src/share/vm/opto/escape.cpp

Fri, 11 Jul 2014 19:51:36 -0400

author
drchase
date
Fri, 11 Jul 2014 19:51:36 -0400
changeset 7161
fc2c88ea11a9
parent 7027
b20a35eae442
child 7152
166d744df0de
permissions
-rw-r--r--

8036588: VerifyFieldClosure fails instanceKlass:3133
Summary: Changed deopt live-pointer test to use returns-object instead of live-and-returns-object
Reviewed-by: iveresov, kvn, jrose

duke@435 1 /*
kvn@7027 2 * Copyright (c) 2005, 2014, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "ci/bcEscapeAnalyzer.hpp"
kvn@3651 27 #include "compiler/compileLog.hpp"
stefank@2314 28 #include "libadt/vectset.hpp"
stefank@2314 29 #include "memory/allocation.hpp"
stefank@2314 30 #include "opto/c2compiler.hpp"
stefank@2314 31 #include "opto/callnode.hpp"
stefank@2314 32 #include "opto/cfgnode.hpp"
stefank@2314 33 #include "opto/compile.hpp"
stefank@2314 34 #include "opto/escape.hpp"
stefank@2314 35 #include "opto/phaseX.hpp"
stefank@2314 36 #include "opto/rootnode.hpp"
duke@435 37
kvn@1989 38 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
kvn@3651 39 _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
kvn@679 40 _collecting(true),
kvn@3651 41 _verify(false),
kvn@679 42 _compile(C),
kvn@1989 43 _igvn(igvn),
kvn@679 44 _node_map(C->comp_arena()) {
kvn@3651 45 // Add unknown java object.
kvn@3651 46 add_java_object(C->top(), PointsToNode::GlobalEscape);
kvn@3651 47 phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
kvn@688 48 // Add ConP(#NULL) and ConN(#NULL) nodes.
kvn@688 49 Node* oop_null = igvn->zerocon(T_OBJECT);
kvn@3651 50 assert(oop_null->_idx < nodes_size(), "should be created already");
kvn@3651 51 add_java_object(oop_null, PointsToNode::NoEscape);
kvn@3651 52 null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
kvn@688 53 if (UseCompressedOops) {
kvn@688 54 Node* noop_null = igvn->zerocon(T_NARROWOOP);
kvn@3651 55 assert(noop_null->_idx < nodes_size(), "should be created already");
kvn@3651 56 map_ideal_node(noop_null, null_obj);
kvn@688 57 }
kvn@3309 58 _pcmp_neq = NULL; // Should be initialized
kvn@3309 59 _pcmp_eq = NULL;
duke@435 60 }
duke@435 61
kvn@3651 62 bool ConnectionGraph::has_candidates(Compile *C) {
kvn@3651 63 // EA brings benefits only when the code has allocations and/or locks which
kvn@3651 64 // are represented by ideal Macro nodes.
kvn@3651 65 int cnt = C->macro_count();
kvn@5110 66 for (int i = 0; i < cnt; i++) {
kvn@3651 67 Node *n = C->macro_node(i);
kvn@5110 68 if (n->is_Allocate())
kvn@3651 69 return true;
kvn@5110 70 if (n->is_Lock()) {
kvn@3651 71 Node* obj = n->as_Lock()->obj_node()->uncast();
kvn@5110 72 if (!(obj->is_Parm() || obj->is_Con()))
kvn@3651 73 return true;
kvn@3318 74 }
kvn@5110 75 if (n->is_CallStaticJava() &&
kvn@5110 76 n->as_CallStaticJava()->is_boxing_method()) {
kvn@5110 77 return true;
kvn@5110 78 }
kvn@3318 79 }
kvn@3651 80 return false;
duke@435 81 }
duke@435 82
kvn@3651 83 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
kvn@3651 84 Compile::TracePhase t2("escapeAnalysis", &Phase::_t_escapeAnalysis, true);
kvn@3651 85 ResourceMark rm;
duke@435 86
kvn@3651 87 // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
kvn@3651 88 // to create space for them in ConnectionGraph::_nodes[].
kvn@3651 89 Node* oop_null = igvn->zerocon(T_OBJECT);
kvn@3651 90 Node* noop_null = igvn->zerocon(T_NARROWOOP);
kvn@3651 91 ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
kvn@3651 92 // Perform escape analysis
kvn@3651 93 if (congraph->compute_escape()) {
kvn@3651 94 // There are non escaping objects.
kvn@3651 95 C->set_congraph(congraph);
kvn@3651 96 }
kvn@3651 97 // Cleanup.
kvn@3651 98 if (oop_null->outcnt() == 0)
kvn@3651 99 igvn->hash_delete(oop_null);
kvn@3651 100 if (noop_null->outcnt() == 0)
kvn@3651 101 igvn->hash_delete(noop_null);
duke@435 102 }
duke@435 103
kvn@3651 104 bool ConnectionGraph::compute_escape() {
kvn@3651 105 Compile* C = _compile;
kvn@3651 106 PhaseGVN* igvn = _igvn;
kvn@3651 107
kvn@3651 108 // Worklists used by EA.
kvn@3651 109 Unique_Node_List delayed_worklist;
kvn@3651 110 GrowableArray<Node*> alloc_worklist;
kvn@3651 111 GrowableArray<Node*> ptr_cmp_worklist;
kvn@3651 112 GrowableArray<Node*> storestore_worklist;
kvn@3651 113 GrowableArray<PointsToNode*> ptnodes_worklist;
kvn@3651 114 GrowableArray<JavaObjectNode*> java_objects_worklist;
kvn@3651 115 GrowableArray<JavaObjectNode*> non_escaped_worklist;
kvn@3651 116 GrowableArray<FieldNode*> oop_fields_worklist;
kvn@3651 117 DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
kvn@3651 118
kvn@3651 119 { Compile::TracePhase t3("connectionGraph", &Phase::_t_connectionGraph, true);
kvn@3651 120
kvn@3651 121 // 1. Populate Connection Graph (CG) with PointsTo nodes.
kvn@5110 122 ideal_nodes.map(C->live_nodes(), NULL); // preallocate space
kvn@3651 123 // Initialize worklist
kvn@3651 124 if (C->root() != NULL) {
kvn@3651 125 ideal_nodes.push(C->root());
kvn@3651 126 }
kvn@3651 127 for( uint next = 0; next < ideal_nodes.size(); ++next ) {
kvn@3651 128 Node* n = ideal_nodes.at(next);
kvn@3651 129 // Create PointsTo nodes and add them to Connection Graph. Called
kvn@3651 130 // only once per ideal node since ideal_nodes is Unique_Node list.
kvn@3651 131 add_node_to_connection_graph(n, &delayed_worklist);
kvn@3651 132 PointsToNode* ptn = ptnode_adr(n->_idx);
kvn@3651 133 if (ptn != NULL) {
kvn@3651 134 ptnodes_worklist.append(ptn);
kvn@3651 135 if (ptn->is_JavaObject()) {
kvn@3651 136 java_objects_worklist.append(ptn->as_JavaObject());
kvn@3651 137 if ((n->is_Allocate() || n->is_CallStaticJava()) &&
kvn@3651 138 (ptn->escape_state() < PointsToNode::GlobalEscape)) {
kvn@3651 139 // Only allocations and java static calls results are interesting.
kvn@3651 140 non_escaped_worklist.append(ptn->as_JavaObject());
kvn@3651 141 }
kvn@3651 142 } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
kvn@3651 143 oop_fields_worklist.append(ptn->as_Field());
kvn@3651 144 }
kvn@3651 145 }
kvn@3651 146 if (n->is_MergeMem()) {
kvn@3651 147 // Collect all MergeMem nodes to add memory slices for
kvn@3651 148 // scalar replaceable objects in split_unique_types().
kvn@3651 149 _mergemem_worklist.append(n->as_MergeMem());
kvn@3651 150 } else if (OptimizePtrCompare && n->is_Cmp() &&
kvn@3651 151 (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
kvn@3651 152 // Collect compare pointers nodes.
kvn@3651 153 ptr_cmp_worklist.append(n);
kvn@3651 154 } else if (n->is_MemBarStoreStore()) {
kvn@3651 155 // Collect all MemBarStoreStore nodes so that depending on the
kvn@3651 156 // escape status of the associated Allocate node some of them
kvn@3651 157 // may be eliminated.
kvn@3651 158 storestore_worklist.append(n);
kvn@5110 159 } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
kvn@5110 160 (n->req() > MemBarNode::Precedent)) {
kvn@5110 161 record_for_optimizer(n);
kvn@3651 162 #ifdef ASSERT
kvn@5110 163 } else if (n->is_AddP()) {
kvn@3651 164 // Collect address nodes for graph verification.
kvn@3651 165 addp_worklist.append(n);
kvn@3651 166 #endif
kvn@3651 167 }
kvn@3651 168 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@3651 169 Node* m = n->fast_out(i); // Get user
kvn@3651 170 ideal_nodes.push(m);
kvn@3651 171 }
kvn@3651 172 }
kvn@3651 173 if (non_escaped_worklist.length() == 0) {
kvn@3651 174 _collecting = false;
kvn@3651 175 return false; // Nothing to do.
kvn@3651 176 }
kvn@3651 177 // Add final simple edges to graph.
kvn@3651 178 while(delayed_worklist.size() > 0) {
kvn@3651 179 Node* n = delayed_worklist.pop();
kvn@3651 180 add_final_edges(n);
kvn@3651 181 }
kvn@3651 182 int ptnodes_length = ptnodes_worklist.length();
kvn@3651 183
kvn@3651 184 #ifdef ASSERT
kvn@3651 185 if (VerifyConnectionGraph) {
kvn@3651 186 // Verify that no new simple edges could be created and all
kvn@3651 187 // local vars has edges.
kvn@3651 188 _verify = true;
kvn@3651 189 for (int next = 0; next < ptnodes_length; ++next) {
kvn@3651 190 PointsToNode* ptn = ptnodes_worklist.at(next);
kvn@3651 191 add_final_edges(ptn->ideal_node());
kvn@3651 192 if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
kvn@3651 193 ptn->dump();
kvn@3651 194 assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
kvn@3651 195 }
kvn@3651 196 }
kvn@3651 197 _verify = false;
kvn@3651 198 }
kvn@3651 199 #endif
kvn@3651 200
kvn@3651 201 // 2. Finish Graph construction by propagating references to all
kvn@3651 202 // java objects through graph.
kvn@3651 203 if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
kvn@3651 204 java_objects_worklist, oop_fields_worklist)) {
kvn@3651 205 // All objects escaped or hit time or iterations limits.
kvn@3651 206 _collecting = false;
kvn@3651 207 return false;
kvn@3651 208 }
kvn@3651 209
kvn@3651 210 // 3. Adjust scalar_replaceable state of nonescaping objects and push
kvn@3651 211 // scalar replaceable allocations on alloc_worklist for processing
kvn@3651 212 // in split_unique_types().
kvn@3651 213 int non_escaped_length = non_escaped_worklist.length();
kvn@3651 214 for (int next = 0; next < non_escaped_length; next++) {
kvn@3651 215 JavaObjectNode* ptn = non_escaped_worklist.at(next);
kvn@5110 216 bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
kvn@5110 217 Node* n = ptn->ideal_node();
kvn@5110 218 if (n->is_Allocate()) {
kvn@5110 219 n->as_Allocate()->_is_non_escaping = noescape;
kvn@5110 220 }
kvn@5110 221 if (n->is_CallStaticJava()) {
kvn@5110 222 n->as_CallStaticJava()->_is_non_escaping = noescape;
kvn@5110 223 }
kvn@5110 224 if (noescape && ptn->scalar_replaceable()) {
kvn@3651 225 adjust_scalar_replaceable_state(ptn);
kvn@3651 226 if (ptn->scalar_replaceable()) {
kvn@3651 227 alloc_worklist.append(ptn->ideal_node());
kvn@3651 228 }
kvn@3651 229 }
kvn@3651 230 }
kvn@3651 231
kvn@3651 232 #ifdef ASSERT
kvn@3651 233 if (VerifyConnectionGraph) {
kvn@3651 234 // Verify that graph is complete - no new edges could be added or needed.
kvn@3651 235 verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
kvn@3651 236 java_objects_worklist, addp_worklist);
kvn@3651 237 }
kvn@3651 238 assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
kvn@3651 239 assert(null_obj->escape_state() == PointsToNode::NoEscape &&
kvn@3651 240 null_obj->edge_count() == 0 &&
kvn@3651 241 !null_obj->arraycopy_src() &&
kvn@3651 242 !null_obj->arraycopy_dst(), "sanity");
kvn@3651 243 #endif
kvn@3651 244
kvn@3651 245 _collecting = false;
kvn@3651 246
kvn@3651 247 } // TracePhase t3("connectionGraph")
kvn@3651 248
kvn@3651 249 // 4. Optimize ideal graph based on EA information.
kvn@3651 250 bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
kvn@3651 251 if (has_non_escaping_obj) {
kvn@3651 252 optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
kvn@3651 253 }
kvn@3651 254
kvn@3651 255 #ifndef PRODUCT
kvn@3651 256 if (PrintEscapeAnalysis) {
kvn@3651 257 dump(ptnodes_worklist); // Dump ConnectionGraph
kvn@3651 258 }
kvn@3651 259 #endif
kvn@3651 260
kvn@3651 261 bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
kvn@3651 262 #ifdef ASSERT
kvn@3651 263 if (VerifyConnectionGraph) {
kvn@3651 264 int alloc_length = alloc_worklist.length();
kvn@3651 265 for (int next = 0; next < alloc_length; ++next) {
kvn@3651 266 Node* n = alloc_worklist.at(next);
kvn@3651 267 PointsToNode* ptn = ptnode_adr(n->_idx);
kvn@3651 268 assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
kvn@3651 269 }
kvn@3651 270 }
kvn@3651 271 #endif
kvn@3651 272
kvn@3651 273 // 5. Separate memory graph for scalar replaceable allcations.
kvn@3651 274 if (has_scalar_replaceable_candidates &&
kvn@3651 275 C->AliasLevel() >= 3 && EliminateAllocations) {
kvn@3651 276 // Now use the escape information to create unique types for
kvn@3651 277 // scalar replaceable objects.
kvn@3651 278 split_unique_types(alloc_worklist);
kvn@3651 279 if (C->failing()) return false;
sla@5237 280 C->print_method(PHASE_AFTER_EA, 2);
kvn@3651 281
kvn@3651 282 #ifdef ASSERT
kvn@3651 283 } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
kvn@3651 284 tty->print("=== No allocations eliminated for ");
kvn@3651 285 C->method()->print_short_name();
kvn@3651 286 if(!EliminateAllocations) {
kvn@3651 287 tty->print(" since EliminateAllocations is off ===");
kvn@3651 288 } else if(!has_scalar_replaceable_candidates) {
kvn@3651 289 tty->print(" since there are no scalar replaceable candidates ===");
kvn@3651 290 } else if(C->AliasLevel() < 3) {
kvn@3651 291 tty->print(" since AliasLevel < 3 ===");
kvn@3651 292 }
kvn@3651 293 tty->cr();
kvn@3651 294 #endif
kvn@3651 295 }
kvn@3651 296 return has_non_escaping_obj;
kvn@3651 297 }
kvn@3651 298
roland@4106 299 // Utility function for nodes that load an object
roland@4106 300 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
roland@4106 301 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
roland@4106 302 // ThreadLocal has RawPtr type.
roland@4106 303 const Type* t = _igvn->type(n);
roland@4106 304 if (t->make_ptr() != NULL) {
roland@4106 305 Node* adr = n->in(MemNode::Address);
roland@4106 306 #ifdef ASSERT
roland@4106 307 if (!adr->is_AddP()) {
roland@4106 308 assert(_igvn->type(adr)->isa_rawptr(), "sanity");
roland@4106 309 } else {
roland@4106 310 assert((ptnode_adr(adr->_idx) == NULL ||
roland@4106 311 ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
roland@4106 312 }
roland@4106 313 #endif
roland@4106 314 add_local_var_and_edge(n, PointsToNode::NoEscape,
roland@4106 315 adr, delayed_worklist);
roland@4106 316 }
roland@4106 317 }
roland@4106 318
kvn@3651 319 // Populate Connection Graph with PointsTo nodes and create simple
kvn@3651 320 // connection graph edges.
kvn@3651 321 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
kvn@3651 322 assert(!_verify, "this method sould not be called for verification");
kvn@3651 323 PhaseGVN* igvn = _igvn;
kvn@3651 324 uint n_idx = n->_idx;
kvn@3651 325 PointsToNode* n_ptn = ptnode_adr(n_idx);
kvn@3651 326 if (n_ptn != NULL)
kvn@3651 327 return; // No need to redefine PointsTo node during first iteration.
kvn@3651 328
kvn@3651 329 if (n->is_Call()) {
kvn@3651 330 // Arguments to allocation and locking don't escape.
kvn@3651 331 if (n->is_AbstractLock()) {
kvn@3651 332 // Put Lock and Unlock nodes on IGVN worklist to process them during
kvn@3651 333 // first IGVN optimization when escape information is still available.
kvn@3651 334 record_for_optimizer(n);
kvn@3651 335 } else if (n->is_Allocate()) {
kvn@3651 336 add_call_node(n->as_Call());
kvn@3651 337 record_for_optimizer(n);
kvn@3651 338 } else {
kvn@3651 339 if (n->is_CallStaticJava()) {
kvn@3651 340 const char* name = n->as_CallStaticJava()->_name;
kvn@3651 341 if (name != NULL && strcmp(name, "uncommon_trap") == 0)
kvn@3651 342 return; // Skip uncommon traps
kvn@3651 343 }
kvn@3651 344 // Don't mark as processed since call's arguments have to be processed.
kvn@3651 345 delayed_worklist->push(n);
kvn@3651 346 // Check if a call returns an object.
kvn@5110 347 if ((n->as_Call()->returns_pointer() &&
kvn@5110 348 n->as_Call()->proj_out(TypeFunc::Parms) != NULL) ||
kvn@5110 349 (n->is_CallStaticJava() &&
kvn@5110 350 n->as_CallStaticJava()->is_boxing_method())) {
kvn@3651 351 add_call_node(n->as_Call());
kvn@3651 352 }
kvn@3651 353 }
kvn@3651 354 return;
kvn@3651 355 }
kvn@3651 356 // Put this check here to process call arguments since some call nodes
kvn@3651 357 // point to phantom_obj.
kvn@3651 358 if (n_ptn == phantom_obj || n_ptn == null_obj)
kvn@3651 359 return; // Skip predefined nodes.
kvn@3651 360
kvn@3651 361 int opcode = n->Opcode();
kvn@3651 362 switch (opcode) {
kvn@3651 363 case Op_AddP: {
kvn@3651 364 Node* base = get_addp_base(n);
kvn@3651 365 PointsToNode* ptn_base = ptnode_adr(base->_idx);
kvn@3651 366 // Field nodes are created for all field types. They are used in
kvn@3651 367 // adjust_scalar_replaceable_state() and split_unique_types().
kvn@3651 368 // Note, non-oop fields will have only base edges in Connection
kvn@3651 369 // Graph because such fields are not used for oop loads and stores.
kvn@3651 370 int offset = address_offset(n, igvn);
kvn@3651 371 add_field(n, PointsToNode::NoEscape, offset);
kvn@3651 372 if (ptn_base == NULL) {
kvn@3651 373 delayed_worklist->push(n); // Process it later.
kvn@3651 374 } else {
kvn@3651 375 n_ptn = ptnode_adr(n_idx);
kvn@3651 376 add_base(n_ptn->as_Field(), ptn_base);
kvn@3651 377 }
kvn@3651 378 break;
kvn@3651 379 }
kvn@3651 380 case Op_CastX2P: {
kvn@3651 381 map_ideal_node(n, phantom_obj);
kvn@3651 382 break;
kvn@3651 383 }
kvn@3651 384 case Op_CastPP:
kvn@3651 385 case Op_CheckCastPP:
kvn@3651 386 case Op_EncodeP:
roland@4159 387 case Op_DecodeN:
roland@4159 388 case Op_EncodePKlass:
roland@4159 389 case Op_DecodeNKlass: {
kvn@3651 390 add_local_var_and_edge(n, PointsToNode::NoEscape,
kvn@3651 391 n->in(1), delayed_worklist);
kvn@3651 392 break;
kvn@3651 393 }
kvn@3651 394 case Op_CMoveP: {
kvn@3651 395 add_local_var(n, PointsToNode::NoEscape);
kvn@3651 396 // Do not add edges during first iteration because some could be
kvn@3651 397 // not defined yet.
kvn@3651 398 delayed_worklist->push(n);
kvn@3651 399 break;
kvn@3651 400 }
kvn@3651 401 case Op_ConP:
roland@4159 402 case Op_ConN:
roland@4159 403 case Op_ConNKlass: {
kvn@3651 404 // assume all oop constants globally escape except for null
kvn@3651 405 PointsToNode::EscapeState es;
kvn@5110 406 const Type* t = igvn->type(n);
kvn@5110 407 if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
kvn@3651 408 es = PointsToNode::NoEscape;
kvn@3651 409 } else {
kvn@3651 410 es = PointsToNode::GlobalEscape;
kvn@3651 411 }
kvn@3651 412 add_java_object(n, es);
kvn@3651 413 break;
kvn@3651 414 }
kvn@3651 415 case Op_CreateEx: {
kvn@3651 416 // assume that all exception objects globally escape
kvn@3651 417 add_java_object(n, PointsToNode::GlobalEscape);
kvn@3651 418 break;
kvn@3651 419 }
kvn@3651 420 case Op_LoadKlass:
kvn@3651 421 case Op_LoadNKlass: {
kvn@3651 422 // Unknown class is loaded
kvn@3651 423 map_ideal_node(n, phantom_obj);
kvn@3651 424 break;
kvn@3651 425 }
kvn@3651 426 case Op_LoadP:
kvn@3651 427 case Op_LoadN:
kvn@3651 428 case Op_LoadPLocked: {
roland@4106 429 add_objload_to_connection_graph(n, delayed_worklist);
kvn@3651 430 break;
kvn@3651 431 }
kvn@3651 432 case Op_Parm: {
kvn@3651 433 map_ideal_node(n, phantom_obj);
kvn@3651 434 break;
kvn@3651 435 }
kvn@3651 436 case Op_PartialSubtypeCheck: {
kvn@3651 437 // Produces Null or notNull and is used in only in CmpP so
kvn@3651 438 // phantom_obj could be used.
kvn@3651 439 map_ideal_node(n, phantom_obj); // Result is unknown
kvn@3651 440 break;
kvn@3651 441 }
kvn@3651 442 case Op_Phi: {
kvn@3651 443 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
roland@4106 444 // ThreadLocal has RawPtr type.
kvn@3651 445 const Type* t = n->as_Phi()->type();
kvn@3651 446 if (t->make_ptr() != NULL) {
kvn@3651 447 add_local_var(n, PointsToNode::NoEscape);
kvn@3651 448 // Do not add edges during first iteration because some could be
kvn@3651 449 // not defined yet.
kvn@3651 450 delayed_worklist->push(n);
kvn@3651 451 }
kvn@3651 452 break;
kvn@3651 453 }
kvn@3651 454 case Op_Proj: {
kvn@3651 455 // we are only interested in the oop result projection from a call
kvn@3651 456 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
kvn@3651 457 n->in(0)->as_Call()->returns_pointer()) {
kvn@3651 458 add_local_var_and_edge(n, PointsToNode::NoEscape,
kvn@3651 459 n->in(0), delayed_worklist);
kvn@3651 460 }
kvn@3651 461 break;
kvn@3651 462 }
kvn@3651 463 case Op_Rethrow: // Exception object escapes
kvn@3651 464 case Op_Return: {
kvn@3651 465 if (n->req() > TypeFunc::Parms &&
kvn@3651 466 igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
kvn@3651 467 // Treat Return value as LocalVar with GlobalEscape escape state.
kvn@3651 468 add_local_var_and_edge(n, PointsToNode::GlobalEscape,
kvn@3651 469 n->in(TypeFunc::Parms), delayed_worklist);
kvn@3651 470 }
kvn@3651 471 break;
kvn@3651 472 }
roland@4106 473 case Op_GetAndSetP:
roland@4106 474 case Op_GetAndSetN: {
roland@4106 475 add_objload_to_connection_graph(n, delayed_worklist);
roland@4106 476 // fallthrough
roland@4106 477 }
kvn@3651 478 case Op_StoreP:
kvn@3651 479 case Op_StoreN:
roland@4159 480 case Op_StoreNKlass:
kvn@3651 481 case Op_StorePConditional:
kvn@3651 482 case Op_CompareAndSwapP:
kvn@3651 483 case Op_CompareAndSwapN: {
kvn@3651 484 Node* adr = n->in(MemNode::Address);
kvn@3651 485 const Type *adr_type = igvn->type(adr);
kvn@3651 486 adr_type = adr_type->make_ptr();
kvn@5111 487 if (adr_type == NULL) {
kvn@5111 488 break; // skip dead nodes
kvn@5111 489 }
kvn@3651 490 if (adr_type->isa_oopptr() ||
roland@4159 491 (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
kvn@3651 492 (adr_type == TypeRawPtr::NOTNULL &&
kvn@3651 493 adr->in(AddPNode::Address)->is_Proj() &&
kvn@3651 494 adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
kvn@3651 495 delayed_worklist->push(n); // Process it later.
kvn@3651 496 #ifdef ASSERT
kvn@3651 497 assert(adr->is_AddP(), "expecting an AddP");
kvn@3651 498 if (adr_type == TypeRawPtr::NOTNULL) {
kvn@3651 499 // Verify a raw address for a store captured by Initialize node.
kvn@3651 500 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@3651 501 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@3651 502 }
kvn@3657 503 #endif
kvn@3651 504 } else {
kvn@3651 505 // Ignore copy the displaced header to the BoxNode (OSR compilation).
kvn@3651 506 if (adr->is_BoxLock())
kvn@3651 507 break;
kvn@3657 508 // Stored value escapes in unsafe access.
kvn@3657 509 if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
kvn@3657 510 // Pointer stores in G1 barriers looks like unsafe access.
kvn@3657 511 // Ignore such stores to be able scalar replace non-escaping
kvn@3657 512 // allocations.
kvn@3657 513 if (UseG1GC && adr->is_AddP()) {
kvn@3657 514 Node* base = get_addp_base(adr);
kvn@3657 515 if (base->Opcode() == Op_LoadP &&
kvn@3657 516 base->in(MemNode::Address)->is_AddP()) {
kvn@3657 517 adr = base->in(MemNode::Address);
kvn@3657 518 Node* tls = get_addp_base(adr);
kvn@3657 519 if (tls->Opcode() == Op_ThreadLocal) {
kvn@3657 520 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@3657 521 if (offs == in_bytes(JavaThread::satb_mark_queue_offset() +
kvn@3657 522 PtrQueue::byte_offset_of_buf())) {
kvn@3657 523 break; // G1 pre barier previous oop value store.
kvn@3657 524 }
kvn@3657 525 if (offs == in_bytes(JavaThread::dirty_card_queue_offset() +
kvn@3657 526 PtrQueue::byte_offset_of_buf())) {
kvn@3657 527 break; // G1 post barier card address store.
kvn@3657 528 }
kvn@3657 529 }
kvn@3657 530 }
kvn@3657 531 }
kvn@3657 532 delayed_worklist->push(n); // Process unsafe access later.
kvn@3657 533 break;
kvn@3651 534 }
kvn@3657 535 #ifdef ASSERT
kvn@3657 536 n->dump(1);
kvn@3657 537 assert(false, "not unsafe or G1 barrier raw StoreP");
kvn@3651 538 #endif
kvn@3651 539 }
kvn@3651 540 break;
kvn@3651 541 }
kvn@3651 542 case Op_AryEq:
kvn@3651 543 case Op_StrComp:
kvn@3651 544 case Op_StrEquals:
kvn@4479 545 case Op_StrIndexOf:
kvn@4479 546 case Op_EncodeISOArray: {
kvn@3651 547 add_local_var(n, PointsToNode::ArgEscape);
kvn@3651 548 delayed_worklist->push(n); // Process it later.
kvn@3651 549 break;
kvn@3651 550 }
kvn@3651 551 case Op_ThreadLocal: {
kvn@3651 552 add_java_object(n, PointsToNode::ArgEscape);
kvn@3651 553 break;
kvn@3651 554 }
kvn@3651 555 default:
kvn@3651 556 ; // Do nothing for nodes not related to EA.
kvn@3651 557 }
kvn@3651 558 return;
kvn@3651 559 }
kvn@3651 560
kvn@3651 561 #ifdef ASSERT
kvn@3651 562 #define ELSE_FAIL(name) \
kvn@3651 563 /* Should not be called for not pointer type. */ \
kvn@3651 564 n->dump(1); \
kvn@3651 565 assert(false, name); \
kvn@3651 566 break;
kvn@3651 567 #else
kvn@3651 568 #define ELSE_FAIL(name) \
kvn@3651 569 break;
kvn@3651 570 #endif
kvn@3651 571
kvn@3651 572 // Add final simple edges to graph.
kvn@3651 573 void ConnectionGraph::add_final_edges(Node *n) {
kvn@3651 574 PointsToNode* n_ptn = ptnode_adr(n->_idx);
kvn@3651 575 #ifdef ASSERT
kvn@3651 576 if (_verify && n_ptn->is_JavaObject())
kvn@3651 577 return; // This method does not change graph for JavaObject.
kvn@3651 578 #endif
kvn@3651 579
kvn@3651 580 if (n->is_Call()) {
kvn@3651 581 process_call_arguments(n->as_Call());
kvn@3651 582 return;
kvn@3651 583 }
kvn@3651 584 assert(n->is_Store() || n->is_LoadStore() ||
kvn@3651 585 (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
kvn@3651 586 "node should be registered already");
kvn@3651 587 int opcode = n->Opcode();
kvn@3651 588 switch (opcode) {
kvn@3651 589 case Op_AddP: {
kvn@3651 590 Node* base = get_addp_base(n);
kvn@3651 591 PointsToNode* ptn_base = ptnode_adr(base->_idx);
kvn@3651 592 assert(ptn_base != NULL, "field's base should be registered");
kvn@3651 593 add_base(n_ptn->as_Field(), ptn_base);
kvn@3651 594 break;
kvn@3651 595 }
kvn@3651 596 case Op_CastPP:
kvn@3651 597 case Op_CheckCastPP:
kvn@3651 598 case Op_EncodeP:
roland@4159 599 case Op_DecodeN:
roland@4159 600 case Op_EncodePKlass:
roland@4159 601 case Op_DecodeNKlass: {
kvn@3651 602 add_local_var_and_edge(n, PointsToNode::NoEscape,
kvn@3651 603 n->in(1), NULL);
kvn@3651 604 break;
kvn@3651 605 }
kvn@3651 606 case Op_CMoveP: {
kvn@3651 607 for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
kvn@3651 608 Node* in = n->in(i);
kvn@3651 609 if (in == NULL)
kvn@3651 610 continue; // ignore NULL
kvn@3651 611 Node* uncast_in = in->uncast();
kvn@3651 612 if (uncast_in->is_top() || uncast_in == n)
kvn@3651 613 continue; // ignore top or inputs which go back this node
kvn@3651 614 PointsToNode* ptn = ptnode_adr(in->_idx);
kvn@3651 615 assert(ptn != NULL, "node should be registered");
kvn@3651 616 add_edge(n_ptn, ptn);
kvn@3651 617 }
kvn@3651 618 break;
kvn@3651 619 }
kvn@3651 620 case Op_LoadP:
kvn@3651 621 case Op_LoadN:
kvn@3651 622 case Op_LoadPLocked: {
kvn@3651 623 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
roland@4106 624 // ThreadLocal has RawPtr type.
kvn@3651 625 const Type* t = _igvn->type(n);
kvn@3651 626 if (t->make_ptr() != NULL) {
kvn@3651 627 Node* adr = n->in(MemNode::Address);
kvn@3651 628 add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
kvn@3651 629 break;
kvn@3651 630 }
kvn@3651 631 ELSE_FAIL("Op_LoadP");
kvn@3651 632 }
kvn@3651 633 case Op_Phi: {
kvn@3651 634 // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
roland@4106 635 // ThreadLocal has RawPtr type.
kvn@3651 636 const Type* t = n->as_Phi()->type();
kvn@3651 637 if (t->make_ptr() != NULL) {
kvn@3651 638 for (uint i = 1; i < n->req(); i++) {
kvn@3651 639 Node* in = n->in(i);
kvn@3651 640 if (in == NULL)
kvn@3651 641 continue; // ignore NULL
kvn@3651 642 Node* uncast_in = in->uncast();
kvn@3651 643 if (uncast_in->is_top() || uncast_in == n)
kvn@3651 644 continue; // ignore top or inputs which go back this node
kvn@3651 645 PointsToNode* ptn = ptnode_adr(in->_idx);
kvn@3651 646 assert(ptn != NULL, "node should be registered");
kvn@3651 647 add_edge(n_ptn, ptn);
kvn@3651 648 }
kvn@3651 649 break;
kvn@3651 650 }
kvn@3651 651 ELSE_FAIL("Op_Phi");
kvn@3651 652 }
kvn@3651 653 case Op_Proj: {
kvn@3651 654 // we are only interested in the oop result projection from a call
kvn@3651 655 if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
kvn@3651 656 n->in(0)->as_Call()->returns_pointer()) {
kvn@3651 657 add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
kvn@3651 658 break;
kvn@3651 659 }
kvn@3651 660 ELSE_FAIL("Op_Proj");
kvn@3651 661 }
kvn@3651 662 case Op_Rethrow: // Exception object escapes
kvn@3651 663 case Op_Return: {
kvn@3651 664 if (n->req() > TypeFunc::Parms &&
kvn@3651 665 _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
kvn@3651 666 // Treat Return value as LocalVar with GlobalEscape escape state.
kvn@3651 667 add_local_var_and_edge(n, PointsToNode::GlobalEscape,
kvn@3651 668 n->in(TypeFunc::Parms), NULL);
kvn@3651 669 break;
kvn@3651 670 }
kvn@3651 671 ELSE_FAIL("Op_Return");
kvn@3651 672 }
kvn@3651 673 case Op_StoreP:
kvn@3651 674 case Op_StoreN:
roland@4159 675 case Op_StoreNKlass:
kvn@3651 676 case Op_StorePConditional:
kvn@3651 677 case Op_CompareAndSwapP:
roland@4106 678 case Op_CompareAndSwapN:
roland@4106 679 case Op_GetAndSetP:
roland@4106 680 case Op_GetAndSetN: {
kvn@3651 681 Node* adr = n->in(MemNode::Address);
kvn@3651 682 const Type *adr_type = _igvn->type(adr);
kvn@3651 683 adr_type = adr_type->make_ptr();
kvn@5111 684 #ifdef ASSERT
kvn@5111 685 if (adr_type == NULL) {
kvn@5111 686 n->dump(1);
kvn@5111 687 assert(adr_type != NULL, "dead node should not be on list");
kvn@5111 688 break;
kvn@5111 689 }
kvn@5111 690 #endif
kvn@5111 691 if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN) {
kvn@5111 692 add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
kvn@5111 693 }
kvn@3651 694 if (adr_type->isa_oopptr() ||
roland@4159 695 (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
kvn@3651 696 (adr_type == TypeRawPtr::NOTNULL &&
kvn@3651 697 adr->in(AddPNode::Address)->is_Proj() &&
kvn@3651 698 adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
kvn@3651 699 // Point Address to Value
kvn@3651 700 PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
kvn@3651 701 assert(adr_ptn != NULL &&
kvn@3651 702 adr_ptn->as_Field()->is_oop(), "node should be registered");
kvn@3651 703 Node *val = n->in(MemNode::ValueIn);
kvn@3651 704 PointsToNode* ptn = ptnode_adr(val->_idx);
kvn@3651 705 assert(ptn != NULL, "node should be registered");
kvn@3651 706 add_edge(adr_ptn, ptn);
kvn@3651 707 break;
kvn@3657 708 } else if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
kvn@3657 709 // Stored value escapes in unsafe access.
kvn@3657 710 Node *val = n->in(MemNode::ValueIn);
kvn@3657 711 PointsToNode* ptn = ptnode_adr(val->_idx);
kvn@3657 712 assert(ptn != NULL, "node should be registered");
kvn@6637 713 set_escape_state(ptn, PointsToNode::GlobalEscape);
kvn@3657 714 // Add edge to object for unsafe access with offset.
kvn@3657 715 PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
kvn@3657 716 assert(adr_ptn != NULL, "node should be registered");
kvn@3657 717 if (adr_ptn->is_Field()) {
kvn@3657 718 assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
kvn@3657 719 add_edge(adr_ptn, ptn);
kvn@3657 720 }
kvn@3657 721 break;
kvn@3651 722 }
kvn@3651 723 ELSE_FAIL("Op_StoreP");
kvn@3651 724 }
kvn@3651 725 case Op_AryEq:
kvn@3651 726 case Op_StrComp:
kvn@3651 727 case Op_StrEquals:
kvn@4479 728 case Op_StrIndexOf:
kvn@4479 729 case Op_EncodeISOArray: {
kvn@3651 730 // char[] arrays passed to string intrinsic do not escape but
kvn@3651 731 // they are not scalar replaceable. Adjust escape state for them.
kvn@3651 732 // Start from in(2) edge since in(1) is memory edge.
kvn@3651 733 for (uint i = 2; i < n->req(); i++) {
kvn@3651 734 Node* adr = n->in(i);
kvn@3651 735 const Type* at = _igvn->type(adr);
kvn@3651 736 if (!adr->is_top() && at->isa_ptr()) {
kvn@3651 737 assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
kvn@3651 738 at->isa_ptr() != NULL, "expecting a pointer");
kvn@3651 739 if (adr->is_AddP()) {
kvn@3651 740 adr = get_addp_base(adr);
kvn@3651 741 }
kvn@3651 742 PointsToNode* ptn = ptnode_adr(adr->_idx);
kvn@3651 743 assert(ptn != NULL, "node should be registered");
kvn@3651 744 add_edge(n_ptn, ptn);
kvn@3651 745 }
kvn@3651 746 }
kvn@3651 747 break;
kvn@3651 748 }
kvn@3651 749 default: {
kvn@3651 750 // This method should be called only for EA specific nodes which may
kvn@3651 751 // miss some edges when they were created.
kvn@3651 752 #ifdef ASSERT
kvn@3651 753 n->dump(1);
kvn@3651 754 #endif
kvn@3651 755 guarantee(false, "unknown node");
kvn@3651 756 }
kvn@3651 757 }
kvn@3651 758 return;
kvn@3651 759 }
kvn@3651 760
kvn@3651 761 void ConnectionGraph::add_call_node(CallNode* call) {
kvn@3651 762 assert(call->returns_pointer(), "only for call which returns pointer");
kvn@3651 763 uint call_idx = call->_idx;
kvn@3651 764 if (call->is_Allocate()) {
kvn@3651 765 Node* k = call->in(AllocateNode::KlassNode);
kvn@3651 766 const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
kvn@3651 767 assert(kt != NULL, "TypeKlassPtr required.");
kvn@3651 768 ciKlass* cik = kt->klass();
kvn@3651 769 PointsToNode::EscapeState es = PointsToNode::NoEscape;
kvn@3651 770 bool scalar_replaceable = true;
kvn@3651 771 if (call->is_AllocateArray()) {
kvn@3651 772 if (!cik->is_array_klass()) { // StressReflectiveCode
kvn@3651 773 es = PointsToNode::GlobalEscape;
kvn@3651 774 } else {
kvn@3651 775 int length = call->in(AllocateNode::ALength)->find_int_con(-1);
kvn@3651 776 if (length < 0 || length > EliminateAllocationArraySizeLimit) {
kvn@3651 777 // Not scalar replaceable if the length is not constant or too big.
kvn@3651 778 scalar_replaceable = false;
kvn@3651 779 }
kvn@3651 780 }
kvn@3651 781 } else { // Allocate instance
kvn@3651 782 if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
twisti@5910 783 cik->is_subclass_of(_compile->env()->Reference_klass()) ||
kvn@3651 784 !cik->is_instance_klass() || // StressReflectiveCode
kvn@3651 785 cik->as_instance_klass()->has_finalizer()) {
kvn@3651 786 es = PointsToNode::GlobalEscape;
kvn@3651 787 }
kvn@3651 788 }
kvn@3651 789 add_java_object(call, es);
kvn@3651 790 PointsToNode* ptn = ptnode_adr(call_idx);
kvn@3651 791 if (!scalar_replaceable && ptn->scalar_replaceable()) {
kvn@3651 792 ptn->set_scalar_replaceable(false);
kvn@3651 793 }
kvn@3651 794 } else if (call->is_CallStaticJava()) {
kvn@3651 795 // Call nodes could be different types:
kvn@3651 796 //
kvn@3651 797 // 1. CallDynamicJavaNode (what happened during call is unknown):
kvn@3651 798 //
kvn@3651 799 // - mapped to GlobalEscape JavaObject node if oop is returned;
kvn@3651 800 //
kvn@3651 801 // - all oop arguments are escaping globally;
kvn@3651 802 //
kvn@3651 803 // 2. CallStaticJavaNode (execute bytecode analysis if possible):
kvn@3651 804 //
kvn@3651 805 // - the same as CallDynamicJavaNode if can't do bytecode analysis;
kvn@3651 806 //
kvn@3651 807 // - mapped to GlobalEscape JavaObject node if unknown oop is returned;
kvn@3651 808 // - mapped to NoEscape JavaObject node if non-escaping object allocated
kvn@3651 809 // during call is returned;
kvn@3651 810 // - mapped to ArgEscape LocalVar node pointed to object arguments
kvn@3651 811 // which are returned and does not escape during call;
kvn@3651 812 //
kvn@3651 813 // - oop arguments escaping status is defined by bytecode analysis;
kvn@3651 814 //
kvn@3651 815 // For a static call, we know exactly what method is being called.
kvn@3651 816 // Use bytecode estimator to record whether the call's return value escapes.
kvn@3651 817 ciMethod* meth = call->as_CallJava()->method();
kvn@3651 818 if (meth == NULL) {
kvn@3651 819 const char* name = call->as_CallStaticJava()->_name;
kvn@3651 820 assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
kvn@3651 821 // Returns a newly allocated unescaped object.
kvn@3651 822 add_java_object(call, PointsToNode::NoEscape);
kvn@3651 823 ptnode_adr(call_idx)->set_scalar_replaceable(false);
kvn@5110 824 } else if (meth->is_boxing_method()) {
kvn@5110 825 // Returns boxing object
kvn@5113 826 PointsToNode::EscapeState es;
kvn@5113 827 vmIntrinsics::ID intr = meth->intrinsic_id();
kvn@5113 828 if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
kvn@5113 829 // It does not escape if object is always allocated.
kvn@5113 830 es = PointsToNode::NoEscape;
kvn@5113 831 } else {
kvn@5113 832 // It escapes globally if object could be loaded from cache.
kvn@5113 833 es = PointsToNode::GlobalEscape;
kvn@5113 834 }
kvn@5113 835 add_java_object(call, es);
kvn@3651 836 } else {
kvn@3651 837 BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
kvn@3651 838 call_analyzer->copy_dependencies(_compile->dependencies());
kvn@3651 839 if (call_analyzer->is_return_allocated()) {
kvn@3651 840 // Returns a newly allocated unescaped object, simply
kvn@3651 841 // update dependency information.
kvn@3651 842 // Mark it as NoEscape so that objects referenced by
kvn@3651 843 // it's fields will be marked as NoEscape at least.
kvn@3651 844 add_java_object(call, PointsToNode::NoEscape);
kvn@3651 845 ptnode_adr(call_idx)->set_scalar_replaceable(false);
kvn@3651 846 } else {
kvn@3651 847 // Determine whether any arguments are returned.
kvn@3651 848 const TypeTuple* d = call->tf()->domain();
kvn@3651 849 bool ret_arg = false;
kvn@3651 850 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@3651 851 if (d->field_at(i)->isa_ptr() != NULL &&
kvn@3651 852 call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
kvn@3651 853 ret_arg = true;
kvn@3651 854 break;
kvn@3651 855 }
kvn@3651 856 }
kvn@3651 857 if (ret_arg) {
kvn@3651 858 add_local_var(call, PointsToNode::ArgEscape);
kvn@3651 859 } else {
kvn@3651 860 // Returns unknown object.
kvn@3651 861 map_ideal_node(call, phantom_obj);
kvn@3651 862 }
kvn@3651 863 }
kvn@3651 864 }
kvn@3651 865 } else {
kvn@3651 866 // An other type of call, assume the worst case:
kvn@3651 867 // returned value is unknown and globally escapes.
kvn@3651 868 assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
kvn@3651 869 map_ideal_node(call, phantom_obj);
kvn@3651 870 }
kvn@3651 871 }
kvn@3651 872
kvn@3651 873 void ConnectionGraph::process_call_arguments(CallNode *call) {
kvn@3651 874 bool is_arraycopy = false;
kvn@3651 875 switch (call->Opcode()) {
kvn@3651 876 #ifdef ASSERT
kvn@3651 877 case Op_Allocate:
kvn@3651 878 case Op_AllocateArray:
kvn@3651 879 case Op_Lock:
kvn@3651 880 case Op_Unlock:
kvn@3651 881 assert(false, "should be done already");
kvn@3651 882 break;
kvn@3651 883 #endif
kvn@3651 884 case Op_CallLeafNoFP:
kvn@3651 885 is_arraycopy = (call->as_CallLeaf()->_name != NULL &&
kvn@3651 886 strstr(call->as_CallLeaf()->_name, "arraycopy") != 0);
kvn@3651 887 // fall through
kvn@3651 888 case Op_CallLeaf: {
kvn@3651 889 // Stub calls, objects do not escape but they are not scale replaceable.
kvn@3651 890 // Adjust escape state for outgoing arguments.
kvn@3651 891 const TypeTuple * d = call->tf()->domain();
kvn@3651 892 bool src_has_oops = false;
kvn@3651 893 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@3651 894 const Type* at = d->field_at(i);
kvn@3651 895 Node *arg = call->in(i);
kvn@3651 896 const Type *aat = _igvn->type(arg);
kvn@3651 897 if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
kvn@3651 898 continue;
kvn@3651 899 if (arg->is_AddP()) {
kvn@3651 900 //
kvn@3651 901 // The inline_native_clone() case when the arraycopy stub is called
kvn@3651 902 // after the allocation before Initialize and CheckCastPP nodes.
kvn@3651 903 // Or normal arraycopy for object arrays case.
kvn@3651 904 //
kvn@3651 905 // Set AddP's base (Allocate) as not scalar replaceable since
kvn@3651 906 // pointer to the base (with offset) is passed as argument.
kvn@3651 907 //
kvn@3651 908 arg = get_addp_base(arg);
kvn@3651 909 }
kvn@3651 910 PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
kvn@3651 911 assert(arg_ptn != NULL, "should be registered");
kvn@3651 912 PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
kvn@3651 913 if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
kvn@3651 914 assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
kvn@3651 915 aat->isa_ptr() != NULL, "expecting an Ptr");
kvn@3651 916 bool arg_has_oops = aat->isa_oopptr() &&
kvn@3651 917 (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
kvn@3651 918 (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
kvn@3651 919 if (i == TypeFunc::Parms) {
kvn@3651 920 src_has_oops = arg_has_oops;
kvn@3651 921 }
kvn@3651 922 //
kvn@3651 923 // src or dst could be j.l.Object when other is basic type array:
kvn@3651 924 //
kvn@3651 925 // arraycopy(char[],0,Object*,0,size);
kvn@3651 926 // arraycopy(Object*,0,char[],0,size);
kvn@3651 927 //
kvn@3651 928 // Don't add edges in such cases.
kvn@3651 929 //
kvn@3651 930 bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
kvn@3651 931 arg_has_oops && (i > TypeFunc::Parms);
kvn@3651 932 #ifdef ASSERT
kvn@3651 933 if (!(is_arraycopy ||
kvn@4205 934 (call->as_CallLeaf()->_name != NULL &&
kvn@4205 935 (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre") == 0 ||
kvn@4205 936 strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ||
drchase@5353 937 strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
kvn@4205 938 strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
kvn@4205 939 strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
kvn@4205 940 strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
kvn@7027 941 strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
kvn@7027 942 strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
kvn@7027 943 strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
kvn@7027 944 strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
kvn@7027 945 strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
kvn@7027 946 strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
kvn@7027 947 strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0)
kvn@4205 948 ))) {
kvn@3651 949 call->dump();
kvn@4205 950 fatal(err_msg_res("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name));
kvn@3651 951 }
kvn@3651 952 #endif
kvn@3651 953 // Always process arraycopy's destination object since
kvn@3651 954 // we need to add all possible edges to references in
kvn@3651 955 // source object.
kvn@3651 956 if (arg_esc >= PointsToNode::ArgEscape &&
kvn@3651 957 !arg_is_arraycopy_dest) {
kvn@3651 958 continue;
kvn@3651 959 }
kvn@3651 960 set_escape_state(arg_ptn, PointsToNode::ArgEscape);
kvn@3651 961 if (arg_is_arraycopy_dest) {
kvn@3651 962 Node* src = call->in(TypeFunc::Parms);
kvn@3651 963 if (src->is_AddP()) {
kvn@3651 964 src = get_addp_base(src);
kvn@3651 965 }
kvn@3651 966 PointsToNode* src_ptn = ptnode_adr(src->_idx);
kvn@3651 967 assert(src_ptn != NULL, "should be registered");
kvn@3651 968 if (arg_ptn != src_ptn) {
kvn@3651 969 // Special arraycopy edge:
kvn@3651 970 // A destination object's field can't have the source object
kvn@3651 971 // as base since objects escape states are not related.
kvn@3651 972 // Only escape state of destination object's fields affects
kvn@3651 973 // escape state of fields in source object.
kvn@3651 974 add_arraycopy(call, PointsToNode::ArgEscape, src_ptn, arg_ptn);
kvn@3651 975 }
kvn@3651 976 }
kvn@3651 977 }
kvn@3651 978 }
kvn@3651 979 break;
kvn@3651 980 }
kvn@3651 981 case Op_CallStaticJava: {
kvn@3651 982 // For a static call, we know exactly what method is being called.
kvn@3651 983 // Use bytecode estimator to record the call's escape affects
kvn@3651 984 #ifdef ASSERT
kvn@3651 985 const char* name = call->as_CallStaticJava()->_name;
kvn@3651 986 assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
kvn@3651 987 #endif
kvn@3651 988 ciMethod* meth = call->as_CallJava()->method();
kvn@5110 989 if ((meth != NULL) && meth->is_boxing_method()) {
kvn@5110 990 break; // Boxing methods do not modify any oops.
kvn@5110 991 }
kvn@3651 992 BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
kvn@3651 993 // fall-through if not a Java method or no analyzer information
kvn@3651 994 if (call_analyzer != NULL) {
kvn@3651 995 PointsToNode* call_ptn = ptnode_adr(call->_idx);
kvn@3651 996 const TypeTuple* d = call->tf()->domain();
kvn@3651 997 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@3651 998 const Type* at = d->field_at(i);
kvn@3651 999 int k = i - TypeFunc::Parms;
kvn@3651 1000 Node* arg = call->in(i);
kvn@3651 1001 PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
kvn@3651 1002 if (at->isa_ptr() != NULL &&
kvn@3651 1003 call_analyzer->is_arg_returned(k)) {
kvn@3651 1004 // The call returns arguments.
kvn@3651 1005 if (call_ptn != NULL) { // Is call's result used?
kvn@3651 1006 assert(call_ptn->is_LocalVar(), "node should be registered");
kvn@3651 1007 assert(arg_ptn != NULL, "node should be registered");
kvn@3651 1008 add_edge(call_ptn, arg_ptn);
kvn@3651 1009 }
kvn@3651 1010 }
kvn@3651 1011 if (at->isa_oopptr() != NULL &&
kvn@3651 1012 arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
kvn@3651 1013 if (!call_analyzer->is_arg_stack(k)) {
kvn@3651 1014 // The argument global escapes
kvn@3651 1015 set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
kvn@3651 1016 } else {
kvn@3651 1017 set_escape_state(arg_ptn, PointsToNode::ArgEscape);
kvn@3651 1018 if (!call_analyzer->is_arg_local(k)) {
kvn@3651 1019 // The argument itself doesn't escape, but any fields might
kvn@3651 1020 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
kvn@3651 1021 }
kvn@3651 1022 }
kvn@3651 1023 }
kvn@3651 1024 }
kvn@3651 1025 if (call_ptn != NULL && call_ptn->is_LocalVar()) {
kvn@3651 1026 // The call returns arguments.
kvn@3651 1027 assert(call_ptn->edge_count() > 0, "sanity");
kvn@3651 1028 if (!call_analyzer->is_return_local()) {
kvn@3651 1029 // Returns also unknown object.
kvn@3651 1030 add_edge(call_ptn, phantom_obj);
kvn@3651 1031 }
kvn@3651 1032 }
kvn@3651 1033 break;
kvn@3651 1034 }
kvn@3651 1035 }
kvn@3651 1036 default: {
kvn@3651 1037 // Fall-through here if not a Java method or no analyzer information
kvn@3651 1038 // or some other type of call, assume the worst case: all arguments
kvn@3651 1039 // globally escape.
kvn@3651 1040 const TypeTuple* d = call->tf()->domain();
kvn@3651 1041 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
kvn@3651 1042 const Type* at = d->field_at(i);
kvn@3651 1043 if (at->isa_oopptr() != NULL) {
kvn@3651 1044 Node* arg = call->in(i);
kvn@3651 1045 if (arg->is_AddP()) {
kvn@3651 1046 arg = get_addp_base(arg);
kvn@3651 1047 }
kvn@3651 1048 assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
kvn@3651 1049 set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
kvn@3651 1050 }
kvn@3651 1051 }
kvn@3651 1052 }
kvn@3651 1053 }
kvn@3651 1054 }
kvn@3651 1055
kvn@3651 1056
kvn@3651 1057 // Finish Graph construction.
kvn@3651 1058 bool ConnectionGraph::complete_connection_graph(
kvn@3651 1059 GrowableArray<PointsToNode*>& ptnodes_worklist,
kvn@3651 1060 GrowableArray<JavaObjectNode*>& non_escaped_worklist,
kvn@3651 1061 GrowableArray<JavaObjectNode*>& java_objects_worklist,
kvn@3651 1062 GrowableArray<FieldNode*>& oop_fields_worklist) {
kvn@3651 1063 // Normally only 1-3 passes needed to build Connection Graph depending
kvn@3651 1064 // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
kvn@3651 1065 // Set limit to 20 to catch situation when something did go wrong and
kvn@3651 1066 // bailout Escape Analysis.
kvn@3651 1067 // Also limit build time to 30 sec (60 in debug VM).
kvn@3651 1068 #define CG_BUILD_ITER_LIMIT 20
kvn@3651 1069 #ifdef ASSERT
kvn@3651 1070 #define CG_BUILD_TIME_LIMIT 60.0
kvn@3651 1071 #else
kvn@3651 1072 #define CG_BUILD_TIME_LIMIT 30.0
kvn@3651 1073 #endif
kvn@3651 1074
kvn@3651 1075 // Propagate GlobalEscape and ArgEscape escape states and check that
kvn@3651 1076 // we still have non-escaping objects. The method pushs on _worklist
kvn@3651 1077 // Field nodes which reference phantom_object.
kvn@3651 1078 if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
kvn@3651 1079 return false; // Nothing to do.
kvn@3651 1080 }
kvn@3651 1081 // Now propagate references to all JavaObject nodes.
kvn@3651 1082 int java_objects_length = java_objects_worklist.length();
kvn@3651 1083 elapsedTimer time;
kvn@3651 1084 int new_edges = 1;
kvn@3651 1085 int iterations = 0;
kvn@3651 1086 do {
kvn@3651 1087 while ((new_edges > 0) &&
kvn@3651 1088 (iterations++ < CG_BUILD_ITER_LIMIT) &&
kvn@3651 1089 (time.seconds() < CG_BUILD_TIME_LIMIT)) {
kvn@3651 1090 time.start();
kvn@3651 1091 new_edges = 0;
kvn@3651 1092 // Propagate references to phantom_object for nodes pushed on _worklist
kvn@3651 1093 // by find_non_escaped_objects() and find_field_value().
kvn@3651 1094 new_edges += add_java_object_edges(phantom_obj, false);
kvn@3651 1095 for (int next = 0; next < java_objects_length; ++next) {
kvn@3651 1096 JavaObjectNode* ptn = java_objects_worklist.at(next);
kvn@3651 1097 new_edges += add_java_object_edges(ptn, true);
kvn@3651 1098 }
kvn@3651 1099 if (new_edges > 0) {
kvn@3651 1100 // Update escape states on each iteration if graph was updated.
kvn@3651 1101 if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
kvn@3651 1102 return false; // Nothing to do.
kvn@3651 1103 }
kvn@3651 1104 }
kvn@3651 1105 time.stop();
kvn@3651 1106 }
kvn@3651 1107 if ((iterations < CG_BUILD_ITER_LIMIT) &&
kvn@3651 1108 (time.seconds() < CG_BUILD_TIME_LIMIT)) {
kvn@3651 1109 time.start();
kvn@3651 1110 // Find fields which have unknown value.
kvn@3651 1111 int fields_length = oop_fields_worklist.length();
kvn@3651 1112 for (int next = 0; next < fields_length; next++) {
kvn@3651 1113 FieldNode* field = oop_fields_worklist.at(next);
kvn@3651 1114 if (field->edge_count() == 0) {
kvn@3651 1115 new_edges += find_field_value(field);
kvn@3651 1116 // This code may added new edges to phantom_object.
kvn@3651 1117 // Need an other cycle to propagate references to phantom_object.
kvn@3651 1118 }
kvn@3651 1119 }
kvn@3651 1120 time.stop();
kvn@3651 1121 } else {
kvn@3651 1122 new_edges = 0; // Bailout
kvn@3651 1123 }
kvn@3651 1124 } while (new_edges > 0);
kvn@3651 1125
kvn@3651 1126 // Bailout if passed limits.
kvn@3651 1127 if ((iterations >= CG_BUILD_ITER_LIMIT) ||
kvn@3651 1128 (time.seconds() >= CG_BUILD_TIME_LIMIT)) {
kvn@3651 1129 Compile* C = _compile;
kvn@3651 1130 if (C->log() != NULL) {
kvn@3651 1131 C->log()->begin_elem("connectionGraph_bailout reason='reached ");
kvn@3651 1132 C->log()->text("%s", (iterations >= CG_BUILD_ITER_LIMIT) ? "iterations" : "time");
kvn@3651 1133 C->log()->end_elem(" limit'");
kvn@3651 1134 }
kvn@4206 1135 assert(ExitEscapeAnalysisOnTimeout, err_msg_res("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
kvn@3651 1136 time.seconds(), iterations, nodes_size(), ptnodes_worklist.length()));
kvn@3651 1137 // Possible infinite build_connection_graph loop,
kvn@3651 1138 // bailout (no changes to ideal graph were made).
kvn@3651 1139 return false;
kvn@3651 1140 }
kvn@3651 1141 #ifdef ASSERT
kvn@3651 1142 if (Verbose && PrintEscapeAnalysis) {
kvn@3651 1143 tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
kvn@3651 1144 iterations, nodes_size(), ptnodes_worklist.length());
kvn@3651 1145 }
kvn@3651 1146 #endif
kvn@3651 1147
kvn@3651 1148 #undef CG_BUILD_ITER_LIMIT
kvn@3651 1149 #undef CG_BUILD_TIME_LIMIT
kvn@3651 1150
kvn@3651 1151 // Find fields initialized by NULL for non-escaping Allocations.
kvn@3651 1152 int non_escaped_length = non_escaped_worklist.length();
kvn@3651 1153 for (int next = 0; next < non_escaped_length; next++) {
kvn@3651 1154 JavaObjectNode* ptn = non_escaped_worklist.at(next);
kvn@3651 1155 PointsToNode::EscapeState es = ptn->escape_state();
kvn@3651 1156 assert(es <= PointsToNode::ArgEscape, "sanity");
kvn@3651 1157 if (es == PointsToNode::NoEscape) {
kvn@3651 1158 if (find_init_values(ptn, null_obj, _igvn) > 0) {
kvn@3651 1159 // Adding references to NULL object does not change escape states
kvn@3651 1160 // since it does not escape. Also no fields are added to NULL object.
kvn@3651 1161 add_java_object_edges(null_obj, false);
kvn@3651 1162 }
kvn@3651 1163 }
kvn@3651 1164 Node* n = ptn->ideal_node();
kvn@3651 1165 if (n->is_Allocate()) {
kvn@3651 1166 // The object allocated by this Allocate node will never be
kvn@3651 1167 // seen by an other thread. Mark it so that when it is
kvn@3651 1168 // expanded no MemBarStoreStore is added.
kvn@3651 1169 InitializeNode* ini = n->as_Allocate()->initialization();
kvn@3651 1170 if (ini != NULL)
kvn@3651 1171 ini->set_does_not_escape();
kvn@3651 1172 }
kvn@3651 1173 }
kvn@3651 1174 return true; // Finished graph construction.
kvn@3651 1175 }
kvn@3651 1176
kvn@3651 1177 // Propagate GlobalEscape and ArgEscape escape states to all nodes
kvn@3651 1178 // and check that we still have non-escaping java objects.
kvn@3651 1179 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
kvn@3651 1180 GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
kvn@3651 1181 GrowableArray<PointsToNode*> escape_worklist;
kvn@3651 1182 // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
kvn@3651 1183 int ptnodes_length = ptnodes_worklist.length();
kvn@3651 1184 for (int next = 0; next < ptnodes_length; ++next) {
kvn@3651 1185 PointsToNode* ptn = ptnodes_worklist.at(next);
kvn@3651 1186 if (ptn->escape_state() >= PointsToNode::ArgEscape ||
kvn@3651 1187 ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
kvn@3651 1188 escape_worklist.push(ptn);
kvn@3651 1189 }
kvn@3651 1190 }
kvn@3651 1191 // Set escape states to referenced nodes (edges list).
kvn@3651 1192 while (escape_worklist.length() > 0) {
kvn@3651 1193 PointsToNode* ptn = escape_worklist.pop();
kvn@3651 1194 PointsToNode::EscapeState es = ptn->escape_state();
kvn@3651 1195 PointsToNode::EscapeState field_es = ptn->fields_escape_state();
kvn@3651 1196 if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
kvn@3651 1197 es >= PointsToNode::ArgEscape) {
kvn@3651 1198 // GlobalEscape or ArgEscape state of field means it has unknown value.
kvn@3651 1199 if (add_edge(ptn, phantom_obj)) {
kvn@3651 1200 // New edge was added
kvn@3651 1201 add_field_uses_to_worklist(ptn->as_Field());
kvn@3651 1202 }
kvn@3651 1203 }
kvn@3651 1204 for (EdgeIterator i(ptn); i.has_next(); i.next()) {
kvn@3651 1205 PointsToNode* e = i.get();
kvn@3651 1206 if (e->is_Arraycopy()) {
kvn@3651 1207 assert(ptn->arraycopy_dst(), "sanity");
kvn@3651 1208 // Propagate only fields escape state through arraycopy edge.
kvn@3651 1209 if (e->fields_escape_state() < field_es) {
kvn@3651 1210 set_fields_escape_state(e, field_es);
kvn@3651 1211 escape_worklist.push(e);
kvn@3651 1212 }
kvn@3651 1213 } else if (es >= field_es) {
kvn@3651 1214 // fields_escape_state is also set to 'es' if it is less than 'es'.
kvn@3651 1215 if (e->escape_state() < es) {
kvn@3651 1216 set_escape_state(e, es);
kvn@3651 1217 escape_worklist.push(e);
kvn@3651 1218 }
kvn@3651 1219 } else {
kvn@3651 1220 // Propagate field escape state.
kvn@3651 1221 bool es_changed = false;
kvn@3651 1222 if (e->fields_escape_state() < field_es) {
kvn@3651 1223 set_fields_escape_state(e, field_es);
kvn@3651 1224 es_changed = true;
kvn@3651 1225 }
kvn@3651 1226 if ((e->escape_state() < field_es) &&
kvn@3651 1227 e->is_Field() && ptn->is_JavaObject() &&
kvn@3651 1228 e->as_Field()->is_oop()) {
kvn@3651 1229 // Change escape state of referenced fileds.
kvn@3651 1230 set_escape_state(e, field_es);
kvn@3651 1231 es_changed = true;;
kvn@3651 1232 } else if (e->escape_state() < es) {
kvn@3651 1233 set_escape_state(e, es);
kvn@3651 1234 es_changed = true;;
kvn@3651 1235 }
kvn@3651 1236 if (es_changed) {
kvn@3651 1237 escape_worklist.push(e);
kvn@3651 1238 }
kvn@3651 1239 }
kvn@3651 1240 }
kvn@3651 1241 }
kvn@3651 1242 // Remove escaped objects from non_escaped list.
kvn@3651 1243 for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
kvn@3651 1244 JavaObjectNode* ptn = non_escaped_worklist.at(next);
kvn@3651 1245 if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
kvn@3651 1246 non_escaped_worklist.delete_at(next);
kvn@3651 1247 }
kvn@3651 1248 if (ptn->escape_state() == PointsToNode::NoEscape) {
kvn@3651 1249 // Find fields in non-escaped allocations which have unknown value.
kvn@3651 1250 find_init_values(ptn, phantom_obj, NULL);
kvn@3651 1251 }
kvn@3651 1252 }
kvn@3651 1253 return (non_escaped_worklist.length() > 0);
kvn@3651 1254 }
kvn@3651 1255
kvn@3651 1256 // Add all references to JavaObject node by walking over all uses.
kvn@3651 1257 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
kvn@3651 1258 int new_edges = 0;
kvn@3651 1259 if (populate_worklist) {
kvn@3651 1260 // Populate _worklist by uses of jobj's uses.
kvn@3651 1261 for (UseIterator i(jobj); i.has_next(); i.next()) {
kvn@3651 1262 PointsToNode* use = i.get();
kvn@3651 1263 if (use->is_Arraycopy())
kvn@3651 1264 continue;
kvn@3651 1265 add_uses_to_worklist(use);
kvn@3651 1266 if (use->is_Field() && use->as_Field()->is_oop()) {
kvn@3651 1267 // Put on worklist all field's uses (loads) and
kvn@3651 1268 // related field nodes (same base and offset).
kvn@3651 1269 add_field_uses_to_worklist(use->as_Field());
kvn@3651 1270 }
kvn@3651 1271 }
kvn@3651 1272 }
kvn@3651 1273 while(_worklist.length() > 0) {
kvn@3651 1274 PointsToNode* use = _worklist.pop();
kvn@3651 1275 if (PointsToNode::is_base_use(use)) {
kvn@3651 1276 // Add reference from jobj to field and from field to jobj (field's base).
kvn@3651 1277 use = PointsToNode::get_use_node(use)->as_Field();
kvn@3651 1278 if (add_base(use->as_Field(), jobj)) {
kvn@3651 1279 new_edges++;
kvn@3651 1280 }
kvn@3651 1281 continue;
kvn@3651 1282 }
kvn@3651 1283 assert(!use->is_JavaObject(), "sanity");
kvn@3651 1284 if (use->is_Arraycopy()) {
kvn@3651 1285 if (jobj == null_obj) // NULL object does not have field edges
kvn@3651 1286 continue;
kvn@3651 1287 // Added edge from Arraycopy node to arraycopy's source java object
kvn@3651 1288 if (add_edge(use, jobj)) {
kvn@3651 1289 jobj->set_arraycopy_src();
kvn@3651 1290 new_edges++;
kvn@3651 1291 }
kvn@3651 1292 // and stop here.
kvn@3651 1293 continue;
kvn@3651 1294 }
kvn@3651 1295 if (!add_edge(use, jobj))
kvn@3651 1296 continue; // No new edge added, there was such edge already.
kvn@3651 1297 new_edges++;
kvn@3651 1298 if (use->is_LocalVar()) {
kvn@3651 1299 add_uses_to_worklist(use);
kvn@3651 1300 if (use->arraycopy_dst()) {
kvn@3651 1301 for (EdgeIterator i(use); i.has_next(); i.next()) {
kvn@3651 1302 PointsToNode* e = i.get();
kvn@3651 1303 if (e->is_Arraycopy()) {
kvn@3651 1304 if (jobj == null_obj) // NULL object does not have field edges
kvn@3651 1305 continue;
kvn@3651 1306 // Add edge from arraycopy's destination java object to Arraycopy node.
kvn@3651 1307 if (add_edge(jobj, e)) {
kvn@3651 1308 new_edges++;
kvn@3651 1309 jobj->set_arraycopy_dst();
kvn@3651 1310 }
kvn@3651 1311 }
kvn@3651 1312 }
kvn@3651 1313 }
kvn@3651 1314 } else {
kvn@3651 1315 // Added new edge to stored in field values.
kvn@3651 1316 // Put on worklist all field's uses (loads) and
kvn@3651 1317 // related field nodes (same base and offset).
kvn@3651 1318 add_field_uses_to_worklist(use->as_Field());
kvn@3651 1319 }
kvn@3651 1320 }
kvn@3651 1321 return new_edges;
kvn@3651 1322 }
kvn@3651 1323
kvn@3651 1324 // Put on worklist all related field nodes.
kvn@3651 1325 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
kvn@3651 1326 assert(field->is_oop(), "sanity");
kvn@3651 1327 int offset = field->offset();
kvn@3651 1328 add_uses_to_worklist(field);
kvn@3651 1329 // Loop over all bases of this field and push on worklist Field nodes
kvn@3651 1330 // with the same offset and base (since they may reference the same field).
kvn@3651 1331 for (BaseIterator i(field); i.has_next(); i.next()) {
kvn@3651 1332 PointsToNode* base = i.get();
kvn@3651 1333 add_fields_to_worklist(field, base);
kvn@3651 1334 // Check if the base was source object of arraycopy and go over arraycopy's
kvn@3651 1335 // destination objects since values stored to a field of source object are
kvn@3651 1336 // accessable by uses (loads) of fields of destination objects.
kvn@3651 1337 if (base->arraycopy_src()) {
kvn@3651 1338 for (UseIterator j(base); j.has_next(); j.next()) {
kvn@3651 1339 PointsToNode* arycp = j.get();
kvn@3651 1340 if (arycp->is_Arraycopy()) {
kvn@3651 1341 for (UseIterator k(arycp); k.has_next(); k.next()) {
kvn@3651 1342 PointsToNode* abase = k.get();
kvn@3651 1343 if (abase->arraycopy_dst() && abase != base) {
kvn@3651 1344 // Look for the same arracopy reference.
kvn@3651 1345 add_fields_to_worklist(field, abase);
kvn@3651 1346 }
kvn@3651 1347 }
kvn@3651 1348 }
kvn@3651 1349 }
kvn@3651 1350 }
kvn@3651 1351 }
kvn@3651 1352 }
kvn@3651 1353
kvn@3651 1354 // Put on worklist all related field nodes.
kvn@3651 1355 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
kvn@3651 1356 int offset = field->offset();
kvn@3651 1357 if (base->is_LocalVar()) {
kvn@3651 1358 for (UseIterator j(base); j.has_next(); j.next()) {
kvn@3651 1359 PointsToNode* f = j.get();
kvn@3651 1360 if (PointsToNode::is_base_use(f)) { // Field
kvn@3651 1361 f = PointsToNode::get_use_node(f);
kvn@3651 1362 if (f == field || !f->as_Field()->is_oop())
kvn@3651 1363 continue;
kvn@3651 1364 int offs = f->as_Field()->offset();
kvn@3651 1365 if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
kvn@3651 1366 add_to_worklist(f);
kvn@3651 1367 }
kvn@3651 1368 }
kvn@3651 1369 }
kvn@3651 1370 } else {
kvn@3651 1371 assert(base->is_JavaObject(), "sanity");
kvn@3651 1372 if (// Skip phantom_object since it is only used to indicate that
kvn@3651 1373 // this field's content globally escapes.
kvn@3651 1374 (base != phantom_obj) &&
kvn@3651 1375 // NULL object node does not have fields.
kvn@3651 1376 (base != null_obj)) {
kvn@3651 1377 for (EdgeIterator i(base); i.has_next(); i.next()) {
kvn@3651 1378 PointsToNode* f = i.get();
kvn@3651 1379 // Skip arraycopy edge since store to destination object field
kvn@3651 1380 // does not update value in source object field.
kvn@3651 1381 if (f->is_Arraycopy()) {
kvn@3651 1382 assert(base->arraycopy_dst(), "sanity");
kvn@3651 1383 continue;
kvn@3651 1384 }
kvn@3651 1385 if (f == field || !f->as_Field()->is_oop())
kvn@3651 1386 continue;
kvn@3651 1387 int offs = f->as_Field()->offset();
kvn@3651 1388 if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
kvn@3651 1389 add_to_worklist(f);
kvn@3651 1390 }
kvn@3651 1391 }
kvn@3651 1392 }
kvn@3651 1393 }
kvn@3651 1394 }
kvn@3651 1395
kvn@3651 1396 // Find fields which have unknown value.
kvn@3651 1397 int ConnectionGraph::find_field_value(FieldNode* field) {
kvn@3651 1398 // Escaped fields should have init value already.
kvn@3651 1399 assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
kvn@3651 1400 int new_edges = 0;
kvn@3651 1401 for (BaseIterator i(field); i.has_next(); i.next()) {
kvn@3651 1402 PointsToNode* base = i.get();
kvn@3651 1403 if (base->is_JavaObject()) {
kvn@3651 1404 // Skip Allocate's fields which will be processed later.
kvn@3651 1405 if (base->ideal_node()->is_Allocate())
kvn@3651 1406 return 0;
kvn@3651 1407 assert(base == null_obj, "only NULL ptr base expected here");
kvn@3651 1408 }
kvn@3651 1409 }
kvn@3651 1410 if (add_edge(field, phantom_obj)) {
kvn@3651 1411 // New edge was added
kvn@3651 1412 new_edges++;
kvn@3651 1413 add_field_uses_to_worklist(field);
kvn@3651 1414 }
kvn@3651 1415 return new_edges;
kvn@3651 1416 }
kvn@3651 1417
kvn@3651 1418 // Find fields initializing values for allocations.
kvn@3651 1419 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
kvn@3651 1420 assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
kvn@3651 1421 int new_edges = 0;
kvn@3651 1422 Node* alloc = pta->ideal_node();
kvn@3651 1423 if (init_val == phantom_obj) {
kvn@3651 1424 // Do nothing for Allocate nodes since its fields values are "known".
kvn@3651 1425 if (alloc->is_Allocate())
kvn@3651 1426 return 0;
kvn@3651 1427 assert(alloc->as_CallStaticJava(), "sanity");
kvn@3651 1428 #ifdef ASSERT
kvn@3651 1429 if (alloc->as_CallStaticJava()->method() == NULL) {
kvn@3651 1430 const char* name = alloc->as_CallStaticJava()->_name;
kvn@3651 1431 assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
kvn@3651 1432 }
kvn@3651 1433 #endif
kvn@3651 1434 // Non-escaped allocation returned from Java or runtime call have
kvn@3651 1435 // unknown values in fields.
kvn@3651 1436 for (EdgeIterator i(pta); i.has_next(); i.next()) {
kvn@4255 1437 PointsToNode* field = i.get();
kvn@4255 1438 if (field->is_Field() && field->as_Field()->is_oop()) {
kvn@4255 1439 if (add_edge(field, phantom_obj)) {
kvn@3651 1440 // New edge was added
kvn@3651 1441 new_edges++;
kvn@4255 1442 add_field_uses_to_worklist(field->as_Field());
kvn@3651 1443 }
kvn@3651 1444 }
kvn@3651 1445 }
kvn@3651 1446 return new_edges;
kvn@3651 1447 }
kvn@3651 1448 assert(init_val == null_obj, "sanity");
kvn@3651 1449 // Do nothing for Call nodes since its fields values are unknown.
kvn@3651 1450 if (!alloc->is_Allocate())
kvn@3651 1451 return 0;
kvn@3651 1452
kvn@3651 1453 InitializeNode* ini = alloc->as_Allocate()->initialization();
kvn@3651 1454 Compile* C = _compile;
kvn@3651 1455 bool visited_bottom_offset = false;
kvn@3651 1456 GrowableArray<int> offsets_worklist;
kvn@3651 1457
kvn@3651 1458 // Check if an oop field's initializing value is recorded and add
kvn@3651 1459 // a corresponding NULL if field's value if it is not recorded.
kvn@3651 1460 // Connection Graph does not record a default initialization by NULL
kvn@3651 1461 // captured by Initialize node.
kvn@3651 1462 //
kvn@3651 1463 for (EdgeIterator i(pta); i.has_next(); i.next()) {
kvn@4255 1464 PointsToNode* field = i.get(); // Field (AddP)
kvn@4255 1465 if (!field->is_Field() || !field->as_Field()->is_oop())
kvn@3651 1466 continue; // Not oop field
kvn@4255 1467 int offset = field->as_Field()->offset();
kvn@3651 1468 if (offset == Type::OffsetBot) {
kvn@3651 1469 if (!visited_bottom_offset) {
kvn@3651 1470 // OffsetBot is used to reference array's element,
kvn@3651 1471 // always add reference to NULL to all Field nodes since we don't
kvn@3651 1472 // known which element is referenced.
kvn@4255 1473 if (add_edge(field, null_obj)) {
kvn@3651 1474 // New edge was added
kvn@3651 1475 new_edges++;
kvn@4255 1476 add_field_uses_to_worklist(field->as_Field());
kvn@3651 1477 visited_bottom_offset = true;
kvn@3651 1478 }
kvn@3651 1479 }
kvn@3651 1480 } else {
kvn@3651 1481 // Check only oop fields.
kvn@4255 1482 const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
kvn@3651 1483 if (adr_type->isa_rawptr()) {
kvn@3651 1484 #ifdef ASSERT
kvn@3651 1485 // Raw pointers are used for initializing stores so skip it
kvn@3651 1486 // since it should be recorded already
kvn@4255 1487 Node* base = get_addp_base(field->ideal_node());
kvn@3651 1488 assert(adr_type->isa_rawptr() && base->is_Proj() &&
kvn@3651 1489 (base->in(0) == alloc),"unexpected pointer type");
kvn@3651 1490 #endif
kvn@3651 1491 continue;
kvn@3651 1492 }
kvn@3651 1493 if (!offsets_worklist.contains(offset)) {
kvn@3651 1494 offsets_worklist.append(offset);
kvn@3651 1495 Node* value = NULL;
kvn@3651 1496 if (ini != NULL) {
kvn@4255 1497 // StoreP::memory_type() == T_ADDRESS
kvn@4255 1498 BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
kvn@4255 1499 Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
kvn@4255 1500 // Make sure initializing store has the same type as this AddP.
kvn@4255 1501 // This AddP may reference non existing field because it is on a
kvn@4255 1502 // dead branch of bimorphic call which is not eliminated yet.
kvn@4255 1503 if (store != NULL && store->is_Store() &&
kvn@4255 1504 store->as_Store()->memory_type() == ft) {
kvn@3651 1505 value = store->in(MemNode::ValueIn);
kvn@4255 1506 #ifdef ASSERT
kvn@4255 1507 if (VerifyConnectionGraph) {
kvn@4255 1508 // Verify that AddP already points to all objects the value points to.
kvn@4255 1509 PointsToNode* val = ptnode_adr(value->_idx);
kvn@4255 1510 assert((val != NULL), "should be processed already");
kvn@4255 1511 PointsToNode* missed_obj = NULL;
kvn@4255 1512 if (val->is_JavaObject()) {
kvn@4255 1513 if (!field->points_to(val->as_JavaObject())) {
kvn@4255 1514 missed_obj = val;
kvn@4255 1515 }
kvn@4255 1516 } else {
kvn@4255 1517 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
kvn@4255 1518 tty->print_cr("----------init store has invalid value -----");
kvn@4255 1519 store->dump();
kvn@4255 1520 val->dump();
kvn@4255 1521 assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
kvn@4255 1522 }
kvn@4255 1523 for (EdgeIterator j(val); j.has_next(); j.next()) {
kvn@4255 1524 PointsToNode* obj = j.get();
kvn@4255 1525 if (obj->is_JavaObject()) {
kvn@4255 1526 if (!field->points_to(obj->as_JavaObject())) {
kvn@4255 1527 missed_obj = obj;
kvn@4255 1528 break;
kvn@4255 1529 }
kvn@4255 1530 }
kvn@4255 1531 }
kvn@4255 1532 }
kvn@4255 1533 if (missed_obj != NULL) {
kvn@4255 1534 tty->print_cr("----------field---------------------------------");
kvn@4255 1535 field->dump();
kvn@4255 1536 tty->print_cr("----------missed referernce to object-----------");
kvn@4255 1537 missed_obj->dump();
kvn@4255 1538 tty->print_cr("----------object referernced by init store -----");
kvn@4255 1539 store->dump();
kvn@4255 1540 val->dump();
kvn@4255 1541 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
kvn@4255 1542 }
kvn@4255 1543 }
kvn@4255 1544 #endif
kvn@3651 1545 } else {
kvn@3651 1546 // There could be initializing stores which follow allocation.
kvn@3651 1547 // For example, a volatile field store is not collected
kvn@3651 1548 // by Initialize node.
kvn@3651 1549 //
kvn@3651 1550 // Need to check for dependent loads to separate such stores from
kvn@3651 1551 // stores which follow loads. For now, add initial value NULL so
kvn@3651 1552 // that compare pointers optimization works correctly.
kvn@3651 1553 }
kvn@3651 1554 }
kvn@3651 1555 if (value == NULL) {
kvn@3651 1556 // A field's initializing value was not recorded. Add NULL.
kvn@4255 1557 if (add_edge(field, null_obj)) {
kvn@3651 1558 // New edge was added
kvn@3651 1559 new_edges++;
kvn@4255 1560 add_field_uses_to_worklist(field->as_Field());
kvn@3651 1561 }
kvn@3651 1562 }
kvn@3651 1563 }
kvn@3651 1564 }
kvn@3651 1565 }
kvn@3651 1566 return new_edges;
kvn@3651 1567 }
kvn@3651 1568
kvn@3651 1569 // Adjust scalar_replaceable state after Connection Graph is built.
kvn@3651 1570 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
kvn@3651 1571 // Search for non-escaping objects which are not scalar replaceable
kvn@3651 1572 // and mark them to propagate the state to referenced objects.
kvn@3651 1573
kvn@3651 1574 // 1. An object is not scalar replaceable if the field into which it is
kvn@3651 1575 // stored has unknown offset (stored into unknown element of an array).
kvn@3651 1576 //
kvn@3651 1577 for (UseIterator i(jobj); i.has_next(); i.next()) {
kvn@3651 1578 PointsToNode* use = i.get();
kvn@3651 1579 assert(!use->is_Arraycopy(), "sanity");
kvn@3651 1580 if (use->is_Field()) {
kvn@3651 1581 FieldNode* field = use->as_Field();
kvn@3651 1582 assert(field->is_oop() && field->scalar_replaceable() &&
kvn@3651 1583 field->fields_escape_state() == PointsToNode::NoEscape, "sanity");
kvn@3651 1584 if (field->offset() == Type::OffsetBot) {
kvn@3651 1585 jobj->set_scalar_replaceable(false);
kvn@3651 1586 return;
kvn@3651 1587 }
iveresov@6210 1588 // 2. An object is not scalar replaceable if the field into which it is
iveresov@6210 1589 // stored has multiple bases one of which is null.
iveresov@6210 1590 if (field->base_count() > 1) {
iveresov@6210 1591 for (BaseIterator i(field); i.has_next(); i.next()) {
iveresov@6210 1592 PointsToNode* base = i.get();
iveresov@6210 1593 if (base == null_obj) {
iveresov@6210 1594 jobj->set_scalar_replaceable(false);
iveresov@6210 1595 return;
iveresov@6210 1596 }
iveresov@6210 1597 }
iveresov@6210 1598 }
kvn@3651 1599 }
kvn@3651 1600 assert(use->is_Field() || use->is_LocalVar(), "sanity");
iveresov@6210 1601 // 3. An object is not scalar replaceable if it is merged with other objects.
kvn@3651 1602 for (EdgeIterator j(use); j.has_next(); j.next()) {
kvn@3651 1603 PointsToNode* ptn = j.get();
kvn@3651 1604 if (ptn->is_JavaObject() && ptn != jobj) {
kvn@3651 1605 // Mark all objects.
kvn@3651 1606 jobj->set_scalar_replaceable(false);
kvn@3651 1607 ptn->set_scalar_replaceable(false);
kvn@3651 1608 }
kvn@3651 1609 }
kvn@3651 1610 if (!jobj->scalar_replaceable()) {
kvn@3651 1611 return;
kvn@3651 1612 }
kvn@3651 1613 }
kvn@3651 1614
kvn@3651 1615 for (EdgeIterator j(jobj); j.has_next(); j.next()) {
kvn@3651 1616 // Non-escaping object node should point only to field nodes.
kvn@3651 1617 FieldNode* field = j.get()->as_Field();
kvn@3651 1618 int offset = field->as_Field()->offset();
kvn@3651 1619
iveresov@6210 1620 // 4. An object is not scalar replaceable if it has a field with unknown
kvn@3651 1621 // offset (array's element is accessed in loop).
kvn@3651 1622 if (offset == Type::OffsetBot) {
kvn@3651 1623 jobj->set_scalar_replaceable(false);
kvn@3651 1624 return;
kvn@3651 1625 }
iveresov@6210 1626 // 5. Currently an object is not scalar replaceable if a LoadStore node
kvn@3651 1627 // access its field since the field value is unknown after it.
kvn@3651 1628 //
kvn@3651 1629 Node* n = field->ideal_node();
kvn@3651 1630 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@3651 1631 if (n->fast_out(i)->is_LoadStore()) {
kvn@3651 1632 jobj->set_scalar_replaceable(false);
kvn@3651 1633 return;
kvn@3651 1634 }
kvn@3651 1635 }
kvn@3651 1636
iveresov@6210 1637 // 6. Or the address may point to more then one object. This may produce
kvn@3651 1638 // the false positive result (set not scalar replaceable)
kvn@3651 1639 // since the flow-insensitive escape analysis can't separate
kvn@3651 1640 // the case when stores overwrite the field's value from the case
kvn@3651 1641 // when stores happened on different control branches.
kvn@3651 1642 //
kvn@3651 1643 // Note: it will disable scalar replacement in some cases:
kvn@3651 1644 //
kvn@3651 1645 // Point p[] = new Point[1];
kvn@3651 1646 // p[0] = new Point(); // Will be not scalar replaced
kvn@3651 1647 //
kvn@3651 1648 // but it will save us from incorrect optimizations in next cases:
kvn@3651 1649 //
kvn@3651 1650 // Point p[] = new Point[1];
kvn@3651 1651 // if ( x ) p[0] = new Point(); // Will be not scalar replaced
kvn@3651 1652 //
kvn@3651 1653 if (field->base_count() > 1) {
kvn@3651 1654 for (BaseIterator i(field); i.has_next(); i.next()) {
kvn@3651 1655 PointsToNode* base = i.get();
kvn@3651 1656 // Don't take into account LocalVar nodes which
kvn@3651 1657 // may point to only one object which should be also
kvn@3651 1658 // this field's base by now.
kvn@3651 1659 if (base->is_JavaObject() && base != jobj) {
kvn@3651 1660 // Mark all bases.
kvn@3651 1661 jobj->set_scalar_replaceable(false);
kvn@3651 1662 base->set_scalar_replaceable(false);
kvn@3651 1663 }
kvn@3651 1664 }
kvn@3651 1665 }
kvn@3651 1666 }
kvn@3651 1667 }
kvn@3651 1668
kvn@3651 1669 #ifdef ASSERT
kvn@3651 1670 void ConnectionGraph::verify_connection_graph(
kvn@3651 1671 GrowableArray<PointsToNode*>& ptnodes_worklist,
kvn@3651 1672 GrowableArray<JavaObjectNode*>& non_escaped_worklist,
kvn@3651 1673 GrowableArray<JavaObjectNode*>& java_objects_worklist,
kvn@3651 1674 GrowableArray<Node*>& addp_worklist) {
kvn@3651 1675 // Verify that graph is complete - no new edges could be added.
kvn@3651 1676 int java_objects_length = java_objects_worklist.length();
kvn@3651 1677 int non_escaped_length = non_escaped_worklist.length();
kvn@3651 1678 int new_edges = 0;
kvn@3651 1679 for (int next = 0; next < java_objects_length; ++next) {
kvn@3651 1680 JavaObjectNode* ptn = java_objects_worklist.at(next);
kvn@3651 1681 new_edges += add_java_object_edges(ptn, true);
kvn@3651 1682 }
kvn@3651 1683 assert(new_edges == 0, "graph was not complete");
kvn@3651 1684 // Verify that escape state is final.
kvn@3651 1685 int length = non_escaped_worklist.length();
kvn@3651 1686 find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
kvn@3651 1687 assert((non_escaped_length == non_escaped_worklist.length()) &&
kvn@3651 1688 (non_escaped_length == length) &&
kvn@3651 1689 (_worklist.length() == 0), "escape state was not final");
kvn@3651 1690
kvn@3651 1691 // Verify fields information.
kvn@3651 1692 int addp_length = addp_worklist.length();
kvn@3651 1693 for (int next = 0; next < addp_length; ++next ) {
kvn@3651 1694 Node* n = addp_worklist.at(next);
kvn@3651 1695 FieldNode* field = ptnode_adr(n->_idx)->as_Field();
kvn@3651 1696 if (field->is_oop()) {
kvn@3651 1697 // Verify that field has all bases
kvn@3651 1698 Node* base = get_addp_base(n);
kvn@3651 1699 PointsToNode* ptn = ptnode_adr(base->_idx);
kvn@3651 1700 if (ptn->is_JavaObject()) {
kvn@3651 1701 assert(field->has_base(ptn->as_JavaObject()), "sanity");
kvn@3651 1702 } else {
kvn@3651 1703 assert(ptn->is_LocalVar(), "sanity");
kvn@3651 1704 for (EdgeIterator i(ptn); i.has_next(); i.next()) {
kvn@3651 1705 PointsToNode* e = i.get();
kvn@3651 1706 if (e->is_JavaObject()) {
kvn@3651 1707 assert(field->has_base(e->as_JavaObject()), "sanity");
kvn@3651 1708 }
kvn@3651 1709 }
kvn@3651 1710 }
kvn@3651 1711 // Verify that all fields have initializing values.
kvn@3651 1712 if (field->edge_count() == 0) {
kvn@4255 1713 tty->print_cr("----------field does not have references----------");
kvn@3651 1714 field->dump();
kvn@4255 1715 for (BaseIterator i(field); i.has_next(); i.next()) {
kvn@4255 1716 PointsToNode* base = i.get();
kvn@4255 1717 tty->print_cr("----------field has next base---------------------");
kvn@4255 1718 base->dump();
kvn@4255 1719 if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
kvn@4255 1720 tty->print_cr("----------base has fields-------------------------");
kvn@4255 1721 for (EdgeIterator j(base); j.has_next(); j.next()) {
kvn@4255 1722 j.get()->dump();
kvn@4255 1723 }
kvn@4255 1724 tty->print_cr("----------base has references---------------------");
kvn@4255 1725 for (UseIterator j(base); j.has_next(); j.next()) {
kvn@4255 1726 j.get()->dump();
kvn@4255 1727 }
kvn@4255 1728 }
kvn@4255 1729 }
kvn@4255 1730 for (UseIterator i(field); i.has_next(); i.next()) {
kvn@4255 1731 i.get()->dump();
kvn@4255 1732 }
kvn@3651 1733 assert(field->edge_count() > 0, "sanity");
kvn@3651 1734 }
kvn@3651 1735 }
kvn@3651 1736 }
kvn@3651 1737 }
kvn@3651 1738 #endif
kvn@3651 1739
kvn@3651 1740 // Optimize ideal graph.
kvn@3651 1741 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
kvn@3651 1742 GrowableArray<Node*>& storestore_worklist) {
kvn@3651 1743 Compile* C = _compile;
kvn@3651 1744 PhaseIterGVN* igvn = _igvn;
kvn@3651 1745 if (EliminateLocks) {
kvn@3651 1746 // Mark locks before changing ideal graph.
kvn@3651 1747 int cnt = C->macro_count();
kvn@3651 1748 for( int i=0; i < cnt; i++ ) {
kvn@3651 1749 Node *n = C->macro_node(i);
kvn@3651 1750 if (n->is_AbstractLock()) { // Lock and Unlock nodes
kvn@3651 1751 AbstractLockNode* alock = n->as_AbstractLock();
kvn@3651 1752 if (!alock->is_non_esc_obj()) {
kvn@3651 1753 if (not_global_escape(alock->obj_node())) {
kvn@3651 1754 assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
kvn@3651 1755 // The lock could be marked eliminated by lock coarsening
kvn@3651 1756 // code during first IGVN before EA. Replace coarsened flag
kvn@3651 1757 // to eliminate all associated locks/unlocks.
kvn@3651 1758 alock->set_non_esc_obj();
kvn@3651 1759 }
kvn@3651 1760 }
kvn@3651 1761 }
kvn@3651 1762 }
kvn@3651 1763 }
kvn@3651 1764
kvn@3651 1765 if (OptimizePtrCompare) {
kvn@3651 1766 // Add ConI(#CC_GT) and ConI(#CC_EQ).
kvn@3651 1767 _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
kvn@3651 1768 _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
kvn@3651 1769 // Optimize objects compare.
kvn@3651 1770 while (ptr_cmp_worklist.length() != 0) {
kvn@3651 1771 Node *n = ptr_cmp_worklist.pop();
kvn@3651 1772 Node *res = optimize_ptr_compare(n);
kvn@3651 1773 if (res != NULL) {
kvn@3651 1774 #ifndef PRODUCT
kvn@3651 1775 if (PrintOptimizePtrCompare) {
kvn@3651 1776 tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
kvn@3651 1777 if (Verbose) {
kvn@3651 1778 n->dump(1);
kvn@3651 1779 }
kvn@3651 1780 }
kvn@3651 1781 #endif
kvn@3651 1782 igvn->replace_node(n, res);
kvn@3651 1783 }
kvn@3651 1784 }
kvn@3651 1785 // cleanup
kvn@3651 1786 if (_pcmp_neq->outcnt() == 0)
kvn@3651 1787 igvn->hash_delete(_pcmp_neq);
kvn@3651 1788 if (_pcmp_eq->outcnt() == 0)
kvn@3651 1789 igvn->hash_delete(_pcmp_eq);
kvn@3651 1790 }
kvn@3651 1791
kvn@3651 1792 // For MemBarStoreStore nodes added in library_call.cpp, check
kvn@3651 1793 // escape status of associated AllocateNode and optimize out
kvn@3651 1794 // MemBarStoreStore node if the allocated object never escapes.
kvn@3651 1795 while (storestore_worklist.length() != 0) {
kvn@3651 1796 Node *n = storestore_worklist.pop();
kvn@3651 1797 MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
kvn@3651 1798 Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
kvn@3651 1799 assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
kvn@3651 1800 if (not_global_escape(alloc)) {
kvn@3651 1801 MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
kvn@3651 1802 mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
kvn@3651 1803 mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
kvn@3651 1804 igvn->register_new_node_with_optimizer(mb);
kvn@3651 1805 igvn->replace_node(storestore, mb);
kvn@3651 1806 }
kvn@3651 1807 }
kvn@3651 1808 }
kvn@3651 1809
kvn@3651 1810 // Optimize objects compare.
kvn@3651 1811 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
kvn@3651 1812 assert(OptimizePtrCompare, "sanity");
kvn@3651 1813 PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
kvn@3651 1814 PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
kvn@3651 1815 JavaObjectNode* jobj1 = unique_java_object(n->in(1));
kvn@3651 1816 JavaObjectNode* jobj2 = unique_java_object(n->in(2));
kvn@3651 1817 assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
kvn@3651 1818 assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
kvn@3651 1819
kvn@3651 1820 // Check simple cases first.
kvn@3651 1821 if (jobj1 != NULL) {
kvn@3651 1822 if (jobj1->escape_state() == PointsToNode::NoEscape) {
kvn@3651 1823 if (jobj1 == jobj2) {
kvn@3651 1824 // Comparing the same not escaping object.
kvn@3651 1825 return _pcmp_eq;
kvn@3651 1826 }
kvn@3651 1827 Node* obj = jobj1->ideal_node();
kvn@3651 1828 // Comparing not escaping allocation.
kvn@3651 1829 if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
kvn@3651 1830 !ptn2->points_to(jobj1)) {
kvn@3651 1831 return _pcmp_neq; // This includes nullness check.
kvn@3651 1832 }
kvn@3651 1833 }
kvn@3651 1834 }
kvn@3651 1835 if (jobj2 != NULL) {
kvn@3651 1836 if (jobj2->escape_state() == PointsToNode::NoEscape) {
kvn@3651 1837 Node* obj = jobj2->ideal_node();
kvn@3651 1838 // Comparing not escaping allocation.
kvn@3651 1839 if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
kvn@3651 1840 !ptn1->points_to(jobj2)) {
kvn@3651 1841 return _pcmp_neq; // This includes nullness check.
kvn@3651 1842 }
kvn@3651 1843 }
kvn@3651 1844 }
kvn@3651 1845 if (jobj1 != NULL && jobj1 != phantom_obj &&
kvn@3651 1846 jobj2 != NULL && jobj2 != phantom_obj &&
kvn@3651 1847 jobj1->ideal_node()->is_Con() &&
kvn@3651 1848 jobj2->ideal_node()->is_Con()) {
kvn@3651 1849 // Klass or String constants compare. Need to be careful with
kvn@3651 1850 // compressed pointers - compare types of ConN and ConP instead of nodes.
kvn@5111 1851 const Type* t1 = jobj1->ideal_node()->get_ptr_type();
kvn@5111 1852 const Type* t2 = jobj2->ideal_node()->get_ptr_type();
kvn@3651 1853 if (t1->make_ptr() == t2->make_ptr()) {
kvn@3651 1854 return _pcmp_eq;
kvn@3651 1855 } else {
kvn@3651 1856 return _pcmp_neq;
kvn@3651 1857 }
kvn@3651 1858 }
kvn@3651 1859 if (ptn1->meet(ptn2)) {
kvn@3651 1860 return NULL; // Sets are not disjoint
kvn@3651 1861 }
kvn@3651 1862
kvn@3651 1863 // Sets are disjoint.
kvn@3651 1864 bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
kvn@3651 1865 bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
kvn@3651 1866 bool set1_has_null_ptr = ptn1->points_to(null_obj);
kvn@3651 1867 bool set2_has_null_ptr = ptn2->points_to(null_obj);
kvn@3651 1868 if (set1_has_unknown_ptr && set2_has_null_ptr ||
kvn@3651 1869 set2_has_unknown_ptr && set1_has_null_ptr) {
kvn@3651 1870 // Check nullness of unknown object.
kvn@3651 1871 return NULL;
kvn@3651 1872 }
kvn@3651 1873
kvn@3651 1874 // Disjointness by itself is not sufficient since
kvn@3651 1875 // alias analysis is not complete for escaped objects.
kvn@3651 1876 // Disjoint sets are definitely unrelated only when
kvn@3651 1877 // at least one set has only not escaping allocations.
kvn@3651 1878 if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
kvn@3651 1879 if (ptn1->non_escaping_allocation()) {
kvn@3651 1880 return _pcmp_neq;
kvn@3651 1881 }
kvn@3651 1882 }
kvn@3651 1883 if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
kvn@3651 1884 if (ptn2->non_escaping_allocation()) {
kvn@3651 1885 return _pcmp_neq;
kvn@3651 1886 }
kvn@3651 1887 }
kvn@3651 1888 return NULL;
kvn@3651 1889 }
kvn@3651 1890
kvn@3651 1891 // Connection Graph constuction functions.
kvn@3651 1892
kvn@3651 1893 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
kvn@3651 1894 PointsToNode* ptadr = _nodes.at(n->_idx);
kvn@3651 1895 if (ptadr != NULL) {
kvn@3651 1896 assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
kvn@3651 1897 return;
kvn@3651 1898 }
kvn@3651 1899 Compile* C = _compile;
kvn@3651 1900 ptadr = new (C->comp_arena()) LocalVarNode(C, n, es);
kvn@3651 1901 _nodes.at_put(n->_idx, ptadr);
kvn@3651 1902 }
kvn@3651 1903
kvn@3651 1904 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
kvn@3651 1905 PointsToNode* ptadr = _nodes.at(n->_idx);
kvn@3651 1906 if (ptadr != NULL) {
kvn@3651 1907 assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
kvn@3651 1908 return;
kvn@3651 1909 }
kvn@3651 1910 Compile* C = _compile;
kvn@3651 1911 ptadr = new (C->comp_arena()) JavaObjectNode(C, n, es);
kvn@3651 1912 _nodes.at_put(n->_idx, ptadr);
kvn@3651 1913 }
kvn@3651 1914
kvn@3651 1915 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
kvn@3651 1916 PointsToNode* ptadr = _nodes.at(n->_idx);
kvn@3651 1917 if (ptadr != NULL) {
kvn@3651 1918 assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
kvn@3651 1919 return;
kvn@3651 1920 }
twisti@3969 1921 bool unsafe = false;
twisti@3969 1922 bool is_oop = is_oop_field(n, offset, &unsafe);
twisti@3969 1923 if (unsafe) {
twisti@3969 1924 es = PointsToNode::GlobalEscape;
twisti@3969 1925 }
kvn@3651 1926 Compile* C = _compile;
kvn@3651 1927 FieldNode* field = new (C->comp_arena()) FieldNode(C, n, es, offset, is_oop);
kvn@3651 1928 _nodes.at_put(n->_idx, field);
kvn@3651 1929 }
kvn@3651 1930
kvn@3651 1931 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
kvn@3651 1932 PointsToNode* src, PointsToNode* dst) {
kvn@3651 1933 assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
kvn@3651 1934 assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
kvn@3651 1935 PointsToNode* ptadr = _nodes.at(n->_idx);
kvn@3651 1936 if (ptadr != NULL) {
kvn@3651 1937 assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
kvn@3651 1938 return;
kvn@3651 1939 }
kvn@3651 1940 Compile* C = _compile;
kvn@3651 1941 ptadr = new (C->comp_arena()) ArraycopyNode(C, n, es);
kvn@3651 1942 _nodes.at_put(n->_idx, ptadr);
kvn@3651 1943 // Add edge from arraycopy node to source object.
kvn@3651 1944 (void)add_edge(ptadr, src);
kvn@3651 1945 src->set_arraycopy_src();
kvn@3651 1946 // Add edge from destination object to arraycopy node.
kvn@3651 1947 (void)add_edge(dst, ptadr);
kvn@3651 1948 dst->set_arraycopy_dst();
kvn@3651 1949 }
kvn@3651 1950
twisti@3969 1951 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
kvn@3651 1952 const Type* adr_type = n->as_AddP()->bottom_type();
kvn@3651 1953 BasicType bt = T_INT;
kvn@3651 1954 if (offset == Type::OffsetBot) {
kvn@3651 1955 // Check only oop fields.
kvn@3651 1956 if (!adr_type->isa_aryptr() ||
kvn@3651 1957 (adr_type->isa_aryptr()->klass() == NULL) ||
kvn@3651 1958 adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
kvn@3651 1959 // OffsetBot is used to reference array's element. Ignore first AddP.
kvn@3651 1960 if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
kvn@3651 1961 bt = T_OBJECT;
kvn@3651 1962 }
kvn@3651 1963 }
kvn@3651 1964 } else if (offset != oopDesc::klass_offset_in_bytes()) {
kvn@3651 1965 if (adr_type->isa_instptr()) {
kvn@3651 1966 ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
kvn@3651 1967 if (field != NULL) {
kvn@3651 1968 bt = field->layout_type();
kvn@3651 1969 } else {
twisti@3969 1970 // Check for unsafe oop field access
twisti@3969 1971 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
twisti@3969 1972 int opcode = n->fast_out(i)->Opcode();
twisti@3969 1973 if (opcode == Op_StoreP || opcode == Op_LoadP ||
twisti@3969 1974 opcode == Op_StoreN || opcode == Op_LoadN) {
twisti@3969 1975 bt = T_OBJECT;
twisti@3969 1976 (*unsafe) = true;
twisti@3969 1977 break;
twisti@3969 1978 }
twisti@3969 1979 }
kvn@3651 1980 }
kvn@3651 1981 } else if (adr_type->isa_aryptr()) {
kvn@3651 1982 if (offset == arrayOopDesc::length_offset_in_bytes()) {
kvn@3651 1983 // Ignore array length load.
kvn@3651 1984 } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
kvn@3651 1985 // Ignore first AddP.
kvn@3651 1986 } else {
kvn@3651 1987 const Type* elemtype = adr_type->isa_aryptr()->elem();
kvn@3651 1988 bt = elemtype->array_element_basic_type();
kvn@3651 1989 }
kvn@3651 1990 } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
kvn@3651 1991 // Allocation initialization, ThreadLocal field access, unsafe access
kvn@3651 1992 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@3651 1993 int opcode = n->fast_out(i)->Opcode();
kvn@3651 1994 if (opcode == Op_StoreP || opcode == Op_LoadP ||
kvn@3651 1995 opcode == Op_StoreN || opcode == Op_LoadN) {
kvn@3651 1996 bt = T_OBJECT;
twisti@3969 1997 break;
kvn@3651 1998 }
kvn@3651 1999 }
kvn@3651 2000 }
kvn@3651 2001 }
kvn@3651 2002 return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
kvn@3651 2003 }
kvn@3651 2004
kvn@3651 2005 // Returns unique pointed java object or NULL.
kvn@3651 2006 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
kvn@3651 2007 assert(!_collecting, "should not call when contructed graph");
kvn@3651 2008 // If the node was created after the escape computation we can't answer.
kvn@3651 2009 uint idx = n->_idx;
kvn@3651 2010 if (idx >= nodes_size()) {
kvn@3651 2011 return NULL;
kvn@3651 2012 }
kvn@3651 2013 PointsToNode* ptn = ptnode_adr(idx);
kvn@3651 2014 if (ptn->is_JavaObject()) {
kvn@3651 2015 return ptn->as_JavaObject();
kvn@3651 2016 }
kvn@3651 2017 assert(ptn->is_LocalVar(), "sanity");
kvn@3651 2018 // Check all java objects it points to.
kvn@3651 2019 JavaObjectNode* jobj = NULL;
kvn@3651 2020 for (EdgeIterator i(ptn); i.has_next(); i.next()) {
kvn@3651 2021 PointsToNode* e = i.get();
kvn@3651 2022 if (e->is_JavaObject()) {
kvn@3651 2023 if (jobj == NULL) {
kvn@3651 2024 jobj = e->as_JavaObject();
kvn@3651 2025 } else if (jobj != e) {
kvn@3651 2026 return NULL;
kvn@3651 2027 }
kvn@3651 2028 }
kvn@3651 2029 }
kvn@3651 2030 return jobj;
kvn@3651 2031 }
kvn@3651 2032
kvn@3651 2033 // Return true if this node points only to non-escaping allocations.
kvn@3651 2034 bool PointsToNode::non_escaping_allocation() {
kvn@3651 2035 if (is_JavaObject()) {
kvn@3651 2036 Node* n = ideal_node();
kvn@3651 2037 if (n->is_Allocate() || n->is_CallStaticJava()) {
kvn@3651 2038 return (escape_state() == PointsToNode::NoEscape);
kvn@3651 2039 } else {
kvn@3651 2040 return false;
kvn@3651 2041 }
kvn@3651 2042 }
kvn@3651 2043 assert(is_LocalVar(), "sanity");
kvn@3651 2044 // Check all java objects it points to.
kvn@3651 2045 for (EdgeIterator i(this); i.has_next(); i.next()) {
kvn@3651 2046 PointsToNode* e = i.get();
kvn@3651 2047 if (e->is_JavaObject()) {
kvn@3651 2048 Node* n = e->ideal_node();
kvn@3651 2049 if ((e->escape_state() != PointsToNode::NoEscape) ||
kvn@3651 2050 !(n->is_Allocate() || n->is_CallStaticJava())) {
kvn@3651 2051 return false;
kvn@3651 2052 }
kvn@3651 2053 }
kvn@3651 2054 }
kvn@3651 2055 return true;
kvn@3651 2056 }
kvn@3651 2057
kvn@3651 2058 // Return true if we know the node does not escape globally.
kvn@3651 2059 bool ConnectionGraph::not_global_escape(Node *n) {
kvn@3651 2060 assert(!_collecting, "should not call during graph construction");
kvn@3651 2061 // If the node was created after the escape computation we can't answer.
kvn@3651 2062 uint idx = n->_idx;
kvn@3651 2063 if (idx >= nodes_size()) {
kvn@3651 2064 return false;
kvn@3651 2065 }
kvn@3651 2066 PointsToNode* ptn = ptnode_adr(idx);
kvn@3651 2067 PointsToNode::EscapeState es = ptn->escape_state();
kvn@3651 2068 // If we have already computed a value, return it.
kvn@3651 2069 if (es >= PointsToNode::GlobalEscape)
kvn@3651 2070 return false;
kvn@3651 2071 if (ptn->is_JavaObject()) {
kvn@3651 2072 return true; // (es < PointsToNode::GlobalEscape);
kvn@3651 2073 }
kvn@3651 2074 assert(ptn->is_LocalVar(), "sanity");
kvn@3651 2075 // Check all java objects it points to.
kvn@3651 2076 for (EdgeIterator i(ptn); i.has_next(); i.next()) {
kvn@3651 2077 if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
kvn@3651 2078 return false;
kvn@3651 2079 }
kvn@3651 2080 return true;
kvn@3651 2081 }
kvn@3651 2082
kvn@3651 2083
kvn@3651 2084 // Helper functions
kvn@3651 2085
kvn@3651 2086 // Return true if this node points to specified node or nodes it points to.
kvn@3651 2087 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
kvn@3651 2088 if (is_JavaObject()) {
kvn@3651 2089 return (this == ptn);
kvn@3651 2090 }
kvn@4255 2091 assert(is_LocalVar() || is_Field(), "sanity");
kvn@3651 2092 for (EdgeIterator i(this); i.has_next(); i.next()) {
kvn@3651 2093 if (i.get() == ptn)
kvn@3651 2094 return true;
kvn@3651 2095 }
kvn@3651 2096 return false;
kvn@3651 2097 }
kvn@3651 2098
kvn@3651 2099 // Return true if one node points to an other.
kvn@3651 2100 bool PointsToNode::meet(PointsToNode* ptn) {
kvn@3651 2101 if (this == ptn) {
kvn@3651 2102 return true;
kvn@3651 2103 } else if (ptn->is_JavaObject()) {
kvn@3651 2104 return this->points_to(ptn->as_JavaObject());
kvn@3651 2105 } else if (this->is_JavaObject()) {
kvn@3651 2106 return ptn->points_to(this->as_JavaObject());
kvn@3651 2107 }
kvn@3651 2108 assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
kvn@3651 2109 int ptn_count = ptn->edge_count();
kvn@3651 2110 for (EdgeIterator i(this); i.has_next(); i.next()) {
kvn@3651 2111 PointsToNode* this_e = i.get();
kvn@3651 2112 for (int j = 0; j < ptn_count; j++) {
kvn@3651 2113 if (this_e == ptn->edge(j))
kvn@3651 2114 return true;
kvn@3651 2115 }
kvn@3651 2116 }
kvn@3651 2117 return false;
kvn@3651 2118 }
kvn@3651 2119
kvn@3651 2120 #ifdef ASSERT
kvn@3651 2121 // Return true if bases point to this java object.
kvn@3651 2122 bool FieldNode::has_base(JavaObjectNode* jobj) const {
kvn@3651 2123 for (BaseIterator i(this); i.has_next(); i.next()) {
kvn@3651 2124 if (i.get() == jobj)
kvn@3651 2125 return true;
kvn@3651 2126 }
kvn@3651 2127 return false;
kvn@3651 2128 }
kvn@3651 2129 #endif
kvn@3651 2130
kvn@500 2131 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
kvn@500 2132 const Type *adr_type = phase->type(adr);
kvn@500 2133 if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
kvn@500 2134 adr->in(AddPNode::Address)->is_Proj() &&
kvn@500 2135 adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
kvn@500 2136 // We are computing a raw address for a store captured by an Initialize
kvn@500 2137 // compute an appropriate address type. AddP cases #3 and #5 (see below).
kvn@500 2138 int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 2139 assert(offs != Type::OffsetBot ||
kvn@500 2140 adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
kvn@500 2141 "offset must be a constant or it is initialization of array");
kvn@500 2142 return offs;
kvn@500 2143 }
kvn@500 2144 const TypePtr *t_ptr = adr_type->isa_ptr();
duke@435 2145 assert(t_ptr != NULL, "must be a pointer type");
duke@435 2146 return t_ptr->offset();
duke@435 2147 }
duke@435 2148
kvn@3651 2149 Node* ConnectionGraph::get_addp_base(Node *addp) {
kvn@500 2150 assert(addp->is_AddP(), "must be AddP");
kvn@500 2151 //
kvn@500 2152 // AddP cases for Base and Address inputs:
kvn@500 2153 // case #1. Direct object's field reference:
kvn@500 2154 // Allocate
kvn@500 2155 // |
kvn@500 2156 // Proj #5 ( oop result )
kvn@500 2157 // |
kvn@500 2158 // CheckCastPP (cast to instance type)
kvn@500 2159 // | |
kvn@500 2160 // AddP ( base == address )
kvn@500 2161 //
kvn@500 2162 // case #2. Indirect object's field reference:
kvn@500 2163 // Phi
kvn@500 2164 // |
kvn@500 2165 // CastPP (cast to instance type)
kvn@500 2166 // | |
kvn@500 2167 // AddP ( base == address )
kvn@500 2168 //
kvn@500 2169 // case #3. Raw object's field reference for Initialize node:
kvn@500 2170 // Allocate
kvn@500 2171 // |
kvn@500 2172 // Proj #5 ( oop result )
kvn@500 2173 // top |
kvn@500 2174 // \ |
kvn@500 2175 // AddP ( base == top )
kvn@500 2176 //
kvn@500 2177 // case #4. Array's element reference:
kvn@500 2178 // {CheckCastPP | CastPP}
kvn@500 2179 // | | |
kvn@500 2180 // | AddP ( array's element offset )
kvn@500 2181 // | |
kvn@500 2182 // AddP ( array's offset )
kvn@500 2183 //
kvn@500 2184 // case #5. Raw object's field reference for arraycopy stub call:
kvn@500 2185 // The inline_native_clone() case when the arraycopy stub is called
kvn@500 2186 // after the allocation before Initialize and CheckCastPP nodes.
kvn@500 2187 // Allocate
kvn@500 2188 // |
kvn@500 2189 // Proj #5 ( oop result )
kvn@500 2190 // | |
kvn@500 2191 // AddP ( base == address )
kvn@500 2192 //
kvn@512 2193 // case #6. Constant Pool, ThreadLocal, CastX2P or
kvn@512 2194 // Raw object's field reference:
kvn@512 2195 // {ConP, ThreadLocal, CastX2P, raw Load}
kvn@500 2196 // top |
kvn@500 2197 // \ |
kvn@500 2198 // AddP ( base == top )
kvn@500 2199 //
kvn@512 2200 // case #7. Klass's field reference.
kvn@512 2201 // LoadKlass
kvn@512 2202 // | |
kvn@512 2203 // AddP ( base == address )
kvn@512 2204 //
kvn@599 2205 // case #8. narrow Klass's field reference.
kvn@599 2206 // LoadNKlass
kvn@599 2207 // |
kvn@599 2208 // DecodeN
kvn@599 2209 // | |
kvn@599 2210 // AddP ( base == address )
kvn@599 2211 //
kvn@3651 2212 Node *base = addp->in(AddPNode::Base);
kvn@3651 2213 if (base->uncast()->is_top()) { // The AddP case #3 and #6.
kvn@3651 2214 base = addp->in(AddPNode::Address);
kvn@1392 2215 while (base->is_AddP()) {
kvn@1392 2216 // Case #6 (unsafe access) may have several chained AddP nodes.
kvn@3651 2217 assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
kvn@3651 2218 base = base->in(AddPNode::Address);
kvn@1392 2219 }
kvn@3651 2220 Node* uncast_base = base->uncast();
kvn@3651 2221 int opcode = uncast_base->Opcode();
kvn@3651 2222 assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
roland@4159 2223 opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
kvn@5223 2224 (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
kvn@3651 2225 (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
duke@435 2226 }
kvn@500 2227 return base;
kvn@500 2228 }
kvn@500 2229
kvn@3651 2230 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
kvn@500 2231 assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
kvn@500 2232 Node* addp2 = addp->raw_out(0);
kvn@500 2233 if (addp->outcnt() == 1 && addp2->is_AddP() &&
kvn@500 2234 addp2->in(AddPNode::Base) == n &&
kvn@500 2235 addp2->in(AddPNode::Address) == addp) {
kvn@500 2236 assert(addp->in(AddPNode::Base) == n, "expecting the same base");
kvn@500 2237 //
kvn@500 2238 // Find array's offset to push it on worklist first and
kvn@500 2239 // as result process an array's element offset first (pushed second)
kvn@500 2240 // to avoid CastPP for the array's offset.
kvn@500 2241 // Otherwise the inserted CastPP (LocalVar) will point to what
kvn@500 2242 // the AddP (Field) points to. Which would be wrong since
kvn@500 2243 // the algorithm expects the CastPP has the same point as
kvn@500 2244 // as AddP's base CheckCastPP (LocalVar).
kvn@500 2245 //
kvn@500 2246 // ArrayAllocation
kvn@500 2247 // |
kvn@500 2248 // CheckCastPP
kvn@500 2249 // |
kvn@500 2250 // memProj (from ArrayAllocation CheckCastPP)
kvn@500 2251 // | ||
kvn@500 2252 // | || Int (element index)
kvn@500 2253 // | || | ConI (log(element size))
kvn@500 2254 // | || | /
kvn@500 2255 // | || LShift
kvn@500 2256 // | || /
kvn@500 2257 // | AddP (array's element offset)
kvn@500 2258 // | |
kvn@500 2259 // | | ConI (array's offset: #12(32-bits) or #24(64-bits))
kvn@500 2260 // | / /
kvn@500 2261 // AddP (array's offset)
kvn@500 2262 // |
kvn@500 2263 // Load/Store (memory operation on array's element)
kvn@500 2264 //
kvn@500 2265 return addp2;
kvn@500 2266 }
kvn@500 2267 return NULL;
duke@435 2268 }
duke@435 2269
duke@435 2270 //
duke@435 2271 // Adjust the type and inputs of an AddP which computes the
duke@435 2272 // address of a field of an instance
duke@435 2273 //
kvn@3651 2274 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
kvn@3651 2275 PhaseGVN* igvn = _igvn;
kvn@500 2276 const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
kvn@658 2277 assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
duke@435 2278 const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
kvn@500 2279 if (t == NULL) {
kvn@500 2280 // We are computing a raw address for a store captured by an Initialize
kvn@728 2281 // compute an appropriate address type (cases #3 and #5).
kvn@500 2282 assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
kvn@500 2283 assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
kvn@741 2284 intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
kvn@500 2285 assert(offs != Type::OffsetBot, "offset must be a constant");
kvn@500 2286 t = base_t->add_offset(offs)->is_oopptr();
kvn@500 2287 }
kvn@658 2288 int inst_id = base_t->instance_id();
kvn@658 2289 assert(!t->is_known_instance() || t->instance_id() == inst_id,
duke@435 2290 "old type must be non-instance or match new type");
kvn@728 2291
kvn@728 2292 // The type 't' could be subclass of 'base_t'.
kvn@728 2293 // As result t->offset() could be large then base_t's size and it will
kvn@728 2294 // cause the failure in add_offset() with narrow oops since TypeOopPtr()
kvn@728 2295 // constructor verifies correctness of the offset.
kvn@728 2296 //
twisti@1040 2297 // It could happened on subclass's branch (from the type profiling
kvn@728 2298 // inlining) which was not eliminated during parsing since the exactness
kvn@728 2299 // of the allocation type was not propagated to the subclass type check.
kvn@728 2300 //
kvn@1423 2301 // Or the type 't' could be not related to 'base_t' at all.
kvn@1423 2302 // It could happened when CHA type is different from MDO type on a dead path
kvn@1423 2303 // (for example, from instanceof check) which is not collapsed during parsing.
kvn@1423 2304 //
kvn@728 2305 // Do nothing for such AddP node and don't process its users since
kvn@728 2306 // this code branch will go away.
kvn@728 2307 //
kvn@728 2308 if (!t->is_known_instance() &&
kvn@1423 2309 !base_t->klass()->is_subtype_of(t->klass())) {
kvn@728 2310 return false; // bail out
kvn@728 2311 }
duke@435 2312 const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
kvn@1497 2313 // Do NOT remove the next line: ensure a new alias index is allocated
kvn@1497 2314 // for the instance type. Note: C++ will not remove it since the call
kvn@1497 2315 // has side effect.
duke@435 2316 int alias_idx = _compile->get_alias_index(tinst);
duke@435 2317 igvn->set_type(addp, tinst);
duke@435 2318 // record the allocation in the node map
kvn@3651 2319 set_map(addp, get_map(base->_idx));
kvn@688 2320 // Set addp's Base and Address to 'base'.
kvn@688 2321 Node *abase = addp->in(AddPNode::Base);
kvn@688 2322 Node *adr = addp->in(AddPNode::Address);
kvn@688 2323 if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
kvn@688 2324 adr->in(0)->_idx == (uint)inst_id) {
kvn@688 2325 // Skip AddP cases #3 and #5.
kvn@688 2326 } else {
kvn@688 2327 assert(!abase->is_top(), "sanity"); // AddP case #3
kvn@688 2328 if (abase != base) {
kvn@688 2329 igvn->hash_delete(addp);
kvn@688 2330 addp->set_req(AddPNode::Base, base);
kvn@688 2331 if (abase == adr) {
kvn@688 2332 addp->set_req(AddPNode::Address, base);
kvn@688 2333 } else {
kvn@688 2334 // AddP case #4 (adr is array's element offset AddP node)
kvn@688 2335 #ifdef ASSERT
kvn@688 2336 const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
kvn@688 2337 assert(adr->is_AddP() && atype != NULL &&
kvn@688 2338 atype->instance_id() == inst_id, "array's element offset should be processed first");
kvn@688 2339 #endif
kvn@688 2340 }
kvn@688 2341 igvn->hash_insert(addp);
duke@435 2342 }
duke@435 2343 }
kvn@500 2344 // Put on IGVN worklist since at least addp's type was changed above.
kvn@500 2345 record_for_optimizer(addp);
kvn@728 2346 return true;
duke@435 2347 }
duke@435 2348
duke@435 2349 //
duke@435 2350 // Create a new version of orig_phi if necessary. Returns either the newly
kvn@2741 2351 // created phi or an existing phi. Sets create_new to indicate whether a new
duke@435 2352 // phi was created. Cache the last newly created phi in the node map.
duke@435 2353 //
kvn@3651 2354 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist, bool &new_created) {
duke@435 2355 Compile *C = _compile;
kvn@3651 2356 PhaseGVN* igvn = _igvn;
duke@435 2357 new_created = false;
duke@435 2358 int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
duke@435 2359 // nothing to do if orig_phi is bottom memory or matches alias_idx
kvn@500 2360 if (phi_alias_idx == alias_idx) {
duke@435 2361 return orig_phi;
duke@435 2362 }
kvn@1286 2363 // Have we recently created a Phi for this alias index?
duke@435 2364 PhiNode *result = get_map_phi(orig_phi->_idx);
duke@435 2365 if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
duke@435 2366 return result;
duke@435 2367 }
kvn@1286 2368 // Previous check may fail when the same wide memory Phi was split into Phis
kvn@1286 2369 // for different memory slices. Search all Phis for this region.
kvn@1286 2370 if (result != NULL) {
kvn@1286 2371 Node* region = orig_phi->in(0);
kvn@1286 2372 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
kvn@1286 2373 Node* phi = region->fast_out(i);
kvn@1286 2374 if (phi->is_Phi() &&
kvn@1286 2375 C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
kvn@1286 2376 assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
kvn@1286 2377 return phi->as_Phi();
kvn@1286 2378 }
kvn@1286 2379 }
kvn@1286 2380 }
bharadwaj@4315 2381 if ((int) (C->live_nodes() + 2*NodeLimitFudgeFactor) > MaxNodeLimit) {
kvn@473 2382 if (C->do_escape_analysis() == true && !C->failing()) {
kvn@473 2383 // Retry compilation without escape analysis.
kvn@473 2384 // If this is the first failure, the sentinel string will "stick"
kvn@473 2385 // to the Compile object, and the C2Compiler will see it and retry.
kvn@473 2386 C->record_failure(C2Compiler::retry_no_escape_analysis());
kvn@473 2387 }
kvn@473 2388 return NULL;
kvn@473 2389 }
duke@435 2390 orig_phi_worklist.append_if_missing(orig_phi);
kvn@500 2391 const TypePtr *atype = C->get_adr_type(alias_idx);
duke@435 2392 result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
kvn@1286 2393 C->copy_node_notes_to(result, orig_phi);
duke@435 2394 igvn->set_type(result, result->bottom_type());
duke@435 2395 record_for_optimizer(result);
kvn@3651 2396 set_map(orig_phi, result);
duke@435 2397 new_created = true;
duke@435 2398 return result;
duke@435 2399 }
duke@435 2400
duke@435 2401 //
kvn@2741 2402 // Return a new version of Memory Phi "orig_phi" with the inputs having the
duke@435 2403 // specified alias index.
duke@435 2404 //
kvn@3651 2405 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *> &orig_phi_worklist) {
duke@435 2406 assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
duke@435 2407 Compile *C = _compile;
kvn@3651 2408 PhaseGVN* igvn = _igvn;
duke@435 2409 bool new_phi_created;
kvn@3651 2410 PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
duke@435 2411 if (!new_phi_created) {
duke@435 2412 return result;
duke@435 2413 }
duke@435 2414 GrowableArray<PhiNode *> phi_list;
duke@435 2415 GrowableArray<uint> cur_input;
duke@435 2416 PhiNode *phi = orig_phi;
duke@435 2417 uint idx = 1;
duke@435 2418 bool finished = false;
duke@435 2419 while(!finished) {
duke@435 2420 while (idx < phi->req()) {
kvn@3651 2421 Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
duke@435 2422 if (mem != NULL && mem->is_Phi()) {
kvn@3651 2423 PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
duke@435 2424 if (new_phi_created) {
duke@435 2425 // found an phi for which we created a new split, push current one on worklist and begin
duke@435 2426 // processing new one
duke@435 2427 phi_list.push(phi);
duke@435 2428 cur_input.push(idx);
duke@435 2429 phi = mem->as_Phi();
kvn@500 2430 result = newphi;
duke@435 2431 idx = 1;
duke@435 2432 continue;
duke@435 2433 } else {
kvn@500 2434 mem = newphi;
duke@435 2435 }
duke@435 2436 }
kvn@473 2437 if (C->failing()) {
kvn@473 2438 return NULL;
kvn@473 2439 }
duke@435 2440 result->set_req(idx++, mem);
duke@435 2441 }
duke@435 2442 #ifdef ASSERT
duke@435 2443 // verify that the new Phi has an input for each input of the original
duke@435 2444 assert( phi->req() == result->req(), "must have same number of inputs.");
duke@435 2445 assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
kvn@500 2446 #endif
kvn@500 2447 // Check if all new phi's inputs have specified alias index.
kvn@500 2448 // Otherwise use old phi.
duke@435 2449 for (uint i = 1; i < phi->req(); i++) {
kvn@500 2450 Node* in = result->in(i);
kvn@500 2451 assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
duke@435 2452 }
duke@435 2453 // we have finished processing a Phi, see if there are any more to do
duke@435 2454 finished = (phi_list.length() == 0 );
duke@435 2455 if (!finished) {
duke@435 2456 phi = phi_list.pop();
duke@435 2457 idx = cur_input.pop();
kvn@500 2458 PhiNode *prev_result = get_map_phi(phi->_idx);
kvn@500 2459 prev_result->set_req(idx++, result);
kvn@500 2460 result = prev_result;
duke@435 2461 }
duke@435 2462 }
duke@435 2463 return result;
duke@435 2464 }
duke@435 2465
kvn@500 2466 //
kvn@500 2467 // The next methods are derived from methods in MemNode.
kvn@500 2468 //
kvn@3651 2469 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
kvn@500 2470 Node *mem = mmem;
never@2170 2471 // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
kvn@500 2472 // means an array I have not precisely typed yet. Do not do any
kvn@500 2473 // alias stuff with it any time soon.
kvn@3651 2474 if (toop->base() != Type::AnyPtr &&
never@2170 2475 !(toop->klass() != NULL &&
never@2170 2476 toop->klass()->is_java_lang_Object() &&
kvn@3651 2477 toop->offset() == Type::OffsetBot)) {
kvn@500 2478 mem = mmem->memory_at(alias_idx);
kvn@500 2479 // Update input if it is progress over what we have now
kvn@500 2480 }
kvn@500 2481 return mem;
kvn@500 2482 }
kvn@500 2483
kvn@500 2484 //
kvn@1536 2485 // Move memory users to their memory slices.
kvn@1536 2486 //
kvn@3651 2487 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *> &orig_phis) {
kvn@1536 2488 Compile* C = _compile;
kvn@3651 2489 PhaseGVN* igvn = _igvn;
kvn@1536 2490 const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
kvn@1536 2491 assert(tp != NULL, "ptr type");
kvn@1536 2492 int alias_idx = C->get_alias_index(tp);
kvn@1536 2493 int general_idx = C->get_general_index(alias_idx);
kvn@1536 2494
kvn@1536 2495 // Move users first
kvn@1536 2496 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@1536 2497 Node* use = n->fast_out(i);
kvn@1536 2498 if (use->is_MergeMem()) {
kvn@1536 2499 MergeMemNode* mmem = use->as_MergeMem();
kvn@1536 2500 assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
kvn@1536 2501 if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
kvn@1536 2502 continue; // Nothing to do
kvn@1536 2503 }
kvn@1536 2504 // Replace previous general reference to mem node.
kvn@1536 2505 uint orig_uniq = C->unique();
kvn@3651 2506 Node* m = find_inst_mem(n, general_idx, orig_phis);
kvn@1536 2507 assert(orig_uniq == C->unique(), "no new nodes");
kvn@1536 2508 mmem->set_memory_at(general_idx, m);
kvn@1536 2509 --imax;
kvn@1536 2510 --i;
kvn@1536 2511 } else if (use->is_MemBar()) {
kvn@1536 2512 assert(!use->is_Initialize(), "initializing stores should not be moved");
kvn@1536 2513 if (use->req() > MemBarNode::Precedent &&
kvn@1536 2514 use->in(MemBarNode::Precedent) == n) {
kvn@1536 2515 // Don't move related membars.
kvn@1536 2516 record_for_optimizer(use);
kvn@1536 2517 continue;
kvn@1536 2518 }
kvn@1536 2519 tp = use->as_MemBar()->adr_type()->isa_ptr();
kvn@1536 2520 if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
kvn@1536 2521 alias_idx == general_idx) {
kvn@1536 2522 continue; // Nothing to do
kvn@1536 2523 }
kvn@1536 2524 // Move to general memory slice.
kvn@1536 2525 uint orig_uniq = C->unique();
kvn@3651 2526 Node* m = find_inst_mem(n, general_idx, orig_phis);
kvn@1536 2527 assert(orig_uniq == C->unique(), "no new nodes");
kvn@1536 2528 igvn->hash_delete(use);
kvn@1536 2529 imax -= use->replace_edge(n, m);
kvn@1536 2530 igvn->hash_insert(use);
kvn@1536 2531 record_for_optimizer(use);
kvn@1536 2532 --i;
kvn@1536 2533 #ifdef ASSERT
kvn@1536 2534 } else if (use->is_Mem()) {
kvn@1536 2535 if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
kvn@1536 2536 // Don't move related cardmark.
kvn@1536 2537 continue;
kvn@1536 2538 }
kvn@1536 2539 // Memory nodes should have new memory input.
kvn@1536 2540 tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
kvn@1536 2541 assert(tp != NULL, "ptr type");
kvn@1536 2542 int idx = C->get_alias_index(tp);
kvn@1536 2543 assert(get_map(use->_idx) != NULL || idx == alias_idx,
kvn@1536 2544 "Following memory nodes should have new memory input or be on the same memory slice");
kvn@1536 2545 } else if (use->is_Phi()) {
kvn@1536 2546 // Phi nodes should be split and moved already.
kvn@1536 2547 tp = use->as_Phi()->adr_type()->isa_ptr();
kvn@1536 2548 assert(tp != NULL, "ptr type");
kvn@1536 2549 int idx = C->get_alias_index(tp);
kvn@1536 2550 assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
kvn@1536 2551 } else {
kvn@1536 2552 use->dump();
kvn@1536 2553 assert(false, "should not be here");
kvn@1536 2554 #endif
kvn@1536 2555 }
kvn@1536 2556 }
kvn@1536 2557 }
kvn@1536 2558
kvn@1536 2559 //
kvn@500 2560 // Search memory chain of "mem" to find a MemNode whose address
kvn@500 2561 // is the specified alias index.
kvn@500 2562 //
kvn@3651 2563 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *> &orig_phis) {
kvn@500 2564 if (orig_mem == NULL)
kvn@500 2565 return orig_mem;
kvn@3651 2566 Compile* C = _compile;
kvn@3651 2567 PhaseGVN* igvn = _igvn;
never@2170 2568 const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
never@2170 2569 bool is_instance = (toop != NULL) && toop->is_known_instance();
kvn@688 2570 Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
kvn@500 2571 Node *prev = NULL;
kvn@500 2572 Node *result = orig_mem;
kvn@500 2573 while (prev != result) {
kvn@500 2574 prev = result;
kvn@688 2575 if (result == start_mem)
twisti@1040 2576 break; // hit one of our sentinels
kvn@500 2577 if (result->is_Mem()) {
kvn@3651 2578 const Type *at = igvn->type(result->in(MemNode::Address));
kvn@2741 2579 if (at == Type::TOP)
kvn@2741 2580 break; // Dead
kvn@2741 2581 assert (at->isa_ptr() != NULL, "pointer type required.");
kvn@2741 2582 int idx = C->get_alias_index(at->is_ptr());
kvn@2741 2583 if (idx == alias_idx)
kvn@2741 2584 break; // Found
kvn@2741 2585 if (!is_instance && (at->isa_oopptr() == NULL ||
kvn@2741 2586 !at->is_oopptr()->is_known_instance())) {
kvn@2741 2587 break; // Do not skip store to general memory slice.
kvn@500 2588 }
kvn@688 2589 result = result->in(MemNode::Memory);
kvn@500 2590 }
kvn@500 2591 if (!is_instance)
kvn@500 2592 continue; // don't search further for non-instance types
kvn@500 2593 // skip over a call which does not affect this memory slice
kvn@500 2594 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
kvn@500 2595 Node *proj_in = result->in(0);
never@2170 2596 if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
twisti@1040 2597 break; // hit one of our sentinels
kvn@688 2598 } else if (proj_in->is_Call()) {
kvn@500 2599 CallNode *call = proj_in->as_Call();
kvn@3651 2600 if (!call->may_modify(toop, igvn)) {
kvn@500 2601 result = call->in(TypeFunc::Memory);
kvn@500 2602 }
kvn@500 2603 } else if (proj_in->is_Initialize()) {
kvn@500 2604 AllocateNode* alloc = proj_in->as_Initialize()->allocation();
kvn@500 2605 // Stop if this is the initialization for the object instance which
kvn@500 2606 // which contains this memory slice, otherwise skip over it.
never@2170 2607 if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
kvn@500 2608 result = proj_in->in(TypeFunc::Memory);
kvn@500 2609 }
kvn@500 2610 } else if (proj_in->is_MemBar()) {
kvn@500 2611 result = proj_in->in(TypeFunc::Memory);
kvn@500 2612 }
kvn@500 2613 } else if (result->is_MergeMem()) {
kvn@500 2614 MergeMemNode *mmem = result->as_MergeMem();
never@2170 2615 result = step_through_mergemem(mmem, alias_idx, toop);
kvn@500 2616 if (result == mmem->base_memory()) {
kvn@500 2617 // Didn't find instance memory, search through general slice recursively.
kvn@500 2618 result = mmem->memory_at(C->get_general_index(alias_idx));
kvn@3651 2619 result = find_inst_mem(result, alias_idx, orig_phis);
kvn@500 2620 if (C->failing()) {
kvn@500 2621 return NULL;
kvn@500 2622 }
kvn@500 2623 mmem->set_memory_at(alias_idx, result);
kvn@500 2624 }
kvn@500 2625 } else if (result->is_Phi() &&
kvn@500 2626 C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
kvn@3651 2627 Node *un = result->as_Phi()->unique_input(igvn);
kvn@500 2628 if (un != NULL) {
kvn@1536 2629 orig_phis.append_if_missing(result->as_Phi());
kvn@500 2630 result = un;
kvn@500 2631 } else {
kvn@500 2632 break;
kvn@500 2633 }
kvn@1535 2634 } else if (result->is_ClearArray()) {
kvn@3651 2635 if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
kvn@1535 2636 // Can not bypass initialization of the instance
kvn@1535 2637 // we are looking for.
kvn@1535 2638 break;
kvn@1535 2639 }
kvn@1535 2640 // Otherwise skip it (the call updated 'result' value).
kvn@1019 2641 } else if (result->Opcode() == Op_SCMemProj) {
kvn@4479 2642 Node* mem = result->in(0);
kvn@4479 2643 Node* adr = NULL;
kvn@4479 2644 if (mem->is_LoadStore()) {
kvn@4479 2645 adr = mem->in(MemNode::Address);
kvn@4479 2646 } else {
kvn@4479 2647 assert(mem->Opcode() == Op_EncodeISOArray, "sanity");
kvn@4479 2648 adr = mem->in(3); // Memory edge corresponds to destination array
kvn@4479 2649 }
kvn@4479 2650 const Type *at = igvn->type(adr);
kvn@1019 2651 if (at != Type::TOP) {
kvn@1019 2652 assert (at->isa_ptr() != NULL, "pointer type required.");
kvn@1019 2653 int idx = C->get_alias_index(at->is_ptr());
kvn@1019 2654 assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
kvn@1019 2655 break;
kvn@1019 2656 }
kvn@4479 2657 result = mem->in(MemNode::Memory);
kvn@500 2658 }
kvn@500 2659 }
kvn@682 2660 if (result->is_Phi()) {
kvn@500 2661 PhiNode *mphi = result->as_Phi();
kvn@500 2662 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
kvn@500 2663 const TypePtr *t = mphi->adr_type();
kvn@2741 2664 if (!is_instance) {
kvn@682 2665 // Push all non-instance Phis on the orig_phis worklist to update inputs
kvn@682 2666 // during Phase 4 if needed.
kvn@682 2667 orig_phis.append_if_missing(mphi);
kvn@2741 2668 } else if (C->get_alias_index(t) != alias_idx) {
kvn@2741 2669 // Create a new Phi with the specified alias index type.
kvn@3651 2670 result = split_memory_phi(mphi, alias_idx, orig_phis);
kvn@500 2671 }
kvn@500 2672 }
kvn@500 2673 // the result is either MemNode, PhiNode, InitializeNode.
kvn@500 2674 return result;
kvn@500 2675 }
kvn@500 2676
duke@435 2677 //
duke@435 2678 // Convert the types of unescaped object to instance types where possible,
duke@435 2679 // propagate the new type information through the graph, and update memory
duke@435 2680 // edges and MergeMem inputs to reflect the new type.
duke@435 2681 //
duke@435 2682 // We start with allocations (and calls which may be allocations) on alloc_worklist.
duke@435 2683 // The processing is done in 4 phases:
duke@435 2684 //
duke@435 2685 // Phase 1: Process possible allocations from alloc_worklist. Create instance
duke@435 2686 // types for the CheckCastPP for allocations where possible.
duke@435 2687 // Propagate the the new types through users as follows:
duke@435 2688 // casts and Phi: push users on alloc_worklist
duke@435 2689 // AddP: cast Base and Address inputs to the instance type
duke@435 2690 // push any AddP users on alloc_worklist and push any memnode
duke@435 2691 // users onto memnode_worklist.
duke@435 2692 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 2693 // search the Memory chain for a store with the appropriate type
duke@435 2694 // address type. If a Phi is found, create a new version with
twisti@1040 2695 // the appropriate memory slices from each of the Phi inputs.
duke@435 2696 // For stores, process the users as follows:
duke@435 2697 // MemNode: push on memnode_worklist
duke@435 2698 // MergeMem: push on mergemem_worklist
duke@435 2699 // Phase 3: Process MergeMem nodes from mergemem_worklist. Walk each memory slice
duke@435 2700 // moving the first node encountered of each instance type to the
duke@435 2701 // the input corresponding to its alias index.
duke@435 2702 // appropriate memory slice.
duke@435 2703 // Phase 4: Update the inputs of non-instance memory Phis and the Memory input of memnodes.
duke@435 2704 //
duke@435 2705 // In the following example, the CheckCastPP nodes are the cast of allocation
duke@435 2706 // results and the allocation of node 29 is unescaped and eligible to be an
duke@435 2707 // instance type.
duke@435 2708 //
duke@435 2709 // We start with:
duke@435 2710 //
duke@435 2711 // 7 Parm #memory
duke@435 2712 // 10 ConI "12"
duke@435 2713 // 19 CheckCastPP "Foo"
duke@435 2714 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 2715 // 29 CheckCastPP "Foo"
duke@435 2716 // 30 AddP _ 29 29 10 Foo+12 alias_index=4
duke@435 2717 //
duke@435 2718 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 2719 // 50 StoreP 35 40 30 ... alias_index=4
duke@435 2720 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 2721 // 70 LoadP _ 60 30 ... alias_index=4
duke@435 2722 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 2723 // 90 LoadP _ 80 30 ... alias_index=4
duke@435 2724 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 2725 //
duke@435 2726 //
duke@435 2727 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
duke@435 2728 // and creating a new alias index for node 30. This gives:
duke@435 2729 //
duke@435 2730 // 7 Parm #memory
duke@435 2731 // 10 ConI "12"
duke@435 2732 // 19 CheckCastPP "Foo"
duke@435 2733 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 2734 // 29 CheckCastPP "Foo" iid=24
duke@435 2735 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 2736 //
duke@435 2737 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 2738 // 50 StoreP 35 40 30 ... alias_index=6
duke@435 2739 // 60 StoreP 45 50 20 ... alias_index=4
duke@435 2740 // 70 LoadP _ 60 30 ... alias_index=6
duke@435 2741 // 80 Phi 75 50 60 Memory alias_index=4
duke@435 2742 // 90 LoadP _ 80 30 ... alias_index=6
duke@435 2743 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 2744 //
duke@435 2745 // In phase 2, new memory inputs are computed for the loads and stores,
duke@435 2746 // And a new version of the phi is created. In phase 4, the inputs to
duke@435 2747 // node 80 are updated and then the memory nodes are updated with the
duke@435 2748 // values computed in phase 2. This results in:
duke@435 2749 //
duke@435 2750 // 7 Parm #memory
duke@435 2751 // 10 ConI "12"
duke@435 2752 // 19 CheckCastPP "Foo"
duke@435 2753 // 20 AddP _ 19 19 10 Foo+12 alias_index=4
duke@435 2754 // 29 CheckCastPP "Foo" iid=24
duke@435 2755 // 30 AddP _ 29 29 10 Foo+12 alias_index=6 iid=24
duke@435 2756 //
duke@435 2757 // 40 StoreP 25 7 20 ... alias_index=4
duke@435 2758 // 50 StoreP 35 7 30 ... alias_index=6
duke@435 2759 // 60 StoreP 45 40 20 ... alias_index=4
duke@435 2760 // 70 LoadP _ 50 30 ... alias_index=6
duke@435 2761 // 80 Phi 75 40 60 Memory alias_index=4
duke@435 2762 // 120 Phi 75 50 50 Memory alias_index=6
duke@435 2763 // 90 LoadP _ 120 30 ... alias_index=6
duke@435 2764 // 100 LoadP _ 80 20 ... alias_index=4
duke@435 2765 //
duke@435 2766 void ConnectionGraph::split_unique_types(GrowableArray<Node *> &alloc_worklist) {
duke@435 2767 GrowableArray<Node *> memnode_worklist;
duke@435 2768 GrowableArray<PhiNode *> orig_phis;
kvn@2276 2769 PhaseIterGVN *igvn = _igvn;
duke@435 2770 uint new_index_start = (uint) _compile->num_alias_types();
kvn@1536 2771 Arena* arena = Thread::current()->resource_area();
kvn@1536 2772 VectorSet visited(arena);
kvn@3651 2773 ideal_nodes.clear(); // Reset for use with set_map/get_map.
kvn@3651 2774 uint unique_old = _compile->unique();
kvn@500 2775
kvn@500 2776 // Phase 1: Process possible allocations from alloc_worklist.
kvn@500 2777 // Create instance types for the CheckCastPP for allocations where possible.
kvn@679 2778 //
kvn@679 2779 // (Note: don't forget to change the order of the second AddP node on
kvn@679 2780 // the alloc_worklist if the order of the worklist processing is changed,
kvn@679 2781 // see the comment in find_second_addp().)
kvn@679 2782 //
duke@435 2783 while (alloc_worklist.length() != 0) {
duke@435 2784 Node *n = alloc_worklist.pop();
duke@435 2785 uint ni = n->_idx;
duke@435 2786 if (n->is_Call()) {
duke@435 2787 CallNode *alloc = n->as_Call();
duke@435 2788 // copy escape information to call node
kvn@679 2789 PointsToNode* ptn = ptnode_adr(alloc->_idx);
kvn@3651 2790 PointsToNode::EscapeState es = ptn->escape_state();
kvn@500 2791 // We have an allocation or call which returns a Java object,
kvn@500 2792 // see if it is unescaped.
kvn@3254 2793 if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
duke@435 2794 continue;
kvn@1219 2795 // Find CheckCastPP for the allocate or for the return value of a call
kvn@1219 2796 n = alloc->result_cast();
kvn@1219 2797 if (n == NULL) { // No uses except Initialize node
kvn@1219 2798 if (alloc->is_Allocate()) {
kvn@1219 2799 // Set the scalar_replaceable flag for allocation
kvn@1219 2800 // so it could be eliminated if it has no uses.
kvn@1219 2801 alloc->as_Allocate()->_is_scalar_replaceable = true;
kvn@1219 2802 }
kvn@5110 2803 if (alloc->is_CallStaticJava()) {
kvn@5110 2804 // Set the scalar_replaceable flag for boxing method
kvn@5110 2805 // so it could be eliminated if it has no uses.
kvn@5110 2806 alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
kvn@5110 2807 }
kvn@1219 2808 continue;
kvn@474 2809 }
kvn@1219 2810 if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
kvn@1219 2811 assert(!alloc->is_Allocate(), "allocation should have unique type");
kvn@500 2812 continue;
kvn@1219 2813 }
kvn@1219 2814
kvn@500 2815 // The inline code for Object.clone() casts the allocation result to
kvn@682 2816 // java.lang.Object and then to the actual type of the allocated
kvn@500 2817 // object. Detect this case and use the second cast.
kvn@682 2818 // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
kvn@682 2819 // the allocation result is cast to java.lang.Object and then
kvn@682 2820 // to the actual Array type.
kvn@500 2821 if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
kvn@682 2822 && (alloc->is_AllocateArray() ||
kvn@682 2823 igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
kvn@500 2824 Node *cast2 = NULL;
kvn@500 2825 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@500 2826 Node *use = n->fast_out(i);
kvn@500 2827 if (use->is_CheckCastPP()) {
kvn@500 2828 cast2 = use;
kvn@500 2829 break;
kvn@500 2830 }
kvn@500 2831 }
kvn@500 2832 if (cast2 != NULL) {
kvn@500 2833 n = cast2;
kvn@500 2834 } else {
kvn@1219 2835 // Non-scalar replaceable if the allocation type is unknown statically
kvn@1219 2836 // (reflection allocation), the object can't be restored during
kvn@1219 2837 // deoptimization without precise type.
kvn@500 2838 continue;
kvn@500 2839 }
kvn@500 2840 }
kvn@1219 2841 if (alloc->is_Allocate()) {
kvn@1219 2842 // Set the scalar_replaceable flag for allocation
kvn@1219 2843 // so it could be eliminated.
kvn@1219 2844 alloc->as_Allocate()->_is_scalar_replaceable = true;
kvn@1219 2845 }
kvn@5110 2846 if (alloc->is_CallStaticJava()) {
kvn@5110 2847 // Set the scalar_replaceable flag for boxing method
kvn@5110 2848 // so it could be eliminated.
kvn@5110 2849 alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
kvn@5110 2850 }
kvn@3651 2851 set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
kvn@682 2852 // in order for an object to be scalar-replaceable, it must be:
kvn@500 2853 // - a direct allocation (not a call returning an object)
kvn@500 2854 // - non-escaping
kvn@500 2855 // - eligible to be a unique type
kvn@500 2856 // - not determined to be ineligible by escape analysis
kvn@3651 2857 set_map(alloc, n);
kvn@3651 2858 set_map(n, alloc);
kvn@500 2859 const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
kvn@500 2860 if (t == NULL)
kvn@3254 2861 continue; // not a TypeOopPtr
kvn@3651 2862 const TypeOopPtr* tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
duke@435 2863 igvn->hash_delete(n);
duke@435 2864 igvn->set_type(n, tinst);
duke@435 2865 n->raise_bottom_type(tinst);
duke@435 2866 igvn->hash_insert(n);
kvn@500 2867 record_for_optimizer(n);
kvn@3254 2868 if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
kvn@598 2869
kvn@598 2870 // First, put on the worklist all Field edges from Connection Graph
kvn@598 2871 // which is more accurate then putting immediate users from Ideal Graph.
kvn@3651 2872 for (EdgeIterator e(ptn); e.has_next(); e.next()) {
kvn@3651 2873 PointsToNode* tgt = e.get();
kvn@3651 2874 Node* use = tgt->ideal_node();
kvn@3651 2875 assert(tgt->is_Field() && use->is_AddP(),
kvn@598 2876 "only AddP nodes are Field edges in CG");
kvn@598 2877 if (use->outcnt() > 0) { // Don't process dead nodes
kvn@598 2878 Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
kvn@598 2879 if (addp2 != NULL) {
kvn@598 2880 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@598 2881 alloc_worklist.append_if_missing(addp2);
kvn@598 2882 }
kvn@598 2883 alloc_worklist.append_if_missing(use);
kvn@598 2884 }
kvn@598 2885 }
kvn@598 2886
kvn@500 2887 // An allocation may have an Initialize which has raw stores. Scan
kvn@500 2888 // the users of the raw allocation result and push AddP users
kvn@500 2889 // on alloc_worklist.
kvn@500 2890 Node *raw_result = alloc->proj_out(TypeFunc::Parms);
kvn@500 2891 assert (raw_result != NULL, "must have an allocation result");
kvn@500 2892 for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
kvn@500 2893 Node *use = raw_result->fast_out(i);
kvn@500 2894 if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
kvn@500 2895 Node* addp2 = find_second_addp(use, raw_result);
kvn@500 2896 if (addp2 != NULL) {
kvn@500 2897 assert(alloc->is_AllocateArray(),"array allocation was expected");
kvn@500 2898 alloc_worklist.append_if_missing(addp2);
kvn@500 2899 }
kvn@500 2900 alloc_worklist.append_if_missing(use);
kvn@1535 2901 } else if (use->is_MemBar()) {
kvn@500 2902 memnode_worklist.append_if_missing(use);
kvn@500 2903 }
kvn@500 2904 }
kvn@500 2905 }
duke@435 2906 } else if (n->is_AddP()) {
kvn@3651 2907 JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
kvn@3651 2908 if (jobj == NULL || jobj == phantom_obj) {
kvn@3651 2909 #ifdef ASSERT
kvn@3651 2910 ptnode_adr(get_addp_base(n)->_idx)->dump();
kvn@3651 2911 ptnode_adr(n->_idx)->dump();
kvn@3651 2912 assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
kvn@3651 2913 #endif
kvn@3651 2914 _compile->record_failure(C2Compiler::retry_no_escape_analysis());
kvn@3651 2915 return;
kvn@1535 2916 }
kvn@3651 2917 Node *base = get_map(jobj->idx()); // CheckCastPP node
kvn@3651 2918 if (!split_AddP(n, base)) continue; // wrong type from dead path
kvn@500 2919 } else if (n->is_Phi() ||
kvn@500 2920 n->is_CheckCastPP() ||
kvn@603 2921 n->is_EncodeP() ||
kvn@603 2922 n->is_DecodeN() ||
kvn@500 2923 (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
duke@435 2924 if (visited.test_set(n->_idx)) {
duke@435 2925 assert(n->is_Phi(), "loops only through Phi's");
duke@435 2926 continue; // already processed
duke@435 2927 }
kvn@3651 2928 JavaObjectNode* jobj = unique_java_object(n);
kvn@3651 2929 if (jobj == NULL || jobj == phantom_obj) {
kvn@3651 2930 #ifdef ASSERT
kvn@3651 2931 ptnode_adr(n->_idx)->dump();
kvn@3651 2932 assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
kvn@3651 2933 #endif
kvn@3651 2934 _compile->record_failure(C2Compiler::retry_no_escape_analysis());
kvn@3651 2935 return;
kvn@3651 2936 } else {
kvn@3651 2937 Node *val = get_map(jobj->idx()); // CheckCastPP node
duke@435 2938 TypeNode *tn = n->as_Type();
kvn@3651 2939 const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
kvn@658 2940 assert(tinst != NULL && tinst->is_known_instance() &&
kvn@3651 2941 tinst->instance_id() == jobj->idx() , "instance type expected.");
kvn@598 2942
kvn@598 2943 const Type *tn_type = igvn->type(tn);
kvn@658 2944 const TypeOopPtr *tn_t;
kvn@658 2945 if (tn_type->isa_narrowoop()) {
kvn@658 2946 tn_t = tn_type->make_ptr()->isa_oopptr();
kvn@658 2947 } else {
kvn@658 2948 tn_t = tn_type->isa_oopptr();
kvn@658 2949 }
kvn@1535 2950 if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
kvn@598 2951 if (tn_type->isa_narrowoop()) {
kvn@598 2952 tn_type = tinst->make_narrowoop();
kvn@598 2953 } else {
kvn@598 2954 tn_type = tinst;
kvn@598 2955 }
duke@435 2956 igvn->hash_delete(tn);
kvn@598 2957 igvn->set_type(tn, tn_type);
kvn@598 2958 tn->set_type(tn_type);
duke@435 2959 igvn->hash_insert(tn);
kvn@500 2960 record_for_optimizer(n);
kvn@728 2961 } else {
kvn@1535 2962 assert(tn_type == TypePtr::NULL_PTR ||
kvn@1535 2963 tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
kvn@1535 2964 "unexpected type");
kvn@1535 2965 continue; // Skip dead path with different type
duke@435 2966 }
duke@435 2967 }
duke@435 2968 } else {
kvn@1535 2969 debug_only(n->dump();)
kvn@1535 2970 assert(false, "EA: unexpected node");
duke@435 2971 continue;
duke@435 2972 }
kvn@1535 2973 // push allocation's users on appropriate worklist
duke@435 2974 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 2975 Node *use = n->fast_out(i);
duke@435 2976 if(use->is_Mem() && use->in(MemNode::Address) == n) {
kvn@1535 2977 // Load/store to instance's field
kvn@500 2978 memnode_worklist.append_if_missing(use);
kvn@1535 2979 } else if (use->is_MemBar()) {
kvn@5110 2980 if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
kvn@5110 2981 memnode_worklist.append_if_missing(use);
kvn@5110 2982 }
kvn@500 2983 } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
kvn@500 2984 Node* addp2 = find_second_addp(use, n);
kvn@500 2985 if (addp2 != NULL) {
kvn@500 2986 alloc_worklist.append_if_missing(addp2);
kvn@500 2987 }
kvn@500 2988 alloc_worklist.append_if_missing(use);
kvn@500 2989 } else if (use->is_Phi() ||
kvn@500 2990 use->is_CheckCastPP() ||
roland@4159 2991 use->is_EncodeNarrowPtr() ||
roland@4159 2992 use->is_DecodeNarrowPtr() ||
kvn@500 2993 (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
kvn@500 2994 alloc_worklist.append_if_missing(use);
kvn@1535 2995 #ifdef ASSERT
kvn@1535 2996 } else if (use->is_Mem()) {
kvn@1535 2997 assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
kvn@1535 2998 } else if (use->is_MergeMem()) {
kvn@1535 2999 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 3000 } else if (use->is_SafePoint()) {
kvn@1535 3001 // Look for MergeMem nodes for calls which reference unique allocation
kvn@1535 3002 // (through CheckCastPP nodes) even for debug info.
kvn@1535 3003 Node* m = use->in(TypeFunc::Memory);
kvn@1535 3004 if (m->is_MergeMem()) {
kvn@1535 3005 assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@1535 3006 }
kvn@4479 3007 } else if (use->Opcode() == Op_EncodeISOArray) {
kvn@4479 3008 if (use->in(MemNode::Memory) == n || use->in(3) == n) {
kvn@4479 3009 // EncodeISOArray overwrites destination array
kvn@4479 3010 memnode_worklist.append_if_missing(use);
kvn@4479 3011 }
kvn@1535 3012 } else {
kvn@1535 3013 uint op = use->Opcode();
kvn@1535 3014 if (!(op == Op_CmpP || op == Op_Conv2B ||
kvn@1535 3015 op == Op_CastP2X || op == Op_StoreCM ||
kvn@1535 3016 op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
kvn@1535 3017 op == Op_StrEquals || op == Op_StrIndexOf)) {
kvn@1535 3018 n->dump();
kvn@1535 3019 use->dump();
kvn@1535 3020 assert(false, "EA: missing allocation reference path");
kvn@1535 3021 }
kvn@1535 3022 #endif
duke@435 3023 }
duke@435 3024 }
duke@435 3025
duke@435 3026 }
kvn@500 3027 // New alias types were created in split_AddP().
duke@435 3028 uint new_index_end = (uint) _compile->num_alias_types();
kvn@3651 3029 assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
duke@435 3030
duke@435 3031 // Phase 2: Process MemNode's from memnode_worklist. compute new address type and
duke@435 3032 // compute new values for Memory inputs (the Memory inputs are not
duke@435 3033 // actually updated until phase 4.)
duke@435 3034 if (memnode_worklist.length() == 0)
duke@435 3035 return; // nothing to do
duke@435 3036 while (memnode_worklist.length() != 0) {
duke@435 3037 Node *n = memnode_worklist.pop();
kvn@500 3038 if (visited.test_set(n->_idx))
kvn@500 3039 continue;
kvn@1535 3040 if (n->is_Phi() || n->is_ClearArray()) {
kvn@1535 3041 // we don't need to do anything, but the users must be pushed
kvn@1535 3042 } else if (n->is_MemBar()) { // Initialize, MemBar nodes
kvn@1535 3043 // we don't need to do anything, but the users must be pushed
kvn@1535 3044 n = n->as_MemBar()->proj_out(TypeFunc::Memory);
kvn@500 3045 if (n == NULL)
duke@435 3046 continue;
kvn@4479 3047 } else if (n->Opcode() == Op_EncodeISOArray) {
kvn@4479 3048 // get the memory projection
kvn@4479 3049 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
kvn@4479 3050 Node *use = n->fast_out(i);
kvn@4479 3051 if (use->Opcode() == Op_SCMemProj) {
kvn@4479 3052 n = use;
kvn@4479 3053 break;
kvn@4479 3054 }
kvn@4479 3055 }
kvn@4479 3056 assert(n->Opcode() == Op_SCMemProj, "memory projection required");
duke@435 3057 } else {
duke@435 3058 assert(n->is_Mem(), "memory node required.");
duke@435 3059 Node *addr = n->in(MemNode::Address);
duke@435 3060 const Type *addr_t = igvn->type(addr);
duke@435 3061 if (addr_t == Type::TOP)
duke@435 3062 continue;
duke@435 3063 assert (addr_t->isa_ptr() != NULL, "pointer type required.");
duke@435 3064 int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
kvn@500 3065 assert ((uint)alias_idx < new_index_end, "wrong alias index");
kvn@3651 3066 Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
kvn@473 3067 if (_compile->failing()) {
kvn@473 3068 return;
kvn@473 3069 }
kvn@500 3070 if (mem != n->in(MemNode::Memory)) {
kvn@1536 3071 // We delay the memory edge update since we need old one in
kvn@1536 3072 // MergeMem code below when instances memory slices are separated.
kvn@3651 3073 set_map(n, mem);
kvn@500 3074 }
duke@435 3075 if (n->is_Load()) {
duke@435 3076 continue; // don't push users
duke@435 3077 } else if (n->is_LoadStore()) {
duke@435 3078 // get the memory projection
duke@435 3079 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 3080 Node *use = n->fast_out(i);
duke@435 3081 if (use->Opcode() == Op_SCMemProj) {
duke@435 3082 n = use;
duke@435 3083 break;
duke@435 3084 }
duke@435 3085 }
duke@435 3086 assert(n->Opcode() == Op_SCMemProj, "memory projection required");
duke@435 3087 }
duke@435 3088 }
duke@435 3089 // push user on appropriate worklist
duke@435 3090 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
duke@435 3091 Node *use = n->fast_out(i);
kvn@1535 3092 if (use->is_Phi() || use->is_ClearArray()) {
kvn@500 3093 memnode_worklist.append_if_missing(use);
kvn@4479 3094 } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
kvn@1535 3095 if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
kvn@1535 3096 continue;
kvn@500 3097 memnode_worklist.append_if_missing(use);
kvn@1535 3098 } else if (use->is_MemBar()) {
kvn@5110 3099 if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
kvn@5110 3100 memnode_worklist.append_if_missing(use);
kvn@5110 3101 }
kvn@1535 3102 #ifdef ASSERT
kvn@1535 3103 } else if(use->is_Mem()) {
kvn@1535 3104 assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
duke@435 3105 } else if (use->is_MergeMem()) {
kvn@1535 3106 assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
kvn@4479 3107 } else if (use->Opcode() == Op_EncodeISOArray) {
kvn@4479 3108 if (use->in(MemNode::Memory) == n || use->in(3) == n) {
kvn@4479 3109 // EncodeISOArray overwrites destination array
kvn@4479 3110 memnode_worklist.append_if_missing(use);
kvn@4479 3111 }
kvn@1535 3112 } else {
kvn@1535 3113 uint op = use->Opcode();
kvn@1535 3114 if (!(op == Op_StoreCM ||
kvn@1535 3115 (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
kvn@1535 3116 strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
kvn@1535 3117 op == Op_AryEq || op == Op_StrComp ||
kvn@1535 3118 op == Op_StrEquals || op == Op_StrIndexOf)) {
kvn@1535 3119 n->dump();
kvn@1535 3120 use->dump();
kvn@1535 3121 assert(false, "EA: missing memory path");
kvn@1535 3122 }
kvn@1535 3123 #endif
duke@435 3124 }
duke@435 3125 }
duke@435 3126 }
duke@435 3127
kvn@500 3128 // Phase 3: Process MergeMem nodes from mergemem_worklist.
kvn@1535 3129 // Walk each memory slice moving the first node encountered of each
kvn@500 3130 // instance type to the the input corresponding to its alias index.
kvn@1535 3131 uint length = _mergemem_worklist.length();
kvn@1535 3132 for( uint next = 0; next < length; ++next ) {
kvn@1535 3133 MergeMemNode* nmm = _mergemem_worklist.at(next);
kvn@1535 3134 assert(!visited.test_set(nmm->_idx), "should not be visited before");
duke@435 3135 // Note: we don't want to use MergeMemStream here because we only want to
kvn@1535 3136 // scan inputs which exist at the start, not ones we add during processing.
kvn@1535 3137 // Note 2: MergeMem may already contains instance memory slices added
kvn@1535 3138 // during find_inst_mem() call when memory nodes were processed above.
kvn@1535 3139 igvn->hash_delete(nmm);
duke@435 3140 uint nslices = nmm->req();
duke@435 3141 for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
kvn@500 3142 Node* mem = nmm->in(i);
kvn@500 3143 Node* cur = NULL;
duke@435 3144 if (mem == NULL || mem->is_top())
duke@435 3145 continue;
kvn@1536 3146 // First, update mergemem by moving memory nodes to corresponding slices
kvn@1536 3147 // if their type became more precise since this mergemem was created.
duke@435 3148 while (mem->is_Mem()) {
duke@435 3149 const Type *at = igvn->type(mem->in(MemNode::Address));
duke@435 3150 if (at != Type::TOP) {
duke@435 3151 assert (at->isa_ptr() != NULL, "pointer type required.");
duke@435 3152 uint idx = (uint)_compile->get_alias_index(at->is_ptr());
duke@435 3153 if (idx == i) {
duke@435 3154 if (cur == NULL)
duke@435 3155 cur = mem;
duke@435 3156 } else {
duke@435 3157 if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
duke@435 3158 nmm->set_memory_at(idx, mem);
duke@435 3159 }
duke@435 3160 }
duke@435 3161 }
duke@435 3162 mem = mem->in(MemNode::Memory);
duke@435 3163 }
duke@435 3164 nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
kvn@500 3165 // Find any instance of the current type if we haven't encountered
kvn@1536 3166 // already a memory slice of the instance along the memory chain.
kvn@500 3167 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@500 3168 if((uint)_compile->get_general_index(ni) == i) {
kvn@500 3169 Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
kvn@500 3170 if (nmm->is_empty_memory(m)) {
kvn@3651 3171 Node* result = find_inst_mem(mem, ni, orig_phis);
kvn@500 3172 if (_compile->failing()) {
kvn@500 3173 return;
kvn@500 3174 }
kvn@500 3175 nmm->set_memory_at(ni, result);
kvn@500 3176 }
kvn@500 3177 }
kvn@500 3178 }
kvn@500 3179 }
kvn@500 3180 // Find the rest of instances values
kvn@500 3181 for (uint ni = new_index_start; ni < new_index_end; ni++) {
kvn@1536 3182 const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
kvn@500 3183 Node* result = step_through_mergemem(nmm, ni, tinst);
kvn@500 3184 if (result == nmm->base_memory()) {
kvn@500 3185 // Didn't find instance memory, search through general slice recursively.
kvn@1536 3186 result = nmm->memory_at(_compile->get_general_index(ni));
kvn@3651 3187 result = find_inst_mem(result, ni, orig_phis);
kvn@500 3188 if (_compile->failing()) {
kvn@500 3189 return;
kvn@500 3190 }
kvn@500 3191 nmm->set_memory_at(ni, result);
kvn@500 3192 }
kvn@500 3193 }
kvn@500 3194 igvn->hash_insert(nmm);
kvn@500 3195 record_for_optimizer(nmm);
duke@435 3196 }
duke@435 3197
kvn@500 3198 // Phase 4: Update the inputs of non-instance memory Phis and
kvn@500 3199 // the Memory input of memnodes
duke@435 3200 // First update the inputs of any non-instance Phi's from
duke@435 3201 // which we split out an instance Phi. Note we don't have
duke@435 3202 // to recursively process Phi's encounted on the input memory
duke@435 3203 // chains as is done in split_memory_phi() since they will
duke@435 3204 // also be processed here.
kvn@682 3205 for (int j = 0; j < orig_phis.length(); j++) {
kvn@682 3206 PhiNode *phi = orig_phis.at(j);
duke@435 3207 int alias_idx = _compile->get_alias_index(phi->adr_type());
duke@435 3208 igvn->hash_delete(phi);
duke@435 3209 for (uint i = 1; i < phi->req(); i++) {
duke@435 3210 Node *mem = phi->in(i);
kvn@3651 3211 Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
kvn@500 3212 if (_compile->failing()) {
kvn@500 3213 return;
kvn@500 3214 }
duke@435 3215 if (mem != new_mem) {
duke@435 3216 phi->set_req(i, new_mem);
duke@435 3217 }
duke@435 3218 }
duke@435 3219 igvn->hash_insert(phi);
duke@435 3220 record_for_optimizer(phi);
duke@435 3221 }
duke@435 3222
duke@435 3223 // Update the memory inputs of MemNodes with the value we computed
kvn@1536 3224 // in Phase 2 and move stores memory users to corresponding memory slices.
kvn@2810 3225 // Disable memory split verification code until the fix for 6984348.
kvn@2810 3226 // Currently it produces false negative results since it does not cover all cases.
kvn@2810 3227 #if 0 // ifdef ASSERT
kvn@2556 3228 visited.Reset();
kvn@1536 3229 Node_Stack old_mems(arena, _compile->unique() >> 2);
kvn@1536 3230 #endif
kvn@3651 3231 for (uint i = 0; i < ideal_nodes.size(); i++) {
kvn@3651 3232 Node* n = ideal_nodes.at(i);
kvn@3651 3233 Node* nmem = get_map(n->_idx);
kvn@3651 3234 assert(nmem != NULL, "sanity");
kvn@3651 3235 if (n->is_Mem()) {
kvn@2810 3236 #if 0 // ifdef ASSERT
kvn@3651 3237 Node* old_mem = n->in(MemNode::Memory);
kvn@3651 3238 if (!visited.test_set(old_mem->_idx)) {
kvn@3651 3239 old_mems.push(old_mem, old_mem->outcnt());
kvn@3651 3240 }
kvn@1536 3241 #endif
kvn@3651 3242 assert(n->in(MemNode::Memory) != nmem, "sanity");
kvn@3651 3243 if (!n->is_Load()) {
kvn@3651 3244 // Move memory users of a store first.
kvn@3651 3245 move_inst_mem(n, orig_phis);
duke@435 3246 }
kvn@3651 3247 // Now update memory input
kvn@3651 3248 igvn->hash_delete(n);
kvn@3651 3249 n->set_req(MemNode::Memory, nmem);
kvn@3651 3250 igvn->hash_insert(n);
kvn@3651 3251 record_for_optimizer(n);
kvn@3651 3252 } else {
kvn@3651 3253 assert(n->is_Allocate() || n->is_CheckCastPP() ||
kvn@3651 3254 n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
duke@435 3255 }
duke@435 3256 }
kvn@2810 3257 #if 0 // ifdef ASSERT
kvn@1536 3258 // Verify that memory was split correctly
kvn@1536 3259 while (old_mems.is_nonempty()) {
kvn@1536 3260 Node* old_mem = old_mems.node();
kvn@1536 3261 uint old_cnt = old_mems.index();
kvn@1536 3262 old_mems.pop();
kvn@2810 3263 assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
kvn@1536 3264 }
kvn@1536 3265 #endif
duke@435 3266 }
duke@435 3267
kvn@3651 3268 #ifndef PRODUCT
kvn@3651 3269 static const char *node_type_names[] = {
kvn@3651 3270 "UnknownType",
kvn@3651 3271 "JavaObject",
kvn@3651 3272 "LocalVar",
kvn@3651 3273 "Field",
kvn@3651 3274 "Arraycopy"
kvn@3651 3275 };
kvn@3651 3276
kvn@3651 3277 static const char *esc_names[] = {
kvn@3651 3278 "UnknownEscape",
kvn@3651 3279 "NoEscape",
kvn@3651 3280 "ArgEscape",
kvn@3651 3281 "GlobalEscape"
kvn@3651 3282 };
kvn@3651 3283
kvn@3651 3284 void PointsToNode::dump(bool print_state) const {
kvn@3651 3285 NodeType nt = node_type();
kvn@3651 3286 tty->print("%s ", node_type_names[(int) nt]);
kvn@3651 3287 if (print_state) {
kvn@3651 3288 EscapeState es = escape_state();
kvn@3651 3289 EscapeState fields_es = fields_escape_state();
kvn@3651 3290 tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
kvn@3651 3291 if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
kvn@4255 3292 tty->print("NSR ");
kvn@3651 3293 }
kvn@3651 3294 if (is_Field()) {
kvn@3651 3295 FieldNode* f = (FieldNode*)this;
kvn@4255 3296 if (f->is_oop())
kvn@4255 3297 tty->print("oop ");
kvn@4255 3298 if (f->offset() > 0)
kvn@4255 3299 tty->print("+%d ", f->offset());
kvn@3651 3300 tty->print("(");
kvn@3651 3301 for (BaseIterator i(f); i.has_next(); i.next()) {
kvn@3651 3302 PointsToNode* b = i.get();
kvn@3651 3303 tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
kvn@679 3304 }
kvn@3651 3305 tty->print(" )");
kvn@679 3306 }
kvn@3651 3307 tty->print("[");
kvn@3651 3308 for (EdgeIterator i(this); i.has_next(); i.next()) {
kvn@3651 3309 PointsToNode* e = i.get();
kvn@3651 3310 tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
kvn@3651 3311 }
kvn@3651 3312 tty->print(" [");
kvn@3651 3313 for (UseIterator i(this); i.has_next(); i.next()) {
kvn@3651 3314 PointsToNode* u = i.get();
kvn@3651 3315 bool is_base = false;
kvn@3651 3316 if (PointsToNode::is_base_use(u)) {
kvn@3651 3317 is_base = true;
kvn@3651 3318 u = PointsToNode::get_use_node(u)->as_Field();
kvn@3651 3319 }
kvn@3651 3320 tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
kvn@3651 3321 }
kvn@3651 3322 tty->print(" ]] ");
kvn@3651 3323 if (_node == NULL)
kvn@3651 3324 tty->print_cr("<null>");
kvn@3651 3325 else
kvn@3651 3326 _node->dump();
kvn@679 3327 }
kvn@679 3328
kvn@3651 3329 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
duke@435 3330 bool first = true;
kvn@3651 3331 int ptnodes_length = ptnodes_worklist.length();
kvn@3651 3332 for (int i = 0; i < ptnodes_length; i++) {
kvn@3651 3333 PointsToNode *ptn = ptnodes_worklist.at(i);
kvn@3651 3334 if (ptn == NULL || !ptn->is_JavaObject())
duke@435 3335 continue;
kvn@3651 3336 PointsToNode::EscapeState es = ptn->escape_state();
kvn@5110 3337 if ((es != PointsToNode::NoEscape) && !Verbose) {
kvn@5110 3338 continue;
kvn@5110 3339 }
kvn@5110 3340 Node* n = ptn->ideal_node();
kvn@5110 3341 if (n->is_Allocate() || (n->is_CallStaticJava() &&
kvn@5110 3342 n->as_CallStaticJava()->is_boxing_method())) {
kvn@500 3343 if (first) {
kvn@500 3344 tty->cr();
kvn@500 3345 tty->print("======== Connection graph for ");
kvn@679 3346 _compile->method()->print_short_name();
kvn@500 3347 tty->cr();
kvn@500 3348 first = false;
kvn@500 3349 }
kvn@500 3350 ptn->dump();
kvn@3651 3351 // Print all locals and fields which reference this allocation
kvn@3651 3352 for (UseIterator j(ptn); j.has_next(); j.next()) {
kvn@3651 3353 PointsToNode* use = j.get();
kvn@3651 3354 if (use->is_LocalVar()) {
kvn@3651 3355 use->dump(Verbose);
kvn@3651 3356 } else if (Verbose) {
kvn@3651 3357 use->dump();
kvn@500 3358 }
kvn@500 3359 }
kvn@500 3360 tty->cr();
duke@435 3361 }
duke@435 3362 }
duke@435 3363 }
duke@435 3364 #endif

mercurial