src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp

Tue, 05 Oct 2010 11:16:12 -0700

author
never
date
Tue, 05 Oct 2010 11:16:12 -0700
changeset 2185
a3f7f95b0165
parent 2146
3a294e483abc
child 2314
f95d63e2154a
permissions
-rw-r--r--

6988018: dtrace/hotspot/MethodInvocation/MethodInvocation002 crashes with client compiler
Reviewed-by: iveresov, kvn, kamg

duke@435 1 /*
trims@1907 2 * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
duke@435 25 # include "incls/_precompiled.incl"
duke@435 26 # include "incls/_c1_LIRAssembler_sparc.cpp.incl"
duke@435 27
duke@435 28 #define __ _masm->
duke@435 29
duke@435 30
duke@435 31 //------------------------------------------------------------
duke@435 32
duke@435 33
duke@435 34 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
duke@435 35 if (opr->is_constant()) {
duke@435 36 LIR_Const* constant = opr->as_constant_ptr();
duke@435 37 switch (constant->type()) {
duke@435 38 case T_INT: {
duke@435 39 jint value = constant->as_jint();
duke@435 40 return Assembler::is_simm13(value);
duke@435 41 }
duke@435 42
duke@435 43 default:
duke@435 44 return false;
duke@435 45 }
duke@435 46 }
duke@435 47 return false;
duke@435 48 }
duke@435 49
duke@435 50
duke@435 51 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
duke@435 52 switch (op->code()) {
duke@435 53 case lir_null_check:
duke@435 54 return true;
duke@435 55
duke@435 56
duke@435 57 case lir_add:
duke@435 58 case lir_ushr:
duke@435 59 case lir_shr:
duke@435 60 case lir_shl:
duke@435 61 // integer shifts and adds are always one instruction
duke@435 62 return op->result_opr()->is_single_cpu();
duke@435 63
duke@435 64
duke@435 65 case lir_move: {
duke@435 66 LIR_Op1* op1 = op->as_Op1();
duke@435 67 LIR_Opr src = op1->in_opr();
duke@435 68 LIR_Opr dst = op1->result_opr();
duke@435 69
duke@435 70 if (src == dst) {
duke@435 71 NEEDS_CLEANUP;
duke@435 72 // this works around a problem where moves with the same src and dst
duke@435 73 // end up in the delay slot and then the assembler swallows the mov
duke@435 74 // since it has no effect and then it complains because the delay slot
duke@435 75 // is empty. returning false stops the optimizer from putting this in
duke@435 76 // the delay slot
duke@435 77 return false;
duke@435 78 }
duke@435 79
duke@435 80 // don't put moves involving oops into the delay slot since the VerifyOops code
duke@435 81 // will make it much larger than a single instruction.
duke@435 82 if (VerifyOops) {
duke@435 83 return false;
duke@435 84 }
duke@435 85
duke@435 86 if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
duke@435 87 ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
duke@435 88 return false;
duke@435 89 }
duke@435 90
duke@435 91 if (dst->is_register()) {
duke@435 92 if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
duke@435 93 return !PatchALot;
duke@435 94 } else if (src->is_single_stack()) {
duke@435 95 return true;
duke@435 96 }
duke@435 97 }
duke@435 98
duke@435 99 if (src->is_register()) {
duke@435 100 if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
duke@435 101 return !PatchALot;
duke@435 102 } else if (dst->is_single_stack()) {
duke@435 103 return true;
duke@435 104 }
duke@435 105 }
duke@435 106
duke@435 107 if (dst->is_register() &&
duke@435 108 ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
duke@435 109 (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
duke@435 110 return true;
duke@435 111 }
duke@435 112
duke@435 113 return false;
duke@435 114 }
duke@435 115
duke@435 116 default:
duke@435 117 return false;
duke@435 118 }
duke@435 119 ShouldNotReachHere();
duke@435 120 }
duke@435 121
duke@435 122
duke@435 123 LIR_Opr LIR_Assembler::receiverOpr() {
duke@435 124 return FrameMap::O0_oop_opr;
duke@435 125 }
duke@435 126
duke@435 127
duke@435 128 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
duke@435 129 return FrameMap::I0_oop_opr;
duke@435 130 }
duke@435 131
duke@435 132
duke@435 133 LIR_Opr LIR_Assembler::osrBufferPointer() {
duke@435 134 return FrameMap::I0_opr;
duke@435 135 }
duke@435 136
duke@435 137
duke@435 138 int LIR_Assembler::initial_frame_size_in_bytes() {
duke@435 139 return in_bytes(frame_map()->framesize_in_bytes());
duke@435 140 }
duke@435 141
duke@435 142
duke@435 143 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
duke@435 144 // we fetch the class of the receiver (O0) and compare it with the cached class.
duke@435 145 // If they do not match we jump to slow case.
duke@435 146 int LIR_Assembler::check_icache() {
duke@435 147 int offset = __ offset();
duke@435 148 __ inline_cache_check(O0, G5_inline_cache_reg);
duke@435 149 return offset;
duke@435 150 }
duke@435 151
duke@435 152
duke@435 153 void LIR_Assembler::osr_entry() {
duke@435 154 // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
duke@435 155 //
duke@435 156 // 1. Create a new compiled activation.
duke@435 157 // 2. Initialize local variables in the compiled activation. The expression stack must be empty
duke@435 158 // at the osr_bci; it is not initialized.
duke@435 159 // 3. Jump to the continuation address in compiled code to resume execution.
duke@435 160
duke@435 161 // OSR entry point
duke@435 162 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
duke@435 163 BlockBegin* osr_entry = compilation()->hir()->osr_entry();
duke@435 164 ValueStack* entry_state = osr_entry->end()->state();
duke@435 165 int number_of_locks = entry_state->locks_size();
duke@435 166
duke@435 167 // Create a frame for the compiled activation.
duke@435 168 __ build_frame(initial_frame_size_in_bytes());
duke@435 169
duke@435 170 // OSR buffer is
duke@435 171 //
duke@435 172 // locals[nlocals-1..0]
duke@435 173 // monitors[number_of_locks-1..0]
duke@435 174 //
duke@435 175 // locals is a direct copy of the interpreter frame so in the osr buffer
duke@435 176 // so first slot in the local array is the last local from the interpreter
duke@435 177 // and last slot is local[0] (receiver) from the interpreter
duke@435 178 //
duke@435 179 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
duke@435 180 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
duke@435 181 // in the interpreter frame (the method lock if a sync method)
duke@435 182
duke@435 183 // Initialize monitors in the compiled activation.
duke@435 184 // I0: pointer to osr buffer
duke@435 185 //
duke@435 186 // All other registers are dead at this point and the locals will be
duke@435 187 // copied into place by code emitted in the IR.
duke@435 188
duke@435 189 Register OSR_buf = osrBufferPointer()->as_register();
duke@435 190 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
duke@435 191 int monitor_offset = BytesPerWord * method()->max_locals() +
roland@1495 192 (2 * BytesPerWord) * (number_of_locks - 1);
roland@1495 193 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
roland@1495 194 // the OSR buffer using 2 word entries: first the lock and then
roland@1495 195 // the oop.
duke@435 196 for (int i = 0; i < number_of_locks; i++) {
roland@1495 197 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
duke@435 198 #ifdef ASSERT
duke@435 199 // verify the interpreter's monitor has a non-null object
duke@435 200 {
duke@435 201 Label L;
roland@1495 202 __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
duke@435 203 __ cmp(G0, O7);
duke@435 204 __ br(Assembler::notEqual, false, Assembler::pt, L);
duke@435 205 __ delayed()->nop();
duke@435 206 __ stop("locked object is NULL");
duke@435 207 __ bind(L);
duke@435 208 }
duke@435 209 #endif // ASSERT
duke@435 210 // Copy the lock field into the compiled activation.
roland@1495 211 __ ld_ptr(OSR_buf, slot_offset + 0, O7);
duke@435 212 __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
roland@1495 213 __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
duke@435 214 __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
duke@435 215 }
duke@435 216 }
duke@435 217 }
duke@435 218
duke@435 219
duke@435 220 // Optimized Library calls
duke@435 221 // This is the fast version of java.lang.String.compare; it has not
duke@435 222 // OSR-entry and therefore, we generate a slow version for OSR's
duke@435 223 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
duke@435 224 Register str0 = left->as_register();
duke@435 225 Register str1 = right->as_register();
duke@435 226
duke@435 227 Label Ldone;
duke@435 228
duke@435 229 Register result = dst->as_register();
duke@435 230 {
duke@435 231 // Get a pointer to the first character of string0 in tmp0 and get string0.count in str0
duke@435 232 // Get a pointer to the first character of string1 in tmp1 and get string1.count in str1
duke@435 233 // Also, get string0.count-string1.count in o7 and get the condition code set
duke@435 234 // Note: some instructions have been hoisted for better instruction scheduling
duke@435 235
duke@435 236 Register tmp0 = L0;
duke@435 237 Register tmp1 = L1;
duke@435 238 Register tmp2 = L2;
duke@435 239
duke@435 240 int value_offset = java_lang_String:: value_offset_in_bytes(); // char array
duke@435 241 int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
duke@435 242 int count_offset = java_lang_String:: count_offset_in_bytes();
duke@435 243
twisti@1162 244 __ ld_ptr(str0, value_offset, tmp0);
twisti@1162 245 __ ld(str0, offset_offset, tmp2);
duke@435 246 __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
twisti@1162 247 __ ld(str0, count_offset, str0);
duke@435 248 __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
duke@435 249
duke@435 250 // str1 may be null
duke@435 251 add_debug_info_for_null_check_here(info);
duke@435 252
twisti@1162 253 __ ld_ptr(str1, value_offset, tmp1);
duke@435 254 __ add(tmp0, tmp2, tmp0);
duke@435 255
twisti@1162 256 __ ld(str1, offset_offset, tmp2);
duke@435 257 __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
twisti@1162 258 __ ld(str1, count_offset, str1);
duke@435 259 __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
duke@435 260 __ subcc(str0, str1, O7);
duke@435 261 __ add(tmp1, tmp2, tmp1);
duke@435 262 }
duke@435 263
duke@435 264 {
duke@435 265 // Compute the minimum of the string lengths, scale it and store it in limit
duke@435 266 Register count0 = I0;
duke@435 267 Register count1 = I1;
duke@435 268 Register limit = L3;
duke@435 269
duke@435 270 Label Lskip;
duke@435 271 __ sll(count0, exact_log2(sizeof(jchar)), limit); // string0 is shorter
duke@435 272 __ br(Assembler::greater, true, Assembler::pt, Lskip);
duke@435 273 __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit); // string1 is shorter
duke@435 274 __ bind(Lskip);
duke@435 275
duke@435 276 // If either string is empty (or both of them) the result is the difference in lengths
duke@435 277 __ cmp(limit, 0);
duke@435 278 __ br(Assembler::equal, true, Assembler::pn, Ldone);
duke@435 279 __ delayed()->mov(O7, result); // result is difference in lengths
duke@435 280 }
duke@435 281
duke@435 282 {
duke@435 283 // Neither string is empty
duke@435 284 Label Lloop;
duke@435 285
duke@435 286 Register base0 = L0;
duke@435 287 Register base1 = L1;
duke@435 288 Register chr0 = I0;
duke@435 289 Register chr1 = I1;
duke@435 290 Register limit = L3;
duke@435 291
duke@435 292 // Shift base0 and base1 to the end of the arrays, negate limit
duke@435 293 __ add(base0, limit, base0);
duke@435 294 __ add(base1, limit, base1);
duke@435 295 __ neg(limit); // limit = -min{string0.count, strin1.count}
duke@435 296
duke@435 297 __ lduh(base0, limit, chr0);
duke@435 298 __ bind(Lloop);
duke@435 299 __ lduh(base1, limit, chr1);
duke@435 300 __ subcc(chr0, chr1, chr0);
duke@435 301 __ br(Assembler::notZero, false, Assembler::pn, Ldone);
duke@435 302 assert(chr0 == result, "result must be pre-placed");
duke@435 303 __ delayed()->inccc(limit, sizeof(jchar));
duke@435 304 __ br(Assembler::notZero, true, Assembler::pt, Lloop);
duke@435 305 __ delayed()->lduh(base0, limit, chr0);
duke@435 306 }
duke@435 307
duke@435 308 // If strings are equal up to min length, return the length difference.
duke@435 309 __ mov(O7, result);
duke@435 310
duke@435 311 // Otherwise, return the difference between the first mismatched chars.
duke@435 312 __ bind(Ldone);
duke@435 313 }
duke@435 314
duke@435 315
duke@435 316 // --------------------------------------------------------------------------------------------
duke@435 317
duke@435 318 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
duke@435 319 if (!GenerateSynchronizationCode) return;
duke@435 320
duke@435 321 Register obj_reg = obj_opr->as_register();
duke@435 322 Register lock_reg = lock_opr->as_register();
duke@435 323
duke@435 324 Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
duke@435 325 Register reg = mon_addr.base();
duke@435 326 int offset = mon_addr.disp();
duke@435 327 // compute pointer to BasicLock
duke@435 328 if (mon_addr.is_simm13()) {
duke@435 329 __ add(reg, offset, lock_reg);
duke@435 330 }
duke@435 331 else {
duke@435 332 __ set(offset, lock_reg);
duke@435 333 __ add(reg, lock_reg, lock_reg);
duke@435 334 }
duke@435 335 // unlock object
duke@435 336 MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
duke@435 337 // _slow_case_stubs->append(slow_case);
duke@435 338 // temporary fix: must be created after exceptionhandler, therefore as call stub
duke@435 339 _slow_case_stubs->append(slow_case);
duke@435 340 if (UseFastLocking) {
duke@435 341 // try inlined fast unlocking first, revert to slow locking if it fails
duke@435 342 // note: lock_reg points to the displaced header since the displaced header offset is 0!
duke@435 343 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 344 __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
duke@435 345 } else {
duke@435 346 // always do slow unlocking
duke@435 347 // note: the slow unlocking code could be inlined here, however if we use
duke@435 348 // slow unlocking, speed doesn't matter anyway and this solution is
duke@435 349 // simpler and requires less duplicated code - additionally, the
duke@435 350 // slow unlocking code is the same in either case which simplifies
duke@435 351 // debugging
duke@435 352 __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
duke@435 353 __ delayed()->nop();
duke@435 354 }
duke@435 355 // done
duke@435 356 __ bind(*slow_case->continuation());
duke@435 357 }
duke@435 358
duke@435 359
twisti@1639 360 int LIR_Assembler::emit_exception_handler() {
duke@435 361 // if the last instruction is a call (typically to do a throw which
duke@435 362 // is coming at the end after block reordering) the return address
duke@435 363 // must still point into the code area in order to avoid assertion
duke@435 364 // failures when searching for the corresponding bci => add a nop
duke@435 365 // (was bug 5/14/1999 - gri)
duke@435 366 __ nop();
duke@435 367
duke@435 368 // generate code for exception handler
duke@435 369 ciMethod* method = compilation()->method();
duke@435 370
duke@435 371 address handler_base = __ start_a_stub(exception_handler_size);
duke@435 372
duke@435 373 if (handler_base == NULL) {
duke@435 374 // not enough space left for the handler
duke@435 375 bailout("exception handler overflow");
twisti@1639 376 return -1;
duke@435 377 }
twisti@1639 378
duke@435 379 int offset = code_offset();
duke@435 380
twisti@1730 381 __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
duke@435 382 __ delayed()->nop();
duke@435 383 debug_only(__ stop("should have gone to the caller");)
duke@435 384 assert(code_offset() - offset <= exception_handler_size, "overflow");
duke@435 385 __ end_a_stub();
twisti@1639 386
twisti@1639 387 return offset;
duke@435 388 }
duke@435 389
twisti@1639 390
never@1813 391 // Emit the code to remove the frame from the stack in the exception
never@1813 392 // unwind path.
never@1813 393 int LIR_Assembler::emit_unwind_handler() {
never@1813 394 #ifndef PRODUCT
never@1813 395 if (CommentedAssembly) {
never@1813 396 _masm->block_comment("Unwind handler");
never@1813 397 }
never@1813 398 #endif
never@1813 399
never@1813 400 int offset = code_offset();
never@1813 401
never@1813 402 // Fetch the exception from TLS and clear out exception related thread state
never@1813 403 __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
never@1813 404 __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
never@1813 405 __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
never@1813 406
never@1813 407 __ bind(_unwind_handler_entry);
never@1813 408 __ verify_not_null_oop(O0);
never@1813 409 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 410 __ mov(O0, I0); // Preserve the exception
never@1813 411 }
never@1813 412
never@1813 413 // Preform needed unlocking
never@1813 414 MonitorExitStub* stub = NULL;
never@1813 415 if (method()->is_synchronized()) {
never@1813 416 monitor_address(0, FrameMap::I1_opr);
never@1813 417 stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
never@1813 418 __ unlock_object(I3, I2, I1, *stub->entry());
never@1813 419 __ bind(*stub->continuation());
never@1813 420 }
never@1813 421
never@1813 422 if (compilation()->env()->dtrace_method_probes()) {
never@2185 423 __ mov(G2_thread, O0);
never@2185 424 jobject2reg(method()->constant_encoding(), O1);
never@1813 425 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
never@1813 426 __ delayed()->nop();
never@1813 427 }
never@1813 428
never@1813 429 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 430 __ mov(I0, O0); // Restore the exception
never@1813 431 }
never@1813 432
never@1813 433 // dispatch to the unwind logic
never@1813 434 __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
never@1813 435 __ delayed()->nop();
never@1813 436
never@1813 437 // Emit the slow path assembly
never@1813 438 if (stub != NULL) {
never@1813 439 stub->emit_code(this);
never@1813 440 }
never@1813 441
never@1813 442 return offset;
never@1813 443 }
never@1813 444
never@1813 445
twisti@1639 446 int LIR_Assembler::emit_deopt_handler() {
duke@435 447 // if the last instruction is a call (typically to do a throw which
duke@435 448 // is coming at the end after block reordering) the return address
duke@435 449 // must still point into the code area in order to avoid assertion
duke@435 450 // failures when searching for the corresponding bci => add a nop
duke@435 451 // (was bug 5/14/1999 - gri)
duke@435 452 __ nop();
duke@435 453
duke@435 454 // generate code for deopt handler
duke@435 455 ciMethod* method = compilation()->method();
duke@435 456 address handler_base = __ start_a_stub(deopt_handler_size);
duke@435 457 if (handler_base == NULL) {
duke@435 458 // not enough space left for the handler
duke@435 459 bailout("deopt handler overflow");
twisti@1639 460 return -1;
duke@435 461 }
twisti@1639 462
duke@435 463 int offset = code_offset();
twisti@1162 464 AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
twisti@1162 465 __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
duke@435 466 __ delayed()->nop();
duke@435 467 assert(code_offset() - offset <= deopt_handler_size, "overflow");
duke@435 468 debug_only(__ stop("should have gone to the caller");)
duke@435 469 __ end_a_stub();
twisti@1639 470
twisti@1639 471 return offset;
duke@435 472 }
duke@435 473
duke@435 474
duke@435 475 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
duke@435 476 if (o == NULL) {
duke@435 477 __ set(NULL_WORD, reg);
duke@435 478 } else {
duke@435 479 int oop_index = __ oop_recorder()->find_index(o);
duke@435 480 RelocationHolder rspec = oop_Relocation::spec(oop_index);
duke@435 481 __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
duke@435 482 }
duke@435 483 }
duke@435 484
duke@435 485
duke@435 486 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
duke@435 487 // Allocate a new index in oop table to hold the oop once it's been patched
duke@435 488 int oop_index = __ oop_recorder()->allocate_index((jobject)NULL);
duke@435 489 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index);
duke@435 490
twisti@1162 491 AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
twisti@1162 492 assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
duke@435 493 // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
duke@435 494 // NULL will be dynamically patched later and the patched value may be large. We must
duke@435 495 // therefore generate the sethi/add as a placeholders
twisti@1162 496 __ patchable_set(addrlit, reg);
duke@435 497
duke@435 498 patching_epilog(patch, lir_patch_normal, reg, info);
duke@435 499 }
duke@435 500
duke@435 501
duke@435 502 void LIR_Assembler::emit_op3(LIR_Op3* op) {
duke@435 503 Register Rdividend = op->in_opr1()->as_register();
duke@435 504 Register Rdivisor = noreg;
duke@435 505 Register Rscratch = op->in_opr3()->as_register();
duke@435 506 Register Rresult = op->result_opr()->as_register();
duke@435 507 int divisor = -1;
duke@435 508
duke@435 509 if (op->in_opr2()->is_register()) {
duke@435 510 Rdivisor = op->in_opr2()->as_register();
duke@435 511 } else {
duke@435 512 divisor = op->in_opr2()->as_constant_ptr()->as_jint();
duke@435 513 assert(Assembler::is_simm13(divisor), "can only handle simm13");
duke@435 514 }
duke@435 515
duke@435 516 assert(Rdividend != Rscratch, "");
duke@435 517 assert(Rdivisor != Rscratch, "");
duke@435 518 assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
duke@435 519
duke@435 520 if (Rdivisor == noreg && is_power_of_2(divisor)) {
duke@435 521 // convert division by a power of two into some shifts and logical operations
duke@435 522 if (op->code() == lir_idiv) {
duke@435 523 if (divisor == 2) {
duke@435 524 __ srl(Rdividend, 31, Rscratch);
duke@435 525 } else {
duke@435 526 __ sra(Rdividend, 31, Rscratch);
duke@435 527 __ and3(Rscratch, divisor - 1, Rscratch);
duke@435 528 }
duke@435 529 __ add(Rdividend, Rscratch, Rscratch);
duke@435 530 __ sra(Rscratch, log2_intptr(divisor), Rresult);
duke@435 531 return;
duke@435 532 } else {
duke@435 533 if (divisor == 2) {
duke@435 534 __ srl(Rdividend, 31, Rscratch);
duke@435 535 } else {
duke@435 536 __ sra(Rdividend, 31, Rscratch);
duke@435 537 __ and3(Rscratch, divisor - 1,Rscratch);
duke@435 538 }
duke@435 539 __ add(Rdividend, Rscratch, Rscratch);
duke@435 540 __ andn(Rscratch, divisor - 1,Rscratch);
duke@435 541 __ sub(Rdividend, Rscratch, Rresult);
duke@435 542 return;
duke@435 543 }
duke@435 544 }
duke@435 545
duke@435 546 __ sra(Rdividend, 31, Rscratch);
duke@435 547 __ wry(Rscratch);
duke@435 548 if (!VM_Version::v9_instructions_work()) {
duke@435 549 // v9 doesn't require these nops
duke@435 550 __ nop();
duke@435 551 __ nop();
duke@435 552 __ nop();
duke@435 553 __ nop();
duke@435 554 }
duke@435 555
duke@435 556 add_debug_info_for_div0_here(op->info());
duke@435 557
duke@435 558 if (Rdivisor != noreg) {
duke@435 559 __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
duke@435 560 } else {
duke@435 561 assert(Assembler::is_simm13(divisor), "can only handle simm13");
duke@435 562 __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
duke@435 563 }
duke@435 564
duke@435 565 Label skip;
duke@435 566 __ br(Assembler::overflowSet, true, Assembler::pn, skip);
duke@435 567 __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
duke@435 568 __ bind(skip);
duke@435 569
duke@435 570 if (op->code() == lir_irem) {
duke@435 571 if (Rdivisor != noreg) {
duke@435 572 __ smul(Rscratch, Rdivisor, Rscratch);
duke@435 573 } else {
duke@435 574 __ smul(Rscratch, divisor, Rscratch);
duke@435 575 }
duke@435 576 __ sub(Rdividend, Rscratch, Rresult);
duke@435 577 }
duke@435 578 }
duke@435 579
duke@435 580
duke@435 581 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
duke@435 582 #ifdef ASSERT
duke@435 583 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
duke@435 584 if (op->block() != NULL) _branch_target_blocks.append(op->block());
duke@435 585 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
duke@435 586 #endif
duke@435 587 assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
duke@435 588
duke@435 589 if (op->cond() == lir_cond_always) {
duke@435 590 __ br(Assembler::always, false, Assembler::pt, *(op->label()));
duke@435 591 } else if (op->code() == lir_cond_float_branch) {
duke@435 592 assert(op->ublock() != NULL, "must have unordered successor");
duke@435 593 bool is_unordered = (op->ublock() == op->block());
duke@435 594 Assembler::Condition acond;
duke@435 595 switch (op->cond()) {
duke@435 596 case lir_cond_equal: acond = Assembler::f_equal; break;
duke@435 597 case lir_cond_notEqual: acond = Assembler::f_notEqual; break;
duke@435 598 case lir_cond_less: acond = (is_unordered ? Assembler::f_unorderedOrLess : Assembler::f_less); break;
duke@435 599 case lir_cond_greater: acond = (is_unordered ? Assembler::f_unorderedOrGreater : Assembler::f_greater); break;
duke@435 600 case lir_cond_lessEqual: acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual : Assembler::f_lessOrEqual); break;
duke@435 601 case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
duke@435 602 default : ShouldNotReachHere();
duke@435 603 };
duke@435 604
duke@435 605 if (!VM_Version::v9_instructions_work()) {
duke@435 606 __ nop();
duke@435 607 }
duke@435 608 __ fb( acond, false, Assembler::pn, *(op->label()));
duke@435 609 } else {
duke@435 610 assert (op->code() == lir_branch, "just checking");
duke@435 611
duke@435 612 Assembler::Condition acond;
duke@435 613 switch (op->cond()) {
duke@435 614 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 615 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 616 case lir_cond_less: acond = Assembler::less; break;
duke@435 617 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 618 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
duke@435 619 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 620 case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break;
duke@435 621 case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break;
duke@435 622 default: ShouldNotReachHere();
duke@435 623 };
duke@435 624
duke@435 625 // sparc has different condition codes for testing 32-bit
duke@435 626 // vs. 64-bit values. We could always test xcc is we could
duke@435 627 // guarantee that 32-bit loads always sign extended but that isn't
duke@435 628 // true and since sign extension isn't free, it would impose a
duke@435 629 // slight cost.
duke@435 630 #ifdef _LP64
duke@435 631 if (op->type() == T_INT) {
duke@435 632 __ br(acond, false, Assembler::pn, *(op->label()));
duke@435 633 } else
duke@435 634 #endif
duke@435 635 __ brx(acond, false, Assembler::pn, *(op->label()));
duke@435 636 }
duke@435 637 // The peephole pass fills the delay slot
duke@435 638 }
duke@435 639
duke@435 640
duke@435 641 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
duke@435 642 Bytecodes::Code code = op->bytecode();
duke@435 643 LIR_Opr dst = op->result_opr();
duke@435 644
duke@435 645 switch(code) {
duke@435 646 case Bytecodes::_i2l: {
duke@435 647 Register rlo = dst->as_register_lo();
duke@435 648 Register rhi = dst->as_register_hi();
duke@435 649 Register rval = op->in_opr()->as_register();
duke@435 650 #ifdef _LP64
duke@435 651 __ sra(rval, 0, rlo);
duke@435 652 #else
duke@435 653 __ mov(rval, rlo);
duke@435 654 __ sra(rval, BitsPerInt-1, rhi);
duke@435 655 #endif
duke@435 656 break;
duke@435 657 }
duke@435 658 case Bytecodes::_i2d:
duke@435 659 case Bytecodes::_i2f: {
duke@435 660 bool is_double = (code == Bytecodes::_i2d);
duke@435 661 FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
duke@435 662 FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
duke@435 663 FloatRegister rsrc = op->in_opr()->as_float_reg();
duke@435 664 if (rsrc != rdst) {
duke@435 665 __ fmov(FloatRegisterImpl::S, rsrc, rdst);
duke@435 666 }
duke@435 667 __ fitof(w, rdst, rdst);
duke@435 668 break;
duke@435 669 }
duke@435 670 case Bytecodes::_f2i:{
duke@435 671 FloatRegister rsrc = op->in_opr()->as_float_reg();
duke@435 672 Address addr = frame_map()->address_for_slot(dst->single_stack_ix());
duke@435 673 Label L;
duke@435 674 // result must be 0 if value is NaN; test by comparing value to itself
duke@435 675 __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
duke@435 676 if (!VM_Version::v9_instructions_work()) {
duke@435 677 __ nop();
duke@435 678 }
duke@435 679 __ fb(Assembler::f_unordered, true, Assembler::pn, L);
duke@435 680 __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
duke@435 681 __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
duke@435 682 // move integer result from float register to int register
duke@435 683 __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
duke@435 684 __ bind (L);
duke@435 685 break;
duke@435 686 }
duke@435 687 case Bytecodes::_l2i: {
duke@435 688 Register rlo = op->in_opr()->as_register_lo();
duke@435 689 Register rhi = op->in_opr()->as_register_hi();
duke@435 690 Register rdst = dst->as_register();
duke@435 691 #ifdef _LP64
duke@435 692 __ sra(rlo, 0, rdst);
duke@435 693 #else
duke@435 694 __ mov(rlo, rdst);
duke@435 695 #endif
duke@435 696 break;
duke@435 697 }
duke@435 698 case Bytecodes::_d2f:
duke@435 699 case Bytecodes::_f2d: {
duke@435 700 bool is_double = (code == Bytecodes::_f2d);
duke@435 701 assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
duke@435 702 LIR_Opr val = op->in_opr();
duke@435 703 FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
duke@435 704 FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
duke@435 705 FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
duke@435 706 FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
duke@435 707 __ ftof(vw, dw, rval, rdst);
duke@435 708 break;
duke@435 709 }
duke@435 710 case Bytecodes::_i2s:
duke@435 711 case Bytecodes::_i2b: {
duke@435 712 Register rval = op->in_opr()->as_register();
duke@435 713 Register rdst = dst->as_register();
duke@435 714 int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
duke@435 715 __ sll (rval, shift, rdst);
duke@435 716 __ sra (rdst, shift, rdst);
duke@435 717 break;
duke@435 718 }
duke@435 719 case Bytecodes::_i2c: {
duke@435 720 Register rval = op->in_opr()->as_register();
duke@435 721 Register rdst = dst->as_register();
duke@435 722 int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
duke@435 723 __ sll (rval, shift, rdst);
duke@435 724 __ srl (rdst, shift, rdst);
duke@435 725 break;
duke@435 726 }
duke@435 727
duke@435 728 default: ShouldNotReachHere();
duke@435 729 }
duke@435 730 }
duke@435 731
duke@435 732
duke@435 733 void LIR_Assembler::align_call(LIR_Code) {
duke@435 734 // do nothing since all instructions are word aligned on sparc
duke@435 735 }
duke@435 736
duke@435 737
twisti@1730 738 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
twisti@1730 739 __ call(op->addr(), rtype);
twisti@1919 740 // The peephole pass fills the delay slot, add_call_info is done in
twisti@1919 741 // LIR_Assembler::emit_delay.
duke@435 742 }
duke@435 743
duke@435 744
twisti@1730 745 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
duke@435 746 RelocationHolder rspec = virtual_call_Relocation::spec(pc());
duke@435 747 __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
duke@435 748 __ relocate(rspec);
twisti@1730 749 __ call(op->addr(), relocInfo::none);
twisti@1919 750 // The peephole pass fills the delay slot, add_call_info is done in
twisti@1919 751 // LIR_Assembler::emit_delay.
duke@435 752 }
duke@435 753
duke@435 754
twisti@1730 755 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
twisti@1730 756 add_debug_info_for_null_check_here(op->info());
twisti@1162 757 __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), G3_scratch);
twisti@1730 758 if (__ is_simm13(op->vtable_offset())) {
twisti@1730 759 __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
duke@435 760 } else {
duke@435 761 // This will generate 2 instructions
twisti@1730 762 __ set(op->vtable_offset(), G5_method);
duke@435 763 // ld_ptr, set_hi, set
duke@435 764 __ ld_ptr(G3_scratch, G5_method, G5_method);
duke@435 765 }
twisti@1162 766 __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3_scratch);
duke@435 767 __ callr(G3_scratch, G0);
duke@435 768 // the peephole pass fills the delay slot
duke@435 769 }
duke@435 770
duke@435 771
duke@435 772 // load with 32-bit displacement
duke@435 773 int LIR_Assembler::load(Register s, int disp, Register d, BasicType ld_type, CodeEmitInfo *info) {
duke@435 774 int load_offset = code_offset();
duke@435 775 if (Assembler::is_simm13(disp)) {
duke@435 776 if (info != NULL) add_debug_info_for_null_check_here(info);
duke@435 777 switch(ld_type) {
duke@435 778 case T_BOOLEAN: // fall through
duke@435 779 case T_BYTE : __ ldsb(s, disp, d); break;
duke@435 780 case T_CHAR : __ lduh(s, disp, d); break;
duke@435 781 case T_SHORT : __ ldsh(s, disp, d); break;
duke@435 782 case T_INT : __ ld(s, disp, d); break;
duke@435 783 case T_ADDRESS:// fall through
duke@435 784 case T_ARRAY : // fall through
duke@435 785 case T_OBJECT: __ ld_ptr(s, disp, d); break;
duke@435 786 default : ShouldNotReachHere();
duke@435 787 }
duke@435 788 } else {
twisti@1162 789 __ set(disp, O7);
duke@435 790 if (info != NULL) add_debug_info_for_null_check_here(info);
duke@435 791 load_offset = code_offset();
duke@435 792 switch(ld_type) {
duke@435 793 case T_BOOLEAN: // fall through
duke@435 794 case T_BYTE : __ ldsb(s, O7, d); break;
duke@435 795 case T_CHAR : __ lduh(s, O7, d); break;
duke@435 796 case T_SHORT : __ ldsh(s, O7, d); break;
duke@435 797 case T_INT : __ ld(s, O7, d); break;
duke@435 798 case T_ADDRESS:// fall through
duke@435 799 case T_ARRAY : // fall through
duke@435 800 case T_OBJECT: __ ld_ptr(s, O7, d); break;
duke@435 801 default : ShouldNotReachHere();
duke@435 802 }
duke@435 803 }
duke@435 804 if (ld_type == T_ARRAY || ld_type == T_OBJECT) __ verify_oop(d);
duke@435 805 return load_offset;
duke@435 806 }
duke@435 807
duke@435 808
duke@435 809 // store with 32-bit displacement
duke@435 810 void LIR_Assembler::store(Register value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
duke@435 811 if (Assembler::is_simm13(offset)) {
duke@435 812 if (info != NULL) add_debug_info_for_null_check_here(info);
duke@435 813 switch (type) {
duke@435 814 case T_BOOLEAN: // fall through
duke@435 815 case T_BYTE : __ stb(value, base, offset); break;
duke@435 816 case T_CHAR : __ sth(value, base, offset); break;
duke@435 817 case T_SHORT : __ sth(value, base, offset); break;
duke@435 818 case T_INT : __ stw(value, base, offset); break;
duke@435 819 case T_ADDRESS:// fall through
duke@435 820 case T_ARRAY : // fall through
duke@435 821 case T_OBJECT: __ st_ptr(value, base, offset); break;
duke@435 822 default : ShouldNotReachHere();
duke@435 823 }
duke@435 824 } else {
twisti@1162 825 __ set(offset, O7);
duke@435 826 if (info != NULL) add_debug_info_for_null_check_here(info);
duke@435 827 switch (type) {
duke@435 828 case T_BOOLEAN: // fall through
duke@435 829 case T_BYTE : __ stb(value, base, O7); break;
duke@435 830 case T_CHAR : __ sth(value, base, O7); break;
duke@435 831 case T_SHORT : __ sth(value, base, O7); break;
duke@435 832 case T_INT : __ stw(value, base, O7); break;
duke@435 833 case T_ADDRESS:// fall through
duke@435 834 case T_ARRAY : //fall through
duke@435 835 case T_OBJECT: __ st_ptr(value, base, O7); break;
duke@435 836 default : ShouldNotReachHere();
duke@435 837 }
duke@435 838 }
duke@435 839 // Note: Do the store before verification as the code might be patched!
duke@435 840 if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(value);
duke@435 841 }
duke@435 842
duke@435 843
duke@435 844 // load float with 32-bit displacement
duke@435 845 void LIR_Assembler::load(Register s, int disp, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
duke@435 846 FloatRegisterImpl::Width w;
duke@435 847 switch(ld_type) {
duke@435 848 case T_FLOAT : w = FloatRegisterImpl::S; break;
duke@435 849 case T_DOUBLE: w = FloatRegisterImpl::D; break;
duke@435 850 default : ShouldNotReachHere();
duke@435 851 }
duke@435 852
duke@435 853 if (Assembler::is_simm13(disp)) {
duke@435 854 if (info != NULL) add_debug_info_for_null_check_here(info);
duke@435 855 if (disp % BytesPerLong != 0 && w == FloatRegisterImpl::D) {
duke@435 856 __ ldf(FloatRegisterImpl::S, s, disp + BytesPerWord, d->successor());
duke@435 857 __ ldf(FloatRegisterImpl::S, s, disp , d);
duke@435 858 } else {
duke@435 859 __ ldf(w, s, disp, d);
duke@435 860 }
duke@435 861 } else {
twisti@1162 862 __ set(disp, O7);
duke@435 863 if (info != NULL) add_debug_info_for_null_check_here(info);
duke@435 864 __ ldf(w, s, O7, d);
duke@435 865 }
duke@435 866 }
duke@435 867
duke@435 868
duke@435 869 // store float with 32-bit displacement
duke@435 870 void LIR_Assembler::store(FloatRegister value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
duke@435 871 FloatRegisterImpl::Width w;
duke@435 872 switch(type) {
duke@435 873 case T_FLOAT : w = FloatRegisterImpl::S; break;
duke@435 874 case T_DOUBLE: w = FloatRegisterImpl::D; break;
duke@435 875 default : ShouldNotReachHere();
duke@435 876 }
duke@435 877
duke@435 878 if (Assembler::is_simm13(offset)) {
duke@435 879 if (info != NULL) add_debug_info_for_null_check_here(info);
duke@435 880 if (w == FloatRegisterImpl::D && offset % BytesPerLong != 0) {
duke@435 881 __ stf(FloatRegisterImpl::S, value->successor(), base, offset + BytesPerWord);
duke@435 882 __ stf(FloatRegisterImpl::S, value , base, offset);
duke@435 883 } else {
duke@435 884 __ stf(w, value, base, offset);
duke@435 885 }
duke@435 886 } else {
twisti@1162 887 __ set(offset, O7);
duke@435 888 if (info != NULL) add_debug_info_for_null_check_here(info);
duke@435 889 __ stf(w, value, O7, base);
duke@435 890 }
duke@435 891 }
duke@435 892
duke@435 893
duke@435 894 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool unaligned) {
duke@435 895 int store_offset;
duke@435 896 if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
duke@435 897 assert(!unaligned, "can't handle this");
duke@435 898 // for offsets larger than a simm13 we setup the offset in O7
twisti@1162 899 __ set(offset, O7);
duke@435 900 store_offset = store(from_reg, base, O7, type);
duke@435 901 } else {
duke@435 902 if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
duke@435 903 store_offset = code_offset();
duke@435 904 switch (type) {
duke@435 905 case T_BOOLEAN: // fall through
duke@435 906 case T_BYTE : __ stb(from_reg->as_register(), base, offset); break;
duke@435 907 case T_CHAR : __ sth(from_reg->as_register(), base, offset); break;
duke@435 908 case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
duke@435 909 case T_INT : __ stw(from_reg->as_register(), base, offset); break;
duke@435 910 case T_LONG :
duke@435 911 #ifdef _LP64
duke@435 912 if (unaligned || PatchALot) {
duke@435 913 __ srax(from_reg->as_register_lo(), 32, O7);
duke@435 914 __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
duke@435 915 __ stw(O7, base, offset + hi_word_offset_in_bytes);
duke@435 916 } else {
duke@435 917 __ stx(from_reg->as_register_lo(), base, offset);
duke@435 918 }
duke@435 919 #else
duke@435 920 assert(Assembler::is_simm13(offset + 4), "must be");
duke@435 921 __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
duke@435 922 __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
duke@435 923 #endif
duke@435 924 break;
duke@435 925 case T_ADDRESS:// fall through
duke@435 926 case T_ARRAY : // fall through
duke@435 927 case T_OBJECT: __ st_ptr(from_reg->as_register(), base, offset); break;
duke@435 928 case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
duke@435 929 case T_DOUBLE:
duke@435 930 {
duke@435 931 FloatRegister reg = from_reg->as_double_reg();
duke@435 932 // split unaligned stores
duke@435 933 if (unaligned || PatchALot) {
duke@435 934 assert(Assembler::is_simm13(offset + 4), "must be");
duke@435 935 __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
duke@435 936 __ stf(FloatRegisterImpl::S, reg, base, offset);
duke@435 937 } else {
duke@435 938 __ stf(FloatRegisterImpl::D, reg, base, offset);
duke@435 939 }
duke@435 940 break;
duke@435 941 }
duke@435 942 default : ShouldNotReachHere();
duke@435 943 }
duke@435 944 }
duke@435 945 return store_offset;
duke@435 946 }
duke@435 947
duke@435 948
duke@435 949 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type) {
duke@435 950 if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
duke@435 951 int store_offset = code_offset();
duke@435 952 switch (type) {
duke@435 953 case T_BOOLEAN: // fall through
duke@435 954 case T_BYTE : __ stb(from_reg->as_register(), base, disp); break;
duke@435 955 case T_CHAR : __ sth(from_reg->as_register(), base, disp); break;
duke@435 956 case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
duke@435 957 case T_INT : __ stw(from_reg->as_register(), base, disp); break;
duke@435 958 case T_LONG :
duke@435 959 #ifdef _LP64
duke@435 960 __ stx(from_reg->as_register_lo(), base, disp);
duke@435 961 #else
duke@435 962 assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
duke@435 963 __ std(from_reg->as_register_hi(), base, disp);
duke@435 964 #endif
duke@435 965 break;
duke@435 966 case T_ADDRESS:// fall through
duke@435 967 case T_ARRAY : // fall through
duke@435 968 case T_OBJECT: __ st_ptr(from_reg->as_register(), base, disp); break;
duke@435 969 case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
duke@435 970 case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
duke@435 971 default : ShouldNotReachHere();
duke@435 972 }
duke@435 973 return store_offset;
duke@435 974 }
duke@435 975
duke@435 976
duke@435 977 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool unaligned) {
duke@435 978 int load_offset;
duke@435 979 if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
duke@435 980 assert(base != O7, "destroying register");
duke@435 981 assert(!unaligned, "can't handle this");
duke@435 982 // for offsets larger than a simm13 we setup the offset in O7
twisti@1162 983 __ set(offset, O7);
duke@435 984 load_offset = load(base, O7, to_reg, type);
duke@435 985 } else {
duke@435 986 load_offset = code_offset();
duke@435 987 switch(type) {
duke@435 988 case T_BOOLEAN: // fall through
duke@435 989 case T_BYTE : __ ldsb(base, offset, to_reg->as_register()); break;
duke@435 990 case T_CHAR : __ lduh(base, offset, to_reg->as_register()); break;
duke@435 991 case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
duke@435 992 case T_INT : __ ld(base, offset, to_reg->as_register()); break;
duke@435 993 case T_LONG :
duke@435 994 if (!unaligned) {
duke@435 995 #ifdef _LP64
duke@435 996 __ ldx(base, offset, to_reg->as_register_lo());
duke@435 997 #else
duke@435 998 assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
duke@435 999 "must be sequential");
duke@435 1000 __ ldd(base, offset, to_reg->as_register_hi());
duke@435 1001 #endif
duke@435 1002 } else {
duke@435 1003 #ifdef _LP64
duke@435 1004 assert(base != to_reg->as_register_lo(), "can't handle this");
roland@1495 1005 assert(O7 != to_reg->as_register_lo(), "can't handle this");
duke@435 1006 __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
roland@1495 1007 __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
duke@435 1008 __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
roland@1495 1009 __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
duke@435 1010 #else
duke@435 1011 if (base == to_reg->as_register_lo()) {
duke@435 1012 __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
duke@435 1013 __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
duke@435 1014 } else {
duke@435 1015 __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
duke@435 1016 __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
duke@435 1017 }
duke@435 1018 #endif
duke@435 1019 }
duke@435 1020 break;
duke@435 1021 case T_ADDRESS:// fall through
duke@435 1022 case T_ARRAY : // fall through
duke@435 1023 case T_OBJECT: __ ld_ptr(base, offset, to_reg->as_register()); break;
duke@435 1024 case T_FLOAT: __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
duke@435 1025 case T_DOUBLE:
duke@435 1026 {
duke@435 1027 FloatRegister reg = to_reg->as_double_reg();
duke@435 1028 // split unaligned loads
duke@435 1029 if (unaligned || PatchALot) {
roland@1495 1030 __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
roland@1495 1031 __ ldf(FloatRegisterImpl::S, base, offset, reg);
duke@435 1032 } else {
duke@435 1033 __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
duke@435 1034 }
duke@435 1035 break;
duke@435 1036 }
duke@435 1037 default : ShouldNotReachHere();
duke@435 1038 }
duke@435 1039 if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
duke@435 1040 }
duke@435 1041 return load_offset;
duke@435 1042 }
duke@435 1043
duke@435 1044
duke@435 1045 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type) {
duke@435 1046 int load_offset = code_offset();
duke@435 1047 switch(type) {
duke@435 1048 case T_BOOLEAN: // fall through
duke@435 1049 case T_BYTE : __ ldsb(base, disp, to_reg->as_register()); break;
duke@435 1050 case T_CHAR : __ lduh(base, disp, to_reg->as_register()); break;
duke@435 1051 case T_SHORT : __ ldsh(base, disp, to_reg->as_register()); break;
duke@435 1052 case T_INT : __ ld(base, disp, to_reg->as_register()); break;
duke@435 1053 case T_ADDRESS:// fall through
duke@435 1054 case T_ARRAY : // fall through
duke@435 1055 case T_OBJECT: __ ld_ptr(base, disp, to_reg->as_register()); break;
duke@435 1056 case T_FLOAT: __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
duke@435 1057 case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
duke@435 1058 case T_LONG :
duke@435 1059 #ifdef _LP64
duke@435 1060 __ ldx(base, disp, to_reg->as_register_lo());
duke@435 1061 #else
duke@435 1062 assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
duke@435 1063 "must be sequential");
duke@435 1064 __ ldd(base, disp, to_reg->as_register_hi());
duke@435 1065 #endif
duke@435 1066 break;
duke@435 1067 default : ShouldNotReachHere();
duke@435 1068 }
duke@435 1069 if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
duke@435 1070 return load_offset;
duke@435 1071 }
duke@435 1072
duke@435 1073
duke@435 1074 // load/store with an Address
duke@435 1075 void LIR_Assembler::load(const Address& a, Register d, BasicType ld_type, CodeEmitInfo *info, int offset) {
duke@435 1076 load(a.base(), a.disp() + offset, d, ld_type, info);
duke@435 1077 }
duke@435 1078
duke@435 1079
duke@435 1080 void LIR_Assembler::store(Register value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
duke@435 1081 store(value, dest.base(), dest.disp() + offset, type, info);
duke@435 1082 }
duke@435 1083
duke@435 1084
duke@435 1085 // loadf/storef with an Address
duke@435 1086 void LIR_Assembler::load(const Address& a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info, int offset) {
duke@435 1087 load(a.base(), a.disp() + offset, d, ld_type, info);
duke@435 1088 }
duke@435 1089
duke@435 1090
duke@435 1091 void LIR_Assembler::store(FloatRegister value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
duke@435 1092 store(value, dest.base(), dest.disp() + offset, type, info);
duke@435 1093 }
duke@435 1094
duke@435 1095
duke@435 1096 // load/store with an Address
duke@435 1097 void LIR_Assembler::load(LIR_Address* a, Register d, BasicType ld_type, CodeEmitInfo *info) {
duke@435 1098 load(as_Address(a), d, ld_type, info);
duke@435 1099 }
duke@435 1100
duke@435 1101
duke@435 1102 void LIR_Assembler::store(Register value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
duke@435 1103 store(value, as_Address(dest), type, info);
duke@435 1104 }
duke@435 1105
duke@435 1106
duke@435 1107 // loadf/storef with an Address
duke@435 1108 void LIR_Assembler::load(LIR_Address* a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
duke@435 1109 load(as_Address(a), d, ld_type, info);
duke@435 1110 }
duke@435 1111
duke@435 1112
duke@435 1113 void LIR_Assembler::store(FloatRegister value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
duke@435 1114 store(value, as_Address(dest), type, info);
duke@435 1115 }
duke@435 1116
duke@435 1117
duke@435 1118 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
duke@435 1119 LIR_Const* c = src->as_constant_ptr();
duke@435 1120 switch (c->type()) {
duke@435 1121 case T_INT:
roland@1732 1122 case T_FLOAT:
roland@1732 1123 case T_ADDRESS: {
duke@435 1124 Register src_reg = O7;
duke@435 1125 int value = c->as_jint_bits();
duke@435 1126 if (value == 0) {
duke@435 1127 src_reg = G0;
duke@435 1128 } else {
duke@435 1129 __ set(value, O7);
duke@435 1130 }
duke@435 1131 Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1132 __ stw(src_reg, addr.base(), addr.disp());
duke@435 1133 break;
duke@435 1134 }
duke@435 1135 case T_OBJECT: {
duke@435 1136 Register src_reg = O7;
duke@435 1137 jobject2reg(c->as_jobject(), src_reg);
duke@435 1138 Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1139 __ st_ptr(src_reg, addr.base(), addr.disp());
duke@435 1140 break;
duke@435 1141 }
duke@435 1142 case T_LONG:
duke@435 1143 case T_DOUBLE: {
duke@435 1144 Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
duke@435 1145
duke@435 1146 Register tmp = O7;
duke@435 1147 int value_lo = c->as_jint_lo_bits();
duke@435 1148 if (value_lo == 0) {
duke@435 1149 tmp = G0;
duke@435 1150 } else {
duke@435 1151 __ set(value_lo, O7);
duke@435 1152 }
duke@435 1153 __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
duke@435 1154 int value_hi = c->as_jint_hi_bits();
duke@435 1155 if (value_hi == 0) {
duke@435 1156 tmp = G0;
duke@435 1157 } else {
duke@435 1158 __ set(value_hi, O7);
duke@435 1159 }
duke@435 1160 __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
duke@435 1161 break;
duke@435 1162 }
duke@435 1163 default:
duke@435 1164 Unimplemented();
duke@435 1165 }
duke@435 1166 }
duke@435 1167
duke@435 1168
duke@435 1169 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
duke@435 1170 LIR_Const* c = src->as_constant_ptr();
duke@435 1171 LIR_Address* addr = dest->as_address_ptr();
duke@435 1172 Register base = addr->base()->as_pointer_register();
duke@435 1173
duke@435 1174 if (info != NULL) {
duke@435 1175 add_debug_info_for_null_check_here(info);
duke@435 1176 }
duke@435 1177 switch (c->type()) {
duke@435 1178 case T_INT:
roland@1732 1179 case T_FLOAT:
roland@1732 1180 case T_ADDRESS: {
duke@435 1181 LIR_Opr tmp = FrameMap::O7_opr;
duke@435 1182 int value = c->as_jint_bits();
duke@435 1183 if (value == 0) {
duke@435 1184 tmp = FrameMap::G0_opr;
duke@435 1185 } else if (Assembler::is_simm13(value)) {
duke@435 1186 __ set(value, O7);
duke@435 1187 }
duke@435 1188 if (addr->index()->is_valid()) {
duke@435 1189 assert(addr->disp() == 0, "must be zero");
duke@435 1190 store(tmp, base, addr->index()->as_pointer_register(), type);
duke@435 1191 } else {
duke@435 1192 assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
duke@435 1193 store(tmp, base, addr->disp(), type);
duke@435 1194 }
duke@435 1195 break;
duke@435 1196 }
duke@435 1197 case T_LONG:
duke@435 1198 case T_DOUBLE: {
duke@435 1199 assert(!addr->index()->is_valid(), "can't handle reg reg address here");
duke@435 1200 assert(Assembler::is_simm13(addr->disp()) &&
duke@435 1201 Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
duke@435 1202
duke@435 1203 Register tmp = O7;
duke@435 1204 int value_lo = c->as_jint_lo_bits();
duke@435 1205 if (value_lo == 0) {
duke@435 1206 tmp = G0;
duke@435 1207 } else {
duke@435 1208 __ set(value_lo, O7);
duke@435 1209 }
duke@435 1210 store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT);
duke@435 1211 int value_hi = c->as_jint_hi_bits();
duke@435 1212 if (value_hi == 0) {
duke@435 1213 tmp = G0;
duke@435 1214 } else {
duke@435 1215 __ set(value_hi, O7);
duke@435 1216 }
duke@435 1217 store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT);
duke@435 1218 break;
duke@435 1219 }
duke@435 1220 case T_OBJECT: {
duke@435 1221 jobject obj = c->as_jobject();
duke@435 1222 LIR_Opr tmp;
duke@435 1223 if (obj == NULL) {
duke@435 1224 tmp = FrameMap::G0_opr;
duke@435 1225 } else {
duke@435 1226 tmp = FrameMap::O7_opr;
duke@435 1227 jobject2reg(c->as_jobject(), O7);
duke@435 1228 }
duke@435 1229 // handle either reg+reg or reg+disp address
duke@435 1230 if (addr->index()->is_valid()) {
duke@435 1231 assert(addr->disp() == 0, "must be zero");
duke@435 1232 store(tmp, base, addr->index()->as_pointer_register(), type);
duke@435 1233 } else {
duke@435 1234 assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
duke@435 1235 store(tmp, base, addr->disp(), type);
duke@435 1236 }
duke@435 1237
duke@435 1238 break;
duke@435 1239 }
duke@435 1240 default:
duke@435 1241 Unimplemented();
duke@435 1242 }
duke@435 1243 }
duke@435 1244
duke@435 1245
duke@435 1246 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
duke@435 1247 LIR_Const* c = src->as_constant_ptr();
duke@435 1248 LIR_Opr to_reg = dest;
duke@435 1249
duke@435 1250 switch (c->type()) {
duke@435 1251 case T_INT:
roland@1732 1252 case T_ADDRESS:
duke@435 1253 {
duke@435 1254 jint con = c->as_jint();
duke@435 1255 if (to_reg->is_single_cpu()) {
duke@435 1256 assert(patch_code == lir_patch_none, "no patching handled here");
duke@435 1257 __ set(con, to_reg->as_register());
duke@435 1258 } else {
duke@435 1259 ShouldNotReachHere();
duke@435 1260 assert(to_reg->is_single_fpu(), "wrong register kind");
duke@435 1261
duke@435 1262 __ set(con, O7);
twisti@1162 1263 Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
duke@435 1264 __ st(O7, temp_slot);
duke@435 1265 __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
duke@435 1266 }
duke@435 1267 }
duke@435 1268 break;
duke@435 1269
duke@435 1270 case T_LONG:
duke@435 1271 {
duke@435 1272 jlong con = c->as_jlong();
duke@435 1273
duke@435 1274 if (to_reg->is_double_cpu()) {
duke@435 1275 #ifdef _LP64
duke@435 1276 __ set(con, to_reg->as_register_lo());
duke@435 1277 #else
duke@435 1278 __ set(low(con), to_reg->as_register_lo());
duke@435 1279 __ set(high(con), to_reg->as_register_hi());
duke@435 1280 #endif
duke@435 1281 #ifdef _LP64
duke@435 1282 } else if (to_reg->is_single_cpu()) {
duke@435 1283 __ set(con, to_reg->as_register());
duke@435 1284 #endif
duke@435 1285 } else {
duke@435 1286 ShouldNotReachHere();
duke@435 1287 assert(to_reg->is_double_fpu(), "wrong register kind");
twisti@1162 1288 Address temp_slot_lo(SP, ((frame::register_save_words ) * wordSize) + STACK_BIAS);
twisti@1162 1289 Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
duke@435 1290 __ set(low(con), O7);
duke@435 1291 __ st(O7, temp_slot_lo);
duke@435 1292 __ set(high(con), O7);
duke@435 1293 __ st(O7, temp_slot_hi);
duke@435 1294 __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
duke@435 1295 }
duke@435 1296 }
duke@435 1297 break;
duke@435 1298
duke@435 1299 case T_OBJECT:
duke@435 1300 {
duke@435 1301 if (patch_code == lir_patch_none) {
duke@435 1302 jobject2reg(c->as_jobject(), to_reg->as_register());
duke@435 1303 } else {
duke@435 1304 jobject2reg_with_patching(to_reg->as_register(), info);
duke@435 1305 }
duke@435 1306 }
duke@435 1307 break;
duke@435 1308
duke@435 1309 case T_FLOAT:
duke@435 1310 {
duke@435 1311 address const_addr = __ float_constant(c->as_jfloat());
duke@435 1312 if (const_addr == NULL) {
duke@435 1313 bailout("const section overflow");
duke@435 1314 break;
duke@435 1315 }
duke@435 1316 RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
twisti@1162 1317 AddressLiteral const_addrlit(const_addr, rspec);
duke@435 1318 if (to_reg->is_single_fpu()) {
twisti@1162 1319 __ patchable_sethi(const_addrlit, O7);
duke@435 1320 __ relocate(rspec);
twisti@1162 1321 __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
duke@435 1322
duke@435 1323 } else {
duke@435 1324 assert(to_reg->is_single_cpu(), "Must be a cpu register.");
duke@435 1325
twisti@1162 1326 __ set(const_addrlit, O7);
duke@435 1327 load(O7, 0, to_reg->as_register(), T_INT);
duke@435 1328 }
duke@435 1329 }
duke@435 1330 break;
duke@435 1331
duke@435 1332 case T_DOUBLE:
duke@435 1333 {
duke@435 1334 address const_addr = __ double_constant(c->as_jdouble());
duke@435 1335 if (const_addr == NULL) {
duke@435 1336 bailout("const section overflow");
duke@435 1337 break;
duke@435 1338 }
duke@435 1339 RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
duke@435 1340
duke@435 1341 if (to_reg->is_double_fpu()) {
twisti@1162 1342 AddressLiteral const_addrlit(const_addr, rspec);
twisti@1162 1343 __ patchable_sethi(const_addrlit, O7);
duke@435 1344 __ relocate(rspec);
twisti@1162 1345 __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
duke@435 1346 } else {
duke@435 1347 assert(to_reg->is_double_cpu(), "Must be a long register.");
duke@435 1348 #ifdef _LP64
duke@435 1349 __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
duke@435 1350 #else
duke@435 1351 __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
duke@435 1352 __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
duke@435 1353 #endif
duke@435 1354 }
duke@435 1355
duke@435 1356 }
duke@435 1357 break;
duke@435 1358
duke@435 1359 default:
duke@435 1360 ShouldNotReachHere();
duke@435 1361 }
duke@435 1362 }
duke@435 1363
duke@435 1364 Address LIR_Assembler::as_Address(LIR_Address* addr) {
duke@435 1365 Register reg = addr->base()->as_register();
twisti@1162 1366 return Address(reg, addr->disp());
duke@435 1367 }
duke@435 1368
duke@435 1369
duke@435 1370 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1371 switch (type) {
duke@435 1372 case T_INT:
duke@435 1373 case T_FLOAT: {
duke@435 1374 Register tmp = O7;
duke@435 1375 Address from = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1376 Address to = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1377 __ lduw(from.base(), from.disp(), tmp);
duke@435 1378 __ stw(tmp, to.base(), to.disp());
duke@435 1379 break;
duke@435 1380 }
duke@435 1381 case T_OBJECT: {
duke@435 1382 Register tmp = O7;
duke@435 1383 Address from = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1384 Address to = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1385 __ ld_ptr(from.base(), from.disp(), tmp);
duke@435 1386 __ st_ptr(tmp, to.base(), to.disp());
duke@435 1387 break;
duke@435 1388 }
duke@435 1389 case T_LONG:
duke@435 1390 case T_DOUBLE: {
duke@435 1391 Register tmp = O7;
duke@435 1392 Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
duke@435 1393 Address to = frame_map()->address_for_double_slot(dest->double_stack_ix());
duke@435 1394 __ lduw(from.base(), from.disp(), tmp);
duke@435 1395 __ stw(tmp, to.base(), to.disp());
duke@435 1396 __ lduw(from.base(), from.disp() + 4, tmp);
duke@435 1397 __ stw(tmp, to.base(), to.disp() + 4);
duke@435 1398 break;
duke@435 1399 }
duke@435 1400
duke@435 1401 default:
duke@435 1402 ShouldNotReachHere();
duke@435 1403 }
duke@435 1404 }
duke@435 1405
duke@435 1406
duke@435 1407 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
duke@435 1408 Address base = as_Address(addr);
twisti@1162 1409 return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
duke@435 1410 }
duke@435 1411
duke@435 1412
duke@435 1413 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
duke@435 1414 Address base = as_Address(addr);
twisti@1162 1415 return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
duke@435 1416 }
duke@435 1417
duke@435 1418
duke@435 1419 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
duke@435 1420 LIR_PatchCode patch_code, CodeEmitInfo* info, bool unaligned) {
duke@435 1421
duke@435 1422 LIR_Address* addr = src_opr->as_address_ptr();
duke@435 1423 LIR_Opr to_reg = dest;
duke@435 1424
duke@435 1425 Register src = addr->base()->as_pointer_register();
duke@435 1426 Register disp_reg = noreg;
duke@435 1427 int disp_value = addr->disp();
duke@435 1428 bool needs_patching = (patch_code != lir_patch_none);
duke@435 1429
duke@435 1430 if (addr->base()->type() == T_OBJECT) {
duke@435 1431 __ verify_oop(src);
duke@435 1432 }
duke@435 1433
duke@435 1434 PatchingStub* patch = NULL;
duke@435 1435 if (needs_patching) {
duke@435 1436 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1437 assert(!to_reg->is_double_cpu() ||
duke@435 1438 patch_code == lir_patch_none ||
duke@435 1439 patch_code == lir_patch_normal, "patching doesn't match register");
duke@435 1440 }
duke@435 1441
duke@435 1442 if (addr->index()->is_illegal()) {
duke@435 1443 if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
duke@435 1444 if (needs_patching) {
twisti@1162 1445 __ patchable_set(0, O7);
duke@435 1446 } else {
duke@435 1447 __ set(disp_value, O7);
duke@435 1448 }
duke@435 1449 disp_reg = O7;
duke@435 1450 }
duke@435 1451 } else if (unaligned || PatchALot) {
duke@435 1452 __ add(src, addr->index()->as_register(), O7);
duke@435 1453 src = O7;
duke@435 1454 } else {
duke@435 1455 disp_reg = addr->index()->as_pointer_register();
duke@435 1456 assert(disp_value == 0, "can't handle 3 operand addresses");
duke@435 1457 }
duke@435 1458
duke@435 1459 // remember the offset of the load. The patching_epilog must be done
duke@435 1460 // before the call to add_debug_info, otherwise the PcDescs don't get
duke@435 1461 // entered in increasing order.
duke@435 1462 int offset = code_offset();
duke@435 1463
duke@435 1464 assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
duke@435 1465 if (disp_reg == noreg) {
duke@435 1466 offset = load(src, disp_value, to_reg, type, unaligned);
duke@435 1467 } else {
duke@435 1468 assert(!unaligned, "can't handle this");
duke@435 1469 offset = load(src, disp_reg, to_reg, type);
duke@435 1470 }
duke@435 1471
duke@435 1472 if (patch != NULL) {
duke@435 1473 patching_epilog(patch, patch_code, src, info);
duke@435 1474 }
duke@435 1475
duke@435 1476 if (info != NULL) add_debug_info_for_null_check(offset, info);
duke@435 1477 }
duke@435 1478
duke@435 1479
duke@435 1480 void LIR_Assembler::prefetchr(LIR_Opr src) {
duke@435 1481 LIR_Address* addr = src->as_address_ptr();
duke@435 1482 Address from_addr = as_Address(addr);
duke@435 1483
duke@435 1484 if (VM_Version::has_v9()) {
duke@435 1485 __ prefetch(from_addr, Assembler::severalReads);
duke@435 1486 }
duke@435 1487 }
duke@435 1488
duke@435 1489
duke@435 1490 void LIR_Assembler::prefetchw(LIR_Opr src) {
duke@435 1491 LIR_Address* addr = src->as_address_ptr();
duke@435 1492 Address from_addr = as_Address(addr);
duke@435 1493
duke@435 1494 if (VM_Version::has_v9()) {
duke@435 1495 __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
duke@435 1496 }
duke@435 1497 }
duke@435 1498
duke@435 1499
duke@435 1500 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1501 Address addr;
duke@435 1502 if (src->is_single_word()) {
duke@435 1503 addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1504 } else if (src->is_double_word()) {
duke@435 1505 addr = frame_map()->address_for_double_slot(src->double_stack_ix());
duke@435 1506 }
duke@435 1507
duke@435 1508 bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
duke@435 1509 load(addr.base(), addr.disp(), dest, dest->type(), unaligned);
duke@435 1510 }
duke@435 1511
duke@435 1512
duke@435 1513 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
duke@435 1514 Address addr;
duke@435 1515 if (dest->is_single_word()) {
duke@435 1516 addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1517 } else if (dest->is_double_word()) {
duke@435 1518 addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 1519 }
duke@435 1520 bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
duke@435 1521 store(from_reg, addr.base(), addr.disp(), from_reg->type(), unaligned);
duke@435 1522 }
duke@435 1523
duke@435 1524
duke@435 1525 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
duke@435 1526 if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
duke@435 1527 if (from_reg->is_double_fpu()) {
duke@435 1528 // double to double moves
duke@435 1529 assert(to_reg->is_double_fpu(), "should match");
duke@435 1530 __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
duke@435 1531 } else {
duke@435 1532 // float to float moves
duke@435 1533 assert(to_reg->is_single_fpu(), "should match");
duke@435 1534 __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
duke@435 1535 }
duke@435 1536 } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
duke@435 1537 if (from_reg->is_double_cpu()) {
duke@435 1538 #ifdef _LP64
duke@435 1539 __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
duke@435 1540 #else
duke@435 1541 assert(to_reg->is_double_cpu() &&
duke@435 1542 from_reg->as_register_hi() != to_reg->as_register_lo() &&
duke@435 1543 from_reg->as_register_lo() != to_reg->as_register_hi(),
duke@435 1544 "should both be long and not overlap");
duke@435 1545 // long to long moves
duke@435 1546 __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
duke@435 1547 __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
duke@435 1548 #endif
duke@435 1549 #ifdef _LP64
duke@435 1550 } else if (to_reg->is_double_cpu()) {
duke@435 1551 // int to int moves
duke@435 1552 __ mov(from_reg->as_register(), to_reg->as_register_lo());
duke@435 1553 #endif
duke@435 1554 } else {
duke@435 1555 // int to int moves
duke@435 1556 __ mov(from_reg->as_register(), to_reg->as_register());
duke@435 1557 }
duke@435 1558 } else {
duke@435 1559 ShouldNotReachHere();
duke@435 1560 }
duke@435 1561 if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
duke@435 1562 __ verify_oop(to_reg->as_register());
duke@435 1563 }
duke@435 1564 }
duke@435 1565
duke@435 1566
duke@435 1567 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
duke@435 1568 LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
duke@435 1569 bool unaligned) {
duke@435 1570 LIR_Address* addr = dest->as_address_ptr();
duke@435 1571
duke@435 1572 Register src = addr->base()->as_pointer_register();
duke@435 1573 Register disp_reg = noreg;
duke@435 1574 int disp_value = addr->disp();
duke@435 1575 bool needs_patching = (patch_code != lir_patch_none);
duke@435 1576
duke@435 1577 if (addr->base()->is_oop_register()) {
duke@435 1578 __ verify_oop(src);
duke@435 1579 }
duke@435 1580
duke@435 1581 PatchingStub* patch = NULL;
duke@435 1582 if (needs_patching) {
duke@435 1583 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1584 assert(!from_reg->is_double_cpu() ||
duke@435 1585 patch_code == lir_patch_none ||
duke@435 1586 patch_code == lir_patch_normal, "patching doesn't match register");
duke@435 1587 }
duke@435 1588
duke@435 1589 if (addr->index()->is_illegal()) {
duke@435 1590 if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
duke@435 1591 if (needs_patching) {
twisti@1162 1592 __ patchable_set(0, O7);
duke@435 1593 } else {
duke@435 1594 __ set(disp_value, O7);
duke@435 1595 }
duke@435 1596 disp_reg = O7;
duke@435 1597 }
duke@435 1598 } else if (unaligned || PatchALot) {
duke@435 1599 __ add(src, addr->index()->as_register(), O7);
duke@435 1600 src = O7;
duke@435 1601 } else {
duke@435 1602 disp_reg = addr->index()->as_pointer_register();
duke@435 1603 assert(disp_value == 0, "can't handle 3 operand addresses");
duke@435 1604 }
duke@435 1605
duke@435 1606 // remember the offset of the store. The patching_epilog must be done
duke@435 1607 // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
duke@435 1608 // entered in increasing order.
duke@435 1609 int offset;
duke@435 1610
duke@435 1611 assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
duke@435 1612 if (disp_reg == noreg) {
duke@435 1613 offset = store(from_reg, src, disp_value, type, unaligned);
duke@435 1614 } else {
duke@435 1615 assert(!unaligned, "can't handle this");
duke@435 1616 offset = store(from_reg, src, disp_reg, type);
duke@435 1617 }
duke@435 1618
duke@435 1619 if (patch != NULL) {
duke@435 1620 patching_epilog(patch, patch_code, src, info);
duke@435 1621 }
duke@435 1622
duke@435 1623 if (info != NULL) add_debug_info_for_null_check(offset, info);
duke@435 1624 }
duke@435 1625
duke@435 1626
duke@435 1627 void LIR_Assembler::return_op(LIR_Opr result) {
duke@435 1628 // the poll may need a register so just pick one that isn't the return register
iveresov@2138 1629 #if defined(TIERED) && !defined(_LP64)
duke@435 1630 if (result->type_field() == LIR_OprDesc::long_type) {
duke@435 1631 // Must move the result to G1
duke@435 1632 // Must leave proper result in O0,O1 and G1 (TIERED only)
duke@435 1633 __ sllx(I0, 32, G1); // Shift bits into high G1
duke@435 1634 __ srl (I1, 0, I1); // Zero extend O1 (harmless?)
duke@435 1635 __ or3 (I1, G1, G1); // OR 64 bits into G1
iveresov@2138 1636 #ifdef ASSERT
iveresov@2138 1637 // mangle it so any problems will show up
iveresov@2138 1638 __ set(0xdeadbeef, I0);
iveresov@2138 1639 __ set(0xdeadbeef, I1);
iveresov@2138 1640 #endif
duke@435 1641 }
duke@435 1642 #endif // TIERED
duke@435 1643 __ set((intptr_t)os::get_polling_page(), L0);
duke@435 1644 __ relocate(relocInfo::poll_return_type);
duke@435 1645 __ ld_ptr(L0, 0, G0);
duke@435 1646 __ ret();
duke@435 1647 __ delayed()->restore();
duke@435 1648 }
duke@435 1649
duke@435 1650
duke@435 1651 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 1652 __ set((intptr_t)os::get_polling_page(), tmp->as_register());
duke@435 1653 if (info != NULL) {
duke@435 1654 add_debug_info_for_branch(info);
duke@435 1655 } else {
duke@435 1656 __ relocate(relocInfo::poll_type);
duke@435 1657 }
duke@435 1658
duke@435 1659 int offset = __ offset();
duke@435 1660 __ ld_ptr(tmp->as_register(), 0, G0);
duke@435 1661
duke@435 1662 return offset;
duke@435 1663 }
duke@435 1664
duke@435 1665
duke@435 1666 void LIR_Assembler::emit_static_call_stub() {
duke@435 1667 address call_pc = __ pc();
duke@435 1668 address stub = __ start_a_stub(call_stub_size);
duke@435 1669 if (stub == NULL) {
duke@435 1670 bailout("static call stub overflow");
duke@435 1671 return;
duke@435 1672 }
duke@435 1673
duke@435 1674 int start = __ offset();
duke@435 1675 __ relocate(static_stub_Relocation::spec(call_pc));
duke@435 1676
duke@435 1677 __ set_oop(NULL, G5);
duke@435 1678 // must be set to -1 at code generation time
twisti@1162 1679 AddressLiteral addrlit(-1);
twisti@1162 1680 __ jump_to(addrlit, G3);
duke@435 1681 __ delayed()->nop();
duke@435 1682
duke@435 1683 assert(__ offset() - start <= call_stub_size, "stub too big");
duke@435 1684 __ end_a_stub();
duke@435 1685 }
duke@435 1686
duke@435 1687
duke@435 1688 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
duke@435 1689 if (opr1->is_single_fpu()) {
duke@435 1690 __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
duke@435 1691 } else if (opr1->is_double_fpu()) {
duke@435 1692 __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
duke@435 1693 } else if (opr1->is_single_cpu()) {
duke@435 1694 if (opr2->is_constant()) {
duke@435 1695 switch (opr2->as_constant_ptr()->type()) {
duke@435 1696 case T_INT:
duke@435 1697 { jint con = opr2->as_constant_ptr()->as_jint();
duke@435 1698 if (Assembler::is_simm13(con)) {
duke@435 1699 __ cmp(opr1->as_register(), con);
duke@435 1700 } else {
duke@435 1701 __ set(con, O7);
duke@435 1702 __ cmp(opr1->as_register(), O7);
duke@435 1703 }
duke@435 1704 }
duke@435 1705 break;
duke@435 1706
duke@435 1707 case T_OBJECT:
duke@435 1708 // there are only equal/notequal comparisions on objects
duke@435 1709 { jobject con = opr2->as_constant_ptr()->as_jobject();
duke@435 1710 if (con == NULL) {
duke@435 1711 __ cmp(opr1->as_register(), 0);
duke@435 1712 } else {
duke@435 1713 jobject2reg(con, O7);
duke@435 1714 __ cmp(opr1->as_register(), O7);
duke@435 1715 }
duke@435 1716 }
duke@435 1717 break;
duke@435 1718
duke@435 1719 default:
duke@435 1720 ShouldNotReachHere();
duke@435 1721 break;
duke@435 1722 }
duke@435 1723 } else {
duke@435 1724 if (opr2->is_address()) {
duke@435 1725 LIR_Address * addr = opr2->as_address_ptr();
duke@435 1726 BasicType type = addr->type();
duke@435 1727 if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
duke@435 1728 else __ ld(as_Address(addr), O7);
duke@435 1729 __ cmp(opr1->as_register(), O7);
duke@435 1730 } else {
duke@435 1731 __ cmp(opr1->as_register(), opr2->as_register());
duke@435 1732 }
duke@435 1733 }
duke@435 1734 } else if (opr1->is_double_cpu()) {
duke@435 1735 Register xlo = opr1->as_register_lo();
duke@435 1736 Register xhi = opr1->as_register_hi();
duke@435 1737 if (opr2->is_constant() && opr2->as_jlong() == 0) {
duke@435 1738 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
duke@435 1739 #ifdef _LP64
duke@435 1740 __ orcc(xhi, G0, G0);
duke@435 1741 #else
duke@435 1742 __ orcc(xhi, xlo, G0);
duke@435 1743 #endif
duke@435 1744 } else if (opr2->is_register()) {
duke@435 1745 Register ylo = opr2->as_register_lo();
duke@435 1746 Register yhi = opr2->as_register_hi();
duke@435 1747 #ifdef _LP64
duke@435 1748 __ cmp(xlo, ylo);
duke@435 1749 #else
duke@435 1750 __ subcc(xlo, ylo, xlo);
duke@435 1751 __ subccc(xhi, yhi, xhi);
duke@435 1752 if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
duke@435 1753 __ orcc(xhi, xlo, G0);
duke@435 1754 }
duke@435 1755 #endif
duke@435 1756 } else {
duke@435 1757 ShouldNotReachHere();
duke@435 1758 }
duke@435 1759 } else if (opr1->is_address()) {
duke@435 1760 LIR_Address * addr = opr1->as_address_ptr();
duke@435 1761 BasicType type = addr->type();
duke@435 1762 assert (opr2->is_constant(), "Checking");
duke@435 1763 if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
duke@435 1764 else __ ld(as_Address(addr), O7);
duke@435 1765 __ cmp(O7, opr2->as_constant_ptr()->as_jint());
duke@435 1766 } else {
duke@435 1767 ShouldNotReachHere();
duke@435 1768 }
duke@435 1769 }
duke@435 1770
duke@435 1771
duke@435 1772 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
duke@435 1773 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
duke@435 1774 bool is_unordered_less = (code == lir_ucmp_fd2i);
duke@435 1775 if (left->is_single_fpu()) {
duke@435 1776 __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
duke@435 1777 } else if (left->is_double_fpu()) {
duke@435 1778 __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
duke@435 1779 } else {
duke@435 1780 ShouldNotReachHere();
duke@435 1781 }
duke@435 1782 } else if (code == lir_cmp_l2i) {
iveresov@1804 1783 #ifdef _LP64
iveresov@1804 1784 __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
iveresov@1804 1785 #else
duke@435 1786 __ lcmp(left->as_register_hi(), left->as_register_lo(),
duke@435 1787 right->as_register_hi(), right->as_register_lo(),
duke@435 1788 dst->as_register());
iveresov@1804 1789 #endif
duke@435 1790 } else {
duke@435 1791 ShouldNotReachHere();
duke@435 1792 }
duke@435 1793 }
duke@435 1794
duke@435 1795
duke@435 1796 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
duke@435 1797
duke@435 1798 Assembler::Condition acond;
duke@435 1799 switch (condition) {
duke@435 1800 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1801 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1802 case lir_cond_less: acond = Assembler::less; break;
duke@435 1803 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 1804 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
duke@435 1805 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 1806 case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break;
duke@435 1807 case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break;
duke@435 1808 default: ShouldNotReachHere();
duke@435 1809 };
duke@435 1810
duke@435 1811 if (opr1->is_constant() && opr1->type() == T_INT) {
duke@435 1812 Register dest = result->as_register();
duke@435 1813 // load up first part of constant before branch
duke@435 1814 // and do the rest in the delay slot.
duke@435 1815 if (!Assembler::is_simm13(opr1->as_jint())) {
duke@435 1816 __ sethi(opr1->as_jint(), dest);
duke@435 1817 }
duke@435 1818 } else if (opr1->is_constant()) {
duke@435 1819 const2reg(opr1, result, lir_patch_none, NULL);
duke@435 1820 } else if (opr1->is_register()) {
duke@435 1821 reg2reg(opr1, result);
duke@435 1822 } else if (opr1->is_stack()) {
duke@435 1823 stack2reg(opr1, result, result->type());
duke@435 1824 } else {
duke@435 1825 ShouldNotReachHere();
duke@435 1826 }
duke@435 1827 Label skip;
duke@435 1828 __ br(acond, false, Assembler::pt, skip);
duke@435 1829 if (opr1->is_constant() && opr1->type() == T_INT) {
duke@435 1830 Register dest = result->as_register();
duke@435 1831 if (Assembler::is_simm13(opr1->as_jint())) {
duke@435 1832 __ delayed()->or3(G0, opr1->as_jint(), dest);
duke@435 1833 } else {
duke@435 1834 // the sethi has been done above, so just put in the low 10 bits
duke@435 1835 __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
duke@435 1836 }
duke@435 1837 } else {
duke@435 1838 // can't do anything useful in the delay slot
duke@435 1839 __ delayed()->nop();
duke@435 1840 }
duke@435 1841 if (opr2->is_constant()) {
duke@435 1842 const2reg(opr2, result, lir_patch_none, NULL);
duke@435 1843 } else if (opr2->is_register()) {
duke@435 1844 reg2reg(opr2, result);
duke@435 1845 } else if (opr2->is_stack()) {
duke@435 1846 stack2reg(opr2, result, result->type());
duke@435 1847 } else {
duke@435 1848 ShouldNotReachHere();
duke@435 1849 }
duke@435 1850 __ bind(skip);
duke@435 1851 }
duke@435 1852
duke@435 1853
duke@435 1854 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
duke@435 1855 assert(info == NULL, "unused on this code path");
duke@435 1856 assert(left->is_register(), "wrong items state");
duke@435 1857 assert(dest->is_register(), "wrong items state");
duke@435 1858
duke@435 1859 if (right->is_register()) {
duke@435 1860 if (dest->is_float_kind()) {
duke@435 1861
duke@435 1862 FloatRegister lreg, rreg, res;
duke@435 1863 FloatRegisterImpl::Width w;
duke@435 1864 if (right->is_single_fpu()) {
duke@435 1865 w = FloatRegisterImpl::S;
duke@435 1866 lreg = left->as_float_reg();
duke@435 1867 rreg = right->as_float_reg();
duke@435 1868 res = dest->as_float_reg();
duke@435 1869 } else {
duke@435 1870 w = FloatRegisterImpl::D;
duke@435 1871 lreg = left->as_double_reg();
duke@435 1872 rreg = right->as_double_reg();
duke@435 1873 res = dest->as_double_reg();
duke@435 1874 }
duke@435 1875
duke@435 1876 switch (code) {
duke@435 1877 case lir_add: __ fadd(w, lreg, rreg, res); break;
duke@435 1878 case lir_sub: __ fsub(w, lreg, rreg, res); break;
duke@435 1879 case lir_mul: // fall through
duke@435 1880 case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
duke@435 1881 case lir_div: // fall through
duke@435 1882 case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
duke@435 1883 default: ShouldNotReachHere();
duke@435 1884 }
duke@435 1885
duke@435 1886 } else if (dest->is_double_cpu()) {
duke@435 1887 #ifdef _LP64
duke@435 1888 Register dst_lo = dest->as_register_lo();
duke@435 1889 Register op1_lo = left->as_pointer_register();
duke@435 1890 Register op2_lo = right->as_pointer_register();
duke@435 1891
duke@435 1892 switch (code) {
duke@435 1893 case lir_add:
duke@435 1894 __ add(op1_lo, op2_lo, dst_lo);
duke@435 1895 break;
duke@435 1896
duke@435 1897 case lir_sub:
duke@435 1898 __ sub(op1_lo, op2_lo, dst_lo);
duke@435 1899 break;
duke@435 1900
duke@435 1901 default: ShouldNotReachHere();
duke@435 1902 }
duke@435 1903 #else
duke@435 1904 Register op1_lo = left->as_register_lo();
duke@435 1905 Register op1_hi = left->as_register_hi();
duke@435 1906 Register op2_lo = right->as_register_lo();
duke@435 1907 Register op2_hi = right->as_register_hi();
duke@435 1908 Register dst_lo = dest->as_register_lo();
duke@435 1909 Register dst_hi = dest->as_register_hi();
duke@435 1910
duke@435 1911 switch (code) {
duke@435 1912 case lir_add:
duke@435 1913 __ addcc(op1_lo, op2_lo, dst_lo);
duke@435 1914 __ addc (op1_hi, op2_hi, dst_hi);
duke@435 1915 break;
duke@435 1916
duke@435 1917 case lir_sub:
duke@435 1918 __ subcc(op1_lo, op2_lo, dst_lo);
duke@435 1919 __ subc (op1_hi, op2_hi, dst_hi);
duke@435 1920 break;
duke@435 1921
duke@435 1922 default: ShouldNotReachHere();
duke@435 1923 }
duke@435 1924 #endif
duke@435 1925 } else {
duke@435 1926 assert (right->is_single_cpu(), "Just Checking");
duke@435 1927
duke@435 1928 Register lreg = left->as_register();
duke@435 1929 Register res = dest->as_register();
duke@435 1930 Register rreg = right->as_register();
duke@435 1931 switch (code) {
duke@435 1932 case lir_add: __ add (lreg, rreg, res); break;
duke@435 1933 case lir_sub: __ sub (lreg, rreg, res); break;
duke@435 1934 case lir_mul: __ mult (lreg, rreg, res); break;
duke@435 1935 default: ShouldNotReachHere();
duke@435 1936 }
duke@435 1937 }
duke@435 1938 } else {
duke@435 1939 assert (right->is_constant(), "must be constant");
duke@435 1940
duke@435 1941 if (dest->is_single_cpu()) {
duke@435 1942 Register lreg = left->as_register();
duke@435 1943 Register res = dest->as_register();
duke@435 1944 int simm13 = right->as_constant_ptr()->as_jint();
duke@435 1945
duke@435 1946 switch (code) {
duke@435 1947 case lir_add: __ add (lreg, simm13, res); break;
duke@435 1948 case lir_sub: __ sub (lreg, simm13, res); break;
duke@435 1949 case lir_mul: __ mult (lreg, simm13, res); break;
duke@435 1950 default: ShouldNotReachHere();
duke@435 1951 }
duke@435 1952 } else {
duke@435 1953 Register lreg = left->as_pointer_register();
duke@435 1954 Register res = dest->as_register_lo();
duke@435 1955 long con = right->as_constant_ptr()->as_jlong();
duke@435 1956 assert(Assembler::is_simm13(con), "must be simm13");
duke@435 1957
duke@435 1958 switch (code) {
duke@435 1959 case lir_add: __ add (lreg, (int)con, res); break;
duke@435 1960 case lir_sub: __ sub (lreg, (int)con, res); break;
duke@435 1961 case lir_mul: __ mult (lreg, (int)con, res); break;
duke@435 1962 default: ShouldNotReachHere();
duke@435 1963 }
duke@435 1964 }
duke@435 1965 }
duke@435 1966 }
duke@435 1967
duke@435 1968
duke@435 1969 void LIR_Assembler::fpop() {
duke@435 1970 // do nothing
duke@435 1971 }
duke@435 1972
duke@435 1973
duke@435 1974 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
duke@435 1975 switch (code) {
duke@435 1976 case lir_sin:
duke@435 1977 case lir_tan:
duke@435 1978 case lir_cos: {
duke@435 1979 assert(thread->is_valid(), "preserve the thread object for performance reasons");
duke@435 1980 assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
duke@435 1981 break;
duke@435 1982 }
duke@435 1983 case lir_sqrt: {
duke@435 1984 assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
duke@435 1985 FloatRegister src_reg = value->as_double_reg();
duke@435 1986 FloatRegister dst_reg = dest->as_double_reg();
duke@435 1987 __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
duke@435 1988 break;
duke@435 1989 }
duke@435 1990 case lir_abs: {
duke@435 1991 assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
duke@435 1992 FloatRegister src_reg = value->as_double_reg();
duke@435 1993 FloatRegister dst_reg = dest->as_double_reg();
duke@435 1994 __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
duke@435 1995 break;
duke@435 1996 }
duke@435 1997 default: {
duke@435 1998 ShouldNotReachHere();
duke@435 1999 break;
duke@435 2000 }
duke@435 2001 }
duke@435 2002 }
duke@435 2003
duke@435 2004
duke@435 2005 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
duke@435 2006 if (right->is_constant()) {
duke@435 2007 if (dest->is_single_cpu()) {
duke@435 2008 int simm13 = right->as_constant_ptr()->as_jint();
duke@435 2009 switch (code) {
duke@435 2010 case lir_logic_and: __ and3 (left->as_register(), simm13, dest->as_register()); break;
duke@435 2011 case lir_logic_or: __ or3 (left->as_register(), simm13, dest->as_register()); break;
duke@435 2012 case lir_logic_xor: __ xor3 (left->as_register(), simm13, dest->as_register()); break;
duke@435 2013 default: ShouldNotReachHere();
duke@435 2014 }
duke@435 2015 } else {
duke@435 2016 long c = right->as_constant_ptr()->as_jlong();
duke@435 2017 assert(c == (int)c && Assembler::is_simm13(c), "out of range");
duke@435 2018 int simm13 = (int)c;
duke@435 2019 switch (code) {
duke@435 2020 case lir_logic_and:
duke@435 2021 #ifndef _LP64
duke@435 2022 __ and3 (left->as_register_hi(), 0, dest->as_register_hi());
duke@435 2023 #endif
duke@435 2024 __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
duke@435 2025 break;
duke@435 2026
duke@435 2027 case lir_logic_or:
duke@435 2028 #ifndef _LP64
duke@435 2029 __ or3 (left->as_register_hi(), 0, dest->as_register_hi());
duke@435 2030 #endif
duke@435 2031 __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
duke@435 2032 break;
duke@435 2033
duke@435 2034 case lir_logic_xor:
duke@435 2035 #ifndef _LP64
duke@435 2036 __ xor3 (left->as_register_hi(), 0, dest->as_register_hi());
duke@435 2037 #endif
duke@435 2038 __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
duke@435 2039 break;
duke@435 2040
duke@435 2041 default: ShouldNotReachHere();
duke@435 2042 }
duke@435 2043 }
duke@435 2044 } else {
duke@435 2045 assert(right->is_register(), "right should be in register");
duke@435 2046
duke@435 2047 if (dest->is_single_cpu()) {
duke@435 2048 switch (code) {
duke@435 2049 case lir_logic_and: __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
duke@435 2050 case lir_logic_or: __ or3 (left->as_register(), right->as_register(), dest->as_register()); break;
duke@435 2051 case lir_logic_xor: __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
duke@435 2052 default: ShouldNotReachHere();
duke@435 2053 }
duke@435 2054 } else {
duke@435 2055 #ifdef _LP64
duke@435 2056 Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
duke@435 2057 left->as_register_lo();
duke@435 2058 Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
duke@435 2059 right->as_register_lo();
duke@435 2060
duke@435 2061 switch (code) {
duke@435 2062 case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
duke@435 2063 case lir_logic_or: __ or3 (l, r, dest->as_register_lo()); break;
duke@435 2064 case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
duke@435 2065 default: ShouldNotReachHere();
duke@435 2066 }
duke@435 2067 #else
duke@435 2068 switch (code) {
duke@435 2069 case lir_logic_and:
duke@435 2070 __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
duke@435 2071 __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
duke@435 2072 break;
duke@435 2073
duke@435 2074 case lir_logic_or:
duke@435 2075 __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
duke@435 2076 __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
duke@435 2077 break;
duke@435 2078
duke@435 2079 case lir_logic_xor:
duke@435 2080 __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
duke@435 2081 __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
duke@435 2082 break;
duke@435 2083
duke@435 2084 default: ShouldNotReachHere();
duke@435 2085 }
duke@435 2086 #endif
duke@435 2087 }
duke@435 2088 }
duke@435 2089 }
duke@435 2090
duke@435 2091
duke@435 2092 int LIR_Assembler::shift_amount(BasicType t) {
kvn@464 2093 int elem_size = type2aelembytes(t);
duke@435 2094 switch (elem_size) {
duke@435 2095 case 1 : return 0;
duke@435 2096 case 2 : return 1;
duke@435 2097 case 4 : return 2;
duke@435 2098 case 8 : return 3;
duke@435 2099 }
duke@435 2100 ShouldNotReachHere();
duke@435 2101 return -1;
duke@435 2102 }
duke@435 2103
duke@435 2104
never@1813 2105 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
duke@435 2106 assert(exceptionOop->as_register() == Oexception, "should match");
never@1813 2107 assert(exceptionPC->as_register() == Oissuing_pc, "should match");
duke@435 2108
duke@435 2109 info->add_register_oop(exceptionOop);
duke@435 2110
never@1813 2111 // reuse the debug info from the safepoint poll for the throw op itself
never@1813 2112 address pc_for_athrow = __ pc();
never@1813 2113 int pc_for_athrow_offset = __ offset();
never@1813 2114 RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
never@1813 2115 __ set(pc_for_athrow, Oissuing_pc, rspec);
never@1813 2116 add_call_info(pc_for_athrow_offset, info); // for exception handler
never@1813 2117
never@1813 2118 __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
never@1813 2119 __ delayed()->nop();
never@1813 2120 }
never@1813 2121
never@1813 2122
never@1813 2123 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
never@1813 2124 assert(exceptionOop->as_register() == Oexception, "should match");
never@1813 2125
never@1813 2126 __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
never@1813 2127 __ delayed()->nop();
duke@435 2128 }
duke@435 2129
duke@435 2130
duke@435 2131 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
duke@435 2132 Register src = op->src()->as_register();
duke@435 2133 Register dst = op->dst()->as_register();
duke@435 2134 Register src_pos = op->src_pos()->as_register();
duke@435 2135 Register dst_pos = op->dst_pos()->as_register();
duke@435 2136 Register length = op->length()->as_register();
duke@435 2137 Register tmp = op->tmp()->as_register();
duke@435 2138 Register tmp2 = O7;
duke@435 2139
duke@435 2140 int flags = op->flags();
duke@435 2141 ciArrayKlass* default_type = op->expected_type();
duke@435 2142 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
duke@435 2143 if (basic_type == T_ARRAY) basic_type = T_OBJECT;
duke@435 2144
duke@435 2145 // set up the arraycopy stub information
duke@435 2146 ArrayCopyStub* stub = op->stub();
duke@435 2147
duke@435 2148 // always do stub if no type information is available. it's ok if
duke@435 2149 // the known type isn't loaded since the code sanity checks
duke@435 2150 // in debug mode and the type isn't required when we know the exact type
duke@435 2151 // also check that the type is an array type.
ysr@777 2152 // We also, for now, always call the stub if the barrier set requires a
ysr@777 2153 // write_ref_pre barrier (which the stub does, but none of the optimized
ysr@777 2154 // cases currently does).
ysr@777 2155 if (op->expected_type() == NULL ||
ysr@777 2156 Universe::heap()->barrier_set()->has_write_ref_pre_barrier()) {
duke@435 2157 __ mov(src, O0);
duke@435 2158 __ mov(src_pos, O1);
duke@435 2159 __ mov(dst, O2);
duke@435 2160 __ mov(dst_pos, O3);
duke@435 2161 __ mov(length, O4);
duke@435 2162 __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
duke@435 2163
duke@435 2164 __ br_zero(Assembler::less, false, Assembler::pn, O0, *stub->entry());
duke@435 2165 __ delayed()->nop();
duke@435 2166 __ bind(*stub->continuation());
duke@435 2167 return;
duke@435 2168 }
duke@435 2169
duke@435 2170 assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
duke@435 2171
duke@435 2172 // make sure src and dst are non-null and load array length
duke@435 2173 if (flags & LIR_OpArrayCopy::src_null_check) {
duke@435 2174 __ tst(src);
duke@435 2175 __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
duke@435 2176 __ delayed()->nop();
duke@435 2177 }
duke@435 2178
duke@435 2179 if (flags & LIR_OpArrayCopy::dst_null_check) {
duke@435 2180 __ tst(dst);
duke@435 2181 __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
duke@435 2182 __ delayed()->nop();
duke@435 2183 }
duke@435 2184
duke@435 2185 if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
duke@435 2186 // test src_pos register
duke@435 2187 __ tst(src_pos);
duke@435 2188 __ br(Assembler::less, false, Assembler::pn, *stub->entry());
duke@435 2189 __ delayed()->nop();
duke@435 2190 }
duke@435 2191
duke@435 2192 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
duke@435 2193 // test dst_pos register
duke@435 2194 __ tst(dst_pos);
duke@435 2195 __ br(Assembler::less, false, Assembler::pn, *stub->entry());
duke@435 2196 __ delayed()->nop();
duke@435 2197 }
duke@435 2198
duke@435 2199 if (flags & LIR_OpArrayCopy::length_positive_check) {
duke@435 2200 // make sure length isn't negative
duke@435 2201 __ tst(length);
duke@435 2202 __ br(Assembler::less, false, Assembler::pn, *stub->entry());
duke@435 2203 __ delayed()->nop();
duke@435 2204 }
duke@435 2205
duke@435 2206 if (flags & LIR_OpArrayCopy::src_range_check) {
duke@435 2207 __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
duke@435 2208 __ add(length, src_pos, tmp);
duke@435 2209 __ cmp(tmp2, tmp);
duke@435 2210 __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
duke@435 2211 __ delayed()->nop();
duke@435 2212 }
duke@435 2213
duke@435 2214 if (flags & LIR_OpArrayCopy::dst_range_check) {
duke@435 2215 __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
duke@435 2216 __ add(length, dst_pos, tmp);
duke@435 2217 __ cmp(tmp2, tmp);
duke@435 2218 __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
duke@435 2219 __ delayed()->nop();
duke@435 2220 }
duke@435 2221
duke@435 2222 if (flags & LIR_OpArrayCopy::type_check) {
duke@435 2223 __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
duke@435 2224 __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
duke@435 2225 __ cmp(tmp, tmp2);
duke@435 2226 __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
duke@435 2227 __ delayed()->nop();
duke@435 2228 }
duke@435 2229
duke@435 2230 #ifdef ASSERT
duke@435 2231 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
duke@435 2232 // Sanity check the known type with the incoming class. For the
duke@435 2233 // primitive case the types must match exactly with src.klass and
duke@435 2234 // dst.klass each exactly matching the default type. For the
duke@435 2235 // object array case, if no type check is needed then either the
duke@435 2236 // dst type is exactly the expected type and the src type is a
duke@435 2237 // subtype which we can't check or src is the same array as dst
duke@435 2238 // but not necessarily exactly of type default_type.
duke@435 2239 Label known_ok, halt;
jrose@1424 2240 jobject2reg(op->expected_type()->constant_encoding(), tmp);
duke@435 2241 __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
duke@435 2242 if (basic_type != T_OBJECT) {
duke@435 2243 __ cmp(tmp, tmp2);
duke@435 2244 __ br(Assembler::notEqual, false, Assembler::pn, halt);
duke@435 2245 __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
duke@435 2246 __ cmp(tmp, tmp2);
duke@435 2247 __ br(Assembler::equal, false, Assembler::pn, known_ok);
duke@435 2248 __ delayed()->nop();
duke@435 2249 } else {
duke@435 2250 __ cmp(tmp, tmp2);
duke@435 2251 __ br(Assembler::equal, false, Assembler::pn, known_ok);
duke@435 2252 __ delayed()->cmp(src, dst);
duke@435 2253 __ br(Assembler::equal, false, Assembler::pn, known_ok);
duke@435 2254 __ delayed()->nop();
duke@435 2255 }
duke@435 2256 __ bind(halt);
duke@435 2257 __ stop("incorrect type information in arraycopy");
duke@435 2258 __ bind(known_ok);
duke@435 2259 }
duke@435 2260 #endif
duke@435 2261
duke@435 2262 int shift = shift_amount(basic_type);
duke@435 2263
duke@435 2264 Register src_ptr = O0;
duke@435 2265 Register dst_ptr = O1;
duke@435 2266 Register len = O2;
duke@435 2267
duke@435 2268 __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
roland@1495 2269 LP64_ONLY(__ sra(src_pos, 0, src_pos);) //higher 32bits must be null
duke@435 2270 if (shift == 0) {
duke@435 2271 __ add(src_ptr, src_pos, src_ptr);
duke@435 2272 } else {
duke@435 2273 __ sll(src_pos, shift, tmp);
duke@435 2274 __ add(src_ptr, tmp, src_ptr);
duke@435 2275 }
duke@435 2276
duke@435 2277 __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
roland@1495 2278 LP64_ONLY(__ sra(dst_pos, 0, dst_pos);) //higher 32bits must be null
duke@435 2279 if (shift == 0) {
duke@435 2280 __ add(dst_ptr, dst_pos, dst_ptr);
duke@435 2281 } else {
duke@435 2282 __ sll(dst_pos, shift, tmp);
duke@435 2283 __ add(dst_ptr, tmp, dst_ptr);
duke@435 2284 }
duke@435 2285
duke@435 2286 if (basic_type != T_OBJECT) {
duke@435 2287 if (shift == 0) {
duke@435 2288 __ mov(length, len);
duke@435 2289 } else {
duke@435 2290 __ sll(length, shift, len);
duke@435 2291 }
duke@435 2292 __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy));
duke@435 2293 } else {
duke@435 2294 // oop_arraycopy takes a length in number of elements, so don't scale it.
duke@435 2295 __ mov(length, len);
duke@435 2296 __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy));
duke@435 2297 }
duke@435 2298
duke@435 2299 __ bind(*stub->continuation());
duke@435 2300 }
duke@435 2301
duke@435 2302
duke@435 2303 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
duke@435 2304 if (dest->is_single_cpu()) {
duke@435 2305 #ifdef _LP64
duke@435 2306 if (left->type() == T_OBJECT) {
duke@435 2307 switch (code) {
duke@435 2308 case lir_shl: __ sllx (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2309 case lir_shr: __ srax (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2310 case lir_ushr: __ srl (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2311 default: ShouldNotReachHere();
duke@435 2312 }
duke@435 2313 } else
duke@435 2314 #endif
duke@435 2315 switch (code) {
duke@435 2316 case lir_shl: __ sll (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2317 case lir_shr: __ sra (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2318 case lir_ushr: __ srl (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2319 default: ShouldNotReachHere();
duke@435 2320 }
duke@435 2321 } else {
duke@435 2322 #ifdef _LP64
duke@435 2323 switch (code) {
duke@435 2324 case lir_shl: __ sllx (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
duke@435 2325 case lir_shr: __ srax (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
duke@435 2326 case lir_ushr: __ srlx (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
duke@435 2327 default: ShouldNotReachHere();
duke@435 2328 }
duke@435 2329 #else
duke@435 2330 switch (code) {
duke@435 2331 case lir_shl: __ lshl (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
duke@435 2332 case lir_shr: __ lshr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
duke@435 2333 case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
duke@435 2334 default: ShouldNotReachHere();
duke@435 2335 }
duke@435 2336 #endif
duke@435 2337 }
duke@435 2338 }
duke@435 2339
duke@435 2340
duke@435 2341 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
duke@435 2342 #ifdef _LP64
duke@435 2343 if (left->type() == T_OBJECT) {
duke@435 2344 count = count & 63; // shouldn't shift by more than sizeof(intptr_t)
duke@435 2345 Register l = left->as_register();
duke@435 2346 Register d = dest->as_register_lo();
duke@435 2347 switch (code) {
duke@435 2348 case lir_shl: __ sllx (l, count, d); break;
duke@435 2349 case lir_shr: __ srax (l, count, d); break;
duke@435 2350 case lir_ushr: __ srlx (l, count, d); break;
duke@435 2351 default: ShouldNotReachHere();
duke@435 2352 }
duke@435 2353 return;
duke@435 2354 }
duke@435 2355 #endif
duke@435 2356
duke@435 2357 if (dest->is_single_cpu()) {
duke@435 2358 count = count & 0x1F; // Java spec
duke@435 2359 switch (code) {
duke@435 2360 case lir_shl: __ sll (left->as_register(), count, dest->as_register()); break;
duke@435 2361 case lir_shr: __ sra (left->as_register(), count, dest->as_register()); break;
duke@435 2362 case lir_ushr: __ srl (left->as_register(), count, dest->as_register()); break;
duke@435 2363 default: ShouldNotReachHere();
duke@435 2364 }
duke@435 2365 } else if (dest->is_double_cpu()) {
duke@435 2366 count = count & 63; // Java spec
duke@435 2367 switch (code) {
duke@435 2368 case lir_shl: __ sllx (left->as_pointer_register(), count, dest->as_pointer_register()); break;
duke@435 2369 case lir_shr: __ srax (left->as_pointer_register(), count, dest->as_pointer_register()); break;
duke@435 2370 case lir_ushr: __ srlx (left->as_pointer_register(), count, dest->as_pointer_register()); break;
duke@435 2371 default: ShouldNotReachHere();
duke@435 2372 }
duke@435 2373 } else {
duke@435 2374 ShouldNotReachHere();
duke@435 2375 }
duke@435 2376 }
duke@435 2377
duke@435 2378
duke@435 2379 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
duke@435 2380 assert(op->tmp1()->as_register() == G1 &&
duke@435 2381 op->tmp2()->as_register() == G3 &&
duke@435 2382 op->tmp3()->as_register() == G4 &&
duke@435 2383 op->obj()->as_register() == O0 &&
duke@435 2384 op->klass()->as_register() == G5, "must be");
duke@435 2385 if (op->init_check()) {
duke@435 2386 __ ld(op->klass()->as_register(),
duke@435 2387 instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc),
duke@435 2388 op->tmp1()->as_register());
duke@435 2389 add_debug_info_for_null_check_here(op->stub()->info());
duke@435 2390 __ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized);
duke@435 2391 __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
duke@435 2392 __ delayed()->nop();
duke@435 2393 }
duke@435 2394 __ allocate_object(op->obj()->as_register(),
duke@435 2395 op->tmp1()->as_register(),
duke@435 2396 op->tmp2()->as_register(),
duke@435 2397 op->tmp3()->as_register(),
duke@435 2398 op->header_size(),
duke@435 2399 op->object_size(),
duke@435 2400 op->klass()->as_register(),
duke@435 2401 *op->stub()->entry());
duke@435 2402 __ bind(*op->stub()->continuation());
duke@435 2403 __ verify_oop(op->obj()->as_register());
duke@435 2404 }
duke@435 2405
duke@435 2406
duke@435 2407 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
duke@435 2408 assert(op->tmp1()->as_register() == G1 &&
duke@435 2409 op->tmp2()->as_register() == G3 &&
duke@435 2410 op->tmp3()->as_register() == G4 &&
duke@435 2411 op->tmp4()->as_register() == O1 &&
duke@435 2412 op->klass()->as_register() == G5, "must be");
duke@435 2413 if (UseSlowPath ||
duke@435 2414 (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
duke@435 2415 (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
never@1813 2416 __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
duke@435 2417 __ delayed()->nop();
duke@435 2418 } else {
duke@435 2419 __ allocate_array(op->obj()->as_register(),
duke@435 2420 op->len()->as_register(),
duke@435 2421 op->tmp1()->as_register(),
duke@435 2422 op->tmp2()->as_register(),
duke@435 2423 op->tmp3()->as_register(),
duke@435 2424 arrayOopDesc::header_size(op->type()),
kvn@464 2425 type2aelembytes(op->type()),
duke@435 2426 op->klass()->as_register(),
duke@435 2427 *op->stub()->entry());
duke@435 2428 }
duke@435 2429 __ bind(*op->stub()->continuation());
duke@435 2430 }
duke@435 2431
duke@435 2432
iveresov@2138 2433 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
iveresov@2138 2434 ciMethodData *md, ciProfileData *data,
iveresov@2138 2435 Register recv, Register tmp1, Label* update_done) {
iveresov@2138 2436 uint i;
iveresov@2138 2437 for (i = 0; i < VirtualCallData::row_limit(); i++) {
iveresov@2138 2438 Label next_test;
iveresov@2138 2439 // See if the receiver is receiver[n].
iveresov@2138 2440 Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
iveresov@2138 2441 mdo_offset_bias);
iveresov@2138 2442 __ ld_ptr(receiver_addr, tmp1);
iveresov@2138 2443 __ verify_oop(tmp1);
iveresov@2138 2444 __ cmp(recv, tmp1);
iveresov@2138 2445 __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
iveresov@2138 2446 __ delayed()->nop();
iveresov@2138 2447 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
iveresov@2138 2448 mdo_offset_bias);
iveresov@2138 2449 __ ld_ptr(data_addr, tmp1);
iveresov@2138 2450 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 2451 __ st_ptr(tmp1, data_addr);
iveresov@2138 2452 __ ba(false, *update_done);
iveresov@2138 2453 __ delayed()->nop();
iveresov@2138 2454 __ bind(next_test);
iveresov@2138 2455 }
iveresov@2138 2456
iveresov@2138 2457 // Didn't find receiver; find next empty slot and fill it in
iveresov@2138 2458 for (i = 0; i < VirtualCallData::row_limit(); i++) {
iveresov@2138 2459 Label next_test;
iveresov@2138 2460 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
iveresov@2138 2461 mdo_offset_bias);
iveresov@2138 2462 load(recv_addr, tmp1, T_OBJECT);
iveresov@2138 2463 __ br_notnull(tmp1, false, Assembler::pt, next_test);
iveresov@2138 2464 __ delayed()->nop();
iveresov@2138 2465 __ st_ptr(recv, recv_addr);
iveresov@2138 2466 __ set(DataLayout::counter_increment, tmp1);
iveresov@2138 2467 __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
iveresov@2138 2468 mdo_offset_bias);
iveresov@2138 2469 __ ba(false, *update_done);
iveresov@2138 2470 __ delayed()->nop();
iveresov@2138 2471 __ bind(next_test);
iveresov@2138 2472 }
iveresov@2138 2473 }
iveresov@2138 2474
iveresov@2146 2475
iveresov@2146 2476 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
iveresov@2146 2477 ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
iveresov@2146 2478 md = method->method_data();
iveresov@2146 2479 if (md == NULL) {
iveresov@2146 2480 bailout("out of memory building methodDataOop");
iveresov@2146 2481 return;
iveresov@2146 2482 }
iveresov@2146 2483 data = md->bci_to_data(bci);
iveresov@2146 2484 assert(data != NULL, "need data for checkcast");
iveresov@2146 2485 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
iveresov@2146 2486 if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
iveresov@2146 2487 // The offset is large so bias the mdo by the base of the slot so
iveresov@2146 2488 // that the ld can use simm13s to reference the slots of the data
iveresov@2146 2489 mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
iveresov@2146 2490 }
iveresov@2146 2491 }
iveresov@2146 2492
iveresov@2146 2493 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
iveresov@2138 2494 // we always need a stub for the failure case.
iveresov@2138 2495 CodeStub* stub = op->stub();
iveresov@2138 2496 Register obj = op->object()->as_register();
iveresov@2138 2497 Register k_RInfo = op->tmp1()->as_register();
iveresov@2138 2498 Register klass_RInfo = op->tmp2()->as_register();
iveresov@2138 2499 Register dst = op->result_opr()->as_register();
iveresov@2138 2500 Register Rtmp1 = op->tmp3()->as_register();
iveresov@2138 2501 ciKlass* k = op->klass();
iveresov@2138 2502
iveresov@2138 2503
iveresov@2138 2504 if (obj == k_RInfo) {
iveresov@2138 2505 k_RInfo = klass_RInfo;
iveresov@2138 2506 klass_RInfo = obj;
iveresov@2138 2507 }
iveresov@2138 2508
iveresov@2138 2509 ciMethodData* md;
iveresov@2138 2510 ciProfileData* data;
iveresov@2138 2511 int mdo_offset_bias = 0;
iveresov@2138 2512 if (op->should_profile()) {
iveresov@2138 2513 ciMethod* method = op->profiled_method();
iveresov@2138 2514 assert(method != NULL, "Should have method");
iveresov@2146 2515 setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
iveresov@2146 2516
iveresov@2146 2517 Label not_null;
iveresov@2146 2518 __ br_notnull(obj, false, Assembler::pn, not_null);
iveresov@2138 2519 __ delayed()->nop();
iveresov@2138 2520 Register mdo = k_RInfo;
iveresov@2138 2521 Register data_val = Rtmp1;
iveresov@2138 2522 jobject2reg(md->constant_encoding(), mdo);
iveresov@2138 2523 if (mdo_offset_bias > 0) {
iveresov@2138 2524 __ set(mdo_offset_bias, data_val);
iveresov@2138 2525 __ add(mdo, data_val, mdo);
iveresov@2138 2526 }
iveresov@2138 2527 Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
iveresov@2138 2528 __ ldub(flags_addr, data_val);
iveresov@2138 2529 __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
iveresov@2138 2530 __ stb(data_val, flags_addr);
iveresov@2146 2531 __ ba(false, *obj_is_null);
iveresov@2146 2532 __ delayed()->nop();
iveresov@2146 2533 __ bind(not_null);
iveresov@2146 2534 } else {
iveresov@2146 2535 __ br_null(obj, false, Assembler::pn, *obj_is_null);
iveresov@2146 2536 __ delayed()->nop();
iveresov@2138 2537 }
iveresov@2146 2538
iveresov@2146 2539 Label profile_cast_failure, profile_cast_success;
iveresov@2146 2540 Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
iveresov@2146 2541 Label *success_target = op->should_profile() ? &profile_cast_success : success;
iveresov@2138 2542
iveresov@2138 2543 // patching may screw with our temporaries on sparc,
iveresov@2138 2544 // so let's do it before loading the class
iveresov@2138 2545 if (k->is_loaded()) {
iveresov@2138 2546 jobject2reg(k->constant_encoding(), k_RInfo);
iveresov@2138 2547 } else {
iveresov@2138 2548 jobject2reg_with_patching(k_RInfo, op->info_for_patch());
iveresov@2138 2549 }
iveresov@2138 2550 assert(obj != k_RInfo, "must be different");
iveresov@2138 2551
iveresov@2138 2552 // get object class
iveresov@2138 2553 // not a safepoint as obj null check happens earlier
iveresov@2138 2554 load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
iveresov@2138 2555 if (op->fast_check()) {
iveresov@2138 2556 assert_different_registers(klass_RInfo, k_RInfo);
iveresov@2138 2557 __ cmp(k_RInfo, klass_RInfo);
iveresov@2138 2558 __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
iveresov@2138 2559 __ delayed()->nop();
iveresov@2138 2560 } else {
iveresov@2138 2561 bool need_slow_path = true;
iveresov@2138 2562 if (k->is_loaded()) {
iveresov@2138 2563 if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
iveresov@2138 2564 need_slow_path = false;
iveresov@2138 2565 // perform the fast part of the checking logic
iveresov@2138 2566 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
iveresov@2146 2567 (need_slow_path ? success_target : NULL),
iveresov@2138 2568 failure_target, NULL,
iveresov@2138 2569 RegisterOrConstant(k->super_check_offset()));
iveresov@2138 2570 } else {
iveresov@2138 2571 // perform the fast part of the checking logic
iveresov@2146 2572 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
iveresov@2138 2573 failure_target, NULL);
iveresov@2138 2574 }
iveresov@2138 2575 if (need_slow_path) {
iveresov@2138 2576 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
iveresov@2138 2577 assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
iveresov@2138 2578 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
iveresov@2138 2579 __ delayed()->nop();
iveresov@2138 2580 __ cmp(G3, 0);
iveresov@2138 2581 __ br(Assembler::equal, false, Assembler::pn, *failure_target);
iveresov@2138 2582 __ delayed()->nop();
iveresov@2146 2583 // Fall through to success case
iveresov@2138 2584 }
iveresov@2138 2585 }
iveresov@2138 2586
iveresov@2138 2587 if (op->should_profile()) {
iveresov@2138 2588 Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
iveresov@2138 2589 assert_different_registers(obj, mdo, recv, tmp1);
iveresov@2146 2590 __ bind(profile_cast_success);
iveresov@2138 2591 jobject2reg(md->constant_encoding(), mdo);
iveresov@2138 2592 if (mdo_offset_bias > 0) {
iveresov@2138 2593 __ set(mdo_offset_bias, tmp1);
iveresov@2138 2594 __ add(mdo, tmp1, mdo);
iveresov@2138 2595 }
iveresov@2138 2596 load(Address(obj, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
iveresov@2146 2597 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
iveresov@2138 2598 // Jump over the failure case
iveresov@2146 2599 __ ba(false, *success);
iveresov@2138 2600 __ delayed()->nop();
iveresov@2138 2601 // Cast failure case
iveresov@2138 2602 __ bind(profile_cast_failure);
iveresov@2138 2603 jobject2reg(md->constant_encoding(), mdo);
iveresov@2138 2604 if (mdo_offset_bias > 0) {
iveresov@2138 2605 __ set(mdo_offset_bias, tmp1);
iveresov@2138 2606 __ add(mdo, tmp1, mdo);
iveresov@2138 2607 }
iveresov@2138 2608 Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
iveresov@2138 2609 __ ld_ptr(data_addr, tmp1);
iveresov@2138 2610 __ sub(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 2611 __ st_ptr(tmp1, data_addr);
iveresov@2146 2612 __ ba(false, *failure);
iveresov@2138 2613 __ delayed()->nop();
iveresov@2138 2614 }
iveresov@2146 2615 __ ba(false, *success);
iveresov@2146 2616 __ delayed()->nop();
iveresov@2138 2617 }
iveresov@2138 2618
duke@435 2619 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
duke@435 2620 LIR_Code code = op->code();
duke@435 2621 if (code == lir_store_check) {
duke@435 2622 Register value = op->object()->as_register();
duke@435 2623 Register array = op->array()->as_register();
duke@435 2624 Register k_RInfo = op->tmp1()->as_register();
duke@435 2625 Register klass_RInfo = op->tmp2()->as_register();
duke@435 2626 Register Rtmp1 = op->tmp3()->as_register();
duke@435 2627
duke@435 2628 __ verify_oop(value);
duke@435 2629 CodeStub* stub = op->stub();
iveresov@2146 2630 // check if it needs to be profiled
iveresov@2146 2631 ciMethodData* md;
iveresov@2146 2632 ciProfileData* data;
iveresov@2146 2633 int mdo_offset_bias = 0;
iveresov@2146 2634 if (op->should_profile()) {
iveresov@2146 2635 ciMethod* method = op->profiled_method();
iveresov@2146 2636 assert(method != NULL, "Should have method");
iveresov@2146 2637 setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
iveresov@2146 2638 }
iveresov@2146 2639 Label profile_cast_success, profile_cast_failure, done;
iveresov@2146 2640 Label *success_target = op->should_profile() ? &profile_cast_success : &done;
iveresov@2146 2641 Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
iveresov@2146 2642
iveresov@2146 2643 if (op->should_profile()) {
iveresov@2146 2644 Label not_null;
iveresov@2146 2645 __ br_notnull(value, false, Assembler::pn, not_null);
iveresov@2146 2646 __ delayed()->nop();
iveresov@2146 2647 Register mdo = k_RInfo;
iveresov@2146 2648 Register data_val = Rtmp1;
iveresov@2146 2649 jobject2reg(md->constant_encoding(), mdo);
iveresov@2146 2650 if (mdo_offset_bias > 0) {
iveresov@2146 2651 __ set(mdo_offset_bias, data_val);
iveresov@2146 2652 __ add(mdo, data_val, mdo);
iveresov@2146 2653 }
iveresov@2146 2654 Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
iveresov@2146 2655 __ ldub(flags_addr, data_val);
iveresov@2146 2656 __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
iveresov@2146 2657 __ stb(data_val, flags_addr);
iveresov@2146 2658 __ ba(false, done);
iveresov@2146 2659 __ delayed()->nop();
iveresov@2146 2660 __ bind(not_null);
iveresov@2146 2661 } else {
iveresov@2146 2662 __ br_null(value, false, Assembler::pn, done);
iveresov@2146 2663 __ delayed()->nop();
iveresov@2146 2664 }
duke@435 2665 load(array, oopDesc::klass_offset_in_bytes(), k_RInfo, T_OBJECT, op->info_for_exception());
duke@435 2666 load(value, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
duke@435 2667
duke@435 2668 // get instance klass
duke@435 2669 load(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc), k_RInfo, T_OBJECT, NULL);
jrose@1079 2670 // perform the fast part of the checking logic
iveresov@2146 2671 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
jrose@1079 2672
jrose@1079 2673 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
jrose@1079 2674 assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
duke@435 2675 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
duke@435 2676 __ delayed()->nop();
duke@435 2677 __ cmp(G3, 0);
iveresov@2146 2678 __ br(Assembler::equal, false, Assembler::pn, *failure_target);
duke@435 2679 __ delayed()->nop();
iveresov@2146 2680 // fall through to the success case
iveresov@2146 2681
iveresov@2146 2682 if (op->should_profile()) {
iveresov@2146 2683 Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
iveresov@2146 2684 assert_different_registers(value, mdo, recv, tmp1);
iveresov@2146 2685 __ bind(profile_cast_success);
iveresov@2146 2686 jobject2reg(md->constant_encoding(), mdo);
iveresov@2146 2687 if (mdo_offset_bias > 0) {
iveresov@2146 2688 __ set(mdo_offset_bias, tmp1);
iveresov@2146 2689 __ add(mdo, tmp1, mdo);
iveresov@2146 2690 }
iveresov@2146 2691 load(Address(value, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
iveresov@2146 2692 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
iveresov@2146 2693 __ ba(false, done);
iveresov@2146 2694 __ delayed()->nop();
iveresov@2146 2695 // Cast failure case
iveresov@2146 2696 __ bind(profile_cast_failure);
iveresov@2146 2697 jobject2reg(md->constant_encoding(), mdo);
iveresov@2146 2698 if (mdo_offset_bias > 0) {
iveresov@2146 2699 __ set(mdo_offset_bias, tmp1);
iveresov@2146 2700 __ add(mdo, tmp1, mdo);
iveresov@2146 2701 }
iveresov@2146 2702 Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
iveresov@2146 2703 __ ld_ptr(data_addr, tmp1);
iveresov@2146 2704 __ sub(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2146 2705 __ st_ptr(tmp1, data_addr);
iveresov@2146 2706 __ ba(false, *stub->entry());
iveresov@2146 2707 __ delayed()->nop();
iveresov@2146 2708 }
duke@435 2709 __ bind(done);
iveresov@2146 2710 } else if (code == lir_checkcast) {
iveresov@2146 2711 Register obj = op->object()->as_register();
iveresov@2146 2712 Register dst = op->result_opr()->as_register();
iveresov@2146 2713 Label success;
iveresov@2146 2714 emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
iveresov@2146 2715 __ bind(success);
iveresov@2146 2716 __ mov(obj, dst);
duke@435 2717 } else if (code == lir_instanceof) {
duke@435 2718 Register obj = op->object()->as_register();
duke@435 2719 Register dst = op->result_opr()->as_register();
iveresov@2146 2720 Label success, failure, done;
iveresov@2146 2721 emit_typecheck_helper(op, &success, &failure, &failure);
iveresov@2146 2722 __ bind(failure);
iveresov@2146 2723 __ set(0, dst);
iveresov@2146 2724 __ ba(false, done);
iveresov@2146 2725 __ delayed()->nop();
iveresov@2146 2726 __ bind(success);
iveresov@2146 2727 __ set(1, dst);
iveresov@2146 2728 __ bind(done);
duke@435 2729 } else {
duke@435 2730 ShouldNotReachHere();
duke@435 2731 }
duke@435 2732
duke@435 2733 }
duke@435 2734
duke@435 2735
duke@435 2736 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
duke@435 2737 if (op->code() == lir_cas_long) {
duke@435 2738 assert(VM_Version::supports_cx8(), "wrong machine");
duke@435 2739 Register addr = op->addr()->as_pointer_register();
duke@435 2740 Register cmp_value_lo = op->cmp_value()->as_register_lo();
duke@435 2741 Register cmp_value_hi = op->cmp_value()->as_register_hi();
duke@435 2742 Register new_value_lo = op->new_value()->as_register_lo();
duke@435 2743 Register new_value_hi = op->new_value()->as_register_hi();
duke@435 2744 Register t1 = op->tmp1()->as_register();
duke@435 2745 Register t2 = op->tmp2()->as_register();
duke@435 2746 #ifdef _LP64
duke@435 2747 __ mov(cmp_value_lo, t1);
duke@435 2748 __ mov(new_value_lo, t2);
duke@435 2749 #else
duke@435 2750 // move high and low halves of long values into single registers
duke@435 2751 __ sllx(cmp_value_hi, 32, t1); // shift high half into temp reg
duke@435 2752 __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
duke@435 2753 __ or3(t1, cmp_value_lo, t1); // t1 holds 64-bit compare value
duke@435 2754 __ sllx(new_value_hi, 32, t2);
duke@435 2755 __ srl(new_value_lo, 0, new_value_lo);
duke@435 2756 __ or3(t2, new_value_lo, t2); // t2 holds 64-bit value to swap
duke@435 2757 #endif
duke@435 2758 // perform the compare and swap operation
duke@435 2759 __ casx(addr, t1, t2);
duke@435 2760 // generate condition code - if the swap succeeded, t2 ("new value" reg) was
duke@435 2761 // overwritten with the original value in "addr" and will be equal to t1.
duke@435 2762 __ cmp(t1, t2);
duke@435 2763
duke@435 2764 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
duke@435 2765 Register addr = op->addr()->as_pointer_register();
duke@435 2766 Register cmp_value = op->cmp_value()->as_register();
duke@435 2767 Register new_value = op->new_value()->as_register();
duke@435 2768 Register t1 = op->tmp1()->as_register();
duke@435 2769 Register t2 = op->tmp2()->as_register();
duke@435 2770 __ mov(cmp_value, t1);
duke@435 2771 __ mov(new_value, t2);
duke@435 2772 #ifdef _LP64
duke@435 2773 if (op->code() == lir_cas_obj) {
duke@435 2774 __ casx(addr, t1, t2);
duke@435 2775 } else
duke@435 2776 #endif
duke@435 2777 {
duke@435 2778 __ cas(addr, t1, t2);
duke@435 2779 }
duke@435 2780 __ cmp(t1, t2);
duke@435 2781 } else {
duke@435 2782 Unimplemented();
duke@435 2783 }
duke@435 2784 }
duke@435 2785
duke@435 2786 void LIR_Assembler::set_24bit_FPU() {
duke@435 2787 Unimplemented();
duke@435 2788 }
duke@435 2789
duke@435 2790
duke@435 2791 void LIR_Assembler::reset_FPU() {
duke@435 2792 Unimplemented();
duke@435 2793 }
duke@435 2794
duke@435 2795
duke@435 2796 void LIR_Assembler::breakpoint() {
duke@435 2797 __ breakpoint_trap();
duke@435 2798 }
duke@435 2799
duke@435 2800
duke@435 2801 void LIR_Assembler::push(LIR_Opr opr) {
duke@435 2802 Unimplemented();
duke@435 2803 }
duke@435 2804
duke@435 2805
duke@435 2806 void LIR_Assembler::pop(LIR_Opr opr) {
duke@435 2807 Unimplemented();
duke@435 2808 }
duke@435 2809
duke@435 2810
duke@435 2811 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
duke@435 2812 Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
duke@435 2813 Register dst = dst_opr->as_register();
duke@435 2814 Register reg = mon_addr.base();
duke@435 2815 int offset = mon_addr.disp();
duke@435 2816 // compute pointer to BasicLock
duke@435 2817 if (mon_addr.is_simm13()) {
duke@435 2818 __ add(reg, offset, dst);
duke@435 2819 } else {
duke@435 2820 __ set(offset, dst);
duke@435 2821 __ add(dst, reg, dst);
duke@435 2822 }
duke@435 2823 }
duke@435 2824
duke@435 2825
duke@435 2826 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
duke@435 2827 Register obj = op->obj_opr()->as_register();
duke@435 2828 Register hdr = op->hdr_opr()->as_register();
duke@435 2829 Register lock = op->lock_opr()->as_register();
duke@435 2830
duke@435 2831 // obj may not be an oop
duke@435 2832 if (op->code() == lir_lock) {
duke@435 2833 MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
duke@435 2834 if (UseFastLocking) {
duke@435 2835 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 2836 // add debug info for NullPointerException only if one is possible
duke@435 2837 if (op->info() != NULL) {
duke@435 2838 add_debug_info_for_null_check_here(op->info());
duke@435 2839 }
duke@435 2840 __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
duke@435 2841 } else {
duke@435 2842 // always do slow locking
duke@435 2843 // note: the slow locking code could be inlined here, however if we use
duke@435 2844 // slow locking, speed doesn't matter anyway and this solution is
duke@435 2845 // simpler and requires less duplicated code - additionally, the
duke@435 2846 // slow locking code is the same in either case which simplifies
duke@435 2847 // debugging
duke@435 2848 __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
duke@435 2849 __ delayed()->nop();
duke@435 2850 }
duke@435 2851 } else {
duke@435 2852 assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
duke@435 2853 if (UseFastLocking) {
duke@435 2854 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 2855 __ unlock_object(hdr, obj, lock, *op->stub()->entry());
duke@435 2856 } else {
duke@435 2857 // always do slow unlocking
duke@435 2858 // note: the slow unlocking code could be inlined here, however if we use
duke@435 2859 // slow unlocking, speed doesn't matter anyway and this solution is
duke@435 2860 // simpler and requires less duplicated code - additionally, the
duke@435 2861 // slow unlocking code is the same in either case which simplifies
duke@435 2862 // debugging
duke@435 2863 __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
duke@435 2864 __ delayed()->nop();
duke@435 2865 }
duke@435 2866 }
duke@435 2867 __ bind(*op->stub()->continuation());
duke@435 2868 }
duke@435 2869
duke@435 2870
duke@435 2871 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
duke@435 2872 ciMethod* method = op->profiled_method();
duke@435 2873 int bci = op->profiled_bci();
duke@435 2874
duke@435 2875 // Update counter for all call types
duke@435 2876 ciMethodData* md = method->method_data();
duke@435 2877 if (md == NULL) {
duke@435 2878 bailout("out of memory building methodDataOop");
duke@435 2879 return;
duke@435 2880 }
duke@435 2881 ciProfileData* data = md->bci_to_data(bci);
duke@435 2882 assert(data->is_CounterData(), "need CounterData for calls");
duke@435 2883 assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
iveresov@2138 2884 Register mdo = op->mdo()->as_register();
iveresov@2138 2885 #ifdef _LP64
iveresov@2138 2886 assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
iveresov@2138 2887 Register tmp1 = op->tmp1()->as_register_lo();
iveresov@2138 2888 #else
duke@435 2889 assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
duke@435 2890 Register tmp1 = op->tmp1()->as_register();
iveresov@2138 2891 #endif
jrose@1424 2892 jobject2reg(md->constant_encoding(), mdo);
duke@435 2893 int mdo_offset_bias = 0;
duke@435 2894 if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
duke@435 2895 data->size_in_bytes())) {
duke@435 2896 // The offset is large so bias the mdo by the base of the slot so
duke@435 2897 // that the ld can use simm13s to reference the slots of the data
duke@435 2898 mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
duke@435 2899 __ set(mdo_offset_bias, O7);
duke@435 2900 __ add(mdo, O7, mdo);
duke@435 2901 }
duke@435 2902
twisti@1162 2903 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
duke@435 2904 Bytecodes::Code bc = method->java_code_at_bci(bci);
duke@435 2905 // Perform additional virtual call profiling for invokevirtual and
duke@435 2906 // invokeinterface bytecodes
duke@435 2907 if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
iveresov@2138 2908 C1ProfileVirtualCalls) {
duke@435 2909 assert(op->recv()->is_single_cpu(), "recv must be allocated");
duke@435 2910 Register recv = op->recv()->as_register();
duke@435 2911 assert_different_registers(mdo, tmp1, recv);
duke@435 2912 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
duke@435 2913 ciKlass* known_klass = op->known_holder();
iveresov@2138 2914 if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
duke@435 2915 // We know the type that will be seen at this call site; we can
duke@435 2916 // statically update the methodDataOop rather than needing to do
duke@435 2917 // dynamic tests on the receiver type
duke@435 2918
duke@435 2919 // NOTE: we should probably put a lock around this search to
duke@435 2920 // avoid collisions by concurrent compilations
duke@435 2921 ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
duke@435 2922 uint i;
duke@435 2923 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 2924 ciKlass* receiver = vc_data->receiver(i);
duke@435 2925 if (known_klass->equals(receiver)) {
twisti@1162 2926 Address data_addr(mdo, md->byte_offset_of_slot(data,
twisti@1162 2927 VirtualCallData::receiver_count_offset(i)) -
duke@435 2928 mdo_offset_bias);
iveresov@2138 2929 __ ld_ptr(data_addr, tmp1);
duke@435 2930 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 2931 __ st_ptr(tmp1, data_addr);
duke@435 2932 return;
duke@435 2933 }
duke@435 2934 }
duke@435 2935
duke@435 2936 // Receiver type not found in profile data; select an empty slot
duke@435 2937
duke@435 2938 // Note that this is less efficient than it should be because it
duke@435 2939 // always does a write to the receiver part of the
duke@435 2940 // VirtualCallData rather than just the first time
duke@435 2941 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 2942 ciKlass* receiver = vc_data->receiver(i);
duke@435 2943 if (receiver == NULL) {
twisti@1162 2944 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
duke@435 2945 mdo_offset_bias);
jrose@1424 2946 jobject2reg(known_klass->constant_encoding(), tmp1);
duke@435 2947 __ st_ptr(tmp1, recv_addr);
twisti@1162 2948 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
duke@435 2949 mdo_offset_bias);
iveresov@2138 2950 __ ld_ptr(data_addr, tmp1);
duke@435 2951 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 2952 __ st_ptr(tmp1, data_addr);
duke@435 2953 return;
duke@435 2954 }
duke@435 2955 }
duke@435 2956 } else {
twisti@1162 2957 load(Address(recv, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
duke@435 2958 Label update_done;
iveresov@2138 2959 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
kvn@1686 2960 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1686 2961 // Increment total counter to indicate polymorphic case.
iveresov@2138 2962 __ ld_ptr(counter_addr, tmp1);
kvn@1686 2963 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 2964 __ st_ptr(tmp1, counter_addr);
duke@435 2965
duke@435 2966 __ bind(update_done);
duke@435 2967 }
kvn@1686 2968 } else {
kvn@1686 2969 // Static call
iveresov@2138 2970 __ ld_ptr(counter_addr, tmp1);
kvn@1686 2971 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 2972 __ st_ptr(tmp1, counter_addr);
duke@435 2973 }
duke@435 2974 }
duke@435 2975
duke@435 2976 void LIR_Assembler::align_backward_branch_target() {
kvn@1800 2977 __ align(OptoLoopAlignment);
duke@435 2978 }
duke@435 2979
duke@435 2980
duke@435 2981 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
duke@435 2982 // make sure we are expecting a delay
duke@435 2983 // this has the side effect of clearing the delay state
duke@435 2984 // so we can use _masm instead of _masm->delayed() to do the
duke@435 2985 // code generation.
duke@435 2986 __ delayed();
duke@435 2987
duke@435 2988 // make sure we only emit one instruction
duke@435 2989 int offset = code_offset();
duke@435 2990 op->delay_op()->emit_code(this);
duke@435 2991 #ifdef ASSERT
duke@435 2992 if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
duke@435 2993 op->delay_op()->print();
duke@435 2994 }
duke@435 2995 assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
duke@435 2996 "only one instruction can go in a delay slot");
duke@435 2997 #endif
duke@435 2998
duke@435 2999 // we may also be emitting the call info for the instruction
duke@435 3000 // which we are the delay slot of.
twisti@1919 3001 CodeEmitInfo* call_info = op->call_info();
duke@435 3002 if (call_info) {
duke@435 3003 add_call_info(code_offset(), call_info);
duke@435 3004 }
duke@435 3005
duke@435 3006 if (VerifyStackAtCalls) {
duke@435 3007 _masm->sub(FP, SP, O7);
duke@435 3008 _masm->cmp(O7, initial_frame_size_in_bytes());
duke@435 3009 _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
duke@435 3010 }
duke@435 3011 }
duke@435 3012
duke@435 3013
duke@435 3014 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
duke@435 3015 assert(left->is_register(), "can only handle registers");
duke@435 3016
duke@435 3017 if (left->is_single_cpu()) {
duke@435 3018 __ neg(left->as_register(), dest->as_register());
duke@435 3019 } else if (left->is_single_fpu()) {
duke@435 3020 __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
duke@435 3021 } else if (left->is_double_fpu()) {
duke@435 3022 __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
duke@435 3023 } else {
duke@435 3024 assert (left->is_double_cpu(), "Must be a long");
duke@435 3025 Register Rlow = left->as_register_lo();
duke@435 3026 Register Rhi = left->as_register_hi();
duke@435 3027 #ifdef _LP64
duke@435 3028 __ sub(G0, Rlow, dest->as_register_lo());
duke@435 3029 #else
duke@435 3030 __ subcc(G0, Rlow, dest->as_register_lo());
duke@435 3031 __ subc (G0, Rhi, dest->as_register_hi());
duke@435 3032 #endif
duke@435 3033 }
duke@435 3034 }
duke@435 3035
duke@435 3036
duke@435 3037 void LIR_Assembler::fxch(int i) {
duke@435 3038 Unimplemented();
duke@435 3039 }
duke@435 3040
duke@435 3041 void LIR_Assembler::fld(int i) {
duke@435 3042 Unimplemented();
duke@435 3043 }
duke@435 3044
duke@435 3045 void LIR_Assembler::ffree(int i) {
duke@435 3046 Unimplemented();
duke@435 3047 }
duke@435 3048
duke@435 3049 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
duke@435 3050 const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 3051
duke@435 3052 // if tmp is invalid, then the function being called doesn't destroy the thread
duke@435 3053 if (tmp->is_valid()) {
duke@435 3054 __ save_thread(tmp->as_register());
duke@435 3055 }
duke@435 3056 __ call(dest, relocInfo::runtime_call_type);
duke@435 3057 __ delayed()->nop();
duke@435 3058 if (info != NULL) {
duke@435 3059 add_call_info_here(info);
duke@435 3060 }
duke@435 3061 if (tmp->is_valid()) {
duke@435 3062 __ restore_thread(tmp->as_register());
duke@435 3063 }
duke@435 3064
duke@435 3065 #ifdef ASSERT
duke@435 3066 __ verify_thread();
duke@435 3067 #endif // ASSERT
duke@435 3068 }
duke@435 3069
duke@435 3070
duke@435 3071 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
duke@435 3072 #ifdef _LP64
duke@435 3073 ShouldNotReachHere();
duke@435 3074 #endif
duke@435 3075
duke@435 3076 NEEDS_CLEANUP;
duke@435 3077 if (type == T_LONG) {
duke@435 3078 LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
duke@435 3079
duke@435 3080 // (extended to allow indexed as well as constant displaced for JSR-166)
duke@435 3081 Register idx = noreg; // contains either constant offset or index
duke@435 3082
duke@435 3083 int disp = mem_addr->disp();
duke@435 3084 if (mem_addr->index() == LIR_OprFact::illegalOpr) {
duke@435 3085 if (!Assembler::is_simm13(disp)) {
duke@435 3086 idx = O7;
duke@435 3087 __ set(disp, idx);
duke@435 3088 }
duke@435 3089 } else {
duke@435 3090 assert(disp == 0, "not both indexed and disp");
duke@435 3091 idx = mem_addr->index()->as_register();
duke@435 3092 }
duke@435 3093
duke@435 3094 int null_check_offset = -1;
duke@435 3095
duke@435 3096 Register base = mem_addr->base()->as_register();
duke@435 3097 if (src->is_register() && dest->is_address()) {
duke@435 3098 // G4 is high half, G5 is low half
duke@435 3099 if (VM_Version::v9_instructions_work()) {
duke@435 3100 // clear the top bits of G5, and scale up G4
duke@435 3101 __ srl (src->as_register_lo(), 0, G5);
duke@435 3102 __ sllx(src->as_register_hi(), 32, G4);
duke@435 3103 // combine the two halves into the 64 bits of G4
duke@435 3104 __ or3(G4, G5, G4);
duke@435 3105 null_check_offset = __ offset();
duke@435 3106 if (idx == noreg) {
duke@435 3107 __ stx(G4, base, disp);
duke@435 3108 } else {
duke@435 3109 __ stx(G4, base, idx);
duke@435 3110 }
duke@435 3111 } else {
duke@435 3112 __ mov (src->as_register_hi(), G4);
duke@435 3113 __ mov (src->as_register_lo(), G5);
duke@435 3114 null_check_offset = __ offset();
duke@435 3115 if (idx == noreg) {
duke@435 3116 __ std(G4, base, disp);
duke@435 3117 } else {
duke@435 3118 __ std(G4, base, idx);
duke@435 3119 }
duke@435 3120 }
duke@435 3121 } else if (src->is_address() && dest->is_register()) {
duke@435 3122 null_check_offset = __ offset();
duke@435 3123 if (VM_Version::v9_instructions_work()) {
duke@435 3124 if (idx == noreg) {
duke@435 3125 __ ldx(base, disp, G5);
duke@435 3126 } else {
duke@435 3127 __ ldx(base, idx, G5);
duke@435 3128 }
duke@435 3129 __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
duke@435 3130 __ mov (G5, dest->as_register_lo()); // copy low half into lo
duke@435 3131 } else {
duke@435 3132 if (idx == noreg) {
duke@435 3133 __ ldd(base, disp, G4);
duke@435 3134 } else {
duke@435 3135 __ ldd(base, idx, G4);
duke@435 3136 }
duke@435 3137 // G4 is high half, G5 is low half
duke@435 3138 __ mov (G4, dest->as_register_hi());
duke@435 3139 __ mov (G5, dest->as_register_lo());
duke@435 3140 }
duke@435 3141 } else {
duke@435 3142 Unimplemented();
duke@435 3143 }
duke@435 3144 if (info != NULL) {
duke@435 3145 add_debug_info_for_null_check(null_check_offset, info);
duke@435 3146 }
duke@435 3147
duke@435 3148 } else {
duke@435 3149 // use normal move for all other volatiles since they don't need
duke@435 3150 // special handling to remain atomic.
duke@435 3151 move_op(src, dest, type, lir_patch_none, info, false, false);
duke@435 3152 }
duke@435 3153 }
duke@435 3154
duke@435 3155 void LIR_Assembler::membar() {
duke@435 3156 // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
duke@435 3157 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
duke@435 3158 }
duke@435 3159
duke@435 3160 void LIR_Assembler::membar_acquire() {
duke@435 3161 // no-op on TSO
duke@435 3162 }
duke@435 3163
duke@435 3164 void LIR_Assembler::membar_release() {
duke@435 3165 // no-op on TSO
duke@435 3166 }
duke@435 3167
iveresov@2138 3168 // Pack two sequential registers containing 32 bit values
duke@435 3169 // into a single 64 bit register.
iveresov@2138 3170 // src and src->successor() are packed into dst
iveresov@2138 3171 // src and dst may be the same register.
iveresov@2138 3172 // Note: src is destroyed
iveresov@2138 3173 void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
iveresov@2138 3174 Register rs = src->as_register();
iveresov@2138 3175 Register rd = dst->as_register_lo();
duke@435 3176 __ sllx(rs, 32, rs);
duke@435 3177 __ srl(rs->successor(), 0, rs->successor());
duke@435 3178 __ or3(rs, rs->successor(), rd);
duke@435 3179 }
duke@435 3180
iveresov@2138 3181 // Unpack a 64 bit value in a register into
duke@435 3182 // two sequential registers.
iveresov@2138 3183 // src is unpacked into dst and dst->successor()
iveresov@2138 3184 void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
iveresov@2138 3185 Register rs = src->as_register_lo();
iveresov@2138 3186 Register rd = dst->as_register_hi();
iveresov@2138 3187 assert_different_registers(rs, rd, rd->successor());
iveresov@2138 3188 __ srlx(rs, 32, rd);
iveresov@2138 3189 __ srl (rs, 0, rd->successor());
duke@435 3190 }
duke@435 3191
duke@435 3192
duke@435 3193 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
duke@435 3194 LIR_Address* addr = addr_opr->as_address_ptr();
duke@435 3195 assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
iveresov@2138 3196
iveresov@2138 3197 __ add(addr->base()->as_pointer_register(), addr->disp(), dest->as_pointer_register());
duke@435 3198 }
duke@435 3199
duke@435 3200
duke@435 3201 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
duke@435 3202 assert(result_reg->is_register(), "check");
duke@435 3203 __ mov(G2_thread, result_reg->as_register());
duke@435 3204 }
duke@435 3205
duke@435 3206
duke@435 3207 void LIR_Assembler::peephole(LIR_List* lir) {
duke@435 3208 LIR_OpList* inst = lir->instructions_list();
duke@435 3209 for (int i = 0; i < inst->length(); i++) {
duke@435 3210 LIR_Op* op = inst->at(i);
duke@435 3211 switch (op->code()) {
duke@435 3212 case lir_cond_float_branch:
duke@435 3213 case lir_branch: {
duke@435 3214 LIR_OpBranch* branch = op->as_OpBranch();
duke@435 3215 assert(branch->info() == NULL, "shouldn't be state on branches anymore");
duke@435 3216 LIR_Op* delay_op = NULL;
duke@435 3217 // we'd like to be able to pull following instructions into
duke@435 3218 // this slot but we don't know enough to do it safely yet so
duke@435 3219 // only optimize block to block control flow.
duke@435 3220 if (LIRFillDelaySlots && branch->block()) {
duke@435 3221 LIR_Op* prev = inst->at(i - 1);
duke@435 3222 if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
duke@435 3223 // swap previous instruction into delay slot
duke@435 3224 inst->at_put(i - 1, op);
duke@435 3225 inst->at_put(i, new LIR_OpDelay(prev, op->info()));
duke@435 3226 #ifndef PRODUCT
duke@435 3227 if (LIRTracePeephole) {
duke@435 3228 tty->print_cr("delayed");
duke@435 3229 inst->at(i - 1)->print();
duke@435 3230 inst->at(i)->print();
twisti@1919 3231 tty->cr();
duke@435 3232 }
duke@435 3233 #endif
duke@435 3234 continue;
duke@435 3235 }
duke@435 3236 }
duke@435 3237
duke@435 3238 if (!delay_op) {
duke@435 3239 delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
duke@435 3240 }
duke@435 3241 inst->insert_before(i + 1, delay_op);
duke@435 3242 break;
duke@435 3243 }
duke@435 3244 case lir_static_call:
duke@435 3245 case lir_virtual_call:
duke@435 3246 case lir_icvirtual_call:
twisti@1919 3247 case lir_optvirtual_call:
twisti@1919 3248 case lir_dynamic_call: {
duke@435 3249 LIR_Op* prev = inst->at(i - 1);
duke@435 3250 if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
duke@435 3251 (op->code() != lir_virtual_call ||
duke@435 3252 !prev->result_opr()->is_single_cpu() ||
duke@435 3253 prev->result_opr()->as_register() != O0) &&
duke@435 3254 LIR_Assembler::is_single_instruction(prev)) {
duke@435 3255 // Only moves without info can be put into the delay slot.
duke@435 3256 // Also don't allow the setup of the receiver in the delay
duke@435 3257 // slot for vtable calls.
duke@435 3258 inst->at_put(i - 1, op);
duke@435 3259 inst->at_put(i, new LIR_OpDelay(prev, op->info()));
duke@435 3260 #ifndef PRODUCT
duke@435 3261 if (LIRTracePeephole) {
duke@435 3262 tty->print_cr("delayed");
duke@435 3263 inst->at(i - 1)->print();
duke@435 3264 inst->at(i)->print();
twisti@1919 3265 tty->cr();
duke@435 3266 }
duke@435 3267 #endif
iveresov@2138 3268 } else {
iveresov@2138 3269 LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
iveresov@2138 3270 inst->insert_before(i + 1, delay_op);
iveresov@2138 3271 i++;
duke@435 3272 }
duke@435 3273
iveresov@2138 3274 #if defined(TIERED) && !defined(_LP64)
iveresov@2138 3275 // fixup the return value from G1 to O0/O1 for long returns.
iveresov@2138 3276 // It's done here instead of in LIRGenerator because there's
iveresov@2138 3277 // such a mismatch between the single reg and double reg
iveresov@2138 3278 // calling convention.
iveresov@2138 3279 LIR_OpJavaCall* callop = op->as_OpJavaCall();
iveresov@2138 3280 if (callop->result_opr() == FrameMap::out_long_opr) {
iveresov@2138 3281 LIR_OpJavaCall* call;
iveresov@2138 3282 LIR_OprList* arguments = new LIR_OprList(callop->arguments()->length());
iveresov@2138 3283 for (int a = 0; a < arguments->length(); a++) {
iveresov@2138 3284 arguments[a] = callop->arguments()[a];
iveresov@2138 3285 }
iveresov@2138 3286 if (op->code() == lir_virtual_call) {
iveresov@2138 3287 call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
iveresov@2138 3288 callop->vtable_offset(), arguments, callop->info());
iveresov@2138 3289 } else {
iveresov@2138 3290 call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
iveresov@2138 3291 callop->addr(), arguments, callop->info());
iveresov@2138 3292 }
iveresov@2138 3293 inst->at_put(i - 1, call);
iveresov@2138 3294 inst->insert_before(i + 1, new LIR_Op1(lir_unpack64, FrameMap::g1_long_single_opr, callop->result_opr(),
iveresov@2138 3295 T_LONG, lir_patch_none, NULL));
iveresov@2138 3296 }
iveresov@2138 3297 #endif
duke@435 3298 break;
duke@435 3299 }
duke@435 3300 }
duke@435 3301 }
duke@435 3302 }
duke@435 3303
duke@435 3304
duke@435 3305
duke@435 3306
duke@435 3307 #undef __

mercurial