src/cpu/sparc/vm/interp_masm_sparc.cpp

Wed, 15 May 2013 11:05:09 +0200

author
tschatzl
date
Wed, 15 May 2013 11:05:09 +0200
changeset 5119
12f651e29f6b
parent 4970
1ea6a35dcbe5
child 5225
603ca7e51354
permissions
-rw-r--r--

6843347: Boundary values in some public GC options cause crashes
Summary: Setting some public integer options to specific values causes crashes or undefined GC behavior. This patchset adds the necessary argument checking for these options.
Reviewed-by: jmasa, brutisso

duke@435 1 /*
jiangli@4936 2 * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "interp_masm_sparc.hpp"
stefank@2314 27 #include "interpreter/interpreter.hpp"
stefank@2314 28 #include "interpreter/interpreterRuntime.hpp"
stefank@2314 29 #include "oops/arrayOop.hpp"
stefank@2314 30 #include "oops/markOop.hpp"
coleenp@4037 31 #include "oops/methodData.hpp"
coleenp@4037 32 #include "oops/method.hpp"
jiangli@4936 33 #include "oops/methodCounters.hpp"
stefank@2314 34 #include "prims/jvmtiExport.hpp"
stefank@2314 35 #include "prims/jvmtiRedefineClassesTrace.hpp"
stefank@2314 36 #include "prims/jvmtiThreadState.hpp"
stefank@2314 37 #include "runtime/basicLock.hpp"
stefank@2314 38 #include "runtime/biasedLocking.hpp"
stefank@2314 39 #include "runtime/sharedRuntime.hpp"
stefank@4299 40 #include "runtime/thread.inline.hpp"
duke@435 41
duke@435 42 #ifndef CC_INTERP
duke@435 43 #ifndef FAST_DISPATCH
duke@435 44 #define FAST_DISPATCH 1
duke@435 45 #endif
duke@435 46 #undef FAST_DISPATCH
duke@435 47
duke@435 48 // Implementation of InterpreterMacroAssembler
duke@435 49
duke@435 50 // This file specializes the assember with interpreter-specific macros
duke@435 51
twisti@1162 52 const Address InterpreterMacroAssembler::l_tmp(FP, (frame::interpreter_frame_l_scratch_fp_offset * wordSize) + STACK_BIAS);
twisti@1162 53 const Address InterpreterMacroAssembler::d_tmp(FP, (frame::interpreter_frame_d_scratch_fp_offset * wordSize) + STACK_BIAS);
duke@435 54
duke@435 55 #else // CC_INTERP
duke@435 56 #ifndef STATE
duke@435 57 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
duke@435 58 #endif // STATE
duke@435 59
duke@435 60 #endif // CC_INTERP
duke@435 61
duke@435 62 void InterpreterMacroAssembler::compute_extra_locals_size_in_bytes(Register args_size, Register locals_size, Register delta) {
duke@435 63 // Note: this algorithm is also used by C1's OSR entry sequence.
duke@435 64 // Any changes should also be applied to CodeEmitter::emit_osr_entry().
duke@435 65 assert_different_registers(args_size, locals_size);
duke@435 66 // max_locals*2 for TAGS. Assumes that args_size has already been adjusted.
duke@435 67 subcc(locals_size, args_size, delta);// extra space for non-arguments locals in words
duke@435 68 // Use br/mov combination because it works on both V8 and V9 and is
duke@435 69 // faster.
duke@435 70 Label skip_move;
duke@435 71 br(Assembler::negative, true, Assembler::pt, skip_move);
duke@435 72 delayed()->mov(G0, delta);
duke@435 73 bind(skip_move);
duke@435 74 round_to(delta, WordsPerLong); // make multiple of 2 (SP must be 2-word aligned)
duke@435 75 sll(delta, LogBytesPerWord, delta); // extra space for locals in bytes
duke@435 76 }
duke@435 77
duke@435 78 #ifndef CC_INTERP
duke@435 79
duke@435 80 // Dispatch code executed in the prolog of a bytecode which does not do it's
duke@435 81 // own dispatch. The dispatch address is computed and placed in IdispatchAddress
duke@435 82 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
duke@435 83 assert_not_delayed();
duke@435 84 #ifdef FAST_DISPATCH
duke@435 85 // FAST_DISPATCH and ProfileInterpreter are mutually exclusive since
duke@435 86 // they both use I2.
duke@435 87 assert(!ProfileInterpreter, "FAST_DISPATCH and +ProfileInterpreter are mutually exclusive");
duke@435 88 ldub(Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 89 add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
duke@435 90 // add offset to correct dispatch table
duke@435 91 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
duke@435 92 ld_ptr(IdispatchTables, Lbyte_code, IdispatchAddress);// get entry addr
duke@435 93 #else
twisti@1162 94 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 95 // dispatch table to use
twisti@1162 96 AddressLiteral tbl(Interpreter::dispatch_table(state));
twisti@1162 97 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
twisti@1162 98 set(tbl, G3_scratch); // compute addr of table
twisti@1162 99 ld_ptr(G3_scratch, Lbyte_code, IdispatchAddress); // get entry addr
duke@435 100 #endif
duke@435 101 }
duke@435 102
duke@435 103
duke@435 104 // Dispatch code executed in the epilog of a bytecode which does not do it's
duke@435 105 // own dispatch. The dispatch address in IdispatchAddress is used for the
duke@435 106 // dispatch.
duke@435 107 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) {
duke@435 108 assert_not_delayed();
duke@435 109 verify_FPU(1, state);
duke@435 110 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 111 jmp( IdispatchAddress, 0 );
duke@435 112 if (bcp_incr != 0) delayed()->inc(Lbcp, bcp_incr);
duke@435 113 else delayed()->nop();
duke@435 114 }
duke@435 115
duke@435 116
duke@435 117 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr) {
duke@435 118 // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
duke@435 119 assert_not_delayed();
duke@435 120 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 121 dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr);
duke@435 122 }
duke@435 123
duke@435 124
duke@435 125 void InterpreterMacroAssembler::dispatch_next_noverify_oop(TosState state, int bcp_incr) {
duke@435 126 // %%%% consider branching to a single shared dispatch stub (for each bcp_incr)
duke@435 127 assert_not_delayed();
duke@435 128 ldub( Lbcp, bcp_incr, Lbyte_code); // load next bytecode
duke@435 129 dispatch_Lbyte_code(state, Interpreter::dispatch_table(state), bcp_incr, false);
duke@435 130 }
duke@435 131
duke@435 132
duke@435 133 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
duke@435 134 // load current bytecode
duke@435 135 assert_not_delayed();
duke@435 136 ldub( Lbcp, 0, Lbyte_code); // load next bytecode
duke@435 137 dispatch_base(state, table);
duke@435 138 }
duke@435 139
duke@435 140
duke@435 141 void InterpreterMacroAssembler::call_VM_leaf_base(
duke@435 142 Register java_thread,
duke@435 143 address entry_point,
duke@435 144 int number_of_arguments
duke@435 145 ) {
duke@435 146 if (!java_thread->is_valid())
duke@435 147 java_thread = L7_thread_cache;
duke@435 148 // super call
duke@435 149 MacroAssembler::call_VM_leaf_base(java_thread, entry_point, number_of_arguments);
duke@435 150 }
duke@435 151
duke@435 152
duke@435 153 void InterpreterMacroAssembler::call_VM_base(
duke@435 154 Register oop_result,
duke@435 155 Register java_thread,
duke@435 156 Register last_java_sp,
duke@435 157 address entry_point,
duke@435 158 int number_of_arguments,
duke@435 159 bool check_exception
duke@435 160 ) {
duke@435 161 if (!java_thread->is_valid())
duke@435 162 java_thread = L7_thread_cache;
duke@435 163 // See class ThreadInVMfromInterpreter, which assumes that the interpreter
duke@435 164 // takes responsibility for setting its own thread-state on call-out.
duke@435 165 // However, ThreadInVMfromInterpreter resets the state to "in_Java".
duke@435 166
duke@435 167 //save_bcp(); // save bcp
duke@435 168 MacroAssembler::call_VM_base(oop_result, java_thread, last_java_sp, entry_point, number_of_arguments, check_exception);
duke@435 169 //restore_bcp(); // restore bcp
duke@435 170 //restore_locals(); // restore locals pointer
duke@435 171 }
duke@435 172
duke@435 173
duke@435 174 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
duke@435 175 if (JvmtiExport::can_pop_frame()) {
duke@435 176 Label L;
duke@435 177
duke@435 178 // Check the "pending popframe condition" flag in the current thread
twisti@1162 179 ld(G2_thread, JavaThread::popframe_condition_offset(), scratch_reg);
duke@435 180
duke@435 181 // Initiate popframe handling only if it is not already being processed. If the flag
duke@435 182 // has the popframe_processing bit set, it means that this code is called *during* popframe
duke@435 183 // handling - we don't want to reenter.
duke@435 184 btst(JavaThread::popframe_pending_bit, scratch_reg);
duke@435 185 br(zero, false, pt, L);
duke@435 186 delayed()->nop();
duke@435 187 btst(JavaThread::popframe_processing_bit, scratch_reg);
duke@435 188 br(notZero, false, pt, L);
duke@435 189 delayed()->nop();
duke@435 190
duke@435 191 // Call Interpreter::remove_activation_preserving_args_entry() to get the
duke@435 192 // address of the same-named entrypoint in the generated interpreter code.
duke@435 193 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
duke@435 194
duke@435 195 // Jump to Interpreter::_remove_activation_preserving_args_entry
duke@435 196 jmpl(O0, G0, G0);
duke@435 197 delayed()->nop();
duke@435 198 bind(L);
duke@435 199 }
duke@435 200 }
duke@435 201
duke@435 202
duke@435 203 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
duke@435 204 Register thr_state = G4_scratch;
twisti@1162 205 ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
twisti@1162 206 const Address tos_addr(thr_state, JvmtiThreadState::earlyret_tos_offset());
twisti@1162 207 const Address oop_addr(thr_state, JvmtiThreadState::earlyret_oop_offset());
twisti@1162 208 const Address val_addr(thr_state, JvmtiThreadState::earlyret_value_offset());
duke@435 209 switch (state) {
duke@435 210 case ltos: ld_long(val_addr, Otos_l); break;
duke@435 211 case atos: ld_ptr(oop_addr, Otos_l);
duke@435 212 st_ptr(G0, oop_addr); break;
duke@435 213 case btos: // fall through
duke@435 214 case ctos: // fall through
duke@435 215 case stos: // fall through
duke@435 216 case itos: ld(val_addr, Otos_l1); break;
duke@435 217 case ftos: ldf(FloatRegisterImpl::S, val_addr, Ftos_f); break;
duke@435 218 case dtos: ldf(FloatRegisterImpl::D, val_addr, Ftos_d); break;
duke@435 219 case vtos: /* nothing to do */ break;
duke@435 220 default : ShouldNotReachHere();
duke@435 221 }
duke@435 222 // Clean up tos value in the jvmti thread state
duke@435 223 or3(G0, ilgl, G3_scratch);
duke@435 224 stw(G3_scratch, tos_addr);
duke@435 225 st_long(G0, val_addr);
duke@435 226 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 227 }
duke@435 228
duke@435 229
duke@435 230 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
duke@435 231 if (JvmtiExport::can_force_early_return()) {
duke@435 232 Label L;
duke@435 233 Register thr_state = G3_scratch;
twisti@1162 234 ld_ptr(G2_thread, JavaThread::jvmti_thread_state_offset(), thr_state);
kvn@3037 235 br_null_short(thr_state, pt, L); // if (thread->jvmti_thread_state() == NULL) exit;
duke@435 236
duke@435 237 // Initiate earlyret handling only if it is not already being processed.
duke@435 238 // If the flag has the earlyret_processing bit set, it means that this code
duke@435 239 // is called *during* earlyret handling - we don't want to reenter.
twisti@1162 240 ld(thr_state, JvmtiThreadState::earlyret_state_offset(), G4_scratch);
kvn@3037 241 cmp_and_br_short(G4_scratch, JvmtiThreadState::earlyret_pending, Assembler::notEqual, pt, L);
duke@435 242
duke@435 243 // Call Interpreter::remove_activation_early_entry() to get the address of the
duke@435 244 // same-named entrypoint in the generated interpreter code
twisti@1162 245 ld(thr_state, JvmtiThreadState::earlyret_tos_offset(), Otos_l1);
duke@435 246 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Otos_l1);
duke@435 247
duke@435 248 // Jump to Interpreter::_remove_activation_early_entry
duke@435 249 jmpl(O0, G0, G0);
duke@435 250 delayed()->nop();
duke@435 251 bind(L);
duke@435 252 }
duke@435 253 }
duke@435 254
duke@435 255
twisti@1730 256 void InterpreterMacroAssembler::super_call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
duke@435 257 mov(arg_1, O0);
twisti@1730 258 mov(arg_2, O1);
twisti@1730 259 MacroAssembler::call_VM_leaf_base(thread_cache, entry_point, 2);
duke@435 260 }
duke@435 261 #endif /* CC_INTERP */
duke@435 262
duke@435 263
duke@435 264 #ifndef CC_INTERP
duke@435 265
duke@435 266 void InterpreterMacroAssembler::dispatch_base(TosState state, address* table) {
duke@435 267 assert_not_delayed();
duke@435 268 dispatch_Lbyte_code(state, table);
duke@435 269 }
duke@435 270
duke@435 271
duke@435 272 void InterpreterMacroAssembler::dispatch_normal(TosState state) {
duke@435 273 dispatch_base(state, Interpreter::normal_table(state));
duke@435 274 }
duke@435 275
duke@435 276
duke@435 277 void InterpreterMacroAssembler::dispatch_only(TosState state) {
duke@435 278 dispatch_base(state, Interpreter::dispatch_table(state));
duke@435 279 }
duke@435 280
duke@435 281
duke@435 282 // common code to dispatch and dispatch_only
duke@435 283 // dispatch value in Lbyte_code and increment Lbcp
duke@435 284
duke@435 285 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, address* table, int bcp_incr, bool verify) {
duke@435 286 verify_FPU(1, state);
duke@435 287 // %%%%% maybe implement +VerifyActivationFrameSize here
duke@435 288 //verify_thread(); //too slow; we will just verify on method entry & exit
duke@435 289 if (verify) interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 290 #ifdef FAST_DISPATCH
duke@435 291 if (table == Interpreter::dispatch_table(state)) {
duke@435 292 // use IdispatchTables
duke@435 293 add(Lbyte_code, Interpreter::distance_from_dispatch_table(state), Lbyte_code);
duke@435 294 // add offset to correct dispatch table
duke@435 295 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
duke@435 296 ld_ptr(IdispatchTables, Lbyte_code, G3_scratch); // get entry addr
duke@435 297 } else {
duke@435 298 #endif
duke@435 299 // dispatch table to use
twisti@1162 300 AddressLiteral tbl(table);
duke@435 301 sll(Lbyte_code, LogBytesPerWord, Lbyte_code); // multiply by wordSize
twisti@1162 302 set(tbl, G3_scratch); // compute addr of table
duke@435 303 ld_ptr(G3_scratch, Lbyte_code, G3_scratch); // get entry addr
duke@435 304 #ifdef FAST_DISPATCH
duke@435 305 }
duke@435 306 #endif
duke@435 307 jmp( G3_scratch, 0 );
duke@435 308 if (bcp_incr != 0) delayed()->inc(Lbcp, bcp_incr);
duke@435 309 else delayed()->nop();
duke@435 310 }
duke@435 311
duke@435 312
duke@435 313 // Helpers for expression stack
duke@435 314
duke@435 315 // Longs and doubles are Category 2 computational types in the
duke@435 316 // JVM specification (section 3.11.1) and take 2 expression stack or
duke@435 317 // local slots.
duke@435 318 // Aligning them on 32 bit with tagged stacks is hard because the code generated
duke@435 319 // for the dup* bytecodes depends on what types are already on the stack.
duke@435 320 // If the types are split into the two stack/local slots, that is much easier
duke@435 321 // (and we can use 0 for non-reference tags).
duke@435 322
duke@435 323 // Known good alignment in _LP64 but unknown otherwise
duke@435 324 void InterpreterMacroAssembler::load_unaligned_double(Register r1, int offset, FloatRegister d) {
duke@435 325 assert_not_delayed();
duke@435 326
duke@435 327 #ifdef _LP64
duke@435 328 ldf(FloatRegisterImpl::D, r1, offset, d);
duke@435 329 #else
duke@435 330 ldf(FloatRegisterImpl::S, r1, offset, d);
twisti@1861 331 ldf(FloatRegisterImpl::S, r1, offset + Interpreter::stackElementSize, d->successor());
duke@435 332 #endif
duke@435 333 }
duke@435 334
duke@435 335 // Known good alignment in _LP64 but unknown otherwise
duke@435 336 void InterpreterMacroAssembler::store_unaligned_double(FloatRegister d, Register r1, int offset) {
duke@435 337 assert_not_delayed();
duke@435 338
duke@435 339 #ifdef _LP64
duke@435 340 stf(FloatRegisterImpl::D, d, r1, offset);
duke@435 341 // store something more useful here
twisti@1861 342 debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
duke@435 343 #else
duke@435 344 stf(FloatRegisterImpl::S, d, r1, offset);
twisti@1861 345 stf(FloatRegisterImpl::S, d->successor(), r1, offset + Interpreter::stackElementSize);
duke@435 346 #endif
duke@435 347 }
duke@435 348
duke@435 349
duke@435 350 // Known good alignment in _LP64 but unknown otherwise
duke@435 351 void InterpreterMacroAssembler::load_unaligned_long(Register r1, int offset, Register rd) {
duke@435 352 assert_not_delayed();
duke@435 353 #ifdef _LP64
duke@435 354 ldx(r1, offset, rd);
duke@435 355 #else
duke@435 356 ld(r1, offset, rd);
twisti@1861 357 ld(r1, offset + Interpreter::stackElementSize, rd->successor());
duke@435 358 #endif
duke@435 359 }
duke@435 360
duke@435 361 // Known good alignment in _LP64 but unknown otherwise
duke@435 362 void InterpreterMacroAssembler::store_unaligned_long(Register l, Register r1, int offset) {
duke@435 363 assert_not_delayed();
duke@435 364
duke@435 365 #ifdef _LP64
duke@435 366 stx(l, r1, offset);
duke@435 367 // store something more useful here
twisti@1861 368 debug_only(stx(G0, r1, offset+Interpreter::stackElementSize);)
duke@435 369 #else
duke@435 370 st(l, r1, offset);
twisti@1861 371 st(l->successor(), r1, offset + Interpreter::stackElementSize);
duke@435 372 #endif
duke@435 373 }
duke@435 374
duke@435 375 void InterpreterMacroAssembler::pop_i(Register r) {
duke@435 376 assert_not_delayed();
duke@435 377 ld(Lesp, Interpreter::expr_offset_in_bytes(0), r);
twisti@1861 378 inc(Lesp, Interpreter::stackElementSize);
duke@435 379 debug_only(verify_esp(Lesp));
duke@435 380 }
duke@435 381
duke@435 382 void InterpreterMacroAssembler::pop_ptr(Register r, Register scratch) {
duke@435 383 assert_not_delayed();
duke@435 384 ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(0), r);
twisti@1861 385 inc(Lesp, Interpreter::stackElementSize);
duke@435 386 debug_only(verify_esp(Lesp));
duke@435 387 }
duke@435 388
duke@435 389 void InterpreterMacroAssembler::pop_l(Register r) {
duke@435 390 assert_not_delayed();
duke@435 391 load_unaligned_long(Lesp, Interpreter::expr_offset_in_bytes(0), r);
twisti@1861 392 inc(Lesp, 2*Interpreter::stackElementSize);
duke@435 393 debug_only(verify_esp(Lesp));
duke@435 394 }
duke@435 395
duke@435 396
duke@435 397 void InterpreterMacroAssembler::pop_f(FloatRegister f, Register scratch) {
duke@435 398 assert_not_delayed();
duke@435 399 ldf(FloatRegisterImpl::S, Lesp, Interpreter::expr_offset_in_bytes(0), f);
twisti@1861 400 inc(Lesp, Interpreter::stackElementSize);
duke@435 401 debug_only(verify_esp(Lesp));
duke@435 402 }
duke@435 403
duke@435 404
duke@435 405 void InterpreterMacroAssembler::pop_d(FloatRegister f, Register scratch) {
duke@435 406 assert_not_delayed();
duke@435 407 load_unaligned_double(Lesp, Interpreter::expr_offset_in_bytes(0), f);
twisti@1861 408 inc(Lesp, 2*Interpreter::stackElementSize);
duke@435 409 debug_only(verify_esp(Lesp));
duke@435 410 }
duke@435 411
duke@435 412
duke@435 413 void InterpreterMacroAssembler::push_i(Register r) {
duke@435 414 assert_not_delayed();
duke@435 415 debug_only(verify_esp(Lesp));
twisti@1861 416 st(r, Lesp, 0);
twisti@1861 417 dec(Lesp, Interpreter::stackElementSize);
duke@435 418 }
duke@435 419
duke@435 420 void InterpreterMacroAssembler::push_ptr(Register r) {
duke@435 421 assert_not_delayed();
twisti@1861 422 st_ptr(r, Lesp, 0);
twisti@1861 423 dec(Lesp, Interpreter::stackElementSize);
duke@435 424 }
duke@435 425
duke@435 426 // remember: our convention for longs in SPARC is:
duke@435 427 // O0 (Otos_l1) has high-order part in first word,
duke@435 428 // O1 (Otos_l2) has low-order part in second word
duke@435 429
duke@435 430 void InterpreterMacroAssembler::push_l(Register r) {
duke@435 431 assert_not_delayed();
duke@435 432 debug_only(verify_esp(Lesp));
twisti@1861 433 // Longs are stored in memory-correct order, even if unaligned.
twisti@1861 434 int offset = -Interpreter::stackElementSize;
duke@435 435 store_unaligned_long(r, Lesp, offset);
twisti@1861 436 dec(Lesp, 2 * Interpreter::stackElementSize);
duke@435 437 }
duke@435 438
duke@435 439
duke@435 440 void InterpreterMacroAssembler::push_f(FloatRegister f) {
duke@435 441 assert_not_delayed();
duke@435 442 debug_only(verify_esp(Lesp));
twisti@1861 443 stf(FloatRegisterImpl::S, f, Lesp, 0);
twisti@1861 444 dec(Lesp, Interpreter::stackElementSize);
duke@435 445 }
duke@435 446
duke@435 447
duke@435 448 void InterpreterMacroAssembler::push_d(FloatRegister d) {
duke@435 449 assert_not_delayed();
duke@435 450 debug_only(verify_esp(Lesp));
twisti@1861 451 // Longs are stored in memory-correct order, even if unaligned.
twisti@1861 452 int offset = -Interpreter::stackElementSize;
duke@435 453 store_unaligned_double(d, Lesp, offset);
twisti@1861 454 dec(Lesp, 2 * Interpreter::stackElementSize);
duke@435 455 }
duke@435 456
duke@435 457
duke@435 458 void InterpreterMacroAssembler::push(TosState state) {
duke@435 459 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 460 switch (state) {
duke@435 461 case atos: push_ptr(); break;
duke@435 462 case btos: push_i(); break;
duke@435 463 case ctos:
duke@435 464 case stos: push_i(); break;
duke@435 465 case itos: push_i(); break;
duke@435 466 case ltos: push_l(); break;
duke@435 467 case ftos: push_f(); break;
duke@435 468 case dtos: push_d(); break;
duke@435 469 case vtos: /* nothing to do */ break;
duke@435 470 default : ShouldNotReachHere();
duke@435 471 }
duke@435 472 }
duke@435 473
duke@435 474
duke@435 475 void InterpreterMacroAssembler::pop(TosState state) {
duke@435 476 switch (state) {
duke@435 477 case atos: pop_ptr(); break;
duke@435 478 case btos: pop_i(); break;
duke@435 479 case ctos:
duke@435 480 case stos: pop_i(); break;
duke@435 481 case itos: pop_i(); break;
duke@435 482 case ltos: pop_l(); break;
duke@435 483 case ftos: pop_f(); break;
duke@435 484 case dtos: pop_d(); break;
duke@435 485 case vtos: /* nothing to do */ break;
duke@435 486 default : ShouldNotReachHere();
duke@435 487 }
duke@435 488 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 489 }
duke@435 490
duke@435 491
twisti@1861 492 // Helpers for swap and dup
twisti@1861 493 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
duke@435 494 ld_ptr(Lesp, Interpreter::expr_offset_in_bytes(n), val);
duke@435 495 }
twisti@1861 496 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
duke@435 497 st_ptr(val, Lesp, Interpreter::expr_offset_in_bytes(n));
duke@435 498 }
duke@435 499
duke@435 500
duke@435 501 void InterpreterMacroAssembler::load_receiver(Register param_count,
duke@435 502 Register recv) {
twisti@1861 503 sll(param_count, Interpreter::logStackElementSize, param_count);
twisti@3969 504 ld_ptr(Lesp, param_count, recv); // gets receiver oop
duke@435 505 }
duke@435 506
duke@435 507 void InterpreterMacroAssembler::empty_expression_stack() {
duke@435 508 // Reset Lesp.
duke@435 509 sub( Lmonitors, wordSize, Lesp );
duke@435 510
duke@435 511 // Reset SP by subtracting more space from Lesp.
duke@435 512 Label done;
twisti@1162 513 assert(G4_scratch != Gframe_size, "Only you can prevent register aliasing!");
duke@435 514
duke@435 515 // A native does not need to do this, since its callee does not change SP.
coleenp@4037 516 ld(Lmethod, Method::access_flags_offset(), Gframe_size); // Load access flags.
duke@435 517 btst(JVM_ACC_NATIVE, Gframe_size);
duke@435 518 br(Assembler::notZero, false, Assembler::pt, done);
duke@435 519 delayed()->nop();
duke@435 520
duke@435 521 // Compute max expression stack+register save area
jiangli@4302 522 ld_ptr(Lmethod, in_bytes(Method::const_offset()), Gframe_size);
jiangli@4302 523 lduh(Gframe_size, in_bytes(ConstMethod::max_stack_offset()), Gframe_size); // Load max stack.
duke@435 524 add( Gframe_size, frame::memory_parameter_word_sp_offset, Gframe_size );
duke@435 525
duke@435 526 //
duke@435 527 // now set up a stack frame with the size computed above
duke@435 528 //
duke@435 529 //round_to( Gframe_size, WordsPerLong ); // -- moved down to the "and" below
duke@435 530 sll( Gframe_size, LogBytesPerWord, Gframe_size );
duke@435 531 sub( Lesp, Gframe_size, Gframe_size );
duke@435 532 and3( Gframe_size, -(2 * wordSize), Gframe_size ); // align SP (downwards) to an 8/16-byte boundary
duke@435 533 debug_only(verify_sp(Gframe_size, G4_scratch));
duke@435 534 #ifdef _LP64
duke@435 535 sub(Gframe_size, STACK_BIAS, Gframe_size );
duke@435 536 #endif
duke@435 537 mov(Gframe_size, SP);
duke@435 538
duke@435 539 bind(done);
duke@435 540 }
duke@435 541
duke@435 542
duke@435 543 #ifdef ASSERT
duke@435 544 void InterpreterMacroAssembler::verify_sp(Register Rsp, Register Rtemp) {
duke@435 545 Label Bad, OK;
duke@435 546
duke@435 547 // Saved SP must be aligned.
duke@435 548 #ifdef _LP64
duke@435 549 btst(2*BytesPerWord-1, Rsp);
duke@435 550 #else
duke@435 551 btst(LongAlignmentMask, Rsp);
duke@435 552 #endif
duke@435 553 br(Assembler::notZero, false, Assembler::pn, Bad);
duke@435 554 delayed()->nop();
duke@435 555
duke@435 556 // Saved SP, plus register window size, must not be above FP.
duke@435 557 add(Rsp, frame::register_save_words * wordSize, Rtemp);
duke@435 558 #ifdef _LP64
duke@435 559 sub(Rtemp, STACK_BIAS, Rtemp); // Bias Rtemp before cmp to FP
duke@435 560 #endif
kvn@3037 561 cmp_and_brx_short(Rtemp, FP, Assembler::greaterUnsigned, Assembler::pn, Bad);
duke@435 562
duke@435 563 // Saved SP must not be ridiculously below current SP.
duke@435 564 size_t maxstack = MAX2(JavaThread::stack_size_at_create(), (size_t) 4*K*K);
duke@435 565 set(maxstack, Rtemp);
duke@435 566 sub(SP, Rtemp, Rtemp);
duke@435 567 #ifdef _LP64
duke@435 568 add(Rtemp, STACK_BIAS, Rtemp); // Unbias Rtemp before cmp to Rsp
duke@435 569 #endif
kvn@3037 570 cmp_and_brx_short(Rsp, Rtemp, Assembler::lessUnsigned, Assembler::pn, Bad);
kvn@3037 571
kvn@3037 572 ba_short(OK);
duke@435 573
duke@435 574 bind(Bad);
duke@435 575 stop("on return to interpreted call, restored SP is corrupted");
duke@435 576
duke@435 577 bind(OK);
duke@435 578 }
duke@435 579
duke@435 580
duke@435 581 void InterpreterMacroAssembler::verify_esp(Register Resp) {
duke@435 582 // about to read or write Resp[0]
duke@435 583 // make sure it is not in the monitors or the register save area
duke@435 584 Label OK1, OK2;
duke@435 585
duke@435 586 cmp(Resp, Lmonitors);
duke@435 587 brx(Assembler::lessUnsigned, true, Assembler::pt, OK1);
duke@435 588 delayed()->sub(Resp, frame::memory_parameter_word_sp_offset * wordSize, Resp);
duke@435 589 stop("too many pops: Lesp points into monitor area");
duke@435 590 bind(OK1);
duke@435 591 #ifdef _LP64
duke@435 592 sub(Resp, STACK_BIAS, Resp);
duke@435 593 #endif
duke@435 594 cmp(Resp, SP);
duke@435 595 brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, OK2);
duke@435 596 delayed()->add(Resp, STACK_BIAS + frame::memory_parameter_word_sp_offset * wordSize, Resp);
duke@435 597 stop("too many pushes: Lesp points into register window");
duke@435 598 bind(OK2);
duke@435 599 }
duke@435 600 #endif // ASSERT
duke@435 601
duke@435 602 // Load compiled (i2c) or interpreter entry when calling from interpreted and
duke@435 603 // do the call. Centralized so that all interpreter calls will do the same actions.
duke@435 604 // If jvmti single stepping is on for a thread we must not call compiled code.
duke@435 605 void InterpreterMacroAssembler::call_from_interpreter(Register target, Register scratch, Register Rret) {
duke@435 606
duke@435 607 // Assume we want to go compiled if available
duke@435 608
coleenp@4037 609 ld_ptr(G5_method, in_bytes(Method::from_interpreted_offset()), target);
duke@435 610
duke@435 611 if (JvmtiExport::can_post_interpreter_events()) {
duke@435 612 // JVMTI events, such as single-stepping, are implemented partly by avoiding running
duke@435 613 // compiled code in threads for which the event is enabled. Check here for
duke@435 614 // interp_only_mode if these events CAN be enabled.
duke@435 615 verify_thread();
duke@435 616 Label skip_compiled_code;
duke@435 617
twisti@1162 618 const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
duke@435 619 ld(interp_only, scratch);
kvn@3037 620 cmp_zero_and_br(Assembler::notZero, scratch, skip_compiled_code, true, Assembler::pn);
coleenp@4037 621 delayed()->ld_ptr(G5_method, in_bytes(Method::interpreter_entry_offset()), target);
duke@435 622 bind(skip_compiled_code);
duke@435 623 }
duke@435 624
coleenp@4037 625 // the i2c_adapters need Method* in G5_method (right? %%%)
duke@435 626 // do the call
duke@435 627 #ifdef ASSERT
duke@435 628 {
duke@435 629 Label ok;
kvn@3037 630 br_notnull_short(target, Assembler::pt, ok);
duke@435 631 stop("null entry point");
duke@435 632 bind(ok);
duke@435 633 }
duke@435 634 #endif // ASSERT
duke@435 635
duke@435 636 // Adjust Rret first so Llast_SP can be same as Rret
duke@435 637 add(Rret, -frame::pc_return_offset, O7);
duke@435 638 add(Lesp, BytesPerWord, Gargs); // setup parameter pointer
duke@435 639 // Record SP so we can remove any stack space allocated by adapter transition
duke@435 640 jmp(target, 0);
duke@435 641 delayed()->mov(SP, Llast_SP);
duke@435 642 }
duke@435 643
duke@435 644 void InterpreterMacroAssembler::if_cmp(Condition cc, bool ptr_compare) {
duke@435 645 assert_not_delayed();
duke@435 646
duke@435 647 Label not_taken;
duke@435 648 if (ptr_compare) brx(cc, false, Assembler::pn, not_taken);
duke@435 649 else br (cc, false, Assembler::pn, not_taken);
duke@435 650 delayed()->nop();
duke@435 651
duke@435 652 TemplateTable::branch(false,false);
duke@435 653
duke@435 654 bind(not_taken);
duke@435 655
duke@435 656 profile_not_taken_branch(G3_scratch);
duke@435 657 }
duke@435 658
duke@435 659
duke@435 660 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(
duke@435 661 int bcp_offset,
duke@435 662 Register Rtmp,
duke@435 663 Register Rdst,
duke@435 664 signedOrNot is_signed,
duke@435 665 setCCOrNot should_set_CC ) {
duke@435 666 assert(Rtmp != Rdst, "need separate temp register");
duke@435 667 assert_not_delayed();
duke@435 668 switch (is_signed) {
duke@435 669 default: ShouldNotReachHere();
duke@435 670
duke@435 671 case Signed: ldsb( Lbcp, bcp_offset, Rdst ); break; // high byte
duke@435 672 case Unsigned: ldub( Lbcp, bcp_offset, Rdst ); break; // high byte
duke@435 673 }
duke@435 674 ldub( Lbcp, bcp_offset + 1, Rtmp ); // low byte
duke@435 675 sll( Rdst, BitsPerByte, Rdst);
duke@435 676 switch (should_set_CC ) {
duke@435 677 default: ShouldNotReachHere();
duke@435 678
duke@435 679 case set_CC: orcc( Rdst, Rtmp, Rdst ); break;
duke@435 680 case dont_set_CC: or3( Rdst, Rtmp, Rdst ); break;
duke@435 681 }
duke@435 682 }
duke@435 683
duke@435 684
duke@435 685 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(
duke@435 686 int bcp_offset,
duke@435 687 Register Rtmp,
duke@435 688 Register Rdst,
duke@435 689 setCCOrNot should_set_CC ) {
duke@435 690 assert(Rtmp != Rdst, "need separate temp register");
duke@435 691 assert_not_delayed();
duke@435 692 add( Lbcp, bcp_offset, Rtmp);
duke@435 693 andcc( Rtmp, 3, G0);
duke@435 694 Label aligned;
duke@435 695 switch (should_set_CC ) {
duke@435 696 default: ShouldNotReachHere();
duke@435 697
duke@435 698 case set_CC: break;
duke@435 699 case dont_set_CC: break;
duke@435 700 }
duke@435 701
duke@435 702 br(Assembler::zero, true, Assembler::pn, aligned);
duke@435 703 #ifdef _LP64
duke@435 704 delayed()->ldsw(Rtmp, 0, Rdst);
duke@435 705 #else
duke@435 706 delayed()->ld(Rtmp, 0, Rdst);
duke@435 707 #endif
duke@435 708
duke@435 709 ldub(Lbcp, bcp_offset + 3, Rdst);
duke@435 710 ldub(Lbcp, bcp_offset + 2, Rtmp); sll(Rtmp, 8, Rtmp); or3(Rtmp, Rdst, Rdst);
duke@435 711 ldub(Lbcp, bcp_offset + 1, Rtmp); sll(Rtmp, 16, Rtmp); or3(Rtmp, Rdst, Rdst);
duke@435 712 #ifdef _LP64
duke@435 713 ldsb(Lbcp, bcp_offset + 0, Rtmp); sll(Rtmp, 24, Rtmp);
duke@435 714 #else
duke@435 715 // Unsigned load is faster than signed on some implementations
duke@435 716 ldub(Lbcp, bcp_offset + 0, Rtmp); sll(Rtmp, 24, Rtmp);
duke@435 717 #endif
duke@435 718 or3(Rtmp, Rdst, Rdst );
duke@435 719
duke@435 720 bind(aligned);
duke@435 721 if (should_set_CC == set_CC) tst(Rdst);
duke@435 722 }
duke@435 723
coleenp@4037 724 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register temp, Register index,
jrose@1920 725 int bcp_offset, size_t index_size) {
twisti@1858 726 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
jrose@1920 727 if (index_size == sizeof(u2)) {
coleenp@4037 728 get_2_byte_integer_at_bcp(bcp_offset, temp, index, Unsigned);
jrose@1920 729 } else if (index_size == sizeof(u4)) {
twisti@2698 730 assert(EnableInvokeDynamic, "giant index used only for JSR 292");
coleenp@4037 731 get_4_byte_integer_at_bcp(bcp_offset, temp, index);
coleenp@4037 732 assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
coleenp@4037 733 xor3(index, -1, index); // convert to plain index
jrose@1920 734 } else if (index_size == sizeof(u1)) {
coleenp@4037 735 ldub(Lbcp, bcp_offset, index);
jrose@1920 736 } else {
jrose@1920 737 ShouldNotReachHere();
twisti@1858 738 }
twisti@1858 739 }
twisti@1858 740
twisti@1858 741
twisti@1858 742 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register tmp,
jrose@1920 743 int bcp_offset, size_t index_size) {
duke@435 744 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
duke@435 745 assert_different_registers(cache, tmp);
duke@435 746 assert_not_delayed();
jrose@1920 747 get_cache_index_at_bcp(cache, tmp, bcp_offset, index_size);
twisti@1858 748 // convert from field index to ConstantPoolCacheEntry index and from
twisti@1858 749 // word index to byte offset
duke@435 750 sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
duke@435 751 add(LcpoolCache, tmp, cache);
duke@435 752 }
duke@435 753
duke@435 754
twisti@3050 755 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
twisti@3050 756 Register temp,
twisti@3050 757 Register bytecode,
twisti@3050 758 int byte_no,
twisti@3050 759 int bcp_offset,
twisti@3050 760 size_t index_size) {
twisti@3050 761 get_cache_and_index_at_bcp(cache, temp, bcp_offset, index_size);
coleenp@4037 762 ld_ptr(cache, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset(), bytecode);
twisti@3050 763 const int shift_count = (1 + byte_no) * BitsPerByte;
twisti@3969 764 assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
twisti@3969 765 (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
twisti@3969 766 "correct shift count");
twisti@3969 767 srl(bytecode, shift_count, bytecode);
twisti@3969 768 assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
twisti@3969 769 and3(bytecode, ConstantPoolCacheEntry::bytecode_1_mask, bytecode);
twisti@3050 770 }
twisti@3050 771
twisti@3050 772
twisti@1858 773 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, Register tmp,
jrose@1920 774 int bcp_offset, size_t index_size) {
duke@435 775 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
duke@435 776 assert_different_registers(cache, tmp);
duke@435 777 assert_not_delayed();
jrose@1920 778 if (index_size == sizeof(u2)) {
jrose@1920 779 get_2_byte_integer_at_bcp(bcp_offset, cache, tmp, Unsigned);
jrose@1920 780 } else {
jrose@1920 781 ShouldNotReachHere(); // other sizes not supported here
jrose@1920 782 }
duke@435 783 // convert from field index to ConstantPoolCacheEntry index
duke@435 784 // and from word index to byte offset
duke@435 785 sll(tmp, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord), tmp);
duke@435 786 // skip past the header
coleenp@4037 787 add(tmp, in_bytes(ConstantPoolCache::base_offset()), tmp);
duke@435 788 // construct pointer to cache entry
duke@435 789 add(LcpoolCache, tmp, cache);
duke@435 790 }
duke@435 791
duke@435 792
coleenp@4037 793 // Load object from cpool->resolved_references(index)
coleenp@4037 794 void InterpreterMacroAssembler::load_resolved_reference_at_index(
coleenp@4037 795 Register result, Register index) {
coleenp@4037 796 assert_different_registers(result, index);
coleenp@4037 797 assert_not_delayed();
coleenp@4037 798 // convert from field index to resolved_references() index and from
coleenp@4037 799 // word index to byte offset. Since this is a java object, it can be compressed
coleenp@4037 800 Register tmp = index; // reuse
coleenp@4037 801 sll(index, LogBytesPerHeapOop, tmp);
coleenp@4037 802 get_constant_pool(result);
coleenp@4037 803 // load pointer for resolved_references[] objArray
coleenp@4037 804 ld_ptr(result, ConstantPool::resolved_references_offset_in_bytes(), result);
coleenp@4037 805 // JNIHandles::resolve(result)
coleenp@4037 806 ld_ptr(result, 0, result);
coleenp@4037 807 // Add in the index
coleenp@4037 808 add(result, tmp, result);
coleenp@4037 809 load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result);
coleenp@4037 810 }
coleenp@4037 811
coleenp@4037 812
duke@435 813 // Generate a subtype check: branch to ok_is_subtype if sub_klass is
coleenp@548 814 // a subtype of super_klass. Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
duke@435 815 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
duke@435 816 Register Rsuper_klass,
duke@435 817 Register Rtmp1,
duke@435 818 Register Rtmp2,
duke@435 819 Register Rtmp3,
duke@435 820 Label &ok_is_subtype ) {
jrose@1079 821 Label not_subtype;
duke@435 822
duke@435 823 // Profile the not-null value's klass.
duke@435 824 profile_typecheck(Rsub_klass, Rtmp1);
duke@435 825
jrose@1079 826 check_klass_subtype_fast_path(Rsub_klass, Rsuper_klass,
jrose@1079 827 Rtmp1, Rtmp2,
jrose@1079 828 &ok_is_subtype, &not_subtype, NULL);
jrose@1079 829
jrose@1079 830 check_klass_subtype_slow_path(Rsub_klass, Rsuper_klass,
jrose@1079 831 Rtmp1, Rtmp2, Rtmp3, /*hack:*/ noreg,
jrose@1079 832 &ok_is_subtype, NULL);
duke@435 833
duke@435 834 bind(not_subtype);
duke@435 835 profile_typecheck_failed(Rtmp1);
duke@435 836 }
duke@435 837
duke@435 838 // Separate these two to allow for delay slot in middle
duke@435 839 // These are used to do a test and full jump to exception-throwing code.
duke@435 840
duke@435 841 // %%%%% Could possibly reoptimize this by testing to see if could use
duke@435 842 // a single conditional branch (i.e. if span is small enough.
duke@435 843 // If you go that route, than get rid of the split and give up
duke@435 844 // on the delay-slot hack.
duke@435 845
duke@435 846 void InterpreterMacroAssembler::throw_if_not_1_icc( Condition ok_condition,
duke@435 847 Label& ok ) {
duke@435 848 assert_not_delayed();
duke@435 849 br(ok_condition, true, pt, ok);
duke@435 850 // DELAY SLOT
duke@435 851 }
duke@435 852
duke@435 853 void InterpreterMacroAssembler::throw_if_not_1_xcc( Condition ok_condition,
duke@435 854 Label& ok ) {
duke@435 855 assert_not_delayed();
duke@435 856 bp( ok_condition, true, Assembler::xcc, pt, ok);
duke@435 857 // DELAY SLOT
duke@435 858 }
duke@435 859
duke@435 860 void InterpreterMacroAssembler::throw_if_not_1_x( Condition ok_condition,
duke@435 861 Label& ok ) {
duke@435 862 assert_not_delayed();
duke@435 863 brx(ok_condition, true, pt, ok);
duke@435 864 // DELAY SLOT
duke@435 865 }
duke@435 866
duke@435 867 void InterpreterMacroAssembler::throw_if_not_2( address throw_entry_point,
duke@435 868 Register Rscratch,
duke@435 869 Label& ok ) {
duke@435 870 assert(throw_entry_point != NULL, "entry point must be generated by now");
twisti@1162 871 AddressLiteral dest(throw_entry_point);
twisti@1162 872 jump_to(dest, Rscratch);
duke@435 873 delayed()->nop();
duke@435 874 bind(ok);
duke@435 875 }
duke@435 876
duke@435 877
duke@435 878 // And if you cannot use the delay slot, here is a shorthand:
duke@435 879
duke@435 880 void InterpreterMacroAssembler::throw_if_not_icc( Condition ok_condition,
duke@435 881 address throw_entry_point,
duke@435 882 Register Rscratch ) {
duke@435 883 Label ok;
duke@435 884 if (ok_condition != never) {
duke@435 885 throw_if_not_1_icc( ok_condition, ok);
duke@435 886 delayed()->nop();
duke@435 887 }
duke@435 888 throw_if_not_2( throw_entry_point, Rscratch, ok);
duke@435 889 }
duke@435 890 void InterpreterMacroAssembler::throw_if_not_xcc( Condition ok_condition,
duke@435 891 address throw_entry_point,
duke@435 892 Register Rscratch ) {
duke@435 893 Label ok;
duke@435 894 if (ok_condition != never) {
duke@435 895 throw_if_not_1_xcc( ok_condition, ok);
duke@435 896 delayed()->nop();
duke@435 897 }
duke@435 898 throw_if_not_2( throw_entry_point, Rscratch, ok);
duke@435 899 }
duke@435 900 void InterpreterMacroAssembler::throw_if_not_x( Condition ok_condition,
duke@435 901 address throw_entry_point,
duke@435 902 Register Rscratch ) {
duke@435 903 Label ok;
duke@435 904 if (ok_condition != never) {
duke@435 905 throw_if_not_1_x( ok_condition, ok);
duke@435 906 delayed()->nop();
duke@435 907 }
duke@435 908 throw_if_not_2( throw_entry_point, Rscratch, ok);
duke@435 909 }
duke@435 910
duke@435 911 // Check that index is in range for array, then shift index by index_shift, and put arrayOop + shifted_index into res
duke@435 912 // Note: res is still shy of address by array offset into object.
duke@435 913
duke@435 914 void InterpreterMacroAssembler::index_check_without_pop(Register array, Register index, int index_shift, Register tmp, Register res) {
duke@435 915 assert_not_delayed();
duke@435 916
duke@435 917 verify_oop(array);
duke@435 918 #ifdef _LP64
duke@435 919 // sign extend since tos (index) can be a 32bit value
duke@435 920 sra(index, G0, index);
duke@435 921 #endif // _LP64
duke@435 922
duke@435 923 // check array
duke@435 924 Label ptr_ok;
duke@435 925 tst(array);
duke@435 926 throw_if_not_1_x( notZero, ptr_ok );
duke@435 927 delayed()->ld( array, arrayOopDesc::length_offset_in_bytes(), tmp ); // check index
duke@435 928 throw_if_not_2( Interpreter::_throw_NullPointerException_entry, G3_scratch, ptr_ok);
duke@435 929
duke@435 930 Label index_ok;
duke@435 931 cmp(index, tmp);
duke@435 932 throw_if_not_1_icc( lessUnsigned, index_ok );
duke@435 933 if (index_shift > 0) delayed()->sll(index, index_shift, index);
duke@435 934 else delayed()->add(array, index, res); // addr - const offset in index
duke@435 935 // convention: move aberrant index into G3_scratch for exception message
duke@435 936 mov(index, G3_scratch);
duke@435 937 throw_if_not_2( Interpreter::_throw_ArrayIndexOutOfBoundsException_entry, G4_scratch, index_ok);
duke@435 938
duke@435 939 // add offset if didn't do it in delay slot
duke@435 940 if (index_shift > 0) add(array, index, res); // addr - const offset in index
duke@435 941 }
duke@435 942
duke@435 943
duke@435 944 void InterpreterMacroAssembler::index_check(Register array, Register index, int index_shift, Register tmp, Register res) {
duke@435 945 assert_not_delayed();
duke@435 946
duke@435 947 // pop array
duke@435 948 pop_ptr(array);
duke@435 949
duke@435 950 // check array
duke@435 951 index_check_without_pop(array, index, index_shift, tmp, res);
duke@435 952 }
duke@435 953
duke@435 954
jiangli@3826 955 void InterpreterMacroAssembler::get_const(Register Rdst) {
coleenp@4037 956 ld_ptr(Lmethod, in_bytes(Method::const_offset()), Rdst);
jiangli@3826 957 }
jiangli@3826 958
jiangli@3826 959
duke@435 960 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
jiangli@3826 961 get_const(Rdst);
coleenp@4037 962 ld_ptr(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst);
duke@435 963 }
duke@435 964
duke@435 965
duke@435 966 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) {
duke@435 967 get_constant_pool(Rdst);
coleenp@4037 968 ld_ptr(Rdst, ConstantPool::cache_offset_in_bytes(), Rdst);
duke@435 969 }
duke@435 970
duke@435 971
duke@435 972 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
duke@435 973 get_constant_pool(Rcpool);
coleenp@4037 974 ld_ptr(Rcpool, ConstantPool::tags_offset_in_bytes(), Rtags);
duke@435 975 }
duke@435 976
duke@435 977
duke@435 978 // unlock if synchronized method
duke@435 979 //
duke@435 980 // Unlock the receiver if this is a synchronized method.
duke@435 981 // Unlock any Java monitors from syncronized blocks.
duke@435 982 //
duke@435 983 // If there are locked Java monitors
duke@435 984 // If throw_monitor_exception
duke@435 985 // throws IllegalMonitorStateException
duke@435 986 // Else if install_monitor_exception
duke@435 987 // installs IllegalMonitorStateException
duke@435 988 // Else
duke@435 989 // no error processing
duke@435 990 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
duke@435 991 bool throw_monitor_exception,
duke@435 992 bool install_monitor_exception) {
duke@435 993 Label unlocked, unlock, no_unlock;
duke@435 994
duke@435 995 // get the value of _do_not_unlock_if_synchronized into G1_scratch
twisti@1162 996 const Address do_not_unlock_if_synchronized(G2_thread,
twisti@1162 997 JavaThread::do_not_unlock_if_synchronized_offset());
duke@435 998 ldbool(do_not_unlock_if_synchronized, G1_scratch);
duke@435 999 stbool(G0, do_not_unlock_if_synchronized); // reset the flag
duke@435 1000
duke@435 1001 // check if synchronized method
coleenp@4037 1002 const Address access_flags(Lmethod, Method::access_flags_offset());
duke@435 1003 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 1004 push(state); // save tos
twisti@1162 1005 ld(access_flags, G3_scratch); // Load access flags.
duke@435 1006 btst(JVM_ACC_SYNCHRONIZED, G3_scratch);
twisti@1162 1007 br(zero, false, pt, unlocked);
duke@435 1008 delayed()->nop();
duke@435 1009
duke@435 1010 // Don't unlock anything if the _do_not_unlock_if_synchronized flag
duke@435 1011 // is set.
kvn@3037 1012 cmp_zero_and_br(Assembler::notZero, G1_scratch, no_unlock);
duke@435 1013 delayed()->nop();
duke@435 1014
duke@435 1015 // BasicObjectLock will be first in list, since this is a synchronized method. However, need
duke@435 1016 // to check that the object has not been unlocked by an explicit monitorexit bytecode.
duke@435 1017
duke@435 1018 //Intel: if (throw_monitor_exception) ... else ...
duke@435 1019 // Entry already unlocked, need to throw exception
duke@435 1020 //...
duke@435 1021
duke@435 1022 // pass top-most monitor elem
duke@435 1023 add( top_most_monitor(), O1 );
duke@435 1024
duke@435 1025 ld_ptr(O1, BasicObjectLock::obj_offset_in_bytes(), G3_scratch);
kvn@3037 1026 br_notnull_short(G3_scratch, pt, unlock);
duke@435 1027
duke@435 1028 if (throw_monitor_exception) {
duke@435 1029 // Entry already unlocked need to throw an exception
duke@435 1030 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
duke@435 1031 should_not_reach_here();
duke@435 1032 } else {
duke@435 1033 // Monitor already unlocked during a stack unroll.
duke@435 1034 // If requested, install an illegal_monitor_state_exception.
duke@435 1035 // Continue with stack unrolling.
duke@435 1036 if (install_monitor_exception) {
duke@435 1037 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
duke@435 1038 }
kvn@3037 1039 ba_short(unlocked);
duke@435 1040 }
duke@435 1041
duke@435 1042 bind(unlock);
duke@435 1043
duke@435 1044 unlock_object(O1);
duke@435 1045
duke@435 1046 bind(unlocked);
duke@435 1047
duke@435 1048 // I0, I1: Might contain return value
duke@435 1049
duke@435 1050 // Check that all monitors are unlocked
duke@435 1051 { Label loop, exception, entry, restart;
duke@435 1052
duke@435 1053 Register Rmptr = O0;
duke@435 1054 Register Rtemp = O1;
duke@435 1055 Register Rlimit = Lmonitors;
duke@435 1056 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 1057 assert( (delta & LongAlignmentMask) == 0,
duke@435 1058 "sizeof BasicObjectLock must be even number of doublewords");
duke@435 1059
duke@435 1060 #ifdef ASSERT
duke@435 1061 add(top_most_monitor(), Rmptr, delta);
duke@435 1062 { Label L;
duke@435 1063 // ensure that Rmptr starts out above (or at) Rlimit
kvn@3037 1064 cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
duke@435 1065 stop("monitor stack has negative size");
duke@435 1066 bind(L);
duke@435 1067 }
duke@435 1068 #endif
duke@435 1069 bind(restart);
kvn@3037 1070 ba(entry);
duke@435 1071 delayed()->
duke@435 1072 add(top_most_monitor(), Rmptr, delta); // points to current entry, starting with bottom-most entry
duke@435 1073
duke@435 1074 // Entry is still locked, need to throw exception
duke@435 1075 bind(exception);
duke@435 1076 if (throw_monitor_exception) {
duke@435 1077 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
duke@435 1078 should_not_reach_here();
duke@435 1079 } else {
duke@435 1080 // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception.
duke@435 1081 // Unlock does not block, so don't have to worry about the frame
duke@435 1082 unlock_object(Rmptr);
duke@435 1083 if (install_monitor_exception) {
duke@435 1084 MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
duke@435 1085 }
kvn@3037 1086 ba_short(restart);
duke@435 1087 }
duke@435 1088
duke@435 1089 bind(loop);
duke@435 1090 cmp(Rtemp, G0); // check if current entry is used
duke@435 1091 brx(Assembler::notEqual, false, pn, exception);
duke@435 1092 delayed()->
duke@435 1093 dec(Rmptr, delta); // otherwise advance to next entry
duke@435 1094 #ifdef ASSERT
duke@435 1095 { Label L;
duke@435 1096 // ensure that Rmptr has not somehow stepped below Rlimit
kvn@3037 1097 cmp_and_brx_short(Rmptr, Rlimit, Assembler::greaterEqualUnsigned, pn, L);
duke@435 1098 stop("ran off the end of the monitor stack");
duke@435 1099 bind(L);
duke@435 1100 }
duke@435 1101 #endif
duke@435 1102 bind(entry);
duke@435 1103 cmp(Rmptr, Rlimit); // check if bottom reached
duke@435 1104 brx(Assembler::notEqual, true, pn, loop); // if not at bottom then check this entry
duke@435 1105 delayed()->
duke@435 1106 ld_ptr(Rmptr, BasicObjectLock::obj_offset_in_bytes() - delta, Rtemp);
duke@435 1107 }
duke@435 1108
duke@435 1109 bind(no_unlock);
duke@435 1110 pop(state);
duke@435 1111 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 1112 }
duke@435 1113
duke@435 1114
duke@435 1115 // remove activation
duke@435 1116 //
duke@435 1117 // Unlock the receiver if this is a synchronized method.
duke@435 1118 // Unlock any Java monitors from syncronized blocks.
duke@435 1119 // Remove the activation from the stack.
duke@435 1120 //
duke@435 1121 // If there are locked Java monitors
duke@435 1122 // If throw_monitor_exception
duke@435 1123 // throws IllegalMonitorStateException
duke@435 1124 // Else if install_monitor_exception
duke@435 1125 // installs IllegalMonitorStateException
duke@435 1126 // Else
duke@435 1127 // no error processing
duke@435 1128 void InterpreterMacroAssembler::remove_activation(TosState state,
duke@435 1129 bool throw_monitor_exception,
duke@435 1130 bool install_monitor_exception) {
duke@435 1131
duke@435 1132 unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
duke@435 1133
duke@435 1134 // save result (push state before jvmti call and pop it afterwards) and notify jvmti
duke@435 1135 notify_method_exit(false, state, NotifyJVMTI);
duke@435 1136
duke@435 1137 interp_verify_oop(Otos_i, state, __FILE__, __LINE__);
duke@435 1138 verify_thread();
duke@435 1139
duke@435 1140 // return tos
duke@435 1141 assert(Otos_l1 == Otos_i, "adjust code below");
duke@435 1142 switch (state) {
duke@435 1143 #ifdef _LP64
duke@435 1144 case ltos: mov(Otos_l, Otos_l->after_save()); break; // O0 -> I0
duke@435 1145 #else
duke@435 1146 case ltos: mov(Otos_l2, Otos_l2->after_save()); // fall through // O1 -> I1
duke@435 1147 #endif
duke@435 1148 case btos: // fall through
duke@435 1149 case ctos:
duke@435 1150 case stos: // fall through
duke@435 1151 case atos: // fall through
duke@435 1152 case itos: mov(Otos_l1, Otos_l1->after_save()); break; // O0 -> I0
duke@435 1153 case ftos: // fall through
duke@435 1154 case dtos: // fall through
duke@435 1155 case vtos: /* nothing to do */ break;
duke@435 1156 default : ShouldNotReachHere();
duke@435 1157 }
duke@435 1158
duke@435 1159 #if defined(COMPILER2) && !defined(_LP64)
duke@435 1160 if (state == ltos) {
duke@435 1161 // C2 expects long results in G1 we can't tell if we're returning to interpreted
duke@435 1162 // or compiled so just be safe use G1 and O0/O1
duke@435 1163
duke@435 1164 // Shift bits into high (msb) of G1
duke@435 1165 sllx(Otos_l1->after_save(), 32, G1);
duke@435 1166 // Zero extend low bits
duke@435 1167 srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
duke@435 1168 or3 (Otos_l2->after_save(), G1, G1);
duke@435 1169 }
duke@435 1170 #endif /* COMPILER2 */
duke@435 1171
duke@435 1172 }
duke@435 1173 #endif /* CC_INTERP */
duke@435 1174
duke@435 1175
duke@435 1176 // Lock object
duke@435 1177 //
duke@435 1178 // Argument - lock_reg points to the BasicObjectLock to be used for locking,
duke@435 1179 // it must be initialized with the object to lock
duke@435 1180 void InterpreterMacroAssembler::lock_object(Register lock_reg, Register Object) {
duke@435 1181 if (UseHeavyMonitors) {
duke@435 1182 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
duke@435 1183 }
duke@435 1184 else {
duke@435 1185 Register obj_reg = Object;
duke@435 1186 Register mark_reg = G4_scratch;
duke@435 1187 Register temp_reg = G1_scratch;
twisti@1162 1188 Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes());
twisti@1162 1189 Address mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
duke@435 1190 Label done;
duke@435 1191
duke@435 1192 Label slow_case;
duke@435 1193
duke@435 1194 assert_different_registers(lock_reg, obj_reg, mark_reg, temp_reg);
duke@435 1195
duke@435 1196 // load markOop from object into mark_reg
duke@435 1197 ld_ptr(mark_addr, mark_reg);
duke@435 1198
duke@435 1199 if (UseBiasedLocking) {
duke@435 1200 biased_locking_enter(obj_reg, mark_reg, temp_reg, done, &slow_case);
duke@435 1201 }
duke@435 1202
duke@435 1203 // get the address of basicLock on stack that will be stored in the object
duke@435 1204 // we need a temporary register here as we do not want to clobber lock_reg
duke@435 1205 // (cas clobbers the destination register)
duke@435 1206 mov(lock_reg, temp_reg);
duke@435 1207 // set mark reg to be (markOop of object | UNLOCK_VALUE)
duke@435 1208 or3(mark_reg, markOopDesc::unlocked_value, mark_reg);
duke@435 1209 // initialize the box (Must happen before we update the object mark!)
duke@435 1210 st_ptr(mark_reg, lock_addr, BasicLock::displaced_header_offset_in_bytes());
duke@435 1211 // compare and exchange object_addr, markOop | 1, stack address of basicLock
duke@435 1212 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 1213 casx_under_lock(mark_addr.base(), mark_reg, temp_reg,
duke@435 1214 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 1215
duke@435 1216 // if the compare and exchange succeeded we are done (we saw an unlocked object)
kvn@3037 1217 cmp_and_brx_short(mark_reg, temp_reg, Assembler::equal, Assembler::pt, done);
duke@435 1218
duke@435 1219 // We did not see an unlocked object so try the fast recursive case
duke@435 1220
duke@435 1221 // Check if owner is self by comparing the value in the markOop of object
duke@435 1222 // with the stack pointer
duke@435 1223 sub(temp_reg, SP, temp_reg);
duke@435 1224 #ifdef _LP64
duke@435 1225 sub(temp_reg, STACK_BIAS, temp_reg);
duke@435 1226 #endif
duke@435 1227 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
duke@435 1228
duke@435 1229 // Composite "andcc" test:
duke@435 1230 // (a) %sp -vs- markword proximity check, and,
duke@435 1231 // (b) verify mark word LSBs == 0 (Stack-locked).
duke@435 1232 //
duke@435 1233 // FFFFF003/FFFFFFFFFFFF003 is (markOopDesc::lock_mask_in_place | -os::vm_page_size())
duke@435 1234 // Note that the page size used for %sp proximity testing is arbitrary and is
duke@435 1235 // unrelated to the actual MMU page size. We use a 'logical' page size of
duke@435 1236 // 4096 bytes. F..FFF003 is designed to fit conveniently in the SIMM13 immediate
duke@435 1237 // field of the andcc instruction.
duke@435 1238 andcc (temp_reg, 0xFFFFF003, G0) ;
duke@435 1239
duke@435 1240 // if condition is true we are done and hence we can store 0 in the displaced
duke@435 1241 // header indicating it is a recursive lock and be done
duke@435 1242 brx(Assembler::zero, true, Assembler::pt, done);
duke@435 1243 delayed()->st_ptr(G0, lock_addr, BasicLock::displaced_header_offset_in_bytes());
duke@435 1244
duke@435 1245 // none of the above fast optimizations worked so we have to get into the
duke@435 1246 // slow case of monitor enter
duke@435 1247 bind(slow_case);
duke@435 1248 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), lock_reg);
duke@435 1249
duke@435 1250 bind(done);
duke@435 1251 }
duke@435 1252 }
duke@435 1253
duke@435 1254 // Unlocks an object. Used in monitorexit bytecode and remove_activation.
duke@435 1255 //
duke@435 1256 // Argument - lock_reg points to the BasicObjectLock for lock
duke@435 1257 // Throw IllegalMonitorException if object is not locked by current thread
duke@435 1258 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
duke@435 1259 if (UseHeavyMonitors) {
duke@435 1260 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
duke@435 1261 } else {
duke@435 1262 Register obj_reg = G3_scratch;
duke@435 1263 Register mark_reg = G4_scratch;
duke@435 1264 Register displaced_header_reg = G1_scratch;
twisti@1162 1265 Address lockobj_addr(lock_reg, BasicObjectLock::obj_offset_in_bytes());
twisti@1162 1266 Address mark_addr(obj_reg, oopDesc::mark_offset_in_bytes());
duke@435 1267 Label done;
duke@435 1268
duke@435 1269 if (UseBiasedLocking) {
duke@435 1270 // load the object out of the BasicObjectLock
duke@435 1271 ld_ptr(lockobj_addr, obj_reg);
duke@435 1272 biased_locking_exit(mark_addr, mark_reg, done, true);
duke@435 1273 st_ptr(G0, lockobj_addr); // free entry
duke@435 1274 }
duke@435 1275
duke@435 1276 // Test first if we are in the fast recursive case
twisti@1162 1277 Address lock_addr(lock_reg, BasicObjectLock::lock_offset_in_bytes() + BasicLock::displaced_header_offset_in_bytes());
twisti@1162 1278 ld_ptr(lock_addr, displaced_header_reg);
duke@435 1279 br_null(displaced_header_reg, true, Assembler::pn, done);
duke@435 1280 delayed()->st_ptr(G0, lockobj_addr); // free entry
duke@435 1281
duke@435 1282 // See if it is still a light weight lock, if so we just unlock
duke@435 1283 // the object and we are done
duke@435 1284
duke@435 1285 if (!UseBiasedLocking) {
duke@435 1286 // load the object out of the BasicObjectLock
duke@435 1287 ld_ptr(lockobj_addr, obj_reg);
duke@435 1288 }
duke@435 1289
duke@435 1290 // we have the displaced header in displaced_header_reg
duke@435 1291 // we expect to see the stack address of the basicLock in case the
duke@435 1292 // lock is still a light weight lock (lock_reg)
duke@435 1293 assert(mark_addr.disp() == 0, "cas must take a zero displacement");
duke@435 1294 casx_under_lock(mark_addr.base(), lock_reg, displaced_header_reg,
duke@435 1295 (address)StubRoutines::Sparc::atomic_memory_operation_lock_addr());
duke@435 1296 cmp(lock_reg, displaced_header_reg);
duke@435 1297 brx(Assembler::equal, true, Assembler::pn, done);
duke@435 1298 delayed()->st_ptr(G0, lockobj_addr); // free entry
duke@435 1299
duke@435 1300 // The lock has been converted into a heavy lock and hence
duke@435 1301 // we need to get into the slow case
duke@435 1302
duke@435 1303 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
duke@435 1304
duke@435 1305 bind(done);
duke@435 1306 }
duke@435 1307 }
duke@435 1308
duke@435 1309 #ifndef CC_INTERP
duke@435 1310
coleenp@4037 1311 // Get the method data pointer from the Method* and set the
duke@435 1312 // specified register to its value.
duke@435 1313
iveresov@2438 1314 void InterpreterMacroAssembler::set_method_data_pointer() {
duke@435 1315 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1316 Label get_continue;
duke@435 1317
coleenp@4037 1318 ld_ptr(Lmethod, in_bytes(Method::method_data_offset()), ImethodDataPtr);
duke@435 1319 test_method_data_pointer(get_continue);
coleenp@4037 1320 add(ImethodDataPtr, in_bytes(MethodData::data_offset()), ImethodDataPtr);
duke@435 1321 bind(get_continue);
duke@435 1322 }
duke@435 1323
duke@435 1324 // Set the method data pointer for the current bcp.
duke@435 1325
duke@435 1326 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
duke@435 1327 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1328 Label zero_continue;
duke@435 1329
duke@435 1330 // Test MDO to avoid the call if it is NULL.
coleenp@4037 1331 ld_ptr(Lmethod, in_bytes(Method::method_data_offset()), ImethodDataPtr);
duke@435 1332 test_method_data_pointer(zero_continue);
duke@435 1333 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), Lmethod, Lbcp);
coleenp@4037 1334 add(ImethodDataPtr, in_bytes(MethodData::data_offset()), ImethodDataPtr);
iveresov@2438 1335 add(ImethodDataPtr, O0, ImethodDataPtr);
duke@435 1336 bind(zero_continue);
duke@435 1337 }
duke@435 1338
duke@435 1339 // Test ImethodDataPtr. If it is null, continue at the specified label
duke@435 1340
duke@435 1341 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) {
duke@435 1342 assert(ProfileInterpreter, "must be profiling interpreter");
kvn@3037 1343 br_null_short(ImethodDataPtr, Assembler::pn, zero_continue);
duke@435 1344 }
duke@435 1345
duke@435 1346 void InterpreterMacroAssembler::verify_method_data_pointer() {
duke@435 1347 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1348 #ifdef ASSERT
duke@435 1349 Label verify_continue;
duke@435 1350 test_method_data_pointer(verify_continue);
duke@435 1351
duke@435 1352 // If the mdp is valid, it will point to a DataLayout header which is
duke@435 1353 // consistent with the bcp. The converse is highly probable also.
duke@435 1354 lduh(ImethodDataPtr, in_bytes(DataLayout::bci_offset()), G3_scratch);
coleenp@4037 1355 ld_ptr(Lmethod, Method::const_offset(), O5);
coleenp@4037 1356 add(G3_scratch, in_bytes(ConstMethod::codes_offset()), G3_scratch);
duke@435 1357 add(G3_scratch, O5, G3_scratch);
duke@435 1358 cmp(Lbcp, G3_scratch);
duke@435 1359 brx(Assembler::equal, false, Assembler::pt, verify_continue);
duke@435 1360
duke@435 1361 Register temp_reg = O5;
duke@435 1362 delayed()->mov(ImethodDataPtr, temp_reg);
duke@435 1363 // %%% should use call_VM_leaf here?
duke@435 1364 //call_VM_leaf(noreg, ..., Lmethod, Lbcp, ImethodDataPtr);
duke@435 1365 save_frame_and_mov(sizeof(jdouble) / wordSize, Lmethod, O0, Lbcp, O1);
twisti@1162 1366 Address d_save(FP, -sizeof(jdouble) + STACK_BIAS);
duke@435 1367 stf(FloatRegisterImpl::D, Ftos_d, d_save);
duke@435 1368 mov(temp_reg->after_save(), O2);
duke@435 1369 save_thread(L7_thread_cache);
duke@435 1370 call(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), relocInfo::none);
duke@435 1371 delayed()->nop();
duke@435 1372 restore_thread(L7_thread_cache);
duke@435 1373 ldf(FloatRegisterImpl::D, d_save, Ftos_d);
duke@435 1374 restore();
duke@435 1375 bind(verify_continue);
duke@435 1376 #endif // ASSERT
duke@435 1377 }
duke@435 1378
duke@435 1379 void InterpreterMacroAssembler::test_invocation_counter_for_mdp(Register invocation_count,
duke@435 1380 Register Rtmp,
duke@435 1381 Label &profile_continue) {
duke@435 1382 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1383 // Control will flow to "profile_continue" if the counter is less than the
duke@435 1384 // limit or if we call profile_method()
duke@435 1385
duke@435 1386 Label done;
duke@435 1387
duke@435 1388 // if no method data exists, and the counter is high enough, make one
kvn@3037 1389 br_notnull_short(ImethodDataPtr, Assembler::pn, done);
duke@435 1390
duke@435 1391 // Test to see if we should create a method data oop
twisti@1162 1392 AddressLiteral profile_limit((address) &InvocationCounter::InterpreterProfileLimit);
twisti@1162 1393 sethi(profile_limit, Rtmp);
twisti@1162 1394 ld(Rtmp, profile_limit.low10(), Rtmp);
kvn@4116 1395 cmp(invocation_count, Rtmp);
kvn@4116 1396 // Use long branches because call_VM() code and following code generated by
kvn@4116 1397 // test_backedge_count_for_osr() is large in debug VM.
kvn@4116 1398 br(Assembler::lessUnsigned, false, Assembler::pn, profile_continue);
kvn@4116 1399 delayed()->nop();
duke@435 1400
duke@435 1401 // Build it now.
iveresov@2438 1402 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
iveresov@2438 1403 set_method_data_pointer_for_bcp();
kvn@4116 1404 ba(profile_continue);
kvn@4116 1405 delayed()->nop();
duke@435 1406 bind(done);
duke@435 1407 }
duke@435 1408
duke@435 1409 // Store a value at some constant offset from the method data pointer.
duke@435 1410
duke@435 1411 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) {
duke@435 1412 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1413 st_ptr(value, ImethodDataPtr, constant);
duke@435 1414 }
duke@435 1415
duke@435 1416 void InterpreterMacroAssembler::increment_mdp_data_at(Address counter,
duke@435 1417 Register bumped_count,
duke@435 1418 bool decrement) {
duke@435 1419 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1420
duke@435 1421 // Load the counter.
duke@435 1422 ld_ptr(counter, bumped_count);
duke@435 1423
duke@435 1424 if (decrement) {
duke@435 1425 // Decrement the register. Set condition codes.
duke@435 1426 subcc(bumped_count, DataLayout::counter_increment, bumped_count);
duke@435 1427
duke@435 1428 // If the decrement causes the counter to overflow, stay negative
duke@435 1429 Label L;
duke@435 1430 brx(Assembler::negative, true, Assembler::pn, L);
duke@435 1431
duke@435 1432 // Store the decremented counter, if it is still negative.
duke@435 1433 delayed()->st_ptr(bumped_count, counter);
duke@435 1434 bind(L);
duke@435 1435 } else {
duke@435 1436 // Increment the register. Set carry flag.
duke@435 1437 addcc(bumped_count, DataLayout::counter_increment, bumped_count);
duke@435 1438
duke@435 1439 // If the increment causes the counter to overflow, pull back by 1.
duke@435 1440 assert(DataLayout::counter_increment == 1, "subc works");
duke@435 1441 subc(bumped_count, G0, bumped_count);
duke@435 1442
duke@435 1443 // Store the incremented counter.
duke@435 1444 st_ptr(bumped_count, counter);
duke@435 1445 }
duke@435 1446 }
duke@435 1447
duke@435 1448 // Increment the value at some constant offset from the method data pointer.
duke@435 1449
duke@435 1450 void InterpreterMacroAssembler::increment_mdp_data_at(int constant,
duke@435 1451 Register bumped_count,
duke@435 1452 bool decrement) {
duke@435 1453 // Locate the counter at a fixed offset from the mdp:
twisti@1162 1454 Address counter(ImethodDataPtr, constant);
duke@435 1455 increment_mdp_data_at(counter, bumped_count, decrement);
duke@435 1456 }
duke@435 1457
duke@435 1458 // Increment the value at some non-fixed (reg + constant) offset from
duke@435 1459 // the method data pointer.
duke@435 1460
duke@435 1461 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg,
duke@435 1462 int constant,
duke@435 1463 Register bumped_count,
duke@435 1464 Register scratch2,
duke@435 1465 bool decrement) {
duke@435 1466 // Add the constant to reg to get the offset.
duke@435 1467 add(ImethodDataPtr, reg, scratch2);
twisti@1162 1468 Address counter(scratch2, constant);
duke@435 1469 increment_mdp_data_at(counter, bumped_count, decrement);
duke@435 1470 }
duke@435 1471
duke@435 1472 // Set a flag value at the current method data pointer position.
duke@435 1473 // Updates a single byte of the header, to avoid races with other header bits.
duke@435 1474
duke@435 1475 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant,
duke@435 1476 Register scratch) {
duke@435 1477 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1478 // Load the data header
duke@435 1479 ldub(ImethodDataPtr, in_bytes(DataLayout::flags_offset()), scratch);
duke@435 1480
duke@435 1481 // Set the flag
duke@435 1482 or3(scratch, flag_constant, scratch);
duke@435 1483
duke@435 1484 // Store the modified header.
duke@435 1485 stb(scratch, ImethodDataPtr, in_bytes(DataLayout::flags_offset()));
duke@435 1486 }
duke@435 1487
duke@435 1488 // Test the location at some offset from the method data pointer.
duke@435 1489 // If it is not equal to value, branch to the not_equal_continue Label.
duke@435 1490 // Set condition codes to match the nullness of the loaded value.
duke@435 1491
duke@435 1492 void InterpreterMacroAssembler::test_mdp_data_at(int offset,
duke@435 1493 Register value,
duke@435 1494 Label& not_equal_continue,
duke@435 1495 Register scratch) {
duke@435 1496 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1497 ld_ptr(ImethodDataPtr, offset, scratch);
duke@435 1498 cmp(value, scratch);
duke@435 1499 brx(Assembler::notEqual, false, Assembler::pn, not_equal_continue);
duke@435 1500 delayed()->tst(scratch);
duke@435 1501 }
duke@435 1502
duke@435 1503 // Update the method data pointer by the displacement located at some fixed
duke@435 1504 // offset from the method data pointer.
duke@435 1505
duke@435 1506 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp,
duke@435 1507 Register scratch) {
duke@435 1508 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1509 ld_ptr(ImethodDataPtr, offset_of_disp, scratch);
duke@435 1510 add(ImethodDataPtr, scratch, ImethodDataPtr);
duke@435 1511 }
duke@435 1512
duke@435 1513 // Update the method data pointer by the displacement located at the
duke@435 1514 // offset (reg + offset_of_disp).
duke@435 1515
duke@435 1516 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg,
duke@435 1517 int offset_of_disp,
duke@435 1518 Register scratch) {
duke@435 1519 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1520 add(reg, offset_of_disp, scratch);
duke@435 1521 ld_ptr(ImethodDataPtr, scratch, scratch);
duke@435 1522 add(ImethodDataPtr, scratch, ImethodDataPtr);
duke@435 1523 }
duke@435 1524
duke@435 1525 // Update the method data pointer by a simple constant displacement.
duke@435 1526
duke@435 1527 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) {
duke@435 1528 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1529 add(ImethodDataPtr, constant, ImethodDataPtr);
duke@435 1530 }
duke@435 1531
duke@435 1532 // Update the method data pointer for a _ret bytecode whose target
duke@435 1533 // was not among our cached targets.
duke@435 1534
duke@435 1535 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state,
duke@435 1536 Register return_bci) {
duke@435 1537 assert(ProfileInterpreter, "must be profiling interpreter");
duke@435 1538 push(state);
duke@435 1539 st_ptr(return_bci, l_tmp); // protect return_bci, in case it is volatile
duke@435 1540 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci);
duke@435 1541 ld_ptr(l_tmp, return_bci);
duke@435 1542 pop(state);
duke@435 1543 }
duke@435 1544
duke@435 1545 // Count a taken branch in the bytecodes.
duke@435 1546
duke@435 1547 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) {
duke@435 1548 if (ProfileInterpreter) {
duke@435 1549 Label profile_continue;
duke@435 1550
duke@435 1551 // If no method data exists, go to profile_continue.
duke@435 1552 test_method_data_pointer(profile_continue);
duke@435 1553
duke@435 1554 // We are taking a branch. Increment the taken count.
duke@435 1555 increment_mdp_data_at(in_bytes(JumpData::taken_offset()), bumped_count);
duke@435 1556
duke@435 1557 // The method data pointer needs to be updated to reflect the new target.
duke@435 1558 update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch);
duke@435 1559 bind (profile_continue);
duke@435 1560 }
duke@435 1561 }
duke@435 1562
duke@435 1563
duke@435 1564 // Count a not-taken branch in the bytecodes.
duke@435 1565
duke@435 1566 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch) {
duke@435 1567 if (ProfileInterpreter) {
duke@435 1568 Label profile_continue;
duke@435 1569
duke@435 1570 // If no method data exists, go to profile_continue.
duke@435 1571 test_method_data_pointer(profile_continue);
duke@435 1572
duke@435 1573 // We are taking a branch. Increment the not taken count.
duke@435 1574 increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch);
duke@435 1575
duke@435 1576 // The method data pointer needs to be updated to correspond to the
duke@435 1577 // next bytecode.
duke@435 1578 update_mdp_by_constant(in_bytes(BranchData::branch_data_size()));
duke@435 1579 bind (profile_continue);
duke@435 1580 }
duke@435 1581 }
duke@435 1582
duke@435 1583
duke@435 1584 // Count a non-virtual call in the bytecodes.
duke@435 1585
duke@435 1586 void InterpreterMacroAssembler::profile_call(Register scratch) {
duke@435 1587 if (ProfileInterpreter) {
duke@435 1588 Label profile_continue;
duke@435 1589
duke@435 1590 // If no method data exists, go to profile_continue.
duke@435 1591 test_method_data_pointer(profile_continue);
duke@435 1592
duke@435 1593 // We are making a call. Increment the count.
duke@435 1594 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
duke@435 1595
duke@435 1596 // The method data pointer needs to be updated to reflect the new target.
duke@435 1597 update_mdp_by_constant(in_bytes(CounterData::counter_data_size()));
duke@435 1598 bind (profile_continue);
duke@435 1599 }
duke@435 1600 }
duke@435 1601
duke@435 1602
duke@435 1603 // Count a final call in the bytecodes.
duke@435 1604
duke@435 1605 void InterpreterMacroAssembler::profile_final_call(Register scratch) {
duke@435 1606 if (ProfileInterpreter) {
duke@435 1607 Label profile_continue;
duke@435 1608
duke@435 1609 // If no method data exists, go to profile_continue.
duke@435 1610 test_method_data_pointer(profile_continue);
duke@435 1611
duke@435 1612 // We are making a call. Increment the count.
duke@435 1613 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
duke@435 1614
duke@435 1615 // The method data pointer needs to be updated to reflect the new target.
duke@435 1616 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
duke@435 1617 bind (profile_continue);
duke@435 1618 }
duke@435 1619 }
duke@435 1620
duke@435 1621
duke@435 1622 // Count a virtual call in the bytecodes.
duke@435 1623
duke@435 1624 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
twisti@1858 1625 Register scratch,
twisti@1858 1626 bool receiver_can_be_null) {
duke@435 1627 if (ProfileInterpreter) {
duke@435 1628 Label profile_continue;
duke@435 1629
duke@435 1630 // If no method data exists, go to profile_continue.
duke@435 1631 test_method_data_pointer(profile_continue);
duke@435 1632
twisti@1858 1633
twisti@1858 1634 Label skip_receiver_profile;
twisti@1858 1635 if (receiver_can_be_null) {
twisti@1858 1636 Label not_null;
kvn@3037 1637 br_notnull_short(receiver, Assembler::pt, not_null);
twisti@1858 1638 // We are making a call. Increment the count for null receiver.
twisti@1858 1639 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
kvn@3037 1640 ba_short(skip_receiver_profile);
twisti@1858 1641 bind(not_null);
twisti@1858 1642 }
twisti@1858 1643
duke@435 1644 // Record the receiver type.
kvn@1641 1645 record_klass_in_profile(receiver, scratch, true);
twisti@1858 1646 bind(skip_receiver_profile);
duke@435 1647
duke@435 1648 // The method data pointer needs to be updated to reflect the new target.
duke@435 1649 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size()));
duke@435 1650 bind (profile_continue);
duke@435 1651 }
duke@435 1652 }
duke@435 1653
duke@435 1654 void InterpreterMacroAssembler::record_klass_in_profile_helper(
duke@435 1655 Register receiver, Register scratch,
kvn@1641 1656 int start_row, Label& done, bool is_virtual_call) {
kvn@1641 1657 if (TypeProfileWidth == 0) {
kvn@1641 1658 if (is_virtual_call) {
kvn@1641 1659 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
kvn@1641 1660 }
poonam@1402 1661 return;
kvn@1641 1662 }
poonam@1402 1663
duke@435 1664 int last_row = VirtualCallData::row_limit() - 1;
duke@435 1665 assert(start_row <= last_row, "must be work left to do");
duke@435 1666 // Test this row for both the receiver and for null.
duke@435 1667 // Take any of three different outcomes:
duke@435 1668 // 1. found receiver => increment count and goto done
duke@435 1669 // 2. found null => keep looking for case 1, maybe allocate this cell
duke@435 1670 // 3. found something else => keep looking for cases 1 and 2
duke@435 1671 // Case 3 is handled by a recursive call.
duke@435 1672 for (int row = start_row; row <= last_row; row++) {
duke@435 1673 Label next_test;
duke@435 1674 bool test_for_null_also = (row == start_row);
duke@435 1675
duke@435 1676 // See if the receiver is receiver[n].
duke@435 1677 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
duke@435 1678 test_mdp_data_at(recvr_offset, receiver, next_test, scratch);
kvn@1641 1679 // delayed()->tst(scratch);
duke@435 1680
duke@435 1681 // The receiver is receiver[n]. Increment count[n].
duke@435 1682 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
duke@435 1683 increment_mdp_data_at(count_offset, scratch);
kvn@3037 1684 ba_short(done);
duke@435 1685 bind(next_test);
duke@435 1686
duke@435 1687 if (test_for_null_also) {
kvn@1641 1688 Label found_null;
duke@435 1689 // Failed the equality check on receiver[n]... Test for null.
duke@435 1690 if (start_row == last_row) {
duke@435 1691 // The only thing left to do is handle the null case.
kvn@1641 1692 if (is_virtual_call) {
kvn@1641 1693 brx(Assembler::zero, false, Assembler::pn, found_null);
kvn@1641 1694 delayed()->nop();
kvn@1641 1695 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1686 1696 // Increment total counter to indicate polymorphic case.
kvn@1641 1697 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
kvn@3037 1698 ba_short(done);
kvn@1641 1699 bind(found_null);
kvn@1641 1700 } else {
kvn@1641 1701 brx(Assembler::notZero, false, Assembler::pt, done);
kvn@1641 1702 delayed()->nop();
kvn@1641 1703 }
duke@435 1704 break;
duke@435 1705 }
duke@435 1706 // Since null is rare, make it be the branch-taken case.
duke@435 1707 brx(Assembler::zero, false, Assembler::pn, found_null);
duke@435 1708 delayed()->nop();
duke@435 1709
duke@435 1710 // Put all the "Case 3" tests here.
kvn@1641 1711 record_klass_in_profile_helper(receiver, scratch, start_row + 1, done, is_virtual_call);
duke@435 1712
duke@435 1713 // Found a null. Keep searching for a matching receiver,
duke@435 1714 // but remember that this is an empty (unused) slot.
duke@435 1715 bind(found_null);
duke@435 1716 }
duke@435 1717 }
duke@435 1718
duke@435 1719 // In the fall-through case, we found no matching receiver, but we
duke@435 1720 // observed the receiver[start_row] is NULL.
duke@435 1721
duke@435 1722 // Fill in the receiver field and increment the count.
duke@435 1723 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
duke@435 1724 set_mdp_data_at(recvr_offset, receiver);
duke@435 1725 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
duke@435 1726 mov(DataLayout::counter_increment, scratch);
duke@435 1727 set_mdp_data_at(count_offset, scratch);
kvn@1641 1728 if (start_row > 0) {
kvn@3037 1729 ba_short(done);
kvn@1641 1730 }
duke@435 1731 }
duke@435 1732
duke@435 1733 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
kvn@1641 1734 Register scratch, bool is_virtual_call) {
duke@435 1735 assert(ProfileInterpreter, "must be profiling");
duke@435 1736 Label done;
duke@435 1737
kvn@1641 1738 record_klass_in_profile_helper(receiver, scratch, 0, done, is_virtual_call);
duke@435 1739
duke@435 1740 bind (done);
duke@435 1741 }
duke@435 1742
duke@435 1743
duke@435 1744 // Count a ret in the bytecodes.
duke@435 1745
duke@435 1746 void InterpreterMacroAssembler::profile_ret(TosState state,
duke@435 1747 Register return_bci,
duke@435 1748 Register scratch) {
duke@435 1749 if (ProfileInterpreter) {
duke@435 1750 Label profile_continue;
duke@435 1751 uint row;
duke@435 1752
duke@435 1753 // If no method data exists, go to profile_continue.
duke@435 1754 test_method_data_pointer(profile_continue);
duke@435 1755
duke@435 1756 // Update the total ret count.
duke@435 1757 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch);
duke@435 1758
duke@435 1759 for (row = 0; row < RetData::row_limit(); row++) {
duke@435 1760 Label next_test;
duke@435 1761
duke@435 1762 // See if return_bci is equal to bci[n]:
duke@435 1763 test_mdp_data_at(in_bytes(RetData::bci_offset(row)),
duke@435 1764 return_bci, next_test, scratch);
duke@435 1765
duke@435 1766 // return_bci is equal to bci[n]. Increment the count.
duke@435 1767 increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch);
duke@435 1768
duke@435 1769 // The method data pointer needs to be updated to reflect the new target.
duke@435 1770 update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch);
kvn@3037 1771 ba_short(profile_continue);
duke@435 1772 bind(next_test);
duke@435 1773 }
duke@435 1774
duke@435 1775 update_mdp_for_ret(state, return_bci);
duke@435 1776
duke@435 1777 bind (profile_continue);
duke@435 1778 }
duke@435 1779 }
duke@435 1780
duke@435 1781 // Profile an unexpected null in the bytecodes.
duke@435 1782 void InterpreterMacroAssembler::profile_null_seen(Register scratch) {
duke@435 1783 if (ProfileInterpreter) {
duke@435 1784 Label profile_continue;
duke@435 1785
duke@435 1786 // If no method data exists, go to profile_continue.
duke@435 1787 test_method_data_pointer(profile_continue);
duke@435 1788
duke@435 1789 set_mdp_flag_at(BitData::null_seen_byte_constant(), scratch);
duke@435 1790
duke@435 1791 // The method data pointer needs to be updated.
duke@435 1792 int mdp_delta = in_bytes(BitData::bit_data_size());
duke@435 1793 if (TypeProfileCasts) {
duke@435 1794 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
duke@435 1795 }
duke@435 1796 update_mdp_by_constant(mdp_delta);
duke@435 1797
duke@435 1798 bind (profile_continue);
duke@435 1799 }
duke@435 1800 }
duke@435 1801
duke@435 1802 void InterpreterMacroAssembler::profile_typecheck(Register klass,
duke@435 1803 Register scratch) {
duke@435 1804 if (ProfileInterpreter) {
duke@435 1805 Label profile_continue;
duke@435 1806
duke@435 1807 // If no method data exists, go to profile_continue.
duke@435 1808 test_method_data_pointer(profile_continue);
duke@435 1809
duke@435 1810 int mdp_delta = in_bytes(BitData::bit_data_size());
duke@435 1811 if (TypeProfileCasts) {
duke@435 1812 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
duke@435 1813
duke@435 1814 // Record the object type.
kvn@1641 1815 record_klass_in_profile(klass, scratch, false);
duke@435 1816 }
duke@435 1817
duke@435 1818 // The method data pointer needs to be updated.
duke@435 1819 update_mdp_by_constant(mdp_delta);
duke@435 1820
duke@435 1821 bind (profile_continue);
duke@435 1822 }
duke@435 1823 }
duke@435 1824
duke@435 1825 void InterpreterMacroAssembler::profile_typecheck_failed(Register scratch) {
duke@435 1826 if (ProfileInterpreter && TypeProfileCasts) {
duke@435 1827 Label profile_continue;
duke@435 1828
duke@435 1829 // If no method data exists, go to profile_continue.
duke@435 1830 test_method_data_pointer(profile_continue);
duke@435 1831
duke@435 1832 int count_offset = in_bytes(CounterData::count_offset());
duke@435 1833 // Back up the address, since we have already bumped the mdp.
duke@435 1834 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
duke@435 1835
duke@435 1836 // *Decrement* the counter. We expect to see zero or small negatives.
duke@435 1837 increment_mdp_data_at(count_offset, scratch, true);
duke@435 1838
duke@435 1839 bind (profile_continue);
duke@435 1840 }
duke@435 1841 }
duke@435 1842
duke@435 1843 // Count the default case of a switch construct.
duke@435 1844
duke@435 1845 void InterpreterMacroAssembler::profile_switch_default(Register scratch) {
duke@435 1846 if (ProfileInterpreter) {
duke@435 1847 Label profile_continue;
duke@435 1848
duke@435 1849 // If no method data exists, go to profile_continue.
duke@435 1850 test_method_data_pointer(profile_continue);
duke@435 1851
duke@435 1852 // Update the default case count
duke@435 1853 increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()),
duke@435 1854 scratch);
duke@435 1855
duke@435 1856 // The method data pointer needs to be updated.
duke@435 1857 update_mdp_by_offset(
duke@435 1858 in_bytes(MultiBranchData::default_displacement_offset()),
duke@435 1859 scratch);
duke@435 1860
duke@435 1861 bind (profile_continue);
duke@435 1862 }
duke@435 1863 }
duke@435 1864
duke@435 1865 // Count the index'th case of a switch construct.
duke@435 1866
duke@435 1867 void InterpreterMacroAssembler::profile_switch_case(Register index,
duke@435 1868 Register scratch,
duke@435 1869 Register scratch2,
duke@435 1870 Register scratch3) {
duke@435 1871 if (ProfileInterpreter) {
duke@435 1872 Label profile_continue;
duke@435 1873
duke@435 1874 // If no method data exists, go to profile_continue.
duke@435 1875 test_method_data_pointer(profile_continue);
duke@435 1876
duke@435 1877 // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes()
duke@435 1878 set(in_bytes(MultiBranchData::per_case_size()), scratch);
duke@435 1879 smul(index, scratch, scratch);
duke@435 1880 add(scratch, in_bytes(MultiBranchData::case_array_offset()), scratch);
duke@435 1881
duke@435 1882 // Update the case count
duke@435 1883 increment_mdp_data_at(scratch,
duke@435 1884 in_bytes(MultiBranchData::relative_count_offset()),
duke@435 1885 scratch2,
duke@435 1886 scratch3);
duke@435 1887
duke@435 1888 // The method data pointer needs to be updated.
duke@435 1889 update_mdp_by_offset(scratch,
duke@435 1890 in_bytes(MultiBranchData::relative_displacement_offset()),
duke@435 1891 scratch2);
duke@435 1892
duke@435 1893 bind (profile_continue);
duke@435 1894 }
duke@435 1895 }
duke@435 1896
duke@435 1897 // add a InterpMonitorElem to stack (see frame_sparc.hpp)
duke@435 1898
duke@435 1899 void InterpreterMacroAssembler::add_monitor_to_stack( bool stack_is_empty,
duke@435 1900 Register Rtemp,
duke@435 1901 Register Rtemp2 ) {
duke@435 1902
duke@435 1903 Register Rlimit = Lmonitors;
duke@435 1904 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 1905 assert( (delta & LongAlignmentMask) == 0,
duke@435 1906 "sizeof BasicObjectLock must be even number of doublewords");
duke@435 1907
duke@435 1908 sub( SP, delta, SP);
duke@435 1909 sub( Lesp, delta, Lesp);
duke@435 1910 sub( Lmonitors, delta, Lmonitors);
duke@435 1911
duke@435 1912 if (!stack_is_empty) {
duke@435 1913
duke@435 1914 // must copy stack contents down
duke@435 1915
duke@435 1916 Label start_copying, next;
duke@435 1917
duke@435 1918 // untested("monitor stack expansion");
duke@435 1919 compute_stack_base(Rtemp);
kvn@3037 1920 ba(start_copying);
kvn@3037 1921 delayed()->cmp(Rtemp, Rlimit); // done? duplicated below
duke@435 1922
duke@435 1923 // note: must copy from low memory upwards
duke@435 1924 // On entry to loop,
duke@435 1925 // Rtemp points to new base of stack, Lesp points to new end of stack (1 past TOS)
duke@435 1926 // Loop mutates Rtemp
duke@435 1927
duke@435 1928 bind( next);
duke@435 1929
duke@435 1930 st_ptr(Rtemp2, Rtemp, 0);
duke@435 1931 inc(Rtemp, wordSize);
duke@435 1932 cmp(Rtemp, Rlimit); // are we done? (duplicated above)
duke@435 1933
duke@435 1934 bind( start_copying );
duke@435 1935
duke@435 1936 brx( notEqual, true, pn, next );
duke@435 1937 delayed()->ld_ptr( Rtemp, delta, Rtemp2 );
duke@435 1938
duke@435 1939 // done copying stack
duke@435 1940 }
duke@435 1941 }
duke@435 1942
duke@435 1943 // Locals
duke@435 1944 void InterpreterMacroAssembler::access_local_ptr( Register index, Register dst ) {
duke@435 1945 assert_not_delayed();
twisti@1861 1946 sll(index, Interpreter::logStackElementSize, index);
duke@435 1947 sub(Llocals, index, index);
twisti@1861 1948 ld_ptr(index, 0, dst);
duke@435 1949 // Note: index must hold the effective address--the iinc template uses it
duke@435 1950 }
duke@435 1951
duke@435 1952 // Just like access_local_ptr but the tag is a returnAddress
duke@435 1953 void InterpreterMacroAssembler::access_local_returnAddress(Register index,
duke@435 1954 Register dst ) {
duke@435 1955 assert_not_delayed();
twisti@1861 1956 sll(index, Interpreter::logStackElementSize, index);
duke@435 1957 sub(Llocals, index, index);
twisti@1861 1958 ld_ptr(index, 0, dst);
duke@435 1959 }
duke@435 1960
duke@435 1961 void InterpreterMacroAssembler::access_local_int( Register index, Register dst ) {
duke@435 1962 assert_not_delayed();
twisti@1861 1963 sll(index, Interpreter::logStackElementSize, index);
duke@435 1964 sub(Llocals, index, index);
twisti@1861 1965 ld(index, 0, dst);
duke@435 1966 // Note: index must hold the effective address--the iinc template uses it
duke@435 1967 }
duke@435 1968
duke@435 1969
duke@435 1970 void InterpreterMacroAssembler::access_local_long( Register index, Register dst ) {
duke@435 1971 assert_not_delayed();
twisti@1861 1972 sll(index, Interpreter::logStackElementSize, index);
duke@435 1973 sub(Llocals, index, index);
duke@435 1974 // First half stored at index n+1 (which grows down from Llocals[n])
duke@435 1975 load_unaligned_long(index, Interpreter::local_offset_in_bytes(1), dst);
duke@435 1976 }
duke@435 1977
duke@435 1978
duke@435 1979 void InterpreterMacroAssembler::access_local_float( Register index, FloatRegister dst ) {
duke@435 1980 assert_not_delayed();
twisti@1861 1981 sll(index, Interpreter::logStackElementSize, index);
duke@435 1982 sub(Llocals, index, index);
twisti@1861 1983 ldf(FloatRegisterImpl::S, index, 0, dst);
duke@435 1984 }
duke@435 1985
duke@435 1986
duke@435 1987 void InterpreterMacroAssembler::access_local_double( Register index, FloatRegister dst ) {
duke@435 1988 assert_not_delayed();
twisti@1861 1989 sll(index, Interpreter::logStackElementSize, index);
duke@435 1990 sub(Llocals, index, index);
duke@435 1991 load_unaligned_double(index, Interpreter::local_offset_in_bytes(1), dst);
duke@435 1992 }
duke@435 1993
duke@435 1994
duke@435 1995 #ifdef ASSERT
duke@435 1996 void InterpreterMacroAssembler::check_for_regarea_stomp(Register Rindex, int offset, Register Rlimit, Register Rscratch, Register Rscratch1) {
duke@435 1997 Label L;
duke@435 1998
duke@435 1999 assert(Rindex != Rscratch, "Registers cannot be same");
duke@435 2000 assert(Rindex != Rscratch1, "Registers cannot be same");
duke@435 2001 assert(Rlimit != Rscratch, "Registers cannot be same");
duke@435 2002 assert(Rlimit != Rscratch1, "Registers cannot be same");
duke@435 2003 assert(Rscratch1 != Rscratch, "Registers cannot be same");
duke@435 2004
duke@435 2005 // untested("reg area corruption");
duke@435 2006 add(Rindex, offset, Rscratch);
duke@435 2007 add(Rlimit, 64 + STACK_BIAS, Rscratch1);
kvn@3037 2008 cmp_and_brx_short(Rscratch, Rscratch1, Assembler::greaterEqualUnsigned, pn, L);
duke@435 2009 stop("regsave area is being clobbered");
duke@435 2010 bind(L);
duke@435 2011 }
duke@435 2012 #endif // ASSERT
duke@435 2013
duke@435 2014
duke@435 2015 void InterpreterMacroAssembler::store_local_int( Register index, Register src ) {
duke@435 2016 assert_not_delayed();
twisti@1861 2017 sll(index, Interpreter::logStackElementSize, index);
duke@435 2018 sub(Llocals, index, index);
twisti@1861 2019 debug_only(check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);)
twisti@1861 2020 st(src, index, 0);
duke@435 2021 }
duke@435 2022
twisti@1861 2023 void InterpreterMacroAssembler::store_local_ptr( Register index, Register src ) {
duke@435 2024 assert_not_delayed();
twisti@1861 2025 sll(index, Interpreter::logStackElementSize, index);
duke@435 2026 sub(Llocals, index, index);
twisti@1861 2027 #ifdef ASSERT
twisti@1861 2028 check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
twisti@1861 2029 #endif
twisti@1861 2030 st_ptr(src, index, 0);
duke@435 2031 }
duke@435 2032
duke@435 2033
duke@435 2034
twisti@1861 2035 void InterpreterMacroAssembler::store_local_ptr( int n, Register src ) {
twisti@1861 2036 st_ptr(src, Llocals, Interpreter::local_offset_in_bytes(n));
duke@435 2037 }
duke@435 2038
duke@435 2039 void InterpreterMacroAssembler::store_local_long( Register index, Register src ) {
duke@435 2040 assert_not_delayed();
twisti@1861 2041 sll(index, Interpreter::logStackElementSize, index);
duke@435 2042 sub(Llocals, index, index);
twisti@1861 2043 #ifdef ASSERT
duke@435 2044 check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
twisti@1861 2045 #endif
duke@435 2046 store_unaligned_long(src, index, Interpreter::local_offset_in_bytes(1)); // which is n+1
duke@435 2047 }
duke@435 2048
duke@435 2049
duke@435 2050 void InterpreterMacroAssembler::store_local_float( Register index, FloatRegister src ) {
duke@435 2051 assert_not_delayed();
twisti@1861 2052 sll(index, Interpreter::logStackElementSize, index);
duke@435 2053 sub(Llocals, index, index);
twisti@1861 2054 #ifdef ASSERT
twisti@1861 2055 check_for_regarea_stomp(index, 0, FP, G1_scratch, G4_scratch);
twisti@1861 2056 #endif
twisti@1861 2057 stf(FloatRegisterImpl::S, src, index, 0);
duke@435 2058 }
duke@435 2059
duke@435 2060
duke@435 2061 void InterpreterMacroAssembler::store_local_double( Register index, FloatRegister src ) {
duke@435 2062 assert_not_delayed();
twisti@1861 2063 sll(index, Interpreter::logStackElementSize, index);
duke@435 2064 sub(Llocals, index, index);
twisti@1861 2065 #ifdef ASSERT
duke@435 2066 check_for_regarea_stomp(index, Interpreter::local_offset_in_bytes(1), FP, G1_scratch, G4_scratch);
twisti@1861 2067 #endif
duke@435 2068 store_unaligned_double(src, index, Interpreter::local_offset_in_bytes(1));
duke@435 2069 }
duke@435 2070
duke@435 2071
duke@435 2072 int InterpreterMacroAssembler::top_most_monitor_byte_offset() {
duke@435 2073 const jint delta = frame::interpreter_frame_monitor_size() * wordSize;
duke@435 2074 int rounded_vm_local_words = ::round_to(frame::interpreter_frame_vm_local_words, WordsPerLong);
duke@435 2075 return ((-rounded_vm_local_words * wordSize) - delta ) + STACK_BIAS;
duke@435 2076 }
duke@435 2077
duke@435 2078
duke@435 2079 Address InterpreterMacroAssembler::top_most_monitor() {
twisti@1162 2080 return Address(FP, top_most_monitor_byte_offset());
duke@435 2081 }
duke@435 2082
duke@435 2083
duke@435 2084 void InterpreterMacroAssembler::compute_stack_base( Register Rdest ) {
duke@435 2085 add( Lesp, wordSize, Rdest );
duke@435 2086 }
duke@435 2087
duke@435 2088 #endif /* CC_INTERP */
duke@435 2089
jiangli@4936 2090 void InterpreterMacroAssembler::get_method_counters(Register method,
jiangli@4936 2091 Register Rcounters,
jiangli@4936 2092 Label& skip) {
jiangli@4936 2093 Label has_counters;
jiangli@4936 2094 Address method_counters(method, in_bytes(Method::method_counters_offset()));
jiangli@4936 2095 ld_ptr(method_counters, Rcounters);
jiangli@4936 2096 br_notnull_short(Rcounters, Assembler::pt, has_counters);
jiangli@4936 2097 call_VM(noreg, CAST_FROM_FN_PTR(address,
jiangli@4936 2098 InterpreterRuntime::build_method_counters), method);
jiangli@4936 2099 ld_ptr(method_counters, Rcounters);
jiangli@4970 2100 br_null(Rcounters, false, Assembler::pn, skip); // No MethodCounters, OutOfMemory
jiangli@4970 2101 delayed()->nop();
jiangli@4936 2102 bind(has_counters);
jiangli@4936 2103 }
jiangli@4936 2104
jiangli@4936 2105 void InterpreterMacroAssembler::increment_invocation_counter( Register Rcounters, Register Rtmp, Register Rtmp2 ) {
duke@435 2106 assert(UseCompiler, "incrementing must be useful");
jiangli@4936 2107 assert_different_registers(Rcounters, Rtmp, Rtmp2);
jiangli@4936 2108
jiangli@4936 2109 Address inv_counter(Rcounters, MethodCounters::invocation_counter_offset() +
twisti@1162 2110 InvocationCounter::counter_offset());
jiangli@4936 2111 Address be_counter (Rcounters, MethodCounters::backedge_counter_offset() +
twisti@1162 2112 InvocationCounter::counter_offset());
duke@435 2113 int delta = InvocationCounter::count_increment;
duke@435 2114
duke@435 2115 // Load each counter in a register
duke@435 2116 ld( inv_counter, Rtmp );
duke@435 2117 ld( be_counter, Rtmp2 );
duke@435 2118
duke@435 2119 assert( is_simm13( delta ), " delta too large.");
duke@435 2120
duke@435 2121 // Add the delta to the invocation counter and store the result
duke@435 2122 add( Rtmp, delta, Rtmp );
duke@435 2123
duke@435 2124 // Mask the backedge counter
duke@435 2125 and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
duke@435 2126
duke@435 2127 // Store value
duke@435 2128 st( Rtmp, inv_counter);
duke@435 2129
duke@435 2130 // Add invocation counter + backedge counter
duke@435 2131 add( Rtmp, Rtmp2, Rtmp);
duke@435 2132
duke@435 2133 // Note that this macro must leave the backedge_count + invocation_count in Rtmp!
duke@435 2134 }
duke@435 2135
jiangli@4936 2136 void InterpreterMacroAssembler::increment_backedge_counter( Register Rcounters, Register Rtmp, Register Rtmp2 ) {
duke@435 2137 assert(UseCompiler, "incrementing must be useful");
jiangli@4936 2138 assert_different_registers(Rcounters, Rtmp, Rtmp2);
jiangli@4936 2139
jiangli@4936 2140 Address be_counter (Rcounters, MethodCounters::backedge_counter_offset() +
twisti@1162 2141 InvocationCounter::counter_offset());
jiangli@4936 2142 Address inv_counter(Rcounters, MethodCounters::invocation_counter_offset() +
twisti@1162 2143 InvocationCounter::counter_offset());
jiangli@4936 2144
duke@435 2145 int delta = InvocationCounter::count_increment;
duke@435 2146 // Load each counter in a register
duke@435 2147 ld( be_counter, Rtmp );
duke@435 2148 ld( inv_counter, Rtmp2 );
duke@435 2149
duke@435 2150 // Add the delta to the backedge counter
duke@435 2151 add( Rtmp, delta, Rtmp );
duke@435 2152
duke@435 2153 // Mask the invocation counter, add to backedge counter
duke@435 2154 and3( Rtmp2, InvocationCounter::count_mask_value, Rtmp2 );
duke@435 2155
duke@435 2156 // and store the result to memory
duke@435 2157 st( Rtmp, be_counter );
duke@435 2158
duke@435 2159 // Add backedge + invocation counter
duke@435 2160 add( Rtmp, Rtmp2, Rtmp );
duke@435 2161
duke@435 2162 // Note that this macro must leave backedge_count + invocation_count in Rtmp!
duke@435 2163 }
duke@435 2164
duke@435 2165 #ifndef CC_INTERP
duke@435 2166 void InterpreterMacroAssembler::test_backedge_count_for_osr( Register backedge_count,
duke@435 2167 Register branch_bcp,
duke@435 2168 Register Rtmp ) {
duke@435 2169 Label did_not_overflow;
duke@435 2170 Label overflow_with_error;
duke@435 2171 assert_different_registers(backedge_count, Rtmp, branch_bcp);
duke@435 2172 assert(UseOnStackReplacement,"Must UseOnStackReplacement to test_backedge_count_for_osr");
duke@435 2173
twisti@1162 2174 AddressLiteral limit(&InvocationCounter::InterpreterBackwardBranchLimit);
duke@435 2175 load_contents(limit, Rtmp);
kvn@3037 2176 cmp_and_br_short(backedge_count, Rtmp, Assembler::lessUnsigned, Assembler::pt, did_not_overflow);
duke@435 2177
duke@435 2178 // When ProfileInterpreter is on, the backedge_count comes from the
coleenp@4037 2179 // MethodData*, which value does not get reset on the call to
duke@435 2180 // frequency_counter_overflow(). To avoid excessive calls to the overflow
duke@435 2181 // routine while the method is being compiled, add a second test to make sure
duke@435 2182 // the overflow function is called only once every overflow_frequency.
duke@435 2183 if (ProfileInterpreter) {
duke@435 2184 const int overflow_frequency = 1024;
duke@435 2185 andcc(backedge_count, overflow_frequency-1, Rtmp);
duke@435 2186 brx(Assembler::notZero, false, Assembler::pt, did_not_overflow);
duke@435 2187 delayed()->nop();
duke@435 2188 }
duke@435 2189
duke@435 2190 // overflow in loop, pass branch bytecode
duke@435 2191 set(6,Rtmp);
duke@435 2192 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), branch_bcp, Rtmp);
duke@435 2193
duke@435 2194 // Was an OSR adapter generated?
duke@435 2195 // O0 = osr nmethod
kvn@3037 2196 br_null_short(O0, Assembler::pn, overflow_with_error);
duke@435 2197
duke@435 2198 // Has the nmethod been invalidated already?
duke@435 2199 ld(O0, nmethod::entry_bci_offset(), O2);
kvn@3037 2200 cmp_and_br_short(O2, InvalidOSREntryBci, Assembler::equal, Assembler::pn, overflow_with_error);
duke@435 2201
duke@435 2202 // migrate the interpreter frame off of the stack
duke@435 2203
duke@435 2204 mov(G2_thread, L7);
duke@435 2205 // save nmethod
duke@435 2206 mov(O0, L6);
duke@435 2207 set_last_Java_frame(SP, noreg);
duke@435 2208 call_VM_leaf(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin), L7);
duke@435 2209 reset_last_Java_frame();
duke@435 2210 mov(L7, G2_thread);
duke@435 2211
duke@435 2212 // move OSR nmethod to I1
duke@435 2213 mov(L6, I1);
duke@435 2214
duke@435 2215 // OSR buffer to I0
duke@435 2216 mov(O0, I0);
duke@435 2217
duke@435 2218 // remove the interpreter frame
duke@435 2219 restore(I5_savedSP, 0, SP);
duke@435 2220
duke@435 2221 // Jump to the osr code.
duke@435 2222 ld_ptr(O1, nmethod::osr_entry_point_offset(), O2);
duke@435 2223 jmp(O2, G0);
duke@435 2224 delayed()->nop();
duke@435 2225
duke@435 2226 bind(overflow_with_error);
duke@435 2227
duke@435 2228 bind(did_not_overflow);
duke@435 2229 }
duke@435 2230
duke@435 2231
duke@435 2232
duke@435 2233 void InterpreterMacroAssembler::interp_verify_oop(Register reg, TosState state, const char * file, int line) {
duke@435 2234 if (state == atos) { MacroAssembler::_verify_oop(reg, "broken oop ", file, line); }
duke@435 2235 }
duke@435 2236
duke@435 2237
duke@435 2238 // local helper function for the verify_oop_or_return_address macro
coleenp@4037 2239 static bool verify_return_address(Method* m, int bci) {
duke@435 2240 #ifndef PRODUCT
duke@435 2241 address pc = (address)(m->constMethod())
coleenp@4037 2242 + in_bytes(ConstMethod::codes_offset()) + bci;
duke@435 2243 // assume it is a valid return address if it is inside m and is preceded by a jsr
duke@435 2244 if (!m->contains(pc)) return false;
duke@435 2245 address jsr_pc;
duke@435 2246 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr);
duke@435 2247 if (*jsr_pc == Bytecodes::_jsr && jsr_pc >= m->code_base()) return true;
duke@435 2248 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w);
duke@435 2249 if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base()) return true;
duke@435 2250 #endif // PRODUCT
duke@435 2251 return false;
duke@435 2252 }
duke@435 2253
duke@435 2254
duke@435 2255 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) {
duke@435 2256 if (!VerifyOops) return;
duke@435 2257 // the VM documentation for the astore[_wide] bytecode allows
duke@435 2258 // the TOS to be not only an oop but also a return address
duke@435 2259 Label test;
duke@435 2260 Label skip;
duke@435 2261 // See if it is an address (in the current method):
duke@435 2262
duke@435 2263 mov(reg, Rtmp);
duke@435 2264 const int log2_bytecode_size_limit = 16;
duke@435 2265 srl(Rtmp, log2_bytecode_size_limit, Rtmp);
kvn@3037 2266 br_notnull_short( Rtmp, pt, test );
duke@435 2267
duke@435 2268 // %%% should use call_VM_leaf here?
duke@435 2269 save_frame_and_mov(0, Lmethod, O0, reg, O1);
duke@435 2270 save_thread(L7_thread_cache);
duke@435 2271 call(CAST_FROM_FN_PTR(address,verify_return_address), relocInfo::none);
duke@435 2272 delayed()->nop();
duke@435 2273 restore_thread(L7_thread_cache);
duke@435 2274 br_notnull( O0, false, pt, skip );
duke@435 2275 delayed()->restore();
duke@435 2276
duke@435 2277 // Perform a more elaborate out-of-line call
duke@435 2278 // Not an address; verify it:
duke@435 2279 bind(test);
duke@435 2280 verify_oop(reg);
duke@435 2281 bind(skip);
duke@435 2282 }
duke@435 2283
duke@435 2284
duke@435 2285 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
duke@435 2286 if (state == ftos || state == dtos) MacroAssembler::verify_FPU(stack_depth);
duke@435 2287 }
duke@435 2288 #endif /* CC_INTERP */
duke@435 2289
duke@435 2290 // Inline assembly for:
duke@435 2291 //
duke@435 2292 // if (thread is in interp_only_mode) {
duke@435 2293 // InterpreterRuntime::post_method_entry();
duke@435 2294 // }
duke@435 2295 // if (DTraceMethodProbes) {
twisti@1040 2296 // SharedRuntime::dtrace_method_entry(method, receiver);
duke@435 2297 // }
dcubed@1045 2298 // if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
dcubed@1045 2299 // SharedRuntime::rc_trace_method_entry(method, receiver);
coleenp@857 2300 // }
duke@435 2301
duke@435 2302 void InterpreterMacroAssembler::notify_method_entry() {
duke@435 2303
duke@435 2304 // C++ interpreter only uses this for native methods.
duke@435 2305
duke@435 2306 // Whenever JVMTI puts a thread in interp_only_mode, method
duke@435 2307 // entry/exit events are sent for that thread to track stack
duke@435 2308 // depth. If it is possible to enter interp_only_mode we add
duke@435 2309 // the code to check if the event should be sent.
duke@435 2310 if (JvmtiExport::can_post_interpreter_events()) {
duke@435 2311 Label L;
duke@435 2312 Register temp_reg = O5;
twisti@1162 2313 const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
duke@435 2314 ld(interp_only, temp_reg);
kvn@3037 2315 cmp_and_br_short(temp_reg, 0, equal, pt, L);
duke@435 2316 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
duke@435 2317 bind(L);
duke@435 2318 }
duke@435 2319
duke@435 2320 {
duke@435 2321 Register temp_reg = O5;
duke@435 2322 SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
duke@435 2323 call_VM_leaf(noreg,
duke@435 2324 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
duke@435 2325 G2_thread, Lmethod);
duke@435 2326 }
dcubed@1045 2327
dcubed@1045 2328 // RedefineClasses() tracing support for obsolete method entry
dcubed@1045 2329 if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
dcubed@1045 2330 call_VM_leaf(noreg,
dcubed@1045 2331 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
dcubed@1045 2332 G2_thread, Lmethod);
dcubed@1045 2333 }
duke@435 2334 }
duke@435 2335
duke@435 2336
duke@435 2337 // Inline assembly for:
duke@435 2338 //
duke@435 2339 // if (thread is in interp_only_mode) {
duke@435 2340 // // save result
duke@435 2341 // InterpreterRuntime::post_method_exit();
duke@435 2342 // // restore result
duke@435 2343 // }
duke@435 2344 // if (DTraceMethodProbes) {
duke@435 2345 // SharedRuntime::dtrace_method_exit(thread, method);
duke@435 2346 // }
duke@435 2347 //
duke@435 2348 // Native methods have their result stored in d_tmp and l_tmp
duke@435 2349 // Java methods have their result stored in the expression stack
duke@435 2350
duke@435 2351 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method,
duke@435 2352 TosState state,
duke@435 2353 NotifyMethodExitMode mode) {
duke@435 2354 // C++ interpreter only uses this for native methods.
duke@435 2355
duke@435 2356 // Whenever JVMTI puts a thread in interp_only_mode, method
duke@435 2357 // entry/exit events are sent for that thread to track stack
duke@435 2358 // depth. If it is possible to enter interp_only_mode we add
duke@435 2359 // the code to check if the event should be sent.
duke@435 2360 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
duke@435 2361 Label L;
duke@435 2362 Register temp_reg = O5;
twisti@1162 2363 const Address interp_only(G2_thread, JavaThread::interp_only_mode_offset());
duke@435 2364 ld(interp_only, temp_reg);
kvn@3037 2365 cmp_and_br_short(temp_reg, 0, equal, pt, L);
duke@435 2366
duke@435 2367 // Note: frame::interpreter_frame_result has a dependency on how the
duke@435 2368 // method result is saved across the call to post_method_exit. For
duke@435 2369 // native methods it assumes the result registers are saved to
duke@435 2370 // l_scratch and d_scratch. If this changes then the interpreter_frame_result
duke@435 2371 // implementation will need to be updated too.
duke@435 2372
duke@435 2373 save_return_value(state, is_native_method);
duke@435 2374 call_VM(noreg,
duke@435 2375 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
duke@435 2376 restore_return_value(state, is_native_method);
duke@435 2377 bind(L);
duke@435 2378 }
duke@435 2379
duke@435 2380 {
duke@435 2381 Register temp_reg = O5;
duke@435 2382 // Dtrace notification
duke@435 2383 SkipIfEqual skip_if(this, temp_reg, &DTraceMethodProbes, zero);
duke@435 2384 save_return_value(state, is_native_method);
duke@435 2385 call_VM_leaf(
duke@435 2386 noreg,
duke@435 2387 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
duke@435 2388 G2_thread, Lmethod);
duke@435 2389 restore_return_value(state, is_native_method);
duke@435 2390 }
duke@435 2391 }
duke@435 2392
duke@435 2393 void InterpreterMacroAssembler::save_return_value(TosState state, bool is_native_call) {
duke@435 2394 #ifdef CC_INTERP
duke@435 2395 // result potentially in O0/O1: save it across calls
duke@435 2396 stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
duke@435 2397 #ifdef _LP64
duke@435 2398 stx(O0, STATE(_native_lresult));
duke@435 2399 #else
duke@435 2400 std(O0, STATE(_native_lresult));
duke@435 2401 #endif
duke@435 2402 #else // CC_INTERP
duke@435 2403 if (is_native_call) {
duke@435 2404 stf(FloatRegisterImpl::D, F0, d_tmp);
duke@435 2405 #ifdef _LP64
duke@435 2406 stx(O0, l_tmp);
duke@435 2407 #else
duke@435 2408 std(O0, l_tmp);
duke@435 2409 #endif
duke@435 2410 } else {
duke@435 2411 push(state);
duke@435 2412 }
duke@435 2413 #endif // CC_INTERP
duke@435 2414 }
duke@435 2415
duke@435 2416 void InterpreterMacroAssembler::restore_return_value( TosState state, bool is_native_call) {
duke@435 2417 #ifdef CC_INTERP
duke@435 2418 ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
duke@435 2419 #ifdef _LP64
duke@435 2420 ldx(STATE(_native_lresult), O0);
duke@435 2421 #else
duke@435 2422 ldd(STATE(_native_lresult), O0);
duke@435 2423 #endif
duke@435 2424 #else // CC_INTERP
duke@435 2425 if (is_native_call) {
duke@435 2426 ldf(FloatRegisterImpl::D, d_tmp, F0);
duke@435 2427 #ifdef _LP64
duke@435 2428 ldx(l_tmp, O0);
duke@435 2429 #else
duke@435 2430 ldd(l_tmp, O0);
duke@435 2431 #endif
duke@435 2432 } else {
duke@435 2433 pop(state);
duke@435 2434 }
duke@435 2435 #endif // CC_INTERP
duke@435 2436 }
iveresov@2138 2437
iveresov@2138 2438 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
iveresov@2138 2439 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
iveresov@2138 2440 int increment, int mask,
iveresov@2138 2441 Register scratch1, Register scratch2,
iveresov@2138 2442 Condition cond, Label *where) {
iveresov@2138 2443 ld(counter_addr, scratch1);
iveresov@2138 2444 add(scratch1, increment, scratch1);
iveresov@2138 2445 if (is_simm13(mask)) {
iveresov@2138 2446 andcc(scratch1, mask, G0);
iveresov@2138 2447 } else {
iveresov@2138 2448 set(mask, scratch2);
iveresov@2138 2449 andcc(scratch1, scratch2, G0);
iveresov@2138 2450 }
iveresov@2138 2451 br(cond, false, Assembler::pn, *where);
iveresov@2138 2452 delayed()->st(scratch1, counter_addr);
iveresov@2138 2453 }

mercurial