src/share/vm/opto/escape.cpp

Fri, 11 Jul 2014 19:51:36 -0400

author
drchase
date
Fri, 11 Jul 2014 19:51:36 -0400
changeset 7161
fc2c88ea11a9
parent 7027
b20a35eae442
child 7152
166d744df0de
permissions
-rw-r--r--

8036588: VerifyFieldClosure fails instanceKlass:3133
Summary: Changed deopt live-pointer test to use returns-object instead of live-and-returns-object
Reviewed-by: iveresov, kvn, jrose

     1 /*
     2  * Copyright (c) 2005, 2014, Oracle and/or its affiliates. All rights reserved.
     3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
     4  *
     5  * This code is free software; you can redistribute it and/or modify it
     6  * under the terms of the GNU General Public License version 2 only, as
     7  * published by the Free Software Foundation.
     8  *
     9  * This code is distributed in the hope that it will be useful, but WITHOUT
    10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
    11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    12  * version 2 for more details (a copy is included in the LICENSE file that
    13  * accompanied this code).
    14  *
    15  * You should have received a copy of the GNU General Public License version
    16  * 2 along with this work; if not, write to the Free Software Foundation,
    17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
    18  *
    19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
    20  * or visit www.oracle.com if you need additional information or have any
    21  * questions.
    22  *
    23  */
    25 #include "precompiled.hpp"
    26 #include "ci/bcEscapeAnalyzer.hpp"
    27 #include "compiler/compileLog.hpp"
    28 #include "libadt/vectset.hpp"
    29 #include "memory/allocation.hpp"
    30 #include "opto/c2compiler.hpp"
    31 #include "opto/callnode.hpp"
    32 #include "opto/cfgnode.hpp"
    33 #include "opto/compile.hpp"
    34 #include "opto/escape.hpp"
    35 #include "opto/phaseX.hpp"
    36 #include "opto/rootnode.hpp"
    38 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
    39   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
    40   _collecting(true),
    41   _verify(false),
    42   _compile(C),
    43   _igvn(igvn),
    44   _node_map(C->comp_arena()) {
    45   // Add unknown java object.
    46   add_java_object(C->top(), PointsToNode::GlobalEscape);
    47   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
    48   // Add ConP(#NULL) and ConN(#NULL) nodes.
    49   Node* oop_null = igvn->zerocon(T_OBJECT);
    50   assert(oop_null->_idx < nodes_size(), "should be created already");
    51   add_java_object(oop_null, PointsToNode::NoEscape);
    52   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
    53   if (UseCompressedOops) {
    54     Node* noop_null = igvn->zerocon(T_NARROWOOP);
    55     assert(noop_null->_idx < nodes_size(), "should be created already");
    56     map_ideal_node(noop_null, null_obj);
    57   }
    58   _pcmp_neq = NULL; // Should be initialized
    59   _pcmp_eq  = NULL;
    60 }
    62 bool ConnectionGraph::has_candidates(Compile *C) {
    63   // EA brings benefits only when the code has allocations and/or locks which
    64   // are represented by ideal Macro nodes.
    65   int cnt = C->macro_count();
    66   for (int i = 0; i < cnt; i++) {
    67     Node *n = C->macro_node(i);
    68     if (n->is_Allocate())
    69       return true;
    70     if (n->is_Lock()) {
    71       Node* obj = n->as_Lock()->obj_node()->uncast();
    72       if (!(obj->is_Parm() || obj->is_Con()))
    73         return true;
    74     }
    75     if (n->is_CallStaticJava() &&
    76         n->as_CallStaticJava()->is_boxing_method()) {
    77       return true;
    78     }
    79   }
    80   return false;
    81 }
    83 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
    84   Compile::TracePhase t2("escapeAnalysis", &Phase::_t_escapeAnalysis, true);
    85   ResourceMark rm;
    87   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
    88   // to create space for them in ConnectionGraph::_nodes[].
    89   Node* oop_null = igvn->zerocon(T_OBJECT);
    90   Node* noop_null = igvn->zerocon(T_NARROWOOP);
    91   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
    92   // Perform escape analysis
    93   if (congraph->compute_escape()) {
    94     // There are non escaping objects.
    95     C->set_congraph(congraph);
    96   }
    97   // Cleanup.
    98   if (oop_null->outcnt() == 0)
    99     igvn->hash_delete(oop_null);
   100   if (noop_null->outcnt() == 0)
   101     igvn->hash_delete(noop_null);
   102 }
   104 bool ConnectionGraph::compute_escape() {
   105   Compile* C = _compile;
   106   PhaseGVN* igvn = _igvn;
   108   // Worklists used by EA.
   109   Unique_Node_List delayed_worklist;
   110   GrowableArray<Node*> alloc_worklist;
   111   GrowableArray<Node*> ptr_cmp_worklist;
   112   GrowableArray<Node*> storestore_worklist;
   113   GrowableArray<PointsToNode*>   ptnodes_worklist;
   114   GrowableArray<JavaObjectNode*> java_objects_worklist;
   115   GrowableArray<JavaObjectNode*> non_escaped_worklist;
   116   GrowableArray<FieldNode*>      oop_fields_worklist;
   117   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
   119   { Compile::TracePhase t3("connectionGraph", &Phase::_t_connectionGraph, true);
   121   // 1. Populate Connection Graph (CG) with PointsTo nodes.
   122   ideal_nodes.map(C->live_nodes(), NULL);  // preallocate space
   123   // Initialize worklist
   124   if (C->root() != NULL) {
   125     ideal_nodes.push(C->root());
   126   }
   127   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
   128     Node* n = ideal_nodes.at(next);
   129     // Create PointsTo nodes and add them to Connection Graph. Called
   130     // only once per ideal node since ideal_nodes is Unique_Node list.
   131     add_node_to_connection_graph(n, &delayed_worklist);
   132     PointsToNode* ptn = ptnode_adr(n->_idx);
   133     if (ptn != NULL) {
   134       ptnodes_worklist.append(ptn);
   135       if (ptn->is_JavaObject()) {
   136         java_objects_worklist.append(ptn->as_JavaObject());
   137         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
   138             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
   139           // Only allocations and java static calls results are interesting.
   140           non_escaped_worklist.append(ptn->as_JavaObject());
   141         }
   142       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
   143         oop_fields_worklist.append(ptn->as_Field());
   144       }
   145     }
   146     if (n->is_MergeMem()) {
   147       // Collect all MergeMem nodes to add memory slices for
   148       // scalar replaceable objects in split_unique_types().
   149       _mergemem_worklist.append(n->as_MergeMem());
   150     } else if (OptimizePtrCompare && n->is_Cmp() &&
   151                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
   152       // Collect compare pointers nodes.
   153       ptr_cmp_worklist.append(n);
   154     } else if (n->is_MemBarStoreStore()) {
   155       // Collect all MemBarStoreStore nodes so that depending on the
   156       // escape status of the associated Allocate node some of them
   157       // may be eliminated.
   158       storestore_worklist.append(n);
   159     } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
   160                (n->req() > MemBarNode::Precedent)) {
   161       record_for_optimizer(n);
   162 #ifdef ASSERT
   163     } else if (n->is_AddP()) {
   164       // Collect address nodes for graph verification.
   165       addp_worklist.append(n);
   166 #endif
   167     }
   168     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
   169       Node* m = n->fast_out(i);   // Get user
   170       ideal_nodes.push(m);
   171     }
   172   }
   173   if (non_escaped_worklist.length() == 0) {
   174     _collecting = false;
   175     return false; // Nothing to do.
   176   }
   177   // Add final simple edges to graph.
   178   while(delayed_worklist.size() > 0) {
   179     Node* n = delayed_worklist.pop();
   180     add_final_edges(n);
   181   }
   182   int ptnodes_length = ptnodes_worklist.length();
   184 #ifdef ASSERT
   185   if (VerifyConnectionGraph) {
   186     // Verify that no new simple edges could be created and all
   187     // local vars has edges.
   188     _verify = true;
   189     for (int next = 0; next < ptnodes_length; ++next) {
   190       PointsToNode* ptn = ptnodes_worklist.at(next);
   191       add_final_edges(ptn->ideal_node());
   192       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
   193         ptn->dump();
   194         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
   195       }
   196     }
   197     _verify = false;
   198   }
   199 #endif
   201   // 2. Finish Graph construction by propagating references to all
   202   //    java objects through graph.
   203   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
   204                                  java_objects_worklist, oop_fields_worklist)) {
   205     // All objects escaped or hit time or iterations limits.
   206     _collecting = false;
   207     return false;
   208   }
   210   // 3. Adjust scalar_replaceable state of nonescaping objects and push
   211   //    scalar replaceable allocations on alloc_worklist for processing
   212   //    in split_unique_types().
   213   int non_escaped_length = non_escaped_worklist.length();
   214   for (int next = 0; next < non_escaped_length; next++) {
   215     JavaObjectNode* ptn = non_escaped_worklist.at(next);
   216     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
   217     Node* n = ptn->ideal_node();
   218     if (n->is_Allocate()) {
   219       n->as_Allocate()->_is_non_escaping = noescape;
   220     }
   221     if (n->is_CallStaticJava()) {
   222       n->as_CallStaticJava()->_is_non_escaping = noescape;
   223     }
   224     if (noescape && ptn->scalar_replaceable()) {
   225       adjust_scalar_replaceable_state(ptn);
   226       if (ptn->scalar_replaceable()) {
   227         alloc_worklist.append(ptn->ideal_node());
   228       }
   229     }
   230   }
   232 #ifdef ASSERT
   233   if (VerifyConnectionGraph) {
   234     // Verify that graph is complete - no new edges could be added or needed.
   235     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
   236                             java_objects_worklist, addp_worklist);
   237   }
   238   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
   239   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
   240          null_obj->edge_count() == 0 &&
   241          !null_obj->arraycopy_src() &&
   242          !null_obj->arraycopy_dst(), "sanity");
   243 #endif
   245   _collecting = false;
   247   } // TracePhase t3("connectionGraph")
   249   // 4. Optimize ideal graph based on EA information.
   250   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
   251   if (has_non_escaping_obj) {
   252     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
   253   }
   255 #ifndef PRODUCT
   256   if (PrintEscapeAnalysis) {
   257     dump(ptnodes_worklist); // Dump ConnectionGraph
   258   }
   259 #endif
   261   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
   262 #ifdef ASSERT
   263   if (VerifyConnectionGraph) {
   264     int alloc_length = alloc_worklist.length();
   265     for (int next = 0; next < alloc_length; ++next) {
   266       Node* n = alloc_worklist.at(next);
   267       PointsToNode* ptn = ptnode_adr(n->_idx);
   268       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
   269     }
   270   }
   271 #endif
   273   // 5. Separate memory graph for scalar replaceable allcations.
   274   if (has_scalar_replaceable_candidates &&
   275       C->AliasLevel() >= 3 && EliminateAllocations) {
   276     // Now use the escape information to create unique types for
   277     // scalar replaceable objects.
   278     split_unique_types(alloc_worklist);
   279     if (C->failing())  return false;
   280     C->print_method(PHASE_AFTER_EA, 2);
   282 #ifdef ASSERT
   283   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
   284     tty->print("=== No allocations eliminated for ");
   285     C->method()->print_short_name();
   286     if(!EliminateAllocations) {
   287       tty->print(" since EliminateAllocations is off ===");
   288     } else if(!has_scalar_replaceable_candidates) {
   289       tty->print(" since there are no scalar replaceable candidates ===");
   290     } else if(C->AliasLevel() < 3) {
   291       tty->print(" since AliasLevel < 3 ===");
   292     }
   293     tty->cr();
   294 #endif
   295   }
   296   return has_non_escaping_obj;
   297 }
   299 // Utility function for nodes that load an object
   300 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
   301   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   302   // ThreadLocal has RawPtr type.
   303   const Type* t = _igvn->type(n);
   304   if (t->make_ptr() != NULL) {
   305     Node* adr = n->in(MemNode::Address);
   306 #ifdef ASSERT
   307     if (!adr->is_AddP()) {
   308       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
   309     } else {
   310       assert((ptnode_adr(adr->_idx) == NULL ||
   311               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
   312     }
   313 #endif
   314     add_local_var_and_edge(n, PointsToNode::NoEscape,
   315                            adr, delayed_worklist);
   316   }
   317 }
   319 // Populate Connection Graph with PointsTo nodes and create simple
   320 // connection graph edges.
   321 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
   322   assert(!_verify, "this method sould not be called for verification");
   323   PhaseGVN* igvn = _igvn;
   324   uint n_idx = n->_idx;
   325   PointsToNode* n_ptn = ptnode_adr(n_idx);
   326   if (n_ptn != NULL)
   327     return; // No need to redefine PointsTo node during first iteration.
   329   if (n->is_Call()) {
   330     // Arguments to allocation and locking don't escape.
   331     if (n->is_AbstractLock()) {
   332       // Put Lock and Unlock nodes on IGVN worklist to process them during
   333       // first IGVN optimization when escape information is still available.
   334       record_for_optimizer(n);
   335     } else if (n->is_Allocate()) {
   336       add_call_node(n->as_Call());
   337       record_for_optimizer(n);
   338     } else {
   339       if (n->is_CallStaticJava()) {
   340         const char* name = n->as_CallStaticJava()->_name;
   341         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
   342           return; // Skip uncommon traps
   343       }
   344       // Don't mark as processed since call's arguments have to be processed.
   345       delayed_worklist->push(n);
   346       // Check if a call returns an object.
   347       if ((n->as_Call()->returns_pointer() &&
   348            n->as_Call()->proj_out(TypeFunc::Parms) != NULL) ||
   349           (n->is_CallStaticJava() &&
   350            n->as_CallStaticJava()->is_boxing_method())) {
   351         add_call_node(n->as_Call());
   352       }
   353     }
   354     return;
   355   }
   356   // Put this check here to process call arguments since some call nodes
   357   // point to phantom_obj.
   358   if (n_ptn == phantom_obj || n_ptn == null_obj)
   359     return; // Skip predefined nodes.
   361   int opcode = n->Opcode();
   362   switch (opcode) {
   363     case Op_AddP: {
   364       Node* base = get_addp_base(n);
   365       PointsToNode* ptn_base = ptnode_adr(base->_idx);
   366       // Field nodes are created for all field types. They are used in
   367       // adjust_scalar_replaceable_state() and split_unique_types().
   368       // Note, non-oop fields will have only base edges in Connection
   369       // Graph because such fields are not used for oop loads and stores.
   370       int offset = address_offset(n, igvn);
   371       add_field(n, PointsToNode::NoEscape, offset);
   372       if (ptn_base == NULL) {
   373         delayed_worklist->push(n); // Process it later.
   374       } else {
   375         n_ptn = ptnode_adr(n_idx);
   376         add_base(n_ptn->as_Field(), ptn_base);
   377       }
   378       break;
   379     }
   380     case Op_CastX2P: {
   381       map_ideal_node(n, phantom_obj);
   382       break;
   383     }
   384     case Op_CastPP:
   385     case Op_CheckCastPP:
   386     case Op_EncodeP:
   387     case Op_DecodeN:
   388     case Op_EncodePKlass:
   389     case Op_DecodeNKlass: {
   390       add_local_var_and_edge(n, PointsToNode::NoEscape,
   391                              n->in(1), delayed_worklist);
   392       break;
   393     }
   394     case Op_CMoveP: {
   395       add_local_var(n, PointsToNode::NoEscape);
   396       // Do not add edges during first iteration because some could be
   397       // not defined yet.
   398       delayed_worklist->push(n);
   399       break;
   400     }
   401     case Op_ConP:
   402     case Op_ConN:
   403     case Op_ConNKlass: {
   404       // assume all oop constants globally escape except for null
   405       PointsToNode::EscapeState es;
   406       const Type* t = igvn->type(n);
   407       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
   408         es = PointsToNode::NoEscape;
   409       } else {
   410         es = PointsToNode::GlobalEscape;
   411       }
   412       add_java_object(n, es);
   413       break;
   414     }
   415     case Op_CreateEx: {
   416       // assume that all exception objects globally escape
   417       add_java_object(n, PointsToNode::GlobalEscape);
   418       break;
   419     }
   420     case Op_LoadKlass:
   421     case Op_LoadNKlass: {
   422       // Unknown class is loaded
   423       map_ideal_node(n, phantom_obj);
   424       break;
   425     }
   426     case Op_LoadP:
   427     case Op_LoadN:
   428     case Op_LoadPLocked: {
   429       add_objload_to_connection_graph(n, delayed_worklist);
   430       break;
   431     }
   432     case Op_Parm: {
   433       map_ideal_node(n, phantom_obj);
   434       break;
   435     }
   436     case Op_PartialSubtypeCheck: {
   437       // Produces Null or notNull and is used in only in CmpP so
   438       // phantom_obj could be used.
   439       map_ideal_node(n, phantom_obj); // Result is unknown
   440       break;
   441     }
   442     case Op_Phi: {
   443       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   444       // ThreadLocal has RawPtr type.
   445       const Type* t = n->as_Phi()->type();
   446       if (t->make_ptr() != NULL) {
   447         add_local_var(n, PointsToNode::NoEscape);
   448         // Do not add edges during first iteration because some could be
   449         // not defined yet.
   450         delayed_worklist->push(n);
   451       }
   452       break;
   453     }
   454     case Op_Proj: {
   455       // we are only interested in the oop result projection from a call
   456       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
   457           n->in(0)->as_Call()->returns_pointer()) {
   458         add_local_var_and_edge(n, PointsToNode::NoEscape,
   459                                n->in(0), delayed_worklist);
   460       }
   461       break;
   462     }
   463     case Op_Rethrow: // Exception object escapes
   464     case Op_Return: {
   465       if (n->req() > TypeFunc::Parms &&
   466           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
   467         // Treat Return value as LocalVar with GlobalEscape escape state.
   468         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
   469                                n->in(TypeFunc::Parms), delayed_worklist);
   470       }
   471       break;
   472     }
   473     case Op_GetAndSetP:
   474     case Op_GetAndSetN: {
   475       add_objload_to_connection_graph(n, delayed_worklist);
   476       // fallthrough
   477     }
   478     case Op_StoreP:
   479     case Op_StoreN:
   480     case Op_StoreNKlass:
   481     case Op_StorePConditional:
   482     case Op_CompareAndSwapP:
   483     case Op_CompareAndSwapN: {
   484       Node* adr = n->in(MemNode::Address);
   485       const Type *adr_type = igvn->type(adr);
   486       adr_type = adr_type->make_ptr();
   487       if (adr_type == NULL) {
   488         break; // skip dead nodes
   489       }
   490       if (adr_type->isa_oopptr() ||
   491           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
   492                         (adr_type == TypeRawPtr::NOTNULL &&
   493                          adr->in(AddPNode::Address)->is_Proj() &&
   494                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
   495         delayed_worklist->push(n); // Process it later.
   496 #ifdef ASSERT
   497         assert(adr->is_AddP(), "expecting an AddP");
   498         if (adr_type == TypeRawPtr::NOTNULL) {
   499           // Verify a raw address for a store captured by Initialize node.
   500           int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
   501           assert(offs != Type::OffsetBot, "offset must be a constant");
   502         }
   503 #endif
   504       } else {
   505         // Ignore copy the displaced header to the BoxNode (OSR compilation).
   506         if (adr->is_BoxLock())
   507           break;
   508         // Stored value escapes in unsafe access.
   509         if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
   510           // Pointer stores in G1 barriers looks like unsafe access.
   511           // Ignore such stores to be able scalar replace non-escaping
   512           // allocations.
   513           if (UseG1GC && adr->is_AddP()) {
   514             Node* base = get_addp_base(adr);
   515             if (base->Opcode() == Op_LoadP &&
   516                 base->in(MemNode::Address)->is_AddP()) {
   517               adr = base->in(MemNode::Address);
   518               Node* tls = get_addp_base(adr);
   519               if (tls->Opcode() == Op_ThreadLocal) {
   520                 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
   521                 if (offs == in_bytes(JavaThread::satb_mark_queue_offset() +
   522                                      PtrQueue::byte_offset_of_buf())) {
   523                   break; // G1 pre barier previous oop value store.
   524                 }
   525                 if (offs == in_bytes(JavaThread::dirty_card_queue_offset() +
   526                                      PtrQueue::byte_offset_of_buf())) {
   527                   break; // G1 post barier card address store.
   528                 }
   529               }
   530             }
   531           }
   532           delayed_worklist->push(n); // Process unsafe access later.
   533           break;
   534         }
   535 #ifdef ASSERT
   536         n->dump(1);
   537         assert(false, "not unsafe or G1 barrier raw StoreP");
   538 #endif
   539       }
   540       break;
   541     }
   542     case Op_AryEq:
   543     case Op_StrComp:
   544     case Op_StrEquals:
   545     case Op_StrIndexOf:
   546     case Op_EncodeISOArray: {
   547       add_local_var(n, PointsToNode::ArgEscape);
   548       delayed_worklist->push(n); // Process it later.
   549       break;
   550     }
   551     case Op_ThreadLocal: {
   552       add_java_object(n, PointsToNode::ArgEscape);
   553       break;
   554     }
   555     default:
   556       ; // Do nothing for nodes not related to EA.
   557   }
   558   return;
   559 }
   561 #ifdef ASSERT
   562 #define ELSE_FAIL(name)                               \
   563       /* Should not be called for not pointer type. */  \
   564       n->dump(1);                                       \
   565       assert(false, name);                              \
   566       break;
   567 #else
   568 #define ELSE_FAIL(name) \
   569       break;
   570 #endif
   572 // Add final simple edges to graph.
   573 void ConnectionGraph::add_final_edges(Node *n) {
   574   PointsToNode* n_ptn = ptnode_adr(n->_idx);
   575 #ifdef ASSERT
   576   if (_verify && n_ptn->is_JavaObject())
   577     return; // This method does not change graph for JavaObject.
   578 #endif
   580   if (n->is_Call()) {
   581     process_call_arguments(n->as_Call());
   582     return;
   583   }
   584   assert(n->is_Store() || n->is_LoadStore() ||
   585          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
   586          "node should be registered already");
   587   int opcode = n->Opcode();
   588   switch (opcode) {
   589     case Op_AddP: {
   590       Node* base = get_addp_base(n);
   591       PointsToNode* ptn_base = ptnode_adr(base->_idx);
   592       assert(ptn_base != NULL, "field's base should be registered");
   593       add_base(n_ptn->as_Field(), ptn_base);
   594       break;
   595     }
   596     case Op_CastPP:
   597     case Op_CheckCastPP:
   598     case Op_EncodeP:
   599     case Op_DecodeN:
   600     case Op_EncodePKlass:
   601     case Op_DecodeNKlass: {
   602       add_local_var_and_edge(n, PointsToNode::NoEscape,
   603                              n->in(1), NULL);
   604       break;
   605     }
   606     case Op_CMoveP: {
   607       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
   608         Node* in = n->in(i);
   609         if (in == NULL)
   610           continue;  // ignore NULL
   611         Node* uncast_in = in->uncast();
   612         if (uncast_in->is_top() || uncast_in == n)
   613           continue;  // ignore top or inputs which go back this node
   614         PointsToNode* ptn = ptnode_adr(in->_idx);
   615         assert(ptn != NULL, "node should be registered");
   616         add_edge(n_ptn, ptn);
   617       }
   618       break;
   619     }
   620     case Op_LoadP:
   621     case Op_LoadN:
   622     case Op_LoadPLocked: {
   623       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   624       // ThreadLocal has RawPtr type.
   625       const Type* t = _igvn->type(n);
   626       if (t->make_ptr() != NULL) {
   627         Node* adr = n->in(MemNode::Address);
   628         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
   629         break;
   630       }
   631       ELSE_FAIL("Op_LoadP");
   632     }
   633     case Op_Phi: {
   634       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
   635       // ThreadLocal has RawPtr type.
   636       const Type* t = n->as_Phi()->type();
   637       if (t->make_ptr() != NULL) {
   638         for (uint i = 1; i < n->req(); i++) {
   639           Node* in = n->in(i);
   640           if (in == NULL)
   641             continue;  // ignore NULL
   642           Node* uncast_in = in->uncast();
   643           if (uncast_in->is_top() || uncast_in == n)
   644             continue;  // ignore top or inputs which go back this node
   645           PointsToNode* ptn = ptnode_adr(in->_idx);
   646           assert(ptn != NULL, "node should be registered");
   647           add_edge(n_ptn, ptn);
   648         }
   649         break;
   650       }
   651       ELSE_FAIL("Op_Phi");
   652     }
   653     case Op_Proj: {
   654       // we are only interested in the oop result projection from a call
   655       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
   656           n->in(0)->as_Call()->returns_pointer()) {
   657         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
   658         break;
   659       }
   660       ELSE_FAIL("Op_Proj");
   661     }
   662     case Op_Rethrow: // Exception object escapes
   663     case Op_Return: {
   664       if (n->req() > TypeFunc::Parms &&
   665           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
   666         // Treat Return value as LocalVar with GlobalEscape escape state.
   667         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
   668                                n->in(TypeFunc::Parms), NULL);
   669         break;
   670       }
   671       ELSE_FAIL("Op_Return");
   672     }
   673     case Op_StoreP:
   674     case Op_StoreN:
   675     case Op_StoreNKlass:
   676     case Op_StorePConditional:
   677     case Op_CompareAndSwapP:
   678     case Op_CompareAndSwapN:
   679     case Op_GetAndSetP:
   680     case Op_GetAndSetN: {
   681       Node* adr = n->in(MemNode::Address);
   682       const Type *adr_type = _igvn->type(adr);
   683       adr_type = adr_type->make_ptr();
   684 #ifdef ASSERT
   685       if (adr_type == NULL) {
   686         n->dump(1);
   687         assert(adr_type != NULL, "dead node should not be on list");
   688         break;
   689       }
   690 #endif
   691       if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN) {
   692         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
   693       }
   694       if (adr_type->isa_oopptr() ||
   695           (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass) &&
   696                         (adr_type == TypeRawPtr::NOTNULL &&
   697                          adr->in(AddPNode::Address)->is_Proj() &&
   698                          adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
   699         // Point Address to Value
   700         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
   701         assert(adr_ptn != NULL &&
   702                adr_ptn->as_Field()->is_oop(), "node should be registered");
   703         Node *val = n->in(MemNode::ValueIn);
   704         PointsToNode* ptn = ptnode_adr(val->_idx);
   705         assert(ptn != NULL, "node should be registered");
   706         add_edge(adr_ptn, ptn);
   707         break;
   708       } else if ((opcode == Op_StoreP) && (adr_type == TypeRawPtr::BOTTOM)) {
   709         // Stored value escapes in unsafe access.
   710         Node *val = n->in(MemNode::ValueIn);
   711         PointsToNode* ptn = ptnode_adr(val->_idx);
   712         assert(ptn != NULL, "node should be registered");
   713         set_escape_state(ptn, PointsToNode::GlobalEscape);
   714         // Add edge to object for unsafe access with offset.
   715         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
   716         assert(adr_ptn != NULL, "node should be registered");
   717         if (adr_ptn->is_Field()) {
   718           assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
   719           add_edge(adr_ptn, ptn);
   720         }
   721         break;
   722       }
   723       ELSE_FAIL("Op_StoreP");
   724     }
   725     case Op_AryEq:
   726     case Op_StrComp:
   727     case Op_StrEquals:
   728     case Op_StrIndexOf:
   729     case Op_EncodeISOArray: {
   730       // char[] arrays passed to string intrinsic do not escape but
   731       // they are not scalar replaceable. Adjust escape state for them.
   732       // Start from in(2) edge since in(1) is memory edge.
   733       for (uint i = 2; i < n->req(); i++) {
   734         Node* adr = n->in(i);
   735         const Type* at = _igvn->type(adr);
   736         if (!adr->is_top() && at->isa_ptr()) {
   737           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
   738                  at->isa_ptr() != NULL, "expecting a pointer");
   739           if (adr->is_AddP()) {
   740             adr = get_addp_base(adr);
   741           }
   742           PointsToNode* ptn = ptnode_adr(adr->_idx);
   743           assert(ptn != NULL, "node should be registered");
   744           add_edge(n_ptn, ptn);
   745         }
   746       }
   747       break;
   748     }
   749     default: {
   750       // This method should be called only for EA specific nodes which may
   751       // miss some edges when they were created.
   752 #ifdef ASSERT
   753       n->dump(1);
   754 #endif
   755       guarantee(false, "unknown node");
   756     }
   757   }
   758   return;
   759 }
   761 void ConnectionGraph::add_call_node(CallNode* call) {
   762   assert(call->returns_pointer(), "only for call which returns pointer");
   763   uint call_idx = call->_idx;
   764   if (call->is_Allocate()) {
   765     Node* k = call->in(AllocateNode::KlassNode);
   766     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
   767     assert(kt != NULL, "TypeKlassPtr  required.");
   768     ciKlass* cik = kt->klass();
   769     PointsToNode::EscapeState es = PointsToNode::NoEscape;
   770     bool scalar_replaceable = true;
   771     if (call->is_AllocateArray()) {
   772       if (!cik->is_array_klass()) { // StressReflectiveCode
   773         es = PointsToNode::GlobalEscape;
   774       } else {
   775         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
   776         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
   777           // Not scalar replaceable if the length is not constant or too big.
   778           scalar_replaceable = false;
   779         }
   780       }
   781     } else {  // Allocate instance
   782       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
   783           cik->is_subclass_of(_compile->env()->Reference_klass()) ||
   784          !cik->is_instance_klass() || // StressReflectiveCode
   785           cik->as_instance_klass()->has_finalizer()) {
   786         es = PointsToNode::GlobalEscape;
   787       }
   788     }
   789     add_java_object(call, es);
   790     PointsToNode* ptn = ptnode_adr(call_idx);
   791     if (!scalar_replaceable && ptn->scalar_replaceable()) {
   792       ptn->set_scalar_replaceable(false);
   793     }
   794   } else if (call->is_CallStaticJava()) {
   795     // Call nodes could be different types:
   796     //
   797     // 1. CallDynamicJavaNode (what happened during call is unknown):
   798     //
   799     //    - mapped to GlobalEscape JavaObject node if oop is returned;
   800     //
   801     //    - all oop arguments are escaping globally;
   802     //
   803     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
   804     //
   805     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
   806     //
   807     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
   808     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
   809     //      during call is returned;
   810     //    - mapped to ArgEscape LocalVar node pointed to object arguments
   811     //      which are returned and does not escape during call;
   812     //
   813     //    - oop arguments escaping status is defined by bytecode analysis;
   814     //
   815     // For a static call, we know exactly what method is being called.
   816     // Use bytecode estimator to record whether the call's return value escapes.
   817     ciMethod* meth = call->as_CallJava()->method();
   818     if (meth == NULL) {
   819       const char* name = call->as_CallStaticJava()->_name;
   820       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
   821       // Returns a newly allocated unescaped object.
   822       add_java_object(call, PointsToNode::NoEscape);
   823       ptnode_adr(call_idx)->set_scalar_replaceable(false);
   824     } else if (meth->is_boxing_method()) {
   825       // Returns boxing object
   826       PointsToNode::EscapeState es;
   827       vmIntrinsics::ID intr = meth->intrinsic_id();
   828       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
   829         // It does not escape if object is always allocated.
   830         es = PointsToNode::NoEscape;
   831       } else {
   832         // It escapes globally if object could be loaded from cache.
   833         es = PointsToNode::GlobalEscape;
   834       }
   835       add_java_object(call, es);
   836     } else {
   837       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
   838       call_analyzer->copy_dependencies(_compile->dependencies());
   839       if (call_analyzer->is_return_allocated()) {
   840         // Returns a newly allocated unescaped object, simply
   841         // update dependency information.
   842         // Mark it as NoEscape so that objects referenced by
   843         // it's fields will be marked as NoEscape at least.
   844         add_java_object(call, PointsToNode::NoEscape);
   845         ptnode_adr(call_idx)->set_scalar_replaceable(false);
   846       } else {
   847         // Determine whether any arguments are returned.
   848         const TypeTuple* d = call->tf()->domain();
   849         bool ret_arg = false;
   850         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
   851           if (d->field_at(i)->isa_ptr() != NULL &&
   852               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
   853             ret_arg = true;
   854             break;
   855           }
   856         }
   857         if (ret_arg) {
   858           add_local_var(call, PointsToNode::ArgEscape);
   859         } else {
   860           // Returns unknown object.
   861           map_ideal_node(call, phantom_obj);
   862         }
   863       }
   864     }
   865   } else {
   866     // An other type of call, assume the worst case:
   867     // returned value is unknown and globally escapes.
   868     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
   869     map_ideal_node(call, phantom_obj);
   870   }
   871 }
   873 void ConnectionGraph::process_call_arguments(CallNode *call) {
   874     bool is_arraycopy = false;
   875     switch (call->Opcode()) {
   876 #ifdef ASSERT
   877     case Op_Allocate:
   878     case Op_AllocateArray:
   879     case Op_Lock:
   880     case Op_Unlock:
   881       assert(false, "should be done already");
   882       break;
   883 #endif
   884     case Op_CallLeafNoFP:
   885       is_arraycopy = (call->as_CallLeaf()->_name != NULL &&
   886                       strstr(call->as_CallLeaf()->_name, "arraycopy") != 0);
   887       // fall through
   888     case Op_CallLeaf: {
   889       // Stub calls, objects do not escape but they are not scale replaceable.
   890       // Adjust escape state for outgoing arguments.
   891       const TypeTuple * d = call->tf()->domain();
   892       bool src_has_oops = false;
   893       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
   894         const Type* at = d->field_at(i);
   895         Node *arg = call->in(i);
   896         const Type *aat = _igvn->type(arg);
   897         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
   898           continue;
   899         if (arg->is_AddP()) {
   900           //
   901           // The inline_native_clone() case when the arraycopy stub is called
   902           // after the allocation before Initialize and CheckCastPP nodes.
   903           // Or normal arraycopy for object arrays case.
   904           //
   905           // Set AddP's base (Allocate) as not scalar replaceable since
   906           // pointer to the base (with offset) is passed as argument.
   907           //
   908           arg = get_addp_base(arg);
   909         }
   910         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
   911         assert(arg_ptn != NULL, "should be registered");
   912         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
   913         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
   914           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
   915                  aat->isa_ptr() != NULL, "expecting an Ptr");
   916           bool arg_has_oops = aat->isa_oopptr() &&
   917                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
   918                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
   919           if (i == TypeFunc::Parms) {
   920             src_has_oops = arg_has_oops;
   921           }
   922           //
   923           // src or dst could be j.l.Object when other is basic type array:
   924           //
   925           //   arraycopy(char[],0,Object*,0,size);
   926           //   arraycopy(Object*,0,char[],0,size);
   927           //
   928           // Don't add edges in such cases.
   929           //
   930           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
   931                                        arg_has_oops && (i > TypeFunc::Parms);
   932 #ifdef ASSERT
   933           if (!(is_arraycopy ||
   934                 (call->as_CallLeaf()->_name != NULL &&
   935                  (strcmp(call->as_CallLeaf()->_name, "g1_wb_pre")  == 0 ||
   936                   strcmp(call->as_CallLeaf()->_name, "g1_wb_post") == 0 ||
   937                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
   938                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
   939                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
   940                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
   941                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
   942                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
   943                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
   944                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
   945                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
   946                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
   947                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0)
   948                   ))) {
   949             call->dump();
   950             fatal(err_msg_res("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name));
   951           }
   952 #endif
   953           // Always process arraycopy's destination object since
   954           // we need to add all possible edges to references in
   955           // source object.
   956           if (arg_esc >= PointsToNode::ArgEscape &&
   957               !arg_is_arraycopy_dest) {
   958             continue;
   959           }
   960           set_escape_state(arg_ptn, PointsToNode::ArgEscape);
   961           if (arg_is_arraycopy_dest) {
   962             Node* src = call->in(TypeFunc::Parms);
   963             if (src->is_AddP()) {
   964               src = get_addp_base(src);
   965             }
   966             PointsToNode* src_ptn = ptnode_adr(src->_idx);
   967             assert(src_ptn != NULL, "should be registered");
   968             if (arg_ptn != src_ptn) {
   969               // Special arraycopy edge:
   970               // A destination object's field can't have the source object
   971               // as base since objects escape states are not related.
   972               // Only escape state of destination object's fields affects
   973               // escape state of fields in source object.
   974               add_arraycopy(call, PointsToNode::ArgEscape, src_ptn, arg_ptn);
   975             }
   976           }
   977         }
   978       }
   979       break;
   980     }
   981     case Op_CallStaticJava: {
   982       // For a static call, we know exactly what method is being called.
   983       // Use bytecode estimator to record the call's escape affects
   984 #ifdef ASSERT
   985       const char* name = call->as_CallStaticJava()->_name;
   986       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
   987 #endif
   988       ciMethod* meth = call->as_CallJava()->method();
   989       if ((meth != NULL) && meth->is_boxing_method()) {
   990         break; // Boxing methods do not modify any oops.
   991       }
   992       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
   993       // fall-through if not a Java method or no analyzer information
   994       if (call_analyzer != NULL) {
   995         PointsToNode* call_ptn = ptnode_adr(call->_idx);
   996         const TypeTuple* d = call->tf()->domain();
   997         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
   998           const Type* at = d->field_at(i);
   999           int k = i - TypeFunc::Parms;
  1000           Node* arg = call->in(i);
  1001           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
  1002           if (at->isa_ptr() != NULL &&
  1003               call_analyzer->is_arg_returned(k)) {
  1004             // The call returns arguments.
  1005             if (call_ptn != NULL) { // Is call's result used?
  1006               assert(call_ptn->is_LocalVar(), "node should be registered");
  1007               assert(arg_ptn != NULL, "node should be registered");
  1008               add_edge(call_ptn, arg_ptn);
  1011           if (at->isa_oopptr() != NULL &&
  1012               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
  1013             if (!call_analyzer->is_arg_stack(k)) {
  1014               // The argument global escapes
  1015               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
  1016             } else {
  1017               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
  1018               if (!call_analyzer->is_arg_local(k)) {
  1019                 // The argument itself doesn't escape, but any fields might
  1020                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
  1025         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
  1026           // The call returns arguments.
  1027           assert(call_ptn->edge_count() > 0, "sanity");
  1028           if (!call_analyzer->is_return_local()) {
  1029             // Returns also unknown object.
  1030             add_edge(call_ptn, phantom_obj);
  1033         break;
  1036     default: {
  1037       // Fall-through here if not a Java method or no analyzer information
  1038       // or some other type of call, assume the worst case: all arguments
  1039       // globally escape.
  1040       const TypeTuple* d = call->tf()->domain();
  1041       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
  1042         const Type* at = d->field_at(i);
  1043         if (at->isa_oopptr() != NULL) {
  1044           Node* arg = call->in(i);
  1045           if (arg->is_AddP()) {
  1046             arg = get_addp_base(arg);
  1048           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
  1049           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
  1057 // Finish Graph construction.
  1058 bool ConnectionGraph::complete_connection_graph(
  1059                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
  1060                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
  1061                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
  1062                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
  1063   // Normally only 1-3 passes needed to build Connection Graph depending
  1064   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
  1065   // Set limit to 20 to catch situation when something did go wrong and
  1066   // bailout Escape Analysis.
  1067   // Also limit build time to 30 sec (60 in debug VM).
  1068 #define CG_BUILD_ITER_LIMIT 20
  1069 #ifdef ASSERT
  1070 #define CG_BUILD_TIME_LIMIT 60.0
  1071 #else
  1072 #define CG_BUILD_TIME_LIMIT 30.0
  1073 #endif
  1075   // Propagate GlobalEscape and ArgEscape escape states and check that
  1076   // we still have non-escaping objects. The method pushs on _worklist
  1077   // Field nodes which reference phantom_object.
  1078   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
  1079     return false; // Nothing to do.
  1081   // Now propagate references to all JavaObject nodes.
  1082   int java_objects_length = java_objects_worklist.length();
  1083   elapsedTimer time;
  1084   int new_edges = 1;
  1085   int iterations = 0;
  1086   do {
  1087     while ((new_edges > 0) &&
  1088           (iterations++   < CG_BUILD_ITER_LIMIT) &&
  1089           (time.seconds() < CG_BUILD_TIME_LIMIT)) {
  1090       time.start();
  1091       new_edges = 0;
  1092       // Propagate references to phantom_object for nodes pushed on _worklist
  1093       // by find_non_escaped_objects() and find_field_value().
  1094       new_edges += add_java_object_edges(phantom_obj, false);
  1095       for (int next = 0; next < java_objects_length; ++next) {
  1096         JavaObjectNode* ptn = java_objects_worklist.at(next);
  1097         new_edges += add_java_object_edges(ptn, true);
  1099       if (new_edges > 0) {
  1100         // Update escape states on each iteration if graph was updated.
  1101         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
  1102           return false; // Nothing to do.
  1105       time.stop();
  1107     if ((iterations     < CG_BUILD_ITER_LIMIT) &&
  1108         (time.seconds() < CG_BUILD_TIME_LIMIT)) {
  1109       time.start();
  1110       // Find fields which have unknown value.
  1111       int fields_length = oop_fields_worklist.length();
  1112       for (int next = 0; next < fields_length; next++) {
  1113         FieldNode* field = oop_fields_worklist.at(next);
  1114         if (field->edge_count() == 0) {
  1115           new_edges += find_field_value(field);
  1116           // This code may added new edges to phantom_object.
  1117           // Need an other cycle to propagate references to phantom_object.
  1120       time.stop();
  1121     } else {
  1122       new_edges = 0; // Bailout
  1124   } while (new_edges > 0);
  1126   // Bailout if passed limits.
  1127   if ((iterations     >= CG_BUILD_ITER_LIMIT) ||
  1128       (time.seconds() >= CG_BUILD_TIME_LIMIT)) {
  1129     Compile* C = _compile;
  1130     if (C->log() != NULL) {
  1131       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
  1132       C->log()->text("%s", (iterations >= CG_BUILD_ITER_LIMIT) ? "iterations" : "time");
  1133       C->log()->end_elem(" limit'");
  1135     assert(ExitEscapeAnalysisOnTimeout, err_msg_res("infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
  1136            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length()));
  1137     // Possible infinite build_connection_graph loop,
  1138     // bailout (no changes to ideal graph were made).
  1139     return false;
  1141 #ifdef ASSERT
  1142   if (Verbose && PrintEscapeAnalysis) {
  1143     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
  1144                   iterations, nodes_size(), ptnodes_worklist.length());
  1146 #endif
  1148 #undef CG_BUILD_ITER_LIMIT
  1149 #undef CG_BUILD_TIME_LIMIT
  1151   // Find fields initialized by NULL for non-escaping Allocations.
  1152   int non_escaped_length = non_escaped_worklist.length();
  1153   for (int next = 0; next < non_escaped_length; next++) {
  1154     JavaObjectNode* ptn = non_escaped_worklist.at(next);
  1155     PointsToNode::EscapeState es = ptn->escape_state();
  1156     assert(es <= PointsToNode::ArgEscape, "sanity");
  1157     if (es == PointsToNode::NoEscape) {
  1158       if (find_init_values(ptn, null_obj, _igvn) > 0) {
  1159         // Adding references to NULL object does not change escape states
  1160         // since it does not escape. Also no fields are added to NULL object.
  1161         add_java_object_edges(null_obj, false);
  1164     Node* n = ptn->ideal_node();
  1165     if (n->is_Allocate()) {
  1166       // The object allocated by this Allocate node will never be
  1167       // seen by an other thread. Mark it so that when it is
  1168       // expanded no MemBarStoreStore is added.
  1169       InitializeNode* ini = n->as_Allocate()->initialization();
  1170       if (ini != NULL)
  1171         ini->set_does_not_escape();
  1174   return true; // Finished graph construction.
  1177 // Propagate GlobalEscape and ArgEscape escape states to all nodes
  1178 // and check that we still have non-escaping java objects.
  1179 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
  1180                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
  1181   GrowableArray<PointsToNode*> escape_worklist;
  1182   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
  1183   int ptnodes_length = ptnodes_worklist.length();
  1184   for (int next = 0; next < ptnodes_length; ++next) {
  1185     PointsToNode* ptn = ptnodes_worklist.at(next);
  1186     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
  1187         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
  1188       escape_worklist.push(ptn);
  1191   // Set escape states to referenced nodes (edges list).
  1192   while (escape_worklist.length() > 0) {
  1193     PointsToNode* ptn = escape_worklist.pop();
  1194     PointsToNode::EscapeState es  = ptn->escape_state();
  1195     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
  1196     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
  1197         es >= PointsToNode::ArgEscape) {
  1198       // GlobalEscape or ArgEscape state of field means it has unknown value.
  1199       if (add_edge(ptn, phantom_obj)) {
  1200         // New edge was added
  1201         add_field_uses_to_worklist(ptn->as_Field());
  1204     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  1205       PointsToNode* e = i.get();
  1206       if (e->is_Arraycopy()) {
  1207         assert(ptn->arraycopy_dst(), "sanity");
  1208         // Propagate only fields escape state through arraycopy edge.
  1209         if (e->fields_escape_state() < field_es) {
  1210           set_fields_escape_state(e, field_es);
  1211           escape_worklist.push(e);
  1213       } else if (es >= field_es) {
  1214         // fields_escape_state is also set to 'es' if it is less than 'es'.
  1215         if (e->escape_state() < es) {
  1216           set_escape_state(e, es);
  1217           escape_worklist.push(e);
  1219       } else {
  1220         // Propagate field escape state.
  1221         bool es_changed = false;
  1222         if (e->fields_escape_state() < field_es) {
  1223           set_fields_escape_state(e, field_es);
  1224           es_changed = true;
  1226         if ((e->escape_state() < field_es) &&
  1227             e->is_Field() && ptn->is_JavaObject() &&
  1228             e->as_Field()->is_oop()) {
  1229           // Change escape state of referenced fileds.
  1230           set_escape_state(e, field_es);
  1231           es_changed = true;;
  1232         } else if (e->escape_state() < es) {
  1233           set_escape_state(e, es);
  1234           es_changed = true;;
  1236         if (es_changed) {
  1237           escape_worklist.push(e);
  1242   // Remove escaped objects from non_escaped list.
  1243   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
  1244     JavaObjectNode* ptn = non_escaped_worklist.at(next);
  1245     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
  1246       non_escaped_worklist.delete_at(next);
  1248     if (ptn->escape_state() == PointsToNode::NoEscape) {
  1249       // Find fields in non-escaped allocations which have unknown value.
  1250       find_init_values(ptn, phantom_obj, NULL);
  1253   return (non_escaped_worklist.length() > 0);
  1256 // Add all references to JavaObject node by walking over all uses.
  1257 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
  1258   int new_edges = 0;
  1259   if (populate_worklist) {
  1260     // Populate _worklist by uses of jobj's uses.
  1261     for (UseIterator i(jobj); i.has_next(); i.next()) {
  1262       PointsToNode* use = i.get();
  1263       if (use->is_Arraycopy())
  1264         continue;
  1265       add_uses_to_worklist(use);
  1266       if (use->is_Field() && use->as_Field()->is_oop()) {
  1267         // Put on worklist all field's uses (loads) and
  1268         // related field nodes (same base and offset).
  1269         add_field_uses_to_worklist(use->as_Field());
  1273   while(_worklist.length() > 0) {
  1274     PointsToNode* use = _worklist.pop();
  1275     if (PointsToNode::is_base_use(use)) {
  1276       // Add reference from jobj to field and from field to jobj (field's base).
  1277       use = PointsToNode::get_use_node(use)->as_Field();
  1278       if (add_base(use->as_Field(), jobj)) {
  1279         new_edges++;
  1281       continue;
  1283     assert(!use->is_JavaObject(), "sanity");
  1284     if (use->is_Arraycopy()) {
  1285       if (jobj == null_obj) // NULL object does not have field edges
  1286         continue;
  1287       // Added edge from Arraycopy node to arraycopy's source java object
  1288       if (add_edge(use, jobj)) {
  1289         jobj->set_arraycopy_src();
  1290         new_edges++;
  1292       // and stop here.
  1293       continue;
  1295     if (!add_edge(use, jobj))
  1296       continue; // No new edge added, there was such edge already.
  1297     new_edges++;
  1298     if (use->is_LocalVar()) {
  1299       add_uses_to_worklist(use);
  1300       if (use->arraycopy_dst()) {
  1301         for (EdgeIterator i(use); i.has_next(); i.next()) {
  1302           PointsToNode* e = i.get();
  1303           if (e->is_Arraycopy()) {
  1304             if (jobj == null_obj) // NULL object does not have field edges
  1305               continue;
  1306             // Add edge from arraycopy's destination java object to Arraycopy node.
  1307             if (add_edge(jobj, e)) {
  1308               new_edges++;
  1309               jobj->set_arraycopy_dst();
  1314     } else {
  1315       // Added new edge to stored in field values.
  1316       // Put on worklist all field's uses (loads) and
  1317       // related field nodes (same base and offset).
  1318       add_field_uses_to_worklist(use->as_Field());
  1321   return new_edges;
  1324 // Put on worklist all related field nodes.
  1325 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
  1326   assert(field->is_oop(), "sanity");
  1327   int offset = field->offset();
  1328   add_uses_to_worklist(field);
  1329   // Loop over all bases of this field and push on worklist Field nodes
  1330   // with the same offset and base (since they may reference the same field).
  1331   for (BaseIterator i(field); i.has_next(); i.next()) {
  1332     PointsToNode* base = i.get();
  1333     add_fields_to_worklist(field, base);
  1334     // Check if the base was source object of arraycopy and go over arraycopy's
  1335     // destination objects since values stored to a field of source object are
  1336     // accessable by uses (loads) of fields of destination objects.
  1337     if (base->arraycopy_src()) {
  1338       for (UseIterator j(base); j.has_next(); j.next()) {
  1339         PointsToNode* arycp = j.get();
  1340         if (arycp->is_Arraycopy()) {
  1341           for (UseIterator k(arycp); k.has_next(); k.next()) {
  1342             PointsToNode* abase = k.get();
  1343             if (abase->arraycopy_dst() && abase != base) {
  1344               // Look for the same arracopy reference.
  1345               add_fields_to_worklist(field, abase);
  1354 // Put on worklist all related field nodes.
  1355 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
  1356   int offset = field->offset();
  1357   if (base->is_LocalVar()) {
  1358     for (UseIterator j(base); j.has_next(); j.next()) {
  1359       PointsToNode* f = j.get();
  1360       if (PointsToNode::is_base_use(f)) { // Field
  1361         f = PointsToNode::get_use_node(f);
  1362         if (f == field || !f->as_Field()->is_oop())
  1363           continue;
  1364         int offs = f->as_Field()->offset();
  1365         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
  1366           add_to_worklist(f);
  1370   } else {
  1371     assert(base->is_JavaObject(), "sanity");
  1372     if (// Skip phantom_object since it is only used to indicate that
  1373         // this field's content globally escapes.
  1374         (base != phantom_obj) &&
  1375         // NULL object node does not have fields.
  1376         (base != null_obj)) {
  1377       for (EdgeIterator i(base); i.has_next(); i.next()) {
  1378         PointsToNode* f = i.get();
  1379         // Skip arraycopy edge since store to destination object field
  1380         // does not update value in source object field.
  1381         if (f->is_Arraycopy()) {
  1382           assert(base->arraycopy_dst(), "sanity");
  1383           continue;
  1385         if (f == field || !f->as_Field()->is_oop())
  1386           continue;
  1387         int offs = f->as_Field()->offset();
  1388         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
  1389           add_to_worklist(f);
  1396 // Find fields which have unknown value.
  1397 int ConnectionGraph::find_field_value(FieldNode* field) {
  1398   // Escaped fields should have init value already.
  1399   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
  1400   int new_edges = 0;
  1401   for (BaseIterator i(field); i.has_next(); i.next()) {
  1402     PointsToNode* base = i.get();
  1403     if (base->is_JavaObject()) {
  1404       // Skip Allocate's fields which will be processed later.
  1405       if (base->ideal_node()->is_Allocate())
  1406         return 0;
  1407       assert(base == null_obj, "only NULL ptr base expected here");
  1410   if (add_edge(field, phantom_obj)) {
  1411     // New edge was added
  1412     new_edges++;
  1413     add_field_uses_to_worklist(field);
  1415   return new_edges;
  1418 // Find fields initializing values for allocations.
  1419 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
  1420   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
  1421   int new_edges = 0;
  1422   Node* alloc = pta->ideal_node();
  1423   if (init_val == phantom_obj) {
  1424     // Do nothing for Allocate nodes since its fields values are "known".
  1425     if (alloc->is_Allocate())
  1426       return 0;
  1427     assert(alloc->as_CallStaticJava(), "sanity");
  1428 #ifdef ASSERT
  1429     if (alloc->as_CallStaticJava()->method() == NULL) {
  1430       const char* name = alloc->as_CallStaticJava()->_name;
  1431       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
  1433 #endif
  1434     // Non-escaped allocation returned from Java or runtime call have
  1435     // unknown values in fields.
  1436     for (EdgeIterator i(pta); i.has_next(); i.next()) {
  1437       PointsToNode* field = i.get();
  1438       if (field->is_Field() && field->as_Field()->is_oop()) {
  1439         if (add_edge(field, phantom_obj)) {
  1440           // New edge was added
  1441           new_edges++;
  1442           add_field_uses_to_worklist(field->as_Field());
  1446     return new_edges;
  1448   assert(init_val == null_obj, "sanity");
  1449   // Do nothing for Call nodes since its fields values are unknown.
  1450   if (!alloc->is_Allocate())
  1451     return 0;
  1453   InitializeNode* ini = alloc->as_Allocate()->initialization();
  1454   Compile* C = _compile;
  1455   bool visited_bottom_offset = false;
  1456   GrowableArray<int> offsets_worklist;
  1458   // Check if an oop field's initializing value is recorded and add
  1459   // a corresponding NULL if field's value if it is not recorded.
  1460   // Connection Graph does not record a default initialization by NULL
  1461   // captured by Initialize node.
  1462   //
  1463   for (EdgeIterator i(pta); i.has_next(); i.next()) {
  1464     PointsToNode* field = i.get(); // Field (AddP)
  1465     if (!field->is_Field() || !field->as_Field()->is_oop())
  1466       continue; // Not oop field
  1467     int offset = field->as_Field()->offset();
  1468     if (offset == Type::OffsetBot) {
  1469       if (!visited_bottom_offset) {
  1470         // OffsetBot is used to reference array's element,
  1471         // always add reference to NULL to all Field nodes since we don't
  1472         // known which element is referenced.
  1473         if (add_edge(field, null_obj)) {
  1474           // New edge was added
  1475           new_edges++;
  1476           add_field_uses_to_worklist(field->as_Field());
  1477           visited_bottom_offset = true;
  1480     } else {
  1481       // Check only oop fields.
  1482       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
  1483       if (adr_type->isa_rawptr()) {
  1484 #ifdef ASSERT
  1485         // Raw pointers are used for initializing stores so skip it
  1486         // since it should be recorded already
  1487         Node* base = get_addp_base(field->ideal_node());
  1488         assert(adr_type->isa_rawptr() && base->is_Proj() &&
  1489                (base->in(0) == alloc),"unexpected pointer type");
  1490 #endif
  1491         continue;
  1493       if (!offsets_worklist.contains(offset)) {
  1494         offsets_worklist.append(offset);
  1495         Node* value = NULL;
  1496         if (ini != NULL) {
  1497           // StoreP::memory_type() == T_ADDRESS
  1498           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
  1499           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
  1500           // Make sure initializing store has the same type as this AddP.
  1501           // This AddP may reference non existing field because it is on a
  1502           // dead branch of bimorphic call which is not eliminated yet.
  1503           if (store != NULL && store->is_Store() &&
  1504               store->as_Store()->memory_type() == ft) {
  1505             value = store->in(MemNode::ValueIn);
  1506 #ifdef ASSERT
  1507             if (VerifyConnectionGraph) {
  1508               // Verify that AddP already points to all objects the value points to.
  1509               PointsToNode* val = ptnode_adr(value->_idx);
  1510               assert((val != NULL), "should be processed already");
  1511               PointsToNode* missed_obj = NULL;
  1512               if (val->is_JavaObject()) {
  1513                 if (!field->points_to(val->as_JavaObject())) {
  1514                   missed_obj = val;
  1516               } else {
  1517                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
  1518                   tty->print_cr("----------init store has invalid value -----");
  1519                   store->dump();
  1520                   val->dump();
  1521                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
  1523                 for (EdgeIterator j(val); j.has_next(); j.next()) {
  1524                   PointsToNode* obj = j.get();
  1525                   if (obj->is_JavaObject()) {
  1526                     if (!field->points_to(obj->as_JavaObject())) {
  1527                       missed_obj = obj;
  1528                       break;
  1533               if (missed_obj != NULL) {
  1534                 tty->print_cr("----------field---------------------------------");
  1535                 field->dump();
  1536                 tty->print_cr("----------missed referernce to object-----------");
  1537                 missed_obj->dump();
  1538                 tty->print_cr("----------object referernced by init store -----");
  1539                 store->dump();
  1540                 val->dump();
  1541                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
  1544 #endif
  1545           } else {
  1546             // There could be initializing stores which follow allocation.
  1547             // For example, a volatile field store is not collected
  1548             // by Initialize node.
  1549             //
  1550             // Need to check for dependent loads to separate such stores from
  1551             // stores which follow loads. For now, add initial value NULL so
  1552             // that compare pointers optimization works correctly.
  1555         if (value == NULL) {
  1556           // A field's initializing value was not recorded. Add NULL.
  1557           if (add_edge(field, null_obj)) {
  1558             // New edge was added
  1559             new_edges++;
  1560             add_field_uses_to_worklist(field->as_Field());
  1566   return new_edges;
  1569 // Adjust scalar_replaceable state after Connection Graph is built.
  1570 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
  1571   // Search for non-escaping objects which are not scalar replaceable
  1572   // and mark them to propagate the state to referenced objects.
  1574   // 1. An object is not scalar replaceable if the field into which it is
  1575   // stored has unknown offset (stored into unknown element of an array).
  1576   //
  1577   for (UseIterator i(jobj); i.has_next(); i.next()) {
  1578     PointsToNode* use = i.get();
  1579     assert(!use->is_Arraycopy(), "sanity");
  1580     if (use->is_Field()) {
  1581       FieldNode* field = use->as_Field();
  1582       assert(field->is_oop() && field->scalar_replaceable() &&
  1583              field->fields_escape_state() == PointsToNode::NoEscape, "sanity");
  1584       if (field->offset() == Type::OffsetBot) {
  1585         jobj->set_scalar_replaceable(false);
  1586         return;
  1588       // 2. An object is not scalar replaceable if the field into which it is
  1589       // stored has multiple bases one of which is null.
  1590       if (field->base_count() > 1) {
  1591         for (BaseIterator i(field); i.has_next(); i.next()) {
  1592           PointsToNode* base = i.get();
  1593           if (base == null_obj) {
  1594             jobj->set_scalar_replaceable(false);
  1595             return;
  1600     assert(use->is_Field() || use->is_LocalVar(), "sanity");
  1601     // 3. An object is not scalar replaceable if it is merged with other objects.
  1602     for (EdgeIterator j(use); j.has_next(); j.next()) {
  1603       PointsToNode* ptn = j.get();
  1604       if (ptn->is_JavaObject() && ptn != jobj) {
  1605         // Mark all objects.
  1606         jobj->set_scalar_replaceable(false);
  1607          ptn->set_scalar_replaceable(false);
  1610     if (!jobj->scalar_replaceable()) {
  1611       return;
  1615   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
  1616     // Non-escaping object node should point only to field nodes.
  1617     FieldNode* field = j.get()->as_Field();
  1618     int offset = field->as_Field()->offset();
  1620     // 4. An object is not scalar replaceable if it has a field with unknown
  1621     // offset (array's element is accessed in loop).
  1622     if (offset == Type::OffsetBot) {
  1623       jobj->set_scalar_replaceable(false);
  1624       return;
  1626     // 5. Currently an object is not scalar replaceable if a LoadStore node
  1627     // access its field since the field value is unknown after it.
  1628     //
  1629     Node* n = field->ideal_node();
  1630     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1631       if (n->fast_out(i)->is_LoadStore()) {
  1632         jobj->set_scalar_replaceable(false);
  1633         return;
  1637     // 6. Or the address may point to more then one object. This may produce
  1638     // the false positive result (set not scalar replaceable)
  1639     // since the flow-insensitive escape analysis can't separate
  1640     // the case when stores overwrite the field's value from the case
  1641     // when stores happened on different control branches.
  1642     //
  1643     // Note: it will disable scalar replacement in some cases:
  1644     //
  1645     //    Point p[] = new Point[1];
  1646     //    p[0] = new Point(); // Will be not scalar replaced
  1647     //
  1648     // but it will save us from incorrect optimizations in next cases:
  1649     //
  1650     //    Point p[] = new Point[1];
  1651     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
  1652     //
  1653     if (field->base_count() > 1) {
  1654       for (BaseIterator i(field); i.has_next(); i.next()) {
  1655         PointsToNode* base = i.get();
  1656         // Don't take into account LocalVar nodes which
  1657         // may point to only one object which should be also
  1658         // this field's base by now.
  1659         if (base->is_JavaObject() && base != jobj) {
  1660           // Mark all bases.
  1661           jobj->set_scalar_replaceable(false);
  1662           base->set_scalar_replaceable(false);
  1669 #ifdef ASSERT
  1670 void ConnectionGraph::verify_connection_graph(
  1671                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
  1672                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
  1673                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
  1674                          GrowableArray<Node*>& addp_worklist) {
  1675   // Verify that graph is complete - no new edges could be added.
  1676   int java_objects_length = java_objects_worklist.length();
  1677   int non_escaped_length  = non_escaped_worklist.length();
  1678   int new_edges = 0;
  1679   for (int next = 0; next < java_objects_length; ++next) {
  1680     JavaObjectNode* ptn = java_objects_worklist.at(next);
  1681     new_edges += add_java_object_edges(ptn, true);
  1683   assert(new_edges == 0, "graph was not complete");
  1684   // Verify that escape state is final.
  1685   int length = non_escaped_worklist.length();
  1686   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
  1687   assert((non_escaped_length == non_escaped_worklist.length()) &&
  1688          (non_escaped_length == length) &&
  1689          (_worklist.length() == 0), "escape state was not final");
  1691   // Verify fields information.
  1692   int addp_length = addp_worklist.length();
  1693   for (int next = 0; next < addp_length; ++next ) {
  1694     Node* n = addp_worklist.at(next);
  1695     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
  1696     if (field->is_oop()) {
  1697       // Verify that field has all bases
  1698       Node* base = get_addp_base(n);
  1699       PointsToNode* ptn = ptnode_adr(base->_idx);
  1700       if (ptn->is_JavaObject()) {
  1701         assert(field->has_base(ptn->as_JavaObject()), "sanity");
  1702       } else {
  1703         assert(ptn->is_LocalVar(), "sanity");
  1704         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  1705           PointsToNode* e = i.get();
  1706           if (e->is_JavaObject()) {
  1707             assert(field->has_base(e->as_JavaObject()), "sanity");
  1711       // Verify that all fields have initializing values.
  1712       if (field->edge_count() == 0) {
  1713         tty->print_cr("----------field does not have references----------");
  1714         field->dump();
  1715         for (BaseIterator i(field); i.has_next(); i.next()) {
  1716           PointsToNode* base = i.get();
  1717           tty->print_cr("----------field has next base---------------------");
  1718           base->dump();
  1719           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
  1720             tty->print_cr("----------base has fields-------------------------");
  1721             for (EdgeIterator j(base); j.has_next(); j.next()) {
  1722               j.get()->dump();
  1724             tty->print_cr("----------base has references---------------------");
  1725             for (UseIterator j(base); j.has_next(); j.next()) {
  1726               j.get()->dump();
  1730         for (UseIterator i(field); i.has_next(); i.next()) {
  1731           i.get()->dump();
  1733         assert(field->edge_count() > 0, "sanity");
  1738 #endif
  1740 // Optimize ideal graph.
  1741 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
  1742                                            GrowableArray<Node*>& storestore_worklist) {
  1743   Compile* C = _compile;
  1744   PhaseIterGVN* igvn = _igvn;
  1745   if (EliminateLocks) {
  1746     // Mark locks before changing ideal graph.
  1747     int cnt = C->macro_count();
  1748     for( int i=0; i < cnt; i++ ) {
  1749       Node *n = C->macro_node(i);
  1750       if (n->is_AbstractLock()) { // Lock and Unlock nodes
  1751         AbstractLockNode* alock = n->as_AbstractLock();
  1752         if (!alock->is_non_esc_obj()) {
  1753           if (not_global_escape(alock->obj_node())) {
  1754             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
  1755             // The lock could be marked eliminated by lock coarsening
  1756             // code during first IGVN before EA. Replace coarsened flag
  1757             // to eliminate all associated locks/unlocks.
  1758             alock->set_non_esc_obj();
  1765   if (OptimizePtrCompare) {
  1766     // Add ConI(#CC_GT) and ConI(#CC_EQ).
  1767     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
  1768     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
  1769     // Optimize objects compare.
  1770     while (ptr_cmp_worklist.length() != 0) {
  1771       Node *n = ptr_cmp_worklist.pop();
  1772       Node *res = optimize_ptr_compare(n);
  1773       if (res != NULL) {
  1774 #ifndef PRODUCT
  1775         if (PrintOptimizePtrCompare) {
  1776           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
  1777           if (Verbose) {
  1778             n->dump(1);
  1781 #endif
  1782         igvn->replace_node(n, res);
  1785     // cleanup
  1786     if (_pcmp_neq->outcnt() == 0)
  1787       igvn->hash_delete(_pcmp_neq);
  1788     if (_pcmp_eq->outcnt()  == 0)
  1789       igvn->hash_delete(_pcmp_eq);
  1792   // For MemBarStoreStore nodes added in library_call.cpp, check
  1793   // escape status of associated AllocateNode and optimize out
  1794   // MemBarStoreStore node if the allocated object never escapes.
  1795   while (storestore_worklist.length() != 0) {
  1796     Node *n = storestore_worklist.pop();
  1797     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
  1798     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
  1799     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
  1800     if (not_global_escape(alloc)) {
  1801       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
  1802       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
  1803       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
  1804       igvn->register_new_node_with_optimizer(mb);
  1805       igvn->replace_node(storestore, mb);
  1810 // Optimize objects compare.
  1811 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
  1812   assert(OptimizePtrCompare, "sanity");
  1813   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
  1814   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
  1815   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
  1816   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
  1817   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
  1818   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
  1820   // Check simple cases first.
  1821   if (jobj1 != NULL) {
  1822     if (jobj1->escape_state() == PointsToNode::NoEscape) {
  1823       if (jobj1 == jobj2) {
  1824         // Comparing the same not escaping object.
  1825         return _pcmp_eq;
  1827       Node* obj = jobj1->ideal_node();
  1828       // Comparing not escaping allocation.
  1829       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
  1830           !ptn2->points_to(jobj1)) {
  1831         return _pcmp_neq; // This includes nullness check.
  1835   if (jobj2 != NULL) {
  1836     if (jobj2->escape_state() == PointsToNode::NoEscape) {
  1837       Node* obj = jobj2->ideal_node();
  1838       // Comparing not escaping allocation.
  1839       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
  1840           !ptn1->points_to(jobj2)) {
  1841         return _pcmp_neq; // This includes nullness check.
  1845   if (jobj1 != NULL && jobj1 != phantom_obj &&
  1846       jobj2 != NULL && jobj2 != phantom_obj &&
  1847       jobj1->ideal_node()->is_Con() &&
  1848       jobj2->ideal_node()->is_Con()) {
  1849     // Klass or String constants compare. Need to be careful with
  1850     // compressed pointers - compare types of ConN and ConP instead of nodes.
  1851     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
  1852     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
  1853     if (t1->make_ptr() == t2->make_ptr()) {
  1854       return _pcmp_eq;
  1855     } else {
  1856       return _pcmp_neq;
  1859   if (ptn1->meet(ptn2)) {
  1860     return NULL; // Sets are not disjoint
  1863   // Sets are disjoint.
  1864   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
  1865   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
  1866   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
  1867   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
  1868   if (set1_has_unknown_ptr && set2_has_null_ptr ||
  1869       set2_has_unknown_ptr && set1_has_null_ptr) {
  1870     // Check nullness of unknown object.
  1871     return NULL;
  1874   // Disjointness by itself is not sufficient since
  1875   // alias analysis is not complete for escaped objects.
  1876   // Disjoint sets are definitely unrelated only when
  1877   // at least one set has only not escaping allocations.
  1878   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
  1879     if (ptn1->non_escaping_allocation()) {
  1880       return _pcmp_neq;
  1883   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
  1884     if (ptn2->non_escaping_allocation()) {
  1885       return _pcmp_neq;
  1888   return NULL;
  1891 // Connection Graph constuction functions.
  1893 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
  1894   PointsToNode* ptadr = _nodes.at(n->_idx);
  1895   if (ptadr != NULL) {
  1896     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
  1897     return;
  1899   Compile* C = _compile;
  1900   ptadr = new (C->comp_arena()) LocalVarNode(C, n, es);
  1901   _nodes.at_put(n->_idx, ptadr);
  1904 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
  1905   PointsToNode* ptadr = _nodes.at(n->_idx);
  1906   if (ptadr != NULL) {
  1907     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
  1908     return;
  1910   Compile* C = _compile;
  1911   ptadr = new (C->comp_arena()) JavaObjectNode(C, n, es);
  1912   _nodes.at_put(n->_idx, ptadr);
  1915 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
  1916   PointsToNode* ptadr = _nodes.at(n->_idx);
  1917   if (ptadr != NULL) {
  1918     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
  1919     return;
  1921   bool unsafe = false;
  1922   bool is_oop = is_oop_field(n, offset, &unsafe);
  1923   if (unsafe) {
  1924     es = PointsToNode::GlobalEscape;
  1926   Compile* C = _compile;
  1927   FieldNode* field = new (C->comp_arena()) FieldNode(C, n, es, offset, is_oop);
  1928   _nodes.at_put(n->_idx, field);
  1931 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
  1932                                     PointsToNode* src, PointsToNode* dst) {
  1933   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
  1934   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
  1935   PointsToNode* ptadr = _nodes.at(n->_idx);
  1936   if (ptadr != NULL) {
  1937     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
  1938     return;
  1940   Compile* C = _compile;
  1941   ptadr = new (C->comp_arena()) ArraycopyNode(C, n, es);
  1942   _nodes.at_put(n->_idx, ptadr);
  1943   // Add edge from arraycopy node to source object.
  1944   (void)add_edge(ptadr, src);
  1945   src->set_arraycopy_src();
  1946   // Add edge from destination object to arraycopy node.
  1947   (void)add_edge(dst, ptadr);
  1948   dst->set_arraycopy_dst();
  1951 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
  1952   const Type* adr_type = n->as_AddP()->bottom_type();
  1953   BasicType bt = T_INT;
  1954   if (offset == Type::OffsetBot) {
  1955     // Check only oop fields.
  1956     if (!adr_type->isa_aryptr() ||
  1957         (adr_type->isa_aryptr()->klass() == NULL) ||
  1958          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
  1959       // OffsetBot is used to reference array's element. Ignore first AddP.
  1960       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
  1961         bt = T_OBJECT;
  1964   } else if (offset != oopDesc::klass_offset_in_bytes()) {
  1965     if (adr_type->isa_instptr()) {
  1966       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
  1967       if (field != NULL) {
  1968         bt = field->layout_type();
  1969       } else {
  1970         // Check for unsafe oop field access
  1971         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1972           int opcode = n->fast_out(i)->Opcode();
  1973           if (opcode == Op_StoreP || opcode == Op_LoadP ||
  1974               opcode == Op_StoreN || opcode == Op_LoadN) {
  1975             bt = T_OBJECT;
  1976             (*unsafe) = true;
  1977             break;
  1981     } else if (adr_type->isa_aryptr()) {
  1982       if (offset == arrayOopDesc::length_offset_in_bytes()) {
  1983         // Ignore array length load.
  1984       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
  1985         // Ignore first AddP.
  1986       } else {
  1987         const Type* elemtype = adr_type->isa_aryptr()->elem();
  1988         bt = elemtype->array_element_basic_type();
  1990     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
  1991       // Allocation initialization, ThreadLocal field access, unsafe access
  1992       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  1993         int opcode = n->fast_out(i)->Opcode();
  1994         if (opcode == Op_StoreP || opcode == Op_LoadP ||
  1995             opcode == Op_StoreN || opcode == Op_LoadN) {
  1996           bt = T_OBJECT;
  1997           break;
  2002   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
  2005 // Returns unique pointed java object or NULL.
  2006 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
  2007   assert(!_collecting, "should not call when contructed graph");
  2008   // If the node was created after the escape computation we can't answer.
  2009   uint idx = n->_idx;
  2010   if (idx >= nodes_size()) {
  2011     return NULL;
  2013   PointsToNode* ptn = ptnode_adr(idx);
  2014   if (ptn->is_JavaObject()) {
  2015     return ptn->as_JavaObject();
  2017   assert(ptn->is_LocalVar(), "sanity");
  2018   // Check all java objects it points to.
  2019   JavaObjectNode* jobj = NULL;
  2020   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  2021     PointsToNode* e = i.get();
  2022     if (e->is_JavaObject()) {
  2023       if (jobj == NULL) {
  2024         jobj = e->as_JavaObject();
  2025       } else if (jobj != e) {
  2026         return NULL;
  2030   return jobj;
  2033 // Return true if this node points only to non-escaping allocations.
  2034 bool PointsToNode::non_escaping_allocation() {
  2035   if (is_JavaObject()) {
  2036     Node* n = ideal_node();
  2037     if (n->is_Allocate() || n->is_CallStaticJava()) {
  2038       return (escape_state() == PointsToNode::NoEscape);
  2039     } else {
  2040       return false;
  2043   assert(is_LocalVar(), "sanity");
  2044   // Check all java objects it points to.
  2045   for (EdgeIterator i(this); i.has_next(); i.next()) {
  2046     PointsToNode* e = i.get();
  2047     if (e->is_JavaObject()) {
  2048       Node* n = e->ideal_node();
  2049       if ((e->escape_state() != PointsToNode::NoEscape) ||
  2050           !(n->is_Allocate() || n->is_CallStaticJava())) {
  2051         return false;
  2055   return true;
  2058 // Return true if we know the node does not escape globally.
  2059 bool ConnectionGraph::not_global_escape(Node *n) {
  2060   assert(!_collecting, "should not call during graph construction");
  2061   // If the node was created after the escape computation we can't answer.
  2062   uint idx = n->_idx;
  2063   if (idx >= nodes_size()) {
  2064     return false;
  2066   PointsToNode* ptn = ptnode_adr(idx);
  2067   PointsToNode::EscapeState es = ptn->escape_state();
  2068   // If we have already computed a value, return it.
  2069   if (es >= PointsToNode::GlobalEscape)
  2070     return false;
  2071   if (ptn->is_JavaObject()) {
  2072     return true; // (es < PointsToNode::GlobalEscape);
  2074   assert(ptn->is_LocalVar(), "sanity");
  2075   // Check all java objects it points to.
  2076   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
  2077     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
  2078       return false;
  2080   return true;
  2084 // Helper functions
  2086 // Return true if this node points to specified node or nodes it points to.
  2087 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
  2088   if (is_JavaObject()) {
  2089     return (this == ptn);
  2091   assert(is_LocalVar() || is_Field(), "sanity");
  2092   for (EdgeIterator i(this); i.has_next(); i.next()) {
  2093     if (i.get() == ptn)
  2094       return true;
  2096   return false;
  2099 // Return true if one node points to an other.
  2100 bool PointsToNode::meet(PointsToNode* ptn) {
  2101   if (this == ptn) {
  2102     return true;
  2103   } else if (ptn->is_JavaObject()) {
  2104     return this->points_to(ptn->as_JavaObject());
  2105   } else if (this->is_JavaObject()) {
  2106     return ptn->points_to(this->as_JavaObject());
  2108   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
  2109   int ptn_count =  ptn->edge_count();
  2110   for (EdgeIterator i(this); i.has_next(); i.next()) {
  2111     PointsToNode* this_e = i.get();
  2112     for (int j = 0; j < ptn_count; j++) {
  2113       if (this_e == ptn->edge(j))
  2114         return true;
  2117   return false;
  2120 #ifdef ASSERT
  2121 // Return true if bases point to this java object.
  2122 bool FieldNode::has_base(JavaObjectNode* jobj) const {
  2123   for (BaseIterator i(this); i.has_next(); i.next()) {
  2124     if (i.get() == jobj)
  2125       return true;
  2127   return false;
  2129 #endif
  2131 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
  2132   const Type *adr_type = phase->type(adr);
  2133   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
  2134       adr->in(AddPNode::Address)->is_Proj() &&
  2135       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
  2136     // We are computing a raw address for a store captured by an Initialize
  2137     // compute an appropriate address type. AddP cases #3 and #5 (see below).
  2138     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
  2139     assert(offs != Type::OffsetBot ||
  2140            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
  2141            "offset must be a constant or it is initialization of array");
  2142     return offs;
  2144   const TypePtr *t_ptr = adr_type->isa_ptr();
  2145   assert(t_ptr != NULL, "must be a pointer type");
  2146   return t_ptr->offset();
  2149 Node* ConnectionGraph::get_addp_base(Node *addp) {
  2150   assert(addp->is_AddP(), "must be AddP");
  2151   //
  2152   // AddP cases for Base and Address inputs:
  2153   // case #1. Direct object's field reference:
  2154   //     Allocate
  2155   //       |
  2156   //     Proj #5 ( oop result )
  2157   //       |
  2158   //     CheckCastPP (cast to instance type)
  2159   //      | |
  2160   //     AddP  ( base == address )
  2161   //
  2162   // case #2. Indirect object's field reference:
  2163   //      Phi
  2164   //       |
  2165   //     CastPP (cast to instance type)
  2166   //      | |
  2167   //     AddP  ( base == address )
  2168   //
  2169   // case #3. Raw object's field reference for Initialize node:
  2170   //      Allocate
  2171   //        |
  2172   //      Proj #5 ( oop result )
  2173   //  top   |
  2174   //     \  |
  2175   //     AddP  ( base == top )
  2176   //
  2177   // case #4. Array's element reference:
  2178   //   {CheckCastPP | CastPP}
  2179   //     |  | |
  2180   //     |  AddP ( array's element offset )
  2181   //     |  |
  2182   //     AddP ( array's offset )
  2183   //
  2184   // case #5. Raw object's field reference for arraycopy stub call:
  2185   //          The inline_native_clone() case when the arraycopy stub is called
  2186   //          after the allocation before Initialize and CheckCastPP nodes.
  2187   //      Allocate
  2188   //        |
  2189   //      Proj #5 ( oop result )
  2190   //       | |
  2191   //       AddP  ( base == address )
  2192   //
  2193   // case #6. Constant Pool, ThreadLocal, CastX2P or
  2194   //          Raw object's field reference:
  2195   //      {ConP, ThreadLocal, CastX2P, raw Load}
  2196   //  top   |
  2197   //     \  |
  2198   //     AddP  ( base == top )
  2199   //
  2200   // case #7. Klass's field reference.
  2201   //      LoadKlass
  2202   //       | |
  2203   //       AddP  ( base == address )
  2204   //
  2205   // case #8. narrow Klass's field reference.
  2206   //      LoadNKlass
  2207   //       |
  2208   //      DecodeN
  2209   //       | |
  2210   //       AddP  ( base == address )
  2211   //
  2212   Node *base = addp->in(AddPNode::Base);
  2213   if (base->uncast()->is_top()) { // The AddP case #3 and #6.
  2214     base = addp->in(AddPNode::Address);
  2215     while (base->is_AddP()) {
  2216       // Case #6 (unsafe access) may have several chained AddP nodes.
  2217       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
  2218       base = base->in(AddPNode::Address);
  2220     Node* uncast_base = base->uncast();
  2221     int opcode = uncast_base->Opcode();
  2222     assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
  2223            opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
  2224            (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
  2225            (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
  2227   return base;
  2230 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
  2231   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
  2232   Node* addp2 = addp->raw_out(0);
  2233   if (addp->outcnt() == 1 && addp2->is_AddP() &&
  2234       addp2->in(AddPNode::Base) == n &&
  2235       addp2->in(AddPNode::Address) == addp) {
  2236     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
  2237     //
  2238     // Find array's offset to push it on worklist first and
  2239     // as result process an array's element offset first (pushed second)
  2240     // to avoid CastPP for the array's offset.
  2241     // Otherwise the inserted CastPP (LocalVar) will point to what
  2242     // the AddP (Field) points to. Which would be wrong since
  2243     // the algorithm expects the CastPP has the same point as
  2244     // as AddP's base CheckCastPP (LocalVar).
  2245     //
  2246     //    ArrayAllocation
  2247     //     |
  2248     //    CheckCastPP
  2249     //     |
  2250     //    memProj (from ArrayAllocation CheckCastPP)
  2251     //     |  ||
  2252     //     |  ||   Int (element index)
  2253     //     |  ||    |   ConI (log(element size))
  2254     //     |  ||    |   /
  2255     //     |  ||   LShift
  2256     //     |  ||  /
  2257     //     |  AddP (array's element offset)
  2258     //     |  |
  2259     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
  2260     //     | / /
  2261     //     AddP (array's offset)
  2262     //      |
  2263     //     Load/Store (memory operation on array's element)
  2264     //
  2265     return addp2;
  2267   return NULL;
  2270 //
  2271 // Adjust the type and inputs of an AddP which computes the
  2272 // address of a field of an instance
  2273 //
  2274 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
  2275   PhaseGVN* igvn = _igvn;
  2276   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
  2277   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
  2278   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
  2279   if (t == NULL) {
  2280     // We are computing a raw address for a store captured by an Initialize
  2281     // compute an appropriate address type (cases #3 and #5).
  2282     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
  2283     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
  2284     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
  2285     assert(offs != Type::OffsetBot, "offset must be a constant");
  2286     t = base_t->add_offset(offs)->is_oopptr();
  2288   int inst_id =  base_t->instance_id();
  2289   assert(!t->is_known_instance() || t->instance_id() == inst_id,
  2290                              "old type must be non-instance or match new type");
  2292   // The type 't' could be subclass of 'base_t'.
  2293   // As result t->offset() could be large then base_t's size and it will
  2294   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
  2295   // constructor verifies correctness of the offset.
  2296   //
  2297   // It could happened on subclass's branch (from the type profiling
  2298   // inlining) which was not eliminated during parsing since the exactness
  2299   // of the allocation type was not propagated to the subclass type check.
  2300   //
  2301   // Or the type 't' could be not related to 'base_t' at all.
  2302   // It could happened when CHA type is different from MDO type on a dead path
  2303   // (for example, from instanceof check) which is not collapsed during parsing.
  2304   //
  2305   // Do nothing for such AddP node and don't process its users since
  2306   // this code branch will go away.
  2307   //
  2308   if (!t->is_known_instance() &&
  2309       !base_t->klass()->is_subtype_of(t->klass())) {
  2310      return false; // bail out
  2312   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
  2313   // Do NOT remove the next line: ensure a new alias index is allocated
  2314   // for the instance type. Note: C++ will not remove it since the call
  2315   // has side effect.
  2316   int alias_idx = _compile->get_alias_index(tinst);
  2317   igvn->set_type(addp, tinst);
  2318   // record the allocation in the node map
  2319   set_map(addp, get_map(base->_idx));
  2320   // Set addp's Base and Address to 'base'.
  2321   Node *abase = addp->in(AddPNode::Base);
  2322   Node *adr   = addp->in(AddPNode::Address);
  2323   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
  2324       adr->in(0)->_idx == (uint)inst_id) {
  2325     // Skip AddP cases #3 and #5.
  2326   } else {
  2327     assert(!abase->is_top(), "sanity"); // AddP case #3
  2328     if (abase != base) {
  2329       igvn->hash_delete(addp);
  2330       addp->set_req(AddPNode::Base, base);
  2331       if (abase == adr) {
  2332         addp->set_req(AddPNode::Address, base);
  2333       } else {
  2334         // AddP case #4 (adr is array's element offset AddP node)
  2335 #ifdef ASSERT
  2336         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
  2337         assert(adr->is_AddP() && atype != NULL &&
  2338                atype->instance_id() == inst_id, "array's element offset should be processed first");
  2339 #endif
  2341       igvn->hash_insert(addp);
  2344   // Put on IGVN worklist since at least addp's type was changed above.
  2345   record_for_optimizer(addp);
  2346   return true;
  2349 //
  2350 // Create a new version of orig_phi if necessary. Returns either the newly
  2351 // created phi or an existing phi.  Sets create_new to indicate whether a new
  2352 // phi was created.  Cache the last newly created phi in the node map.
  2353 //
  2354 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
  2355   Compile *C = _compile;
  2356   PhaseGVN* igvn = _igvn;
  2357   new_created = false;
  2358   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
  2359   // nothing to do if orig_phi is bottom memory or matches alias_idx
  2360   if (phi_alias_idx == alias_idx) {
  2361     return orig_phi;
  2363   // Have we recently created a Phi for this alias index?
  2364   PhiNode *result = get_map_phi(orig_phi->_idx);
  2365   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
  2366     return result;
  2368   // Previous check may fail when the same wide memory Phi was split into Phis
  2369   // for different memory slices. Search all Phis for this region.
  2370   if (result != NULL) {
  2371     Node* region = orig_phi->in(0);
  2372     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
  2373       Node* phi = region->fast_out(i);
  2374       if (phi->is_Phi() &&
  2375           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
  2376         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
  2377         return phi->as_Phi();
  2381   if ((int) (C->live_nodes() + 2*NodeLimitFudgeFactor) > MaxNodeLimit) {
  2382     if (C->do_escape_analysis() == true && !C->failing()) {
  2383       // Retry compilation without escape analysis.
  2384       // If this is the first failure, the sentinel string will "stick"
  2385       // to the Compile object, and the C2Compiler will see it and retry.
  2386       C->record_failure(C2Compiler::retry_no_escape_analysis());
  2388     return NULL;
  2390   orig_phi_worklist.append_if_missing(orig_phi);
  2391   const TypePtr *atype = C->get_adr_type(alias_idx);
  2392   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
  2393   C->copy_node_notes_to(result, orig_phi);
  2394   igvn->set_type(result, result->bottom_type());
  2395   record_for_optimizer(result);
  2396   set_map(orig_phi, result);
  2397   new_created = true;
  2398   return result;
  2401 //
  2402 // Return a new version of Memory Phi "orig_phi" with the inputs having the
  2403 // specified alias index.
  2404 //
  2405 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
  2406   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
  2407   Compile *C = _compile;
  2408   PhaseGVN* igvn = _igvn;
  2409   bool new_phi_created;
  2410   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
  2411   if (!new_phi_created) {
  2412     return result;
  2414   GrowableArray<PhiNode *>  phi_list;
  2415   GrowableArray<uint>  cur_input;
  2416   PhiNode *phi = orig_phi;
  2417   uint idx = 1;
  2418   bool finished = false;
  2419   while(!finished) {
  2420     while (idx < phi->req()) {
  2421       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
  2422       if (mem != NULL && mem->is_Phi()) {
  2423         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
  2424         if (new_phi_created) {
  2425           // found an phi for which we created a new split, push current one on worklist and begin
  2426           // processing new one
  2427           phi_list.push(phi);
  2428           cur_input.push(idx);
  2429           phi = mem->as_Phi();
  2430           result = newphi;
  2431           idx = 1;
  2432           continue;
  2433         } else {
  2434           mem = newphi;
  2437       if (C->failing()) {
  2438         return NULL;
  2440       result->set_req(idx++, mem);
  2442 #ifdef ASSERT
  2443     // verify that the new Phi has an input for each input of the original
  2444     assert( phi->req() == result->req(), "must have same number of inputs.");
  2445     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
  2446 #endif
  2447     // Check if all new phi's inputs have specified alias index.
  2448     // Otherwise use old phi.
  2449     for (uint i = 1; i < phi->req(); i++) {
  2450       Node* in = result->in(i);
  2451       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
  2453     // we have finished processing a Phi, see if there are any more to do
  2454     finished = (phi_list.length() == 0 );
  2455     if (!finished) {
  2456       phi = phi_list.pop();
  2457       idx = cur_input.pop();
  2458       PhiNode *prev_result = get_map_phi(phi->_idx);
  2459       prev_result->set_req(idx++, result);
  2460       result = prev_result;
  2463   return result;
  2466 //
  2467 // The next methods are derived from methods in MemNode.
  2468 //
  2469 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
  2470   Node *mem = mmem;
  2471   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
  2472   // means an array I have not precisely typed yet.  Do not do any
  2473   // alias stuff with it any time soon.
  2474   if (toop->base() != Type::AnyPtr &&
  2475       !(toop->klass() != NULL &&
  2476         toop->klass()->is_java_lang_Object() &&
  2477         toop->offset() == Type::OffsetBot)) {
  2478     mem = mmem->memory_at(alias_idx);
  2479     // Update input if it is progress over what we have now
  2481   return mem;
  2484 //
  2485 // Move memory users to their memory slices.
  2486 //
  2487 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
  2488   Compile* C = _compile;
  2489   PhaseGVN* igvn = _igvn;
  2490   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
  2491   assert(tp != NULL, "ptr type");
  2492   int alias_idx = C->get_alias_index(tp);
  2493   int general_idx = C->get_general_index(alias_idx);
  2495   // Move users first
  2496   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2497     Node* use = n->fast_out(i);
  2498     if (use->is_MergeMem()) {
  2499       MergeMemNode* mmem = use->as_MergeMem();
  2500       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
  2501       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
  2502         continue; // Nothing to do
  2504       // Replace previous general reference to mem node.
  2505       uint orig_uniq = C->unique();
  2506       Node* m = find_inst_mem(n, general_idx, orig_phis);
  2507       assert(orig_uniq == C->unique(), "no new nodes");
  2508       mmem->set_memory_at(general_idx, m);
  2509       --imax;
  2510       --i;
  2511     } else if (use->is_MemBar()) {
  2512       assert(!use->is_Initialize(), "initializing stores should not be moved");
  2513       if (use->req() > MemBarNode::Precedent &&
  2514           use->in(MemBarNode::Precedent) == n) {
  2515         // Don't move related membars.
  2516         record_for_optimizer(use);
  2517         continue;
  2519       tp = use->as_MemBar()->adr_type()->isa_ptr();
  2520       if (tp != NULL && C->get_alias_index(tp) == alias_idx ||
  2521           alias_idx == general_idx) {
  2522         continue; // Nothing to do
  2524       // Move to general memory slice.
  2525       uint orig_uniq = C->unique();
  2526       Node* m = find_inst_mem(n, general_idx, orig_phis);
  2527       assert(orig_uniq == C->unique(), "no new nodes");
  2528       igvn->hash_delete(use);
  2529       imax -= use->replace_edge(n, m);
  2530       igvn->hash_insert(use);
  2531       record_for_optimizer(use);
  2532       --i;
  2533 #ifdef ASSERT
  2534     } else if (use->is_Mem()) {
  2535       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
  2536         // Don't move related cardmark.
  2537         continue;
  2539       // Memory nodes should have new memory input.
  2540       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
  2541       assert(tp != NULL, "ptr type");
  2542       int idx = C->get_alias_index(tp);
  2543       assert(get_map(use->_idx) != NULL || idx == alias_idx,
  2544              "Following memory nodes should have new memory input or be on the same memory slice");
  2545     } else if (use->is_Phi()) {
  2546       // Phi nodes should be split and moved already.
  2547       tp = use->as_Phi()->adr_type()->isa_ptr();
  2548       assert(tp != NULL, "ptr type");
  2549       int idx = C->get_alias_index(tp);
  2550       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
  2551     } else {
  2552       use->dump();
  2553       assert(false, "should not be here");
  2554 #endif
  2559 //
  2560 // Search memory chain of "mem" to find a MemNode whose address
  2561 // is the specified alias index.
  2562 //
  2563 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
  2564   if (orig_mem == NULL)
  2565     return orig_mem;
  2566   Compile* C = _compile;
  2567   PhaseGVN* igvn = _igvn;
  2568   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
  2569   bool is_instance = (toop != NULL) && toop->is_known_instance();
  2570   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
  2571   Node *prev = NULL;
  2572   Node *result = orig_mem;
  2573   while (prev != result) {
  2574     prev = result;
  2575     if (result == start_mem)
  2576       break;  // hit one of our sentinels
  2577     if (result->is_Mem()) {
  2578       const Type *at = igvn->type(result->in(MemNode::Address));
  2579       if (at == Type::TOP)
  2580         break; // Dead
  2581       assert (at->isa_ptr() != NULL, "pointer type required.");
  2582       int idx = C->get_alias_index(at->is_ptr());
  2583       if (idx == alias_idx)
  2584         break; // Found
  2585       if (!is_instance && (at->isa_oopptr() == NULL ||
  2586                            !at->is_oopptr()->is_known_instance())) {
  2587         break; // Do not skip store to general memory slice.
  2589       result = result->in(MemNode::Memory);
  2591     if (!is_instance)
  2592       continue;  // don't search further for non-instance types
  2593     // skip over a call which does not affect this memory slice
  2594     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
  2595       Node *proj_in = result->in(0);
  2596       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
  2597         break;  // hit one of our sentinels
  2598       } else if (proj_in->is_Call()) {
  2599         CallNode *call = proj_in->as_Call();
  2600         if (!call->may_modify(toop, igvn)) {
  2601           result = call->in(TypeFunc::Memory);
  2603       } else if (proj_in->is_Initialize()) {
  2604         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
  2605         // Stop if this is the initialization for the object instance which
  2606         // which contains this memory slice, otherwise skip over it.
  2607         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
  2608           result = proj_in->in(TypeFunc::Memory);
  2610       } else if (proj_in->is_MemBar()) {
  2611         result = proj_in->in(TypeFunc::Memory);
  2613     } else if (result->is_MergeMem()) {
  2614       MergeMemNode *mmem = result->as_MergeMem();
  2615       result = step_through_mergemem(mmem, alias_idx, toop);
  2616       if (result == mmem->base_memory()) {
  2617         // Didn't find instance memory, search through general slice recursively.
  2618         result = mmem->memory_at(C->get_general_index(alias_idx));
  2619         result = find_inst_mem(result, alias_idx, orig_phis);
  2620         if (C->failing()) {
  2621           return NULL;
  2623         mmem->set_memory_at(alias_idx, result);
  2625     } else if (result->is_Phi() &&
  2626                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
  2627       Node *un = result->as_Phi()->unique_input(igvn);
  2628       if (un != NULL) {
  2629         orig_phis.append_if_missing(result->as_Phi());
  2630         result = un;
  2631       } else {
  2632         break;
  2634     } else if (result->is_ClearArray()) {
  2635       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
  2636         // Can not bypass initialization of the instance
  2637         // we are looking for.
  2638         break;
  2640       // Otherwise skip it (the call updated 'result' value).
  2641     } else if (result->Opcode() == Op_SCMemProj) {
  2642       Node* mem = result->in(0);
  2643       Node* adr = NULL;
  2644       if (mem->is_LoadStore()) {
  2645         adr = mem->in(MemNode::Address);
  2646       } else {
  2647         assert(mem->Opcode() == Op_EncodeISOArray, "sanity");
  2648         adr = mem->in(3); // Memory edge corresponds to destination array
  2650       const Type *at = igvn->type(adr);
  2651       if (at != Type::TOP) {
  2652         assert (at->isa_ptr() != NULL, "pointer type required.");
  2653         int idx = C->get_alias_index(at->is_ptr());
  2654         assert(idx != alias_idx, "Object is not scalar replaceable if a LoadStore node access its field");
  2655         break;
  2657       result = mem->in(MemNode::Memory);
  2660   if (result->is_Phi()) {
  2661     PhiNode *mphi = result->as_Phi();
  2662     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
  2663     const TypePtr *t = mphi->adr_type();
  2664     if (!is_instance) {
  2665       // Push all non-instance Phis on the orig_phis worklist to update inputs
  2666       // during Phase 4 if needed.
  2667       orig_phis.append_if_missing(mphi);
  2668     } else if (C->get_alias_index(t) != alias_idx) {
  2669       // Create a new Phi with the specified alias index type.
  2670       result = split_memory_phi(mphi, alias_idx, orig_phis);
  2673   // the result is either MemNode, PhiNode, InitializeNode.
  2674   return result;
  2677 //
  2678 //  Convert the types of unescaped object to instance types where possible,
  2679 //  propagate the new type information through the graph, and update memory
  2680 //  edges and MergeMem inputs to reflect the new type.
  2681 //
  2682 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
  2683 //  The processing is done in 4 phases:
  2684 //
  2685 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
  2686 //            types for the CheckCastPP for allocations where possible.
  2687 //            Propagate the the new types through users as follows:
  2688 //               casts and Phi:  push users on alloc_worklist
  2689 //               AddP:  cast Base and Address inputs to the instance type
  2690 //                      push any AddP users on alloc_worklist and push any memnode
  2691 //                      users onto memnode_worklist.
  2692 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
  2693 //            search the Memory chain for a store with the appropriate type
  2694 //            address type.  If a Phi is found, create a new version with
  2695 //            the appropriate memory slices from each of the Phi inputs.
  2696 //            For stores, process the users as follows:
  2697 //               MemNode:  push on memnode_worklist
  2698 //               MergeMem: push on mergemem_worklist
  2699 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
  2700 //            moving the first node encountered of each  instance type to the
  2701 //            the input corresponding to its alias index.
  2702 //            appropriate memory slice.
  2703 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
  2704 //
  2705 // In the following example, the CheckCastPP nodes are the cast of allocation
  2706 // results and the allocation of node 29 is unescaped and eligible to be an
  2707 // instance type.
  2708 //
  2709 // We start with:
  2710 //
  2711 //     7 Parm #memory
  2712 //    10  ConI  "12"
  2713 //    19  CheckCastPP   "Foo"
  2714 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
  2715 //    29  CheckCastPP   "Foo"
  2716 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
  2717 //
  2718 //    40  StoreP  25   7  20   ... alias_index=4
  2719 //    50  StoreP  35  40  30   ... alias_index=4
  2720 //    60  StoreP  45  50  20   ... alias_index=4
  2721 //    70  LoadP    _  60  30   ... alias_index=4
  2722 //    80  Phi     75  50  60   Memory alias_index=4
  2723 //    90  LoadP    _  80  30   ... alias_index=4
  2724 //   100  LoadP    _  80  20   ... alias_index=4
  2725 //
  2726 //
  2727 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
  2728 // and creating a new alias index for node 30.  This gives:
  2729 //
  2730 //     7 Parm #memory
  2731 //    10  ConI  "12"
  2732 //    19  CheckCastPP   "Foo"
  2733 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
  2734 //    29  CheckCastPP   "Foo"  iid=24
  2735 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
  2736 //
  2737 //    40  StoreP  25   7  20   ... alias_index=4
  2738 //    50  StoreP  35  40  30   ... alias_index=6
  2739 //    60  StoreP  45  50  20   ... alias_index=4
  2740 //    70  LoadP    _  60  30   ... alias_index=6
  2741 //    80  Phi     75  50  60   Memory alias_index=4
  2742 //    90  LoadP    _  80  30   ... alias_index=6
  2743 //   100  LoadP    _  80  20   ... alias_index=4
  2744 //
  2745 // In phase 2, new memory inputs are computed for the loads and stores,
  2746 // And a new version of the phi is created.  In phase 4, the inputs to
  2747 // node 80 are updated and then the memory nodes are updated with the
  2748 // values computed in phase 2.  This results in:
  2749 //
  2750 //     7 Parm #memory
  2751 //    10  ConI  "12"
  2752 //    19  CheckCastPP   "Foo"
  2753 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
  2754 //    29  CheckCastPP   "Foo"  iid=24
  2755 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
  2756 //
  2757 //    40  StoreP  25  7   20   ... alias_index=4
  2758 //    50  StoreP  35  7   30   ... alias_index=6
  2759 //    60  StoreP  45  40  20   ... alias_index=4
  2760 //    70  LoadP    _  50  30   ... alias_index=6
  2761 //    80  Phi     75  40  60   Memory alias_index=4
  2762 //   120  Phi     75  50  50   Memory alias_index=6
  2763 //    90  LoadP    _ 120  30   ... alias_index=6
  2764 //   100  LoadP    _  80  20   ... alias_index=4
  2765 //
  2766 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist) {
  2767   GrowableArray<Node *>  memnode_worklist;
  2768   GrowableArray<PhiNode *>  orig_phis;
  2769   PhaseIterGVN  *igvn = _igvn;
  2770   uint new_index_start = (uint) _compile->num_alias_types();
  2771   Arena* arena = Thread::current()->resource_area();
  2772   VectorSet visited(arena);
  2773   ideal_nodes.clear(); // Reset for use with set_map/get_map.
  2774   uint unique_old = _compile->unique();
  2776   //  Phase 1:  Process possible allocations from alloc_worklist.
  2777   //  Create instance types for the CheckCastPP for allocations where possible.
  2778   //
  2779   // (Note: don't forget to change the order of the second AddP node on
  2780   //  the alloc_worklist if the order of the worklist processing is changed,
  2781   //  see the comment in find_second_addp().)
  2782   //
  2783   while (alloc_worklist.length() != 0) {
  2784     Node *n = alloc_worklist.pop();
  2785     uint ni = n->_idx;
  2786     if (n->is_Call()) {
  2787       CallNode *alloc = n->as_Call();
  2788       // copy escape information to call node
  2789       PointsToNode* ptn = ptnode_adr(alloc->_idx);
  2790       PointsToNode::EscapeState es = ptn->escape_state();
  2791       // We have an allocation or call which returns a Java object,
  2792       // see if it is unescaped.
  2793       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
  2794         continue;
  2795       // Find CheckCastPP for the allocate or for the return value of a call
  2796       n = alloc->result_cast();
  2797       if (n == NULL) {            // No uses except Initialize node
  2798         if (alloc->is_Allocate()) {
  2799           // Set the scalar_replaceable flag for allocation
  2800           // so it could be eliminated if it has no uses.
  2801           alloc->as_Allocate()->_is_scalar_replaceable = true;
  2803         if (alloc->is_CallStaticJava()) {
  2804           // Set the scalar_replaceable flag for boxing method
  2805           // so it could be eliminated if it has no uses.
  2806           alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
  2808         continue;
  2810       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
  2811         assert(!alloc->is_Allocate(), "allocation should have unique type");
  2812         continue;
  2815       // The inline code for Object.clone() casts the allocation result to
  2816       // java.lang.Object and then to the actual type of the allocated
  2817       // object. Detect this case and use the second cast.
  2818       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
  2819       // the allocation result is cast to java.lang.Object and then
  2820       // to the actual Array type.
  2821       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
  2822           && (alloc->is_AllocateArray() ||
  2823               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
  2824         Node *cast2 = NULL;
  2825         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2826           Node *use = n->fast_out(i);
  2827           if (use->is_CheckCastPP()) {
  2828             cast2 = use;
  2829             break;
  2832         if (cast2 != NULL) {
  2833           n = cast2;
  2834         } else {
  2835           // Non-scalar replaceable if the allocation type is unknown statically
  2836           // (reflection allocation), the object can't be restored during
  2837           // deoptimization without precise type.
  2838           continue;
  2841       if (alloc->is_Allocate()) {
  2842         // Set the scalar_replaceable flag for allocation
  2843         // so it could be eliminated.
  2844         alloc->as_Allocate()->_is_scalar_replaceable = true;
  2846       if (alloc->is_CallStaticJava()) {
  2847         // Set the scalar_replaceable flag for boxing method
  2848         // so it could be eliminated.
  2849         alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
  2851       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
  2852       // in order for an object to be scalar-replaceable, it must be:
  2853       //   - a direct allocation (not a call returning an object)
  2854       //   - non-escaping
  2855       //   - eligible to be a unique type
  2856       //   - not determined to be ineligible by escape analysis
  2857       set_map(alloc, n);
  2858       set_map(n, alloc);
  2859       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
  2860       if (t == NULL)
  2861         continue;  // not a TypeOopPtr
  2862       const TypeOopPtr* tinst = t->cast_to_exactness(true)->is_oopptr()->cast_to_instance_id(ni);
  2863       igvn->hash_delete(n);
  2864       igvn->set_type(n,  tinst);
  2865       n->raise_bottom_type(tinst);
  2866       igvn->hash_insert(n);
  2867       record_for_optimizer(n);
  2868       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
  2870         // First, put on the worklist all Field edges from Connection Graph
  2871         // which is more accurate then putting immediate users from Ideal Graph.
  2872         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
  2873           PointsToNode* tgt = e.get();
  2874           Node* use = tgt->ideal_node();
  2875           assert(tgt->is_Field() && use->is_AddP(),
  2876                  "only AddP nodes are Field edges in CG");
  2877           if (use->outcnt() > 0) { // Don't process dead nodes
  2878             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
  2879             if (addp2 != NULL) {
  2880               assert(alloc->is_AllocateArray(),"array allocation was expected");
  2881               alloc_worklist.append_if_missing(addp2);
  2883             alloc_worklist.append_if_missing(use);
  2887         // An allocation may have an Initialize which has raw stores. Scan
  2888         // the users of the raw allocation result and push AddP users
  2889         // on alloc_worklist.
  2890         Node *raw_result = alloc->proj_out(TypeFunc::Parms);
  2891         assert (raw_result != NULL, "must have an allocation result");
  2892         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
  2893           Node *use = raw_result->fast_out(i);
  2894           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
  2895             Node* addp2 = find_second_addp(use, raw_result);
  2896             if (addp2 != NULL) {
  2897               assert(alloc->is_AllocateArray(),"array allocation was expected");
  2898               alloc_worklist.append_if_missing(addp2);
  2900             alloc_worklist.append_if_missing(use);
  2901           } else if (use->is_MemBar()) {
  2902             memnode_worklist.append_if_missing(use);
  2906     } else if (n->is_AddP()) {
  2907       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
  2908       if (jobj == NULL || jobj == phantom_obj) {
  2909 #ifdef ASSERT
  2910         ptnode_adr(get_addp_base(n)->_idx)->dump();
  2911         ptnode_adr(n->_idx)->dump();
  2912         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
  2913 #endif
  2914         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
  2915         return;
  2917       Node *base = get_map(jobj->idx());  // CheckCastPP node
  2918       if (!split_AddP(n, base)) continue; // wrong type from dead path
  2919     } else if (n->is_Phi() ||
  2920                n->is_CheckCastPP() ||
  2921                n->is_EncodeP() ||
  2922                n->is_DecodeN() ||
  2923                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
  2924       if (visited.test_set(n->_idx)) {
  2925         assert(n->is_Phi(), "loops only through Phi's");
  2926         continue;  // already processed
  2928       JavaObjectNode* jobj = unique_java_object(n);
  2929       if (jobj == NULL || jobj == phantom_obj) {
  2930 #ifdef ASSERT
  2931         ptnode_adr(n->_idx)->dump();
  2932         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
  2933 #endif
  2934         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
  2935         return;
  2936       } else {
  2937         Node *val = get_map(jobj->idx());   // CheckCastPP node
  2938         TypeNode *tn = n->as_Type();
  2939         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
  2940         assert(tinst != NULL && tinst->is_known_instance() &&
  2941                tinst->instance_id() == jobj->idx() , "instance type expected.");
  2943         const Type *tn_type = igvn->type(tn);
  2944         const TypeOopPtr *tn_t;
  2945         if (tn_type->isa_narrowoop()) {
  2946           tn_t = tn_type->make_ptr()->isa_oopptr();
  2947         } else {
  2948           tn_t = tn_type->isa_oopptr();
  2950         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
  2951           if (tn_type->isa_narrowoop()) {
  2952             tn_type = tinst->make_narrowoop();
  2953           } else {
  2954             tn_type = tinst;
  2956           igvn->hash_delete(tn);
  2957           igvn->set_type(tn, tn_type);
  2958           tn->set_type(tn_type);
  2959           igvn->hash_insert(tn);
  2960           record_for_optimizer(n);
  2961         } else {
  2962           assert(tn_type == TypePtr::NULL_PTR ||
  2963                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
  2964                  "unexpected type");
  2965           continue; // Skip dead path with different type
  2968     } else {
  2969       debug_only(n->dump();)
  2970       assert(false, "EA: unexpected node");
  2971       continue;
  2973     // push allocation's users on appropriate worklist
  2974     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  2975       Node *use = n->fast_out(i);
  2976       if(use->is_Mem() && use->in(MemNode::Address) == n) {
  2977         // Load/store to instance's field
  2978         memnode_worklist.append_if_missing(use);
  2979       } else if (use->is_MemBar()) {
  2980         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
  2981           memnode_worklist.append_if_missing(use);
  2983       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
  2984         Node* addp2 = find_second_addp(use, n);
  2985         if (addp2 != NULL) {
  2986           alloc_worklist.append_if_missing(addp2);
  2988         alloc_worklist.append_if_missing(use);
  2989       } else if (use->is_Phi() ||
  2990                  use->is_CheckCastPP() ||
  2991                  use->is_EncodeNarrowPtr() ||
  2992                  use->is_DecodeNarrowPtr() ||
  2993                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
  2994         alloc_worklist.append_if_missing(use);
  2995 #ifdef ASSERT
  2996       } else if (use->is_Mem()) {
  2997         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
  2998       } else if (use->is_MergeMem()) {
  2999         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
  3000       } else if (use->is_SafePoint()) {
  3001         // Look for MergeMem nodes for calls which reference unique allocation
  3002         // (through CheckCastPP nodes) even for debug info.
  3003         Node* m = use->in(TypeFunc::Memory);
  3004         if (m->is_MergeMem()) {
  3005           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
  3007       } else if (use->Opcode() == Op_EncodeISOArray) {
  3008         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
  3009           // EncodeISOArray overwrites destination array
  3010           memnode_worklist.append_if_missing(use);
  3012       } else {
  3013         uint op = use->Opcode();
  3014         if (!(op == Op_CmpP || op == Op_Conv2B ||
  3015               op == Op_CastP2X || op == Op_StoreCM ||
  3016               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp ||
  3017               op == Op_StrEquals || op == Op_StrIndexOf)) {
  3018           n->dump();
  3019           use->dump();
  3020           assert(false, "EA: missing allocation reference path");
  3022 #endif
  3027   // New alias types were created in split_AddP().
  3028   uint new_index_end = (uint) _compile->num_alias_types();
  3029   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
  3031   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
  3032   //            compute new values for Memory inputs  (the Memory inputs are not
  3033   //            actually updated until phase 4.)
  3034   if (memnode_worklist.length() == 0)
  3035     return;  // nothing to do
  3036   while (memnode_worklist.length() != 0) {
  3037     Node *n = memnode_worklist.pop();
  3038     if (visited.test_set(n->_idx))
  3039       continue;
  3040     if (n->is_Phi() || n->is_ClearArray()) {
  3041       // we don't need to do anything, but the users must be pushed
  3042     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
  3043       // we don't need to do anything, but the users must be pushed
  3044       n = n->as_MemBar()->proj_out(TypeFunc::Memory);
  3045       if (n == NULL)
  3046         continue;
  3047     } else if (n->Opcode() == Op_EncodeISOArray) {
  3048       // get the memory projection
  3049       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  3050         Node *use = n->fast_out(i);
  3051         if (use->Opcode() == Op_SCMemProj) {
  3052           n = use;
  3053           break;
  3056       assert(n->Opcode() == Op_SCMemProj, "memory projection required");
  3057     } else {
  3058       assert(n->is_Mem(), "memory node required.");
  3059       Node *addr = n->in(MemNode::Address);
  3060       const Type *addr_t = igvn->type(addr);
  3061       if (addr_t == Type::TOP)
  3062         continue;
  3063       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
  3064       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
  3065       assert ((uint)alias_idx < new_index_end, "wrong alias index");
  3066       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
  3067       if (_compile->failing()) {
  3068         return;
  3070       if (mem != n->in(MemNode::Memory)) {
  3071         // We delay the memory edge update since we need old one in
  3072         // MergeMem code below when instances memory slices are separated.
  3073         set_map(n, mem);
  3075       if (n->is_Load()) {
  3076         continue;  // don't push users
  3077       } else if (n->is_LoadStore()) {
  3078         // get the memory projection
  3079         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  3080           Node *use = n->fast_out(i);
  3081           if (use->Opcode() == Op_SCMemProj) {
  3082             n = use;
  3083             break;
  3086         assert(n->Opcode() == Op_SCMemProj, "memory projection required");
  3089     // push user on appropriate worklist
  3090     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  3091       Node *use = n->fast_out(i);
  3092       if (use->is_Phi() || use->is_ClearArray()) {
  3093         memnode_worklist.append_if_missing(use);
  3094       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
  3095         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
  3096           continue;
  3097         memnode_worklist.append_if_missing(use);
  3098       } else if (use->is_MemBar()) {
  3099         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
  3100           memnode_worklist.append_if_missing(use);
  3102 #ifdef ASSERT
  3103       } else if(use->is_Mem()) {
  3104         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
  3105       } else if (use->is_MergeMem()) {
  3106         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
  3107       } else if (use->Opcode() == Op_EncodeISOArray) {
  3108         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
  3109           // EncodeISOArray overwrites destination array
  3110           memnode_worklist.append_if_missing(use);
  3112       } else {
  3113         uint op = use->Opcode();
  3114         if (!(op == Op_StoreCM ||
  3115               (op == Op_CallLeaf && use->as_CallLeaf()->_name != NULL &&
  3116                strcmp(use->as_CallLeaf()->_name, "g1_wb_pre") == 0) ||
  3117               op == Op_AryEq || op == Op_StrComp ||
  3118               op == Op_StrEquals || op == Op_StrIndexOf)) {
  3119           n->dump();
  3120           use->dump();
  3121           assert(false, "EA: missing memory path");
  3123 #endif
  3128   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
  3129   //            Walk each memory slice moving the first node encountered of each
  3130   //            instance type to the the input corresponding to its alias index.
  3131   uint length = _mergemem_worklist.length();
  3132   for( uint next = 0; next < length; ++next ) {
  3133     MergeMemNode* nmm = _mergemem_worklist.at(next);
  3134     assert(!visited.test_set(nmm->_idx), "should not be visited before");
  3135     // Note: we don't want to use MergeMemStream here because we only want to
  3136     // scan inputs which exist at the start, not ones we add during processing.
  3137     // Note 2: MergeMem may already contains instance memory slices added
  3138     // during find_inst_mem() call when memory nodes were processed above.
  3139     igvn->hash_delete(nmm);
  3140     uint nslices = nmm->req();
  3141     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
  3142       Node* mem = nmm->in(i);
  3143       Node* cur = NULL;
  3144       if (mem == NULL || mem->is_top())
  3145         continue;
  3146       // First, update mergemem by moving memory nodes to corresponding slices
  3147       // if their type became more precise since this mergemem was created.
  3148       while (mem->is_Mem()) {
  3149         const Type *at = igvn->type(mem->in(MemNode::Address));
  3150         if (at != Type::TOP) {
  3151           assert (at->isa_ptr() != NULL, "pointer type required.");
  3152           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
  3153           if (idx == i) {
  3154             if (cur == NULL)
  3155               cur = mem;
  3156           } else {
  3157             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
  3158               nmm->set_memory_at(idx, mem);
  3162         mem = mem->in(MemNode::Memory);
  3164       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
  3165       // Find any instance of the current type if we haven't encountered
  3166       // already a memory slice of the instance along the memory chain.
  3167       for (uint ni = new_index_start; ni < new_index_end; ni++) {
  3168         if((uint)_compile->get_general_index(ni) == i) {
  3169           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
  3170           if (nmm->is_empty_memory(m)) {
  3171             Node* result = find_inst_mem(mem, ni, orig_phis);
  3172             if (_compile->failing()) {
  3173               return;
  3175             nmm->set_memory_at(ni, result);
  3180     // Find the rest of instances values
  3181     for (uint ni = new_index_start; ni < new_index_end; ni++) {
  3182       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
  3183       Node* result = step_through_mergemem(nmm, ni, tinst);
  3184       if (result == nmm->base_memory()) {
  3185         // Didn't find instance memory, search through general slice recursively.
  3186         result = nmm->memory_at(_compile->get_general_index(ni));
  3187         result = find_inst_mem(result, ni, orig_phis);
  3188         if (_compile->failing()) {
  3189           return;
  3191         nmm->set_memory_at(ni, result);
  3194     igvn->hash_insert(nmm);
  3195     record_for_optimizer(nmm);
  3198   //  Phase 4:  Update the inputs of non-instance memory Phis and
  3199   //            the Memory input of memnodes
  3200   // First update the inputs of any non-instance Phi's from
  3201   // which we split out an instance Phi.  Note we don't have
  3202   // to recursively process Phi's encounted on the input memory
  3203   // chains as is done in split_memory_phi() since they  will
  3204   // also be processed here.
  3205   for (int j = 0; j < orig_phis.length(); j++) {
  3206     PhiNode *phi = orig_phis.at(j);
  3207     int alias_idx = _compile->get_alias_index(phi->adr_type());
  3208     igvn->hash_delete(phi);
  3209     for (uint i = 1; i < phi->req(); i++) {
  3210       Node *mem = phi->in(i);
  3211       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
  3212       if (_compile->failing()) {
  3213         return;
  3215       if (mem != new_mem) {
  3216         phi->set_req(i, new_mem);
  3219     igvn->hash_insert(phi);
  3220     record_for_optimizer(phi);
  3223   // Update the memory inputs of MemNodes with the value we computed
  3224   // in Phase 2 and move stores memory users to corresponding memory slices.
  3225   // Disable memory split verification code until the fix for 6984348.
  3226   // Currently it produces false negative results since it does not cover all cases.
  3227 #if 0 // ifdef ASSERT
  3228   visited.Reset();
  3229   Node_Stack old_mems(arena, _compile->unique() >> 2);
  3230 #endif
  3231   for (uint i = 0; i < ideal_nodes.size(); i++) {
  3232     Node*    n = ideal_nodes.at(i);
  3233     Node* nmem = get_map(n->_idx);
  3234     assert(nmem != NULL, "sanity");
  3235     if (n->is_Mem()) {
  3236 #if 0 // ifdef ASSERT
  3237       Node* old_mem = n->in(MemNode::Memory);
  3238       if (!visited.test_set(old_mem->_idx)) {
  3239         old_mems.push(old_mem, old_mem->outcnt());
  3241 #endif
  3242       assert(n->in(MemNode::Memory) != nmem, "sanity");
  3243       if (!n->is_Load()) {
  3244         // Move memory users of a store first.
  3245         move_inst_mem(n, orig_phis);
  3247       // Now update memory input
  3248       igvn->hash_delete(n);
  3249       n->set_req(MemNode::Memory, nmem);
  3250       igvn->hash_insert(n);
  3251       record_for_optimizer(n);
  3252     } else {
  3253       assert(n->is_Allocate() || n->is_CheckCastPP() ||
  3254              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
  3257 #if 0 // ifdef ASSERT
  3258   // Verify that memory was split correctly
  3259   while (old_mems.is_nonempty()) {
  3260     Node* old_mem = old_mems.node();
  3261     uint  old_cnt = old_mems.index();
  3262     old_mems.pop();
  3263     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
  3265 #endif
  3268 #ifndef PRODUCT
  3269 static const char *node_type_names[] = {
  3270   "UnknownType",
  3271   "JavaObject",
  3272   "LocalVar",
  3273   "Field",
  3274   "Arraycopy"
  3275 };
  3277 static const char *esc_names[] = {
  3278   "UnknownEscape",
  3279   "NoEscape",
  3280   "ArgEscape",
  3281   "GlobalEscape"
  3282 };
  3284 void PointsToNode::dump(bool print_state) const {
  3285   NodeType nt = node_type();
  3286   tty->print("%s ", node_type_names[(int) nt]);
  3287   if (print_state) {
  3288     EscapeState es = escape_state();
  3289     EscapeState fields_es = fields_escape_state();
  3290     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
  3291     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
  3292       tty->print("NSR ");
  3294   if (is_Field()) {
  3295     FieldNode* f = (FieldNode*)this;
  3296     if (f->is_oop())
  3297       tty->print("oop ");
  3298     if (f->offset() > 0)
  3299       tty->print("+%d ", f->offset());
  3300     tty->print("(");
  3301     for (BaseIterator i(f); i.has_next(); i.next()) {
  3302       PointsToNode* b = i.get();
  3303       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
  3305     tty->print(" )");
  3307   tty->print("[");
  3308   for (EdgeIterator i(this); i.has_next(); i.next()) {
  3309     PointsToNode* e = i.get();
  3310     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
  3312   tty->print(" [");
  3313   for (UseIterator i(this); i.has_next(); i.next()) {
  3314     PointsToNode* u = i.get();
  3315     bool is_base = false;
  3316     if (PointsToNode::is_base_use(u)) {
  3317       is_base = true;
  3318       u = PointsToNode::get_use_node(u)->as_Field();
  3320     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
  3322   tty->print(" ]]  ");
  3323   if (_node == NULL)
  3324     tty->print_cr("<null>");
  3325   else
  3326     _node->dump();
  3329 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
  3330   bool first = true;
  3331   int ptnodes_length = ptnodes_worklist.length();
  3332   for (int i = 0; i < ptnodes_length; i++) {
  3333     PointsToNode *ptn = ptnodes_worklist.at(i);
  3334     if (ptn == NULL || !ptn->is_JavaObject())
  3335       continue;
  3336     PointsToNode::EscapeState es = ptn->escape_state();
  3337     if ((es != PointsToNode::NoEscape) && !Verbose) {
  3338       continue;
  3340     Node* n = ptn->ideal_node();
  3341     if (n->is_Allocate() || (n->is_CallStaticJava() &&
  3342                              n->as_CallStaticJava()->is_boxing_method())) {
  3343       if (first) {
  3344         tty->cr();
  3345         tty->print("======== Connection graph for ");
  3346         _compile->method()->print_short_name();
  3347         tty->cr();
  3348         first = false;
  3350       ptn->dump();
  3351       // Print all locals and fields which reference this allocation
  3352       for (UseIterator j(ptn); j.has_next(); j.next()) {
  3353         PointsToNode* use = j.get();
  3354         if (use->is_LocalVar()) {
  3355           use->dump(Verbose);
  3356         } else if (Verbose) {
  3357           use->dump();
  3360       tty->cr();
  3364 #endif

mercurial