src/share/vm/gc_implementation/g1/heapRegion.hpp

Thu, 15 Aug 2013 10:52:18 +0200

author
johnc
date
Thu, 15 Aug 2013 10:52:18 +0200
changeset 5548
5888334c9c24
parent 4542
db9981fd3124
child 5646
84683e78e713
permissions
-rw-r--r--

7145569: G1: optimize nmethods scanning
Summary: Add a list of nmethods to the RSet for a region that contain references into the region. Skip scanning the code cache during root scanning and scan the nmethod lists during RSet scanning instead.
Reviewed-by: tschatzl, brutisso, mgerdin, twisti, kvn

ysr@777 1 /*
johnc@3412 2 * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
ysr@777 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
ysr@777 4 *
ysr@777 5 * This code is free software; you can redistribute it and/or modify it
ysr@777 6 * under the terms of the GNU General Public License version 2 only, as
ysr@777 7 * published by the Free Software Foundation.
ysr@777 8 *
ysr@777 9 * This code is distributed in the hope that it will be useful, but WITHOUT
ysr@777 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
ysr@777 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
ysr@777 12 * version 2 for more details (a copy is included in the LICENSE file that
ysr@777 13 * accompanied this code).
ysr@777 14 *
ysr@777 15 * You should have received a copy of the GNU General Public License version
ysr@777 16 * 2 along with this work; if not, write to the Free Software Foundation,
ysr@777 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
ysr@777 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
ysr@777 22 *
ysr@777 23 */
ysr@777 24
stefank@2314 25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
stefank@2314 26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
stefank@2314 27
stefank@2314 28 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
stefank@2314 29 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
stefank@2314 30 #include "gc_implementation/g1/survRateGroup.hpp"
stefank@2314 31 #include "gc_implementation/shared/ageTable.hpp"
stefank@2314 32 #include "gc_implementation/shared/spaceDecorator.hpp"
stefank@2314 33 #include "memory/space.inline.hpp"
stefank@2314 34 #include "memory/watermark.hpp"
jprovino@4542 35 #include "utilities/macros.hpp"
stefank@2314 36
jprovino@4542 37 #if INCLUDE_ALL_GCS
ysr@777 38
ysr@777 39 // A HeapRegion is the smallest piece of a G1CollectedHeap that
ysr@777 40 // can be collected independently.
ysr@777 41
ysr@777 42 // NOTE: Although a HeapRegion is a Space, its
ysr@777 43 // Space::initDirtyCardClosure method must not be called.
ysr@777 44 // The problem is that the existence of this method breaks
ysr@777 45 // the independence of barrier sets from remembered sets.
ysr@777 46 // The solution is to remove this method from the definition
ysr@777 47 // of a Space.
ysr@777 48
ysr@777 49 class CompactibleSpace;
ysr@777 50 class ContiguousSpace;
ysr@777 51 class HeapRegionRemSet;
ysr@777 52 class HeapRegionRemSetIterator;
ysr@777 53 class HeapRegion;
tonyp@2472 54 class HeapRegionSetBase;
johnc@5548 55 class nmethod;
tonyp@2472 56
tonyp@3713 57 #define HR_FORMAT "%u:(%s)["PTR_FORMAT","PTR_FORMAT","PTR_FORMAT"]"
tonyp@2963 58 #define HR_FORMAT_PARAMS(_hr_) \
tonyp@2963 59 (_hr_)->hrs_index(), \
tonyp@3957 60 (_hr_)->is_survivor() ? "S" : (_hr_)->is_young() ? "E" : \
tonyp@3957 61 (_hr_)->startsHumongous() ? "HS" : \
tonyp@3957 62 (_hr_)->continuesHumongous() ? "HC" : \
tonyp@3957 63 !(_hr_)->is_empty() ? "O" : "F", \
tonyp@2963 64 (_hr_)->bottom(), (_hr_)->top(), (_hr_)->end()
ysr@777 65
tonyp@3713 66 // sentinel value for hrs_index
tonyp@3713 67 #define G1_NULL_HRS_INDEX ((uint) -1)
tonyp@3713 68
ysr@777 69 // A dirty card to oop closure for heap regions. It
ysr@777 70 // knows how to get the G1 heap and how to use the bitmap
ysr@777 71 // in the concurrent marker used by G1 to filter remembered
ysr@777 72 // sets.
ysr@777 73
ysr@777 74 class HeapRegionDCTOC : public ContiguousSpaceDCTOC {
ysr@777 75 public:
ysr@777 76 // Specification of possible DirtyCardToOopClosure filtering.
ysr@777 77 enum FilterKind {
ysr@777 78 NoFilterKind,
ysr@777 79 IntoCSFilterKind,
ysr@777 80 OutOfRegionFilterKind
ysr@777 81 };
ysr@777 82
ysr@777 83 protected:
ysr@777 84 HeapRegion* _hr;
ysr@777 85 FilterKind _fk;
ysr@777 86 G1CollectedHeap* _g1;
ysr@777 87
ysr@777 88 void walk_mem_region_with_cl(MemRegion mr,
ysr@777 89 HeapWord* bottom, HeapWord* top,
coleenp@4037 90 ExtendedOopClosure* cl);
ysr@777 91
ysr@777 92 // We don't specialize this for FilteringClosure; filtering is handled by
ysr@777 93 // the "FilterKind" mechanism. But we provide this to avoid a compiler
ysr@777 94 // warning.
ysr@777 95 void walk_mem_region_with_cl(MemRegion mr,
ysr@777 96 HeapWord* bottom, HeapWord* top,
ysr@777 97 FilteringClosure* cl) {
ysr@777 98 HeapRegionDCTOC::walk_mem_region_with_cl(mr, bottom, top,
coleenp@4037 99 (ExtendedOopClosure*)cl);
ysr@777 100 }
ysr@777 101
ysr@777 102 // Get the actual top of the area on which the closure will
ysr@777 103 // operate, given where the top is assumed to be (the end of the
ysr@777 104 // memory region passed to do_MemRegion) and where the object
ysr@777 105 // at the top is assumed to start. For example, an object may
ysr@777 106 // start at the top but actually extend past the assumed top,
ysr@777 107 // in which case the top becomes the end of the object.
ysr@777 108 HeapWord* get_actual_top(HeapWord* top, HeapWord* top_obj) {
ysr@777 109 return ContiguousSpaceDCTOC::get_actual_top(top, top_obj);
ysr@777 110 }
ysr@777 111
ysr@777 112 // Walk the given memory region from bottom to (actual) top
ysr@777 113 // looking for objects and applying the oop closure (_cl) to
ysr@777 114 // them. The base implementation of this treats the area as
ysr@777 115 // blocks, where a block may or may not be an object. Sub-
ysr@777 116 // classes should override this to provide more accurate
ysr@777 117 // or possibly more efficient walking.
ysr@777 118 void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top) {
ysr@777 119 Filtering_DCTOC::walk_mem_region(mr, bottom, top);
ysr@777 120 }
ysr@777 121
ysr@777 122 public:
ysr@777 123 HeapRegionDCTOC(G1CollectedHeap* g1,
coleenp@4037 124 HeapRegion* hr, ExtendedOopClosure* cl,
ysr@777 125 CardTableModRefBS::PrecisionStyle precision,
ysr@777 126 FilterKind fk);
ysr@777 127 };
ysr@777 128
ysr@777 129 // The complicating factor is that BlockOffsetTable diverged
ysr@777 130 // significantly, and we need functionality that is only in the G1 version.
ysr@777 131 // So I copied that code, which led to an alternate G1 version of
ysr@777 132 // OffsetTableContigSpace. If the two versions of BlockOffsetTable could
ysr@777 133 // be reconciled, then G1OffsetTableContigSpace could go away.
ysr@777 134
ysr@777 135 // The idea behind time stamps is the following. Doing a save_marks on
ysr@777 136 // all regions at every GC pause is time consuming (if I remember
ysr@777 137 // well, 10ms or so). So, we would like to do that only for regions
ysr@777 138 // that are GC alloc regions. To achieve this, we use time
ysr@777 139 // stamps. For every evacuation pause, G1CollectedHeap generates a
ysr@777 140 // unique time stamp (essentially a counter that gets
ysr@777 141 // incremented). Every time we want to call save_marks on a region,
ysr@777 142 // we set the saved_mark_word to top and also copy the current GC
ysr@777 143 // time stamp to the time stamp field of the space. Reading the
ysr@777 144 // saved_mark_word involves checking the time stamp of the
ysr@777 145 // region. If it is the same as the current GC time stamp, then we
ysr@777 146 // can safely read the saved_mark_word field, as it is valid. If the
ysr@777 147 // time stamp of the region is not the same as the current GC time
ysr@777 148 // stamp, then we instead read top, as the saved_mark_word field is
ysr@777 149 // invalid. Time stamps (on the regions and also on the
ysr@777 150 // G1CollectedHeap) are reset at every cleanup (we iterate over
ysr@777 151 // the regions anyway) and at the end of a Full GC. The current scheme
ysr@777 152 // that uses sequential unsigned ints will fail only if we have 4b
ysr@777 153 // evacuation pauses between two cleanups, which is _highly_ unlikely.
ysr@777 154
ysr@777 155 class G1OffsetTableContigSpace: public ContiguousSpace {
ysr@777 156 friend class VMStructs;
ysr@777 157 protected:
ysr@777 158 G1BlockOffsetArrayContigSpace _offsets;
ysr@777 159 Mutex _par_alloc_lock;
ysr@777 160 volatile unsigned _gc_time_stamp;
tonyp@2715 161 // When we need to retire an allocation region, while other threads
tonyp@2715 162 // are also concurrently trying to allocate into it, we typically
tonyp@2715 163 // allocate a dummy object at the end of the region to ensure that
tonyp@2715 164 // no more allocations can take place in it. However, sometimes we
tonyp@2715 165 // want to know where the end of the last "real" object we allocated
tonyp@2715 166 // into the region was and this is what this keeps track.
tonyp@2715 167 HeapWord* _pre_dummy_top;
ysr@777 168
ysr@777 169 public:
ysr@777 170 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
johnc@4065 171 MemRegion mr);
ysr@777 172
ysr@777 173 void set_bottom(HeapWord* value);
ysr@777 174 void set_end(HeapWord* value);
ysr@777 175
ysr@777 176 virtual HeapWord* saved_mark_word() const;
ysr@777 177 virtual void set_saved_mark();
ysr@777 178 void reset_gc_time_stamp() { _gc_time_stamp = 0; }
tonyp@3957 179 unsigned get_gc_time_stamp() { return _gc_time_stamp; }
ysr@777 180
tonyp@2715 181 // See the comment above in the declaration of _pre_dummy_top for an
tonyp@2715 182 // explanation of what it is.
tonyp@2715 183 void set_pre_dummy_top(HeapWord* pre_dummy_top) {
tonyp@2715 184 assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
tonyp@2715 185 _pre_dummy_top = pre_dummy_top;
tonyp@2715 186 }
tonyp@2715 187 HeapWord* pre_dummy_top() {
tonyp@2715 188 return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
tonyp@2715 189 }
tonyp@2715 190 void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
tonyp@2715 191
tonyp@791 192 virtual void clear(bool mangle_space);
ysr@777 193
ysr@777 194 HeapWord* block_start(const void* p);
ysr@777 195 HeapWord* block_start_const(const void* p) const;
ysr@777 196
ysr@777 197 // Add offset table update.
ysr@777 198 virtual HeapWord* allocate(size_t word_size);
ysr@777 199 HeapWord* par_allocate(size_t word_size);
ysr@777 200
ysr@777 201 // MarkSweep support phase3
ysr@777 202 virtual HeapWord* initialize_threshold();
ysr@777 203 virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
ysr@777 204
ysr@777 205 virtual void print() const;
tonyp@2453 206
tonyp@2453 207 void reset_bot() {
tonyp@2453 208 _offsets.zero_bottom_entry();
tonyp@2453 209 _offsets.initialize_threshold();
tonyp@2453 210 }
tonyp@2453 211
tonyp@2453 212 void update_bot_for_object(HeapWord* start, size_t word_size) {
tonyp@2453 213 _offsets.alloc_block(start, word_size);
tonyp@2453 214 }
tonyp@2453 215
tonyp@2453 216 void print_bot_on(outputStream* out) {
tonyp@2453 217 _offsets.print_on(out);
tonyp@2453 218 }
ysr@777 219 };
ysr@777 220
ysr@777 221 class HeapRegion: public G1OffsetTableContigSpace {
ysr@777 222 friend class VMStructs;
ysr@777 223 private:
ysr@777 224
tonyp@790 225 enum HumongousType {
tonyp@790 226 NotHumongous = 0,
tonyp@790 227 StartsHumongous,
tonyp@790 228 ContinuesHumongous
tonyp@790 229 };
tonyp@790 230
ysr@777 231 // Requires that the region "mr" be dense with objects, and begin and end
ysr@777 232 // with an object.
coleenp@4037 233 void oops_in_mr_iterate(MemRegion mr, ExtendedOopClosure* cl);
ysr@777 234
ysr@777 235 // The remembered set for this region.
ysr@777 236 // (Might want to make this "inline" later, to avoid some alloc failure
ysr@777 237 // issues.)
ysr@777 238 HeapRegionRemSet* _rem_set;
ysr@777 239
ysr@777 240 G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
ysr@777 241
ysr@777 242 protected:
tonyp@2963 243 // The index of this region in the heap region sequence.
tonyp@3713 244 uint _hrs_index;
ysr@777 245
tonyp@790 246 HumongousType _humongous_type;
ysr@777 247 // For a humongous region, region in which it starts.
ysr@777 248 HeapRegion* _humongous_start_region;
ysr@777 249 // For the start region of a humongous sequence, it's original end().
ysr@777 250 HeapWord* _orig_end;
ysr@777 251
ysr@777 252 // True iff the region is in current collection_set.
ysr@777 253 bool _in_collection_set;
ysr@777 254
ysr@777 255 // True iff an attempt to evacuate an object in the region failed.
ysr@777 256 bool _evacuation_failed;
ysr@777 257
ysr@777 258 // A heap region may be a member one of a number of special subsets, each
ysr@777 259 // represented as linked lists through the field below. Currently, these
ysr@777 260 // sets include:
ysr@777 261 // The collection set.
ysr@777 262 // The set of allocation regions used in a collection pause.
ysr@777 263 // Spaces that may contain gray objects.
ysr@777 264 HeapRegion* _next_in_special_set;
ysr@777 265
ysr@777 266 // next region in the young "generation" region set
ysr@777 267 HeapRegion* _next_young_region;
ysr@777 268
apetrusenko@1231 269 // Next region whose cards need cleaning
apetrusenko@1231 270 HeapRegion* _next_dirty_cards_region;
apetrusenko@1231 271
tonyp@2472 272 // Fields used by the HeapRegionSetBase class and subclasses.
tonyp@2472 273 HeapRegion* _next;
tonyp@2472 274 #ifdef ASSERT
tonyp@2472 275 HeapRegionSetBase* _containing_set;
tonyp@2472 276 #endif // ASSERT
tonyp@2472 277 bool _pending_removal;
tonyp@2472 278
ysr@777 279 // For parallel heapRegion traversal.
ysr@777 280 jint _claimed;
ysr@777 281
ysr@777 282 // We use concurrent marking to determine the amount of live data
ysr@777 283 // in each heap region.
ysr@777 284 size_t _prev_marked_bytes; // Bytes known to be live via last completed marking.
ysr@777 285 size_t _next_marked_bytes; // Bytes known to be live via in-progress marking.
ysr@777 286
tonyp@3714 287 // The calculated GC efficiency of the region.
ysr@777 288 double _gc_efficiency;
ysr@777 289
ysr@777 290 enum YoungType {
ysr@777 291 NotYoung, // a region is not young
ysr@777 292 Young, // a region is young
tonyp@2963 293 Survivor // a region is young and it contains survivors
ysr@777 294 };
ysr@777 295
johnc@2021 296 volatile YoungType _young_type;
ysr@777 297 int _young_index_in_cset;
ysr@777 298 SurvRateGroup* _surv_rate_group;
ysr@777 299 int _age_index;
ysr@777 300
ysr@777 301 // The start of the unmarked area. The unmarked area extends from this
ysr@777 302 // word until the top and/or end of the region, and is the part
ysr@777 303 // of the region for which no marking was done, i.e. objects may
ysr@777 304 // have been allocated in this part since the last mark phase.
ysr@777 305 // "prev" is the top at the start of the last completed marking.
ysr@777 306 // "next" is the top at the start of the in-progress marking (if any.)
ysr@777 307 HeapWord* _prev_top_at_mark_start;
ysr@777 308 HeapWord* _next_top_at_mark_start;
ysr@777 309 // If a collection pause is in progress, this is the top at the start
ysr@777 310 // of that pause.
ysr@777 311
ysr@777 312 void init_top_at_mark_start() {
ysr@777 313 assert(_prev_marked_bytes == 0 &&
ysr@777 314 _next_marked_bytes == 0,
ysr@777 315 "Must be called after zero_marked_bytes.");
ysr@777 316 HeapWord* bot = bottom();
ysr@777 317 _prev_top_at_mark_start = bot;
ysr@777 318 _next_top_at_mark_start = bot;
ysr@777 319 }
ysr@777 320
ysr@777 321 void set_young_type(YoungType new_type) {
ysr@777 322 //assert(_young_type != new_type, "setting the same type" );
ysr@777 323 // TODO: add more assertions here
ysr@777 324 _young_type = new_type;
ysr@777 325 }
ysr@777 326
johnc@1829 327 // Cached attributes used in the collection set policy information
johnc@1829 328
johnc@1829 329 // The RSet length that was added to the total value
johnc@1829 330 // for the collection set.
johnc@1829 331 size_t _recorded_rs_length;
johnc@1829 332
johnc@1829 333 // The predicted elapsed time that was added to total value
johnc@1829 334 // for the collection set.
johnc@1829 335 double _predicted_elapsed_time_ms;
johnc@1829 336
johnc@1829 337 // The predicted number of bytes to copy that was added to
johnc@1829 338 // the total value for the collection set.
johnc@1829 339 size_t _predicted_bytes_to_copy;
johnc@1829 340
ysr@777 341 public:
tonyp@3713 342 HeapRegion(uint hrs_index,
tonyp@2963 343 G1BlockOffsetSharedArray* sharedOffsetArray,
johnc@4065 344 MemRegion mr);
ysr@777 345
johnc@3182 346 static int LogOfHRGrainBytes;
johnc@3182 347 static int LogOfHRGrainWords;
johnc@3182 348
johnc@3182 349 static size_t GrainBytes;
johnc@3182 350 static size_t GrainWords;
johnc@3182 351 static size_t CardsPerRegion;
tonyp@1377 352
tonyp@3176 353 static size_t align_up_to_region_byte_size(size_t sz) {
tonyp@3176 354 return (sz + (size_t) GrainBytes - 1) &
tonyp@3176 355 ~((1 << (size_t) LogOfHRGrainBytes) - 1);
tonyp@3176 356 }
tonyp@3176 357
tonyp@1377 358 // It sets up the heap region size (GrainBytes / GrainWords), as
tonyp@1377 359 // well as other related fields that are based on the heap region
tonyp@1377 360 // size (LogOfHRGrainBytes / LogOfHRGrainWords /
tonyp@1377 361 // CardsPerRegion). All those fields are considered constant
tonyp@1377 362 // throughout the JVM's execution, therefore they should only be set
tonyp@1377 363 // up once during initialization time.
tonyp@1377 364 static void setup_heap_region_size(uintx min_heap_size);
ysr@777 365
tonyp@790 366 enum ClaimValues {
johnc@3296 367 InitialClaimValue = 0,
johnc@3296 368 FinalCountClaimValue = 1,
johnc@3296 369 NoteEndClaimValue = 2,
johnc@3296 370 ScrubRemSetClaimValue = 3,
johnc@3296 371 ParVerifyClaimValue = 4,
johnc@3296 372 RebuildRSClaimValue = 5,
tonyp@3691 373 ParEvacFailureClaimValue = 6,
tonyp@3691 374 AggregateCountClaimValue = 7,
johnc@5548 375 VerifyCountClaimValue = 8,
johnc@5548 376 ParMarkRootClaimValue = 9
tonyp@790 377 };
tonyp@790 378
tonyp@2454 379 inline HeapWord* par_allocate_no_bot_updates(size_t word_size) {
tonyp@2454 380 assert(is_young(), "we can only skip BOT updates on young regions");
tonyp@2454 381 return ContiguousSpace::par_allocate(word_size);
tonyp@2454 382 }
tonyp@2454 383 inline HeapWord* allocate_no_bot_updates(size_t word_size) {
tonyp@2454 384 assert(is_young(), "we can only skip BOT updates on young regions");
tonyp@2454 385 return ContiguousSpace::allocate(word_size);
tonyp@2454 386 }
tonyp@2454 387
ysr@777 388 // If this region is a member of a HeapRegionSeq, the index in that
ysr@777 389 // sequence, otherwise -1.
tonyp@3713 390 uint hrs_index() const { return _hrs_index; }
ysr@777 391
ysr@777 392 // The number of bytes marked live in the region in the last marking phase.
ysr@777 393 size_t marked_bytes() { return _prev_marked_bytes; }
tonyp@2717 394 size_t live_bytes() {
tonyp@2717 395 return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
tonyp@2717 396 }
tonyp@2717 397
ysr@777 398 // The number of bytes counted in the next marking.
ysr@777 399 size_t next_marked_bytes() { return _next_marked_bytes; }
ysr@777 400 // The number of bytes live wrt the next marking.
ysr@777 401 size_t next_live_bytes() {
tonyp@2717 402 return
tonyp@2717 403 (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
ysr@777 404 }
ysr@777 405
ysr@777 406 // A lower bound on the amount of garbage bytes in the region.
ysr@777 407 size_t garbage_bytes() {
ysr@777 408 size_t used_at_mark_start_bytes =
ysr@777 409 (prev_top_at_mark_start() - bottom()) * HeapWordSize;
ysr@777 410 assert(used_at_mark_start_bytes >= marked_bytes(),
ysr@777 411 "Can't mark more than we have.");
ysr@777 412 return used_at_mark_start_bytes - marked_bytes();
ysr@777 413 }
ysr@777 414
tonyp@3539 415 // Return the amount of bytes we'll reclaim if we collect this
tonyp@3539 416 // region. This includes not only the known garbage bytes in the
tonyp@3539 417 // region but also any unallocated space in it, i.e., [top, end),
tonyp@3539 418 // since it will also be reclaimed if we collect the region.
tonyp@3539 419 size_t reclaimable_bytes() {
tonyp@3539 420 size_t known_live_bytes = live_bytes();
tonyp@3539 421 assert(known_live_bytes <= capacity(), "sanity");
tonyp@3539 422 return capacity() - known_live_bytes;
tonyp@3539 423 }
tonyp@3539 424
ysr@777 425 // An upper bound on the number of live bytes in the region.
ysr@777 426 size_t max_live_bytes() { return used() - garbage_bytes(); }
ysr@777 427
ysr@777 428 void add_to_marked_bytes(size_t incr_bytes) {
ysr@777 429 _next_marked_bytes = _next_marked_bytes + incr_bytes;
johnc@3292 430 assert(_next_marked_bytes <= used(), "invariant" );
ysr@777 431 }
ysr@777 432
ysr@777 433 void zero_marked_bytes() {
ysr@777 434 _prev_marked_bytes = _next_marked_bytes = 0;
ysr@777 435 }
ysr@777 436
tonyp@790 437 bool isHumongous() const { return _humongous_type != NotHumongous; }
tonyp@790 438 bool startsHumongous() const { return _humongous_type == StartsHumongous; }
tonyp@790 439 bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
ysr@777 440 // For a humongous region, region in which it starts.
ysr@777 441 HeapRegion* humongous_start_region() const {
ysr@777 442 return _humongous_start_region;
ysr@777 443 }
ysr@777 444
tonyp@3957 445 // Return the number of distinct regions that are covered by this region:
tonyp@3957 446 // 1 if the region is not humongous, >= 1 if the region is humongous.
tonyp@3957 447 uint region_num() const {
tonyp@3957 448 if (!isHumongous()) {
tonyp@3957 449 return 1U;
tonyp@3957 450 } else {
tonyp@3957 451 assert(startsHumongous(), "doesn't make sense on HC regions");
tonyp@3957 452 assert(capacity() % HeapRegion::GrainBytes == 0, "sanity");
tonyp@3957 453 return (uint) (capacity() >> HeapRegion::LogOfHRGrainBytes);
tonyp@3957 454 }
tonyp@3957 455 }
tonyp@3957 456
tonyp@3957 457 // Return the index + 1 of the last HC regions that's associated
tonyp@3957 458 // with this HS region.
tonyp@3957 459 uint last_hc_index() const {
tonyp@3957 460 assert(startsHumongous(), "don't call this otherwise");
tonyp@3957 461 return hrs_index() + region_num();
tonyp@3957 462 }
tonyp@3957 463
brutisso@3216 464 // Same as Space::is_in_reserved, but will use the original size of the region.
brutisso@3216 465 // The original size is different only for start humongous regions. They get
brutisso@3216 466 // their _end set up to be the end of the last continues region of the
brutisso@3216 467 // corresponding humongous object.
brutisso@3216 468 bool is_in_reserved_raw(const void* p) const {
brutisso@3216 469 return _bottom <= p && p < _orig_end;
brutisso@3216 470 }
brutisso@3216 471
tonyp@2453 472 // Makes the current region be a "starts humongous" region, i.e.,
tonyp@2453 473 // the first region in a series of one or more contiguous regions
tonyp@2453 474 // that will contain a single "humongous" object. The two parameters
tonyp@2453 475 // are as follows:
tonyp@2453 476 //
tonyp@2453 477 // new_top : The new value of the top field of this region which
tonyp@2453 478 // points to the end of the humongous object that's being
tonyp@2453 479 // allocated. If there is more than one region in the series, top
tonyp@2453 480 // will lie beyond this region's original end field and on the last
tonyp@2453 481 // region in the series.
tonyp@2453 482 //
tonyp@2453 483 // new_end : The new value of the end field of this region which
tonyp@2453 484 // points to the end of the last region in the series. If there is
tonyp@2453 485 // one region in the series (namely: this one) end will be the same
tonyp@2453 486 // as the original end of this region.
tonyp@2453 487 //
tonyp@2453 488 // Updating top and end as described above makes this region look as
tonyp@2453 489 // if it spans the entire space taken up by all the regions in the
tonyp@2453 490 // series and an single allocation moved its top to new_top. This
tonyp@2453 491 // ensures that the space (capacity / allocated) taken up by all
tonyp@2453 492 // humongous regions can be calculated by just looking at the
tonyp@2453 493 // "starts humongous" regions and by ignoring the "continues
tonyp@2453 494 // humongous" regions.
tonyp@2453 495 void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);
ysr@777 496
tonyp@2453 497 // Makes the current region be a "continues humongous'
tonyp@2453 498 // region. first_hr is the "start humongous" region of the series
tonyp@2453 499 // which this region will be part of.
tonyp@2453 500 void set_continuesHumongous(HeapRegion* first_hr);
ysr@777 501
tonyp@2472 502 // Unsets the humongous-related fields on the region.
tonyp@2472 503 void set_notHumongous();
tonyp@2472 504
ysr@777 505 // If the region has a remembered set, return a pointer to it.
ysr@777 506 HeapRegionRemSet* rem_set() const {
ysr@777 507 return _rem_set;
ysr@777 508 }
ysr@777 509
ysr@777 510 // True iff the region is in current collection_set.
ysr@777 511 bool in_collection_set() const {
ysr@777 512 return _in_collection_set;
ysr@777 513 }
ysr@777 514 void set_in_collection_set(bool b) {
ysr@777 515 _in_collection_set = b;
ysr@777 516 }
ysr@777 517 HeapRegion* next_in_collection_set() {
ysr@777 518 assert(in_collection_set(), "should only invoke on member of CS.");
ysr@777 519 assert(_next_in_special_set == NULL ||
ysr@777 520 _next_in_special_set->in_collection_set(),
ysr@777 521 "Malformed CS.");
ysr@777 522 return _next_in_special_set;
ysr@777 523 }
ysr@777 524 void set_next_in_collection_set(HeapRegion* r) {
ysr@777 525 assert(in_collection_set(), "should only invoke on member of CS.");
ysr@777 526 assert(r == NULL || r->in_collection_set(), "Malformed CS.");
ysr@777 527 _next_in_special_set = r;
ysr@777 528 }
ysr@777 529
tonyp@2472 530 // Methods used by the HeapRegionSetBase class and subclasses.
tonyp@2472 531
tonyp@2472 532 // Getter and setter for the next field used to link regions into
tonyp@2472 533 // linked lists.
tonyp@2472 534 HeapRegion* next() { return _next; }
tonyp@2472 535
tonyp@2472 536 void set_next(HeapRegion* next) { _next = next; }
tonyp@2472 537
tonyp@2472 538 // Every region added to a set is tagged with a reference to that
tonyp@2472 539 // set. This is used for doing consistency checking to make sure that
tonyp@2472 540 // the contents of a set are as they should be and it's only
tonyp@2472 541 // available in non-product builds.
tonyp@2472 542 #ifdef ASSERT
tonyp@2472 543 void set_containing_set(HeapRegionSetBase* containing_set) {
tonyp@2472 544 assert((containing_set == NULL && _containing_set != NULL) ||
tonyp@2472 545 (containing_set != NULL && _containing_set == NULL),
tonyp@2472 546 err_msg("containing_set: "PTR_FORMAT" "
tonyp@2472 547 "_containing_set: "PTR_FORMAT,
tonyp@2472 548 containing_set, _containing_set));
tonyp@2472 549
tonyp@2472 550 _containing_set = containing_set;
tonyp@2643 551 }
tonyp@2472 552
tonyp@2472 553 HeapRegionSetBase* containing_set() { return _containing_set; }
tonyp@2472 554 #else // ASSERT
tonyp@2472 555 void set_containing_set(HeapRegionSetBase* containing_set) { }
tonyp@2472 556
tonyp@2643 557 // containing_set() is only used in asserts so there's no reason
tonyp@2472 558 // to provide a dummy version of it.
tonyp@2472 559 #endif // ASSERT
tonyp@2472 560
tonyp@2472 561 // If we want to remove regions from a list in bulk we can simply tag
tonyp@2472 562 // them with the pending_removal tag and call the
tonyp@2472 563 // remove_all_pending() method on the list.
tonyp@2472 564
tonyp@2472 565 bool pending_removal() { return _pending_removal; }
tonyp@2472 566
tonyp@2472 567 void set_pending_removal(bool pending_removal) {
tonyp@2643 568 if (pending_removal) {
tonyp@2643 569 assert(!_pending_removal && containing_set() != NULL,
tonyp@2643 570 "can only set pending removal to true if it's false and "
tonyp@2643 571 "the region belongs to a region set");
tonyp@2643 572 } else {
tonyp@2643 573 assert( _pending_removal && containing_set() == NULL,
tonyp@2643 574 "can only set pending removal to false if it's true and "
tonyp@2643 575 "the region does not belong to a region set");
tonyp@2643 576 }
tonyp@2472 577
tonyp@2472 578 _pending_removal = pending_removal;
ysr@777 579 }
ysr@777 580
ysr@777 581 HeapRegion* get_next_young_region() { return _next_young_region; }
ysr@777 582 void set_next_young_region(HeapRegion* hr) {
ysr@777 583 _next_young_region = hr;
ysr@777 584 }
ysr@777 585
apetrusenko@1231 586 HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
apetrusenko@1231 587 HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
apetrusenko@1231 588 void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
apetrusenko@1231 589 bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
apetrusenko@1231 590
tonyp@2963 591 HeapWord* orig_end() { return _orig_end; }
tonyp@2963 592
ysr@777 593 // Allows logical separation between objects allocated before and after.
ysr@777 594 void save_marks();
ysr@777 595
ysr@777 596 // Reset HR stuff to default values.
ysr@777 597 void hr_clear(bool par, bool clear_space);
tonyp@2849 598 void par_clear();
ysr@777 599
ysr@777 600 // Get the start of the unmarked area in this region.
ysr@777 601 HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
ysr@777 602 HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
ysr@777 603
ysr@777 604 // Apply "cl->do_oop" to (the addresses of) all reference fields in objects
ysr@777 605 // allocated in the current region before the last call to "save_mark".
coleenp@4037 606 void oop_before_save_marks_iterate(ExtendedOopClosure* cl);
ysr@777 607
ysr@777 608 // Note the start or end of marking. This tells the heap region
ysr@777 609 // that the collector is about to start or has finished (concurrently)
ysr@777 610 // marking the heap.
ysr@777 611
tonyp@3416 612 // Notify the region that concurrent marking is starting. Initialize
tonyp@3416 613 // all fields related to the next marking info.
tonyp@3416 614 inline void note_start_of_marking();
ysr@777 615
tonyp@3416 616 // Notify the region that concurrent marking has finished. Copy the
tonyp@3416 617 // (now finalized) next marking info fields into the prev marking
tonyp@3416 618 // info fields.
tonyp@3416 619 inline void note_end_of_marking();
ysr@777 620
tonyp@3416 621 // Notify the region that it will be used as to-space during a GC
tonyp@3416 622 // and we are about to start copying objects into it.
tonyp@3416 623 inline void note_start_of_copying(bool during_initial_mark);
ysr@777 624
tonyp@3416 625 // Notify the region that it ceases being to-space during a GC and
tonyp@3416 626 // we will not copy objects into it any more.
tonyp@3416 627 inline void note_end_of_copying(bool during_initial_mark);
tonyp@3416 628
tonyp@3416 629 // Notify the region that we are about to start processing
tonyp@3416 630 // self-forwarded objects during evac failure handling.
tonyp@3416 631 void note_self_forwarding_removal_start(bool during_initial_mark,
tonyp@3416 632 bool during_conc_mark);
tonyp@3416 633
tonyp@3416 634 // Notify the region that we have finished processing self-forwarded
tonyp@3416 635 // objects during evac failure handling.
tonyp@3416 636 void note_self_forwarding_removal_end(bool during_initial_mark,
tonyp@3416 637 bool during_conc_mark,
tonyp@3416 638 size_t marked_bytes);
ysr@777 639
ysr@777 640 // Returns "false" iff no object in the region was allocated when the
ysr@777 641 // last mark phase ended.
ysr@777 642 bool is_marked() { return _prev_top_at_mark_start != bottom(); }
ysr@777 643
ysr@777 644 void reset_during_compaction() {
tonyp@3957 645 assert(isHumongous() && startsHumongous(),
tonyp@3957 646 "should only be called for starts humongous regions");
ysr@777 647
ysr@777 648 zero_marked_bytes();
ysr@777 649 init_top_at_mark_start();
ysr@777 650 }
ysr@777 651
ysr@777 652 void calc_gc_efficiency(void);
ysr@777 653 double gc_efficiency() { return _gc_efficiency;}
ysr@777 654
ysr@777 655 bool is_young() const { return _young_type != NotYoung; }
ysr@777 656 bool is_survivor() const { return _young_type == Survivor; }
ysr@777 657
ysr@777 658 int young_index_in_cset() const { return _young_index_in_cset; }
ysr@777 659 void set_young_index_in_cset(int index) {
ysr@777 660 assert( (index == -1) || is_young(), "pre-condition" );
ysr@777 661 _young_index_in_cset = index;
ysr@777 662 }
ysr@777 663
ysr@777 664 int age_in_surv_rate_group() {
ysr@777 665 assert( _surv_rate_group != NULL, "pre-condition" );
ysr@777 666 assert( _age_index > -1, "pre-condition" );
ysr@777 667 return _surv_rate_group->age_in_group(_age_index);
ysr@777 668 }
ysr@777 669
ysr@777 670 void record_surv_words_in_group(size_t words_survived) {
ysr@777 671 assert( _surv_rate_group != NULL, "pre-condition" );
ysr@777 672 assert( _age_index > -1, "pre-condition" );
ysr@777 673 int age_in_group = age_in_surv_rate_group();
ysr@777 674 _surv_rate_group->record_surviving_words(age_in_group, words_survived);
ysr@777 675 }
ysr@777 676
ysr@777 677 int age_in_surv_rate_group_cond() {
ysr@777 678 if (_surv_rate_group != NULL)
ysr@777 679 return age_in_surv_rate_group();
ysr@777 680 else
ysr@777 681 return -1;
ysr@777 682 }
ysr@777 683
ysr@777 684 SurvRateGroup* surv_rate_group() {
ysr@777 685 return _surv_rate_group;
ysr@777 686 }
ysr@777 687
ysr@777 688 void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
ysr@777 689 assert( surv_rate_group != NULL, "pre-condition" );
ysr@777 690 assert( _surv_rate_group == NULL, "pre-condition" );
ysr@777 691 assert( is_young(), "pre-condition" );
ysr@777 692
ysr@777 693 _surv_rate_group = surv_rate_group;
ysr@777 694 _age_index = surv_rate_group->next_age_index();
ysr@777 695 }
ysr@777 696
ysr@777 697 void uninstall_surv_rate_group() {
ysr@777 698 if (_surv_rate_group != NULL) {
ysr@777 699 assert( _age_index > -1, "pre-condition" );
ysr@777 700 assert( is_young(), "pre-condition" );
ysr@777 701
ysr@777 702 _surv_rate_group = NULL;
ysr@777 703 _age_index = -1;
ysr@777 704 } else {
ysr@777 705 assert( _age_index == -1, "pre-condition" );
ysr@777 706 }
ysr@777 707 }
ysr@777 708
ysr@777 709 void set_young() { set_young_type(Young); }
ysr@777 710
ysr@777 711 void set_survivor() { set_young_type(Survivor); }
ysr@777 712
ysr@777 713 void set_not_young() { set_young_type(NotYoung); }
ysr@777 714
ysr@777 715 // Determine if an object has been allocated since the last
ysr@777 716 // mark performed by the collector. This returns true iff the object
ysr@777 717 // is within the unmarked area of the region.
ysr@777 718 bool obj_allocated_since_prev_marking(oop obj) const {
ysr@777 719 return (HeapWord *) obj >= prev_top_at_mark_start();
ysr@777 720 }
ysr@777 721 bool obj_allocated_since_next_marking(oop obj) const {
ysr@777 722 return (HeapWord *) obj >= next_top_at_mark_start();
ysr@777 723 }
ysr@777 724
ysr@777 725 // For parallel heapRegion traversal.
ysr@777 726 bool claimHeapRegion(int claimValue);
ysr@777 727 jint claim_value() { return _claimed; }
ysr@777 728 // Use this carefully: only when you're sure no one is claiming...
ysr@777 729 void set_claim_value(int claimValue) { _claimed = claimValue; }
ysr@777 730
ysr@777 731 // Returns the "evacuation_failed" property of the region.
ysr@777 732 bool evacuation_failed() { return _evacuation_failed; }
ysr@777 733
ysr@777 734 // Sets the "evacuation_failed" property of the region.
ysr@777 735 void set_evacuation_failed(bool b) {
ysr@777 736 _evacuation_failed = b;
ysr@777 737
ysr@777 738 if (b) {
ysr@777 739 _next_marked_bytes = 0;
ysr@777 740 }
ysr@777 741 }
ysr@777 742
ysr@777 743 // Requires that "mr" be entirely within the region.
ysr@777 744 // Apply "cl->do_object" to all objects that intersect with "mr".
ysr@777 745 // If the iteration encounters an unparseable portion of the region,
ysr@777 746 // or if "cl->abort()" is true after a closure application,
ysr@777 747 // terminate the iteration and return the address of the start of the
ysr@777 748 // subregion that isn't done. (The two can be distinguished by querying
ysr@777 749 // "cl->abort()".) Return of "NULL" indicates that the iteration
ysr@777 750 // completed.
ysr@777 751 HeapWord*
ysr@777 752 object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
ysr@777 753
tonyp@2849 754 // filter_young: if true and the region is a young region then we
tonyp@2849 755 // skip the iteration.
tonyp@2849 756 // card_ptr: if not NULL, and we decide that the card is not young
tonyp@2849 757 // and we iterate over it, we'll clean the card before we start the
tonyp@2849 758 // iteration.
ysr@777 759 HeapWord*
ysr@777 760 oops_on_card_seq_iterate_careful(MemRegion mr,
johnc@2021 761 FilterOutOfRegionClosure* cl,
tonyp@2849 762 bool filter_young,
tonyp@2849 763 jbyte* card_ptr);
ysr@777 764
ysr@777 765 // A version of block start that is guaranteed to find *some* block
ysr@777 766 // boundary at or before "p", but does not object iteration, and may
ysr@777 767 // therefore be used safely when the heap is unparseable.
ysr@777 768 HeapWord* block_start_careful(const void* p) const {
ysr@777 769 return _offsets.block_start_careful(p);
ysr@777 770 }
ysr@777 771
ysr@777 772 // Requires that "addr" is within the region. Returns the start of the
ysr@777 773 // first ("careful") block that starts at or after "addr", or else the
ysr@777 774 // "end" of the region if there is no such block.
ysr@777 775 HeapWord* next_block_start_careful(HeapWord* addr);
ysr@777 776
johnc@1829 777 size_t recorded_rs_length() const { return _recorded_rs_length; }
johnc@1829 778 double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
johnc@1829 779 size_t predicted_bytes_to_copy() const { return _predicted_bytes_to_copy; }
johnc@1829 780
johnc@1829 781 void set_recorded_rs_length(size_t rs_length) {
johnc@1829 782 _recorded_rs_length = rs_length;
johnc@1829 783 }
johnc@1829 784
johnc@1829 785 void set_predicted_elapsed_time_ms(double ms) {
johnc@1829 786 _predicted_elapsed_time_ms = ms;
johnc@1829 787 }
johnc@1829 788
johnc@1829 789 void set_predicted_bytes_to_copy(size_t bytes) {
johnc@1829 790 _predicted_bytes_to_copy = bytes;
johnc@1829 791 }
johnc@1829 792
ysr@777 793 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DECL(OopClosureType, nv_suffix) \
ysr@777 794 virtual void oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl);
ysr@777 795 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DECL)
ysr@777 796
tonyp@3957 797 virtual CompactibleSpace* next_compaction_space() const;
ysr@777 798
ysr@777 799 virtual void reset_after_compaction();
ysr@777 800
johnc@5548 801 // Routines for managing a list of code roots (attached to the
johnc@5548 802 // this region's RSet) that point into this heap region.
johnc@5548 803 void add_strong_code_root(nmethod* nm);
johnc@5548 804 void remove_strong_code_root(nmethod* nm);
johnc@5548 805
johnc@5548 806 // During a collection, migrate the successfully evacuated
johnc@5548 807 // strong code roots that referenced into this region to the
johnc@5548 808 // new regions that they now point into. Unsuccessfully
johnc@5548 809 // evacuated code roots are not migrated.
johnc@5548 810 void migrate_strong_code_roots();
johnc@5548 811
johnc@5548 812 // Applies blk->do_code_blob() to each of the entries in
johnc@5548 813 // the strong code roots list for this region
johnc@5548 814 void strong_code_roots_do(CodeBlobClosure* blk) const;
johnc@5548 815
johnc@5548 816 // Verify that the entries on the strong code root list for this
johnc@5548 817 // region are live and include at least one pointer into this region.
johnc@5548 818 void verify_strong_code_roots(VerifyOption vo, bool* failures) const;
johnc@5548 819
ysr@777 820 void print() const;
ysr@777 821 void print_on(outputStream* st) const;
ysr@777 822
johnc@2969 823 // vo == UsePrevMarking -> use "prev" marking information,
johnc@2969 824 // vo == UseNextMarking -> use "next" marking information
johnc@2969 825 // vo == UseMarkWord -> use the mark word in the object header
johnc@2969 826 //
tonyp@1246 827 // NOTE: Only the "prev" marking information is guaranteed to be
tonyp@1246 828 // consistent most of the time, so most calls to this should use
johnc@2969 829 // vo == UsePrevMarking.
johnc@2969 830 // Currently, there is only one case where this is called with
johnc@2969 831 // vo == UseNextMarking, which is to verify the "next" marking
johnc@2969 832 // information at the end of remark.
johnc@2969 833 // Currently there is only one place where this is called with
johnc@2969 834 // vo == UseMarkWord, which is to verify the marking during a
johnc@2969 835 // full GC.
brutisso@3711 836 void verify(VerifyOption vo, bool *failures) const;
tonyp@1246 837
tonyp@1246 838 // Override; it uses the "prev" marking information
brutisso@3711 839 virtual void verify() const;
ysr@777 840 };
ysr@777 841
ysr@777 842 // HeapRegionClosure is used for iterating over regions.
ysr@777 843 // Terminates the iteration when the "doHeapRegion" method returns "true".
ysr@777 844 class HeapRegionClosure : public StackObj {
ysr@777 845 friend class HeapRegionSeq;
ysr@777 846 friend class G1CollectedHeap;
ysr@777 847
ysr@777 848 bool _complete;
ysr@777 849 void incomplete() { _complete = false; }
ysr@777 850
ysr@777 851 public:
ysr@777 852 HeapRegionClosure(): _complete(true) {}
ysr@777 853
ysr@777 854 // Typically called on each region until it returns true.
ysr@777 855 virtual bool doHeapRegion(HeapRegion* r) = 0;
ysr@777 856
ysr@777 857 // True after iteration if the closure was applied to all heap regions
ysr@777 858 // and returned "false" in all cases.
ysr@777 859 bool complete() { return _complete; }
ysr@777 860 };
ysr@777 861
jprovino@4542 862 #endif // INCLUDE_ALL_GCS
stefank@2314 863
stefank@2314 864 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP

mercurial