src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp

Wed, 21 Aug 2013 13:34:45 +0200

author
roland
date
Wed, 21 Aug 2013 13:34:45 +0200
changeset 5628
f98f5d48f511
parent 5353
b800986664f4
child 5694
7944aba7ba41
permissions
-rw-r--r--

7199175: JSR 292: C1 needs patching when invokedynamic/invokehandle call site is not linked
Summary: Do patching rather bailing out for unlinked call with appendix
Reviewed-by: twisti, kvn

duke@435 1 /*
drchase@5353 2 * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "c1/c1_Compilation.hpp"
stefank@2314 27 #include "c1/c1_LIRAssembler.hpp"
stefank@2314 28 #include "c1/c1_MacroAssembler.hpp"
stefank@2314 29 #include "c1/c1_Runtime1.hpp"
stefank@2314 30 #include "c1/c1_ValueStack.hpp"
stefank@2314 31 #include "ci/ciArrayKlass.hpp"
stefank@2314 32 #include "ci/ciInstance.hpp"
stefank@2314 33 #include "gc_interface/collectedHeap.hpp"
stefank@2314 34 #include "memory/barrierSet.hpp"
stefank@2314 35 #include "memory/cardTableModRefBS.hpp"
stefank@2314 36 #include "nativeInst_sparc.hpp"
stefank@2314 37 #include "oops/objArrayKlass.hpp"
stefank@2314 38 #include "runtime/sharedRuntime.hpp"
duke@435 39
duke@435 40 #define __ _masm->
duke@435 41
duke@435 42
duke@435 43 //------------------------------------------------------------
duke@435 44
duke@435 45
duke@435 46 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
duke@435 47 if (opr->is_constant()) {
duke@435 48 LIR_Const* constant = opr->as_constant_ptr();
duke@435 49 switch (constant->type()) {
duke@435 50 case T_INT: {
duke@435 51 jint value = constant->as_jint();
duke@435 52 return Assembler::is_simm13(value);
duke@435 53 }
duke@435 54
duke@435 55 default:
duke@435 56 return false;
duke@435 57 }
duke@435 58 }
duke@435 59 return false;
duke@435 60 }
duke@435 61
duke@435 62
duke@435 63 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
duke@435 64 switch (op->code()) {
duke@435 65 case lir_null_check:
duke@435 66 return true;
duke@435 67
duke@435 68
duke@435 69 case lir_add:
duke@435 70 case lir_ushr:
duke@435 71 case lir_shr:
duke@435 72 case lir_shl:
duke@435 73 // integer shifts and adds are always one instruction
duke@435 74 return op->result_opr()->is_single_cpu();
duke@435 75
duke@435 76
duke@435 77 case lir_move: {
duke@435 78 LIR_Op1* op1 = op->as_Op1();
duke@435 79 LIR_Opr src = op1->in_opr();
duke@435 80 LIR_Opr dst = op1->result_opr();
duke@435 81
duke@435 82 if (src == dst) {
duke@435 83 NEEDS_CLEANUP;
duke@435 84 // this works around a problem where moves with the same src and dst
duke@435 85 // end up in the delay slot and then the assembler swallows the mov
duke@435 86 // since it has no effect and then it complains because the delay slot
duke@435 87 // is empty. returning false stops the optimizer from putting this in
duke@435 88 // the delay slot
duke@435 89 return false;
duke@435 90 }
duke@435 91
duke@435 92 // don't put moves involving oops into the delay slot since the VerifyOops code
duke@435 93 // will make it much larger than a single instruction.
duke@435 94 if (VerifyOops) {
duke@435 95 return false;
duke@435 96 }
duke@435 97
duke@435 98 if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
duke@435 99 ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
duke@435 100 return false;
duke@435 101 }
duke@435 102
iveresov@2344 103 if (UseCompressedOops) {
iveresov@2344 104 if (dst->is_address() && !dst->is_stack() && (dst->type() == T_OBJECT || dst->type() == T_ARRAY)) return false;
iveresov@2344 105 if (src->is_address() && !src->is_stack() && (src->type() == T_OBJECT || src->type() == T_ARRAY)) return false;
iveresov@2344 106 }
iveresov@2344 107
roland@4159 108 if (UseCompressedKlassPointers) {
roland@4159 109 if (src->is_address() && !src->is_stack() && src->type() == T_ADDRESS &&
roland@4159 110 src->as_address_ptr()->disp() == oopDesc::klass_offset_in_bytes()) return false;
roland@4159 111 }
roland@4159 112
duke@435 113 if (dst->is_register()) {
duke@435 114 if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
duke@435 115 return !PatchALot;
duke@435 116 } else if (src->is_single_stack()) {
duke@435 117 return true;
duke@435 118 }
duke@435 119 }
duke@435 120
duke@435 121 if (src->is_register()) {
duke@435 122 if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
duke@435 123 return !PatchALot;
duke@435 124 } else if (dst->is_single_stack()) {
duke@435 125 return true;
duke@435 126 }
duke@435 127 }
duke@435 128
duke@435 129 if (dst->is_register() &&
duke@435 130 ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
duke@435 131 (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
duke@435 132 return true;
duke@435 133 }
duke@435 134
duke@435 135 return false;
duke@435 136 }
duke@435 137
duke@435 138 default:
duke@435 139 return false;
duke@435 140 }
duke@435 141 ShouldNotReachHere();
duke@435 142 }
duke@435 143
duke@435 144
duke@435 145 LIR_Opr LIR_Assembler::receiverOpr() {
duke@435 146 return FrameMap::O0_oop_opr;
duke@435 147 }
duke@435 148
duke@435 149
duke@435 150 LIR_Opr LIR_Assembler::osrBufferPointer() {
duke@435 151 return FrameMap::I0_opr;
duke@435 152 }
duke@435 153
duke@435 154
duke@435 155 int LIR_Assembler::initial_frame_size_in_bytes() {
duke@435 156 return in_bytes(frame_map()->framesize_in_bytes());
duke@435 157 }
duke@435 158
duke@435 159
duke@435 160 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
duke@435 161 // we fetch the class of the receiver (O0) and compare it with the cached class.
duke@435 162 // If they do not match we jump to slow case.
duke@435 163 int LIR_Assembler::check_icache() {
duke@435 164 int offset = __ offset();
duke@435 165 __ inline_cache_check(O0, G5_inline_cache_reg);
duke@435 166 return offset;
duke@435 167 }
duke@435 168
duke@435 169
duke@435 170 void LIR_Assembler::osr_entry() {
duke@435 171 // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
duke@435 172 //
duke@435 173 // 1. Create a new compiled activation.
duke@435 174 // 2. Initialize local variables in the compiled activation. The expression stack must be empty
duke@435 175 // at the osr_bci; it is not initialized.
duke@435 176 // 3. Jump to the continuation address in compiled code to resume execution.
duke@435 177
duke@435 178 // OSR entry point
duke@435 179 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
duke@435 180 BlockBegin* osr_entry = compilation()->hir()->osr_entry();
duke@435 181 ValueStack* entry_state = osr_entry->end()->state();
duke@435 182 int number_of_locks = entry_state->locks_size();
duke@435 183
duke@435 184 // Create a frame for the compiled activation.
duke@435 185 __ build_frame(initial_frame_size_in_bytes());
duke@435 186
duke@435 187 // OSR buffer is
duke@435 188 //
duke@435 189 // locals[nlocals-1..0]
duke@435 190 // monitors[number_of_locks-1..0]
duke@435 191 //
duke@435 192 // locals is a direct copy of the interpreter frame so in the osr buffer
duke@435 193 // so first slot in the local array is the last local from the interpreter
duke@435 194 // and last slot is local[0] (receiver) from the interpreter
duke@435 195 //
duke@435 196 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
duke@435 197 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
duke@435 198 // in the interpreter frame (the method lock if a sync method)
duke@435 199
duke@435 200 // Initialize monitors in the compiled activation.
duke@435 201 // I0: pointer to osr buffer
duke@435 202 //
duke@435 203 // All other registers are dead at this point and the locals will be
duke@435 204 // copied into place by code emitted in the IR.
duke@435 205
duke@435 206 Register OSR_buf = osrBufferPointer()->as_register();
duke@435 207 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
duke@435 208 int monitor_offset = BytesPerWord * method()->max_locals() +
roland@1495 209 (2 * BytesPerWord) * (number_of_locks - 1);
roland@1495 210 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
roland@1495 211 // the OSR buffer using 2 word entries: first the lock and then
roland@1495 212 // the oop.
duke@435 213 for (int i = 0; i < number_of_locks; i++) {
roland@1495 214 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
duke@435 215 #ifdef ASSERT
duke@435 216 // verify the interpreter's monitor has a non-null object
duke@435 217 {
duke@435 218 Label L;
roland@1495 219 __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
kvn@3037 220 __ cmp_and_br_short(O7, G0, Assembler::notEqual, Assembler::pt, L);
duke@435 221 __ stop("locked object is NULL");
duke@435 222 __ bind(L);
duke@435 223 }
duke@435 224 #endif // ASSERT
duke@435 225 // Copy the lock field into the compiled activation.
roland@1495 226 __ ld_ptr(OSR_buf, slot_offset + 0, O7);
duke@435 227 __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
roland@1495 228 __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
duke@435 229 __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
duke@435 230 }
duke@435 231 }
duke@435 232 }
duke@435 233
duke@435 234
duke@435 235 // Optimized Library calls
duke@435 236 // This is the fast version of java.lang.String.compare; it has not
duke@435 237 // OSR-entry and therefore, we generate a slow version for OSR's
duke@435 238 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
duke@435 239 Register str0 = left->as_register();
duke@435 240 Register str1 = right->as_register();
duke@435 241
duke@435 242 Label Ldone;
duke@435 243
duke@435 244 Register result = dst->as_register();
duke@435 245 {
kvn@3760 246 // Get a pointer to the first character of string0 in tmp0
kvn@3760 247 // and get string0.length() in str0
kvn@3760 248 // Get a pointer to the first character of string1 in tmp1
kvn@3760 249 // and get string1.length() in str1
kvn@3760 250 // Also, get string0.length()-string1.length() in
kvn@3760 251 // o7 and get the condition code set
duke@435 252 // Note: some instructions have been hoisted for better instruction scheduling
duke@435 253
duke@435 254 Register tmp0 = L0;
duke@435 255 Register tmp1 = L1;
duke@435 256 Register tmp2 = L2;
duke@435 257
duke@435 258 int value_offset = java_lang_String:: value_offset_in_bytes(); // char array
kvn@3760 259 if (java_lang_String::has_offset_field()) {
kvn@3760 260 int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
kvn@3760 261 int count_offset = java_lang_String:: count_offset_in_bytes();
kvn@3760 262 __ load_heap_oop(str0, value_offset, tmp0);
kvn@3760 263 __ ld(str0, offset_offset, tmp2);
kvn@3760 264 __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
kvn@3760 265 __ ld(str0, count_offset, str0);
kvn@3760 266 __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
kvn@3760 267 } else {
kvn@3760 268 __ load_heap_oop(str0, value_offset, tmp1);
kvn@3760 269 __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
kvn@3760 270 __ ld(tmp1, arrayOopDesc::length_offset_in_bytes(), str0);
kvn@3760 271 }
duke@435 272
duke@435 273 // str1 may be null
duke@435 274 add_debug_info_for_null_check_here(info);
duke@435 275
kvn@3760 276 if (java_lang_String::has_offset_field()) {
kvn@3760 277 int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
kvn@3760 278 int count_offset = java_lang_String:: count_offset_in_bytes();
kvn@3760 279 __ load_heap_oop(str1, value_offset, tmp1);
kvn@3760 280 __ add(tmp0, tmp2, tmp0);
kvn@3760 281
kvn@3760 282 __ ld(str1, offset_offset, tmp2);
kvn@3760 283 __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
kvn@3760 284 __ ld(str1, count_offset, str1);
kvn@3760 285 __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
kvn@3760 286 __ add(tmp1, tmp2, tmp1);
kvn@3760 287 } else {
kvn@3760 288 __ load_heap_oop(str1, value_offset, tmp2);
kvn@3760 289 __ add(tmp2, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
kvn@3760 290 __ ld(tmp2, arrayOopDesc::length_offset_in_bytes(), str1);
kvn@3760 291 }
duke@435 292 __ subcc(str0, str1, O7);
duke@435 293 }
duke@435 294
duke@435 295 {
duke@435 296 // Compute the minimum of the string lengths, scale it and store it in limit
duke@435 297 Register count0 = I0;
duke@435 298 Register count1 = I1;
duke@435 299 Register limit = L3;
duke@435 300
duke@435 301 Label Lskip;
duke@435 302 __ sll(count0, exact_log2(sizeof(jchar)), limit); // string0 is shorter
duke@435 303 __ br(Assembler::greater, true, Assembler::pt, Lskip);
duke@435 304 __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit); // string1 is shorter
duke@435 305 __ bind(Lskip);
duke@435 306
duke@435 307 // If either string is empty (or both of them) the result is the difference in lengths
duke@435 308 __ cmp(limit, 0);
duke@435 309 __ br(Assembler::equal, true, Assembler::pn, Ldone);
duke@435 310 __ delayed()->mov(O7, result); // result is difference in lengths
duke@435 311 }
duke@435 312
duke@435 313 {
duke@435 314 // Neither string is empty
duke@435 315 Label Lloop;
duke@435 316
duke@435 317 Register base0 = L0;
duke@435 318 Register base1 = L1;
duke@435 319 Register chr0 = I0;
duke@435 320 Register chr1 = I1;
duke@435 321 Register limit = L3;
duke@435 322
duke@435 323 // Shift base0 and base1 to the end of the arrays, negate limit
duke@435 324 __ add(base0, limit, base0);
duke@435 325 __ add(base1, limit, base1);
kvn@3760 326 __ neg(limit); // limit = -min{string0.length(), string1.length()}
duke@435 327
duke@435 328 __ lduh(base0, limit, chr0);
duke@435 329 __ bind(Lloop);
duke@435 330 __ lduh(base1, limit, chr1);
duke@435 331 __ subcc(chr0, chr1, chr0);
duke@435 332 __ br(Assembler::notZero, false, Assembler::pn, Ldone);
duke@435 333 assert(chr0 == result, "result must be pre-placed");
duke@435 334 __ delayed()->inccc(limit, sizeof(jchar));
duke@435 335 __ br(Assembler::notZero, true, Assembler::pt, Lloop);
duke@435 336 __ delayed()->lduh(base0, limit, chr0);
duke@435 337 }
duke@435 338
duke@435 339 // If strings are equal up to min length, return the length difference.
duke@435 340 __ mov(O7, result);
duke@435 341
duke@435 342 // Otherwise, return the difference between the first mismatched chars.
duke@435 343 __ bind(Ldone);
duke@435 344 }
duke@435 345
duke@435 346
duke@435 347 // --------------------------------------------------------------------------------------------
duke@435 348
duke@435 349 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
duke@435 350 if (!GenerateSynchronizationCode) return;
duke@435 351
duke@435 352 Register obj_reg = obj_opr->as_register();
duke@435 353 Register lock_reg = lock_opr->as_register();
duke@435 354
duke@435 355 Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
duke@435 356 Register reg = mon_addr.base();
duke@435 357 int offset = mon_addr.disp();
duke@435 358 // compute pointer to BasicLock
duke@435 359 if (mon_addr.is_simm13()) {
duke@435 360 __ add(reg, offset, lock_reg);
duke@435 361 }
duke@435 362 else {
duke@435 363 __ set(offset, lock_reg);
duke@435 364 __ add(reg, lock_reg, lock_reg);
duke@435 365 }
duke@435 366 // unlock object
duke@435 367 MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
duke@435 368 // _slow_case_stubs->append(slow_case);
duke@435 369 // temporary fix: must be created after exceptionhandler, therefore as call stub
duke@435 370 _slow_case_stubs->append(slow_case);
duke@435 371 if (UseFastLocking) {
duke@435 372 // try inlined fast unlocking first, revert to slow locking if it fails
duke@435 373 // note: lock_reg points to the displaced header since the displaced header offset is 0!
duke@435 374 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 375 __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
duke@435 376 } else {
duke@435 377 // always do slow unlocking
duke@435 378 // note: the slow unlocking code could be inlined here, however if we use
duke@435 379 // slow unlocking, speed doesn't matter anyway and this solution is
duke@435 380 // simpler and requires less duplicated code - additionally, the
duke@435 381 // slow unlocking code is the same in either case which simplifies
duke@435 382 // debugging
duke@435 383 __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
duke@435 384 __ delayed()->nop();
duke@435 385 }
duke@435 386 // done
duke@435 387 __ bind(*slow_case->continuation());
duke@435 388 }
duke@435 389
duke@435 390
twisti@1639 391 int LIR_Assembler::emit_exception_handler() {
duke@435 392 // if the last instruction is a call (typically to do a throw which
duke@435 393 // is coming at the end after block reordering) the return address
duke@435 394 // must still point into the code area in order to avoid assertion
duke@435 395 // failures when searching for the corresponding bci => add a nop
duke@435 396 // (was bug 5/14/1999 - gri)
duke@435 397 __ nop();
duke@435 398
duke@435 399 // generate code for exception handler
duke@435 400 ciMethod* method = compilation()->method();
duke@435 401
duke@435 402 address handler_base = __ start_a_stub(exception_handler_size);
duke@435 403
duke@435 404 if (handler_base == NULL) {
duke@435 405 // not enough space left for the handler
duke@435 406 bailout("exception handler overflow");
twisti@1639 407 return -1;
duke@435 408 }
twisti@1639 409
duke@435 410 int offset = code_offset();
duke@435 411
twisti@2603 412 __ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type);
duke@435 413 __ delayed()->nop();
twisti@2603 414 __ should_not_reach_here();
iveresov@3435 415 guarantee(code_offset() - offset <= exception_handler_size, "overflow");
duke@435 416 __ end_a_stub();
twisti@1639 417
twisti@1639 418 return offset;
duke@435 419 }
duke@435 420
twisti@1639 421
never@1813 422 // Emit the code to remove the frame from the stack in the exception
never@1813 423 // unwind path.
never@1813 424 int LIR_Assembler::emit_unwind_handler() {
never@1813 425 #ifndef PRODUCT
never@1813 426 if (CommentedAssembly) {
never@1813 427 _masm->block_comment("Unwind handler");
never@1813 428 }
never@1813 429 #endif
never@1813 430
never@1813 431 int offset = code_offset();
never@1813 432
never@1813 433 // Fetch the exception from TLS and clear out exception related thread state
never@1813 434 __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
never@1813 435 __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
never@1813 436 __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
never@1813 437
never@1813 438 __ bind(_unwind_handler_entry);
never@1813 439 __ verify_not_null_oop(O0);
never@1813 440 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 441 __ mov(O0, I0); // Preserve the exception
never@1813 442 }
never@1813 443
never@1813 444 // Preform needed unlocking
never@1813 445 MonitorExitStub* stub = NULL;
never@1813 446 if (method()->is_synchronized()) {
never@1813 447 monitor_address(0, FrameMap::I1_opr);
never@1813 448 stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
never@1813 449 __ unlock_object(I3, I2, I1, *stub->entry());
never@1813 450 __ bind(*stub->continuation());
never@1813 451 }
never@1813 452
never@1813 453 if (compilation()->env()->dtrace_method_probes()) {
never@2185 454 __ mov(G2_thread, O0);
roland@4051 455 __ save_thread(I1); // need to preserve thread in G2 across
roland@4051 456 // runtime call
coleenp@4037 457 metadata2reg(method()->constant_encoding(), O1);
never@1813 458 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
never@1813 459 __ delayed()->nop();
roland@4051 460 __ restore_thread(I1);
never@1813 461 }
never@1813 462
never@1813 463 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 464 __ mov(I0, O0); // Restore the exception
never@1813 465 }
never@1813 466
never@1813 467 // dispatch to the unwind logic
never@1813 468 __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
never@1813 469 __ delayed()->nop();
never@1813 470
never@1813 471 // Emit the slow path assembly
never@1813 472 if (stub != NULL) {
never@1813 473 stub->emit_code(this);
never@1813 474 }
never@1813 475
never@1813 476 return offset;
never@1813 477 }
never@1813 478
never@1813 479
twisti@1639 480 int LIR_Assembler::emit_deopt_handler() {
duke@435 481 // if the last instruction is a call (typically to do a throw which
duke@435 482 // is coming at the end after block reordering) the return address
duke@435 483 // must still point into the code area in order to avoid assertion
duke@435 484 // failures when searching for the corresponding bci => add a nop
duke@435 485 // (was bug 5/14/1999 - gri)
duke@435 486 __ nop();
duke@435 487
duke@435 488 // generate code for deopt handler
duke@435 489 ciMethod* method = compilation()->method();
duke@435 490 address handler_base = __ start_a_stub(deopt_handler_size);
duke@435 491 if (handler_base == NULL) {
duke@435 492 // not enough space left for the handler
duke@435 493 bailout("deopt handler overflow");
twisti@1639 494 return -1;
duke@435 495 }
twisti@1639 496
duke@435 497 int offset = code_offset();
twisti@1162 498 AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
twisti@1162 499 __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
duke@435 500 __ delayed()->nop();
iveresov@3435 501 guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
duke@435 502 __ end_a_stub();
twisti@1639 503
twisti@1639 504 return offset;
duke@435 505 }
duke@435 506
duke@435 507
duke@435 508 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
duke@435 509 if (o == NULL) {
duke@435 510 __ set(NULL_WORD, reg);
duke@435 511 } else {
duke@435 512 int oop_index = __ oop_recorder()->find_index(o);
coleenp@4037 513 assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(o)), "should be real oop");
duke@435 514 RelocationHolder rspec = oop_Relocation::spec(oop_index);
duke@435 515 __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
duke@435 516 }
duke@435 517 }
duke@435 518
duke@435 519
duke@435 520 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
coleenp@4037 521 // Allocate a new index in table to hold the object once it's been patched
coleenp@4037 522 int oop_index = __ oop_recorder()->allocate_oop_index(NULL);
roland@5628 523 PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index);
duke@435 524
twisti@1162 525 AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
twisti@1162 526 assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
duke@435 527 // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
duke@435 528 // NULL will be dynamically patched later and the patched value may be large. We must
duke@435 529 // therefore generate the sethi/add as a placeholders
twisti@1162 530 __ patchable_set(addrlit, reg);
duke@435 531
duke@435 532 patching_epilog(patch, lir_patch_normal, reg, info);
duke@435 533 }
duke@435 534
duke@435 535
coleenp@4037 536 void LIR_Assembler::metadata2reg(Metadata* o, Register reg) {
coleenp@4037 537 __ set_metadata_constant(o, reg);
coleenp@4037 538 }
coleenp@4037 539
coleenp@4037 540 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) {
coleenp@4037 541 // Allocate a new index in table to hold the klass once it's been patched
coleenp@4037 542 int index = __ oop_recorder()->allocate_metadata_index(NULL);
coleenp@4037 543 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
coleenp@4037 544 AddressLiteral addrlit(NULL, metadata_Relocation::spec(index));
coleenp@4037 545 assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc");
coleenp@4037 546 // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
coleenp@4037 547 // NULL will be dynamically patched later and the patched value may be large. We must
coleenp@4037 548 // therefore generate the sethi/add as a placeholders
coleenp@4037 549 __ patchable_set(addrlit, reg);
coleenp@4037 550
coleenp@4037 551 patching_epilog(patch, lir_patch_normal, reg, info);
coleenp@4037 552 }
coleenp@4037 553
duke@435 554 void LIR_Assembler::emit_op3(LIR_Op3* op) {
duke@435 555 Register Rdividend = op->in_opr1()->as_register();
duke@435 556 Register Rdivisor = noreg;
duke@435 557 Register Rscratch = op->in_opr3()->as_register();
duke@435 558 Register Rresult = op->result_opr()->as_register();
duke@435 559 int divisor = -1;
duke@435 560
duke@435 561 if (op->in_opr2()->is_register()) {
duke@435 562 Rdivisor = op->in_opr2()->as_register();
duke@435 563 } else {
duke@435 564 divisor = op->in_opr2()->as_constant_ptr()->as_jint();
duke@435 565 assert(Assembler::is_simm13(divisor), "can only handle simm13");
duke@435 566 }
duke@435 567
duke@435 568 assert(Rdividend != Rscratch, "");
duke@435 569 assert(Rdivisor != Rscratch, "");
duke@435 570 assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
duke@435 571
duke@435 572 if (Rdivisor == noreg && is_power_of_2(divisor)) {
duke@435 573 // convert division by a power of two into some shifts and logical operations
duke@435 574 if (op->code() == lir_idiv) {
duke@435 575 if (divisor == 2) {
duke@435 576 __ srl(Rdividend, 31, Rscratch);
duke@435 577 } else {
duke@435 578 __ sra(Rdividend, 31, Rscratch);
duke@435 579 __ and3(Rscratch, divisor - 1, Rscratch);
duke@435 580 }
duke@435 581 __ add(Rdividend, Rscratch, Rscratch);
duke@435 582 __ sra(Rscratch, log2_intptr(divisor), Rresult);
duke@435 583 return;
duke@435 584 } else {
duke@435 585 if (divisor == 2) {
duke@435 586 __ srl(Rdividend, 31, Rscratch);
duke@435 587 } else {
duke@435 588 __ sra(Rdividend, 31, Rscratch);
duke@435 589 __ and3(Rscratch, divisor - 1,Rscratch);
duke@435 590 }
duke@435 591 __ add(Rdividend, Rscratch, Rscratch);
duke@435 592 __ andn(Rscratch, divisor - 1,Rscratch);
duke@435 593 __ sub(Rdividend, Rscratch, Rresult);
duke@435 594 return;
duke@435 595 }
duke@435 596 }
duke@435 597
duke@435 598 __ sra(Rdividend, 31, Rscratch);
duke@435 599 __ wry(Rscratch);
duke@435 600
duke@435 601 add_debug_info_for_div0_here(op->info());
duke@435 602
duke@435 603 if (Rdivisor != noreg) {
duke@435 604 __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
duke@435 605 } else {
duke@435 606 assert(Assembler::is_simm13(divisor), "can only handle simm13");
duke@435 607 __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
duke@435 608 }
duke@435 609
duke@435 610 Label skip;
duke@435 611 __ br(Assembler::overflowSet, true, Assembler::pn, skip);
duke@435 612 __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
duke@435 613 __ bind(skip);
duke@435 614
duke@435 615 if (op->code() == lir_irem) {
duke@435 616 if (Rdivisor != noreg) {
duke@435 617 __ smul(Rscratch, Rdivisor, Rscratch);
duke@435 618 } else {
duke@435 619 __ smul(Rscratch, divisor, Rscratch);
duke@435 620 }
duke@435 621 __ sub(Rdividend, Rscratch, Rresult);
duke@435 622 }
duke@435 623 }
duke@435 624
duke@435 625
duke@435 626 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
duke@435 627 #ifdef ASSERT
duke@435 628 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
duke@435 629 if (op->block() != NULL) _branch_target_blocks.append(op->block());
duke@435 630 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
duke@435 631 #endif
duke@435 632 assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
duke@435 633
duke@435 634 if (op->cond() == lir_cond_always) {
duke@435 635 __ br(Assembler::always, false, Assembler::pt, *(op->label()));
duke@435 636 } else if (op->code() == lir_cond_float_branch) {
duke@435 637 assert(op->ublock() != NULL, "must have unordered successor");
duke@435 638 bool is_unordered = (op->ublock() == op->block());
duke@435 639 Assembler::Condition acond;
duke@435 640 switch (op->cond()) {
duke@435 641 case lir_cond_equal: acond = Assembler::f_equal; break;
duke@435 642 case lir_cond_notEqual: acond = Assembler::f_notEqual; break;
duke@435 643 case lir_cond_less: acond = (is_unordered ? Assembler::f_unorderedOrLess : Assembler::f_less); break;
duke@435 644 case lir_cond_greater: acond = (is_unordered ? Assembler::f_unorderedOrGreater : Assembler::f_greater); break;
duke@435 645 case lir_cond_lessEqual: acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual : Assembler::f_lessOrEqual); break;
duke@435 646 case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
duke@435 647 default : ShouldNotReachHere();
duke@435 648 }
duke@435 649 __ fb( acond, false, Assembler::pn, *(op->label()));
duke@435 650 } else {
duke@435 651 assert (op->code() == lir_branch, "just checking");
duke@435 652
duke@435 653 Assembler::Condition acond;
duke@435 654 switch (op->cond()) {
duke@435 655 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 656 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 657 case lir_cond_less: acond = Assembler::less; break;
duke@435 658 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 659 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
duke@435 660 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 661 case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break;
duke@435 662 case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break;
duke@435 663 default: ShouldNotReachHere();
duke@435 664 };
duke@435 665
duke@435 666 // sparc has different condition codes for testing 32-bit
duke@435 667 // vs. 64-bit values. We could always test xcc is we could
duke@435 668 // guarantee that 32-bit loads always sign extended but that isn't
duke@435 669 // true and since sign extension isn't free, it would impose a
duke@435 670 // slight cost.
duke@435 671 #ifdef _LP64
duke@435 672 if (op->type() == T_INT) {
duke@435 673 __ br(acond, false, Assembler::pn, *(op->label()));
duke@435 674 } else
duke@435 675 #endif
duke@435 676 __ brx(acond, false, Assembler::pn, *(op->label()));
duke@435 677 }
duke@435 678 // The peephole pass fills the delay slot
duke@435 679 }
duke@435 680
duke@435 681
duke@435 682 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
duke@435 683 Bytecodes::Code code = op->bytecode();
duke@435 684 LIR_Opr dst = op->result_opr();
duke@435 685
duke@435 686 switch(code) {
duke@435 687 case Bytecodes::_i2l: {
duke@435 688 Register rlo = dst->as_register_lo();
duke@435 689 Register rhi = dst->as_register_hi();
duke@435 690 Register rval = op->in_opr()->as_register();
duke@435 691 #ifdef _LP64
duke@435 692 __ sra(rval, 0, rlo);
duke@435 693 #else
duke@435 694 __ mov(rval, rlo);
duke@435 695 __ sra(rval, BitsPerInt-1, rhi);
duke@435 696 #endif
duke@435 697 break;
duke@435 698 }
duke@435 699 case Bytecodes::_i2d:
duke@435 700 case Bytecodes::_i2f: {
duke@435 701 bool is_double = (code == Bytecodes::_i2d);
duke@435 702 FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
duke@435 703 FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
duke@435 704 FloatRegister rsrc = op->in_opr()->as_float_reg();
duke@435 705 if (rsrc != rdst) {
duke@435 706 __ fmov(FloatRegisterImpl::S, rsrc, rdst);
duke@435 707 }
duke@435 708 __ fitof(w, rdst, rdst);
duke@435 709 break;
duke@435 710 }
duke@435 711 case Bytecodes::_f2i:{
duke@435 712 FloatRegister rsrc = op->in_opr()->as_float_reg();
duke@435 713 Address addr = frame_map()->address_for_slot(dst->single_stack_ix());
duke@435 714 Label L;
duke@435 715 // result must be 0 if value is NaN; test by comparing value to itself
duke@435 716 __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
duke@435 717 __ fb(Assembler::f_unordered, true, Assembler::pn, L);
duke@435 718 __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
duke@435 719 __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
duke@435 720 // move integer result from float register to int register
duke@435 721 __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
duke@435 722 __ bind (L);
duke@435 723 break;
duke@435 724 }
duke@435 725 case Bytecodes::_l2i: {
duke@435 726 Register rlo = op->in_opr()->as_register_lo();
duke@435 727 Register rhi = op->in_opr()->as_register_hi();
duke@435 728 Register rdst = dst->as_register();
duke@435 729 #ifdef _LP64
duke@435 730 __ sra(rlo, 0, rdst);
duke@435 731 #else
duke@435 732 __ mov(rlo, rdst);
duke@435 733 #endif
duke@435 734 break;
duke@435 735 }
duke@435 736 case Bytecodes::_d2f:
duke@435 737 case Bytecodes::_f2d: {
duke@435 738 bool is_double = (code == Bytecodes::_f2d);
duke@435 739 assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
duke@435 740 LIR_Opr val = op->in_opr();
duke@435 741 FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
duke@435 742 FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
duke@435 743 FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
duke@435 744 FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
duke@435 745 __ ftof(vw, dw, rval, rdst);
duke@435 746 break;
duke@435 747 }
duke@435 748 case Bytecodes::_i2s:
duke@435 749 case Bytecodes::_i2b: {
duke@435 750 Register rval = op->in_opr()->as_register();
duke@435 751 Register rdst = dst->as_register();
duke@435 752 int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
duke@435 753 __ sll (rval, shift, rdst);
duke@435 754 __ sra (rdst, shift, rdst);
duke@435 755 break;
duke@435 756 }
duke@435 757 case Bytecodes::_i2c: {
duke@435 758 Register rval = op->in_opr()->as_register();
duke@435 759 Register rdst = dst->as_register();
duke@435 760 int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
duke@435 761 __ sll (rval, shift, rdst);
duke@435 762 __ srl (rdst, shift, rdst);
duke@435 763 break;
duke@435 764 }
duke@435 765
duke@435 766 default: ShouldNotReachHere();
duke@435 767 }
duke@435 768 }
duke@435 769
duke@435 770
duke@435 771 void LIR_Assembler::align_call(LIR_Code) {
duke@435 772 // do nothing since all instructions are word aligned on sparc
duke@435 773 }
duke@435 774
duke@435 775
twisti@1730 776 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
twisti@1730 777 __ call(op->addr(), rtype);
twisti@1919 778 // The peephole pass fills the delay slot, add_call_info is done in
twisti@1919 779 // LIR_Assembler::emit_delay.
duke@435 780 }
duke@435 781
duke@435 782
twisti@1730 783 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
coleenp@4037 784 __ ic_call(op->addr(), false);
twisti@1919 785 // The peephole pass fills the delay slot, add_call_info is done in
twisti@1919 786 // LIR_Assembler::emit_delay.
duke@435 787 }
duke@435 788
duke@435 789
twisti@1730 790 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
twisti@1730 791 add_debug_info_for_null_check_here(op->info());
iveresov@2344 792 __ load_klass(O0, G3_scratch);
twisti@3310 793 if (Assembler::is_simm13(op->vtable_offset())) {
twisti@1730 794 __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
duke@435 795 } else {
duke@435 796 // This will generate 2 instructions
twisti@1730 797 __ set(op->vtable_offset(), G5_method);
duke@435 798 // ld_ptr, set_hi, set
duke@435 799 __ ld_ptr(G3_scratch, G5_method, G5_method);
duke@435 800 }
coleenp@4037 801 __ ld_ptr(G5_method, Method::from_compiled_offset(), G3_scratch);
duke@435 802 __ callr(G3_scratch, G0);
duke@435 803 // the peephole pass fills the delay slot
duke@435 804 }
duke@435 805
iveresov@2344 806 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
duke@435 807 int store_offset;
duke@435 808 if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
duke@435 809 assert(!unaligned, "can't handle this");
duke@435 810 // for offsets larger than a simm13 we setup the offset in O7
twisti@1162 811 __ set(offset, O7);
iveresov@2344 812 store_offset = store(from_reg, base, O7, type, wide);
duke@435 813 } else {
iveresov@2344 814 if (type == T_ARRAY || type == T_OBJECT) {
iveresov@2344 815 __ verify_oop(from_reg->as_register());
iveresov@2344 816 }
duke@435 817 store_offset = code_offset();
duke@435 818 switch (type) {
duke@435 819 case T_BOOLEAN: // fall through
duke@435 820 case T_BYTE : __ stb(from_reg->as_register(), base, offset); break;
duke@435 821 case T_CHAR : __ sth(from_reg->as_register(), base, offset); break;
duke@435 822 case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
duke@435 823 case T_INT : __ stw(from_reg->as_register(), base, offset); break;
duke@435 824 case T_LONG :
duke@435 825 #ifdef _LP64
duke@435 826 if (unaligned || PatchALot) {
duke@435 827 __ srax(from_reg->as_register_lo(), 32, O7);
duke@435 828 __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
duke@435 829 __ stw(O7, base, offset + hi_word_offset_in_bytes);
duke@435 830 } else {
duke@435 831 __ stx(from_reg->as_register_lo(), base, offset);
duke@435 832 }
duke@435 833 #else
duke@435 834 assert(Assembler::is_simm13(offset + 4), "must be");
duke@435 835 __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
duke@435 836 __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
duke@435 837 #endif
duke@435 838 break;
iveresov@2344 839 case T_ADDRESS:
roland@4051 840 case T_METADATA:
iveresov@2344 841 __ st_ptr(from_reg->as_register(), base, offset);
iveresov@2344 842 break;
duke@435 843 case T_ARRAY : // fall through
iveresov@2344 844 case T_OBJECT:
iveresov@2344 845 {
iveresov@2344 846 if (UseCompressedOops && !wide) {
iveresov@2344 847 __ encode_heap_oop(from_reg->as_register(), G3_scratch);
iveresov@2344 848 store_offset = code_offset();
iveresov@2344 849 __ stw(G3_scratch, base, offset);
iveresov@2344 850 } else {
iveresov@2344 851 __ st_ptr(from_reg->as_register(), base, offset);
iveresov@2344 852 }
iveresov@2344 853 break;
iveresov@2344 854 }
iveresov@2344 855
duke@435 856 case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
duke@435 857 case T_DOUBLE:
duke@435 858 {
duke@435 859 FloatRegister reg = from_reg->as_double_reg();
duke@435 860 // split unaligned stores
duke@435 861 if (unaligned || PatchALot) {
duke@435 862 assert(Assembler::is_simm13(offset + 4), "must be");
duke@435 863 __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
duke@435 864 __ stf(FloatRegisterImpl::S, reg, base, offset);
duke@435 865 } else {
duke@435 866 __ stf(FloatRegisterImpl::D, reg, base, offset);
duke@435 867 }
duke@435 868 break;
duke@435 869 }
duke@435 870 default : ShouldNotReachHere();
duke@435 871 }
duke@435 872 }
duke@435 873 return store_offset;
duke@435 874 }
duke@435 875
duke@435 876
iveresov@2344 877 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
iveresov@2344 878 if (type == T_ARRAY || type == T_OBJECT) {
iveresov@2344 879 __ verify_oop(from_reg->as_register());
iveresov@2344 880 }
duke@435 881 int store_offset = code_offset();
duke@435 882 switch (type) {
duke@435 883 case T_BOOLEAN: // fall through
duke@435 884 case T_BYTE : __ stb(from_reg->as_register(), base, disp); break;
duke@435 885 case T_CHAR : __ sth(from_reg->as_register(), base, disp); break;
duke@435 886 case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
duke@435 887 case T_INT : __ stw(from_reg->as_register(), base, disp); break;
duke@435 888 case T_LONG :
duke@435 889 #ifdef _LP64
duke@435 890 __ stx(from_reg->as_register_lo(), base, disp);
duke@435 891 #else
duke@435 892 assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
duke@435 893 __ std(from_reg->as_register_hi(), base, disp);
duke@435 894 #endif
duke@435 895 break;
iveresov@2344 896 case T_ADDRESS:
iveresov@2344 897 __ st_ptr(from_reg->as_register(), base, disp);
iveresov@2344 898 break;
duke@435 899 case T_ARRAY : // fall through
iveresov@2344 900 case T_OBJECT:
iveresov@2344 901 {
iveresov@2344 902 if (UseCompressedOops && !wide) {
iveresov@2344 903 __ encode_heap_oop(from_reg->as_register(), G3_scratch);
iveresov@2344 904 store_offset = code_offset();
iveresov@2344 905 __ stw(G3_scratch, base, disp);
iveresov@2344 906 } else {
iveresov@2344 907 __ st_ptr(from_reg->as_register(), base, disp);
iveresov@2344 908 }
iveresov@2344 909 break;
iveresov@2344 910 }
duke@435 911 case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
duke@435 912 case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
duke@435 913 default : ShouldNotReachHere();
duke@435 914 }
duke@435 915 return store_offset;
duke@435 916 }
duke@435 917
duke@435 918
iveresov@2344 919 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
duke@435 920 int load_offset;
duke@435 921 if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
duke@435 922 assert(base != O7, "destroying register");
duke@435 923 assert(!unaligned, "can't handle this");
duke@435 924 // for offsets larger than a simm13 we setup the offset in O7
twisti@1162 925 __ set(offset, O7);
iveresov@2344 926 load_offset = load(base, O7, to_reg, type, wide);
duke@435 927 } else {
duke@435 928 load_offset = code_offset();
duke@435 929 switch(type) {
duke@435 930 case T_BOOLEAN: // fall through
duke@435 931 case T_BYTE : __ ldsb(base, offset, to_reg->as_register()); break;
duke@435 932 case T_CHAR : __ lduh(base, offset, to_reg->as_register()); break;
duke@435 933 case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
duke@435 934 case T_INT : __ ld(base, offset, to_reg->as_register()); break;
duke@435 935 case T_LONG :
duke@435 936 if (!unaligned) {
duke@435 937 #ifdef _LP64
duke@435 938 __ ldx(base, offset, to_reg->as_register_lo());
duke@435 939 #else
duke@435 940 assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
duke@435 941 "must be sequential");
duke@435 942 __ ldd(base, offset, to_reg->as_register_hi());
duke@435 943 #endif
duke@435 944 } else {
duke@435 945 #ifdef _LP64
duke@435 946 assert(base != to_reg->as_register_lo(), "can't handle this");
roland@1495 947 assert(O7 != to_reg->as_register_lo(), "can't handle this");
duke@435 948 __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
roland@1495 949 __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
duke@435 950 __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
roland@1495 951 __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
duke@435 952 #else
duke@435 953 if (base == to_reg->as_register_lo()) {
duke@435 954 __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
duke@435 955 __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
duke@435 956 } else {
duke@435 957 __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
duke@435 958 __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
duke@435 959 }
duke@435 960 #endif
duke@435 961 }
duke@435 962 break;
roland@4159 963 case T_METADATA: __ ld_ptr(base, offset, to_reg->as_register()); break;
roland@4159 964 case T_ADDRESS:
roland@4162 965 #ifdef _LP64
roland@4162 966 if (offset == oopDesc::klass_offset_in_bytes() && UseCompressedKlassPointers) {
roland@4159 967 __ lduw(base, offset, to_reg->as_register());
roland@4162 968 __ decode_klass_not_null(to_reg->as_register());
roland@4162 969 } else
roland@4159 970 #endif
roland@4162 971 {
roland@4159 972 __ ld_ptr(base, offset, to_reg->as_register());
roland@4159 973 }
roland@4159 974 break;
duke@435 975 case T_ARRAY : // fall through
iveresov@2344 976 case T_OBJECT:
iveresov@2344 977 {
iveresov@2344 978 if (UseCompressedOops && !wide) {
iveresov@2344 979 __ lduw(base, offset, to_reg->as_register());
iveresov@2344 980 __ decode_heap_oop(to_reg->as_register());
iveresov@2344 981 } else {
iveresov@2344 982 __ ld_ptr(base, offset, to_reg->as_register());
iveresov@2344 983 }
iveresov@2344 984 break;
iveresov@2344 985 }
duke@435 986 case T_FLOAT: __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
duke@435 987 case T_DOUBLE:
duke@435 988 {
duke@435 989 FloatRegister reg = to_reg->as_double_reg();
duke@435 990 // split unaligned loads
duke@435 991 if (unaligned || PatchALot) {
roland@1495 992 __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
roland@1495 993 __ ldf(FloatRegisterImpl::S, base, offset, reg);
duke@435 994 } else {
duke@435 995 __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
duke@435 996 }
duke@435 997 break;
duke@435 998 }
duke@435 999 default : ShouldNotReachHere();
duke@435 1000 }
iveresov@2344 1001 if (type == T_ARRAY || type == T_OBJECT) {
iveresov@2344 1002 __ verify_oop(to_reg->as_register());
iveresov@2344 1003 }
duke@435 1004 }
duke@435 1005 return load_offset;
duke@435 1006 }
duke@435 1007
duke@435 1008
iveresov@2344 1009 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
duke@435 1010 int load_offset = code_offset();
duke@435 1011 switch(type) {
duke@435 1012 case T_BOOLEAN: // fall through
iveresov@2344 1013 case T_BYTE : __ ldsb(base, disp, to_reg->as_register()); break;
iveresov@2344 1014 case T_CHAR : __ lduh(base, disp, to_reg->as_register()); break;
iveresov@2344 1015 case T_SHORT : __ ldsh(base, disp, to_reg->as_register()); break;
iveresov@2344 1016 case T_INT : __ ld(base, disp, to_reg->as_register()); break;
iveresov@2344 1017 case T_ADDRESS: __ ld_ptr(base, disp, to_reg->as_register()); break;
duke@435 1018 case T_ARRAY : // fall through
iveresov@2344 1019 case T_OBJECT:
iveresov@2344 1020 {
iveresov@2344 1021 if (UseCompressedOops && !wide) {
iveresov@2344 1022 __ lduw(base, disp, to_reg->as_register());
iveresov@2344 1023 __ decode_heap_oop(to_reg->as_register());
iveresov@2344 1024 } else {
iveresov@2344 1025 __ ld_ptr(base, disp, to_reg->as_register());
iveresov@2344 1026 }
iveresov@2344 1027 break;
iveresov@2344 1028 }
duke@435 1029 case T_FLOAT: __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
duke@435 1030 case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
duke@435 1031 case T_LONG :
duke@435 1032 #ifdef _LP64
duke@435 1033 __ ldx(base, disp, to_reg->as_register_lo());
duke@435 1034 #else
duke@435 1035 assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
duke@435 1036 "must be sequential");
duke@435 1037 __ ldd(base, disp, to_reg->as_register_hi());
duke@435 1038 #endif
duke@435 1039 break;
duke@435 1040 default : ShouldNotReachHere();
duke@435 1041 }
iveresov@2344 1042 if (type == T_ARRAY || type == T_OBJECT) {
iveresov@2344 1043 __ verify_oop(to_reg->as_register());
iveresov@2344 1044 }
duke@435 1045 return load_offset;
duke@435 1046 }
duke@435 1047
duke@435 1048 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
duke@435 1049 LIR_Const* c = src->as_constant_ptr();
duke@435 1050 switch (c->type()) {
duke@435 1051 case T_INT:
iveresov@2344 1052 case T_FLOAT: {
iveresov@2344 1053 Register src_reg = O7;
iveresov@2344 1054 int value = c->as_jint_bits();
iveresov@2344 1055 if (value == 0) {
iveresov@2344 1056 src_reg = G0;
iveresov@2344 1057 } else {
iveresov@2344 1058 __ set(value, O7);
iveresov@2344 1059 }
iveresov@2344 1060 Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
iveresov@2344 1061 __ stw(src_reg, addr.base(), addr.disp());
iveresov@2344 1062 break;
iveresov@2344 1063 }
roland@1732 1064 case T_ADDRESS: {
duke@435 1065 Register src_reg = O7;
duke@435 1066 int value = c->as_jint_bits();
duke@435 1067 if (value == 0) {
duke@435 1068 src_reg = G0;
duke@435 1069 } else {
duke@435 1070 __ set(value, O7);
duke@435 1071 }
duke@435 1072 Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
iveresov@2344 1073 __ st_ptr(src_reg, addr.base(), addr.disp());
duke@435 1074 break;
duke@435 1075 }
duke@435 1076 case T_OBJECT: {
duke@435 1077 Register src_reg = O7;
duke@435 1078 jobject2reg(c->as_jobject(), src_reg);
duke@435 1079 Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1080 __ st_ptr(src_reg, addr.base(), addr.disp());
duke@435 1081 break;
duke@435 1082 }
duke@435 1083 case T_LONG:
duke@435 1084 case T_DOUBLE: {
duke@435 1085 Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
duke@435 1086
duke@435 1087 Register tmp = O7;
duke@435 1088 int value_lo = c->as_jint_lo_bits();
duke@435 1089 if (value_lo == 0) {
duke@435 1090 tmp = G0;
duke@435 1091 } else {
duke@435 1092 __ set(value_lo, O7);
duke@435 1093 }
duke@435 1094 __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
duke@435 1095 int value_hi = c->as_jint_hi_bits();
duke@435 1096 if (value_hi == 0) {
duke@435 1097 tmp = G0;
duke@435 1098 } else {
duke@435 1099 __ set(value_hi, O7);
duke@435 1100 }
duke@435 1101 __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
duke@435 1102 break;
duke@435 1103 }
duke@435 1104 default:
duke@435 1105 Unimplemented();
duke@435 1106 }
duke@435 1107 }
duke@435 1108
duke@435 1109
iveresov@2344 1110 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
duke@435 1111 LIR_Const* c = src->as_constant_ptr();
duke@435 1112 LIR_Address* addr = dest->as_address_ptr();
duke@435 1113 Register base = addr->base()->as_pointer_register();
iveresov@2344 1114 int offset = -1;
iveresov@2344 1115
duke@435 1116 switch (c->type()) {
duke@435 1117 case T_INT:
roland@1732 1118 case T_FLOAT:
roland@1732 1119 case T_ADDRESS: {
duke@435 1120 LIR_Opr tmp = FrameMap::O7_opr;
duke@435 1121 int value = c->as_jint_bits();
duke@435 1122 if (value == 0) {
duke@435 1123 tmp = FrameMap::G0_opr;
duke@435 1124 } else if (Assembler::is_simm13(value)) {
duke@435 1125 __ set(value, O7);
duke@435 1126 }
duke@435 1127 if (addr->index()->is_valid()) {
duke@435 1128 assert(addr->disp() == 0, "must be zero");
iveresov@2344 1129 offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
duke@435 1130 } else {
duke@435 1131 assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
iveresov@2344 1132 offset = store(tmp, base, addr->disp(), type, wide, false);
duke@435 1133 }
duke@435 1134 break;
duke@435 1135 }
duke@435 1136 case T_LONG:
duke@435 1137 case T_DOUBLE: {
duke@435 1138 assert(!addr->index()->is_valid(), "can't handle reg reg address here");
duke@435 1139 assert(Assembler::is_simm13(addr->disp()) &&
duke@435 1140 Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
duke@435 1141
iveresov@2344 1142 LIR_Opr tmp = FrameMap::O7_opr;
duke@435 1143 int value_lo = c->as_jint_lo_bits();
duke@435 1144 if (value_lo == 0) {
iveresov@2344 1145 tmp = FrameMap::G0_opr;
duke@435 1146 } else {
duke@435 1147 __ set(value_lo, O7);
duke@435 1148 }
iveresov@2344 1149 offset = store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT, wide, false);
duke@435 1150 int value_hi = c->as_jint_hi_bits();
duke@435 1151 if (value_hi == 0) {
iveresov@2344 1152 tmp = FrameMap::G0_opr;
duke@435 1153 } else {
duke@435 1154 __ set(value_hi, O7);
duke@435 1155 }
never@3248 1156 store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
duke@435 1157 break;
duke@435 1158 }
duke@435 1159 case T_OBJECT: {
duke@435 1160 jobject obj = c->as_jobject();
duke@435 1161 LIR_Opr tmp;
duke@435 1162 if (obj == NULL) {
duke@435 1163 tmp = FrameMap::G0_opr;
duke@435 1164 } else {
duke@435 1165 tmp = FrameMap::O7_opr;
duke@435 1166 jobject2reg(c->as_jobject(), O7);
duke@435 1167 }
duke@435 1168 // handle either reg+reg or reg+disp address
duke@435 1169 if (addr->index()->is_valid()) {
duke@435 1170 assert(addr->disp() == 0, "must be zero");
iveresov@2344 1171 offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
duke@435 1172 } else {
duke@435 1173 assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
iveresov@2344 1174 offset = store(tmp, base, addr->disp(), type, wide, false);
duke@435 1175 }
duke@435 1176
duke@435 1177 break;
duke@435 1178 }
duke@435 1179 default:
duke@435 1180 Unimplemented();
duke@435 1181 }
iveresov@2344 1182 if (info != NULL) {
iveresov@2344 1183 assert(offset != -1, "offset should've been set");
iveresov@2344 1184 add_debug_info_for_null_check(offset, info);
iveresov@2344 1185 }
duke@435 1186 }
duke@435 1187
duke@435 1188
duke@435 1189 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
duke@435 1190 LIR_Const* c = src->as_constant_ptr();
duke@435 1191 LIR_Opr to_reg = dest;
duke@435 1192
duke@435 1193 switch (c->type()) {
duke@435 1194 case T_INT:
roland@1732 1195 case T_ADDRESS:
duke@435 1196 {
duke@435 1197 jint con = c->as_jint();
duke@435 1198 if (to_reg->is_single_cpu()) {
duke@435 1199 assert(patch_code == lir_patch_none, "no patching handled here");
duke@435 1200 __ set(con, to_reg->as_register());
duke@435 1201 } else {
duke@435 1202 ShouldNotReachHere();
duke@435 1203 assert(to_reg->is_single_fpu(), "wrong register kind");
duke@435 1204
duke@435 1205 __ set(con, O7);
twisti@1162 1206 Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
duke@435 1207 __ st(O7, temp_slot);
duke@435 1208 __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
duke@435 1209 }
duke@435 1210 }
duke@435 1211 break;
duke@435 1212
duke@435 1213 case T_LONG:
duke@435 1214 {
duke@435 1215 jlong con = c->as_jlong();
duke@435 1216
duke@435 1217 if (to_reg->is_double_cpu()) {
duke@435 1218 #ifdef _LP64
duke@435 1219 __ set(con, to_reg->as_register_lo());
duke@435 1220 #else
duke@435 1221 __ set(low(con), to_reg->as_register_lo());
duke@435 1222 __ set(high(con), to_reg->as_register_hi());
duke@435 1223 #endif
duke@435 1224 #ifdef _LP64
duke@435 1225 } else if (to_reg->is_single_cpu()) {
duke@435 1226 __ set(con, to_reg->as_register());
duke@435 1227 #endif
duke@435 1228 } else {
duke@435 1229 ShouldNotReachHere();
duke@435 1230 assert(to_reg->is_double_fpu(), "wrong register kind");
twisti@1162 1231 Address temp_slot_lo(SP, ((frame::register_save_words ) * wordSize) + STACK_BIAS);
twisti@1162 1232 Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
duke@435 1233 __ set(low(con), O7);
duke@435 1234 __ st(O7, temp_slot_lo);
duke@435 1235 __ set(high(con), O7);
duke@435 1236 __ st(O7, temp_slot_hi);
duke@435 1237 __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
duke@435 1238 }
duke@435 1239 }
duke@435 1240 break;
duke@435 1241
duke@435 1242 case T_OBJECT:
duke@435 1243 {
duke@435 1244 if (patch_code == lir_patch_none) {
duke@435 1245 jobject2reg(c->as_jobject(), to_reg->as_register());
duke@435 1246 } else {
duke@435 1247 jobject2reg_with_patching(to_reg->as_register(), info);
duke@435 1248 }
duke@435 1249 }
duke@435 1250 break;
duke@435 1251
coleenp@4037 1252 case T_METADATA:
coleenp@4037 1253 {
coleenp@4037 1254 if (patch_code == lir_patch_none) {
coleenp@4037 1255 metadata2reg(c->as_metadata(), to_reg->as_register());
coleenp@4037 1256 } else {
coleenp@4037 1257 klass2reg_with_patching(to_reg->as_register(), info);
coleenp@4037 1258 }
coleenp@4037 1259 }
coleenp@4037 1260 break;
coleenp@4037 1261
duke@435 1262 case T_FLOAT:
duke@435 1263 {
duke@435 1264 address const_addr = __ float_constant(c->as_jfloat());
duke@435 1265 if (const_addr == NULL) {
duke@435 1266 bailout("const section overflow");
duke@435 1267 break;
duke@435 1268 }
duke@435 1269 RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
twisti@1162 1270 AddressLiteral const_addrlit(const_addr, rspec);
duke@435 1271 if (to_reg->is_single_fpu()) {
twisti@1162 1272 __ patchable_sethi(const_addrlit, O7);
duke@435 1273 __ relocate(rspec);
twisti@1162 1274 __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
duke@435 1275
duke@435 1276 } else {
duke@435 1277 assert(to_reg->is_single_cpu(), "Must be a cpu register.");
duke@435 1278
twisti@1162 1279 __ set(const_addrlit, O7);
iveresov@2344 1280 __ ld(O7, 0, to_reg->as_register());
duke@435 1281 }
duke@435 1282 }
duke@435 1283 break;
duke@435 1284
duke@435 1285 case T_DOUBLE:
duke@435 1286 {
duke@435 1287 address const_addr = __ double_constant(c->as_jdouble());
duke@435 1288 if (const_addr == NULL) {
duke@435 1289 bailout("const section overflow");
duke@435 1290 break;
duke@435 1291 }
duke@435 1292 RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
duke@435 1293
duke@435 1294 if (to_reg->is_double_fpu()) {
twisti@1162 1295 AddressLiteral const_addrlit(const_addr, rspec);
twisti@1162 1296 __ patchable_sethi(const_addrlit, O7);
duke@435 1297 __ relocate(rspec);
twisti@1162 1298 __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
duke@435 1299 } else {
duke@435 1300 assert(to_reg->is_double_cpu(), "Must be a long register.");
duke@435 1301 #ifdef _LP64
duke@435 1302 __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
duke@435 1303 #else
duke@435 1304 __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
duke@435 1305 __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
duke@435 1306 #endif
duke@435 1307 }
duke@435 1308
duke@435 1309 }
duke@435 1310 break;
duke@435 1311
duke@435 1312 default:
duke@435 1313 ShouldNotReachHere();
duke@435 1314 }
duke@435 1315 }
duke@435 1316
duke@435 1317 Address LIR_Assembler::as_Address(LIR_Address* addr) {
duke@435 1318 Register reg = addr->base()->as_register();
roland@4106 1319 LIR_Opr index = addr->index();
roland@4106 1320 if (index->is_illegal()) {
roland@4106 1321 return Address(reg, addr->disp());
roland@4106 1322 } else {
roland@4106 1323 assert (addr->disp() == 0, "unsupported address mode");
roland@4106 1324 return Address(reg, index->as_pointer_register());
roland@4106 1325 }
duke@435 1326 }
duke@435 1327
duke@435 1328
duke@435 1329 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1330 switch (type) {
duke@435 1331 case T_INT:
duke@435 1332 case T_FLOAT: {
duke@435 1333 Register tmp = O7;
duke@435 1334 Address from = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1335 Address to = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1336 __ lduw(from.base(), from.disp(), tmp);
duke@435 1337 __ stw(tmp, to.base(), to.disp());
duke@435 1338 break;
duke@435 1339 }
duke@435 1340 case T_OBJECT: {
duke@435 1341 Register tmp = O7;
duke@435 1342 Address from = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1343 Address to = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1344 __ ld_ptr(from.base(), from.disp(), tmp);
duke@435 1345 __ st_ptr(tmp, to.base(), to.disp());
duke@435 1346 break;
duke@435 1347 }
duke@435 1348 case T_LONG:
duke@435 1349 case T_DOUBLE: {
duke@435 1350 Register tmp = O7;
duke@435 1351 Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
duke@435 1352 Address to = frame_map()->address_for_double_slot(dest->double_stack_ix());
duke@435 1353 __ lduw(from.base(), from.disp(), tmp);
duke@435 1354 __ stw(tmp, to.base(), to.disp());
duke@435 1355 __ lduw(from.base(), from.disp() + 4, tmp);
duke@435 1356 __ stw(tmp, to.base(), to.disp() + 4);
duke@435 1357 break;
duke@435 1358 }
duke@435 1359
duke@435 1360 default:
duke@435 1361 ShouldNotReachHere();
duke@435 1362 }
duke@435 1363 }
duke@435 1364
duke@435 1365
duke@435 1366 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
duke@435 1367 Address base = as_Address(addr);
twisti@1162 1368 return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
duke@435 1369 }
duke@435 1370
duke@435 1371
duke@435 1372 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
duke@435 1373 Address base = as_Address(addr);
twisti@1162 1374 return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
duke@435 1375 }
duke@435 1376
duke@435 1377
duke@435 1378 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
iveresov@2344 1379 LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
duke@435 1380
roland@4051 1381 assert(type != T_METADATA, "load of metadata ptr not supported");
duke@435 1382 LIR_Address* addr = src_opr->as_address_ptr();
duke@435 1383 LIR_Opr to_reg = dest;
duke@435 1384
duke@435 1385 Register src = addr->base()->as_pointer_register();
duke@435 1386 Register disp_reg = noreg;
duke@435 1387 int disp_value = addr->disp();
duke@435 1388 bool needs_patching = (patch_code != lir_patch_none);
duke@435 1389
duke@435 1390 if (addr->base()->type() == T_OBJECT) {
duke@435 1391 __ verify_oop(src);
duke@435 1392 }
duke@435 1393
duke@435 1394 PatchingStub* patch = NULL;
duke@435 1395 if (needs_patching) {
duke@435 1396 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1397 assert(!to_reg->is_double_cpu() ||
duke@435 1398 patch_code == lir_patch_none ||
duke@435 1399 patch_code == lir_patch_normal, "patching doesn't match register");
duke@435 1400 }
duke@435 1401
duke@435 1402 if (addr->index()->is_illegal()) {
duke@435 1403 if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
duke@435 1404 if (needs_patching) {
twisti@1162 1405 __ patchable_set(0, O7);
duke@435 1406 } else {
duke@435 1407 __ set(disp_value, O7);
duke@435 1408 }
duke@435 1409 disp_reg = O7;
duke@435 1410 }
duke@435 1411 } else if (unaligned || PatchALot) {
duke@435 1412 __ add(src, addr->index()->as_register(), O7);
duke@435 1413 src = O7;
duke@435 1414 } else {
duke@435 1415 disp_reg = addr->index()->as_pointer_register();
duke@435 1416 assert(disp_value == 0, "can't handle 3 operand addresses");
duke@435 1417 }
duke@435 1418
duke@435 1419 // remember the offset of the load. The patching_epilog must be done
duke@435 1420 // before the call to add_debug_info, otherwise the PcDescs don't get
duke@435 1421 // entered in increasing order.
duke@435 1422 int offset = code_offset();
duke@435 1423
duke@435 1424 assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
duke@435 1425 if (disp_reg == noreg) {
iveresov@2344 1426 offset = load(src, disp_value, to_reg, type, wide, unaligned);
duke@435 1427 } else {
duke@435 1428 assert(!unaligned, "can't handle this");
iveresov@2344 1429 offset = load(src, disp_reg, to_reg, type, wide);
duke@435 1430 }
duke@435 1431
duke@435 1432 if (patch != NULL) {
duke@435 1433 patching_epilog(patch, patch_code, src, info);
duke@435 1434 }
duke@435 1435 if (info != NULL) add_debug_info_for_null_check(offset, info);
duke@435 1436 }
duke@435 1437
duke@435 1438
duke@435 1439 void LIR_Assembler::prefetchr(LIR_Opr src) {
duke@435 1440 LIR_Address* addr = src->as_address_ptr();
duke@435 1441 Address from_addr = as_Address(addr);
duke@435 1442
duke@435 1443 if (VM_Version::has_v9()) {
duke@435 1444 __ prefetch(from_addr, Assembler::severalReads);
duke@435 1445 }
duke@435 1446 }
duke@435 1447
duke@435 1448
duke@435 1449 void LIR_Assembler::prefetchw(LIR_Opr src) {
duke@435 1450 LIR_Address* addr = src->as_address_ptr();
duke@435 1451 Address from_addr = as_Address(addr);
duke@435 1452
duke@435 1453 if (VM_Version::has_v9()) {
duke@435 1454 __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
duke@435 1455 }
duke@435 1456 }
duke@435 1457
duke@435 1458
duke@435 1459 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1460 Address addr;
duke@435 1461 if (src->is_single_word()) {
duke@435 1462 addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1463 } else if (src->is_double_word()) {
duke@435 1464 addr = frame_map()->address_for_double_slot(src->double_stack_ix());
duke@435 1465 }
duke@435 1466
duke@435 1467 bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
iveresov@2344 1468 load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
duke@435 1469 }
duke@435 1470
duke@435 1471
duke@435 1472 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
duke@435 1473 Address addr;
duke@435 1474 if (dest->is_single_word()) {
duke@435 1475 addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1476 } else if (dest->is_double_word()) {
duke@435 1477 addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 1478 }
duke@435 1479 bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
iveresov@2344 1480 store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
duke@435 1481 }
duke@435 1482
duke@435 1483
duke@435 1484 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
duke@435 1485 if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
duke@435 1486 if (from_reg->is_double_fpu()) {
duke@435 1487 // double to double moves
duke@435 1488 assert(to_reg->is_double_fpu(), "should match");
duke@435 1489 __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
duke@435 1490 } else {
duke@435 1491 // float to float moves
duke@435 1492 assert(to_reg->is_single_fpu(), "should match");
duke@435 1493 __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
duke@435 1494 }
duke@435 1495 } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
duke@435 1496 if (from_reg->is_double_cpu()) {
duke@435 1497 #ifdef _LP64
duke@435 1498 __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
duke@435 1499 #else
duke@435 1500 assert(to_reg->is_double_cpu() &&
duke@435 1501 from_reg->as_register_hi() != to_reg->as_register_lo() &&
duke@435 1502 from_reg->as_register_lo() != to_reg->as_register_hi(),
duke@435 1503 "should both be long and not overlap");
duke@435 1504 // long to long moves
duke@435 1505 __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
duke@435 1506 __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
duke@435 1507 #endif
duke@435 1508 #ifdef _LP64
duke@435 1509 } else if (to_reg->is_double_cpu()) {
duke@435 1510 // int to int moves
duke@435 1511 __ mov(from_reg->as_register(), to_reg->as_register_lo());
duke@435 1512 #endif
duke@435 1513 } else {
duke@435 1514 // int to int moves
duke@435 1515 __ mov(from_reg->as_register(), to_reg->as_register());
duke@435 1516 }
duke@435 1517 } else {
duke@435 1518 ShouldNotReachHere();
duke@435 1519 }
duke@435 1520 if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
duke@435 1521 __ verify_oop(to_reg->as_register());
duke@435 1522 }
duke@435 1523 }
duke@435 1524
duke@435 1525
duke@435 1526 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
duke@435 1527 LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
iveresov@2344 1528 bool wide, bool unaligned) {
roland@4051 1529 assert(type != T_METADATA, "store of metadata ptr not supported");
duke@435 1530 LIR_Address* addr = dest->as_address_ptr();
duke@435 1531
duke@435 1532 Register src = addr->base()->as_pointer_register();
duke@435 1533 Register disp_reg = noreg;
duke@435 1534 int disp_value = addr->disp();
duke@435 1535 bool needs_patching = (patch_code != lir_patch_none);
duke@435 1536
duke@435 1537 if (addr->base()->is_oop_register()) {
duke@435 1538 __ verify_oop(src);
duke@435 1539 }
duke@435 1540
duke@435 1541 PatchingStub* patch = NULL;
duke@435 1542 if (needs_patching) {
duke@435 1543 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1544 assert(!from_reg->is_double_cpu() ||
duke@435 1545 patch_code == lir_patch_none ||
duke@435 1546 patch_code == lir_patch_normal, "patching doesn't match register");
duke@435 1547 }
duke@435 1548
duke@435 1549 if (addr->index()->is_illegal()) {
duke@435 1550 if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
duke@435 1551 if (needs_patching) {
twisti@1162 1552 __ patchable_set(0, O7);
duke@435 1553 } else {
duke@435 1554 __ set(disp_value, O7);
duke@435 1555 }
duke@435 1556 disp_reg = O7;
duke@435 1557 }
duke@435 1558 } else if (unaligned || PatchALot) {
duke@435 1559 __ add(src, addr->index()->as_register(), O7);
duke@435 1560 src = O7;
duke@435 1561 } else {
duke@435 1562 disp_reg = addr->index()->as_pointer_register();
duke@435 1563 assert(disp_value == 0, "can't handle 3 operand addresses");
duke@435 1564 }
duke@435 1565
duke@435 1566 // remember the offset of the store. The patching_epilog must be done
duke@435 1567 // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
duke@435 1568 // entered in increasing order.
duke@435 1569 int offset;
duke@435 1570
duke@435 1571 assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
duke@435 1572 if (disp_reg == noreg) {
iveresov@2344 1573 offset = store(from_reg, src, disp_value, type, wide, unaligned);
duke@435 1574 } else {
duke@435 1575 assert(!unaligned, "can't handle this");
iveresov@2344 1576 offset = store(from_reg, src, disp_reg, type, wide);
duke@435 1577 }
duke@435 1578
duke@435 1579 if (patch != NULL) {
duke@435 1580 patching_epilog(patch, patch_code, src, info);
duke@435 1581 }
duke@435 1582
duke@435 1583 if (info != NULL) add_debug_info_for_null_check(offset, info);
duke@435 1584 }
duke@435 1585
duke@435 1586
duke@435 1587 void LIR_Assembler::return_op(LIR_Opr result) {
duke@435 1588 // the poll may need a register so just pick one that isn't the return register
iveresov@2138 1589 #if defined(TIERED) && !defined(_LP64)
duke@435 1590 if (result->type_field() == LIR_OprDesc::long_type) {
duke@435 1591 // Must move the result to G1
duke@435 1592 // Must leave proper result in O0,O1 and G1 (TIERED only)
duke@435 1593 __ sllx(I0, 32, G1); // Shift bits into high G1
duke@435 1594 __ srl (I1, 0, I1); // Zero extend O1 (harmless?)
duke@435 1595 __ or3 (I1, G1, G1); // OR 64 bits into G1
iveresov@2138 1596 #ifdef ASSERT
iveresov@2138 1597 // mangle it so any problems will show up
iveresov@2138 1598 __ set(0xdeadbeef, I0);
iveresov@2138 1599 __ set(0xdeadbeef, I1);
iveresov@2138 1600 #endif
duke@435 1601 }
duke@435 1602 #endif // TIERED
duke@435 1603 __ set((intptr_t)os::get_polling_page(), L0);
duke@435 1604 __ relocate(relocInfo::poll_return_type);
duke@435 1605 __ ld_ptr(L0, 0, G0);
duke@435 1606 __ ret();
duke@435 1607 __ delayed()->restore();
duke@435 1608 }
duke@435 1609
duke@435 1610
duke@435 1611 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 1612 __ set((intptr_t)os::get_polling_page(), tmp->as_register());
duke@435 1613 if (info != NULL) {
duke@435 1614 add_debug_info_for_branch(info);
duke@435 1615 } else {
duke@435 1616 __ relocate(relocInfo::poll_type);
duke@435 1617 }
duke@435 1618
duke@435 1619 int offset = __ offset();
duke@435 1620 __ ld_ptr(tmp->as_register(), 0, G0);
duke@435 1621
duke@435 1622 return offset;
duke@435 1623 }
duke@435 1624
duke@435 1625
duke@435 1626 void LIR_Assembler::emit_static_call_stub() {
duke@435 1627 address call_pc = __ pc();
duke@435 1628 address stub = __ start_a_stub(call_stub_size);
duke@435 1629 if (stub == NULL) {
duke@435 1630 bailout("static call stub overflow");
duke@435 1631 return;
duke@435 1632 }
duke@435 1633
duke@435 1634 int start = __ offset();
duke@435 1635 __ relocate(static_stub_Relocation::spec(call_pc));
duke@435 1636
coleenp@4037 1637 __ set_metadata(NULL, G5);
duke@435 1638 // must be set to -1 at code generation time
twisti@1162 1639 AddressLiteral addrlit(-1);
twisti@1162 1640 __ jump_to(addrlit, G3);
duke@435 1641 __ delayed()->nop();
duke@435 1642
duke@435 1643 assert(__ offset() - start <= call_stub_size, "stub too big");
duke@435 1644 __ end_a_stub();
duke@435 1645 }
duke@435 1646
duke@435 1647
duke@435 1648 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
duke@435 1649 if (opr1->is_single_fpu()) {
duke@435 1650 __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
duke@435 1651 } else if (opr1->is_double_fpu()) {
duke@435 1652 __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
duke@435 1653 } else if (opr1->is_single_cpu()) {
duke@435 1654 if (opr2->is_constant()) {
duke@435 1655 switch (opr2->as_constant_ptr()->type()) {
duke@435 1656 case T_INT:
duke@435 1657 { jint con = opr2->as_constant_ptr()->as_jint();
duke@435 1658 if (Assembler::is_simm13(con)) {
duke@435 1659 __ cmp(opr1->as_register(), con);
duke@435 1660 } else {
duke@435 1661 __ set(con, O7);
duke@435 1662 __ cmp(opr1->as_register(), O7);
duke@435 1663 }
duke@435 1664 }
duke@435 1665 break;
duke@435 1666
duke@435 1667 case T_OBJECT:
duke@435 1668 // there are only equal/notequal comparisions on objects
duke@435 1669 { jobject con = opr2->as_constant_ptr()->as_jobject();
duke@435 1670 if (con == NULL) {
duke@435 1671 __ cmp(opr1->as_register(), 0);
duke@435 1672 } else {
duke@435 1673 jobject2reg(con, O7);
duke@435 1674 __ cmp(opr1->as_register(), O7);
duke@435 1675 }
duke@435 1676 }
duke@435 1677 break;
duke@435 1678
duke@435 1679 default:
duke@435 1680 ShouldNotReachHere();
duke@435 1681 break;
duke@435 1682 }
duke@435 1683 } else {
duke@435 1684 if (opr2->is_address()) {
duke@435 1685 LIR_Address * addr = opr2->as_address_ptr();
duke@435 1686 BasicType type = addr->type();
duke@435 1687 if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
duke@435 1688 else __ ld(as_Address(addr), O7);
duke@435 1689 __ cmp(opr1->as_register(), O7);
duke@435 1690 } else {
duke@435 1691 __ cmp(opr1->as_register(), opr2->as_register());
duke@435 1692 }
duke@435 1693 }
duke@435 1694 } else if (opr1->is_double_cpu()) {
duke@435 1695 Register xlo = opr1->as_register_lo();
duke@435 1696 Register xhi = opr1->as_register_hi();
duke@435 1697 if (opr2->is_constant() && opr2->as_jlong() == 0) {
duke@435 1698 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
duke@435 1699 #ifdef _LP64
duke@435 1700 __ orcc(xhi, G0, G0);
duke@435 1701 #else
duke@435 1702 __ orcc(xhi, xlo, G0);
duke@435 1703 #endif
duke@435 1704 } else if (opr2->is_register()) {
duke@435 1705 Register ylo = opr2->as_register_lo();
duke@435 1706 Register yhi = opr2->as_register_hi();
duke@435 1707 #ifdef _LP64
duke@435 1708 __ cmp(xlo, ylo);
duke@435 1709 #else
duke@435 1710 __ subcc(xlo, ylo, xlo);
duke@435 1711 __ subccc(xhi, yhi, xhi);
duke@435 1712 if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
duke@435 1713 __ orcc(xhi, xlo, G0);
duke@435 1714 }
duke@435 1715 #endif
duke@435 1716 } else {
duke@435 1717 ShouldNotReachHere();
duke@435 1718 }
duke@435 1719 } else if (opr1->is_address()) {
duke@435 1720 LIR_Address * addr = opr1->as_address_ptr();
duke@435 1721 BasicType type = addr->type();
duke@435 1722 assert (opr2->is_constant(), "Checking");
duke@435 1723 if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
duke@435 1724 else __ ld(as_Address(addr), O7);
duke@435 1725 __ cmp(O7, opr2->as_constant_ptr()->as_jint());
duke@435 1726 } else {
duke@435 1727 ShouldNotReachHere();
duke@435 1728 }
duke@435 1729 }
duke@435 1730
duke@435 1731
duke@435 1732 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
duke@435 1733 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
duke@435 1734 bool is_unordered_less = (code == lir_ucmp_fd2i);
duke@435 1735 if (left->is_single_fpu()) {
duke@435 1736 __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
duke@435 1737 } else if (left->is_double_fpu()) {
duke@435 1738 __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
duke@435 1739 } else {
duke@435 1740 ShouldNotReachHere();
duke@435 1741 }
duke@435 1742 } else if (code == lir_cmp_l2i) {
iveresov@1804 1743 #ifdef _LP64
iveresov@1804 1744 __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
iveresov@1804 1745 #else
duke@435 1746 __ lcmp(left->as_register_hi(), left->as_register_lo(),
duke@435 1747 right->as_register_hi(), right->as_register_lo(),
duke@435 1748 dst->as_register());
iveresov@1804 1749 #endif
duke@435 1750 } else {
duke@435 1751 ShouldNotReachHere();
duke@435 1752 }
duke@435 1753 }
duke@435 1754
duke@435 1755
iveresov@2412 1756 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
duke@435 1757 Assembler::Condition acond;
duke@435 1758 switch (condition) {
duke@435 1759 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1760 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1761 case lir_cond_less: acond = Assembler::less; break;
duke@435 1762 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 1763 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
duke@435 1764 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 1765 case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break;
duke@435 1766 case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break;
duke@435 1767 default: ShouldNotReachHere();
duke@435 1768 };
duke@435 1769
duke@435 1770 if (opr1->is_constant() && opr1->type() == T_INT) {
duke@435 1771 Register dest = result->as_register();
duke@435 1772 // load up first part of constant before branch
duke@435 1773 // and do the rest in the delay slot.
duke@435 1774 if (!Assembler::is_simm13(opr1->as_jint())) {
duke@435 1775 __ sethi(opr1->as_jint(), dest);
duke@435 1776 }
duke@435 1777 } else if (opr1->is_constant()) {
duke@435 1778 const2reg(opr1, result, lir_patch_none, NULL);
duke@435 1779 } else if (opr1->is_register()) {
duke@435 1780 reg2reg(opr1, result);
duke@435 1781 } else if (opr1->is_stack()) {
duke@435 1782 stack2reg(opr1, result, result->type());
duke@435 1783 } else {
duke@435 1784 ShouldNotReachHere();
duke@435 1785 }
duke@435 1786 Label skip;
iveresov@2412 1787 #ifdef _LP64
iveresov@2412 1788 if (type == T_INT) {
iveresov@2412 1789 __ br(acond, false, Assembler::pt, skip);
iveresov@2412 1790 } else
iveresov@2412 1791 #endif
iveresov@2412 1792 __ brx(acond, false, Assembler::pt, skip); // checks icc on 32bit and xcc on 64bit
duke@435 1793 if (opr1->is_constant() && opr1->type() == T_INT) {
duke@435 1794 Register dest = result->as_register();
duke@435 1795 if (Assembler::is_simm13(opr1->as_jint())) {
duke@435 1796 __ delayed()->or3(G0, opr1->as_jint(), dest);
duke@435 1797 } else {
duke@435 1798 // the sethi has been done above, so just put in the low 10 bits
duke@435 1799 __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
duke@435 1800 }
duke@435 1801 } else {
duke@435 1802 // can't do anything useful in the delay slot
duke@435 1803 __ delayed()->nop();
duke@435 1804 }
duke@435 1805 if (opr2->is_constant()) {
duke@435 1806 const2reg(opr2, result, lir_patch_none, NULL);
duke@435 1807 } else if (opr2->is_register()) {
duke@435 1808 reg2reg(opr2, result);
duke@435 1809 } else if (opr2->is_stack()) {
duke@435 1810 stack2reg(opr2, result, result->type());
duke@435 1811 } else {
duke@435 1812 ShouldNotReachHere();
duke@435 1813 }
duke@435 1814 __ bind(skip);
duke@435 1815 }
duke@435 1816
duke@435 1817
duke@435 1818 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
duke@435 1819 assert(info == NULL, "unused on this code path");
duke@435 1820 assert(left->is_register(), "wrong items state");
duke@435 1821 assert(dest->is_register(), "wrong items state");
duke@435 1822
duke@435 1823 if (right->is_register()) {
duke@435 1824 if (dest->is_float_kind()) {
duke@435 1825
duke@435 1826 FloatRegister lreg, rreg, res;
duke@435 1827 FloatRegisterImpl::Width w;
duke@435 1828 if (right->is_single_fpu()) {
duke@435 1829 w = FloatRegisterImpl::S;
duke@435 1830 lreg = left->as_float_reg();
duke@435 1831 rreg = right->as_float_reg();
duke@435 1832 res = dest->as_float_reg();
duke@435 1833 } else {
duke@435 1834 w = FloatRegisterImpl::D;
duke@435 1835 lreg = left->as_double_reg();
duke@435 1836 rreg = right->as_double_reg();
duke@435 1837 res = dest->as_double_reg();
duke@435 1838 }
duke@435 1839
duke@435 1840 switch (code) {
duke@435 1841 case lir_add: __ fadd(w, lreg, rreg, res); break;
duke@435 1842 case lir_sub: __ fsub(w, lreg, rreg, res); break;
duke@435 1843 case lir_mul: // fall through
duke@435 1844 case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
duke@435 1845 case lir_div: // fall through
duke@435 1846 case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
duke@435 1847 default: ShouldNotReachHere();
duke@435 1848 }
duke@435 1849
duke@435 1850 } else if (dest->is_double_cpu()) {
duke@435 1851 #ifdef _LP64
duke@435 1852 Register dst_lo = dest->as_register_lo();
duke@435 1853 Register op1_lo = left->as_pointer_register();
duke@435 1854 Register op2_lo = right->as_pointer_register();
duke@435 1855
duke@435 1856 switch (code) {
duke@435 1857 case lir_add:
duke@435 1858 __ add(op1_lo, op2_lo, dst_lo);
duke@435 1859 break;
duke@435 1860
duke@435 1861 case lir_sub:
duke@435 1862 __ sub(op1_lo, op2_lo, dst_lo);
duke@435 1863 break;
duke@435 1864
duke@435 1865 default: ShouldNotReachHere();
duke@435 1866 }
duke@435 1867 #else
duke@435 1868 Register op1_lo = left->as_register_lo();
duke@435 1869 Register op1_hi = left->as_register_hi();
duke@435 1870 Register op2_lo = right->as_register_lo();
duke@435 1871 Register op2_hi = right->as_register_hi();
duke@435 1872 Register dst_lo = dest->as_register_lo();
duke@435 1873 Register dst_hi = dest->as_register_hi();
duke@435 1874
duke@435 1875 switch (code) {
duke@435 1876 case lir_add:
duke@435 1877 __ addcc(op1_lo, op2_lo, dst_lo);
duke@435 1878 __ addc (op1_hi, op2_hi, dst_hi);
duke@435 1879 break;
duke@435 1880
duke@435 1881 case lir_sub:
duke@435 1882 __ subcc(op1_lo, op2_lo, dst_lo);
duke@435 1883 __ subc (op1_hi, op2_hi, dst_hi);
duke@435 1884 break;
duke@435 1885
duke@435 1886 default: ShouldNotReachHere();
duke@435 1887 }
duke@435 1888 #endif
duke@435 1889 } else {
duke@435 1890 assert (right->is_single_cpu(), "Just Checking");
duke@435 1891
duke@435 1892 Register lreg = left->as_register();
duke@435 1893 Register res = dest->as_register();
duke@435 1894 Register rreg = right->as_register();
duke@435 1895 switch (code) {
duke@435 1896 case lir_add: __ add (lreg, rreg, res); break;
duke@435 1897 case lir_sub: __ sub (lreg, rreg, res); break;
morris@5283 1898 case lir_mul: __ mulx (lreg, rreg, res); break;
duke@435 1899 default: ShouldNotReachHere();
duke@435 1900 }
duke@435 1901 }
duke@435 1902 } else {
duke@435 1903 assert (right->is_constant(), "must be constant");
duke@435 1904
duke@435 1905 if (dest->is_single_cpu()) {
duke@435 1906 Register lreg = left->as_register();
duke@435 1907 Register res = dest->as_register();
duke@435 1908 int simm13 = right->as_constant_ptr()->as_jint();
duke@435 1909
duke@435 1910 switch (code) {
duke@435 1911 case lir_add: __ add (lreg, simm13, res); break;
duke@435 1912 case lir_sub: __ sub (lreg, simm13, res); break;
morris@5283 1913 case lir_mul: __ mulx (lreg, simm13, res); break;
duke@435 1914 default: ShouldNotReachHere();
duke@435 1915 }
duke@435 1916 } else {
duke@435 1917 Register lreg = left->as_pointer_register();
duke@435 1918 Register res = dest->as_register_lo();
duke@435 1919 long con = right->as_constant_ptr()->as_jlong();
duke@435 1920 assert(Assembler::is_simm13(con), "must be simm13");
duke@435 1921
duke@435 1922 switch (code) {
duke@435 1923 case lir_add: __ add (lreg, (int)con, res); break;
duke@435 1924 case lir_sub: __ sub (lreg, (int)con, res); break;
morris@5283 1925 case lir_mul: __ mulx (lreg, (int)con, res); break;
duke@435 1926 default: ShouldNotReachHere();
duke@435 1927 }
duke@435 1928 }
duke@435 1929 }
duke@435 1930 }
duke@435 1931
duke@435 1932
duke@435 1933 void LIR_Assembler::fpop() {
duke@435 1934 // do nothing
duke@435 1935 }
duke@435 1936
duke@435 1937
duke@435 1938 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
duke@435 1939 switch (code) {
duke@435 1940 case lir_sin:
duke@435 1941 case lir_tan:
duke@435 1942 case lir_cos: {
duke@435 1943 assert(thread->is_valid(), "preserve the thread object for performance reasons");
duke@435 1944 assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
duke@435 1945 break;
duke@435 1946 }
duke@435 1947 case lir_sqrt: {
duke@435 1948 assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
duke@435 1949 FloatRegister src_reg = value->as_double_reg();
duke@435 1950 FloatRegister dst_reg = dest->as_double_reg();
duke@435 1951 __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
duke@435 1952 break;
duke@435 1953 }
duke@435 1954 case lir_abs: {
duke@435 1955 assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
duke@435 1956 FloatRegister src_reg = value->as_double_reg();
duke@435 1957 FloatRegister dst_reg = dest->as_double_reg();
duke@435 1958 __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
duke@435 1959 break;
duke@435 1960 }
duke@435 1961 default: {
duke@435 1962 ShouldNotReachHere();
duke@435 1963 break;
duke@435 1964 }
duke@435 1965 }
duke@435 1966 }
duke@435 1967
duke@435 1968
duke@435 1969 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
duke@435 1970 if (right->is_constant()) {
duke@435 1971 if (dest->is_single_cpu()) {
duke@435 1972 int simm13 = right->as_constant_ptr()->as_jint();
duke@435 1973 switch (code) {
duke@435 1974 case lir_logic_and: __ and3 (left->as_register(), simm13, dest->as_register()); break;
duke@435 1975 case lir_logic_or: __ or3 (left->as_register(), simm13, dest->as_register()); break;
duke@435 1976 case lir_logic_xor: __ xor3 (left->as_register(), simm13, dest->as_register()); break;
duke@435 1977 default: ShouldNotReachHere();
duke@435 1978 }
duke@435 1979 } else {
duke@435 1980 long c = right->as_constant_ptr()->as_jlong();
duke@435 1981 assert(c == (int)c && Assembler::is_simm13(c), "out of range");
duke@435 1982 int simm13 = (int)c;
duke@435 1983 switch (code) {
duke@435 1984 case lir_logic_and:
duke@435 1985 #ifndef _LP64
duke@435 1986 __ and3 (left->as_register_hi(), 0, dest->as_register_hi());
duke@435 1987 #endif
duke@435 1988 __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
duke@435 1989 break;
duke@435 1990
duke@435 1991 case lir_logic_or:
duke@435 1992 #ifndef _LP64
duke@435 1993 __ or3 (left->as_register_hi(), 0, dest->as_register_hi());
duke@435 1994 #endif
duke@435 1995 __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
duke@435 1996 break;
duke@435 1997
duke@435 1998 case lir_logic_xor:
duke@435 1999 #ifndef _LP64
duke@435 2000 __ xor3 (left->as_register_hi(), 0, dest->as_register_hi());
duke@435 2001 #endif
duke@435 2002 __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
duke@435 2003 break;
duke@435 2004
duke@435 2005 default: ShouldNotReachHere();
duke@435 2006 }
duke@435 2007 }
duke@435 2008 } else {
duke@435 2009 assert(right->is_register(), "right should be in register");
duke@435 2010
duke@435 2011 if (dest->is_single_cpu()) {
duke@435 2012 switch (code) {
duke@435 2013 case lir_logic_and: __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
duke@435 2014 case lir_logic_or: __ or3 (left->as_register(), right->as_register(), dest->as_register()); break;
duke@435 2015 case lir_logic_xor: __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
duke@435 2016 default: ShouldNotReachHere();
duke@435 2017 }
duke@435 2018 } else {
duke@435 2019 #ifdef _LP64
duke@435 2020 Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
duke@435 2021 left->as_register_lo();
duke@435 2022 Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
duke@435 2023 right->as_register_lo();
duke@435 2024
duke@435 2025 switch (code) {
duke@435 2026 case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
duke@435 2027 case lir_logic_or: __ or3 (l, r, dest->as_register_lo()); break;
duke@435 2028 case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
duke@435 2029 default: ShouldNotReachHere();
duke@435 2030 }
duke@435 2031 #else
duke@435 2032 switch (code) {
duke@435 2033 case lir_logic_and:
duke@435 2034 __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
duke@435 2035 __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
duke@435 2036 break;
duke@435 2037
duke@435 2038 case lir_logic_or:
duke@435 2039 __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
duke@435 2040 __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
duke@435 2041 break;
duke@435 2042
duke@435 2043 case lir_logic_xor:
duke@435 2044 __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
duke@435 2045 __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
duke@435 2046 break;
duke@435 2047
duke@435 2048 default: ShouldNotReachHere();
duke@435 2049 }
duke@435 2050 #endif
duke@435 2051 }
duke@435 2052 }
duke@435 2053 }
duke@435 2054
duke@435 2055
duke@435 2056 int LIR_Assembler::shift_amount(BasicType t) {
kvn@464 2057 int elem_size = type2aelembytes(t);
duke@435 2058 switch (elem_size) {
duke@435 2059 case 1 : return 0;
duke@435 2060 case 2 : return 1;
duke@435 2061 case 4 : return 2;
duke@435 2062 case 8 : return 3;
duke@435 2063 }
duke@435 2064 ShouldNotReachHere();
duke@435 2065 return -1;
duke@435 2066 }
duke@435 2067
duke@435 2068
never@1813 2069 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
duke@435 2070 assert(exceptionOop->as_register() == Oexception, "should match");
never@1813 2071 assert(exceptionPC->as_register() == Oissuing_pc, "should match");
duke@435 2072
duke@435 2073 info->add_register_oop(exceptionOop);
duke@435 2074
never@1813 2075 // reuse the debug info from the safepoint poll for the throw op itself
never@1813 2076 address pc_for_athrow = __ pc();
never@1813 2077 int pc_for_athrow_offset = __ offset();
never@1813 2078 RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
never@1813 2079 __ set(pc_for_athrow, Oissuing_pc, rspec);
never@1813 2080 add_call_info(pc_for_athrow_offset, info); // for exception handler
never@1813 2081
never@1813 2082 __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
never@1813 2083 __ delayed()->nop();
never@1813 2084 }
never@1813 2085
never@1813 2086
never@1813 2087 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
never@1813 2088 assert(exceptionOop->as_register() == Oexception, "should match");
never@1813 2089
never@1813 2090 __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
never@1813 2091 __ delayed()->nop();
duke@435 2092 }
duke@435 2093
duke@435 2094 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
duke@435 2095 Register src = op->src()->as_register();
duke@435 2096 Register dst = op->dst()->as_register();
duke@435 2097 Register src_pos = op->src_pos()->as_register();
duke@435 2098 Register dst_pos = op->dst_pos()->as_register();
duke@435 2099 Register length = op->length()->as_register();
duke@435 2100 Register tmp = op->tmp()->as_register();
duke@435 2101 Register tmp2 = O7;
duke@435 2102
duke@435 2103 int flags = op->flags();
duke@435 2104 ciArrayKlass* default_type = op->expected_type();
duke@435 2105 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
duke@435 2106 if (basic_type == T_ARRAY) basic_type = T_OBJECT;
duke@435 2107
iveresov@2731 2108 #ifdef _LP64
iveresov@2731 2109 // higher 32bits must be null
iveresov@2731 2110 __ sra(dst_pos, 0, dst_pos);
iveresov@2731 2111 __ sra(src_pos, 0, src_pos);
iveresov@2731 2112 __ sra(length, 0, length);
iveresov@2731 2113 #endif
iveresov@2731 2114
duke@435 2115 // set up the arraycopy stub information
duke@435 2116 ArrayCopyStub* stub = op->stub();
duke@435 2117
duke@435 2118 // always do stub if no type information is available. it's ok if
duke@435 2119 // the known type isn't loaded since the code sanity checks
duke@435 2120 // in debug mode and the type isn't required when we know the exact type
duke@435 2121 // also check that the type is an array type.
roland@2728 2122 if (op->expected_type() == NULL) {
duke@435 2123 __ mov(src, O0);
duke@435 2124 __ mov(src_pos, O1);
duke@435 2125 __ mov(dst, O2);
duke@435 2126 __ mov(dst_pos, O3);
duke@435 2127 __ mov(length, O4);
roland@2728 2128 address copyfunc_addr = StubRoutines::generic_arraycopy();
roland@2728 2129
roland@2728 2130 if (copyfunc_addr == NULL) { // Use C version if stub was not generated
roland@2728 2131 __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
roland@2728 2132 } else {
roland@2728 2133 #ifndef PRODUCT
roland@2728 2134 if (PrintC1Statistics) {
roland@2728 2135 address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
roland@2728 2136 __ inc_counter(counter, G1, G3);
roland@2728 2137 }
roland@2728 2138 #endif
roland@2728 2139 __ call_VM_leaf(tmp, copyfunc_addr);
roland@2728 2140 }
roland@2728 2141
roland@2728 2142 if (copyfunc_addr != NULL) {
roland@2728 2143 __ xor3(O0, -1, tmp);
roland@2728 2144 __ sub(length, tmp, length);
roland@2728 2145 __ add(src_pos, tmp, src_pos);
kvn@3037 2146 __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
roland@2728 2147 __ delayed()->add(dst_pos, tmp, dst_pos);
roland@2728 2148 } else {
kvn@3037 2149 __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
roland@2728 2150 __ delayed()->nop();
roland@2728 2151 }
duke@435 2152 __ bind(*stub->continuation());
duke@435 2153 return;
duke@435 2154 }
duke@435 2155
duke@435 2156 assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
duke@435 2157
duke@435 2158 // make sure src and dst are non-null and load array length
duke@435 2159 if (flags & LIR_OpArrayCopy::src_null_check) {
duke@435 2160 __ tst(src);
iveresov@2344 2161 __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
duke@435 2162 __ delayed()->nop();
duke@435 2163 }
duke@435 2164
duke@435 2165 if (flags & LIR_OpArrayCopy::dst_null_check) {
duke@435 2166 __ tst(dst);
iveresov@2344 2167 __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
duke@435 2168 __ delayed()->nop();
duke@435 2169 }
duke@435 2170
duke@435 2171 if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
duke@435 2172 // test src_pos register
kvn@3037 2173 __ cmp_zero_and_br(Assembler::less, src_pos, *stub->entry());
duke@435 2174 __ delayed()->nop();
duke@435 2175 }
duke@435 2176
duke@435 2177 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
duke@435 2178 // test dst_pos register
kvn@3037 2179 __ cmp_zero_and_br(Assembler::less, dst_pos, *stub->entry());
duke@435 2180 __ delayed()->nop();
duke@435 2181 }
duke@435 2182
duke@435 2183 if (flags & LIR_OpArrayCopy::length_positive_check) {
duke@435 2184 // make sure length isn't negative
kvn@3037 2185 __ cmp_zero_and_br(Assembler::less, length, *stub->entry());
duke@435 2186 __ delayed()->nop();
duke@435 2187 }
duke@435 2188
duke@435 2189 if (flags & LIR_OpArrayCopy::src_range_check) {
duke@435 2190 __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
duke@435 2191 __ add(length, src_pos, tmp);
duke@435 2192 __ cmp(tmp2, tmp);
duke@435 2193 __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
duke@435 2194 __ delayed()->nop();
duke@435 2195 }
duke@435 2196
duke@435 2197 if (flags & LIR_OpArrayCopy::dst_range_check) {
duke@435 2198 __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
duke@435 2199 __ add(length, dst_pos, tmp);
duke@435 2200 __ cmp(tmp2, tmp);
duke@435 2201 __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
duke@435 2202 __ delayed()->nop();
duke@435 2203 }
duke@435 2204
roland@2728 2205 int shift = shift_amount(basic_type);
roland@2728 2206
duke@435 2207 if (flags & LIR_OpArrayCopy::type_check) {
roland@2728 2208 // We don't know the array types are compatible
roland@2728 2209 if (basic_type != T_OBJECT) {
roland@2728 2210 // Simple test for basic type arrays
coleenp@4037 2211 if (UseCompressedKlassPointers) {
roland@2728 2212 // We don't need decode because we just need to compare
roland@2728 2213 __ lduw(src, oopDesc::klass_offset_in_bytes(), tmp);
roland@2728 2214 __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
roland@2728 2215 __ cmp(tmp, tmp2);
roland@2728 2216 __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
roland@2728 2217 } else {
roland@2728 2218 __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
roland@2728 2219 __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
roland@2728 2220 __ cmp(tmp, tmp2);
roland@2728 2221 __ brx(Assembler::notEqual, false, Assembler::pt, *stub->entry());
roland@2728 2222 }
roland@2728 2223 __ delayed()->nop();
iveresov@2344 2224 } else {
roland@2728 2225 // For object arrays, if src is a sub class of dst then we can
roland@2728 2226 // safely do the copy.
roland@2728 2227 address copyfunc_addr = StubRoutines::checkcast_arraycopy();
roland@2728 2228
roland@2728 2229 Label cont, slow;
roland@2728 2230 assert_different_registers(tmp, tmp2, G3, G1);
roland@2728 2231
roland@2728 2232 __ load_klass(src, G3);
roland@2728 2233 __ load_klass(dst, G1);
roland@2728 2234
roland@2728 2235 __ check_klass_subtype_fast_path(G3, G1, tmp, tmp2, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL);
roland@2728 2236
roland@2728 2237 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
roland@2728 2238 __ delayed()->nop();
roland@2728 2239
roland@2728 2240 __ cmp(G3, 0);
roland@2728 2241 if (copyfunc_addr != NULL) { // use stub if available
roland@2728 2242 // src is not a sub class of dst so we have to do a
roland@2728 2243 // per-element check.
roland@2728 2244 __ br(Assembler::notEqual, false, Assembler::pt, cont);
roland@2728 2245 __ delayed()->nop();
roland@2728 2246
roland@2728 2247 __ bind(slow);
roland@2728 2248
roland@2728 2249 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
roland@2728 2250 if ((flags & mask) != mask) {
roland@2728 2251 // Check that at least both of them object arrays.
roland@2728 2252 assert(flags & mask, "one of the two should be known to be an object array");
roland@2728 2253
roland@2728 2254 if (!(flags & LIR_OpArrayCopy::src_objarray)) {
roland@2728 2255 __ load_klass(src, tmp);
roland@2728 2256 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
roland@2728 2257 __ load_klass(dst, tmp);
roland@2728 2258 }
stefank@3391 2259 int lh_offset = in_bytes(Klass::layout_helper_offset());
roland@2728 2260
roland@2728 2261 __ lduw(tmp, lh_offset, tmp2);
roland@2728 2262
roland@2728 2263 jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
roland@2728 2264 __ set(objArray_lh, tmp);
roland@2728 2265 __ cmp(tmp, tmp2);
roland@2728 2266 __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
roland@2728 2267 __ delayed()->nop();
roland@2728 2268 }
roland@2728 2269
roland@2728 2270 Register src_ptr = O0;
roland@2728 2271 Register dst_ptr = O1;
roland@2728 2272 Register len = O2;
roland@2728 2273 Register chk_off = O3;
roland@2728 2274 Register super_k = O4;
roland@2728 2275
roland@2728 2276 __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
roland@2728 2277 if (shift == 0) {
roland@2728 2278 __ add(src_ptr, src_pos, src_ptr);
roland@2728 2279 } else {
roland@2728 2280 __ sll(src_pos, shift, tmp);
roland@2728 2281 __ add(src_ptr, tmp, src_ptr);
roland@2728 2282 }
roland@2728 2283
roland@2728 2284 __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
roland@2728 2285 if (shift == 0) {
roland@2728 2286 __ add(dst_ptr, dst_pos, dst_ptr);
roland@2728 2287 } else {
roland@2728 2288 __ sll(dst_pos, shift, tmp);
roland@2728 2289 __ add(dst_ptr, tmp, dst_ptr);
roland@2728 2290 }
roland@2728 2291 __ mov(length, len);
roland@2728 2292 __ load_klass(dst, tmp);
roland@2728 2293
coleenp@4142 2294 int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
roland@2728 2295 __ ld_ptr(tmp, ek_offset, super_k);
roland@2728 2296
stefank@3391 2297 int sco_offset = in_bytes(Klass::super_check_offset_offset());
roland@2728 2298 __ lduw(super_k, sco_offset, chk_off);
roland@2728 2299
roland@2728 2300 __ call_VM_leaf(tmp, copyfunc_addr);
roland@2728 2301
roland@2728 2302 #ifndef PRODUCT
roland@2728 2303 if (PrintC1Statistics) {
roland@2728 2304 Label failed;
kvn@3037 2305 __ br_notnull_short(O0, Assembler::pn, failed);
roland@2728 2306 __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, G1, G3);
roland@2728 2307 __ bind(failed);
roland@2728 2308 }
roland@2728 2309 #endif
roland@2728 2310
roland@2728 2311 __ br_null(O0, false, Assembler::pt, *stub->continuation());
roland@2728 2312 __ delayed()->xor3(O0, -1, tmp);
roland@2728 2313
roland@2728 2314 #ifndef PRODUCT
roland@2728 2315 if (PrintC1Statistics) {
roland@2728 2316 __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, G1, G3);
roland@2728 2317 }
roland@2728 2318 #endif
roland@2728 2319
roland@2728 2320 __ sub(length, tmp, length);
roland@2728 2321 __ add(src_pos, tmp, src_pos);
roland@2728 2322 __ br(Assembler::always, false, Assembler::pt, *stub->entry());
roland@2728 2323 __ delayed()->add(dst_pos, tmp, dst_pos);
roland@2728 2324
roland@2728 2325 __ bind(cont);
roland@2728 2326 } else {
roland@2728 2327 __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
roland@2728 2328 __ delayed()->nop();
roland@2728 2329 __ bind(cont);
roland@2728 2330 }
iveresov@2344 2331 }
duke@435 2332 }
duke@435 2333
duke@435 2334 #ifdef ASSERT
duke@435 2335 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
duke@435 2336 // Sanity check the known type with the incoming class. For the
duke@435 2337 // primitive case the types must match exactly with src.klass and
duke@435 2338 // dst.klass each exactly matching the default type. For the
duke@435 2339 // object array case, if no type check is needed then either the
duke@435 2340 // dst type is exactly the expected type and the src type is a
duke@435 2341 // subtype which we can't check or src is the same array as dst
duke@435 2342 // but not necessarily exactly of type default_type.
duke@435 2343 Label known_ok, halt;
coleenp@4037 2344 metadata2reg(op->expected_type()->constant_encoding(), tmp);
coleenp@4037 2345 if (UseCompressedKlassPointers) {
iveresov@2344 2346 // tmp holds the default type. It currently comes uncompressed after the
iveresov@2344 2347 // load of a constant, so encode it.
roland@4159 2348 __ encode_klass_not_null(tmp);
iveresov@2344 2349 // load the raw value of the dst klass, since we will be comparing
iveresov@2344 2350 // uncompressed values directly.
iveresov@2344 2351 __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
iveresov@2344 2352 if (basic_type != T_OBJECT) {
iveresov@2344 2353 __ cmp(tmp, tmp2);
iveresov@2344 2354 __ br(Assembler::notEqual, false, Assembler::pn, halt);
iveresov@2344 2355 // load the raw value of the src klass.
iveresov@2344 2356 __ delayed()->lduw(src, oopDesc::klass_offset_in_bytes(), tmp2);
kvn@3037 2357 __ cmp_and_br_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
iveresov@2344 2358 } else {
iveresov@2344 2359 __ cmp(tmp, tmp2);
iveresov@2344 2360 __ br(Assembler::equal, false, Assembler::pn, known_ok);
iveresov@2344 2361 __ delayed()->cmp(src, dst);
iveresov@2344 2362 __ brx(Assembler::equal, false, Assembler::pn, known_ok);
iveresov@2344 2363 __ delayed()->nop();
iveresov@2344 2364 }
duke@435 2365 } else {
iveresov@2344 2366 __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
iveresov@2344 2367 if (basic_type != T_OBJECT) {
iveresov@2344 2368 __ cmp(tmp, tmp2);
iveresov@2344 2369 __ brx(Assembler::notEqual, false, Assembler::pn, halt);
iveresov@2344 2370 __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
kvn@3037 2371 __ cmp_and_brx_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
iveresov@2344 2372 } else {
iveresov@2344 2373 __ cmp(tmp, tmp2);
iveresov@2344 2374 __ brx(Assembler::equal, false, Assembler::pn, known_ok);
iveresov@2344 2375 __ delayed()->cmp(src, dst);
iveresov@2344 2376 __ brx(Assembler::equal, false, Assembler::pn, known_ok);
iveresov@2344 2377 __ delayed()->nop();
iveresov@2344 2378 }
duke@435 2379 }
duke@435 2380 __ bind(halt);
duke@435 2381 __ stop("incorrect type information in arraycopy");
duke@435 2382 __ bind(known_ok);
duke@435 2383 }
duke@435 2384 #endif
duke@435 2385
roland@2728 2386 #ifndef PRODUCT
roland@2728 2387 if (PrintC1Statistics) {
roland@2728 2388 address counter = Runtime1::arraycopy_count_address(basic_type);
roland@2728 2389 __ inc_counter(counter, G1, G3);
roland@2728 2390 }
roland@2728 2391 #endif
duke@435 2392
duke@435 2393 Register src_ptr = O0;
duke@435 2394 Register dst_ptr = O1;
duke@435 2395 Register len = O2;
duke@435 2396
duke@435 2397 __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
duke@435 2398 if (shift == 0) {
duke@435 2399 __ add(src_ptr, src_pos, src_ptr);
duke@435 2400 } else {
duke@435 2401 __ sll(src_pos, shift, tmp);
duke@435 2402 __ add(src_ptr, tmp, src_ptr);
duke@435 2403 }
duke@435 2404
duke@435 2405 __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
duke@435 2406 if (shift == 0) {
duke@435 2407 __ add(dst_ptr, dst_pos, dst_ptr);
duke@435 2408 } else {
duke@435 2409 __ sll(dst_pos, shift, tmp);
duke@435 2410 __ add(dst_ptr, tmp, dst_ptr);
duke@435 2411 }
duke@435 2412
roland@2728 2413 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
roland@2728 2414 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
roland@2728 2415 const char *name;
roland@2728 2416 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
roland@2728 2417
roland@2728 2418 // arraycopy stubs takes a length in number of elements, so don't scale it.
roland@2728 2419 __ mov(length, len);
roland@2728 2420 __ call_VM_leaf(tmp, entry);
duke@435 2421
duke@435 2422 __ bind(*stub->continuation());
duke@435 2423 }
duke@435 2424
duke@435 2425
duke@435 2426 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
duke@435 2427 if (dest->is_single_cpu()) {
duke@435 2428 #ifdef _LP64
duke@435 2429 if (left->type() == T_OBJECT) {
duke@435 2430 switch (code) {
duke@435 2431 case lir_shl: __ sllx (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2432 case lir_shr: __ srax (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2433 case lir_ushr: __ srl (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2434 default: ShouldNotReachHere();
duke@435 2435 }
duke@435 2436 } else
duke@435 2437 #endif
duke@435 2438 switch (code) {
duke@435 2439 case lir_shl: __ sll (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2440 case lir_shr: __ sra (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2441 case lir_ushr: __ srl (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2442 default: ShouldNotReachHere();
duke@435 2443 }
duke@435 2444 } else {
duke@435 2445 #ifdef _LP64
duke@435 2446 switch (code) {
duke@435 2447 case lir_shl: __ sllx (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
duke@435 2448 case lir_shr: __ srax (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
duke@435 2449 case lir_ushr: __ srlx (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
duke@435 2450 default: ShouldNotReachHere();
duke@435 2451 }
duke@435 2452 #else
duke@435 2453 switch (code) {
duke@435 2454 case lir_shl: __ lshl (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
duke@435 2455 case lir_shr: __ lshr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
duke@435 2456 case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
duke@435 2457 default: ShouldNotReachHere();
duke@435 2458 }
duke@435 2459 #endif
duke@435 2460 }
duke@435 2461 }
duke@435 2462
duke@435 2463
duke@435 2464 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
duke@435 2465 #ifdef _LP64
duke@435 2466 if (left->type() == T_OBJECT) {
duke@435 2467 count = count & 63; // shouldn't shift by more than sizeof(intptr_t)
duke@435 2468 Register l = left->as_register();
duke@435 2469 Register d = dest->as_register_lo();
duke@435 2470 switch (code) {
duke@435 2471 case lir_shl: __ sllx (l, count, d); break;
duke@435 2472 case lir_shr: __ srax (l, count, d); break;
duke@435 2473 case lir_ushr: __ srlx (l, count, d); break;
duke@435 2474 default: ShouldNotReachHere();
duke@435 2475 }
duke@435 2476 return;
duke@435 2477 }
duke@435 2478 #endif
duke@435 2479
duke@435 2480 if (dest->is_single_cpu()) {
duke@435 2481 count = count & 0x1F; // Java spec
duke@435 2482 switch (code) {
duke@435 2483 case lir_shl: __ sll (left->as_register(), count, dest->as_register()); break;
duke@435 2484 case lir_shr: __ sra (left->as_register(), count, dest->as_register()); break;
duke@435 2485 case lir_ushr: __ srl (left->as_register(), count, dest->as_register()); break;
duke@435 2486 default: ShouldNotReachHere();
duke@435 2487 }
duke@435 2488 } else if (dest->is_double_cpu()) {
duke@435 2489 count = count & 63; // Java spec
duke@435 2490 switch (code) {
duke@435 2491 case lir_shl: __ sllx (left->as_pointer_register(), count, dest->as_pointer_register()); break;
duke@435 2492 case lir_shr: __ srax (left->as_pointer_register(), count, dest->as_pointer_register()); break;
duke@435 2493 case lir_ushr: __ srlx (left->as_pointer_register(), count, dest->as_pointer_register()); break;
duke@435 2494 default: ShouldNotReachHere();
duke@435 2495 }
duke@435 2496 } else {
duke@435 2497 ShouldNotReachHere();
duke@435 2498 }
duke@435 2499 }
duke@435 2500
duke@435 2501
duke@435 2502 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
duke@435 2503 assert(op->tmp1()->as_register() == G1 &&
duke@435 2504 op->tmp2()->as_register() == G3 &&
duke@435 2505 op->tmp3()->as_register() == G4 &&
duke@435 2506 op->obj()->as_register() == O0 &&
duke@435 2507 op->klass()->as_register() == G5, "must be");
duke@435 2508 if (op->init_check()) {
coleenp@3368 2509 __ ldub(op->klass()->as_register(),
coleenp@4037 2510 in_bytes(InstanceKlass::init_state_offset()),
duke@435 2511 op->tmp1()->as_register());
duke@435 2512 add_debug_info_for_null_check_here(op->stub()->info());
coleenp@4037 2513 __ cmp(op->tmp1()->as_register(), InstanceKlass::fully_initialized);
duke@435 2514 __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
duke@435 2515 __ delayed()->nop();
duke@435 2516 }
duke@435 2517 __ allocate_object(op->obj()->as_register(),
duke@435 2518 op->tmp1()->as_register(),
duke@435 2519 op->tmp2()->as_register(),
duke@435 2520 op->tmp3()->as_register(),
duke@435 2521 op->header_size(),
duke@435 2522 op->object_size(),
duke@435 2523 op->klass()->as_register(),
duke@435 2524 *op->stub()->entry());
duke@435 2525 __ bind(*op->stub()->continuation());
duke@435 2526 __ verify_oop(op->obj()->as_register());
duke@435 2527 }
duke@435 2528
duke@435 2529
duke@435 2530 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
duke@435 2531 assert(op->tmp1()->as_register() == G1 &&
duke@435 2532 op->tmp2()->as_register() == G3 &&
duke@435 2533 op->tmp3()->as_register() == G4 &&
duke@435 2534 op->tmp4()->as_register() == O1 &&
duke@435 2535 op->klass()->as_register() == G5, "must be");
iveresov@2432 2536
iveresov@2432 2537 LP64_ONLY( __ signx(op->len()->as_register()); )
duke@435 2538 if (UseSlowPath ||
duke@435 2539 (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
duke@435 2540 (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
never@1813 2541 __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
duke@435 2542 __ delayed()->nop();
duke@435 2543 } else {
duke@435 2544 __ allocate_array(op->obj()->as_register(),
duke@435 2545 op->len()->as_register(),
duke@435 2546 op->tmp1()->as_register(),
duke@435 2547 op->tmp2()->as_register(),
duke@435 2548 op->tmp3()->as_register(),
duke@435 2549 arrayOopDesc::header_size(op->type()),
kvn@464 2550 type2aelembytes(op->type()),
duke@435 2551 op->klass()->as_register(),
duke@435 2552 *op->stub()->entry());
duke@435 2553 }
duke@435 2554 __ bind(*op->stub()->continuation());
duke@435 2555 }
duke@435 2556
duke@435 2557
iveresov@2138 2558 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
iveresov@2138 2559 ciMethodData *md, ciProfileData *data,
iveresov@2138 2560 Register recv, Register tmp1, Label* update_done) {
iveresov@2138 2561 uint i;
iveresov@2138 2562 for (i = 0; i < VirtualCallData::row_limit(); i++) {
iveresov@2138 2563 Label next_test;
iveresov@2138 2564 // See if the receiver is receiver[n].
iveresov@2138 2565 Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
iveresov@2138 2566 mdo_offset_bias);
iveresov@2138 2567 __ ld_ptr(receiver_addr, tmp1);
iveresov@2138 2568 __ verify_oop(tmp1);
kvn@3037 2569 __ cmp_and_brx_short(recv, tmp1, Assembler::notEqual, Assembler::pt, next_test);
iveresov@2138 2570 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
iveresov@2138 2571 mdo_offset_bias);
iveresov@2138 2572 __ ld_ptr(data_addr, tmp1);
iveresov@2138 2573 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 2574 __ st_ptr(tmp1, data_addr);
kvn@3037 2575 __ ba(*update_done);
iveresov@2138 2576 __ delayed()->nop();
iveresov@2138 2577 __ bind(next_test);
iveresov@2138 2578 }
iveresov@2138 2579
iveresov@2138 2580 // Didn't find receiver; find next empty slot and fill it in
iveresov@2138 2581 for (i = 0; i < VirtualCallData::row_limit(); i++) {
iveresov@2138 2582 Label next_test;
iveresov@2138 2583 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
iveresov@2138 2584 mdo_offset_bias);
iveresov@2344 2585 __ ld_ptr(recv_addr, tmp1);
kvn@3037 2586 __ br_notnull_short(tmp1, Assembler::pt, next_test);
iveresov@2138 2587 __ st_ptr(recv, recv_addr);
iveresov@2138 2588 __ set(DataLayout::counter_increment, tmp1);
iveresov@2138 2589 __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
iveresov@2138 2590 mdo_offset_bias);
kvn@3037 2591 __ ba(*update_done);
iveresov@2138 2592 __ delayed()->nop();
iveresov@2138 2593 __ bind(next_test);
iveresov@2138 2594 }
iveresov@2138 2595 }
iveresov@2138 2596
iveresov@2146 2597
iveresov@2146 2598 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
iveresov@2146 2599 ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
iveresov@2349 2600 md = method->method_data_or_null();
iveresov@2349 2601 assert(md != NULL, "Sanity");
iveresov@2146 2602 data = md->bci_to_data(bci);
iveresov@2146 2603 assert(data != NULL, "need data for checkcast");
iveresov@2146 2604 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
iveresov@2146 2605 if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
iveresov@2146 2606 // The offset is large so bias the mdo by the base of the slot so
iveresov@2146 2607 // that the ld can use simm13s to reference the slots of the data
iveresov@2146 2608 mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
iveresov@2146 2609 }
iveresov@2146 2610 }
iveresov@2146 2611
iveresov@2146 2612 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
iveresov@2138 2613 // we always need a stub for the failure case.
iveresov@2138 2614 CodeStub* stub = op->stub();
iveresov@2138 2615 Register obj = op->object()->as_register();
iveresov@2138 2616 Register k_RInfo = op->tmp1()->as_register();
iveresov@2138 2617 Register klass_RInfo = op->tmp2()->as_register();
iveresov@2138 2618 Register dst = op->result_opr()->as_register();
iveresov@2138 2619 Register Rtmp1 = op->tmp3()->as_register();
iveresov@2138 2620 ciKlass* k = op->klass();
iveresov@2138 2621
iveresov@2138 2622
iveresov@2138 2623 if (obj == k_RInfo) {
iveresov@2138 2624 k_RInfo = klass_RInfo;
iveresov@2138 2625 klass_RInfo = obj;
iveresov@2138 2626 }
iveresov@2138 2627
iveresov@2138 2628 ciMethodData* md;
iveresov@2138 2629 ciProfileData* data;
iveresov@2138 2630 int mdo_offset_bias = 0;
iveresov@2138 2631 if (op->should_profile()) {
iveresov@2138 2632 ciMethod* method = op->profiled_method();
iveresov@2138 2633 assert(method != NULL, "Should have method");
iveresov@2146 2634 setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
iveresov@2146 2635
iveresov@2146 2636 Label not_null;
kvn@3037 2637 __ br_notnull_short(obj, Assembler::pn, not_null);
iveresov@2138 2638 Register mdo = k_RInfo;
iveresov@2138 2639 Register data_val = Rtmp1;
coleenp@4037 2640 metadata2reg(md->constant_encoding(), mdo);
iveresov@2138 2641 if (mdo_offset_bias > 0) {
iveresov@2138 2642 __ set(mdo_offset_bias, data_val);
iveresov@2138 2643 __ add(mdo, data_val, mdo);
iveresov@2138 2644 }
iveresov@2138 2645 Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
iveresov@2138 2646 __ ldub(flags_addr, data_val);
iveresov@2138 2647 __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
iveresov@2138 2648 __ stb(data_val, flags_addr);
kvn@3037 2649 __ ba(*obj_is_null);
iveresov@2146 2650 __ delayed()->nop();
iveresov@2146 2651 __ bind(not_null);
iveresov@2146 2652 } else {
iveresov@2146 2653 __ br_null(obj, false, Assembler::pn, *obj_is_null);
iveresov@2146 2654 __ delayed()->nop();
iveresov@2138 2655 }
iveresov@2146 2656
iveresov@2146 2657 Label profile_cast_failure, profile_cast_success;
iveresov@2146 2658 Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
iveresov@2146 2659 Label *success_target = op->should_profile() ? &profile_cast_success : success;
iveresov@2138 2660
iveresov@2138 2661 // patching may screw with our temporaries on sparc,
iveresov@2138 2662 // so let's do it before loading the class
iveresov@2138 2663 if (k->is_loaded()) {
coleenp@4037 2664 metadata2reg(k->constant_encoding(), k_RInfo);
iveresov@2138 2665 } else {
coleenp@4037 2666 klass2reg_with_patching(k_RInfo, op->info_for_patch());
iveresov@2138 2667 }
iveresov@2138 2668 assert(obj != k_RInfo, "must be different");
iveresov@2138 2669
iveresov@2138 2670 // get object class
iveresov@2138 2671 // not a safepoint as obj null check happens earlier
iveresov@2344 2672 __ load_klass(obj, klass_RInfo);
iveresov@2138 2673 if (op->fast_check()) {
iveresov@2138 2674 assert_different_registers(klass_RInfo, k_RInfo);
iveresov@2138 2675 __ cmp(k_RInfo, klass_RInfo);
iveresov@2138 2676 __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
iveresov@2138 2677 __ delayed()->nop();
iveresov@2138 2678 } else {
iveresov@2138 2679 bool need_slow_path = true;
iveresov@2138 2680 if (k->is_loaded()) {
stefank@3391 2681 if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset()))
iveresov@2138 2682 need_slow_path = false;
iveresov@2138 2683 // perform the fast part of the checking logic
iveresov@2138 2684 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
iveresov@2146 2685 (need_slow_path ? success_target : NULL),
iveresov@2138 2686 failure_target, NULL,
iveresov@2138 2687 RegisterOrConstant(k->super_check_offset()));
iveresov@2138 2688 } else {
iveresov@2138 2689 // perform the fast part of the checking logic
iveresov@2146 2690 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
iveresov@2138 2691 failure_target, NULL);
iveresov@2138 2692 }
iveresov@2138 2693 if (need_slow_path) {
iveresov@2138 2694 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
iveresov@2138 2695 assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
iveresov@2138 2696 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
iveresov@2138 2697 __ delayed()->nop();
iveresov@2138 2698 __ cmp(G3, 0);
iveresov@2138 2699 __ br(Assembler::equal, false, Assembler::pn, *failure_target);
iveresov@2138 2700 __ delayed()->nop();
iveresov@2146 2701 // Fall through to success case
iveresov@2138 2702 }
iveresov@2138 2703 }
iveresov@2138 2704
iveresov@2138 2705 if (op->should_profile()) {
iveresov@2138 2706 Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
iveresov@2138 2707 assert_different_registers(obj, mdo, recv, tmp1);
iveresov@2146 2708 __ bind(profile_cast_success);
coleenp@4037 2709 metadata2reg(md->constant_encoding(), mdo);
iveresov@2138 2710 if (mdo_offset_bias > 0) {
iveresov@2138 2711 __ set(mdo_offset_bias, tmp1);
iveresov@2138 2712 __ add(mdo, tmp1, mdo);
iveresov@2138 2713 }
iveresov@2344 2714 __ load_klass(obj, recv);
iveresov@2146 2715 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
iveresov@2138 2716 // Jump over the failure case
kvn@3037 2717 __ ba(*success);
iveresov@2138 2718 __ delayed()->nop();
iveresov@2138 2719 // Cast failure case
iveresov@2138 2720 __ bind(profile_cast_failure);
coleenp@4037 2721 metadata2reg(md->constant_encoding(), mdo);
iveresov@2138 2722 if (mdo_offset_bias > 0) {
iveresov@2138 2723 __ set(mdo_offset_bias, tmp1);
iveresov@2138 2724 __ add(mdo, tmp1, mdo);
iveresov@2138 2725 }
iveresov@2138 2726 Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
iveresov@2138 2727 __ ld_ptr(data_addr, tmp1);
iveresov@2138 2728 __ sub(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 2729 __ st_ptr(tmp1, data_addr);
kvn@3037 2730 __ ba(*failure);
iveresov@2138 2731 __ delayed()->nop();
iveresov@2138 2732 }
kvn@3037 2733 __ ba(*success);
iveresov@2146 2734 __ delayed()->nop();
iveresov@2138 2735 }
iveresov@2138 2736
duke@435 2737 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
duke@435 2738 LIR_Code code = op->code();
duke@435 2739 if (code == lir_store_check) {
duke@435 2740 Register value = op->object()->as_register();
duke@435 2741 Register array = op->array()->as_register();
duke@435 2742 Register k_RInfo = op->tmp1()->as_register();
duke@435 2743 Register klass_RInfo = op->tmp2()->as_register();
duke@435 2744 Register Rtmp1 = op->tmp3()->as_register();
duke@435 2745
duke@435 2746 __ verify_oop(value);
duke@435 2747 CodeStub* stub = op->stub();
iveresov@2146 2748 // check if it needs to be profiled
iveresov@2146 2749 ciMethodData* md;
iveresov@2146 2750 ciProfileData* data;
iveresov@2146 2751 int mdo_offset_bias = 0;
iveresov@2146 2752 if (op->should_profile()) {
iveresov@2146 2753 ciMethod* method = op->profiled_method();
iveresov@2146 2754 assert(method != NULL, "Should have method");
iveresov@2146 2755 setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
iveresov@2146 2756 }
iveresov@2146 2757 Label profile_cast_success, profile_cast_failure, done;
iveresov@2146 2758 Label *success_target = op->should_profile() ? &profile_cast_success : &done;
iveresov@2146 2759 Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
iveresov@2146 2760
iveresov@2146 2761 if (op->should_profile()) {
iveresov@2146 2762 Label not_null;
kvn@3037 2763 __ br_notnull_short(value, Assembler::pn, not_null);
iveresov@2146 2764 Register mdo = k_RInfo;
iveresov@2146 2765 Register data_val = Rtmp1;
coleenp@4037 2766 metadata2reg(md->constant_encoding(), mdo);
iveresov@2146 2767 if (mdo_offset_bias > 0) {
iveresov@2146 2768 __ set(mdo_offset_bias, data_val);
iveresov@2146 2769 __ add(mdo, data_val, mdo);
iveresov@2146 2770 }
iveresov@2146 2771 Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
iveresov@2146 2772 __ ldub(flags_addr, data_val);
iveresov@2146 2773 __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
iveresov@2146 2774 __ stb(data_val, flags_addr);
kvn@3037 2775 __ ba_short(done);
iveresov@2146 2776 __ bind(not_null);
iveresov@2146 2777 } else {
kvn@3037 2778 __ br_null_short(value, Assembler::pn, done);
iveresov@2146 2779 }
iveresov@2344 2780 add_debug_info_for_null_check_here(op->info_for_exception());
iveresov@2344 2781 __ load_klass(array, k_RInfo);
iveresov@2344 2782 __ load_klass(value, klass_RInfo);
duke@435 2783
duke@435 2784 // get instance klass
coleenp@4142 2785 __ ld_ptr(Address(k_RInfo, ObjArrayKlass::element_klass_offset()), k_RInfo);
jrose@1079 2786 // perform the fast part of the checking logic
iveresov@2146 2787 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
jrose@1079 2788
jrose@1079 2789 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
jrose@1079 2790 assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
duke@435 2791 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
duke@435 2792 __ delayed()->nop();
duke@435 2793 __ cmp(G3, 0);
iveresov@2146 2794 __ br(Assembler::equal, false, Assembler::pn, *failure_target);
duke@435 2795 __ delayed()->nop();
iveresov@2146 2796 // fall through to the success case
iveresov@2146 2797
iveresov@2146 2798 if (op->should_profile()) {
iveresov@2146 2799 Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
iveresov@2146 2800 assert_different_registers(value, mdo, recv, tmp1);
iveresov@2146 2801 __ bind(profile_cast_success);
coleenp@4037 2802 metadata2reg(md->constant_encoding(), mdo);
iveresov@2146 2803 if (mdo_offset_bias > 0) {
iveresov@2146 2804 __ set(mdo_offset_bias, tmp1);
iveresov@2146 2805 __ add(mdo, tmp1, mdo);
iveresov@2146 2806 }
iveresov@2344 2807 __ load_klass(value, recv);
iveresov@2146 2808 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
kvn@3037 2809 __ ba_short(done);
iveresov@2146 2810 // Cast failure case
iveresov@2146 2811 __ bind(profile_cast_failure);
coleenp@4037 2812 metadata2reg(md->constant_encoding(), mdo);
iveresov@2146 2813 if (mdo_offset_bias > 0) {
iveresov@2146 2814 __ set(mdo_offset_bias, tmp1);
iveresov@2146 2815 __ add(mdo, tmp1, mdo);
iveresov@2146 2816 }
iveresov@2146 2817 Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
iveresov@2146 2818 __ ld_ptr(data_addr, tmp1);
iveresov@2146 2819 __ sub(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2146 2820 __ st_ptr(tmp1, data_addr);
kvn@3037 2821 __ ba(*stub->entry());
iveresov@2146 2822 __ delayed()->nop();
iveresov@2146 2823 }
duke@435 2824 __ bind(done);
iveresov@2146 2825 } else if (code == lir_checkcast) {
iveresov@2146 2826 Register obj = op->object()->as_register();
iveresov@2146 2827 Register dst = op->result_opr()->as_register();
iveresov@2146 2828 Label success;
iveresov@2146 2829 emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
iveresov@2146 2830 __ bind(success);
iveresov@2146 2831 __ mov(obj, dst);
duke@435 2832 } else if (code == lir_instanceof) {
duke@435 2833 Register obj = op->object()->as_register();
duke@435 2834 Register dst = op->result_opr()->as_register();
iveresov@2146 2835 Label success, failure, done;
iveresov@2146 2836 emit_typecheck_helper(op, &success, &failure, &failure);
iveresov@2146 2837 __ bind(failure);
iveresov@2146 2838 __ set(0, dst);
kvn@3037 2839 __ ba_short(done);
iveresov@2146 2840 __ bind(success);
iveresov@2146 2841 __ set(1, dst);
iveresov@2146 2842 __ bind(done);
duke@435 2843 } else {
duke@435 2844 ShouldNotReachHere();
duke@435 2845 }
duke@435 2846
duke@435 2847 }
duke@435 2848
duke@435 2849
duke@435 2850 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
duke@435 2851 if (op->code() == lir_cas_long) {
duke@435 2852 assert(VM_Version::supports_cx8(), "wrong machine");
duke@435 2853 Register addr = op->addr()->as_pointer_register();
duke@435 2854 Register cmp_value_lo = op->cmp_value()->as_register_lo();
duke@435 2855 Register cmp_value_hi = op->cmp_value()->as_register_hi();
duke@435 2856 Register new_value_lo = op->new_value()->as_register_lo();
duke@435 2857 Register new_value_hi = op->new_value()->as_register_hi();
duke@435 2858 Register t1 = op->tmp1()->as_register();
duke@435 2859 Register t2 = op->tmp2()->as_register();
duke@435 2860 #ifdef _LP64
duke@435 2861 __ mov(cmp_value_lo, t1);
duke@435 2862 __ mov(new_value_lo, t2);
iveresov@2412 2863 // perform the compare and swap operation
iveresov@2412 2864 __ casx(addr, t1, t2);
iveresov@2412 2865 // generate condition code - if the swap succeeded, t2 ("new value" reg) was
iveresov@2412 2866 // overwritten with the original value in "addr" and will be equal to t1.
iveresov@2412 2867 __ cmp(t1, t2);
duke@435 2868 #else
duke@435 2869 // move high and low halves of long values into single registers
duke@435 2870 __ sllx(cmp_value_hi, 32, t1); // shift high half into temp reg
duke@435 2871 __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
duke@435 2872 __ or3(t1, cmp_value_lo, t1); // t1 holds 64-bit compare value
duke@435 2873 __ sllx(new_value_hi, 32, t2);
duke@435 2874 __ srl(new_value_lo, 0, new_value_lo);
duke@435 2875 __ or3(t2, new_value_lo, t2); // t2 holds 64-bit value to swap
duke@435 2876 // perform the compare and swap operation
duke@435 2877 __ casx(addr, t1, t2);
duke@435 2878 // generate condition code - if the swap succeeded, t2 ("new value" reg) was
duke@435 2879 // overwritten with the original value in "addr" and will be equal to t1.
iveresov@2412 2880 // Produce icc flag for 32bit.
iveresov@2412 2881 __ sub(t1, t2, t2);
iveresov@2412 2882 __ srlx(t2, 32, t1);
iveresov@2412 2883 __ orcc(t2, t1, G0);
iveresov@2412 2884 #endif
duke@435 2885 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
duke@435 2886 Register addr = op->addr()->as_pointer_register();
duke@435 2887 Register cmp_value = op->cmp_value()->as_register();
duke@435 2888 Register new_value = op->new_value()->as_register();
duke@435 2889 Register t1 = op->tmp1()->as_register();
duke@435 2890 Register t2 = op->tmp2()->as_register();
duke@435 2891 __ mov(cmp_value, t1);
duke@435 2892 __ mov(new_value, t2);
duke@435 2893 if (op->code() == lir_cas_obj) {
iveresov@2344 2894 if (UseCompressedOops) {
iveresov@2344 2895 __ encode_heap_oop(t1);
iveresov@2344 2896 __ encode_heap_oop(t2);
duke@435 2897 __ cas(addr, t1, t2);
iveresov@2344 2898 } else {
never@2352 2899 __ cas_ptr(addr, t1, t2);
duke@435 2900 }
iveresov@2344 2901 } else {
iveresov@2344 2902 __ cas(addr, t1, t2);
iveresov@2344 2903 }
duke@435 2904 __ cmp(t1, t2);
duke@435 2905 } else {
duke@435 2906 Unimplemented();
duke@435 2907 }
duke@435 2908 }
duke@435 2909
duke@435 2910 void LIR_Assembler::set_24bit_FPU() {
duke@435 2911 Unimplemented();
duke@435 2912 }
duke@435 2913
duke@435 2914
duke@435 2915 void LIR_Assembler::reset_FPU() {
duke@435 2916 Unimplemented();
duke@435 2917 }
duke@435 2918
duke@435 2919
duke@435 2920 void LIR_Assembler::breakpoint() {
duke@435 2921 __ breakpoint_trap();
duke@435 2922 }
duke@435 2923
duke@435 2924
duke@435 2925 void LIR_Assembler::push(LIR_Opr opr) {
duke@435 2926 Unimplemented();
duke@435 2927 }
duke@435 2928
duke@435 2929
duke@435 2930 void LIR_Assembler::pop(LIR_Opr opr) {
duke@435 2931 Unimplemented();
duke@435 2932 }
duke@435 2933
duke@435 2934
duke@435 2935 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
duke@435 2936 Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
duke@435 2937 Register dst = dst_opr->as_register();
duke@435 2938 Register reg = mon_addr.base();
duke@435 2939 int offset = mon_addr.disp();
duke@435 2940 // compute pointer to BasicLock
duke@435 2941 if (mon_addr.is_simm13()) {
duke@435 2942 __ add(reg, offset, dst);
duke@435 2943 } else {
duke@435 2944 __ set(offset, dst);
duke@435 2945 __ add(dst, reg, dst);
duke@435 2946 }
duke@435 2947 }
duke@435 2948
drchase@5353 2949 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
drchase@5353 2950 fatal("CRC32 intrinsic is not implemented on this platform");
drchase@5353 2951 }
duke@435 2952
duke@435 2953 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
duke@435 2954 Register obj = op->obj_opr()->as_register();
duke@435 2955 Register hdr = op->hdr_opr()->as_register();
duke@435 2956 Register lock = op->lock_opr()->as_register();
duke@435 2957
duke@435 2958 // obj may not be an oop
duke@435 2959 if (op->code() == lir_lock) {
duke@435 2960 MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
duke@435 2961 if (UseFastLocking) {
duke@435 2962 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 2963 // add debug info for NullPointerException only if one is possible
duke@435 2964 if (op->info() != NULL) {
duke@435 2965 add_debug_info_for_null_check_here(op->info());
duke@435 2966 }
duke@435 2967 __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
duke@435 2968 } else {
duke@435 2969 // always do slow locking
duke@435 2970 // note: the slow locking code could be inlined here, however if we use
duke@435 2971 // slow locking, speed doesn't matter anyway and this solution is
duke@435 2972 // simpler and requires less duplicated code - additionally, the
duke@435 2973 // slow locking code is the same in either case which simplifies
duke@435 2974 // debugging
duke@435 2975 __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
duke@435 2976 __ delayed()->nop();
duke@435 2977 }
duke@435 2978 } else {
duke@435 2979 assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
duke@435 2980 if (UseFastLocking) {
duke@435 2981 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 2982 __ unlock_object(hdr, obj, lock, *op->stub()->entry());
duke@435 2983 } else {
duke@435 2984 // always do slow unlocking
duke@435 2985 // note: the slow unlocking code could be inlined here, however if we use
duke@435 2986 // slow unlocking, speed doesn't matter anyway and this solution is
duke@435 2987 // simpler and requires less duplicated code - additionally, the
duke@435 2988 // slow unlocking code is the same in either case which simplifies
duke@435 2989 // debugging
duke@435 2990 __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
duke@435 2991 __ delayed()->nop();
duke@435 2992 }
duke@435 2993 }
duke@435 2994 __ bind(*op->stub()->continuation());
duke@435 2995 }
duke@435 2996
duke@435 2997
duke@435 2998 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
duke@435 2999 ciMethod* method = op->profiled_method();
duke@435 3000 int bci = op->profiled_bci();
twisti@3969 3001 ciMethod* callee = op->profiled_callee();
duke@435 3002
duke@435 3003 // Update counter for all call types
iveresov@2349 3004 ciMethodData* md = method->method_data_or_null();
iveresov@2349 3005 assert(md != NULL, "Sanity");
duke@435 3006 ciProfileData* data = md->bci_to_data(bci);
duke@435 3007 assert(data->is_CounterData(), "need CounterData for calls");
duke@435 3008 assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
iveresov@2138 3009 Register mdo = op->mdo()->as_register();
iveresov@2138 3010 #ifdef _LP64
iveresov@2138 3011 assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
iveresov@2138 3012 Register tmp1 = op->tmp1()->as_register_lo();
iveresov@2138 3013 #else
duke@435 3014 assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
duke@435 3015 Register tmp1 = op->tmp1()->as_register();
iveresov@2138 3016 #endif
coleenp@4037 3017 metadata2reg(md->constant_encoding(), mdo);
duke@435 3018 int mdo_offset_bias = 0;
duke@435 3019 if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
duke@435 3020 data->size_in_bytes())) {
duke@435 3021 // The offset is large so bias the mdo by the base of the slot so
duke@435 3022 // that the ld can use simm13s to reference the slots of the data
duke@435 3023 mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
duke@435 3024 __ set(mdo_offset_bias, O7);
duke@435 3025 __ add(mdo, O7, mdo);
duke@435 3026 }
duke@435 3027
twisti@1162 3028 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
duke@435 3029 Bytecodes::Code bc = method->java_code_at_bci(bci);
twisti@3969 3030 const bool callee_is_static = callee->is_loaded() && callee->is_static();
duke@435 3031 // Perform additional virtual call profiling for invokevirtual and
duke@435 3032 // invokeinterface bytecodes
duke@435 3033 if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
twisti@3969 3034 !callee_is_static && // required for optimized MH invokes
iveresov@2138 3035 C1ProfileVirtualCalls) {
duke@435 3036 assert(op->recv()->is_single_cpu(), "recv must be allocated");
duke@435 3037 Register recv = op->recv()->as_register();
duke@435 3038 assert_different_registers(mdo, tmp1, recv);
duke@435 3039 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
duke@435 3040 ciKlass* known_klass = op->known_holder();
iveresov@2138 3041 if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
duke@435 3042 // We know the type that will be seen at this call site; we can
coleenp@4037 3043 // statically update the MethodData* rather than needing to do
duke@435 3044 // dynamic tests on the receiver type
duke@435 3045
duke@435 3046 // NOTE: we should probably put a lock around this search to
duke@435 3047 // avoid collisions by concurrent compilations
duke@435 3048 ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
duke@435 3049 uint i;
duke@435 3050 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3051 ciKlass* receiver = vc_data->receiver(i);
duke@435 3052 if (known_klass->equals(receiver)) {
twisti@1162 3053 Address data_addr(mdo, md->byte_offset_of_slot(data,
twisti@1162 3054 VirtualCallData::receiver_count_offset(i)) -
duke@435 3055 mdo_offset_bias);
iveresov@2138 3056 __ ld_ptr(data_addr, tmp1);
duke@435 3057 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 3058 __ st_ptr(tmp1, data_addr);
duke@435 3059 return;
duke@435 3060 }
duke@435 3061 }
duke@435 3062
duke@435 3063 // Receiver type not found in profile data; select an empty slot
duke@435 3064
duke@435 3065 // Note that this is less efficient than it should be because it
duke@435 3066 // always does a write to the receiver part of the
duke@435 3067 // VirtualCallData rather than just the first time
duke@435 3068 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3069 ciKlass* receiver = vc_data->receiver(i);
duke@435 3070 if (receiver == NULL) {
twisti@1162 3071 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
duke@435 3072 mdo_offset_bias);
coleenp@4037 3073 metadata2reg(known_klass->constant_encoding(), tmp1);
duke@435 3074 __ st_ptr(tmp1, recv_addr);
twisti@1162 3075 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
duke@435 3076 mdo_offset_bias);
iveresov@2138 3077 __ ld_ptr(data_addr, tmp1);
duke@435 3078 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 3079 __ st_ptr(tmp1, data_addr);
duke@435 3080 return;
duke@435 3081 }
duke@435 3082 }
duke@435 3083 } else {
iveresov@2344 3084 __ load_klass(recv, recv);
duke@435 3085 Label update_done;
iveresov@2138 3086 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
kvn@1686 3087 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1686 3088 // Increment total counter to indicate polymorphic case.
iveresov@2138 3089 __ ld_ptr(counter_addr, tmp1);
kvn@1686 3090 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 3091 __ st_ptr(tmp1, counter_addr);
duke@435 3092
duke@435 3093 __ bind(update_done);
duke@435 3094 }
kvn@1686 3095 } else {
kvn@1686 3096 // Static call
iveresov@2138 3097 __ ld_ptr(counter_addr, tmp1);
kvn@1686 3098 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 3099 __ st_ptr(tmp1, counter_addr);
duke@435 3100 }
duke@435 3101 }
duke@435 3102
duke@435 3103 void LIR_Assembler::align_backward_branch_target() {
kvn@1800 3104 __ align(OptoLoopAlignment);
duke@435 3105 }
duke@435 3106
duke@435 3107
duke@435 3108 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
duke@435 3109 // make sure we are expecting a delay
duke@435 3110 // this has the side effect of clearing the delay state
duke@435 3111 // so we can use _masm instead of _masm->delayed() to do the
duke@435 3112 // code generation.
duke@435 3113 __ delayed();
duke@435 3114
duke@435 3115 // make sure we only emit one instruction
duke@435 3116 int offset = code_offset();
duke@435 3117 op->delay_op()->emit_code(this);
duke@435 3118 #ifdef ASSERT
duke@435 3119 if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
duke@435 3120 op->delay_op()->print();
duke@435 3121 }
duke@435 3122 assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
duke@435 3123 "only one instruction can go in a delay slot");
duke@435 3124 #endif
duke@435 3125
duke@435 3126 // we may also be emitting the call info for the instruction
duke@435 3127 // which we are the delay slot of.
twisti@1919 3128 CodeEmitInfo* call_info = op->call_info();
duke@435 3129 if (call_info) {
duke@435 3130 add_call_info(code_offset(), call_info);
duke@435 3131 }
duke@435 3132
duke@435 3133 if (VerifyStackAtCalls) {
duke@435 3134 _masm->sub(FP, SP, O7);
duke@435 3135 _masm->cmp(O7, initial_frame_size_in_bytes());
duke@435 3136 _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
duke@435 3137 }
duke@435 3138 }
duke@435 3139
duke@435 3140
duke@435 3141 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
duke@435 3142 assert(left->is_register(), "can only handle registers");
duke@435 3143
duke@435 3144 if (left->is_single_cpu()) {
duke@435 3145 __ neg(left->as_register(), dest->as_register());
duke@435 3146 } else if (left->is_single_fpu()) {
duke@435 3147 __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
duke@435 3148 } else if (left->is_double_fpu()) {
duke@435 3149 __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
duke@435 3150 } else {
duke@435 3151 assert (left->is_double_cpu(), "Must be a long");
duke@435 3152 Register Rlow = left->as_register_lo();
duke@435 3153 Register Rhi = left->as_register_hi();
duke@435 3154 #ifdef _LP64
duke@435 3155 __ sub(G0, Rlow, dest->as_register_lo());
duke@435 3156 #else
duke@435 3157 __ subcc(G0, Rlow, dest->as_register_lo());
duke@435 3158 __ subc (G0, Rhi, dest->as_register_hi());
duke@435 3159 #endif
duke@435 3160 }
duke@435 3161 }
duke@435 3162
duke@435 3163
duke@435 3164 void LIR_Assembler::fxch(int i) {
duke@435 3165 Unimplemented();
duke@435 3166 }
duke@435 3167
duke@435 3168 void LIR_Assembler::fld(int i) {
duke@435 3169 Unimplemented();
duke@435 3170 }
duke@435 3171
duke@435 3172 void LIR_Assembler::ffree(int i) {
duke@435 3173 Unimplemented();
duke@435 3174 }
duke@435 3175
duke@435 3176 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
duke@435 3177 const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 3178
duke@435 3179 // if tmp is invalid, then the function being called doesn't destroy the thread
duke@435 3180 if (tmp->is_valid()) {
duke@435 3181 __ save_thread(tmp->as_register());
duke@435 3182 }
duke@435 3183 __ call(dest, relocInfo::runtime_call_type);
duke@435 3184 __ delayed()->nop();
duke@435 3185 if (info != NULL) {
duke@435 3186 add_call_info_here(info);
duke@435 3187 }
duke@435 3188 if (tmp->is_valid()) {
duke@435 3189 __ restore_thread(tmp->as_register());
duke@435 3190 }
duke@435 3191
duke@435 3192 #ifdef ASSERT
duke@435 3193 __ verify_thread();
duke@435 3194 #endif // ASSERT
duke@435 3195 }
duke@435 3196
duke@435 3197
duke@435 3198 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
duke@435 3199 #ifdef _LP64
duke@435 3200 ShouldNotReachHere();
duke@435 3201 #endif
duke@435 3202
duke@435 3203 NEEDS_CLEANUP;
duke@435 3204 if (type == T_LONG) {
duke@435 3205 LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
duke@435 3206
duke@435 3207 // (extended to allow indexed as well as constant displaced for JSR-166)
duke@435 3208 Register idx = noreg; // contains either constant offset or index
duke@435 3209
duke@435 3210 int disp = mem_addr->disp();
duke@435 3211 if (mem_addr->index() == LIR_OprFact::illegalOpr) {
duke@435 3212 if (!Assembler::is_simm13(disp)) {
duke@435 3213 idx = O7;
duke@435 3214 __ set(disp, idx);
duke@435 3215 }
duke@435 3216 } else {
duke@435 3217 assert(disp == 0, "not both indexed and disp");
duke@435 3218 idx = mem_addr->index()->as_register();
duke@435 3219 }
duke@435 3220
duke@435 3221 int null_check_offset = -1;
duke@435 3222
duke@435 3223 Register base = mem_addr->base()->as_register();
duke@435 3224 if (src->is_register() && dest->is_address()) {
duke@435 3225 // G4 is high half, G5 is low half
morris@5283 3226 // clear the top bits of G5, and scale up G4
morris@5283 3227 __ srl (src->as_register_lo(), 0, G5);
morris@5283 3228 __ sllx(src->as_register_hi(), 32, G4);
morris@5283 3229 // combine the two halves into the 64 bits of G4
morris@5283 3230 __ or3(G4, G5, G4);
morris@5283 3231 null_check_offset = __ offset();
morris@5283 3232 if (idx == noreg) {
morris@5283 3233 __ stx(G4, base, disp);
duke@435 3234 } else {
morris@5283 3235 __ stx(G4, base, idx);
duke@435 3236 }
duke@435 3237 } else if (src->is_address() && dest->is_register()) {
duke@435 3238 null_check_offset = __ offset();
morris@5283 3239 if (idx == noreg) {
morris@5283 3240 __ ldx(base, disp, G5);
duke@435 3241 } else {
morris@5283 3242 __ ldx(base, idx, G5);
duke@435 3243 }
morris@5283 3244 __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
morris@5283 3245 __ mov (G5, dest->as_register_lo()); // copy low half into lo
duke@435 3246 } else {
duke@435 3247 Unimplemented();
duke@435 3248 }
duke@435 3249 if (info != NULL) {
duke@435 3250 add_debug_info_for_null_check(null_check_offset, info);
duke@435 3251 }
duke@435 3252
duke@435 3253 } else {
duke@435 3254 // use normal move for all other volatiles since they don't need
duke@435 3255 // special handling to remain atomic.
iveresov@2344 3256 move_op(src, dest, type, lir_patch_none, info, false, false, false);
duke@435 3257 }
duke@435 3258 }
duke@435 3259
duke@435 3260 void LIR_Assembler::membar() {
duke@435 3261 // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
duke@435 3262 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
duke@435 3263 }
duke@435 3264
duke@435 3265 void LIR_Assembler::membar_acquire() {
duke@435 3266 // no-op on TSO
duke@435 3267 }
duke@435 3268
duke@435 3269 void LIR_Assembler::membar_release() {
duke@435 3270 // no-op on TSO
duke@435 3271 }
duke@435 3272
jiangli@3592 3273 void LIR_Assembler::membar_loadload() {
jiangli@3592 3274 // no-op
jiangli@3592 3275 //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
jiangli@3592 3276 }
jiangli@3592 3277
jiangli@3592 3278 void LIR_Assembler::membar_storestore() {
jiangli@3592 3279 // no-op
jiangli@3592 3280 //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
jiangli@3592 3281 }
jiangli@3592 3282
jiangli@3592 3283 void LIR_Assembler::membar_loadstore() {
jiangli@3592 3284 // no-op
jiangli@3592 3285 //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
jiangli@3592 3286 }
jiangli@3592 3287
jiangli@3592 3288 void LIR_Assembler::membar_storeload() {
jiangli@3592 3289 __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
jiangli@3592 3290 }
jiangli@3592 3291
jiangli@3592 3292
iveresov@2138 3293 // Pack two sequential registers containing 32 bit values
duke@435 3294 // into a single 64 bit register.
iveresov@2138 3295 // src and src->successor() are packed into dst
iveresov@2138 3296 // src and dst may be the same register.
iveresov@2138 3297 // Note: src is destroyed
iveresov@2138 3298 void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
iveresov@2138 3299 Register rs = src->as_register();
iveresov@2138 3300 Register rd = dst->as_register_lo();
duke@435 3301 __ sllx(rs, 32, rs);
duke@435 3302 __ srl(rs->successor(), 0, rs->successor());
duke@435 3303 __ or3(rs, rs->successor(), rd);
duke@435 3304 }
duke@435 3305
iveresov@2138 3306 // Unpack a 64 bit value in a register into
duke@435 3307 // two sequential registers.
iveresov@2138 3308 // src is unpacked into dst and dst->successor()
iveresov@2138 3309 void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
iveresov@2138 3310 Register rs = src->as_register_lo();
iveresov@2138 3311 Register rd = dst->as_register_hi();
iveresov@2138 3312 assert_different_registers(rs, rd, rd->successor());
iveresov@2138 3313 __ srlx(rs, 32, rd);
iveresov@2138 3314 __ srl (rs, 0, rd->successor());
duke@435 3315 }
duke@435 3316
duke@435 3317
duke@435 3318 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
duke@435 3319 LIR_Address* addr = addr_opr->as_address_ptr();
duke@435 3320 assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
iveresov@2138 3321
iveresov@2138 3322 __ add(addr->base()->as_pointer_register(), addr->disp(), dest->as_pointer_register());
duke@435 3323 }
duke@435 3324
duke@435 3325
duke@435 3326 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
duke@435 3327 assert(result_reg->is_register(), "check");
duke@435 3328 __ mov(G2_thread, result_reg->as_register());
duke@435 3329 }
duke@435 3330
roland@4860 3331 #ifdef ASSERT
roland@4860 3332 // emit run-time assertion
roland@4860 3333 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
roland@4860 3334 assert(op->code() == lir_assert, "must be");
roland@4860 3335
roland@4860 3336 if (op->in_opr1()->is_valid()) {
roland@4860 3337 assert(op->in_opr2()->is_valid(), "both operands must be valid");
roland@4860 3338 comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
roland@4860 3339 } else {
roland@4860 3340 assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
roland@4860 3341 assert(op->condition() == lir_cond_always, "no other conditions allowed");
roland@4860 3342 }
roland@4860 3343
roland@4860 3344 Label ok;
roland@4860 3345 if (op->condition() != lir_cond_always) {
roland@4860 3346 Assembler::Condition acond;
roland@4860 3347 switch (op->condition()) {
roland@4860 3348 case lir_cond_equal: acond = Assembler::equal; break;
roland@4860 3349 case lir_cond_notEqual: acond = Assembler::notEqual; break;
roland@4860 3350 case lir_cond_less: acond = Assembler::less; break;
roland@4860 3351 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
roland@4860 3352 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
roland@4860 3353 case lir_cond_greater: acond = Assembler::greater; break;
roland@4860 3354 case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break;
roland@4860 3355 case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break;
roland@4860 3356 default: ShouldNotReachHere();
roland@4860 3357 };
roland@4860 3358 __ br(acond, false, Assembler::pt, ok);
roland@4860 3359 __ delayed()->nop();
roland@4860 3360 }
roland@4860 3361 if (op->halt()) {
roland@4860 3362 const char* str = __ code_string(op->msg());
roland@4860 3363 __ stop(str);
roland@4860 3364 } else {
roland@4860 3365 breakpoint();
roland@4860 3366 }
roland@4860 3367 __ bind(ok);
roland@4860 3368 }
roland@4860 3369 #endif
duke@435 3370
duke@435 3371 void LIR_Assembler::peephole(LIR_List* lir) {
duke@435 3372 LIR_OpList* inst = lir->instructions_list();
duke@435 3373 for (int i = 0; i < inst->length(); i++) {
duke@435 3374 LIR_Op* op = inst->at(i);
duke@435 3375 switch (op->code()) {
duke@435 3376 case lir_cond_float_branch:
duke@435 3377 case lir_branch: {
duke@435 3378 LIR_OpBranch* branch = op->as_OpBranch();
duke@435 3379 assert(branch->info() == NULL, "shouldn't be state on branches anymore");
duke@435 3380 LIR_Op* delay_op = NULL;
duke@435 3381 // we'd like to be able to pull following instructions into
duke@435 3382 // this slot but we don't know enough to do it safely yet so
duke@435 3383 // only optimize block to block control flow.
duke@435 3384 if (LIRFillDelaySlots && branch->block()) {
duke@435 3385 LIR_Op* prev = inst->at(i - 1);
duke@435 3386 if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
duke@435 3387 // swap previous instruction into delay slot
duke@435 3388 inst->at_put(i - 1, op);
duke@435 3389 inst->at_put(i, new LIR_OpDelay(prev, op->info()));
duke@435 3390 #ifndef PRODUCT
duke@435 3391 if (LIRTracePeephole) {
duke@435 3392 tty->print_cr("delayed");
duke@435 3393 inst->at(i - 1)->print();
duke@435 3394 inst->at(i)->print();
twisti@1919 3395 tty->cr();
duke@435 3396 }
duke@435 3397 #endif
duke@435 3398 continue;
duke@435 3399 }
duke@435 3400 }
duke@435 3401
duke@435 3402 if (!delay_op) {
duke@435 3403 delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
duke@435 3404 }
duke@435 3405 inst->insert_before(i + 1, delay_op);
duke@435 3406 break;
duke@435 3407 }
duke@435 3408 case lir_static_call:
duke@435 3409 case lir_virtual_call:
duke@435 3410 case lir_icvirtual_call:
twisti@1919 3411 case lir_optvirtual_call:
twisti@1919 3412 case lir_dynamic_call: {
duke@435 3413 LIR_Op* prev = inst->at(i - 1);
duke@435 3414 if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
duke@435 3415 (op->code() != lir_virtual_call ||
duke@435 3416 !prev->result_opr()->is_single_cpu() ||
duke@435 3417 prev->result_opr()->as_register() != O0) &&
duke@435 3418 LIR_Assembler::is_single_instruction(prev)) {
duke@435 3419 // Only moves without info can be put into the delay slot.
duke@435 3420 // Also don't allow the setup of the receiver in the delay
duke@435 3421 // slot for vtable calls.
duke@435 3422 inst->at_put(i - 1, op);
duke@435 3423 inst->at_put(i, new LIR_OpDelay(prev, op->info()));
duke@435 3424 #ifndef PRODUCT
duke@435 3425 if (LIRTracePeephole) {
duke@435 3426 tty->print_cr("delayed");
duke@435 3427 inst->at(i - 1)->print();
duke@435 3428 inst->at(i)->print();
twisti@1919 3429 tty->cr();
duke@435 3430 }
duke@435 3431 #endif
iveresov@2138 3432 } else {
iveresov@2138 3433 LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
iveresov@2138 3434 inst->insert_before(i + 1, delay_op);
iveresov@2138 3435 i++;
duke@435 3436 }
duke@435 3437
iveresov@2138 3438 #if defined(TIERED) && !defined(_LP64)
iveresov@2138 3439 // fixup the return value from G1 to O0/O1 for long returns.
iveresov@2138 3440 // It's done here instead of in LIRGenerator because there's
iveresov@2138 3441 // such a mismatch between the single reg and double reg
iveresov@2138 3442 // calling convention.
iveresov@2138 3443 LIR_OpJavaCall* callop = op->as_OpJavaCall();
iveresov@2138 3444 if (callop->result_opr() == FrameMap::out_long_opr) {
iveresov@2138 3445 LIR_OpJavaCall* call;
iveresov@2138 3446 LIR_OprList* arguments = new LIR_OprList(callop->arguments()->length());
iveresov@2138 3447 for (int a = 0; a < arguments->length(); a++) {
iveresov@2138 3448 arguments[a] = callop->arguments()[a];
iveresov@2138 3449 }
iveresov@2138 3450 if (op->code() == lir_virtual_call) {
iveresov@2138 3451 call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
iveresov@2138 3452 callop->vtable_offset(), arguments, callop->info());
iveresov@2138 3453 } else {
iveresov@2138 3454 call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
iveresov@2138 3455 callop->addr(), arguments, callop->info());
iveresov@2138 3456 }
iveresov@2138 3457 inst->at_put(i - 1, call);
iveresov@2138 3458 inst->insert_before(i + 1, new LIR_Op1(lir_unpack64, FrameMap::g1_long_single_opr, callop->result_opr(),
iveresov@2138 3459 T_LONG, lir_patch_none, NULL));
iveresov@2138 3460 }
iveresov@2138 3461 #endif
duke@435 3462 break;
duke@435 3463 }
duke@435 3464 }
duke@435 3465 }
duke@435 3466 }
duke@435 3467
roland@4106 3468 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
roland@4106 3469 LIR_Address* addr = src->as_address_ptr();
roland@4106 3470
roland@4106 3471 assert(data == dest, "swap uses only 2 operands");
roland@4106 3472 assert (code == lir_xchg, "no xadd on sparc");
roland@4106 3473
roland@4106 3474 if (data->type() == T_INT) {
roland@4106 3475 __ swap(as_Address(addr), data->as_register());
roland@4106 3476 } else if (data->is_oop()) {
roland@4106 3477 Register obj = data->as_register();
roland@4106 3478 Register narrow = tmp->as_register();
roland@4106 3479 #ifdef _LP64
roland@4106 3480 assert(UseCompressedOops, "swap is 32bit only");
roland@4106 3481 __ encode_heap_oop(obj, narrow);
roland@4106 3482 __ swap(as_Address(addr), narrow);
roland@4106 3483 __ decode_heap_oop(narrow, obj);
roland@4106 3484 #else
roland@4106 3485 __ swap(as_Address(addr), obj);
roland@4106 3486 #endif
roland@4106 3487 } else {
roland@4106 3488 ShouldNotReachHere();
roland@4106 3489 }
roland@4106 3490 }
duke@435 3491
duke@435 3492 #undef __

mercurial