 // The solution is to remove this method from the definition
ysr@777 46 // of a Space.
ysr@777 47
ysr@777 48 class CompactibleSpace;
ysr@777 49 class ContiguousSpace;
ysr@777 50 class HeapRegionRemSet;
ysr@777 51 class HeapRegionRemSetIterator;
ysr@777 52 class HeapRegion;
tonyp@2472 53 class HeapRegionSetBase;
tonyp@2472 54
tonyp@3713 55 #define HR_FORMAT "%u:(%s)["PTR_FORMAT","PTR_FORMAT","PTR_FORMAT"]"
tonyp@2963 56 #define HR_FORMAT_PARAMS(_hr_) \
tonyp@2963 57 (_hr_)->hrs_index(), \
tonyp@3957 58 (_hr_)->is_survivor() ? "S" : (_hr_)->is_young() ? "E" : \
tonyp@3957 59 (_hr_)->startsHumongous() ? "HS" : \
tonyp@3957 60 (_hr_)->continuesHumongous() ? "HC" : \
tonyp@3957 61 !(_hr_)->is_empty() ? "O" : "F", \
tonyp@2963 62 (_hr_)->bottom(), (_hr_)->top(), (_hr_)->end()
ysr@777 63
tonyp@3713 64 // sentinel value for hrs_index
tonyp@3713 65 #define G1_NULL_HRS_INDEX ((uint) -1)
tonyp@3713 66
ysr@777 67 // A dirty card to oop closure for heap regions. It
ysr@777 68 // knows how to get the G1 heap and how to use the bitmap
ysr@777 69 // in the concurrent marker used by G1 to filter remembered
ysr@777 70 // sets.
ysr@777 71
ysr@777 72 class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
ysr@777 73 public:
ysr@777 74 // Specification of possible DirtyCardToOopClosure filtering.
ysr@777 75 enum FilterKind {
ysr@777 76 NoFilterKind,
ysr@777 77 IntoCSFilterKind,
ysr@777 78 OutOfRegionFilterKind
ysr@777 79 };
ysr@777 80
ysr@777 81 protected:
ysr@777 82 HeapRegion* _hr;
ysr@777 83 FilterKind _fk;
ysr@777 84 G1CollectedHeap* _g1;
ysr@777 85
ysr@777 86 void walk_mem_region_with_cl(MemRegion mr,
ysr@777 87 HeapWord* bottom, HeapWord* top,
coleenp@4037 88 ExtendedOopClosure* cl);
ysr@777 89
ysr@777 90 // We don't specialize this for FilteringClosure; filtering is handled by
ysr@777 91 // the "FilterKind" mechanism. But we provide this to avoid a compiler
ysr@777 92 // warning.
ysr@777 93 void walk_mem_region_with_cl(MemRegion mr,
ysr@777 94 HeapWord* bottom, HeapWord* top,
ysr@777 95 FilteringClosure* cl) {
ysr@777 96 HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
coleenp@4037 97 (ExtendedOopClosure*)cl);
ysr@777 98 }
ysr@777 99
ysr@777 100 // Get the actual top of the area on which the closure will
ysr@777 101 // operate, given where the top is assumed to be (the end of the
ysr@777 102 // memory region passed to do_MemRegion) and where the object
ysr@777 103 // at the top is assumed to start. For example, an object may
ysr@777 104 // start at the top but actually extend past the assumed top,
ysr@777 105 // in which case the top becomes the end of the object.
ysr@777 106 HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
ysr@777 107 return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
ysr@777 108 }
ysr@777 109
ysr@777 110 // Walk the given memory region from bottom to (actual) top
ysr@777 111 // looking for objects and applying the oop closure (_cl) to
ysr@777 112 // them. The base implementation of this treats the area as
ysr@777 113 // blocks, where a block may or may not be an object. Sub-
ysr@777 114 // classes should override this to provide more accurate
ysr@777 115 // or possibly more efficient walking.
ysr@777 116 void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
ysr@777 117 Filtering_DCTOC::walk_mem_region(mr, bottom, top);
ysr@777 118 }
ysr@777 119
ysr@777 120 public:
ysr@777 121 HeapRegionDCTOC(G1CollectedHeap* g1,
coleenp@4037 122 HeapRegion* hr, ExtendedOopClosure* cl,
ysr@777 123 CardTableModRefBS::PrecisionStyle precision,
ysr@777 124 FilterKind fk);
ysr@777 125 };
ysr@777 126
ysr@777 127 // The complicating factor is that BlockOffsetTable diverged
ysr@777 128 // significantly, and we need functionality that is only in the G1 version.
ysr@777 129 // So I copied that code, which led to an alternate G1 version of
ysr@777 130 // OffsetTableContigSpace. If the two versions of BlockOffsetTable could
ysr@777 131 // be reconciled, then G1OffsetTableContigSpace could go away.
ysr@777 132
ysr@777 133 // The idea behind time stamps is the following. Doing a save_marks on
ysr@777 134 // all regions at every GC pause is time consuming (if I remember
ysr@777 135 // well, 10ms or so). So, we would like to do that only for regions
ysr@777 136 // that are GC alloc regions. To achieve this, we use time
ysr@777 137 // stamps. For every evacuation pause, G1CollectedHeap generates a
ysr@777 138 // unique time stamp (essentially a counter that gets
ysr@777 139 // incremented). Every time we want to call save_marks on a region,
ysr@777 140 // we set the saved_mark_word to top and also copy the current GC
ysr@777 141 // time stamp to the time stamp field of the space. Reading the
ysr@777 142 // saved_mark_word involves checking the time stamp of the
ysr@777 143 // region. If it is the same as the current GC time stamp, then we
ysr@777 144 // can safely read the saved_mark_word field, as it is valid. If the
ysr@777 145 // time stamp of the region is not the same as the current GC time
ysr@777 146 // stamp, then we instead read top, as the saved_mark_word field is
ysr@777 147 // invalid. Time stamps (on the regions and also on the
ysr@777 148 // G1CollectedHeap) are reset at every cleanup (we iterate over
ysr@777 149 // the regions anyway) and at the end of a Full GC. The current scheme
ysr@777 150 // that uses sequential unsigned ints will fail only if we have 4b
ysr@777 151 // evacuation pauses between two cleanups, which is _highly_ unlikely.
ysr@777 152
ysr@777 153 class G1OffsetTableContigSpace: public ContiguousSpace {
ysr@777 154 friend class VMStructs;
ysr@777 155 protected:
ysr@777 156 G1BlockOffsetArrayContigSpace _offsets;
ysr@777 157 Mutex _par_alloc_lock;
ysr@777 158 volatile unsigned _gc_time_stamp;
tonyp@2715 159 // When we need to retire an allocation region, while other threads
tonyp@2715 160 // are also concurrently trying to allocate into it, we typically
tonyp@2715 161 // allocate a dummy object at the end of the region to ensure that
tonyp@2715 162 // no more allocations can take place in it. However, sometimes we
tonyp@2715 163 // want to know where the end of the last "real" object we allocated
tonyp@2715 164 // into the region was and this is what this keeps track.
tonyp@2715 165 HeapWord* _pre_dummy_top;
ysr@777 166
ysr@777 167 public:
ysr@777 168 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
johnc@4065 169 MemRegion mr);
ysr@777 170
ysr@777 171 void set_bottom(HeapWord* value);
ysr@777 172 void set_end(HeapWord* value);
ysr@777 173
ysr@777 174 virtual HeapWord* saved_mark_word() const;
ysr@777 175 virtual void set_saved_mark();
ysr@777 176 void reset_gc_time_stamp() { _gc_time_stamp = 0; }
tonyp@3957 177 unsigned get_gc_time_stamp() { return _gc_time_stamp; }
ysr@777 178
tonyp@2715 179 // See the comment above in the declaration of _pre_dummy_top for an
tonyp@2715 180 // explanation of what it is.
tonyp@2715 181 void set_pre_dummy_top(HeapWord* pre_dummy_top) {
tonyp@2715 182 assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
tonyp@2715 183 _pre_dummy_top = pre_dummy_top;
tonyp@2715 184 }
tonyp@2715 185 HeapWord* pre_dummy_top() {
tonyp@2715 186 return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
tonyp@2715 187 }
tonyp@2715 188 void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
tonyp@2715 189
tonyp@791 190 virtual void clear(bool mangle_space);
ysr@777 191
ysr@777 192 HeapWord* block_start(const void* p);
ysr@777 193 HeapWord* block_start_const(const void* p) const;
ysr@777 194
ysr@777 195 // Add offset table update.
ysr@777 196 virtual HeapWord* allocate(size_t word_size);
ysr@777 197 HeapWord* par_allocate(size_t word_size);
ysr@777 198
ysr@777 199 // MarkSweep support phase3
ysr@777 200 virtual HeapWord* initialize_threshold();
ysr@777 201 virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
ysr@777 202
ysr@777 203 virtual void print() const;
tonyp@2453 204
tonyp@2453 205 void reset_bot() {
tonyp@2453 206 _offsets.zero_bottom_entry();
tonyp@2453 207 _offsets.initialize_threshold();
tonyp@2453 208 }
tonyp@2453 209
tonyp@2453 210 void update_bot_for_object(HeapWord* start, size_t word_size) {
tonyp@2453 211 _offsets.alloc_block(start, word_size);
tonyp@2453 212 }
tonyp@2453 213
tonyp@2453 214 void print_bot_on(outputStream* out) {
tonyp@2453 215 _offsets.print_on(out);
tonyp@2453 216 }
ysr@777 217 };
ysr@777 218
ysr@777 219 class HeapRegion: public G1OffsetTableContigSpace {
ysr@777 220 friend class VMStructs;
ysr@777 221 private:
ysr@777 222
tonyp@790 223 enum HumongousType {
tonyp@790 224 NotHumongous = 0,
tonyp@790 225 StartsHumongous,
tonyp@790 226 ContinuesHumongous
tonyp@790 227 };
tonyp@790 228
ysr@777 229 // Requires that the region "mr" be dense with objects, and begin and end
ysr@777 230 // with an object.
coleenp@4037 231 void oops_in_mr_iterate(MemRegion mr, ExtendedOopClosure* cl);
ysr@777 232
ysr@777 233 // The remembered set for this region.
ysr@777 234 // (Might want to make this "inline" later, to avoid some alloc failure
ysr@777 235 // issues.)
ysr@777 236 HeapRegionRemSet* _rem_set;
ysr@777 237
ysr@777 238 G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
ysr@777 239
ysr@777 240 protected:
tonyp@2963 241 // The index of this region in the heap region sequence.
tonyp@3713 242 uint _hrs_index;
ysr@777 243
tonyp@790 244 HumongousType _humongous_type;
ysr@777 245 // For a humongous region, region in which it starts.
ysr@777 246 HeapRegion* _humongous_start_region;
ysr@777 247 // For the start region of a humongous sequence, it's original end().
ysr@777 248 HeapWord* _orig_end;
ysr@777 249
ysr@777 250 // True iff the region is in current collection_set.
ysr@777 251 bool _in_collection_set;
ysr@777 252
ysr@777 253 // True iff an attempt to evacuate an object in the region failed.
ysr@777 254 bool _evacuation_failed;
ysr@777 255
ysr@777 256 // A heap region may be a member one of a number of special subsets, each
ysr@777 257 // represented as linked lists through the field below. Currently, these
ysr@777 258 // sets include:
ysr@777 259 // The collection set.
ysr@777 260 // The set of allocation regions used in a collection pause.
ysr@777 261 // Spaces that may contain gray objects.
ysr@777 262 HeapRegion* _next_in_special_set;
ysr@777 263
ysr@777 264 // next region in the young "generation" region set
ysr@777 265 HeapRegion* _next_young_region;
ysr@777 266
apetrusenko@1231 267 // Next region whose cards need cleaning
apetrusenko@1231 268 HeapRegion* _next_dirty_cards_region;
apetrusenko@1231 269
tonyp@2472 270 // Fields used by the HeapRegionSetBase class and subclasses.
tonyp@2472 271 HeapRegion* _next;
tonyp@2472 272 #ifdef ASSERT
tonyp@2472 273 HeapRegionSetBase* _containing_set;
tonyp@2472 274 #endif // ASSERT
tonyp@2472 275 bool _pending_removal;
tonyp@2472 276
ysr@777 277 // For parallel heapRegion traversal.
ysr@777 278 jint _claimed;
ysr@777 279
ysr@777 280 // We use concurrent marking to determine the amount of live data
ysr@777 281 // in each heap region.
ysr@777 282 size_t _prev_marked_bytes; // Bytes known to be live via last completed marking.
ysr@777 283 size_t _next_marked_bytes; // Bytes known to be live via in-progress marking.
ysr@777 284
tonyp@3714 285 // The calculated GC efficiency of the region.
ysr@777 286 double _gc_efficiency;
ysr@777 287
ysr@777 288 enum YoungType {
ysr@777 289 NotYoung, // a region is not young
ysr@777 290 Young, // a region is young
tonyp@2963 291 Survivor // a region is young and it contains survivors
ysr@777 292 };
ysr@777 293
johnc@2021 294 volatile YoungType _young_type;
ysr@777 295 int _young_index_in_cset;
ysr@777 296 SurvRateGroup* _surv_rate_group;
ysr@777 297 int _age_index;
ysr@777 298
ysr@777 299 // The start of the unmarked area. The unmarked area extends from this
ysr@777 300 // word until the top and/or end of the region, and is the part
ysr@777 301 // of the region for which no marking was done, i.e. objects may
ysr@777 302 // have been allocated in this part since the last mark phase.
ysr@777 303 // "prev" is the top at the start of the last completed marking.
ysr@777 304 // "next" is the top at the start of the in-progress marking (if any.)
ysr@777 305 HeapWord* _prev_top_at_mark_start;
ysr@777 306 HeapWord* _next_top_at_mark_start;
ysr@777 307 // If a collection pause is in progress, this is the top at the start
ysr@777 308 // of that pause.
ysr@777 309
ysr@777 310 void init_top_at_mark_start() {
ysr@777 311 assert(_prev_marked_bytes == 0 &&
ysr@777 312 _next_marked_bytes == 0,
ysr@777 313 "Must be called after zero_marked_bytes.");
ysr@777 314 HeapWord* bot = bottom();
ysr@777 315 _prev_top_at_mark_start = bot;
ysr@777 316 _next_top_at_mark_start = bot;
ysr@777 317 }
ysr@777 318
ysr@777 319 void set_young_type(YoungType new_type) {
ysr@777 320 //assert(_young_type != new_type, "setting the same type" );
ysr@777 321 // TODO: add more assertions here
ysr@777 322 _young_type = new_type;
ysr@777 323 }
ysr@777 324
johnc@1829 325 // Cached attributes used in the collection set policy information
johnc@1829 326
johnc@1829 327 // The RSet length that was added to the total value
johnc@1829 328 // for the collection set.
johnc@1829 329 size_t _recorded_rs_length;
johnc@1829 330
johnc@1829 331 // The predicted elapsed time that was added to total value
johnc@1829 332 // for the collection set.
johnc@1829 333 double _predicted_elapsed_time_ms;
johnc@1829 334
johnc@1829 335 // The predicted number of bytes to copy that was added to
johnc@1829 336 // the total value for the collection set.
johnc@1829 337 size_t _predicted_bytes_to_copy;
johnc@1829 338
ysr@777 339 public:
tonyp@3713 340 HeapRegion(uint hrs_index,
tonyp@2963 341 G1BlockOffsetSharedArray* sharedOffsetArray,
johnc@4065 342 MemRegion mr);
ysr@777 343
johnc@3182 344 static int LogOfHRGrainBytes;
johnc@3182 345 static int LogOfHRGrainWords;
johnc@3182 346
johnc@3182 347 static size_t GrainBytes;
johnc@3182 348 static size_t GrainWords;
johnc@3182 349 static size_t CardsPerRegion;
tonyp@1377 350
tonyp@3176 351 static size_t align_up_to_region_byte_size(size_t sz) {
tonyp@3176 352 return (sz + (size_t) GrainBytes - 1) &
tonyp@3176 353 ~((1 << (size_t) LogOfHRGrainBytes) - 1);
tonyp@3176 354 }
tonyp@3176 355
tonyp@1377 356 // It sets up the heap region size (GrainBytes / GrainWords), as
tonyp@1377 357 // well as other related fields that are based on the heap region
tonyp@1377 358 // size (LogOfHRGrainBytes / LogOfHRGrainWords /
tonyp@1377 359 // CardsPerRegion). All those fields are considered constant
tonyp@1377 360 // throughout the JVM's execution, therefore they should only be set
tonyp@1377 361 // up once during initialization time.
tonyp@1377 362 static void setup_heap_region_size(uintx min_heap_size);
ysr@777 363
tonyp@790 364 enum ClaimValues {
johnc@3296 365 InitialClaimValue = 0,
johnc@3296 366 FinalCountClaimValue = 1,
johnc@3296 367 NoteEndClaimValue = 2,
johnc@3296 368 ScrubRemSetClaimValue = 3,
johnc@3296 369 ParVerifyClaimValue = 4,
johnc@3296 370 RebuildRSClaimValue = 5,
tonyp@3691 371 ParEvacFailureClaimValue = 6,
tonyp@3691 372 AggregateCountClaimValue = 7,
tonyp@3691 373 VerifyCountClaimValue = 8
tonyp@790 374 };
tonyp@790 375
tonyp@2454 376 inline HeapWord* par_allocate_no_bot_updates(size_t word_size) {
tonyp@2454 377 assert(is_young(), "we can only skip BOT updates on young regions");
tonyp@2454 378 return ContiguousSpace::par_allocate(word_size);
tonyp@2454 379 }
tonyp@2454 380 inline HeapWord* allocate_no_bot_updates(size_t word_size) {
tonyp@2454 381 assert(is_young(), "we can only skip BOT updates on young regions");
tonyp@2454 382 return ContiguousSpace::allocate(word_size);
tonyp@2454 383 }
tonyp@2454 384
ysr@777 385 // If this region is a member of a HeapRegionSeq, the index in that
ysr@777 386 // sequence, otherwise -1.
tonyp@3713 387 uint hrs_index() const { return _hrs_index; }
ysr@777 388
ysr@777 389 // The number of bytes marked live in the region in the last marking phase.
ysr@777 390 size_t marked_bytes() { return _prev_marked_bytes; }
tonyp@2717 391 size_t live_bytes() {
tonyp@2717 392 return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
tonyp@2717 393 }
tonyp@2717 394
ysr@777 395 // The number of bytes counted in the next marking.
ysr@777 396 size_t next_marked_bytes() { return _next_marked_bytes; }
ysr@777 397 // The number of bytes live wrt the next marking.
ysr@777 398 size_t next_live_bytes() {
tonyp@2717 399 return
tonyp@2717 400 (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
ysr@777 401 }
ysr@777 402
ysr@777 403 // A lower bound on the amount of garbage bytes in the region.
ysr@777 404 size_t garbage_bytes() {
ysr@777 405 size_t used_at_mark_start_bytes =
ysr@777 406 (prev_top_at_mark_start() - bottom()) * HeapWordSize;
ysr@777 407 assert(used_at_mark_start_bytes >= marked_bytes(),
ysr@777 408 "Can't mark more than we have.");
ysr@777 409 return used_at_mark_start_bytes - marked_bytes();
ysr@777 410 }
ysr@777 411
tonyp@3539 412 // Return the amount of bytes we'll reclaim if we collect this
tonyp@3539 413 // region. This includes not only the known garbage bytes in the
tonyp@3539 414 // region but also any unallocated space in it, i.e., [top, end),
tonyp@3539 415 // since it will also be reclaimed if we collect the region.
tonyp@3539 416 size_t reclaimable_bytes() {
tonyp@3539 417 size_t known_live_bytes = live_bytes();
tonyp@3539 418 assert(known_live_bytes <= capacity(), "sanity");
tonyp@3539 419 return capacity() - known_live_bytes;
tonyp@3539 420 }
tonyp@3539 421
ysr@777 422 // An upper bound on the number of live bytes in the region.
ysr@777 423 size_t max_live_bytes() { return used() - garbage_bytes(); }
ysr@777 424
ysr@777 425 void add_to_marked_bytes(size_t incr_bytes) {
ysr@777 426 _next_marked_bytes = _next_marked_bytes + incr_bytes;
johnc@3292 427 assert(_next_marked_bytes <= used(), "invariant" );
ysr@777 428 }
ysr@777 429
ysr@777 430 void zero_marked_bytes() {
ysr@777 431 _prev_marked_bytes = _next_marked_bytes = 0;
ysr@777 432 }
ysr@777 433
tonyp@790 434 bool isHumongous() const { return _humongous_type != NotHumongous; }
tonyp@790 435 bool startsHumongous() const { return _humongous_type == StartsHumongous; }
tonyp@790 436 bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
ysr@777 437 // For a humongous region, region in which it starts.
ysr@777 438 HeapRegion* humongous_start_region() const {
ysr@777 439 return _humongous_start_region;
ysr@777 440 }
ysr@777 441
tonyp@3957 442 // Return the number of distinct regions that are covered by this region:
tonyp@3957 443 // 1 if the region is not humongous, >= 1 if the region is humongous.
tonyp@3957 444 uint region_num() const {
tonyp@3957 445 if (!isHumongous()) {
tonyp@3957 446 return 1U;
tonyp@3957 447 } else {
tonyp@3957 448 assert(startsHumongous(), "doesn't make sense on HC regions");
tonyp@3957 449 assert(capacity() % HeapRegion::GrainBytes == 0, "sanity");
tonyp@3957 450 return (uint) (capacity() >> HeapRegion::LogOfHRGrainBytes);
tonyp@3957 451 }
tonyp@3957 452 }
tonyp@3957 453
tonyp@3957 454 // Return the index + 1 of the last HC regions that's associated
tonyp@3957 455 // with this HS region.
tonyp@3957 456 uint last_hc_index() const {
tonyp@3957 457 assert(startsHumongous(), "don't call this otherwise");
tonyp@3957 458 return hrs_index() + region_num();
tonyp@3957 459 }
tonyp@3957 460
brutisso@3216 461 // Same as Space::is_in_reserved, but will use the original size of the region.
brutisso@3216 462 // The original size is different only for start humongous regions. They get
brutisso@3216 463 // their _end set up to be the end of the last continues region of the
brutisso@3216 464 // corresponding humongous object.
brutisso@3216 465 bool is_in_reserved_raw(const void* p) const {
brutisso@3216 466 return _bottom <= p && p < _orig_end;
brutisso@3216 467 }
brutisso@3216 468
tonyp@2453 469 // Makes the current region be a "starts humongous" region, i.e.,
tonyp@2453 470 // the first region in a series of one or more contiguous regions
tonyp@2453 471 // that will contain a single "humongous" object. The two parameters
tonyp@2453 472 // are as follows:
tonyp@2453 473 //
tonyp@2453 474 // new_top : The new value of the top field of this region which
tonyp@2453 475 // points to the end of the humongous object that's being
tonyp@2453 476 // allocated. If there is more than one region in the series, top
tonyp@2453 477 // will lie beyond this region's original end field and on the last
tonyp@2453 478 // region in the series.
tonyp@2453 479 //
tonyp@2453 480 // new_end : The new value of the end field of this region which
tonyp@2453 481 // points to the end of the last region in the series. If there is
tonyp@2453 482 // one region in the series (namely: this one) end will be the same
tonyp@2453 483 // as the original end of this region.
tonyp@2453 484 //
tonyp@2453 485 // Updating top and end as described above makes this region look as
tonyp@2453 486 // if it spans the entire space taken up by all the regions in the
tonyp@2453 487 // series and an single allocation moved its top to new_top. This
tonyp@2453 488 // ensures that the space (capacity / allocated) taken up by all
tonyp@2453 489 // humongous regions can be calculated by just looking at the
tonyp@2453 490 // "starts humongous" regions and by ignoring the "continues
tonyp@2453 491 // humongous" regions.
tonyp@2453 492 void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);
ysr@777 493
tonyp@2453 494 // Makes the current region be a "continues humongous'
tonyp@2453 495 // region. first_hr is the "start humongous" region of the series
tonyp@2453 496 // which this region will be part of.
tonyp@2453 497 void set_continuesHumongous(HeapRegion* first_hr);
ysr@777 498
tonyp@2472 499 // Unsets the humongous-related fields on the region.
tonyp@2472 500 void set_notHumongous();
tonyp@2472 501
ysr@777 502 // If the region has a remembered set, return a pointer to it.
ysr@777 503 HeapRegionRemSet* rem_set() const {
ysr@777 504 return _rem_set;
ysr@777 505 }
ysr@777 506
ysr@777 507 // True iff the region is in current collection_set.
ysr@777 508 bool in_collection_set() const {
ysr@777 509 return _in_collection_set;
ysr@777 510 }
ysr@777 511 void set_in_collection_set(bool b) {
ysr@777 512 _in_collection_set = b;
ysr@777 513 }
ysr@777 514 HeapRegion* next_in_collection_set() {
ysr@777 515 assert(in_collection_set(), "should only invoke on member of CS.");
ysr@777 516 assert(_next_in_special_set == NULL ||
ysr@777 517 _next_in_special_set->in_collection_set(),
ysr@777 518 "Malformed CS.");
ysr@777 519 return _next_in_special_set;
ysr@777 520 }
ysr@777 521 void set_next_in_collection_set(HeapRegion* r) {
ysr@777 522 assert(in_collection_set(), "should only invoke on member of CS.");
ysr@777 523 assert(r == NULL || r->in_collection_set(), "Malformed CS.");
ysr@777 524 _next_in_special_set = r;
ysr@777 525 }
ysr@777 526
tonyp@2472 527 // Methods used by the HeapRegionSetBase class and subclasses.
tonyp@2472 528
tonyp@2472 529 // Getter and setter for the next field used to link regions into
tonyp@2472 530 // linked lists.
tonyp@2472 531 HeapRegion* next() { return _next; }
tonyp@2472 532
tonyp@2472 533 void set_next(HeapRegion* next) { _next = next; }
tonyp@2472 534
tonyp@2472 535 // Every region added to a set is tagged with a reference to that
tonyp@2472 536 // set. This is used for doing consistency checking to make sure that
tonyp@2472 537 // the contents of a set are as they should be and it's only
tonyp@2472 538 // available in non-product builds.
tonyp@2472 539 #ifdef ASSERT
tonyp@2472 540 void set_containing_set(HeapRegionSetBase* containing_set) {
tonyp@2472 541 assert((containing_set == NULL && _containing_set != NULL) ||
tonyp@2472 542 (containing_set != NULL && _containing_set == NULL),
tonyp@2472 543 err_msg("containing_set: "PTR_FORMAT" "
tonyp@2472 544 "_containing_set: "PTR_FORMAT,
tonyp@2472 545 containing_set, _containing_set));
tonyp@2472 546
tonyp@2472 547 _containing_set = containing_set;
tonyp@2643 548 }
tonyp@2472 549
tonyp@2472 550 HeapRegionSetBase* containing_set() { return _containing_set; }
tonyp@2472 551 #else // ASSERT
tonyp@2472 552 void set_containing_set(HeapRegionSetBase* containing_set) { }
tonyp@2472 553
tonyp@2643 554 // containing_set() is only used in asserts so there's no reason
tonyp@2472 555 // to provide a dummy version of it.
tonyp@2472 556 #endif // ASSERT
tonyp@2472 557
tonyp@2472 558 // If we want to remove regions from a list in bulk we can simply tag
tonyp@2472 559 // them with the pending_removal tag and call the
tonyp@2472 560 // remove_all_pending() method on the list.
tonyp@2472 561
tonyp@2472 562 bool pending_removal() { return _pending_removal; }
tonyp@2472 563
tonyp@2472 564 void set_pending_removal(bool pending_removal) {
tonyp@2643 565 if (pending_removal) {
tonyp@2643 566 assert(!_pending_removal && containing_set() != NULL,
tonyp@2643 567 "can only set pending removal to true if it's false and "
tonyp@2643 568 "the region belongs to a region set");
tonyp@2643 569 } else {
tonyp@2643 570 assert( _pending_removal && containing_set() == NULL,
tonyp@2643 571 "can only set pending removal to false if it's true and "
tonyp@2643 572 "the region does not belong to a region set");
tonyp@2643 573 }
tonyp@2472 574
tonyp@2472 575 _pending_removal = pending_removal;
ysr@777 576 }
ysr@777 577
ysr@777 578 HeapRegion* get_next_young_region() { return _next_young_region; }
ysr@777 579 void set_next_young_region(HeapRegion* hr) {
ysr@777 580 _next_young_region = hr;
ysr@777 581 }
ysr@777 582
apetrusenko@1231 583 HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
apetrusenko@1231 584 HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
apetrusenko@1231 585 void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
apetrusenko@1231 586 bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
apetrusenko@1231 587
tonyp@2963 588 HeapWord* orig_end() { return _orig_end; }
tonyp@2963 589
ysr@777 590 // Allows logical separation between objects allocated before and after.
ysr@777 591 void save_marks();
ysr@777 592
ysr@777 593 // Reset HR stuff to default values.
ysr@777 594 void hr_clear(bool par, bool clear_space);
tonyp@2849 595 void par_clear();
ysr@777 596
ysr@777 597 // Get the start of the unmarked area in this region.
ysr@777 598 HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
ysr@777 599 HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
ysr@777 600
ysr@777 601 // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
ysr@777 602 // allocated in the current region before the last call to "save_mark".
coleenp@4037 603 void oop_before_save_marks_iterate(ExtendedOopClosure* cl);
ysr@777 604
ysr@777 605 // Note the start or end of marking. This tells the heap region
ysr@777 606 // that the collector is about to start or has finished (concurrently)
ysr@777 607 // marking the heap.
ysr@777 608
tonyp@3416 609 // Notify the region that concurrent marking is starting. Initialize
tonyp@3416 610 // all fields related to the next marking info.
tonyp@3416 611 inline void note_start_of_marking();
ysr@777 612
tonyp@3416 613 // Notify the region that concurrent marking has finished. Copy the
tonyp@3416 614 // (now finalized) next marking info fields into the prev marking
tonyp@3416 615 // info fields.
tonyp@3416 616 inline void note_end_of_marking();
ysr@777 617
tonyp@3416 618 // Notify the region that it will be used as to-space during a GC
tonyp@3416 619 // and we are about to start copying objects into it.
tonyp@3416 620 inline void note_start_of_copying(bool during_initial_mark);
ysr@777 621
tonyp@3416 622 // Notify the region that it ceases being to-space during a GC and
tonyp@3416 623 // we will not copy objects into it any more.
tonyp@3416 624 inline void note_end_of_copying(bool during_initial_mark);
tonyp@3416 625
tonyp@3416 626 // Notify the region that we are about to start processing
tonyp@3416 627 // self-forwarded objects during evac failure handling.
tonyp@3416 628 void note_self_forwarding_removal_start(bool during_initial_mark,
tonyp@3416 629 bool during_conc_mark);
tonyp@3416 630
tonyp@3416 631 // Notify the region that we have finished processing self-forwarded
tonyp@3416 632 // objects during evac failure handling.
tonyp@3416 633 void note_self_forwarding_removal_end(bool during_initial_mark,
tonyp@3416 634 bool during_conc_mark,
tonyp@3416 635 size_t marked_bytes);
ysr@777 636
ysr@777 637 // Returns "false" iff no object in the region was allocated when the
ysr@777 638 // last mark phase ended.
ysr@777 639 bool is_marked() { return _prev_top_at_mark_start != bottom(); }
ysr@777 640
ysr@777 641 void reset_during_compaction() {
tonyp@3957 642 assert(isHumongous() && startsHumongous(),
tonyp@3957 643 "should only be called for starts humongous regions");
ysr@777 644
ysr@777 645 zero_marked_bytes();
ysr@777 646 init_top_at_mark_start();
ysr@777 647 }
ysr@777 648
ysr@777 649 void calc_gc_efficiency(void);
ysr@777 650 double gc_efficiency() { return _gc_efficiency;}
ysr@777 651
ysr@777 652 bool is_young() const { return _young_type != NotYoung; }
ysr@777 653 bool is_survivor() const { return _young_type == Survivor; }
ysr@777 654
ysr@777 655 int young_index_in_cset() const { return _young_index_in_cset; }
ysr@777 656 void set_young_index_in_cset(int index) {
ysr@777 657 assert( (index == -1) || is_young(), "pre-condition" );
ysr@777 658 _young_index_in_cset = index;
ysr@777 659 }
ysr@777 660
ysr@777 661 int age_in_surv_rate_group() {
ysr@777 662 assert( _surv_rate_group != NULL, "pre-condition" );
ysr@777 663 assert( _age_index > -1, "pre-condition" );
ysr@777 664 return _surv_rate_group->age_in_group(_age_index);
ysr@777 665 }
ysr@777 666
ysr@777 667 void record_surv_words_in_group(size_t words_survived) {
ysr@777 668 assert( _surv_rate_group != NULL, "pre-condition" );
ysr@777 669 assert( _age_index > -1, "pre-condition" );
ysr@777 670 int age_in_group = age_in_surv_rate_group();
ysr@777 671 _surv_rate_group->record_surviving_words(age_in_group, words_survived);
ysr@777 672 }
ysr@777 673
ysr@777 674 int age_in_surv_rate_group_cond() {
ysr@777 675 if (_surv_rate_group != NULL)
ysr@777 676 return age_in_surv_rate_group();
ysr@777 677 else
ysr@777 678 return -1;
ysr@777 679 }
ysr@777 680
ysr@777 681 SurvRateGroup* surv_rate_group() {
ysr@777 682 return _surv_rate_group;
ysr@777 683 }
ysr@777 684
ysr@777 685 void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
ysr@777 686 assert( surv_rate_group != NULL, "pre-condition" );
ysr@777 687 assert( _surv_rate_group == NULL, "pre-condition" );
ysr@777 688 assert( is_young(), "pre-condition" );
ysr@777 689
ysr@777 690 _surv_rate_group = surv_rate_group;
ysr@777 691 _age_index = surv_rate_group->next_age_index();
ysr@777 692 }
ysr@777 693
ysr@777 694 void uninstall_surv_rate_group() {
ysr@777 695 if (_surv_rate_group != NULL) {
ysr@777 696 assert( _age_index > -1, "pre-condition" );
ysr@777 697 assert( is_young(), "pre-condition" );
ysr@777 698
ysr@777 699 _surv_rate_group = NULL;
ysr@777 700 _age_index = -1;
ysr@777 701 } else {
ysr@777 702 assert( _age_index == -1, "pre-condition" );
ysr@777 703 }
ysr@777 704 }
ysr@777 705
ysr@777 706 void set_young() { set_young_type(Young); }
ysr@777 707
ysr@777 708 void set_survivor() { set_young_type(Survivor); }
ysr@777 709
ysr@777 710 void set_not_young() { set_young_type(NotYoung); }
ysr@777 711
ysr@777 712 // Determine if an object has been allocated since the last
ysr@777 713 // mark performed by the collector. This returns true iff the object
ysr@777 714 // is within the unmarked area of the region.
ysr@777 715 bool obj_allocated_since_prev_marking(oop obj) const {
ysr@777 716 return (HeapWord *) obj >= prev_top_at_mark_start();
ysr@777 717 }
ysr@777 718 bool obj_allocated_since_next_marking(oop obj) const {
ysr@777 719 return (HeapWord *) obj >= next_top_at_mark_start();
ysr@777 720 }
ysr@777 721
ysr@777 722 // For parallel heapRegion traversal.
ysr@777 723 bool claimHeapRegion(int claimValue);
ysr@777 724 jint claim_value() { return _claimed; }
ysr@777 725 // Use this carefully: only when you're sure no one is claiming...
ysr@777 726 void set_claim_value(int claimValue) { _claimed = claimValue; }
ysr@777 727
ysr@777 728 // Returns the "evacuation_failed" property of the region.
ysr@777 729 bool evacuation_failed() { return _evacuation_failed; }
ysr@777 730
ysr@777 731 // Sets the "evacuation_failed" property of the region.
ysr@777 732 void set_evacuation_failed(bool b) {
ysr@777 733 _evacuation_failed = b;
ysr@777 734
ysr@777 735 if (b) {
ysr@777 736 _next_marked_bytes = 0;
ysr@777 737 }
ysr@777 738 }
ysr@777 739
ysr@777 740 // Requires that "mr" be entirely within the region.
ysr@777 741 // Apply "cl->do_object" to all objects that intersect with "mr".
ysr@777 742 // If the iteration encounters an unparseable portion of the region,
ysr@777 743 // or if "cl->abort()" is true after a closure application,
ysr@777 744 // terminate the iteration and return the address of the start of the
ysr@777 745 // subregion that isn't done. (The two can be distinguished by querying
ysr@777 746 // "cl->abort()".) Return of "NULL" indicates that the iteration
ysr@777 747 // completed.
ysr@777 748 HeapWord*
ysr@777 749 object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
ysr@777 750
tonyp@2849 751 // filter_young: if true and the region is a young region then we
tonyp@2849 752 // skip the iteration.
tonyp@2849 753 // card_ptr: if not NULL, and we decide that the card is not young
tonyp@2849 754 // and we iterate over it, we'll clean the card before we start the
tonyp@2849 755 // iteration.
ysr@777 756 HeapWord*
ysr@777 757 oops_on_card_seq_iterate_careful(MemRegion mr,
johnc@2021 758 FilterOutOfRegionClosure* cl,
tonyp@2849 759 bool filter_young,
tonyp@2849 760 jbyte* card_ptr);
ysr@777 761
ysr@777 762 // A version of block start that is guaranteed to find *some* block
ysr@777 763 // boundary at or before "p", but does not object iteration, and may
ysr@777 764 // therefore be used safely when the heap is unparseable.
ysr@777 765 HeapWord* block_start_careful(const void* p) const {
ysr@777 766 return _offsets.block_start_careful(p);
ysr@777 767 }
ysr@777 768
ysr@777 769 // Requires that "addr" is within the region. Returns the start of the
ysr@777 770 // first ("careful") block that starts at or after "addr", or else the
ysr@777 771 // "end" of the region if there is no such block.
ysr@777 772 HeapWord* next_block_start_careful(HeapWord* addr);
ysr@777 773
johnc@1829 774 size_t recorded_rs_length() const { return _recorded_rs_length; }
johnc@1829 775 double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
johnc@1829 776 size_t predicted_bytes_to_copy() const { return _predicted_bytes_to_copy; }
johnc@1829 777
johnc@1829 778 void set_recorded_rs_length(size_t rs_length) {
johnc@1829 779 _recorded_rs_length = rs_length;
johnc@1829 780 }
johnc@1829 781
johnc@1829 782 void set_predicted_elapsed_time_ms(double ms) {
johnc@1829 783 _predicted_elapsed_time_ms = ms;
johnc@1829 784 }
johnc@1829 785
johnc@1829 786 void set_predicted_bytes_to_copy(size_t bytes) {
johnc@1829 787 _predicted_bytes_to_copy = bytes;
johnc@1829 788 }
johnc@1829 789
ysr@777 790 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
ysr@777 791 virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
ysr@777 792 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
ysr@777 793
tonyp@3957 794 virtual CompactibleSpace* next_compaction_space() const;
ysr@777 795
ysr@777 796 virtual void reset_after_compaction();
ysr@777 797
ysr@777 798 void print() const;
ysr@777 799 void print_on(outputStream* st) const;
ysr@777 800
johnc@2969 801 // vo == UsePrevMarking -> use "prev" marking information,
johnc@2969 802 // vo == UseNextMarking -> use "next" marking information
johnc@2969 803 // vo == UseMarkWord -> use the mark word in the object header
johnc@2969 804 //
tonyp@1246 805 // NOTE: Only the "prev" marking information is guaranteed to be
tonyp@1246 806 // consistent most of the time, so most calls to this should use
johnc@2969 807 // vo == UsePrevMarking.
johnc@2969 808 // Currently, there is only one case where this is called with
johnc@2969 809 // vo == UseNextMarking, which is to verify the "next" marking
johnc@2969 810 // information at the end of remark.
johnc@2969 811 // Currently there is only one place where this is called with
johnc@2969 812 // vo == UseMarkWord, which is to verify the marking during a
johnc@2969 813 // full GC.
brutisso@3711 814 void verify(VerifyOption vo, bool *failures) const;
tonyp@1246 815
tonyp@1246 816 // Override; it uses the "prev" marking information
brutisso@3711 817 virtual void verify() const;
ysr@777 818 };
ysr@777 819
ysr@777 820 // HeapRegionClosure is used for iterating over regions.
ysr@777 821 // Terminates the iteration when the "doHeapRegion" method returns "true".
ysr@777 822 class HeapRegionClosure : public StackObj {
ysr@777 823 friend class HeapRegionSeq;
ysr@777 824 friend class G1CollectedHeap;
ysr@777 825
ysr@777 826 bool _complete;
ysr@777 827 void incomplete() { _complete = false; }
ysr@777 828
ysr@777 829 public:
ysr@777 830 HeapRegionClosure(): _complete(true) {}
ysr@777 831
ysr@777 832 // Typically called on each region until it returns true.
ysr@777 833 virtual bool doHeapRegion(HeapRegion* r) = 0;
ysr@777 834
ysr@777 835 // True after iteration if the closure was applied to all heap regions
ysr@777 836 // and returned "false" in all cases.
ysr@777 837 bool complete() { return _complete; }
ysr@777 838 };
ysr@777 839
ysr@777 840 #endif // SERIALGC
stefank@2314 841
stefank@2314 842 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP

mercurial