src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp

Tue, 23 Nov 2010 13:22:55 -0800

author
stefank
date
Tue, 23 Nov 2010 13:22:55 -0800
changeset 2314
f95d63e2154a
parent 2185
a3f7f95b0165
child 2344
ac637b7220d1
permissions
-rw-r--r--

6989984: Use standard include model for Hospot
Summary: Replaced MakeDeps and the includeDB files with more standardized solutions.
Reviewed-by: coleenp, kvn, kamg

duke@435 1 /*
trims@1907 2 * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "c1/c1_Compilation.hpp"
stefank@2314 27 #include "c1/c1_LIRAssembler.hpp"
stefank@2314 28 #include "c1/c1_MacroAssembler.hpp"
stefank@2314 29 #include "c1/c1_Runtime1.hpp"
stefank@2314 30 #include "c1/c1_ValueStack.hpp"
stefank@2314 31 #include "ci/ciArrayKlass.hpp"
stefank@2314 32 #include "ci/ciInstance.hpp"
stefank@2314 33 #include "gc_interface/collectedHeap.hpp"
stefank@2314 34 #include "memory/barrierSet.hpp"
stefank@2314 35 #include "memory/cardTableModRefBS.hpp"
stefank@2314 36 #include "nativeInst_sparc.hpp"
stefank@2314 37 #include "oops/objArrayKlass.hpp"
stefank@2314 38 #include "runtime/sharedRuntime.hpp"
duke@435 39
duke@435 40 #define __ _masm->
duke@435 41
duke@435 42
duke@435 43 //------------------------------------------------------------
duke@435 44
duke@435 45
duke@435 46 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
duke@435 47 if (opr->is_constant()) {
duke@435 48 LIR_Const* constant = opr->as_constant_ptr();
duke@435 49 switch (constant->type()) {
duke@435 50 case T_INT: {
duke@435 51 jint value = constant->as_jint();
duke@435 52 return Assembler::is_simm13(value);
duke@435 53 }
duke@435 54
duke@435 55 default:
duke@435 56 return false;
duke@435 57 }
duke@435 58 }
duke@435 59 return false;
duke@435 60 }
duke@435 61
duke@435 62
duke@435 63 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
duke@435 64 switch (op->code()) {
duke@435 65 case lir_null_check:
duke@435 66 return true;
duke@435 67
duke@435 68
duke@435 69 case lir_add:
duke@435 70 case lir_ushr:
duke@435 71 case lir_shr:
duke@435 72 case lir_shl:
duke@435 73 // integer shifts and adds are always one instruction
duke@435 74 return op->result_opr()->is_single_cpu();
duke@435 75
duke@435 76
duke@435 77 case lir_move: {
duke@435 78 LIR_Op1* op1 = op->as_Op1();
duke@435 79 LIR_Opr src = op1->in_opr();
duke@435 80 LIR_Opr dst = op1->result_opr();
duke@435 81
duke@435 82 if (src == dst) {
duke@435 83 NEEDS_CLEANUP;
duke@435 84 // this works around a problem where moves with the same src and dst
duke@435 85 // end up in the delay slot and then the assembler swallows the mov
duke@435 86 // since it has no effect and then it complains because the delay slot
duke@435 87 // is empty. returning false stops the optimizer from putting this in
duke@435 88 // the delay slot
duke@435 89 return false;
duke@435 90 }
duke@435 91
duke@435 92 // don't put moves involving oops into the delay slot since the VerifyOops code
duke@435 93 // will make it much larger than a single instruction.
duke@435 94 if (VerifyOops) {
duke@435 95 return false;
duke@435 96 }
duke@435 97
duke@435 98 if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
duke@435 99 ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
duke@435 100 return false;
duke@435 101 }
duke@435 102
duke@435 103 if (dst->is_register()) {
duke@435 104 if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
duke@435 105 return !PatchALot;
duke@435 106 } else if (src->is_single_stack()) {
duke@435 107 return true;
duke@435 108 }
duke@435 109 }
duke@435 110
duke@435 111 if (src->is_register()) {
duke@435 112 if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
duke@435 113 return !PatchALot;
duke@435 114 } else if (dst->is_single_stack()) {
duke@435 115 return true;
duke@435 116 }
duke@435 117 }
duke@435 118
duke@435 119 if (dst->is_register() &&
duke@435 120 ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
duke@435 121 (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
duke@435 122 return true;
duke@435 123 }
duke@435 124
duke@435 125 return false;
duke@435 126 }
duke@435 127
duke@435 128 default:
duke@435 129 return false;
duke@435 130 }
duke@435 131 ShouldNotReachHere();
duke@435 132 }
duke@435 133
duke@435 134
duke@435 135 LIR_Opr LIR_Assembler::receiverOpr() {
duke@435 136 return FrameMap::O0_oop_opr;
duke@435 137 }
duke@435 138
duke@435 139
duke@435 140 LIR_Opr LIR_Assembler::incomingReceiverOpr() {
duke@435 141 return FrameMap::I0_oop_opr;
duke@435 142 }
duke@435 143
duke@435 144
duke@435 145 LIR_Opr LIR_Assembler::osrBufferPointer() {
duke@435 146 return FrameMap::I0_opr;
duke@435 147 }
duke@435 148
duke@435 149
duke@435 150 int LIR_Assembler::initial_frame_size_in_bytes() {
duke@435 151 return in_bytes(frame_map()->framesize_in_bytes());
duke@435 152 }
duke@435 153
duke@435 154
duke@435 155 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
duke@435 156 // we fetch the class of the receiver (O0) and compare it with the cached class.
duke@435 157 // If they do not match we jump to slow case.
duke@435 158 int LIR_Assembler::check_icache() {
duke@435 159 int offset = __ offset();
duke@435 160 __ inline_cache_check(O0, G5_inline_cache_reg);
duke@435 161 return offset;
duke@435 162 }
duke@435 163
duke@435 164
duke@435 165 void LIR_Assembler::osr_entry() {
duke@435 166 // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
duke@435 167 //
duke@435 168 // 1. Create a new compiled activation.
duke@435 169 // 2. Initialize local variables in the compiled activation. The expression stack must be empty
duke@435 170 // at the osr_bci; it is not initialized.
duke@435 171 // 3. Jump to the continuation address in compiled code to resume execution.
duke@435 172
duke@435 173 // OSR entry point
duke@435 174 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
duke@435 175 BlockBegin* osr_entry = compilation()->hir()->osr_entry();
duke@435 176 ValueStack* entry_state = osr_entry->end()->state();
duke@435 177 int number_of_locks = entry_state->locks_size();
duke@435 178
duke@435 179 // Create a frame for the compiled activation.
duke@435 180 __ build_frame(initial_frame_size_in_bytes());
duke@435 181
duke@435 182 // OSR buffer is
duke@435 183 //
duke@435 184 // locals[nlocals-1..0]
duke@435 185 // monitors[number_of_locks-1..0]
duke@435 186 //
duke@435 187 // locals is a direct copy of the interpreter frame so in the osr buffer
duke@435 188 // so first slot in the local array is the last local from the interpreter
duke@435 189 // and last slot is local[0] (receiver) from the interpreter
duke@435 190 //
duke@435 191 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
duke@435 192 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
duke@435 193 // in the interpreter frame (the method lock if a sync method)
duke@435 194
duke@435 195 // Initialize monitors in the compiled activation.
duke@435 196 // I0: pointer to osr buffer
duke@435 197 //
duke@435 198 // All other registers are dead at this point and the locals will be
duke@435 199 // copied into place by code emitted in the IR.
duke@435 200
duke@435 201 Register OSR_buf = osrBufferPointer()->as_register();
duke@435 202 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
duke@435 203 int monitor_offset = BytesPerWord * method()->max_locals() +
roland@1495 204 (2 * BytesPerWord) * (number_of_locks - 1);
roland@1495 205 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
roland@1495 206 // the OSR buffer using 2 word entries: first the lock and then
roland@1495 207 // the oop.
duke@435 208 for (int i = 0; i < number_of_locks; i++) {
roland@1495 209 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
duke@435 210 #ifdef ASSERT
duke@435 211 // verify the interpreter's monitor has a non-null object
duke@435 212 {
duke@435 213 Label L;
roland@1495 214 __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
duke@435 215 __ cmp(G0, O7);
duke@435 216 __ br(Assembler::notEqual, false, Assembler::pt, L);
duke@435 217 __ delayed()->nop();
duke@435 218 __ stop("locked object is NULL");
duke@435 219 __ bind(L);
duke@435 220 }
duke@435 221 #endif // ASSERT
duke@435 222 // Copy the lock field into the compiled activation.
roland@1495 223 __ ld_ptr(OSR_buf, slot_offset + 0, O7);
duke@435 224 __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
roland@1495 225 __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
duke@435 226 __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
duke@435 227 }
duke@435 228 }
duke@435 229 }
duke@435 230
duke@435 231
duke@435 232 // Optimized Library calls
duke@435 233 // This is the fast version of java.lang.String.compare; it has not
duke@435 234 // OSR-entry and therefore, we generate a slow version for OSR's
duke@435 235 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
duke@435 236 Register str0 = left->as_register();
duke@435 237 Register str1 = right->as_register();
duke@435 238
duke@435 239 Label Ldone;
duke@435 240
duke@435 241 Register result = dst->as_register();
duke@435 242 {
duke@435 243 // Get a pointer to the first character of string0 in tmp0 and get string0.count in str0
duke@435 244 // Get a pointer to the first character of string1 in tmp1 and get string1.count in str1
duke@435 245 // Also, get string0.count-string1.count in o7 and get the condition code set
duke@435 246 // Note: some instructions have been hoisted for better instruction scheduling
duke@435 247
duke@435 248 Register tmp0 = L0;
duke@435 249 Register tmp1 = L1;
duke@435 250 Register tmp2 = L2;
duke@435 251
duke@435 252 int value_offset = java_lang_String:: value_offset_in_bytes(); // char array
duke@435 253 int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
duke@435 254 int count_offset = java_lang_String:: count_offset_in_bytes();
duke@435 255
twisti@1162 256 __ ld_ptr(str0, value_offset, tmp0);
twisti@1162 257 __ ld(str0, offset_offset, tmp2);
duke@435 258 __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
twisti@1162 259 __ ld(str0, count_offset, str0);
duke@435 260 __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
duke@435 261
duke@435 262 // str1 may be null
duke@435 263 add_debug_info_for_null_check_here(info);
duke@435 264
twisti@1162 265 __ ld_ptr(str1, value_offset, tmp1);
duke@435 266 __ add(tmp0, tmp2, tmp0);
duke@435 267
twisti@1162 268 __ ld(str1, offset_offset, tmp2);
duke@435 269 __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
twisti@1162 270 __ ld(str1, count_offset, str1);
duke@435 271 __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
duke@435 272 __ subcc(str0, str1, O7);
duke@435 273 __ add(tmp1, tmp2, tmp1);
duke@435 274 }
duke@435 275
duke@435 276 {
duke@435 277 // Compute the minimum of the string lengths, scale it and store it in limit
duke@435 278 Register count0 = I0;
duke@435 279 Register count1 = I1;
duke@435 280 Register limit = L3;
duke@435 281
duke@435 282 Label Lskip;
duke@435 283 __ sll(count0, exact_log2(sizeof(jchar)), limit); // string0 is shorter
duke@435 284 __ br(Assembler::greater, true, Assembler::pt, Lskip);
duke@435 285 __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit); // string1 is shorter
duke@435 286 __ bind(Lskip);
duke@435 287
duke@435 288 // If either string is empty (or both of them) the result is the difference in lengths
duke@435 289 __ cmp(limit, 0);
duke@435 290 __ br(Assembler::equal, true, Assembler::pn, Ldone);
duke@435 291 __ delayed()->mov(O7, result); // result is difference in lengths
duke@435 292 }
duke@435 293
duke@435 294 {
duke@435 295 // Neither string is empty
duke@435 296 Label Lloop;
duke@435 297
duke@435 298 Register base0 = L0;
duke@435 299 Register base1 = L1;
duke@435 300 Register chr0 = I0;
duke@435 301 Register chr1 = I1;
duke@435 302 Register limit = L3;
duke@435 303
duke@435 304 // Shift base0 and base1 to the end of the arrays, negate limit
duke@435 305 __ add(base0, limit, base0);
duke@435 306 __ add(base1, limit, base1);
duke@435 307 __ neg(limit); // limit = -min{string0.count, strin1.count}
duke@435 308
duke@435 309 __ lduh(base0, limit, chr0);
duke@435 310 __ bind(Lloop);
duke@435 311 __ lduh(base1, limit, chr1);
duke@435 312 __ subcc(chr0, chr1, chr0);
duke@435 313 __ br(Assembler::notZero, false, Assembler::pn, Ldone);
duke@435 314 assert(chr0 == result, "result must be pre-placed");
duke@435 315 __ delayed()->inccc(limit, sizeof(jchar));
duke@435 316 __ br(Assembler::notZero, true, Assembler::pt, Lloop);
duke@435 317 __ delayed()->lduh(base0, limit, chr0);
duke@435 318 }
duke@435 319
duke@435 320 // If strings are equal up to min length, return the length difference.
duke@435 321 __ mov(O7, result);
duke@435 322
duke@435 323 // Otherwise, return the difference between the first mismatched chars.
duke@435 324 __ bind(Ldone);
duke@435 325 }
duke@435 326
duke@435 327
duke@435 328 // --------------------------------------------------------------------------------------------
duke@435 329
duke@435 330 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
duke@435 331 if (!GenerateSynchronizationCode) return;
duke@435 332
duke@435 333 Register obj_reg = obj_opr->as_register();
duke@435 334 Register lock_reg = lock_opr->as_register();
duke@435 335
duke@435 336 Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
duke@435 337 Register reg = mon_addr.base();
duke@435 338 int offset = mon_addr.disp();
duke@435 339 // compute pointer to BasicLock
duke@435 340 if (mon_addr.is_simm13()) {
duke@435 341 __ add(reg, offset, lock_reg);
duke@435 342 }
duke@435 343 else {
duke@435 344 __ set(offset, lock_reg);
duke@435 345 __ add(reg, lock_reg, lock_reg);
duke@435 346 }
duke@435 347 // unlock object
duke@435 348 MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
duke@435 349 // _slow_case_stubs->append(slow_case);
duke@435 350 // temporary fix: must be created after exceptionhandler, therefore as call stub
duke@435 351 _slow_case_stubs->append(slow_case);
duke@435 352 if (UseFastLocking) {
duke@435 353 // try inlined fast unlocking first, revert to slow locking if it fails
duke@435 354 // note: lock_reg points to the displaced header since the displaced header offset is 0!
duke@435 355 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 356 __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
duke@435 357 } else {
duke@435 358 // always do slow unlocking
duke@435 359 // note: the slow unlocking code could be inlined here, however if we use
duke@435 360 // slow unlocking, speed doesn't matter anyway and this solution is
duke@435 361 // simpler and requires less duplicated code - additionally, the
duke@435 362 // slow unlocking code is the same in either case which simplifies
duke@435 363 // debugging
duke@435 364 __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
duke@435 365 __ delayed()->nop();
duke@435 366 }
duke@435 367 // done
duke@435 368 __ bind(*slow_case->continuation());
duke@435 369 }
duke@435 370
duke@435 371
twisti@1639 372 int LIR_Assembler::emit_exception_handler() {
duke@435 373 // if the last instruction is a call (typically to do a throw which
duke@435 374 // is coming at the end after block reordering) the return address
duke@435 375 // must still point into the code area in order to avoid assertion
duke@435 376 // failures when searching for the corresponding bci => add a nop
duke@435 377 // (was bug 5/14/1999 - gri)
duke@435 378 __ nop();
duke@435 379
duke@435 380 // generate code for exception handler
duke@435 381 ciMethod* method = compilation()->method();
duke@435 382
duke@435 383 address handler_base = __ start_a_stub(exception_handler_size);
duke@435 384
duke@435 385 if (handler_base == NULL) {
duke@435 386 // not enough space left for the handler
duke@435 387 bailout("exception handler overflow");
twisti@1639 388 return -1;
duke@435 389 }
twisti@1639 390
duke@435 391 int offset = code_offset();
duke@435 392
twisti@1730 393 __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
duke@435 394 __ delayed()->nop();
duke@435 395 debug_only(__ stop("should have gone to the caller");)
duke@435 396 assert(code_offset() - offset <= exception_handler_size, "overflow");
duke@435 397 __ end_a_stub();
twisti@1639 398
twisti@1639 399 return offset;
duke@435 400 }
duke@435 401
twisti@1639 402
never@1813 403 // Emit the code to remove the frame from the stack in the exception
never@1813 404 // unwind path.
never@1813 405 int LIR_Assembler::emit_unwind_handler() {
never@1813 406 #ifndef PRODUCT
never@1813 407 if (CommentedAssembly) {
never@1813 408 _masm->block_comment("Unwind handler");
never@1813 409 }
never@1813 410 #endif
never@1813 411
never@1813 412 int offset = code_offset();
never@1813 413
never@1813 414 // Fetch the exception from TLS and clear out exception related thread state
never@1813 415 __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
never@1813 416 __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
never@1813 417 __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
never@1813 418
never@1813 419 __ bind(_unwind_handler_entry);
never@1813 420 __ verify_not_null_oop(O0);
never@1813 421 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 422 __ mov(O0, I0); // Preserve the exception
never@1813 423 }
never@1813 424
never@1813 425 // Preform needed unlocking
never@1813 426 MonitorExitStub* stub = NULL;
never@1813 427 if (method()->is_synchronized()) {
never@1813 428 monitor_address(0, FrameMap::I1_opr);
never@1813 429 stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
never@1813 430 __ unlock_object(I3, I2, I1, *stub->entry());
never@1813 431 __ bind(*stub->continuation());
never@1813 432 }
never@1813 433
never@1813 434 if (compilation()->env()->dtrace_method_probes()) {
never@2185 435 __ mov(G2_thread, O0);
never@2185 436 jobject2reg(method()->constant_encoding(), O1);
never@1813 437 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
never@1813 438 __ delayed()->nop();
never@1813 439 }
never@1813 440
never@1813 441 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 442 __ mov(I0, O0); // Restore the exception
never@1813 443 }
never@1813 444
never@1813 445 // dispatch to the unwind logic
never@1813 446 __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
never@1813 447 __ delayed()->nop();
never@1813 448
never@1813 449 // Emit the slow path assembly
never@1813 450 if (stub != NULL) {
never@1813 451 stub->emit_code(this);
never@1813 452 }
never@1813 453
never@1813 454 return offset;
never@1813 455 }
never@1813 456
never@1813 457
twisti@1639 458 int LIR_Assembler::emit_deopt_handler() {
duke@435 459 // if the last instruction is a call (typically to do a throw which
duke@435 460 // is coming at the end after block reordering) the return address
duke@435 461 // must still point into the code area in order to avoid assertion
duke@435 462 // failures when searching for the corresponding bci => add a nop
duke@435 463 // (was bug 5/14/1999 - gri)
duke@435 464 __ nop();
duke@435 465
duke@435 466 // generate code for deopt handler
duke@435 467 ciMethod* method = compilation()->method();
duke@435 468 address handler_base = __ start_a_stub(deopt_handler_size);
duke@435 469 if (handler_base == NULL) {
duke@435 470 // not enough space left for the handler
duke@435 471 bailout("deopt handler overflow");
twisti@1639 472 return -1;
duke@435 473 }
twisti@1639 474
duke@435 475 int offset = code_offset();
twisti@1162 476 AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
twisti@1162 477 __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
duke@435 478 __ delayed()->nop();
duke@435 479 assert(code_offset() - offset <= deopt_handler_size, "overflow");
duke@435 480 debug_only(__ stop("should have gone to the caller");)
duke@435 481 __ end_a_stub();
twisti@1639 482
twisti@1639 483 return offset;
duke@435 484 }
duke@435 485
duke@435 486
duke@435 487 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
duke@435 488 if (o == NULL) {
duke@435 489 __ set(NULL_WORD, reg);
duke@435 490 } else {
duke@435 491 int oop_index = __ oop_recorder()->find_index(o);
duke@435 492 RelocationHolder rspec = oop_Relocation::spec(oop_index);
duke@435 493 __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
duke@435 494 }
duke@435 495 }
duke@435 496
duke@435 497
duke@435 498 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
duke@435 499 // Allocate a new index in oop table to hold the oop once it's been patched
duke@435 500 int oop_index = __ oop_recorder()->allocate_index((jobject)NULL);
duke@435 501 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index);
duke@435 502
twisti@1162 503 AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
twisti@1162 504 assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
duke@435 505 // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
duke@435 506 // NULL will be dynamically patched later and the patched value may be large. We must
duke@435 507 // therefore generate the sethi/add as a placeholders
twisti@1162 508 __ patchable_set(addrlit, reg);
duke@435 509
duke@435 510 patching_epilog(patch, lir_patch_normal, reg, info);
duke@435 511 }
duke@435 512
duke@435 513
duke@435 514 void LIR_Assembler::emit_op3(LIR_Op3* op) {
duke@435 515 Register Rdividend = op->in_opr1()->as_register();
duke@435 516 Register Rdivisor = noreg;
duke@435 517 Register Rscratch = op->in_opr3()->as_register();
duke@435 518 Register Rresult = op->result_opr()->as_register();
duke@435 519 int divisor = -1;
duke@435 520
duke@435 521 if (op->in_opr2()->is_register()) {
duke@435 522 Rdivisor = op->in_opr2()->as_register();
duke@435 523 } else {
duke@435 524 divisor = op->in_opr2()->as_constant_ptr()->as_jint();
duke@435 525 assert(Assembler::is_simm13(divisor), "can only handle simm13");
duke@435 526 }
duke@435 527
duke@435 528 assert(Rdividend != Rscratch, "");
duke@435 529 assert(Rdivisor != Rscratch, "");
duke@435 530 assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
duke@435 531
duke@435 532 if (Rdivisor == noreg && is_power_of_2(divisor)) {
duke@435 533 // convert division by a power of two into some shifts and logical operations
duke@435 534 if (op->code() == lir_idiv) {
duke@435 535 if (divisor == 2) {
duke@435 536 __ srl(Rdividend, 31, Rscratch);
duke@435 537 } else {
duke@435 538 __ sra(Rdividend, 31, Rscratch);
duke@435 539 __ and3(Rscratch, divisor - 1, Rscratch);
duke@435 540 }
duke@435 541 __ add(Rdividend, Rscratch, Rscratch);
duke@435 542 __ sra(Rscratch, log2_intptr(divisor), Rresult);
duke@435 543 return;
duke@435 544 } else {
duke@435 545 if (divisor == 2) {
duke@435 546 __ srl(Rdividend, 31, Rscratch);
duke@435 547 } else {
duke@435 548 __ sra(Rdividend, 31, Rscratch);
duke@435 549 __ and3(Rscratch, divisor - 1,Rscratch);
duke@435 550 }
duke@435 551 __ add(Rdividend, Rscratch, Rscratch);
duke@435 552 __ andn(Rscratch, divisor - 1,Rscratch);
duke@435 553 __ sub(Rdividend, Rscratch, Rresult);
duke@435 554 return;
duke@435 555 }
duke@435 556 }
duke@435 557
duke@435 558 __ sra(Rdividend, 31, Rscratch);
duke@435 559 __ wry(Rscratch);
duke@435 560 if (!VM_Version::v9_instructions_work()) {
duke@435 561 // v9 doesn't require these nops
duke@435 562 __ nop();
duke@435 563 __ nop();
duke@435 564 __ nop();
duke@435 565 __ nop();
duke@435 566 }
duke@435 567
duke@435 568 add_debug_info_for_div0_here(op->info());
duke@435 569
duke@435 570 if (Rdivisor != noreg) {
duke@435 571 __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
duke@435 572 } else {
duke@435 573 assert(Assembler::is_simm13(divisor), "can only handle simm13");
duke@435 574 __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
duke@435 575 }
duke@435 576
duke@435 577 Label skip;
duke@435 578 __ br(Assembler::overflowSet, true, Assembler::pn, skip);
duke@435 579 __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
duke@435 580 __ bind(skip);
duke@435 581
duke@435 582 if (op->code() == lir_irem) {
duke@435 583 if (Rdivisor != noreg) {
duke@435 584 __ smul(Rscratch, Rdivisor, Rscratch);
duke@435 585 } else {
duke@435 586 __ smul(Rscratch, divisor, Rscratch);
duke@435 587 }
duke@435 588 __ sub(Rdividend, Rscratch, Rresult);
duke@435 589 }
duke@435 590 }
duke@435 591
duke@435 592
duke@435 593 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
duke@435 594 #ifdef ASSERT
duke@435 595 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
duke@435 596 if (op->block() != NULL) _branch_target_blocks.append(op->block());
duke@435 597 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
duke@435 598 #endif
duke@435 599 assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
duke@435 600
duke@435 601 if (op->cond() == lir_cond_always) {
duke@435 602 __ br(Assembler::always, false, Assembler::pt, *(op->label()));
duke@435 603 } else if (op->code() == lir_cond_float_branch) {
duke@435 604 assert(op->ublock() != NULL, "must have unordered successor");
duke@435 605 bool is_unordered = (op->ublock() == op->block());
duke@435 606 Assembler::Condition acond;
duke@435 607 switch (op->cond()) {
duke@435 608 case lir_cond_equal: acond = Assembler::f_equal; break;
duke@435 609 case lir_cond_notEqual: acond = Assembler::f_notEqual; break;
duke@435 610 case lir_cond_less: acond = (is_unordered ? Assembler::f_unorderedOrLess : Assembler::f_less); break;
duke@435 611 case lir_cond_greater: acond = (is_unordered ? Assembler::f_unorderedOrGreater : Assembler::f_greater); break;
duke@435 612 case lir_cond_lessEqual: acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual : Assembler::f_lessOrEqual); break;
duke@435 613 case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
duke@435 614 default : ShouldNotReachHere();
duke@435 615 };
duke@435 616
duke@435 617 if (!VM_Version::v9_instructions_work()) {
duke@435 618 __ nop();
duke@435 619 }
duke@435 620 __ fb( acond, false, Assembler::pn, *(op->label()));
duke@435 621 } else {
duke@435 622 assert (op->code() == lir_branch, "just checking");
duke@435 623
duke@435 624 Assembler::Condition acond;
duke@435 625 switch (op->cond()) {
duke@435 626 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 627 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 628 case lir_cond_less: acond = Assembler::less; break;
duke@435 629 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 630 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
duke@435 631 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 632 case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break;
duke@435 633 case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break;
duke@435 634 default: ShouldNotReachHere();
duke@435 635 };
duke@435 636
duke@435 637 // sparc has different condition codes for testing 32-bit
duke@435 638 // vs. 64-bit values. We could always test xcc is we could
duke@435 639 // guarantee that 32-bit loads always sign extended but that isn't
duke@435 640 // true and since sign extension isn't free, it would impose a
duke@435 641 // slight cost.
duke@435 642 #ifdef _LP64
duke@435 643 if (op->type() == T_INT) {
duke@435 644 __ br(acond, false, Assembler::pn, *(op->label()));
duke@435 645 } else
duke@435 646 #endif
duke@435 647 __ brx(acond, false, Assembler::pn, *(op->label()));
duke@435 648 }
duke@435 649 // The peephole pass fills the delay slot
duke@435 650 }
duke@435 651
duke@435 652
duke@435 653 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
duke@435 654 Bytecodes::Code code = op->bytecode();
duke@435 655 LIR_Opr dst = op->result_opr();
duke@435 656
duke@435 657 switch(code) {
duke@435 658 case Bytecodes::_i2l: {
duke@435 659 Register rlo = dst->as_register_lo();
duke@435 660 Register rhi = dst->as_register_hi();
duke@435 661 Register rval = op->in_opr()->as_register();
duke@435 662 #ifdef _LP64
duke@435 663 __ sra(rval, 0, rlo);
duke@435 664 #else
duke@435 665 __ mov(rval, rlo);
duke@435 666 __ sra(rval, BitsPerInt-1, rhi);
duke@435 667 #endif
duke@435 668 break;
duke@435 669 }
duke@435 670 case Bytecodes::_i2d:
duke@435 671 case Bytecodes::_i2f: {
duke@435 672 bool is_double = (code == Bytecodes::_i2d);
duke@435 673 FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
duke@435 674 FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
duke@435 675 FloatRegister rsrc = op->in_opr()->as_float_reg();
duke@435 676 if (rsrc != rdst) {
duke@435 677 __ fmov(FloatRegisterImpl::S, rsrc, rdst);
duke@435 678 }
duke@435 679 __ fitof(w, rdst, rdst);
duke@435 680 break;
duke@435 681 }
duke@435 682 case Bytecodes::_f2i:{
duke@435 683 FloatRegister rsrc = op->in_opr()->as_float_reg();
duke@435 684 Address addr = frame_map()->address_for_slot(dst->single_stack_ix());
duke@435 685 Label L;
duke@435 686 // result must be 0 if value is NaN; test by comparing value to itself
duke@435 687 __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
duke@435 688 if (!VM_Version::v9_instructions_work()) {
duke@435 689 __ nop();
duke@435 690 }
duke@435 691 __ fb(Assembler::f_unordered, true, Assembler::pn, L);
duke@435 692 __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
duke@435 693 __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
duke@435 694 // move integer result from float register to int register
duke@435 695 __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
duke@435 696 __ bind (L);
duke@435 697 break;
duke@435 698 }
duke@435 699 case Bytecodes::_l2i: {
duke@435 700 Register rlo = op->in_opr()->as_register_lo();
duke@435 701 Register rhi = op->in_opr()->as_register_hi();
duke@435 702 Register rdst = dst->as_register();
duke@435 703 #ifdef _LP64
duke@435 704 __ sra(rlo, 0, rdst);
duke@435 705 #else
duke@435 706 __ mov(rlo, rdst);
duke@435 707 #endif
duke@435 708 break;
duke@435 709 }
duke@435 710 case Bytecodes::_d2f:
duke@435 711 case Bytecodes::_f2d: {
duke@435 712 bool is_double = (code == Bytecodes::_f2d);
duke@435 713 assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
duke@435 714 LIR_Opr val = op->in_opr();
duke@435 715 FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
duke@435 716 FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
duke@435 717 FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
duke@435 718 FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
duke@435 719 __ ftof(vw, dw, rval, rdst);
duke@435 720 break;
duke@435 721 }
duke@435 722 case Bytecodes::_i2s:
duke@435 723 case Bytecodes::_i2b: {
duke@435 724 Register rval = op->in_opr()->as_register();
duke@435 725 Register rdst = dst->as_register();
duke@435 726 int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
duke@435 727 __ sll (rval, shift, rdst);
duke@435 728 __ sra (rdst, shift, rdst);
duke@435 729 break;
duke@435 730 }
duke@435 731 case Bytecodes::_i2c: {
duke@435 732 Register rval = op->in_opr()->as_register();
duke@435 733 Register rdst = dst->as_register();
duke@435 734 int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
duke@435 735 __ sll (rval, shift, rdst);
duke@435 736 __ srl (rdst, shift, rdst);
duke@435 737 break;
duke@435 738 }
duke@435 739
duke@435 740 default: ShouldNotReachHere();
duke@435 741 }
duke@435 742 }
duke@435 743
duke@435 744
duke@435 745 void LIR_Assembler::align_call(LIR_Code) {
duke@435 746 // do nothing since all instructions are word aligned on sparc
duke@435 747 }
duke@435 748
duke@435 749
twisti@1730 750 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
twisti@1730 751 __ call(op->addr(), rtype);
twisti@1919 752 // The peephole pass fills the delay slot, add_call_info is done in
twisti@1919 753 // LIR_Assembler::emit_delay.
duke@435 754 }
duke@435 755
duke@435 756
twisti@1730 757 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
duke@435 758 RelocationHolder rspec = virtual_call_Relocation::spec(pc());
duke@435 759 __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
duke@435 760 __ relocate(rspec);
twisti@1730 761 __ call(op->addr(), relocInfo::none);
twisti@1919 762 // The peephole pass fills the delay slot, add_call_info is done in
twisti@1919 763 // LIR_Assembler::emit_delay.
duke@435 764 }
duke@435 765
duke@435 766
twisti@1730 767 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
twisti@1730 768 add_debug_info_for_null_check_here(op->info());
twisti@1162 769 __ ld_ptr(O0, oopDesc::klass_offset_in_bytes(), G3_scratch);
twisti@1730 770 if (__ is_simm13(op->vtable_offset())) {
twisti@1730 771 __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
duke@435 772 } else {
duke@435 773 // This will generate 2 instructions
twisti@1730 774 __ set(op->vtable_offset(), G5_method);
duke@435 775 // ld_ptr, set_hi, set
duke@435 776 __ ld_ptr(G3_scratch, G5_method, G5_method);
duke@435 777 }
twisti@1162 778 __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3_scratch);
duke@435 779 __ callr(G3_scratch, G0);
duke@435 780 // the peephole pass fills the delay slot
duke@435 781 }
duke@435 782
duke@435 783
duke@435 784 // load with 32-bit displacement
duke@435 785 int LIR_Assembler::load(Register s, int disp, Register d, BasicType ld_type, CodeEmitInfo *info) {
duke@435 786 int load_offset = code_offset();
duke@435 787 if (Assembler::is_simm13(disp)) {
duke@435 788 if (info != NULL) add_debug_info_for_null_check_here(info);
duke@435 789 switch(ld_type) {
duke@435 790 case T_BOOLEAN: // fall through
duke@435 791 case T_BYTE : __ ldsb(s, disp, d); break;
duke@435 792 case T_CHAR : __ lduh(s, disp, d); break;
duke@435 793 case T_SHORT : __ ldsh(s, disp, d); break;
duke@435 794 case T_INT : __ ld(s, disp, d); break;
duke@435 795 case T_ADDRESS:// fall through
duke@435 796 case T_ARRAY : // fall through
duke@435 797 case T_OBJECT: __ ld_ptr(s, disp, d); break;
duke@435 798 default : ShouldNotReachHere();
duke@435 799 }
duke@435 800 } else {
twisti@1162 801 __ set(disp, O7);
duke@435 802 if (info != NULL) add_debug_info_for_null_check_here(info);
duke@435 803 load_offset = code_offset();
duke@435 804 switch(ld_type) {
duke@435 805 case T_BOOLEAN: // fall through
duke@435 806 case T_BYTE : __ ldsb(s, O7, d); break;
duke@435 807 case T_CHAR : __ lduh(s, O7, d); break;
duke@435 808 case T_SHORT : __ ldsh(s, O7, d); break;
duke@435 809 case T_INT : __ ld(s, O7, d); break;
duke@435 810 case T_ADDRESS:// fall through
duke@435 811 case T_ARRAY : // fall through
duke@435 812 case T_OBJECT: __ ld_ptr(s, O7, d); break;
duke@435 813 default : ShouldNotReachHere();
duke@435 814 }
duke@435 815 }
duke@435 816 if (ld_type == T_ARRAY || ld_type == T_OBJECT) __ verify_oop(d);
duke@435 817 return load_offset;
duke@435 818 }
duke@435 819
duke@435 820
duke@435 821 // store with 32-bit displacement
duke@435 822 void LIR_Assembler::store(Register value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
duke@435 823 if (Assembler::is_simm13(offset)) {
duke@435 824 if (info != NULL) add_debug_info_for_null_check_here(info);
duke@435 825 switch (type) {
duke@435 826 case T_BOOLEAN: // fall through
duke@435 827 case T_BYTE : __ stb(value, base, offset); break;
duke@435 828 case T_CHAR : __ sth(value, base, offset); break;
duke@435 829 case T_SHORT : __ sth(value, base, offset); break;
duke@435 830 case T_INT : __ stw(value, base, offset); break;
duke@435 831 case T_ADDRESS:// fall through
duke@435 832 case T_ARRAY : // fall through
duke@435 833 case T_OBJECT: __ st_ptr(value, base, offset); break;
duke@435 834 default : ShouldNotReachHere();
duke@435 835 }
duke@435 836 } else {
twisti@1162 837 __ set(offset, O7);
duke@435 838 if (info != NULL) add_debug_info_for_null_check_here(info);
duke@435 839 switch (type) {
duke@435 840 case T_BOOLEAN: // fall through
duke@435 841 case T_BYTE : __ stb(value, base, O7); break;
duke@435 842 case T_CHAR : __ sth(value, base, O7); break;
duke@435 843 case T_SHORT : __ sth(value, base, O7); break;
duke@435 844 case T_INT : __ stw(value, base, O7); break;
duke@435 845 case T_ADDRESS:// fall through
duke@435 846 case T_ARRAY : //fall through
duke@435 847 case T_OBJECT: __ st_ptr(value, base, O7); break;
duke@435 848 default : ShouldNotReachHere();
duke@435 849 }
duke@435 850 }
duke@435 851 // Note: Do the store before verification as the code might be patched!
duke@435 852 if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(value);
duke@435 853 }
duke@435 854
duke@435 855
duke@435 856 // load float with 32-bit displacement
duke@435 857 void LIR_Assembler::load(Register s, int disp, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
duke@435 858 FloatRegisterImpl::Width w;
duke@435 859 switch(ld_type) {
duke@435 860 case T_FLOAT : w = FloatRegisterImpl::S; break;
duke@435 861 case T_DOUBLE: w = FloatRegisterImpl::D; break;
duke@435 862 default : ShouldNotReachHere();
duke@435 863 }
duke@435 864
duke@435 865 if (Assembler::is_simm13(disp)) {
duke@435 866 if (info != NULL) add_debug_info_for_null_check_here(info);
duke@435 867 if (disp % BytesPerLong != 0 && w == FloatRegisterImpl::D) {
duke@435 868 __ ldf(FloatRegisterImpl::S, s, disp + BytesPerWord, d->successor());
duke@435 869 __ ldf(FloatRegisterImpl::S, s, disp , d);
duke@435 870 } else {
duke@435 871 __ ldf(w, s, disp, d);
duke@435 872 }
duke@435 873 } else {
twisti@1162 874 __ set(disp, O7);
duke@435 875 if (info != NULL) add_debug_info_for_null_check_here(info);
duke@435 876 __ ldf(w, s, O7, d);
duke@435 877 }
duke@435 878 }
duke@435 879
duke@435 880
duke@435 881 // store float with 32-bit displacement
duke@435 882 void LIR_Assembler::store(FloatRegister value, Register base, int offset, BasicType type, CodeEmitInfo *info) {
duke@435 883 FloatRegisterImpl::Width w;
duke@435 884 switch(type) {
duke@435 885 case T_FLOAT : w = FloatRegisterImpl::S; break;
duke@435 886 case T_DOUBLE: w = FloatRegisterImpl::D; break;
duke@435 887 default : ShouldNotReachHere();
duke@435 888 }
duke@435 889
duke@435 890 if (Assembler::is_simm13(offset)) {
duke@435 891 if (info != NULL) add_debug_info_for_null_check_here(info);
duke@435 892 if (w == FloatRegisterImpl::D && offset % BytesPerLong != 0) {
duke@435 893 __ stf(FloatRegisterImpl::S, value->successor(), base, offset + BytesPerWord);
duke@435 894 __ stf(FloatRegisterImpl::S, value , base, offset);
duke@435 895 } else {
duke@435 896 __ stf(w, value, base, offset);
duke@435 897 }
duke@435 898 } else {
twisti@1162 899 __ set(offset, O7);
duke@435 900 if (info != NULL) add_debug_info_for_null_check_here(info);
duke@435 901 __ stf(w, value, O7, base);
duke@435 902 }
duke@435 903 }
duke@435 904
duke@435 905
duke@435 906 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool unaligned) {
duke@435 907 int store_offset;
duke@435 908 if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
duke@435 909 assert(!unaligned, "can't handle this");
duke@435 910 // for offsets larger than a simm13 we setup the offset in O7
twisti@1162 911 __ set(offset, O7);
duke@435 912 store_offset = store(from_reg, base, O7, type);
duke@435 913 } else {
duke@435 914 if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
duke@435 915 store_offset = code_offset();
duke@435 916 switch (type) {
duke@435 917 case T_BOOLEAN: // fall through
duke@435 918 case T_BYTE : __ stb(from_reg->as_register(), base, offset); break;
duke@435 919 case T_CHAR : __ sth(from_reg->as_register(), base, offset); break;
duke@435 920 case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
duke@435 921 case T_INT : __ stw(from_reg->as_register(), base, offset); break;
duke@435 922 case T_LONG :
duke@435 923 #ifdef _LP64
duke@435 924 if (unaligned || PatchALot) {
duke@435 925 __ srax(from_reg->as_register_lo(), 32, O7);
duke@435 926 __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
duke@435 927 __ stw(O7, base, offset + hi_word_offset_in_bytes);
duke@435 928 } else {
duke@435 929 __ stx(from_reg->as_register_lo(), base, offset);
duke@435 930 }
duke@435 931 #else
duke@435 932 assert(Assembler::is_simm13(offset + 4), "must be");
duke@435 933 __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
duke@435 934 __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
duke@435 935 #endif
duke@435 936 break;
duke@435 937 case T_ADDRESS:// fall through
duke@435 938 case T_ARRAY : // fall through
duke@435 939 case T_OBJECT: __ st_ptr(from_reg->as_register(), base, offset); break;
duke@435 940 case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
duke@435 941 case T_DOUBLE:
duke@435 942 {
duke@435 943 FloatRegister reg = from_reg->as_double_reg();
duke@435 944 // split unaligned stores
duke@435 945 if (unaligned || PatchALot) {
duke@435 946 assert(Assembler::is_simm13(offset + 4), "must be");
duke@435 947 __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
duke@435 948 __ stf(FloatRegisterImpl::S, reg, base, offset);
duke@435 949 } else {
duke@435 950 __ stf(FloatRegisterImpl::D, reg, base, offset);
duke@435 951 }
duke@435 952 break;
duke@435 953 }
duke@435 954 default : ShouldNotReachHere();
duke@435 955 }
duke@435 956 }
duke@435 957 return store_offset;
duke@435 958 }
duke@435 959
duke@435 960
duke@435 961 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type) {
duke@435 962 if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(from_reg->as_register());
duke@435 963 int store_offset = code_offset();
duke@435 964 switch (type) {
duke@435 965 case T_BOOLEAN: // fall through
duke@435 966 case T_BYTE : __ stb(from_reg->as_register(), base, disp); break;
duke@435 967 case T_CHAR : __ sth(from_reg->as_register(), base, disp); break;
duke@435 968 case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
duke@435 969 case T_INT : __ stw(from_reg->as_register(), base, disp); break;
duke@435 970 case T_LONG :
duke@435 971 #ifdef _LP64
duke@435 972 __ stx(from_reg->as_register_lo(), base, disp);
duke@435 973 #else
duke@435 974 assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
duke@435 975 __ std(from_reg->as_register_hi(), base, disp);
duke@435 976 #endif
duke@435 977 break;
duke@435 978 case T_ADDRESS:// fall through
duke@435 979 case T_ARRAY : // fall through
duke@435 980 case T_OBJECT: __ st_ptr(from_reg->as_register(), base, disp); break;
duke@435 981 case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
duke@435 982 case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
duke@435 983 default : ShouldNotReachHere();
duke@435 984 }
duke@435 985 return store_offset;
duke@435 986 }
duke@435 987
duke@435 988
duke@435 989 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool unaligned) {
duke@435 990 int load_offset;
duke@435 991 if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
duke@435 992 assert(base != O7, "destroying register");
duke@435 993 assert(!unaligned, "can't handle this");
duke@435 994 // for offsets larger than a simm13 we setup the offset in O7
twisti@1162 995 __ set(offset, O7);
duke@435 996 load_offset = load(base, O7, to_reg, type);
duke@435 997 } else {
duke@435 998 load_offset = code_offset();
duke@435 999 switch(type) {
duke@435 1000 case T_BOOLEAN: // fall through
duke@435 1001 case T_BYTE : __ ldsb(base, offset, to_reg->as_register()); break;
duke@435 1002 case T_CHAR : __ lduh(base, offset, to_reg->as_register()); break;
duke@435 1003 case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
duke@435 1004 case T_INT : __ ld(base, offset, to_reg->as_register()); break;
duke@435 1005 case T_LONG :
duke@435 1006 if (!unaligned) {
duke@435 1007 #ifdef _LP64
duke@435 1008 __ ldx(base, offset, to_reg->as_register_lo());
duke@435 1009 #else
duke@435 1010 assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
duke@435 1011 "must be sequential");
duke@435 1012 __ ldd(base, offset, to_reg->as_register_hi());
duke@435 1013 #endif
duke@435 1014 } else {
duke@435 1015 #ifdef _LP64
duke@435 1016 assert(base != to_reg->as_register_lo(), "can't handle this");
roland@1495 1017 assert(O7 != to_reg->as_register_lo(), "can't handle this");
duke@435 1018 __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
roland@1495 1019 __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
duke@435 1020 __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
roland@1495 1021 __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
duke@435 1022 #else
duke@435 1023 if (base == to_reg->as_register_lo()) {
duke@435 1024 __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
duke@435 1025 __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
duke@435 1026 } else {
duke@435 1027 __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
duke@435 1028 __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
duke@435 1029 }
duke@435 1030 #endif
duke@435 1031 }
duke@435 1032 break;
duke@435 1033 case T_ADDRESS:// fall through
duke@435 1034 case T_ARRAY : // fall through
duke@435 1035 case T_OBJECT: __ ld_ptr(base, offset, to_reg->as_register()); break;
duke@435 1036 case T_FLOAT: __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
duke@435 1037 case T_DOUBLE:
duke@435 1038 {
duke@435 1039 FloatRegister reg = to_reg->as_double_reg();
duke@435 1040 // split unaligned loads
duke@435 1041 if (unaligned || PatchALot) {
roland@1495 1042 __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
roland@1495 1043 __ ldf(FloatRegisterImpl::S, base, offset, reg);
duke@435 1044 } else {
duke@435 1045 __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
duke@435 1046 }
duke@435 1047 break;
duke@435 1048 }
duke@435 1049 default : ShouldNotReachHere();
duke@435 1050 }
duke@435 1051 if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
duke@435 1052 }
duke@435 1053 return load_offset;
duke@435 1054 }
duke@435 1055
duke@435 1056
duke@435 1057 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type) {
duke@435 1058 int load_offset = code_offset();
duke@435 1059 switch(type) {
duke@435 1060 case T_BOOLEAN: // fall through
duke@435 1061 case T_BYTE : __ ldsb(base, disp, to_reg->as_register()); break;
duke@435 1062 case T_CHAR : __ lduh(base, disp, to_reg->as_register()); break;
duke@435 1063 case T_SHORT : __ ldsh(base, disp, to_reg->as_register()); break;
duke@435 1064 case T_INT : __ ld(base, disp, to_reg->as_register()); break;
duke@435 1065 case T_ADDRESS:// fall through
duke@435 1066 case T_ARRAY : // fall through
duke@435 1067 case T_OBJECT: __ ld_ptr(base, disp, to_reg->as_register()); break;
duke@435 1068 case T_FLOAT: __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
duke@435 1069 case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
duke@435 1070 case T_LONG :
duke@435 1071 #ifdef _LP64
duke@435 1072 __ ldx(base, disp, to_reg->as_register_lo());
duke@435 1073 #else
duke@435 1074 assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
duke@435 1075 "must be sequential");
duke@435 1076 __ ldd(base, disp, to_reg->as_register_hi());
duke@435 1077 #endif
duke@435 1078 break;
duke@435 1079 default : ShouldNotReachHere();
duke@435 1080 }
duke@435 1081 if (type == T_ARRAY || type == T_OBJECT) __ verify_oop(to_reg->as_register());
duke@435 1082 return load_offset;
duke@435 1083 }
duke@435 1084
duke@435 1085
duke@435 1086 // load/store with an Address
duke@435 1087 void LIR_Assembler::load(const Address& a, Register d, BasicType ld_type, CodeEmitInfo *info, int offset) {
duke@435 1088 load(a.base(), a.disp() + offset, d, ld_type, info);
duke@435 1089 }
duke@435 1090
duke@435 1091
duke@435 1092 void LIR_Assembler::store(Register value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
duke@435 1093 store(value, dest.base(), dest.disp() + offset, type, info);
duke@435 1094 }
duke@435 1095
duke@435 1096
duke@435 1097 // loadf/storef with an Address
duke@435 1098 void LIR_Assembler::load(const Address& a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info, int offset) {
duke@435 1099 load(a.base(), a.disp() + offset, d, ld_type, info);
duke@435 1100 }
duke@435 1101
duke@435 1102
duke@435 1103 void LIR_Assembler::store(FloatRegister value, const Address& dest, BasicType type, CodeEmitInfo *info, int offset) {
duke@435 1104 store(value, dest.base(), dest.disp() + offset, type, info);
duke@435 1105 }
duke@435 1106
duke@435 1107
duke@435 1108 // load/store with an Address
duke@435 1109 void LIR_Assembler::load(LIR_Address* a, Register d, BasicType ld_type, CodeEmitInfo *info) {
duke@435 1110 load(as_Address(a), d, ld_type, info);
duke@435 1111 }
duke@435 1112
duke@435 1113
duke@435 1114 void LIR_Assembler::store(Register value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
duke@435 1115 store(value, as_Address(dest), type, info);
duke@435 1116 }
duke@435 1117
duke@435 1118
duke@435 1119 // loadf/storef with an Address
duke@435 1120 void LIR_Assembler::load(LIR_Address* a, FloatRegister d, BasicType ld_type, CodeEmitInfo *info) {
duke@435 1121 load(as_Address(a), d, ld_type, info);
duke@435 1122 }
duke@435 1123
duke@435 1124
duke@435 1125 void LIR_Assembler::store(FloatRegister value, LIR_Address* dest, BasicType type, CodeEmitInfo *info) {
duke@435 1126 store(value, as_Address(dest), type, info);
duke@435 1127 }
duke@435 1128
duke@435 1129
duke@435 1130 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
duke@435 1131 LIR_Const* c = src->as_constant_ptr();
duke@435 1132 switch (c->type()) {
duke@435 1133 case T_INT:
roland@1732 1134 case T_FLOAT:
roland@1732 1135 case T_ADDRESS: {
duke@435 1136 Register src_reg = O7;
duke@435 1137 int value = c->as_jint_bits();
duke@435 1138 if (value == 0) {
duke@435 1139 src_reg = G0;
duke@435 1140 } else {
duke@435 1141 __ set(value, O7);
duke@435 1142 }
duke@435 1143 Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1144 __ stw(src_reg, addr.base(), addr.disp());
duke@435 1145 break;
duke@435 1146 }
duke@435 1147 case T_OBJECT: {
duke@435 1148 Register src_reg = O7;
duke@435 1149 jobject2reg(c->as_jobject(), src_reg);
duke@435 1150 Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1151 __ st_ptr(src_reg, addr.base(), addr.disp());
duke@435 1152 break;
duke@435 1153 }
duke@435 1154 case T_LONG:
duke@435 1155 case T_DOUBLE: {
duke@435 1156 Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
duke@435 1157
duke@435 1158 Register tmp = O7;
duke@435 1159 int value_lo = c->as_jint_lo_bits();
duke@435 1160 if (value_lo == 0) {
duke@435 1161 tmp = G0;
duke@435 1162 } else {
duke@435 1163 __ set(value_lo, O7);
duke@435 1164 }
duke@435 1165 __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
duke@435 1166 int value_hi = c->as_jint_hi_bits();
duke@435 1167 if (value_hi == 0) {
duke@435 1168 tmp = G0;
duke@435 1169 } else {
duke@435 1170 __ set(value_hi, O7);
duke@435 1171 }
duke@435 1172 __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
duke@435 1173 break;
duke@435 1174 }
duke@435 1175 default:
duke@435 1176 Unimplemented();
duke@435 1177 }
duke@435 1178 }
duke@435 1179
duke@435 1180
duke@435 1181 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info ) {
duke@435 1182 LIR_Const* c = src->as_constant_ptr();
duke@435 1183 LIR_Address* addr = dest->as_address_ptr();
duke@435 1184 Register base = addr->base()->as_pointer_register();
duke@435 1185
duke@435 1186 if (info != NULL) {
duke@435 1187 add_debug_info_for_null_check_here(info);
duke@435 1188 }
duke@435 1189 switch (c->type()) {
duke@435 1190 case T_INT:
roland@1732 1191 case T_FLOAT:
roland@1732 1192 case T_ADDRESS: {
duke@435 1193 LIR_Opr tmp = FrameMap::O7_opr;
duke@435 1194 int value = c->as_jint_bits();
duke@435 1195 if (value == 0) {
duke@435 1196 tmp = FrameMap::G0_opr;
duke@435 1197 } else if (Assembler::is_simm13(value)) {
duke@435 1198 __ set(value, O7);
duke@435 1199 }
duke@435 1200 if (addr->index()->is_valid()) {
duke@435 1201 assert(addr->disp() == 0, "must be zero");
duke@435 1202 store(tmp, base, addr->index()->as_pointer_register(), type);
duke@435 1203 } else {
duke@435 1204 assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
duke@435 1205 store(tmp, base, addr->disp(), type);
duke@435 1206 }
duke@435 1207 break;
duke@435 1208 }
duke@435 1209 case T_LONG:
duke@435 1210 case T_DOUBLE: {
duke@435 1211 assert(!addr->index()->is_valid(), "can't handle reg reg address here");
duke@435 1212 assert(Assembler::is_simm13(addr->disp()) &&
duke@435 1213 Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
duke@435 1214
duke@435 1215 Register tmp = O7;
duke@435 1216 int value_lo = c->as_jint_lo_bits();
duke@435 1217 if (value_lo == 0) {
duke@435 1218 tmp = G0;
duke@435 1219 } else {
duke@435 1220 __ set(value_lo, O7);
duke@435 1221 }
duke@435 1222 store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT);
duke@435 1223 int value_hi = c->as_jint_hi_bits();
duke@435 1224 if (value_hi == 0) {
duke@435 1225 tmp = G0;
duke@435 1226 } else {
duke@435 1227 __ set(value_hi, O7);
duke@435 1228 }
duke@435 1229 store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT);
duke@435 1230 break;
duke@435 1231 }
duke@435 1232 case T_OBJECT: {
duke@435 1233 jobject obj = c->as_jobject();
duke@435 1234 LIR_Opr tmp;
duke@435 1235 if (obj == NULL) {
duke@435 1236 tmp = FrameMap::G0_opr;
duke@435 1237 } else {
duke@435 1238 tmp = FrameMap::O7_opr;
duke@435 1239 jobject2reg(c->as_jobject(), O7);
duke@435 1240 }
duke@435 1241 // handle either reg+reg or reg+disp address
duke@435 1242 if (addr->index()->is_valid()) {
duke@435 1243 assert(addr->disp() == 0, "must be zero");
duke@435 1244 store(tmp, base, addr->index()->as_pointer_register(), type);
duke@435 1245 } else {
duke@435 1246 assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
duke@435 1247 store(tmp, base, addr->disp(), type);
duke@435 1248 }
duke@435 1249
duke@435 1250 break;
duke@435 1251 }
duke@435 1252 default:
duke@435 1253 Unimplemented();
duke@435 1254 }
duke@435 1255 }
duke@435 1256
duke@435 1257
duke@435 1258 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
duke@435 1259 LIR_Const* c = src->as_constant_ptr();
duke@435 1260 LIR_Opr to_reg = dest;
duke@435 1261
duke@435 1262 switch (c->type()) {
duke@435 1263 case T_INT:
roland@1732 1264 case T_ADDRESS:
duke@435 1265 {
duke@435 1266 jint con = c->as_jint();
duke@435 1267 if (to_reg->is_single_cpu()) {
duke@435 1268 assert(patch_code == lir_patch_none, "no patching handled here");
duke@435 1269 __ set(con, to_reg->as_register());
duke@435 1270 } else {
duke@435 1271 ShouldNotReachHere();
duke@435 1272 assert(to_reg->is_single_fpu(), "wrong register kind");
duke@435 1273
duke@435 1274 __ set(con, O7);
twisti@1162 1275 Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
duke@435 1276 __ st(O7, temp_slot);
duke@435 1277 __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
duke@435 1278 }
duke@435 1279 }
duke@435 1280 break;
duke@435 1281
duke@435 1282 case T_LONG:
duke@435 1283 {
duke@435 1284 jlong con = c->as_jlong();
duke@435 1285
duke@435 1286 if (to_reg->is_double_cpu()) {
duke@435 1287 #ifdef _LP64
duke@435 1288 __ set(con, to_reg->as_register_lo());
duke@435 1289 #else
duke@435 1290 __ set(low(con), to_reg->as_register_lo());
duke@435 1291 __ set(high(con), to_reg->as_register_hi());
duke@435 1292 #endif
duke@435 1293 #ifdef _LP64
duke@435 1294 } else if (to_reg->is_single_cpu()) {
duke@435 1295 __ set(con, to_reg->as_register());
duke@435 1296 #endif
duke@435 1297 } else {
duke@435 1298 ShouldNotReachHere();
duke@435 1299 assert(to_reg->is_double_fpu(), "wrong register kind");
twisti@1162 1300 Address temp_slot_lo(SP, ((frame::register_save_words ) * wordSize) + STACK_BIAS);
twisti@1162 1301 Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
duke@435 1302 __ set(low(con), O7);
duke@435 1303 __ st(O7, temp_slot_lo);
duke@435 1304 __ set(high(con), O7);
duke@435 1305 __ st(O7, temp_slot_hi);
duke@435 1306 __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
duke@435 1307 }
duke@435 1308 }
duke@435 1309 break;
duke@435 1310
duke@435 1311 case T_OBJECT:
duke@435 1312 {
duke@435 1313 if (patch_code == lir_patch_none) {
duke@435 1314 jobject2reg(c->as_jobject(), to_reg->as_register());
duke@435 1315 } else {
duke@435 1316 jobject2reg_with_patching(to_reg->as_register(), info);
duke@435 1317 }
duke@435 1318 }
duke@435 1319 break;
duke@435 1320
duke@435 1321 case T_FLOAT:
duke@435 1322 {
duke@435 1323 address const_addr = __ float_constant(c->as_jfloat());
duke@435 1324 if (const_addr == NULL) {
duke@435 1325 bailout("const section overflow");
duke@435 1326 break;
duke@435 1327 }
duke@435 1328 RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
twisti@1162 1329 AddressLiteral const_addrlit(const_addr, rspec);
duke@435 1330 if (to_reg->is_single_fpu()) {
twisti@1162 1331 __ patchable_sethi(const_addrlit, O7);
duke@435 1332 __ relocate(rspec);
twisti@1162 1333 __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
duke@435 1334
duke@435 1335 } else {
duke@435 1336 assert(to_reg->is_single_cpu(), "Must be a cpu register.");
duke@435 1337
twisti@1162 1338 __ set(const_addrlit, O7);
duke@435 1339 load(O7, 0, to_reg->as_register(), T_INT);
duke@435 1340 }
duke@435 1341 }
duke@435 1342 break;
duke@435 1343
duke@435 1344 case T_DOUBLE:
duke@435 1345 {
duke@435 1346 address const_addr = __ double_constant(c->as_jdouble());
duke@435 1347 if (const_addr == NULL) {
duke@435 1348 bailout("const section overflow");
duke@435 1349 break;
duke@435 1350 }
duke@435 1351 RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
duke@435 1352
duke@435 1353 if (to_reg->is_double_fpu()) {
twisti@1162 1354 AddressLiteral const_addrlit(const_addr, rspec);
twisti@1162 1355 __ patchable_sethi(const_addrlit, O7);
duke@435 1356 __ relocate(rspec);
twisti@1162 1357 __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
duke@435 1358 } else {
duke@435 1359 assert(to_reg->is_double_cpu(), "Must be a long register.");
duke@435 1360 #ifdef _LP64
duke@435 1361 __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
duke@435 1362 #else
duke@435 1363 __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
duke@435 1364 __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
duke@435 1365 #endif
duke@435 1366 }
duke@435 1367
duke@435 1368 }
duke@435 1369 break;
duke@435 1370
duke@435 1371 default:
duke@435 1372 ShouldNotReachHere();
duke@435 1373 }
duke@435 1374 }
duke@435 1375
duke@435 1376 Address LIR_Assembler::as_Address(LIR_Address* addr) {
duke@435 1377 Register reg = addr->base()->as_register();
twisti@1162 1378 return Address(reg, addr->disp());
duke@435 1379 }
duke@435 1380
duke@435 1381
duke@435 1382 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1383 switch (type) {
duke@435 1384 case T_INT:
duke@435 1385 case T_FLOAT: {
duke@435 1386 Register tmp = O7;
duke@435 1387 Address from = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1388 Address to = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1389 __ lduw(from.base(), from.disp(), tmp);
duke@435 1390 __ stw(tmp, to.base(), to.disp());
duke@435 1391 break;
duke@435 1392 }
duke@435 1393 case T_OBJECT: {
duke@435 1394 Register tmp = O7;
duke@435 1395 Address from = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1396 Address to = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1397 __ ld_ptr(from.base(), from.disp(), tmp);
duke@435 1398 __ st_ptr(tmp, to.base(), to.disp());
duke@435 1399 break;
duke@435 1400 }
duke@435 1401 case T_LONG:
duke@435 1402 case T_DOUBLE: {
duke@435 1403 Register tmp = O7;
duke@435 1404 Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
duke@435 1405 Address to = frame_map()->address_for_double_slot(dest->double_stack_ix());
duke@435 1406 __ lduw(from.base(), from.disp(), tmp);
duke@435 1407 __ stw(tmp, to.base(), to.disp());
duke@435 1408 __ lduw(from.base(), from.disp() + 4, tmp);
duke@435 1409 __ stw(tmp, to.base(), to.disp() + 4);
duke@435 1410 break;
duke@435 1411 }
duke@435 1412
duke@435 1413 default:
duke@435 1414 ShouldNotReachHere();
duke@435 1415 }
duke@435 1416 }
duke@435 1417
duke@435 1418
duke@435 1419 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
duke@435 1420 Address base = as_Address(addr);
twisti@1162 1421 return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
duke@435 1422 }
duke@435 1423
duke@435 1424
duke@435 1425 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
duke@435 1426 Address base = as_Address(addr);
twisti@1162 1427 return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
duke@435 1428 }
duke@435 1429
duke@435 1430
duke@435 1431 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
duke@435 1432 LIR_PatchCode patch_code, CodeEmitInfo* info, bool unaligned) {
duke@435 1433
duke@435 1434 LIR_Address* addr = src_opr->as_address_ptr();
duke@435 1435 LIR_Opr to_reg = dest;
duke@435 1436
duke@435 1437 Register src = addr->base()->as_pointer_register();
duke@435 1438 Register disp_reg = noreg;
duke@435 1439 int disp_value = addr->disp();
duke@435 1440 bool needs_patching = (patch_code != lir_patch_none);
duke@435 1441
duke@435 1442 if (addr->base()->type() == T_OBJECT) {
duke@435 1443 __ verify_oop(src);
duke@435 1444 }
duke@435 1445
duke@435 1446 PatchingStub* patch = NULL;
duke@435 1447 if (needs_patching) {
duke@435 1448 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1449 assert(!to_reg->is_double_cpu() ||
duke@435 1450 patch_code == lir_patch_none ||
duke@435 1451 patch_code == lir_patch_normal, "patching doesn't match register");
duke@435 1452 }
duke@435 1453
duke@435 1454 if (addr->index()->is_illegal()) {
duke@435 1455 if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
duke@435 1456 if (needs_patching) {
twisti@1162 1457 __ patchable_set(0, O7);
duke@435 1458 } else {
duke@435 1459 __ set(disp_value, O7);
duke@435 1460 }
duke@435 1461 disp_reg = O7;
duke@435 1462 }
duke@435 1463 } else if (unaligned || PatchALot) {
duke@435 1464 __ add(src, addr->index()->as_register(), O7);
duke@435 1465 src = O7;
duke@435 1466 } else {
duke@435 1467 disp_reg = addr->index()->as_pointer_register();
duke@435 1468 assert(disp_value == 0, "can't handle 3 operand addresses");
duke@435 1469 }
duke@435 1470
duke@435 1471 // remember the offset of the load. The patching_epilog must be done
duke@435 1472 // before the call to add_debug_info, otherwise the PcDescs don't get
duke@435 1473 // entered in increasing order.
duke@435 1474 int offset = code_offset();
duke@435 1475
duke@435 1476 assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
duke@435 1477 if (disp_reg == noreg) {
duke@435 1478 offset = load(src, disp_value, to_reg, type, unaligned);
duke@435 1479 } else {
duke@435 1480 assert(!unaligned, "can't handle this");
duke@435 1481 offset = load(src, disp_reg, to_reg, type);
duke@435 1482 }
duke@435 1483
duke@435 1484 if (patch != NULL) {
duke@435 1485 patching_epilog(patch, patch_code, src, info);
duke@435 1486 }
duke@435 1487
duke@435 1488 if (info != NULL) add_debug_info_for_null_check(offset, info);
duke@435 1489 }
duke@435 1490
duke@435 1491
duke@435 1492 void LIR_Assembler::prefetchr(LIR_Opr src) {
duke@435 1493 LIR_Address* addr = src->as_address_ptr();
duke@435 1494 Address from_addr = as_Address(addr);
duke@435 1495
duke@435 1496 if (VM_Version::has_v9()) {
duke@435 1497 __ prefetch(from_addr, Assembler::severalReads);
duke@435 1498 }
duke@435 1499 }
duke@435 1500
duke@435 1501
duke@435 1502 void LIR_Assembler::prefetchw(LIR_Opr src) {
duke@435 1503 LIR_Address* addr = src->as_address_ptr();
duke@435 1504 Address from_addr = as_Address(addr);
duke@435 1505
duke@435 1506 if (VM_Version::has_v9()) {
duke@435 1507 __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
duke@435 1508 }
duke@435 1509 }
duke@435 1510
duke@435 1511
duke@435 1512 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1513 Address addr;
duke@435 1514 if (src->is_single_word()) {
duke@435 1515 addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1516 } else if (src->is_double_word()) {
duke@435 1517 addr = frame_map()->address_for_double_slot(src->double_stack_ix());
duke@435 1518 }
duke@435 1519
duke@435 1520 bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
duke@435 1521 load(addr.base(), addr.disp(), dest, dest->type(), unaligned);
duke@435 1522 }
duke@435 1523
duke@435 1524
duke@435 1525 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
duke@435 1526 Address addr;
duke@435 1527 if (dest->is_single_word()) {
duke@435 1528 addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1529 } else if (dest->is_double_word()) {
duke@435 1530 addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 1531 }
duke@435 1532 bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
duke@435 1533 store(from_reg, addr.base(), addr.disp(), from_reg->type(), unaligned);
duke@435 1534 }
duke@435 1535
duke@435 1536
duke@435 1537 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
duke@435 1538 if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
duke@435 1539 if (from_reg->is_double_fpu()) {
duke@435 1540 // double to double moves
duke@435 1541 assert(to_reg->is_double_fpu(), "should match");
duke@435 1542 __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
duke@435 1543 } else {
duke@435 1544 // float to float moves
duke@435 1545 assert(to_reg->is_single_fpu(), "should match");
duke@435 1546 __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
duke@435 1547 }
duke@435 1548 } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
duke@435 1549 if (from_reg->is_double_cpu()) {
duke@435 1550 #ifdef _LP64
duke@435 1551 __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
duke@435 1552 #else
duke@435 1553 assert(to_reg->is_double_cpu() &&
duke@435 1554 from_reg->as_register_hi() != to_reg->as_register_lo() &&
duke@435 1555 from_reg->as_register_lo() != to_reg->as_register_hi(),
duke@435 1556 "should both be long and not overlap");
duke@435 1557 // long to long moves
duke@435 1558 __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
duke@435 1559 __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
duke@435 1560 #endif
duke@435 1561 #ifdef _LP64
duke@435 1562 } else if (to_reg->is_double_cpu()) {
duke@435 1563 // int to int moves
duke@435 1564 __ mov(from_reg->as_register(), to_reg->as_register_lo());
duke@435 1565 #endif
duke@435 1566 } else {
duke@435 1567 // int to int moves
duke@435 1568 __ mov(from_reg->as_register(), to_reg->as_register());
duke@435 1569 }
duke@435 1570 } else {
duke@435 1571 ShouldNotReachHere();
duke@435 1572 }
duke@435 1573 if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
duke@435 1574 __ verify_oop(to_reg->as_register());
duke@435 1575 }
duke@435 1576 }
duke@435 1577
duke@435 1578
duke@435 1579 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
duke@435 1580 LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
duke@435 1581 bool unaligned) {
duke@435 1582 LIR_Address* addr = dest->as_address_ptr();
duke@435 1583
duke@435 1584 Register src = addr->base()->as_pointer_register();
duke@435 1585 Register disp_reg = noreg;
duke@435 1586 int disp_value = addr->disp();
duke@435 1587 bool needs_patching = (patch_code != lir_patch_none);
duke@435 1588
duke@435 1589 if (addr->base()->is_oop_register()) {
duke@435 1590 __ verify_oop(src);
duke@435 1591 }
duke@435 1592
duke@435 1593 PatchingStub* patch = NULL;
duke@435 1594 if (needs_patching) {
duke@435 1595 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1596 assert(!from_reg->is_double_cpu() ||
duke@435 1597 patch_code == lir_patch_none ||
duke@435 1598 patch_code == lir_patch_normal, "patching doesn't match register");
duke@435 1599 }
duke@435 1600
duke@435 1601 if (addr->index()->is_illegal()) {
duke@435 1602 if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
duke@435 1603 if (needs_patching) {
twisti@1162 1604 __ patchable_set(0, O7);
duke@435 1605 } else {
duke@435 1606 __ set(disp_value, O7);
duke@435 1607 }
duke@435 1608 disp_reg = O7;
duke@435 1609 }
duke@435 1610 } else if (unaligned || PatchALot) {
duke@435 1611 __ add(src, addr->index()->as_register(), O7);
duke@435 1612 src = O7;
duke@435 1613 } else {
duke@435 1614 disp_reg = addr->index()->as_pointer_register();
duke@435 1615 assert(disp_value == 0, "can't handle 3 operand addresses");
duke@435 1616 }
duke@435 1617
duke@435 1618 // remember the offset of the store. The patching_epilog must be done
duke@435 1619 // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
duke@435 1620 // entered in increasing order.
duke@435 1621 int offset;
duke@435 1622
duke@435 1623 assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
duke@435 1624 if (disp_reg == noreg) {
duke@435 1625 offset = store(from_reg, src, disp_value, type, unaligned);
duke@435 1626 } else {
duke@435 1627 assert(!unaligned, "can't handle this");
duke@435 1628 offset = store(from_reg, src, disp_reg, type);
duke@435 1629 }
duke@435 1630
duke@435 1631 if (patch != NULL) {
duke@435 1632 patching_epilog(patch, patch_code, src, info);
duke@435 1633 }
duke@435 1634
duke@435 1635 if (info != NULL) add_debug_info_for_null_check(offset, info);
duke@435 1636 }
duke@435 1637
duke@435 1638
duke@435 1639 void LIR_Assembler::return_op(LIR_Opr result) {
duke@435 1640 // the poll may need a register so just pick one that isn't the return register
iveresov@2138 1641 #if defined(TIERED) && !defined(_LP64)
duke@435 1642 if (result->type_field() == LIR_OprDesc::long_type) {
duke@435 1643 // Must move the result to G1
duke@435 1644 // Must leave proper result in O0,O1 and G1 (TIERED only)
duke@435 1645 __ sllx(I0, 32, G1); // Shift bits into high G1
duke@435 1646 __ srl (I1, 0, I1); // Zero extend O1 (harmless?)
duke@435 1647 __ or3 (I1, G1, G1); // OR 64 bits into G1
iveresov@2138 1648 #ifdef ASSERT
iveresov@2138 1649 // mangle it so any problems will show up
iveresov@2138 1650 __ set(0xdeadbeef, I0);
iveresov@2138 1651 __ set(0xdeadbeef, I1);
iveresov@2138 1652 #endif
duke@435 1653 }
duke@435 1654 #endif // TIERED
duke@435 1655 __ set((intptr_t)os::get_polling_page(), L0);
duke@435 1656 __ relocate(relocInfo::poll_return_type);
duke@435 1657 __ ld_ptr(L0, 0, G0);
duke@435 1658 __ ret();
duke@435 1659 __ delayed()->restore();
duke@435 1660 }
duke@435 1661
duke@435 1662
duke@435 1663 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 1664 __ set((intptr_t)os::get_polling_page(), tmp->as_register());
duke@435 1665 if (info != NULL) {
duke@435 1666 add_debug_info_for_branch(info);
duke@435 1667 } else {
duke@435 1668 __ relocate(relocInfo::poll_type);
duke@435 1669 }
duke@435 1670
duke@435 1671 int offset = __ offset();
duke@435 1672 __ ld_ptr(tmp->as_register(), 0, G0);
duke@435 1673
duke@435 1674 return offset;
duke@435 1675 }
duke@435 1676
duke@435 1677
duke@435 1678 void LIR_Assembler::emit_static_call_stub() {
duke@435 1679 address call_pc = __ pc();
duke@435 1680 address stub = __ start_a_stub(call_stub_size);
duke@435 1681 if (stub == NULL) {
duke@435 1682 bailout("static call stub overflow");
duke@435 1683 return;
duke@435 1684 }
duke@435 1685
duke@435 1686 int start = __ offset();
duke@435 1687 __ relocate(static_stub_Relocation::spec(call_pc));
duke@435 1688
duke@435 1689 __ set_oop(NULL, G5);
duke@435 1690 // must be set to -1 at code generation time
twisti@1162 1691 AddressLiteral addrlit(-1);
twisti@1162 1692 __ jump_to(addrlit, G3);
duke@435 1693 __ delayed()->nop();
duke@435 1694
duke@435 1695 assert(__ offset() - start <= call_stub_size, "stub too big");
duke@435 1696 __ end_a_stub();
duke@435 1697 }
duke@435 1698
duke@435 1699
duke@435 1700 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
duke@435 1701 if (opr1->is_single_fpu()) {
duke@435 1702 __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
duke@435 1703 } else if (opr1->is_double_fpu()) {
duke@435 1704 __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
duke@435 1705 } else if (opr1->is_single_cpu()) {
duke@435 1706 if (opr2->is_constant()) {
duke@435 1707 switch (opr2->as_constant_ptr()->type()) {
duke@435 1708 case T_INT:
duke@435 1709 { jint con = opr2->as_constant_ptr()->as_jint();
duke@435 1710 if (Assembler::is_simm13(con)) {
duke@435 1711 __ cmp(opr1->as_register(), con);
duke@435 1712 } else {
duke@435 1713 __ set(con, O7);
duke@435 1714 __ cmp(opr1->as_register(), O7);
duke@435 1715 }
duke@435 1716 }
duke@435 1717 break;
duke@435 1718
duke@435 1719 case T_OBJECT:
duke@435 1720 // there are only equal/notequal comparisions on objects
duke@435 1721 { jobject con = opr2->as_constant_ptr()->as_jobject();
duke@435 1722 if (con == NULL) {
duke@435 1723 __ cmp(opr1->as_register(), 0);
duke@435 1724 } else {
duke@435 1725 jobject2reg(con, O7);
duke@435 1726 __ cmp(opr1->as_register(), O7);
duke@435 1727 }
duke@435 1728 }
duke@435 1729 break;
duke@435 1730
duke@435 1731 default:
duke@435 1732 ShouldNotReachHere();
duke@435 1733 break;
duke@435 1734 }
duke@435 1735 } else {
duke@435 1736 if (opr2->is_address()) {
duke@435 1737 LIR_Address * addr = opr2->as_address_ptr();
duke@435 1738 BasicType type = addr->type();
duke@435 1739 if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
duke@435 1740 else __ ld(as_Address(addr), O7);
duke@435 1741 __ cmp(opr1->as_register(), O7);
duke@435 1742 } else {
duke@435 1743 __ cmp(opr1->as_register(), opr2->as_register());
duke@435 1744 }
duke@435 1745 }
duke@435 1746 } else if (opr1->is_double_cpu()) {
duke@435 1747 Register xlo = opr1->as_register_lo();
duke@435 1748 Register xhi = opr1->as_register_hi();
duke@435 1749 if (opr2->is_constant() && opr2->as_jlong() == 0) {
duke@435 1750 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
duke@435 1751 #ifdef _LP64
duke@435 1752 __ orcc(xhi, G0, G0);
duke@435 1753 #else
duke@435 1754 __ orcc(xhi, xlo, G0);
duke@435 1755 #endif
duke@435 1756 } else if (opr2->is_register()) {
duke@435 1757 Register ylo = opr2->as_register_lo();
duke@435 1758 Register yhi = opr2->as_register_hi();
duke@435 1759 #ifdef _LP64
duke@435 1760 __ cmp(xlo, ylo);
duke@435 1761 #else
duke@435 1762 __ subcc(xlo, ylo, xlo);
duke@435 1763 __ subccc(xhi, yhi, xhi);
duke@435 1764 if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
duke@435 1765 __ orcc(xhi, xlo, G0);
duke@435 1766 }
duke@435 1767 #endif
duke@435 1768 } else {
duke@435 1769 ShouldNotReachHere();
duke@435 1770 }
duke@435 1771 } else if (opr1->is_address()) {
duke@435 1772 LIR_Address * addr = opr1->as_address_ptr();
duke@435 1773 BasicType type = addr->type();
duke@435 1774 assert (opr2->is_constant(), "Checking");
duke@435 1775 if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
duke@435 1776 else __ ld(as_Address(addr), O7);
duke@435 1777 __ cmp(O7, opr2->as_constant_ptr()->as_jint());
duke@435 1778 } else {
duke@435 1779 ShouldNotReachHere();
duke@435 1780 }
duke@435 1781 }
duke@435 1782
duke@435 1783
duke@435 1784 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
duke@435 1785 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
duke@435 1786 bool is_unordered_less = (code == lir_ucmp_fd2i);
duke@435 1787 if (left->is_single_fpu()) {
duke@435 1788 __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
duke@435 1789 } else if (left->is_double_fpu()) {
duke@435 1790 __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
duke@435 1791 } else {
duke@435 1792 ShouldNotReachHere();
duke@435 1793 }
duke@435 1794 } else if (code == lir_cmp_l2i) {
iveresov@1804 1795 #ifdef _LP64
iveresov@1804 1796 __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
iveresov@1804 1797 #else
duke@435 1798 __ lcmp(left->as_register_hi(), left->as_register_lo(),
duke@435 1799 right->as_register_hi(), right->as_register_lo(),
duke@435 1800 dst->as_register());
iveresov@1804 1801 #endif
duke@435 1802 } else {
duke@435 1803 ShouldNotReachHere();
duke@435 1804 }
duke@435 1805 }
duke@435 1806
duke@435 1807
duke@435 1808 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result) {
duke@435 1809
duke@435 1810 Assembler::Condition acond;
duke@435 1811 switch (condition) {
duke@435 1812 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1813 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1814 case lir_cond_less: acond = Assembler::less; break;
duke@435 1815 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 1816 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
duke@435 1817 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 1818 case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break;
duke@435 1819 case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break;
duke@435 1820 default: ShouldNotReachHere();
duke@435 1821 };
duke@435 1822
duke@435 1823 if (opr1->is_constant() && opr1->type() == T_INT) {
duke@435 1824 Register dest = result->as_register();
duke@435 1825 // load up first part of constant before branch
duke@435 1826 // and do the rest in the delay slot.
duke@435 1827 if (!Assembler::is_simm13(opr1->as_jint())) {
duke@435 1828 __ sethi(opr1->as_jint(), dest);
duke@435 1829 }
duke@435 1830 } else if (opr1->is_constant()) {
duke@435 1831 const2reg(opr1, result, lir_patch_none, NULL);
duke@435 1832 } else if (opr1->is_register()) {
duke@435 1833 reg2reg(opr1, result);
duke@435 1834 } else if (opr1->is_stack()) {
duke@435 1835 stack2reg(opr1, result, result->type());
duke@435 1836 } else {
duke@435 1837 ShouldNotReachHere();
duke@435 1838 }
duke@435 1839 Label skip;
duke@435 1840 __ br(acond, false, Assembler::pt, skip);
duke@435 1841 if (opr1->is_constant() && opr1->type() == T_INT) {
duke@435 1842 Register dest = result->as_register();
duke@435 1843 if (Assembler::is_simm13(opr1->as_jint())) {
duke@435 1844 __ delayed()->or3(G0, opr1->as_jint(), dest);
duke@435 1845 } else {
duke@435 1846 // the sethi has been done above, so just put in the low 10 bits
duke@435 1847 __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
duke@435 1848 }
duke@435 1849 } else {
duke@435 1850 // can't do anything useful in the delay slot
duke@435 1851 __ delayed()->nop();
duke@435 1852 }
duke@435 1853 if (opr2->is_constant()) {
duke@435 1854 const2reg(opr2, result, lir_patch_none, NULL);
duke@435 1855 } else if (opr2->is_register()) {
duke@435 1856 reg2reg(opr2, result);
duke@435 1857 } else if (opr2->is_stack()) {
duke@435 1858 stack2reg(opr2, result, result->type());
duke@435 1859 } else {
duke@435 1860 ShouldNotReachHere();
duke@435 1861 }
duke@435 1862 __ bind(skip);
duke@435 1863 }
duke@435 1864
duke@435 1865
duke@435 1866 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
duke@435 1867 assert(info == NULL, "unused on this code path");
duke@435 1868 assert(left->is_register(), "wrong items state");
duke@435 1869 assert(dest->is_register(), "wrong items state");
duke@435 1870
duke@435 1871 if (right->is_register()) {
duke@435 1872 if (dest->is_float_kind()) {
duke@435 1873
duke@435 1874 FloatRegister lreg, rreg, res;
duke@435 1875 FloatRegisterImpl::Width w;
duke@435 1876 if (right->is_single_fpu()) {
duke@435 1877 w = FloatRegisterImpl::S;
duke@435 1878 lreg = left->as_float_reg();
duke@435 1879 rreg = right->as_float_reg();
duke@435 1880 res = dest->as_float_reg();
duke@435 1881 } else {
duke@435 1882 w = FloatRegisterImpl::D;
duke@435 1883 lreg = left->as_double_reg();
duke@435 1884 rreg = right->as_double_reg();
duke@435 1885 res = dest->as_double_reg();
duke@435 1886 }
duke@435 1887
duke@435 1888 switch (code) {
duke@435 1889 case lir_add: __ fadd(w, lreg, rreg, res); break;
duke@435 1890 case lir_sub: __ fsub(w, lreg, rreg, res); break;
duke@435 1891 case lir_mul: // fall through
duke@435 1892 case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
duke@435 1893 case lir_div: // fall through
duke@435 1894 case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
duke@435 1895 default: ShouldNotReachHere();
duke@435 1896 }
duke@435 1897
duke@435 1898 } else if (dest->is_double_cpu()) {
duke@435 1899 #ifdef _LP64
duke@435 1900 Register dst_lo = dest->as_register_lo();
duke@435 1901 Register op1_lo = left->as_pointer_register();
duke@435 1902 Register op2_lo = right->as_pointer_register();
duke@435 1903
duke@435 1904 switch (code) {
duke@435 1905 case lir_add:
duke@435 1906 __ add(op1_lo, op2_lo, dst_lo);
duke@435 1907 break;
duke@435 1908
duke@435 1909 case lir_sub:
duke@435 1910 __ sub(op1_lo, op2_lo, dst_lo);
duke@435 1911 break;
duke@435 1912
duke@435 1913 default: ShouldNotReachHere();
duke@435 1914 }
duke@435 1915 #else
duke@435 1916 Register op1_lo = left->as_register_lo();
duke@435 1917 Register op1_hi = left->as_register_hi();
duke@435 1918 Register op2_lo = right->as_register_lo();
duke@435 1919 Register op2_hi = right->as_register_hi();
duke@435 1920 Register dst_lo = dest->as_register_lo();
duke@435 1921 Register dst_hi = dest->as_register_hi();
duke@435 1922
duke@435 1923 switch (code) {
duke@435 1924 case lir_add:
duke@435 1925 __ addcc(op1_lo, op2_lo, dst_lo);
duke@435 1926 __ addc (op1_hi, op2_hi, dst_hi);
duke@435 1927 break;
duke@435 1928
duke@435 1929 case lir_sub:
duke@435 1930 __ subcc(op1_lo, op2_lo, dst_lo);
duke@435 1931 __ subc (op1_hi, op2_hi, dst_hi);
duke@435 1932 break;
duke@435 1933
duke@435 1934 default: ShouldNotReachHere();
duke@435 1935 }
duke@435 1936 #endif
duke@435 1937 } else {
duke@435 1938 assert (right->is_single_cpu(), "Just Checking");
duke@435 1939
duke@435 1940 Register lreg = left->as_register();
duke@435 1941 Register res = dest->as_register();
duke@435 1942 Register rreg = right->as_register();
duke@435 1943 switch (code) {
duke@435 1944 case lir_add: __ add (lreg, rreg, res); break;
duke@435 1945 case lir_sub: __ sub (lreg, rreg, res); break;
duke@435 1946 case lir_mul: __ mult (lreg, rreg, res); break;
duke@435 1947 default: ShouldNotReachHere();
duke@435 1948 }
duke@435 1949 }
duke@435 1950 } else {
duke@435 1951 assert (right->is_constant(), "must be constant");
duke@435 1952
duke@435 1953 if (dest->is_single_cpu()) {
duke@435 1954 Register lreg = left->as_register();
duke@435 1955 Register res = dest->as_register();
duke@435 1956 int simm13 = right->as_constant_ptr()->as_jint();
duke@435 1957
duke@435 1958 switch (code) {
duke@435 1959 case lir_add: __ add (lreg, simm13, res); break;
duke@435 1960 case lir_sub: __ sub (lreg, simm13, res); break;
duke@435 1961 case lir_mul: __ mult (lreg, simm13, res); break;
duke@435 1962 default: ShouldNotReachHere();
duke@435 1963 }
duke@435 1964 } else {
duke@435 1965 Register lreg = left->as_pointer_register();
duke@435 1966 Register res = dest->as_register_lo();
duke@435 1967 long con = right->as_constant_ptr()->as_jlong();
duke@435 1968 assert(Assembler::is_simm13(con), "must be simm13");
duke@435 1969
duke@435 1970 switch (code) {
duke@435 1971 case lir_add: __ add (lreg, (int)con, res); break;
duke@435 1972 case lir_sub: __ sub (lreg, (int)con, res); break;
duke@435 1973 case lir_mul: __ mult (lreg, (int)con, res); break;
duke@435 1974 default: ShouldNotReachHere();
duke@435 1975 }
duke@435 1976 }
duke@435 1977 }
duke@435 1978 }
duke@435 1979
duke@435 1980
duke@435 1981 void LIR_Assembler::fpop() {
duke@435 1982 // do nothing
duke@435 1983 }
duke@435 1984
duke@435 1985
duke@435 1986 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
duke@435 1987 switch (code) {
duke@435 1988 case lir_sin:
duke@435 1989 case lir_tan:
duke@435 1990 case lir_cos: {
duke@435 1991 assert(thread->is_valid(), "preserve the thread object for performance reasons");
duke@435 1992 assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
duke@435 1993 break;
duke@435 1994 }
duke@435 1995 case lir_sqrt: {
duke@435 1996 assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
duke@435 1997 FloatRegister src_reg = value->as_double_reg();
duke@435 1998 FloatRegister dst_reg = dest->as_double_reg();
duke@435 1999 __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
duke@435 2000 break;
duke@435 2001 }
duke@435 2002 case lir_abs: {
duke@435 2003 assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
duke@435 2004 FloatRegister src_reg = value->as_double_reg();
duke@435 2005 FloatRegister dst_reg = dest->as_double_reg();
duke@435 2006 __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
duke@435 2007 break;
duke@435 2008 }
duke@435 2009 default: {
duke@435 2010 ShouldNotReachHere();
duke@435 2011 break;
duke@435 2012 }
duke@435 2013 }
duke@435 2014 }
duke@435 2015
duke@435 2016
duke@435 2017 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
duke@435 2018 if (right->is_constant()) {
duke@435 2019 if (dest->is_single_cpu()) {
duke@435 2020 int simm13 = right->as_constant_ptr()->as_jint();
duke@435 2021 switch (code) {
duke@435 2022 case lir_logic_and: __ and3 (left->as_register(), simm13, dest->as_register()); break;
duke@435 2023 case lir_logic_or: __ or3 (left->as_register(), simm13, dest->as_register()); break;
duke@435 2024 case lir_logic_xor: __ xor3 (left->as_register(), simm13, dest->as_register()); break;
duke@435 2025 default: ShouldNotReachHere();
duke@435 2026 }
duke@435 2027 } else {
duke@435 2028 long c = right->as_constant_ptr()->as_jlong();
duke@435 2029 assert(c == (int)c && Assembler::is_simm13(c), "out of range");
duke@435 2030 int simm13 = (int)c;
duke@435 2031 switch (code) {
duke@435 2032 case lir_logic_and:
duke@435 2033 #ifndef _LP64
duke@435 2034 __ and3 (left->as_register_hi(), 0, dest->as_register_hi());
duke@435 2035 #endif
duke@435 2036 __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
duke@435 2037 break;
duke@435 2038
duke@435 2039 case lir_logic_or:
duke@435 2040 #ifndef _LP64
duke@435 2041 __ or3 (left->as_register_hi(), 0, dest->as_register_hi());
duke@435 2042 #endif
duke@435 2043 __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
duke@435 2044 break;
duke@435 2045
duke@435 2046 case lir_logic_xor:
duke@435 2047 #ifndef _LP64
duke@435 2048 __ xor3 (left->as_register_hi(), 0, dest->as_register_hi());
duke@435 2049 #endif
duke@435 2050 __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
duke@435 2051 break;
duke@435 2052
duke@435 2053 default: ShouldNotReachHere();
duke@435 2054 }
duke@435 2055 }
duke@435 2056 } else {
duke@435 2057 assert(right->is_register(), "right should be in register");
duke@435 2058
duke@435 2059 if (dest->is_single_cpu()) {
duke@435 2060 switch (code) {
duke@435 2061 case lir_logic_and: __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
duke@435 2062 case lir_logic_or: __ or3 (left->as_register(), right->as_register(), dest->as_register()); break;
duke@435 2063 case lir_logic_xor: __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
duke@435 2064 default: ShouldNotReachHere();
duke@435 2065 }
duke@435 2066 } else {
duke@435 2067 #ifdef _LP64
duke@435 2068 Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
duke@435 2069 left->as_register_lo();
duke@435 2070 Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
duke@435 2071 right->as_register_lo();
duke@435 2072
duke@435 2073 switch (code) {
duke@435 2074 case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
duke@435 2075 case lir_logic_or: __ or3 (l, r, dest->as_register_lo()); break;
duke@435 2076 case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
duke@435 2077 default: ShouldNotReachHere();
duke@435 2078 }
duke@435 2079 #else
duke@435 2080 switch (code) {
duke@435 2081 case lir_logic_and:
duke@435 2082 __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
duke@435 2083 __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
duke@435 2084 break;
duke@435 2085
duke@435 2086 case lir_logic_or:
duke@435 2087 __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
duke@435 2088 __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
duke@435 2089 break;
duke@435 2090
duke@435 2091 case lir_logic_xor:
duke@435 2092 __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
duke@435 2093 __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
duke@435 2094 break;
duke@435 2095
duke@435 2096 default: ShouldNotReachHere();
duke@435 2097 }
duke@435 2098 #endif
duke@435 2099 }
duke@435 2100 }
duke@435 2101 }
duke@435 2102
duke@435 2103
duke@435 2104 int LIR_Assembler::shift_amount(BasicType t) {
kvn@464 2105 int elem_size = type2aelembytes(t);
duke@435 2106 switch (elem_size) {
duke@435 2107 case 1 : return 0;
duke@435 2108 case 2 : return 1;
duke@435 2109 case 4 : return 2;
duke@435 2110 case 8 : return 3;
duke@435 2111 }
duke@435 2112 ShouldNotReachHere();
duke@435 2113 return -1;
duke@435 2114 }
duke@435 2115
duke@435 2116
never@1813 2117 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
duke@435 2118 assert(exceptionOop->as_register() == Oexception, "should match");
never@1813 2119 assert(exceptionPC->as_register() == Oissuing_pc, "should match");
duke@435 2120
duke@435 2121 info->add_register_oop(exceptionOop);
duke@435 2122
never@1813 2123 // reuse the debug info from the safepoint poll for the throw op itself
never@1813 2124 address pc_for_athrow = __ pc();
never@1813 2125 int pc_for_athrow_offset = __ offset();
never@1813 2126 RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
never@1813 2127 __ set(pc_for_athrow, Oissuing_pc, rspec);
never@1813 2128 add_call_info(pc_for_athrow_offset, info); // for exception handler
never@1813 2129
never@1813 2130 __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
never@1813 2131 __ delayed()->nop();
never@1813 2132 }
never@1813 2133
never@1813 2134
never@1813 2135 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
never@1813 2136 assert(exceptionOop->as_register() == Oexception, "should match");
never@1813 2137
never@1813 2138 __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
never@1813 2139 __ delayed()->nop();
duke@435 2140 }
duke@435 2141
duke@435 2142
duke@435 2143 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
duke@435 2144 Register src = op->src()->as_register();
duke@435 2145 Register dst = op->dst()->as_register();
duke@435 2146 Register src_pos = op->src_pos()->as_register();
duke@435 2147 Register dst_pos = op->dst_pos()->as_register();
duke@435 2148 Register length = op->length()->as_register();
duke@435 2149 Register tmp = op->tmp()->as_register();
duke@435 2150 Register tmp2 = O7;
duke@435 2151
duke@435 2152 int flags = op->flags();
duke@435 2153 ciArrayKlass* default_type = op->expected_type();
duke@435 2154 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
duke@435 2155 if (basic_type == T_ARRAY) basic_type = T_OBJECT;
duke@435 2156
duke@435 2157 // set up the arraycopy stub information
duke@435 2158 ArrayCopyStub* stub = op->stub();
duke@435 2159
duke@435 2160 // always do stub if no type information is available. it's ok if
duke@435 2161 // the known type isn't loaded since the code sanity checks
duke@435 2162 // in debug mode and the type isn't required when we know the exact type
duke@435 2163 // also check that the type is an array type.
ysr@777 2164 // We also, for now, always call the stub if the barrier set requires a
ysr@777 2165 // write_ref_pre barrier (which the stub does, but none of the optimized
ysr@777 2166 // cases currently does).
ysr@777 2167 if (op->expected_type() == NULL ||
ysr@777 2168 Universe::heap()->barrier_set()->has_write_ref_pre_barrier()) {
duke@435 2169 __ mov(src, O0);
duke@435 2170 __ mov(src_pos, O1);
duke@435 2171 __ mov(dst, O2);
duke@435 2172 __ mov(dst_pos, O3);
duke@435 2173 __ mov(length, O4);
duke@435 2174 __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
duke@435 2175
duke@435 2176 __ br_zero(Assembler::less, false, Assembler::pn, O0, *stub->entry());
duke@435 2177 __ delayed()->nop();
duke@435 2178 __ bind(*stub->continuation());
duke@435 2179 return;
duke@435 2180 }
duke@435 2181
duke@435 2182 assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
duke@435 2183
duke@435 2184 // make sure src and dst are non-null and load array length
duke@435 2185 if (flags & LIR_OpArrayCopy::src_null_check) {
duke@435 2186 __ tst(src);
duke@435 2187 __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
duke@435 2188 __ delayed()->nop();
duke@435 2189 }
duke@435 2190
duke@435 2191 if (flags & LIR_OpArrayCopy::dst_null_check) {
duke@435 2192 __ tst(dst);
duke@435 2193 __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
duke@435 2194 __ delayed()->nop();
duke@435 2195 }
duke@435 2196
duke@435 2197 if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
duke@435 2198 // test src_pos register
duke@435 2199 __ tst(src_pos);
duke@435 2200 __ br(Assembler::less, false, Assembler::pn, *stub->entry());
duke@435 2201 __ delayed()->nop();
duke@435 2202 }
duke@435 2203
duke@435 2204 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
duke@435 2205 // test dst_pos register
duke@435 2206 __ tst(dst_pos);
duke@435 2207 __ br(Assembler::less, false, Assembler::pn, *stub->entry());
duke@435 2208 __ delayed()->nop();
duke@435 2209 }
duke@435 2210
duke@435 2211 if (flags & LIR_OpArrayCopy::length_positive_check) {
duke@435 2212 // make sure length isn't negative
duke@435 2213 __ tst(length);
duke@435 2214 __ br(Assembler::less, false, Assembler::pn, *stub->entry());
duke@435 2215 __ delayed()->nop();
duke@435 2216 }
duke@435 2217
duke@435 2218 if (flags & LIR_OpArrayCopy::src_range_check) {
duke@435 2219 __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
duke@435 2220 __ add(length, src_pos, tmp);
duke@435 2221 __ cmp(tmp2, tmp);
duke@435 2222 __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
duke@435 2223 __ delayed()->nop();
duke@435 2224 }
duke@435 2225
duke@435 2226 if (flags & LIR_OpArrayCopy::dst_range_check) {
duke@435 2227 __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
duke@435 2228 __ add(length, dst_pos, tmp);
duke@435 2229 __ cmp(tmp2, tmp);
duke@435 2230 __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
duke@435 2231 __ delayed()->nop();
duke@435 2232 }
duke@435 2233
duke@435 2234 if (flags & LIR_OpArrayCopy::type_check) {
duke@435 2235 __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
duke@435 2236 __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
duke@435 2237 __ cmp(tmp, tmp2);
duke@435 2238 __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
duke@435 2239 __ delayed()->nop();
duke@435 2240 }
duke@435 2241
duke@435 2242 #ifdef ASSERT
duke@435 2243 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
duke@435 2244 // Sanity check the known type with the incoming class. For the
duke@435 2245 // primitive case the types must match exactly with src.klass and
duke@435 2246 // dst.klass each exactly matching the default type. For the
duke@435 2247 // object array case, if no type check is needed then either the
duke@435 2248 // dst type is exactly the expected type and the src type is a
duke@435 2249 // subtype which we can't check or src is the same array as dst
duke@435 2250 // but not necessarily exactly of type default_type.
duke@435 2251 Label known_ok, halt;
jrose@1424 2252 jobject2reg(op->expected_type()->constant_encoding(), tmp);
duke@435 2253 __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
duke@435 2254 if (basic_type != T_OBJECT) {
duke@435 2255 __ cmp(tmp, tmp2);
duke@435 2256 __ br(Assembler::notEqual, false, Assembler::pn, halt);
duke@435 2257 __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
duke@435 2258 __ cmp(tmp, tmp2);
duke@435 2259 __ br(Assembler::equal, false, Assembler::pn, known_ok);
duke@435 2260 __ delayed()->nop();
duke@435 2261 } else {
duke@435 2262 __ cmp(tmp, tmp2);
duke@435 2263 __ br(Assembler::equal, false, Assembler::pn, known_ok);
duke@435 2264 __ delayed()->cmp(src, dst);
duke@435 2265 __ br(Assembler::equal, false, Assembler::pn, known_ok);
duke@435 2266 __ delayed()->nop();
duke@435 2267 }
duke@435 2268 __ bind(halt);
duke@435 2269 __ stop("incorrect type information in arraycopy");
duke@435 2270 __ bind(known_ok);
duke@435 2271 }
duke@435 2272 #endif
duke@435 2273
duke@435 2274 int shift = shift_amount(basic_type);
duke@435 2275
duke@435 2276 Register src_ptr = O0;
duke@435 2277 Register dst_ptr = O1;
duke@435 2278 Register len = O2;
duke@435 2279
duke@435 2280 __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
roland@1495 2281 LP64_ONLY(__ sra(src_pos, 0, src_pos);) //higher 32bits must be null
duke@435 2282 if (shift == 0) {
duke@435 2283 __ add(src_ptr, src_pos, src_ptr);
duke@435 2284 } else {
duke@435 2285 __ sll(src_pos, shift, tmp);
duke@435 2286 __ add(src_ptr, tmp, src_ptr);
duke@435 2287 }
duke@435 2288
duke@435 2289 __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
roland@1495 2290 LP64_ONLY(__ sra(dst_pos, 0, dst_pos);) //higher 32bits must be null
duke@435 2291 if (shift == 0) {
duke@435 2292 __ add(dst_ptr, dst_pos, dst_ptr);
duke@435 2293 } else {
duke@435 2294 __ sll(dst_pos, shift, tmp);
duke@435 2295 __ add(dst_ptr, tmp, dst_ptr);
duke@435 2296 }
duke@435 2297
duke@435 2298 if (basic_type != T_OBJECT) {
duke@435 2299 if (shift == 0) {
duke@435 2300 __ mov(length, len);
duke@435 2301 } else {
duke@435 2302 __ sll(length, shift, len);
duke@435 2303 }
duke@435 2304 __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::primitive_arraycopy));
duke@435 2305 } else {
duke@435 2306 // oop_arraycopy takes a length in number of elements, so don't scale it.
duke@435 2307 __ mov(length, len);
duke@435 2308 __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::oop_arraycopy));
duke@435 2309 }
duke@435 2310
duke@435 2311 __ bind(*stub->continuation());
duke@435 2312 }
duke@435 2313
duke@435 2314
duke@435 2315 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
duke@435 2316 if (dest->is_single_cpu()) {
duke@435 2317 #ifdef _LP64
duke@435 2318 if (left->type() == T_OBJECT) {
duke@435 2319 switch (code) {
duke@435 2320 case lir_shl: __ sllx (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2321 case lir_shr: __ srax (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2322 case lir_ushr: __ srl (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2323 default: ShouldNotReachHere();
duke@435 2324 }
duke@435 2325 } else
duke@435 2326 #endif
duke@435 2327 switch (code) {
duke@435 2328 case lir_shl: __ sll (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2329 case lir_shr: __ sra (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2330 case lir_ushr: __ srl (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2331 default: ShouldNotReachHere();
duke@435 2332 }
duke@435 2333 } else {
duke@435 2334 #ifdef _LP64
duke@435 2335 switch (code) {
duke@435 2336 case lir_shl: __ sllx (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
duke@435 2337 case lir_shr: __ srax (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
duke@435 2338 case lir_ushr: __ srlx (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
duke@435 2339 default: ShouldNotReachHere();
duke@435 2340 }
duke@435 2341 #else
duke@435 2342 switch (code) {
duke@435 2343 case lir_shl: __ lshl (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
duke@435 2344 case lir_shr: __ lshr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
duke@435 2345 case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
duke@435 2346 default: ShouldNotReachHere();
duke@435 2347 }
duke@435 2348 #endif
duke@435 2349 }
duke@435 2350 }
duke@435 2351
duke@435 2352
duke@435 2353 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
duke@435 2354 #ifdef _LP64
duke@435 2355 if (left->type() == T_OBJECT) {
duke@435 2356 count = count & 63; // shouldn't shift by more than sizeof(intptr_t)
duke@435 2357 Register l = left->as_register();
duke@435 2358 Register d = dest->as_register_lo();
duke@435 2359 switch (code) {
duke@435 2360 case lir_shl: __ sllx (l, count, d); break;
duke@435 2361 case lir_shr: __ srax (l, count, d); break;
duke@435 2362 case lir_ushr: __ srlx (l, count, d); break;
duke@435 2363 default: ShouldNotReachHere();
duke@435 2364 }
duke@435 2365 return;
duke@435 2366 }
duke@435 2367 #endif
duke@435 2368
duke@435 2369 if (dest->is_single_cpu()) {
duke@435 2370 count = count & 0x1F; // Java spec
duke@435 2371 switch (code) {
duke@435 2372 case lir_shl: __ sll (left->as_register(), count, dest->as_register()); break;
duke@435 2373 case lir_shr: __ sra (left->as_register(), count, dest->as_register()); break;
duke@435 2374 case lir_ushr: __ srl (left->as_register(), count, dest->as_register()); break;
duke@435 2375 default: ShouldNotReachHere();
duke@435 2376 }
duke@435 2377 } else if (dest->is_double_cpu()) {
duke@435 2378 count = count & 63; // Java spec
duke@435 2379 switch (code) {
duke@435 2380 case lir_shl: __ sllx (left->as_pointer_register(), count, dest->as_pointer_register()); break;
duke@435 2381 case lir_shr: __ srax (left->as_pointer_register(), count, dest->as_pointer_register()); break;
duke@435 2382 case lir_ushr: __ srlx (left->as_pointer_register(), count, dest->as_pointer_register()); break;
duke@435 2383 default: ShouldNotReachHere();
duke@435 2384 }
duke@435 2385 } else {
duke@435 2386 ShouldNotReachHere();
duke@435 2387 }
duke@435 2388 }
duke@435 2389
duke@435 2390
duke@435 2391 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
duke@435 2392 assert(op->tmp1()->as_register() == G1 &&
duke@435 2393 op->tmp2()->as_register() == G3 &&
duke@435 2394 op->tmp3()->as_register() == G4 &&
duke@435 2395 op->obj()->as_register() == O0 &&
duke@435 2396 op->klass()->as_register() == G5, "must be");
duke@435 2397 if (op->init_check()) {
duke@435 2398 __ ld(op->klass()->as_register(),
duke@435 2399 instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc),
duke@435 2400 op->tmp1()->as_register());
duke@435 2401 add_debug_info_for_null_check_here(op->stub()->info());
duke@435 2402 __ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized);
duke@435 2403 __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
duke@435 2404 __ delayed()->nop();
duke@435 2405 }
duke@435 2406 __ allocate_object(op->obj()->as_register(),
duke@435 2407 op->tmp1()->as_register(),
duke@435 2408 op->tmp2()->as_register(),
duke@435 2409 op->tmp3()->as_register(),
duke@435 2410 op->header_size(),
duke@435 2411 op->object_size(),
duke@435 2412 op->klass()->as_register(),
duke@435 2413 *op->stub()->entry());
duke@435 2414 __ bind(*op->stub()->continuation());
duke@435 2415 __ verify_oop(op->obj()->as_register());
duke@435 2416 }
duke@435 2417
duke@435 2418
duke@435 2419 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
duke@435 2420 assert(op->tmp1()->as_register() == G1 &&
duke@435 2421 op->tmp2()->as_register() == G3 &&
duke@435 2422 op->tmp3()->as_register() == G4 &&
duke@435 2423 op->tmp4()->as_register() == O1 &&
duke@435 2424 op->klass()->as_register() == G5, "must be");
duke@435 2425 if (UseSlowPath ||
duke@435 2426 (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
duke@435 2427 (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
never@1813 2428 __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
duke@435 2429 __ delayed()->nop();
duke@435 2430 } else {
duke@435 2431 __ allocate_array(op->obj()->as_register(),
duke@435 2432 op->len()->as_register(),
duke@435 2433 op->tmp1()->as_register(),
duke@435 2434 op->tmp2()->as_register(),
duke@435 2435 op->tmp3()->as_register(),
duke@435 2436 arrayOopDesc::header_size(op->type()),
kvn@464 2437 type2aelembytes(op->type()),
duke@435 2438 op->klass()->as_register(),
duke@435 2439 *op->stub()->entry());
duke@435 2440 }
duke@435 2441 __ bind(*op->stub()->continuation());
duke@435 2442 }
duke@435 2443
duke@435 2444
iveresov@2138 2445 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
iveresov@2138 2446 ciMethodData *md, ciProfileData *data,
iveresov@2138 2447 Register recv, Register tmp1, Label* update_done) {
iveresov@2138 2448 uint i;
iveresov@2138 2449 for (i = 0; i < VirtualCallData::row_limit(); i++) {
iveresov@2138 2450 Label next_test;
iveresov@2138 2451 // See if the receiver is receiver[n].
iveresov@2138 2452 Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
iveresov@2138 2453 mdo_offset_bias);
iveresov@2138 2454 __ ld_ptr(receiver_addr, tmp1);
iveresov@2138 2455 __ verify_oop(tmp1);
iveresov@2138 2456 __ cmp(recv, tmp1);
iveresov@2138 2457 __ brx(Assembler::notEqual, false, Assembler::pt, next_test);
iveresov@2138 2458 __ delayed()->nop();
iveresov@2138 2459 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
iveresov@2138 2460 mdo_offset_bias);
iveresov@2138 2461 __ ld_ptr(data_addr, tmp1);
iveresov@2138 2462 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 2463 __ st_ptr(tmp1, data_addr);
iveresov@2138 2464 __ ba(false, *update_done);
iveresov@2138 2465 __ delayed()->nop();
iveresov@2138 2466 __ bind(next_test);
iveresov@2138 2467 }
iveresov@2138 2468
iveresov@2138 2469 // Didn't find receiver; find next empty slot and fill it in
iveresov@2138 2470 for (i = 0; i < VirtualCallData::row_limit(); i++) {
iveresov@2138 2471 Label next_test;
iveresov@2138 2472 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
iveresov@2138 2473 mdo_offset_bias);
iveresov@2138 2474 load(recv_addr, tmp1, T_OBJECT);
iveresov@2138 2475 __ br_notnull(tmp1, false, Assembler::pt, next_test);
iveresov@2138 2476 __ delayed()->nop();
iveresov@2138 2477 __ st_ptr(recv, recv_addr);
iveresov@2138 2478 __ set(DataLayout::counter_increment, tmp1);
iveresov@2138 2479 __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
iveresov@2138 2480 mdo_offset_bias);
iveresov@2138 2481 __ ba(false, *update_done);
iveresov@2138 2482 __ delayed()->nop();
iveresov@2138 2483 __ bind(next_test);
iveresov@2138 2484 }
iveresov@2138 2485 }
iveresov@2138 2486
iveresov@2146 2487
iveresov@2146 2488 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
iveresov@2146 2489 ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
iveresov@2146 2490 md = method->method_data();
iveresov@2146 2491 if (md == NULL) {
iveresov@2146 2492 bailout("out of memory building methodDataOop");
iveresov@2146 2493 return;
iveresov@2146 2494 }
iveresov@2146 2495 data = md->bci_to_data(bci);
iveresov@2146 2496 assert(data != NULL, "need data for checkcast");
iveresov@2146 2497 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
iveresov@2146 2498 if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
iveresov@2146 2499 // The offset is large so bias the mdo by the base of the slot so
iveresov@2146 2500 // that the ld can use simm13s to reference the slots of the data
iveresov@2146 2501 mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
iveresov@2146 2502 }
iveresov@2146 2503 }
iveresov@2146 2504
iveresov@2146 2505 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
iveresov@2138 2506 // we always need a stub for the failure case.
iveresov@2138 2507 CodeStub* stub = op->stub();
iveresov@2138 2508 Register obj = op->object()->as_register();
iveresov@2138 2509 Register k_RInfo = op->tmp1()->as_register();
iveresov@2138 2510 Register klass_RInfo = op->tmp2()->as_register();
iveresov@2138 2511 Register dst = op->result_opr()->as_register();
iveresov@2138 2512 Register Rtmp1 = op->tmp3()->as_register();
iveresov@2138 2513 ciKlass* k = op->klass();
iveresov@2138 2514
iveresov@2138 2515
iveresov@2138 2516 if (obj == k_RInfo) {
iveresov@2138 2517 k_RInfo = klass_RInfo;
iveresov@2138 2518 klass_RInfo = obj;
iveresov@2138 2519 }
iveresov@2138 2520
iveresov@2138 2521 ciMethodData* md;
iveresov@2138 2522 ciProfileData* data;
iveresov@2138 2523 int mdo_offset_bias = 0;
iveresov@2138 2524 if (op->should_profile()) {
iveresov@2138 2525 ciMethod* method = op->profiled_method();
iveresov@2138 2526 assert(method != NULL, "Should have method");
iveresov@2146 2527 setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
iveresov@2146 2528
iveresov@2146 2529 Label not_null;
iveresov@2146 2530 __ br_notnull(obj, false, Assembler::pn, not_null);
iveresov@2138 2531 __ delayed()->nop();
iveresov@2138 2532 Register mdo = k_RInfo;
iveresov@2138 2533 Register data_val = Rtmp1;
iveresov@2138 2534 jobject2reg(md->constant_encoding(), mdo);
iveresov@2138 2535 if (mdo_offset_bias > 0) {
iveresov@2138 2536 __ set(mdo_offset_bias, data_val);
iveresov@2138 2537 __ add(mdo, data_val, mdo);
iveresov@2138 2538 }
iveresov@2138 2539 Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
iveresov@2138 2540 __ ldub(flags_addr, data_val);
iveresov@2138 2541 __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
iveresov@2138 2542 __ stb(data_val, flags_addr);
iveresov@2146 2543 __ ba(false, *obj_is_null);
iveresov@2146 2544 __ delayed()->nop();
iveresov@2146 2545 __ bind(not_null);
iveresov@2146 2546 } else {
iveresov@2146 2547 __ br_null(obj, false, Assembler::pn, *obj_is_null);
iveresov@2146 2548 __ delayed()->nop();
iveresov@2138 2549 }
iveresov@2146 2550
iveresov@2146 2551 Label profile_cast_failure, profile_cast_success;
iveresov@2146 2552 Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
iveresov@2146 2553 Label *success_target = op->should_profile() ? &profile_cast_success : success;
iveresov@2138 2554
iveresov@2138 2555 // patching may screw with our temporaries on sparc,
iveresov@2138 2556 // so let's do it before loading the class
iveresov@2138 2557 if (k->is_loaded()) {
iveresov@2138 2558 jobject2reg(k->constant_encoding(), k_RInfo);
iveresov@2138 2559 } else {
iveresov@2138 2560 jobject2reg_with_patching(k_RInfo, op->info_for_patch());
iveresov@2138 2561 }
iveresov@2138 2562 assert(obj != k_RInfo, "must be different");
iveresov@2138 2563
iveresov@2138 2564 // get object class
iveresov@2138 2565 // not a safepoint as obj null check happens earlier
iveresov@2138 2566 load(obj, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
iveresov@2138 2567 if (op->fast_check()) {
iveresov@2138 2568 assert_different_registers(klass_RInfo, k_RInfo);
iveresov@2138 2569 __ cmp(k_RInfo, klass_RInfo);
iveresov@2138 2570 __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
iveresov@2138 2571 __ delayed()->nop();
iveresov@2138 2572 } else {
iveresov@2138 2573 bool need_slow_path = true;
iveresov@2138 2574 if (k->is_loaded()) {
iveresov@2138 2575 if (k->super_check_offset() != sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes())
iveresov@2138 2576 need_slow_path = false;
iveresov@2138 2577 // perform the fast part of the checking logic
iveresov@2138 2578 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
iveresov@2146 2579 (need_slow_path ? success_target : NULL),
iveresov@2138 2580 failure_target, NULL,
iveresov@2138 2581 RegisterOrConstant(k->super_check_offset()));
iveresov@2138 2582 } else {
iveresov@2138 2583 // perform the fast part of the checking logic
iveresov@2146 2584 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
iveresov@2138 2585 failure_target, NULL);
iveresov@2138 2586 }
iveresov@2138 2587 if (need_slow_path) {
iveresov@2138 2588 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
iveresov@2138 2589 assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
iveresov@2138 2590 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
iveresov@2138 2591 __ delayed()->nop();
iveresov@2138 2592 __ cmp(G3, 0);
iveresov@2138 2593 __ br(Assembler::equal, false, Assembler::pn, *failure_target);
iveresov@2138 2594 __ delayed()->nop();
iveresov@2146 2595 // Fall through to success case
iveresov@2138 2596 }
iveresov@2138 2597 }
iveresov@2138 2598
iveresov@2138 2599 if (op->should_profile()) {
iveresov@2138 2600 Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
iveresov@2138 2601 assert_different_registers(obj, mdo, recv, tmp1);
iveresov@2146 2602 __ bind(profile_cast_success);
iveresov@2138 2603 jobject2reg(md->constant_encoding(), mdo);
iveresov@2138 2604 if (mdo_offset_bias > 0) {
iveresov@2138 2605 __ set(mdo_offset_bias, tmp1);
iveresov@2138 2606 __ add(mdo, tmp1, mdo);
iveresov@2138 2607 }
iveresov@2138 2608 load(Address(obj, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
iveresov@2146 2609 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
iveresov@2138 2610 // Jump over the failure case
iveresov@2146 2611 __ ba(false, *success);
iveresov@2138 2612 __ delayed()->nop();
iveresov@2138 2613 // Cast failure case
iveresov@2138 2614 __ bind(profile_cast_failure);
iveresov@2138 2615 jobject2reg(md->constant_encoding(), mdo);
iveresov@2138 2616 if (mdo_offset_bias > 0) {
iveresov@2138 2617 __ set(mdo_offset_bias, tmp1);
iveresov@2138 2618 __ add(mdo, tmp1, mdo);
iveresov@2138 2619 }
iveresov@2138 2620 Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
iveresov@2138 2621 __ ld_ptr(data_addr, tmp1);
iveresov@2138 2622 __ sub(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 2623 __ st_ptr(tmp1, data_addr);
iveresov@2146 2624 __ ba(false, *failure);
iveresov@2138 2625 __ delayed()->nop();
iveresov@2138 2626 }
iveresov@2146 2627 __ ba(false, *success);
iveresov@2146 2628 __ delayed()->nop();
iveresov@2138 2629 }
iveresov@2138 2630
duke@435 2631 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
duke@435 2632 LIR_Code code = op->code();
duke@435 2633 if (code == lir_store_check) {
duke@435 2634 Register value = op->object()->as_register();
duke@435 2635 Register array = op->array()->as_register();
duke@435 2636 Register k_RInfo = op->tmp1()->as_register();
duke@435 2637 Register klass_RInfo = op->tmp2()->as_register();
duke@435 2638 Register Rtmp1 = op->tmp3()->as_register();
duke@435 2639
duke@435 2640 __ verify_oop(value);
duke@435 2641 CodeStub* stub = op->stub();
iveresov@2146 2642 // check if it needs to be profiled
iveresov@2146 2643 ciMethodData* md;
iveresov@2146 2644 ciProfileData* data;
iveresov@2146 2645 int mdo_offset_bias = 0;
iveresov@2146 2646 if (op->should_profile()) {
iveresov@2146 2647 ciMethod* method = op->profiled_method();
iveresov@2146 2648 assert(method != NULL, "Should have method");
iveresov@2146 2649 setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
iveresov@2146 2650 }
iveresov@2146 2651 Label profile_cast_success, profile_cast_failure, done;
iveresov@2146 2652 Label *success_target = op->should_profile() ? &profile_cast_success : &done;
iveresov@2146 2653 Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
iveresov@2146 2654
iveresov@2146 2655 if (op->should_profile()) {
iveresov@2146 2656 Label not_null;
iveresov@2146 2657 __ br_notnull(value, false, Assembler::pn, not_null);
iveresov@2146 2658 __ delayed()->nop();
iveresov@2146 2659 Register mdo = k_RInfo;
iveresov@2146 2660 Register data_val = Rtmp1;
iveresov@2146 2661 jobject2reg(md->constant_encoding(), mdo);
iveresov@2146 2662 if (mdo_offset_bias > 0) {
iveresov@2146 2663 __ set(mdo_offset_bias, data_val);
iveresov@2146 2664 __ add(mdo, data_val, mdo);
iveresov@2146 2665 }
iveresov@2146 2666 Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
iveresov@2146 2667 __ ldub(flags_addr, data_val);
iveresov@2146 2668 __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
iveresov@2146 2669 __ stb(data_val, flags_addr);
iveresov@2146 2670 __ ba(false, done);
iveresov@2146 2671 __ delayed()->nop();
iveresov@2146 2672 __ bind(not_null);
iveresov@2146 2673 } else {
iveresov@2146 2674 __ br_null(value, false, Assembler::pn, done);
iveresov@2146 2675 __ delayed()->nop();
iveresov@2146 2676 }
duke@435 2677 load(array, oopDesc::klass_offset_in_bytes(), k_RInfo, T_OBJECT, op->info_for_exception());
duke@435 2678 load(value, oopDesc::klass_offset_in_bytes(), klass_RInfo, T_OBJECT, NULL);
duke@435 2679
duke@435 2680 // get instance klass
duke@435 2681 load(k_RInfo, objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc), k_RInfo, T_OBJECT, NULL);
jrose@1079 2682 // perform the fast part of the checking logic
iveresov@2146 2683 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
jrose@1079 2684
jrose@1079 2685 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
jrose@1079 2686 assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
duke@435 2687 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
duke@435 2688 __ delayed()->nop();
duke@435 2689 __ cmp(G3, 0);
iveresov@2146 2690 __ br(Assembler::equal, false, Assembler::pn, *failure_target);
duke@435 2691 __ delayed()->nop();
iveresov@2146 2692 // fall through to the success case
iveresov@2146 2693
iveresov@2146 2694 if (op->should_profile()) {
iveresov@2146 2695 Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
iveresov@2146 2696 assert_different_registers(value, mdo, recv, tmp1);
iveresov@2146 2697 __ bind(profile_cast_success);
iveresov@2146 2698 jobject2reg(md->constant_encoding(), mdo);
iveresov@2146 2699 if (mdo_offset_bias > 0) {
iveresov@2146 2700 __ set(mdo_offset_bias, tmp1);
iveresov@2146 2701 __ add(mdo, tmp1, mdo);
iveresov@2146 2702 }
iveresov@2146 2703 load(Address(value, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
iveresov@2146 2704 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
iveresov@2146 2705 __ ba(false, done);
iveresov@2146 2706 __ delayed()->nop();
iveresov@2146 2707 // Cast failure case
iveresov@2146 2708 __ bind(profile_cast_failure);
iveresov@2146 2709 jobject2reg(md->constant_encoding(), mdo);
iveresov@2146 2710 if (mdo_offset_bias > 0) {
iveresov@2146 2711 __ set(mdo_offset_bias, tmp1);
iveresov@2146 2712 __ add(mdo, tmp1, mdo);
iveresov@2146 2713 }
iveresov@2146 2714 Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
iveresov@2146 2715 __ ld_ptr(data_addr, tmp1);
iveresov@2146 2716 __ sub(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2146 2717 __ st_ptr(tmp1, data_addr);
iveresov@2146 2718 __ ba(false, *stub->entry());
iveresov@2146 2719 __ delayed()->nop();
iveresov@2146 2720 }
duke@435 2721 __ bind(done);
iveresov@2146 2722 } else if (code == lir_checkcast) {
iveresov@2146 2723 Register obj = op->object()->as_register();
iveresov@2146 2724 Register dst = op->result_opr()->as_register();
iveresov@2146 2725 Label success;
iveresov@2146 2726 emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
iveresov@2146 2727 __ bind(success);
iveresov@2146 2728 __ mov(obj, dst);
duke@435 2729 } else if (code == lir_instanceof) {
duke@435 2730 Register obj = op->object()->as_register();
duke@435 2731 Register dst = op->result_opr()->as_register();
iveresov@2146 2732 Label success, failure, done;
iveresov@2146 2733 emit_typecheck_helper(op, &success, &failure, &failure);
iveresov@2146 2734 __ bind(failure);
iveresov@2146 2735 __ set(0, dst);
iveresov@2146 2736 __ ba(false, done);
iveresov@2146 2737 __ delayed()->nop();
iveresov@2146 2738 __ bind(success);
iveresov@2146 2739 __ set(1, dst);
iveresov@2146 2740 __ bind(done);
duke@435 2741 } else {
duke@435 2742 ShouldNotReachHere();
duke@435 2743 }
duke@435 2744
duke@435 2745 }
duke@435 2746
duke@435 2747
duke@435 2748 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
duke@435 2749 if (op->code() == lir_cas_long) {
duke@435 2750 assert(VM_Version::supports_cx8(), "wrong machine");
duke@435 2751 Register addr = op->addr()->as_pointer_register();
duke@435 2752 Register cmp_value_lo = op->cmp_value()->as_register_lo();
duke@435 2753 Register cmp_value_hi = op->cmp_value()->as_register_hi();
duke@435 2754 Register new_value_lo = op->new_value()->as_register_lo();
duke@435 2755 Register new_value_hi = op->new_value()->as_register_hi();
duke@435 2756 Register t1 = op->tmp1()->as_register();
duke@435 2757 Register t2 = op->tmp2()->as_register();
duke@435 2758 #ifdef _LP64
duke@435 2759 __ mov(cmp_value_lo, t1);
duke@435 2760 __ mov(new_value_lo, t2);
duke@435 2761 #else
duke@435 2762 // move high and low halves of long values into single registers
duke@435 2763 __ sllx(cmp_value_hi, 32, t1); // shift high half into temp reg
duke@435 2764 __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
duke@435 2765 __ or3(t1, cmp_value_lo, t1); // t1 holds 64-bit compare value
duke@435 2766 __ sllx(new_value_hi, 32, t2);
duke@435 2767 __ srl(new_value_lo, 0, new_value_lo);
duke@435 2768 __ or3(t2, new_value_lo, t2); // t2 holds 64-bit value to swap
duke@435 2769 #endif
duke@435 2770 // perform the compare and swap operation
duke@435 2771 __ casx(addr, t1, t2);
duke@435 2772 // generate condition code - if the swap succeeded, t2 ("new value" reg) was
duke@435 2773 // overwritten with the original value in "addr" and will be equal to t1.
duke@435 2774 __ cmp(t1, t2);
duke@435 2775
duke@435 2776 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
duke@435 2777 Register addr = op->addr()->as_pointer_register();
duke@435 2778 Register cmp_value = op->cmp_value()->as_register();
duke@435 2779 Register new_value = op->new_value()->as_register();
duke@435 2780 Register t1 = op->tmp1()->as_register();
duke@435 2781 Register t2 = op->tmp2()->as_register();
duke@435 2782 __ mov(cmp_value, t1);
duke@435 2783 __ mov(new_value, t2);
duke@435 2784 #ifdef _LP64
duke@435 2785 if (op->code() == lir_cas_obj) {
duke@435 2786 __ casx(addr, t1, t2);
duke@435 2787 } else
duke@435 2788 #endif
duke@435 2789 {
duke@435 2790 __ cas(addr, t1, t2);
duke@435 2791 }
duke@435 2792 __ cmp(t1, t2);
duke@435 2793 } else {
duke@435 2794 Unimplemented();
duke@435 2795 }
duke@435 2796 }
duke@435 2797
duke@435 2798 void LIR_Assembler::set_24bit_FPU() {
duke@435 2799 Unimplemented();
duke@435 2800 }
duke@435 2801
duke@435 2802
duke@435 2803 void LIR_Assembler::reset_FPU() {
duke@435 2804 Unimplemented();
duke@435 2805 }
duke@435 2806
duke@435 2807
duke@435 2808 void LIR_Assembler::breakpoint() {
duke@435 2809 __ breakpoint_trap();
duke@435 2810 }
duke@435 2811
duke@435 2812
duke@435 2813 void LIR_Assembler::push(LIR_Opr opr) {
duke@435 2814 Unimplemented();
duke@435 2815 }
duke@435 2816
duke@435 2817
duke@435 2818 void LIR_Assembler::pop(LIR_Opr opr) {
duke@435 2819 Unimplemented();
duke@435 2820 }
duke@435 2821
duke@435 2822
duke@435 2823 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
duke@435 2824 Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
duke@435 2825 Register dst = dst_opr->as_register();
duke@435 2826 Register reg = mon_addr.base();
duke@435 2827 int offset = mon_addr.disp();
duke@435 2828 // compute pointer to BasicLock
duke@435 2829 if (mon_addr.is_simm13()) {
duke@435 2830 __ add(reg, offset, dst);
duke@435 2831 } else {
duke@435 2832 __ set(offset, dst);
duke@435 2833 __ add(dst, reg, dst);
duke@435 2834 }
duke@435 2835 }
duke@435 2836
duke@435 2837
duke@435 2838 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
duke@435 2839 Register obj = op->obj_opr()->as_register();
duke@435 2840 Register hdr = op->hdr_opr()->as_register();
duke@435 2841 Register lock = op->lock_opr()->as_register();
duke@435 2842
duke@435 2843 // obj may not be an oop
duke@435 2844 if (op->code() == lir_lock) {
duke@435 2845 MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
duke@435 2846 if (UseFastLocking) {
duke@435 2847 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 2848 // add debug info for NullPointerException only if one is possible
duke@435 2849 if (op->info() != NULL) {
duke@435 2850 add_debug_info_for_null_check_here(op->info());
duke@435 2851 }
duke@435 2852 __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
duke@435 2853 } else {
duke@435 2854 // always do slow locking
duke@435 2855 // note: the slow locking code could be inlined here, however if we use
duke@435 2856 // slow locking, speed doesn't matter anyway and this solution is
duke@435 2857 // simpler and requires less duplicated code - additionally, the
duke@435 2858 // slow locking code is the same in either case which simplifies
duke@435 2859 // debugging
duke@435 2860 __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
duke@435 2861 __ delayed()->nop();
duke@435 2862 }
duke@435 2863 } else {
duke@435 2864 assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
duke@435 2865 if (UseFastLocking) {
duke@435 2866 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 2867 __ unlock_object(hdr, obj, lock, *op->stub()->entry());
duke@435 2868 } else {
duke@435 2869 // always do slow unlocking
duke@435 2870 // note: the slow unlocking code could be inlined here, however if we use
duke@435 2871 // slow unlocking, speed doesn't matter anyway and this solution is
duke@435 2872 // simpler and requires less duplicated code - additionally, the
duke@435 2873 // slow unlocking code is the same in either case which simplifies
duke@435 2874 // debugging
duke@435 2875 __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
duke@435 2876 __ delayed()->nop();
duke@435 2877 }
duke@435 2878 }
duke@435 2879 __ bind(*op->stub()->continuation());
duke@435 2880 }
duke@435 2881
duke@435 2882
duke@435 2883 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
duke@435 2884 ciMethod* method = op->profiled_method();
duke@435 2885 int bci = op->profiled_bci();
duke@435 2886
duke@435 2887 // Update counter for all call types
duke@435 2888 ciMethodData* md = method->method_data();
duke@435 2889 if (md == NULL) {
duke@435 2890 bailout("out of memory building methodDataOop");
duke@435 2891 return;
duke@435 2892 }
duke@435 2893 ciProfileData* data = md->bci_to_data(bci);
duke@435 2894 assert(data->is_CounterData(), "need CounterData for calls");
duke@435 2895 assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
iveresov@2138 2896 Register mdo = op->mdo()->as_register();
iveresov@2138 2897 #ifdef _LP64
iveresov@2138 2898 assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
iveresov@2138 2899 Register tmp1 = op->tmp1()->as_register_lo();
iveresov@2138 2900 #else
duke@435 2901 assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
duke@435 2902 Register tmp1 = op->tmp1()->as_register();
iveresov@2138 2903 #endif
jrose@1424 2904 jobject2reg(md->constant_encoding(), mdo);
duke@435 2905 int mdo_offset_bias = 0;
duke@435 2906 if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
duke@435 2907 data->size_in_bytes())) {
duke@435 2908 // The offset is large so bias the mdo by the base of the slot so
duke@435 2909 // that the ld can use simm13s to reference the slots of the data
duke@435 2910 mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
duke@435 2911 __ set(mdo_offset_bias, O7);
duke@435 2912 __ add(mdo, O7, mdo);
duke@435 2913 }
duke@435 2914
twisti@1162 2915 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
duke@435 2916 Bytecodes::Code bc = method->java_code_at_bci(bci);
duke@435 2917 // Perform additional virtual call profiling for invokevirtual and
duke@435 2918 // invokeinterface bytecodes
duke@435 2919 if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
iveresov@2138 2920 C1ProfileVirtualCalls) {
duke@435 2921 assert(op->recv()->is_single_cpu(), "recv must be allocated");
duke@435 2922 Register recv = op->recv()->as_register();
duke@435 2923 assert_different_registers(mdo, tmp1, recv);
duke@435 2924 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
duke@435 2925 ciKlass* known_klass = op->known_holder();
iveresov@2138 2926 if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
duke@435 2927 // We know the type that will be seen at this call site; we can
duke@435 2928 // statically update the methodDataOop rather than needing to do
duke@435 2929 // dynamic tests on the receiver type
duke@435 2930
duke@435 2931 // NOTE: we should probably put a lock around this search to
duke@435 2932 // avoid collisions by concurrent compilations
duke@435 2933 ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
duke@435 2934 uint i;
duke@435 2935 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 2936 ciKlass* receiver = vc_data->receiver(i);
duke@435 2937 if (known_klass->equals(receiver)) {
twisti@1162 2938 Address data_addr(mdo, md->byte_offset_of_slot(data,
twisti@1162 2939 VirtualCallData::receiver_count_offset(i)) -
duke@435 2940 mdo_offset_bias);
iveresov@2138 2941 __ ld_ptr(data_addr, tmp1);
duke@435 2942 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 2943 __ st_ptr(tmp1, data_addr);
duke@435 2944 return;
duke@435 2945 }
duke@435 2946 }
duke@435 2947
duke@435 2948 // Receiver type not found in profile data; select an empty slot
duke@435 2949
duke@435 2950 // Note that this is less efficient than it should be because it
duke@435 2951 // always does a write to the receiver part of the
duke@435 2952 // VirtualCallData rather than just the first time
duke@435 2953 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 2954 ciKlass* receiver = vc_data->receiver(i);
duke@435 2955 if (receiver == NULL) {
twisti@1162 2956 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
duke@435 2957 mdo_offset_bias);
jrose@1424 2958 jobject2reg(known_klass->constant_encoding(), tmp1);
duke@435 2959 __ st_ptr(tmp1, recv_addr);
twisti@1162 2960 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
duke@435 2961 mdo_offset_bias);
iveresov@2138 2962 __ ld_ptr(data_addr, tmp1);
duke@435 2963 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 2964 __ st_ptr(tmp1, data_addr);
duke@435 2965 return;
duke@435 2966 }
duke@435 2967 }
duke@435 2968 } else {
twisti@1162 2969 load(Address(recv, oopDesc::klass_offset_in_bytes()), recv, T_OBJECT);
duke@435 2970 Label update_done;
iveresov@2138 2971 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
kvn@1686 2972 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1686 2973 // Increment total counter to indicate polymorphic case.
iveresov@2138 2974 __ ld_ptr(counter_addr, tmp1);
kvn@1686 2975 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 2976 __ st_ptr(tmp1, counter_addr);
duke@435 2977
duke@435 2978 __ bind(update_done);
duke@435 2979 }
kvn@1686 2980 } else {
kvn@1686 2981 // Static call
iveresov@2138 2982 __ ld_ptr(counter_addr, tmp1);
kvn@1686 2983 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 2984 __ st_ptr(tmp1, counter_addr);
duke@435 2985 }
duke@435 2986 }
duke@435 2987
duke@435 2988 void LIR_Assembler::align_backward_branch_target() {
kvn@1800 2989 __ align(OptoLoopAlignment);
duke@435 2990 }
duke@435 2991
duke@435 2992
duke@435 2993 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
duke@435 2994 // make sure we are expecting a delay
duke@435 2995 // this has the side effect of clearing the delay state
duke@435 2996 // so we can use _masm instead of _masm->delayed() to do the
duke@435 2997 // code generation.
duke@435 2998 __ delayed();
duke@435 2999
duke@435 3000 // make sure we only emit one instruction
duke@435 3001 int offset = code_offset();
duke@435 3002 op->delay_op()->emit_code(this);
duke@435 3003 #ifdef ASSERT
duke@435 3004 if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
duke@435 3005 op->delay_op()->print();
duke@435 3006 }
duke@435 3007 assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
duke@435 3008 "only one instruction can go in a delay slot");
duke@435 3009 #endif
duke@435 3010
duke@435 3011 // we may also be emitting the call info for the instruction
duke@435 3012 // which we are the delay slot of.
twisti@1919 3013 CodeEmitInfo* call_info = op->call_info();
duke@435 3014 if (call_info) {
duke@435 3015 add_call_info(code_offset(), call_info);
duke@435 3016 }
duke@435 3017
duke@435 3018 if (VerifyStackAtCalls) {
duke@435 3019 _masm->sub(FP, SP, O7);
duke@435 3020 _masm->cmp(O7, initial_frame_size_in_bytes());
duke@435 3021 _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
duke@435 3022 }
duke@435 3023 }
duke@435 3024
duke@435 3025
duke@435 3026 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
duke@435 3027 assert(left->is_register(), "can only handle registers");
duke@435 3028
duke@435 3029 if (left->is_single_cpu()) {
duke@435 3030 __ neg(left->as_register(), dest->as_register());
duke@435 3031 } else if (left->is_single_fpu()) {
duke@435 3032 __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
duke@435 3033 } else if (left->is_double_fpu()) {
duke@435 3034 __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
duke@435 3035 } else {
duke@435 3036 assert (left->is_double_cpu(), "Must be a long");
duke@435 3037 Register Rlow = left->as_register_lo();
duke@435 3038 Register Rhi = left->as_register_hi();
duke@435 3039 #ifdef _LP64
duke@435 3040 __ sub(G0, Rlow, dest->as_register_lo());
duke@435 3041 #else
duke@435 3042 __ subcc(G0, Rlow, dest->as_register_lo());
duke@435 3043 __ subc (G0, Rhi, dest->as_register_hi());
duke@435 3044 #endif
duke@435 3045 }
duke@435 3046 }
duke@435 3047
duke@435 3048
duke@435 3049 void LIR_Assembler::fxch(int i) {
duke@435 3050 Unimplemented();
duke@435 3051 }
duke@435 3052
duke@435 3053 void LIR_Assembler::fld(int i) {
duke@435 3054 Unimplemented();
duke@435 3055 }
duke@435 3056
duke@435 3057 void LIR_Assembler::ffree(int i) {
duke@435 3058 Unimplemented();
duke@435 3059 }
duke@435 3060
duke@435 3061 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
duke@435 3062 const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 3063
duke@435 3064 // if tmp is invalid, then the function being called doesn't destroy the thread
duke@435 3065 if (tmp->is_valid()) {
duke@435 3066 __ save_thread(tmp->as_register());
duke@435 3067 }
duke@435 3068 __ call(dest, relocInfo::runtime_call_type);
duke@435 3069 __ delayed()->nop();
duke@435 3070 if (info != NULL) {
duke@435 3071 add_call_info_here(info);
duke@435 3072 }
duke@435 3073 if (tmp->is_valid()) {
duke@435 3074 __ restore_thread(tmp->as_register());
duke@435 3075 }
duke@435 3076
duke@435 3077 #ifdef ASSERT
duke@435 3078 __ verify_thread();
duke@435 3079 #endif // ASSERT
duke@435 3080 }
duke@435 3081
duke@435 3082
duke@435 3083 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
duke@435 3084 #ifdef _LP64
duke@435 3085 ShouldNotReachHere();
duke@435 3086 #endif
duke@435 3087
duke@435 3088 NEEDS_CLEANUP;
duke@435 3089 if (type == T_LONG) {
duke@435 3090 LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
duke@435 3091
duke@435 3092 // (extended to allow indexed as well as constant displaced for JSR-166)
duke@435 3093 Register idx = noreg; // contains either constant offset or index
duke@435 3094
duke@435 3095 int disp = mem_addr->disp();
duke@435 3096 if (mem_addr->index() == LIR_OprFact::illegalOpr) {
duke@435 3097 if (!Assembler::is_simm13(disp)) {
duke@435 3098 idx = O7;
duke@435 3099 __ set(disp, idx);
duke@435 3100 }
duke@435 3101 } else {
duke@435 3102 assert(disp == 0, "not both indexed and disp");
duke@435 3103 idx = mem_addr->index()->as_register();
duke@435 3104 }
duke@435 3105
duke@435 3106 int null_check_offset = -1;
duke@435 3107
duke@435 3108 Register base = mem_addr->base()->as_register();
duke@435 3109 if (src->is_register() && dest->is_address()) {
duke@435 3110 // G4 is high half, G5 is low half
duke@435 3111 if (VM_Version::v9_instructions_work()) {
duke@435 3112 // clear the top bits of G5, and scale up G4
duke@435 3113 __ srl (src->as_register_lo(), 0, G5);
duke@435 3114 __ sllx(src->as_register_hi(), 32, G4);
duke@435 3115 // combine the two halves into the 64 bits of G4
duke@435 3116 __ or3(G4, G5, G4);
duke@435 3117 null_check_offset = __ offset();
duke@435 3118 if (idx == noreg) {
duke@435 3119 __ stx(G4, base, disp);
duke@435 3120 } else {
duke@435 3121 __ stx(G4, base, idx);
duke@435 3122 }
duke@435 3123 } else {
duke@435 3124 __ mov (src->as_register_hi(), G4);
duke@435 3125 __ mov (src->as_register_lo(), G5);
duke@435 3126 null_check_offset = __ offset();
duke@435 3127 if (idx == noreg) {
duke@435 3128 __ std(G4, base, disp);
duke@435 3129 } else {
duke@435 3130 __ std(G4, base, idx);
duke@435 3131 }
duke@435 3132 }
duke@435 3133 } else if (src->is_address() && dest->is_register()) {
duke@435 3134 null_check_offset = __ offset();
duke@435 3135 if (VM_Version::v9_instructions_work()) {
duke@435 3136 if (idx == noreg) {
duke@435 3137 __ ldx(base, disp, G5);
duke@435 3138 } else {
duke@435 3139 __ ldx(base, idx, G5);
duke@435 3140 }
duke@435 3141 __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
duke@435 3142 __ mov (G5, dest->as_register_lo()); // copy low half into lo
duke@435 3143 } else {
duke@435 3144 if (idx == noreg) {
duke@435 3145 __ ldd(base, disp, G4);
duke@435 3146 } else {
duke@435 3147 __ ldd(base, idx, G4);
duke@435 3148 }
duke@435 3149 // G4 is high half, G5 is low half
duke@435 3150 __ mov (G4, dest->as_register_hi());
duke@435 3151 __ mov (G5, dest->as_register_lo());
duke@435 3152 }
duke@435 3153 } else {
duke@435 3154 Unimplemented();
duke@435 3155 }
duke@435 3156 if (info != NULL) {
duke@435 3157 add_debug_info_for_null_check(null_check_offset, info);
duke@435 3158 }
duke@435 3159
duke@435 3160 } else {
duke@435 3161 // use normal move for all other volatiles since they don't need
duke@435 3162 // special handling to remain atomic.
duke@435 3163 move_op(src, dest, type, lir_patch_none, info, false, false);
duke@435 3164 }
duke@435 3165 }
duke@435 3166
duke@435 3167 void LIR_Assembler::membar() {
duke@435 3168 // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
duke@435 3169 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
duke@435 3170 }
duke@435 3171
duke@435 3172 void LIR_Assembler::membar_acquire() {
duke@435 3173 // no-op on TSO
duke@435 3174 }
duke@435 3175
duke@435 3176 void LIR_Assembler::membar_release() {
duke@435 3177 // no-op on TSO
duke@435 3178 }
duke@435 3179
iveresov@2138 3180 // Pack two sequential registers containing 32 bit values
duke@435 3181 // into a single 64 bit register.
iveresov@2138 3182 // src and src->successor() are packed into dst
iveresov@2138 3183 // src and dst may be the same register.
iveresov@2138 3184 // Note: src is destroyed
iveresov@2138 3185 void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
iveresov@2138 3186 Register rs = src->as_register();
iveresov@2138 3187 Register rd = dst->as_register_lo();
duke@435 3188 __ sllx(rs, 32, rs);
duke@435 3189 __ srl(rs->successor(), 0, rs->successor());
duke@435 3190 __ or3(rs, rs->successor(), rd);
duke@435 3191 }
duke@435 3192
iveresov@2138 3193 // Unpack a 64 bit value in a register into
duke@435 3194 // two sequential registers.
iveresov@2138 3195 // src is unpacked into dst and dst->successor()
iveresov@2138 3196 void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
iveresov@2138 3197 Register rs = src->as_register_lo();
iveresov@2138 3198 Register rd = dst->as_register_hi();
iveresov@2138 3199 assert_different_registers(rs, rd, rd->successor());
iveresov@2138 3200 __ srlx(rs, 32, rd);
iveresov@2138 3201 __ srl (rs, 0, rd->successor());
duke@435 3202 }
duke@435 3203
duke@435 3204
duke@435 3205 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
duke@435 3206 LIR_Address* addr = addr_opr->as_address_ptr();
duke@435 3207 assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
iveresov@2138 3208
iveresov@2138 3209 __ add(addr->base()->as_pointer_register(), addr->disp(), dest->as_pointer_register());
duke@435 3210 }
duke@435 3211
duke@435 3212
duke@435 3213 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
duke@435 3214 assert(result_reg->is_register(), "check");
duke@435 3215 __ mov(G2_thread, result_reg->as_register());
duke@435 3216 }
duke@435 3217
duke@435 3218
duke@435 3219 void LIR_Assembler::peephole(LIR_List* lir) {
duke@435 3220 LIR_OpList* inst = lir->instructions_list();
duke@435 3221 for (int i = 0; i < inst->length(); i++) {
duke@435 3222 LIR_Op* op = inst->at(i);
duke@435 3223 switch (op->code()) {
duke@435 3224 case lir_cond_float_branch:
duke@435 3225 case lir_branch: {
duke@435 3226 LIR_OpBranch* branch = op->as_OpBranch();
duke@435 3227 assert(branch->info() == NULL, "shouldn't be state on branches anymore");
duke@435 3228 LIR_Op* delay_op = NULL;
duke@435 3229 // we'd like to be able to pull following instructions into
duke@435 3230 // this slot but we don't know enough to do it safely yet so
duke@435 3231 // only optimize block to block control flow.
duke@435 3232 if (LIRFillDelaySlots && branch->block()) {
duke@435 3233 LIR_Op* prev = inst->at(i - 1);
duke@435 3234 if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
duke@435 3235 // swap previous instruction into delay slot
duke@435 3236 inst->at_put(i - 1, op);
duke@435 3237 inst->at_put(i, new LIR_OpDelay(prev, op->info()));
duke@435 3238 #ifndef PRODUCT
duke@435 3239 if (LIRTracePeephole) {
duke@435 3240 tty->print_cr("delayed");
duke@435 3241 inst->at(i - 1)->print();
duke@435 3242 inst->at(i)->print();
twisti@1919 3243 tty->cr();
duke@435 3244 }
duke@435 3245 #endif
duke@435 3246 continue;
duke@435 3247 }
duke@435 3248 }
duke@435 3249
duke@435 3250 if (!delay_op) {
duke@435 3251 delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
duke@435 3252 }
duke@435 3253 inst->insert_before(i + 1, delay_op);
duke@435 3254 break;
duke@435 3255 }
duke@435 3256 case lir_static_call:
duke@435 3257 case lir_virtual_call:
duke@435 3258 case lir_icvirtual_call:
twisti@1919 3259 case lir_optvirtual_call:
twisti@1919 3260 case lir_dynamic_call: {
duke@435 3261 LIR_Op* prev = inst->at(i - 1);
duke@435 3262 if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
duke@435 3263 (op->code() != lir_virtual_call ||
duke@435 3264 !prev->result_opr()->is_single_cpu() ||
duke@435 3265 prev->result_opr()->as_register() != O0) &&
duke@435 3266 LIR_Assembler::is_single_instruction(prev)) {
duke@435 3267 // Only moves without info can be put into the delay slot.
duke@435 3268 // Also don't allow the setup of the receiver in the delay
duke@435 3269 // slot for vtable calls.
duke@435 3270 inst->at_put(i - 1, op);
duke@435 3271 inst->at_put(i, new LIR_OpDelay(prev, op->info()));
duke@435 3272 #ifndef PRODUCT
duke@435 3273 if (LIRTracePeephole) {
duke@435 3274 tty->print_cr("delayed");
duke@435 3275 inst->at(i - 1)->print();
duke@435 3276 inst->at(i)->print();
twisti@1919 3277 tty->cr();
duke@435 3278 }
duke@435 3279 #endif
iveresov@2138 3280 } else {
iveresov@2138 3281 LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
iveresov@2138 3282 inst->insert_before(i + 1, delay_op);
iveresov@2138 3283 i++;
duke@435 3284 }
duke@435 3285
iveresov@2138 3286 #if defined(TIERED) && !defined(_LP64)
iveresov@2138 3287 // fixup the return value from G1 to O0/O1 for long returns.
iveresov@2138 3288 // It's done here instead of in LIRGenerator because there's
iveresov@2138 3289 // such a mismatch between the single reg and double reg
iveresov@2138 3290 // calling convention.
iveresov@2138 3291 LIR_OpJavaCall* callop = op->as_OpJavaCall();
iveresov@2138 3292 if (callop->result_opr() == FrameMap::out_long_opr) {
iveresov@2138 3293 LIR_OpJavaCall* call;
iveresov@2138 3294 LIR_OprList* arguments = new LIR_OprList(callop->arguments()->length());
iveresov@2138 3295 for (int a = 0; a < arguments->length(); a++) {
iveresov@2138 3296 arguments[a] = callop->arguments()[a];
iveresov@2138 3297 }
iveresov@2138 3298 if (op->code() == lir_virtual_call) {
iveresov@2138 3299 call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
iveresov@2138 3300 callop->vtable_offset(), arguments, callop->info());
iveresov@2138 3301 } else {
iveresov@2138 3302 call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
iveresov@2138 3303 callop->addr(), arguments, callop->info());
iveresov@2138 3304 }
iveresov@2138 3305 inst->at_put(i - 1, call);
iveresov@2138 3306 inst->insert_before(i + 1, new LIR_Op1(lir_unpack64, FrameMap::g1_long_single_opr, callop->result_opr(),
iveresov@2138 3307 T_LONG, lir_patch_none, NULL));
iveresov@2138 3308 }
iveresov@2138 3309 #endif
duke@435 3310 break;
duke@435 3311 }
duke@435 3312 }
duke@435 3313 }
duke@435 3314 }
duke@435 3315
duke@435 3316
duke@435 3317
duke@435 3318
duke@435 3319 #undef __

mercurial