src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp

Tue, 09 Oct 2012 10:11:38 +0200

author
roland
date
Tue, 09 Oct 2012 10:11:38 +0200
changeset 4159
8e47bac5643a
parent 4106
7eca5de9e0b6
child 4162
94e9408dbf50
permissions
-rw-r--r--

7054512: Compress class pointers after perm gen removal
Summary: support of compress class pointers in the compilers.
Reviewed-by: kvn, twisti

duke@435 1 /*
kvn@3760 2 * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "c1/c1_Compilation.hpp"
stefank@2314 27 #include "c1/c1_LIRAssembler.hpp"
stefank@2314 28 #include "c1/c1_MacroAssembler.hpp"
stefank@2314 29 #include "c1/c1_Runtime1.hpp"
stefank@2314 30 #include "c1/c1_ValueStack.hpp"
stefank@2314 31 #include "ci/ciArrayKlass.hpp"
stefank@2314 32 #include "ci/ciInstance.hpp"
stefank@2314 33 #include "gc_interface/collectedHeap.hpp"
stefank@2314 34 #include "memory/barrierSet.hpp"
stefank@2314 35 #include "memory/cardTableModRefBS.hpp"
stefank@2314 36 #include "nativeInst_sparc.hpp"
stefank@2314 37 #include "oops/objArrayKlass.hpp"
stefank@2314 38 #include "runtime/sharedRuntime.hpp"
duke@435 39
duke@435 40 #define __ _masm->
duke@435 41
duke@435 42
duke@435 43 //------------------------------------------------------------
duke@435 44
duke@435 45
duke@435 46 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
duke@435 47 if (opr->is_constant()) {
duke@435 48 LIR_Const* constant = opr->as_constant_ptr();
duke@435 49 switch (constant->type()) {
duke@435 50 case T_INT: {
duke@435 51 jint value = constant->as_jint();
duke@435 52 return Assembler::is_simm13(value);
duke@435 53 }
duke@435 54
duke@435 55 default:
duke@435 56 return false;
duke@435 57 }
duke@435 58 }
duke@435 59 return false;
duke@435 60 }
duke@435 61
duke@435 62
duke@435 63 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
duke@435 64 switch (op->code()) {
duke@435 65 case lir_null_check:
duke@435 66 return true;
duke@435 67
duke@435 68
duke@435 69 case lir_add:
duke@435 70 case lir_ushr:
duke@435 71 case lir_shr:
duke@435 72 case lir_shl:
duke@435 73 // integer shifts and adds are always one instruction
duke@435 74 return op->result_opr()->is_single_cpu();
duke@435 75
duke@435 76
duke@435 77 case lir_move: {
duke@435 78 LIR_Op1* op1 = op->as_Op1();
duke@435 79 LIR_Opr src = op1->in_opr();
duke@435 80 LIR_Opr dst = op1->result_opr();
duke@435 81
duke@435 82 if (src == dst) {
duke@435 83 NEEDS_CLEANUP;
duke@435 84 // this works around a problem where moves with the same src and dst
duke@435 85 // end up in the delay slot and then the assembler swallows the mov
duke@435 86 // since it has no effect and then it complains because the delay slot
duke@435 87 // is empty. returning false stops the optimizer from putting this in
duke@435 88 // the delay slot
duke@435 89 return false;
duke@435 90 }
duke@435 91
duke@435 92 // don't put moves involving oops into the delay slot since the VerifyOops code
duke@435 93 // will make it much larger than a single instruction.
duke@435 94 if (VerifyOops) {
duke@435 95 return false;
duke@435 96 }
duke@435 97
duke@435 98 if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
duke@435 99 ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
duke@435 100 return false;
duke@435 101 }
duke@435 102
iveresov@2344 103 if (UseCompressedOops) {
iveresov@2344 104 if (dst->is_address() && !dst->is_stack() && (dst->type() == T_OBJECT || dst->type() == T_ARRAY)) return false;
iveresov@2344 105 if (src->is_address() && !src->is_stack() && (src->type() == T_OBJECT || src->type() == T_ARRAY)) return false;
iveresov@2344 106 }
iveresov@2344 107
roland@4159 108 if (UseCompressedKlassPointers) {
roland@4159 109 if (src->is_address() && !src->is_stack() && src->type() == T_ADDRESS &&
roland@4159 110 src->as_address_ptr()->disp() == oopDesc::klass_offset_in_bytes()) return false;
roland@4159 111 }
roland@4159 112
duke@435 113 if (dst->is_register()) {
duke@435 114 if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
duke@435 115 return !PatchALot;
duke@435 116 } else if (src->is_single_stack()) {
duke@435 117 return true;
duke@435 118 }
duke@435 119 }
duke@435 120
duke@435 121 if (src->is_register()) {
duke@435 122 if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
duke@435 123 return !PatchALot;
duke@435 124 } else if (dst->is_single_stack()) {
duke@435 125 return true;
duke@435 126 }
duke@435 127 }
duke@435 128
duke@435 129 if (dst->is_register() &&
duke@435 130 ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
duke@435 131 (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
duke@435 132 return true;
duke@435 133 }
duke@435 134
duke@435 135 return false;
duke@435 136 }
duke@435 137
duke@435 138 default:
duke@435 139 return false;
duke@435 140 }
duke@435 141 ShouldNotReachHere();
duke@435 142 }
duke@435 143
duke@435 144
duke@435 145 LIR_Opr LIR_Assembler::receiverOpr() {
duke@435 146 return FrameMap::O0_oop_opr;
duke@435 147 }
duke@435 148
duke@435 149
duke@435 150 LIR_Opr LIR_Assembler::osrBufferPointer() {
duke@435 151 return FrameMap::I0_opr;
duke@435 152 }
duke@435 153
duke@435 154
duke@435 155 int LIR_Assembler::initial_frame_size_in_bytes() {
duke@435 156 return in_bytes(frame_map()->framesize_in_bytes());
duke@435 157 }
duke@435 158
duke@435 159
duke@435 160 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
duke@435 161 // we fetch the class of the receiver (O0) and compare it with the cached class.
duke@435 162 // If they do not match we jump to slow case.
duke@435 163 int LIR_Assembler::check_icache() {
duke@435 164 int offset = __ offset();
duke@435 165 __ inline_cache_check(O0, G5_inline_cache_reg);
duke@435 166 return offset;
duke@435 167 }
duke@435 168
duke@435 169
duke@435 170 void LIR_Assembler::osr_entry() {
duke@435 171 // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
duke@435 172 //
duke@435 173 // 1. Create a new compiled activation.
duke@435 174 // 2. Initialize local variables in the compiled activation. The expression stack must be empty
duke@435 175 // at the osr_bci; it is not initialized.
duke@435 176 // 3. Jump to the continuation address in compiled code to resume execution.
duke@435 177
duke@435 178 // OSR entry point
duke@435 179 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
duke@435 180 BlockBegin* osr_entry = compilation()->hir()->osr_entry();
duke@435 181 ValueStack* entry_state = osr_entry->end()->state();
duke@435 182 int number_of_locks = entry_state->locks_size();
duke@435 183
duke@435 184 // Create a frame for the compiled activation.
duke@435 185 __ build_frame(initial_frame_size_in_bytes());
duke@435 186
duke@435 187 // OSR buffer is
duke@435 188 //
duke@435 189 // locals[nlocals-1..0]
duke@435 190 // monitors[number_of_locks-1..0]
duke@435 191 //
duke@435 192 // locals is a direct copy of the interpreter frame so in the osr buffer
duke@435 193 // so first slot in the local array is the last local from the interpreter
duke@435 194 // and last slot is local[0] (receiver) from the interpreter
duke@435 195 //
duke@435 196 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
duke@435 197 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
duke@435 198 // in the interpreter frame (the method lock if a sync method)
duke@435 199
duke@435 200 // Initialize monitors in the compiled activation.
duke@435 201 // I0: pointer to osr buffer
duke@435 202 //
duke@435 203 // All other registers are dead at this point and the locals will be
duke@435 204 // copied into place by code emitted in the IR.
duke@435 205
duke@435 206 Register OSR_buf = osrBufferPointer()->as_register();
duke@435 207 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
duke@435 208 int monitor_offset = BytesPerWord * method()->max_locals() +
roland@1495 209 (2 * BytesPerWord) * (number_of_locks - 1);
roland@1495 210 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
roland@1495 211 // the OSR buffer using 2 word entries: first the lock and then
roland@1495 212 // the oop.
duke@435 213 for (int i = 0; i < number_of_locks; i++) {
roland@1495 214 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
duke@435 215 #ifdef ASSERT
duke@435 216 // verify the interpreter's monitor has a non-null object
duke@435 217 {
duke@435 218 Label L;
roland@1495 219 __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
kvn@3037 220 __ cmp_and_br_short(O7, G0, Assembler::notEqual, Assembler::pt, L);
duke@435 221 __ stop("locked object is NULL");
duke@435 222 __ bind(L);
duke@435 223 }
duke@435 224 #endif // ASSERT
duke@435 225 // Copy the lock field into the compiled activation.
roland@1495 226 __ ld_ptr(OSR_buf, slot_offset + 0, O7);
duke@435 227 __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
roland@1495 228 __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
duke@435 229 __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
duke@435 230 }
duke@435 231 }
duke@435 232 }
duke@435 233
duke@435 234
duke@435 235 // Optimized Library calls
duke@435 236 // This is the fast version of java.lang.String.compare; it has not
duke@435 237 // OSR-entry and therefore, we generate a slow version for OSR's
duke@435 238 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
duke@435 239 Register str0 = left->as_register();
duke@435 240 Register str1 = right->as_register();
duke@435 241
duke@435 242 Label Ldone;
duke@435 243
duke@435 244 Register result = dst->as_register();
duke@435 245 {
kvn@3760 246 // Get a pointer to the first character of string0 in tmp0
kvn@3760 247 // and get string0.length() in str0
kvn@3760 248 // Get a pointer to the first character of string1 in tmp1
kvn@3760 249 // and get string1.length() in str1
kvn@3760 250 // Also, get string0.length()-string1.length() in
kvn@3760 251 // o7 and get the condition code set
duke@435 252 // Note: some instructions have been hoisted for better instruction scheduling
duke@435 253
duke@435 254 Register tmp0 = L0;
duke@435 255 Register tmp1 = L1;
duke@435 256 Register tmp2 = L2;
duke@435 257
duke@435 258 int value_offset = java_lang_String:: value_offset_in_bytes(); // char array
kvn@3760 259 if (java_lang_String::has_offset_field()) {
kvn@3760 260 int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
kvn@3760 261 int count_offset = java_lang_String:: count_offset_in_bytes();
kvn@3760 262 __ load_heap_oop(str0, value_offset, tmp0);
kvn@3760 263 __ ld(str0, offset_offset, tmp2);
kvn@3760 264 __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
kvn@3760 265 __ ld(str0, count_offset, str0);
kvn@3760 266 __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
kvn@3760 267 } else {
kvn@3760 268 __ load_heap_oop(str0, value_offset, tmp1);
kvn@3760 269 __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
kvn@3760 270 __ ld(tmp1, arrayOopDesc::length_offset_in_bytes(), str0);
kvn@3760 271 }
duke@435 272
duke@435 273 // str1 may be null
duke@435 274 add_debug_info_for_null_check_here(info);
duke@435 275
kvn@3760 276 if (java_lang_String::has_offset_field()) {
kvn@3760 277 int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
kvn@3760 278 int count_offset = java_lang_String:: count_offset_in_bytes();
kvn@3760 279 __ load_heap_oop(str1, value_offset, tmp1);
kvn@3760 280 __ add(tmp0, tmp2, tmp0);
kvn@3760 281
kvn@3760 282 __ ld(str1, offset_offset, tmp2);
kvn@3760 283 __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
kvn@3760 284 __ ld(str1, count_offset, str1);
kvn@3760 285 __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
kvn@3760 286 __ add(tmp1, tmp2, tmp1);
kvn@3760 287 } else {
kvn@3760 288 __ load_heap_oop(str1, value_offset, tmp2);
kvn@3760 289 __ add(tmp2, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
kvn@3760 290 __ ld(tmp2, arrayOopDesc::length_offset_in_bytes(), str1);
kvn@3760 291 }
duke@435 292 __ subcc(str0, str1, O7);
duke@435 293 }
duke@435 294
duke@435 295 {
duke@435 296 // Compute the minimum of the string lengths, scale it and store it in limit
duke@435 297 Register count0 = I0;
duke@435 298 Register count1 = I1;
duke@435 299 Register limit = L3;
duke@435 300
duke@435 301 Label Lskip;
duke@435 302 __ sll(count0, exact_log2(sizeof(jchar)), limit); // string0 is shorter
duke@435 303 __ br(Assembler::greater, true, Assembler::pt, Lskip);
duke@435 304 __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit); // string1 is shorter
duke@435 305 __ bind(Lskip);
duke@435 306
duke@435 307 // If either string is empty (or both of them) the result is the difference in lengths
duke@435 308 __ cmp(limit, 0);
duke@435 309 __ br(Assembler::equal, true, Assembler::pn, Ldone);
duke@435 310 __ delayed()->mov(O7, result); // result is difference in lengths
duke@435 311 }
duke@435 312
duke@435 313 {
duke@435 314 // Neither string is empty
duke@435 315 Label Lloop;
duke@435 316
duke@435 317 Register base0 = L0;
duke@435 318 Register base1 = L1;
duke@435 319 Register chr0 = I0;
duke@435 320 Register chr1 = I1;
duke@435 321 Register limit = L3;
duke@435 322
duke@435 323 // Shift base0 and base1 to the end of the arrays, negate limit
duke@435 324 __ add(base0, limit, base0);
duke@435 325 __ add(base1, limit, base1);
kvn@3760 326 __ neg(limit); // limit = -min{string0.length(), string1.length()}
duke@435 327
duke@435 328 __ lduh(base0, limit, chr0);
duke@435 329 __ bind(Lloop);
duke@435 330 __ lduh(base1, limit, chr1);
duke@435 331 __ subcc(chr0, chr1, chr0);
duke@435 332 __ br(Assembler::notZero, false, Assembler::pn, Ldone);
duke@435 333 assert(chr0 == result, "result must be pre-placed");
duke@435 334 __ delayed()->inccc(limit, sizeof(jchar));
duke@435 335 __ br(Assembler::notZero, true, Assembler::pt, Lloop);
duke@435 336 __ delayed()->lduh(base0, limit, chr0);
duke@435 337 }
duke@435 338
duke@435 339 // If strings are equal up to min length, return the length difference.
duke@435 340 __ mov(O7, result);
duke@435 341
duke@435 342 // Otherwise, return the difference between the first mismatched chars.
duke@435 343 __ bind(Ldone);
duke@435 344 }
duke@435 345
duke@435 346
duke@435 347 // --------------------------------------------------------------------------------------------
duke@435 348
duke@435 349 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
duke@435 350 if (!GenerateSynchronizationCode) return;
duke@435 351
duke@435 352 Register obj_reg = obj_opr->as_register();
duke@435 353 Register lock_reg = lock_opr->as_register();
duke@435 354
duke@435 355 Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
duke@435 356 Register reg = mon_addr.base();
duke@435 357 int offset = mon_addr.disp();
duke@435 358 // compute pointer to BasicLock
duke@435 359 if (mon_addr.is_simm13()) {
duke@435 360 __ add(reg, offset, lock_reg);
duke@435 361 }
duke@435 362 else {
duke@435 363 __ set(offset, lock_reg);
duke@435 364 __ add(reg, lock_reg, lock_reg);
duke@435 365 }
duke@435 366 // unlock object
duke@435 367 MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
duke@435 368 // _slow_case_stubs->append(slow_case);
duke@435 369 // temporary fix: must be created after exceptionhandler, therefore as call stub
duke@435 370 _slow_case_stubs->append(slow_case);
duke@435 371 if (UseFastLocking) {
duke@435 372 // try inlined fast unlocking first, revert to slow locking if it fails
duke@435 373 // note: lock_reg points to the displaced header since the displaced header offset is 0!
duke@435 374 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 375 __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
duke@435 376 } else {
duke@435 377 // always do slow unlocking
duke@435 378 // note: the slow unlocking code could be inlined here, however if we use
duke@435 379 // slow unlocking, speed doesn't matter anyway and this solution is
duke@435 380 // simpler and requires less duplicated code - additionally, the
duke@435 381 // slow unlocking code is the same in either case which simplifies
duke@435 382 // debugging
duke@435 383 __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
duke@435 384 __ delayed()->nop();
duke@435 385 }
duke@435 386 // done
duke@435 387 __ bind(*slow_case->continuation());
duke@435 388 }
duke@435 389
duke@435 390
twisti@1639 391 int LIR_Assembler::emit_exception_handler() {
duke@435 392 // if the last instruction is a call (typically to do a throw which
duke@435 393 // is coming at the end after block reordering) the return address
duke@435 394 // must still point into the code area in order to avoid assertion
duke@435 395 // failures when searching for the corresponding bci => add a nop
duke@435 396 // (was bug 5/14/1999 - gri)
duke@435 397 __ nop();
duke@435 398
duke@435 399 // generate code for exception handler
duke@435 400 ciMethod* method = compilation()->method();
duke@435 401
duke@435 402 address handler_base = __ start_a_stub(exception_handler_size);
duke@435 403
duke@435 404 if (handler_base == NULL) {
duke@435 405 // not enough space left for the handler
duke@435 406 bailout("exception handler overflow");
twisti@1639 407 return -1;
duke@435 408 }
twisti@1639 409
duke@435 410 int offset = code_offset();
duke@435 411
twisti@2603 412 __ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type);
duke@435 413 __ delayed()->nop();
twisti@2603 414 __ should_not_reach_here();
iveresov@3435 415 guarantee(code_offset() - offset <= exception_handler_size, "overflow");
duke@435 416 __ end_a_stub();
twisti@1639 417
twisti@1639 418 return offset;
duke@435 419 }
duke@435 420
twisti@1639 421
never@1813 422 // Emit the code to remove the frame from the stack in the exception
never@1813 423 // unwind path.
never@1813 424 int LIR_Assembler::emit_unwind_handler() {
never@1813 425 #ifndef PRODUCT
never@1813 426 if (CommentedAssembly) {
never@1813 427 _masm->block_comment("Unwind handler");
never@1813 428 }
never@1813 429 #endif
never@1813 430
never@1813 431 int offset = code_offset();
never@1813 432
never@1813 433 // Fetch the exception from TLS and clear out exception related thread state
never@1813 434 __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
never@1813 435 __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
never@1813 436 __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
never@1813 437
never@1813 438 __ bind(_unwind_handler_entry);
never@1813 439 __ verify_not_null_oop(O0);
never@1813 440 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 441 __ mov(O0, I0); // Preserve the exception
never@1813 442 }
never@1813 443
never@1813 444 // Preform needed unlocking
never@1813 445 MonitorExitStub* stub = NULL;
never@1813 446 if (method()->is_synchronized()) {
never@1813 447 monitor_address(0, FrameMap::I1_opr);
never@1813 448 stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
never@1813 449 __ unlock_object(I3, I2, I1, *stub->entry());
never@1813 450 __ bind(*stub->continuation());
never@1813 451 }
never@1813 452
never@1813 453 if (compilation()->env()->dtrace_method_probes()) {
never@2185 454 __ mov(G2_thread, O0);
roland@4051 455 __ save_thread(I1); // need to preserve thread in G2 across
roland@4051 456 // runtime call
coleenp@4037 457 metadata2reg(method()->constant_encoding(), O1);
never@1813 458 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
never@1813 459 __ delayed()->nop();
roland@4051 460 __ restore_thread(I1);
never@1813 461 }
never@1813 462
never@1813 463 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 464 __ mov(I0, O0); // Restore the exception
never@1813 465 }
never@1813 466
never@1813 467 // dispatch to the unwind logic
never@1813 468 __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
never@1813 469 __ delayed()->nop();
never@1813 470
never@1813 471 // Emit the slow path assembly
never@1813 472 if (stub != NULL) {
never@1813 473 stub->emit_code(this);
never@1813 474 }
never@1813 475
never@1813 476 return offset;
never@1813 477 }
never@1813 478
never@1813 479
twisti@1639 480 int LIR_Assembler::emit_deopt_handler() {
duke@435 481 // if the last instruction is a call (typically to do a throw which
duke@435 482 // is coming at the end after block reordering) the return address
duke@435 483 // must still point into the code area in order to avoid assertion
duke@435 484 // failures when searching for the corresponding bci => add a nop
duke@435 485 // (was bug 5/14/1999 - gri)
duke@435 486 __ nop();
duke@435 487
duke@435 488 // generate code for deopt handler
duke@435 489 ciMethod* method = compilation()->method();
duke@435 490 address handler_base = __ start_a_stub(deopt_handler_size);
duke@435 491 if (handler_base == NULL) {
duke@435 492 // not enough space left for the handler
duke@435 493 bailout("deopt handler overflow");
twisti@1639 494 return -1;
duke@435 495 }
twisti@1639 496
duke@435 497 int offset = code_offset();
twisti@1162 498 AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
twisti@1162 499 __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
duke@435 500 __ delayed()->nop();
iveresov@3435 501 guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
duke@435 502 __ end_a_stub();
twisti@1639 503
twisti@1639 504 return offset;
duke@435 505 }
duke@435 506
duke@435 507
duke@435 508 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
duke@435 509 if (o == NULL) {
duke@435 510 __ set(NULL_WORD, reg);
duke@435 511 } else {
duke@435 512 int oop_index = __ oop_recorder()->find_index(o);
coleenp@4037 513 assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(o)), "should be real oop");
duke@435 514 RelocationHolder rspec = oop_Relocation::spec(oop_index);
duke@435 515 __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
duke@435 516 }
duke@435 517 }
duke@435 518
duke@435 519
duke@435 520 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
coleenp@4037 521 // Allocate a new index in table to hold the object once it's been patched
coleenp@4037 522 int oop_index = __ oop_recorder()->allocate_oop_index(NULL);
coleenp@4037 523 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_mirror_id, oop_index);
duke@435 524
twisti@1162 525 AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
twisti@1162 526 assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
duke@435 527 // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
duke@435 528 // NULL will be dynamically patched later and the patched value may be large. We must
duke@435 529 // therefore generate the sethi/add as a placeholders
twisti@1162 530 __ patchable_set(addrlit, reg);
duke@435 531
duke@435 532 patching_epilog(patch, lir_patch_normal, reg, info);
duke@435 533 }
duke@435 534
duke@435 535
coleenp@4037 536 void LIR_Assembler::metadata2reg(Metadata* o, Register reg) {
coleenp@4037 537 __ set_metadata_constant(o, reg);
coleenp@4037 538 }
coleenp@4037 539
coleenp@4037 540 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) {
coleenp@4037 541 // Allocate a new index in table to hold the klass once it's been patched
coleenp@4037 542 int index = __ oop_recorder()->allocate_metadata_index(NULL);
coleenp@4037 543 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
coleenp@4037 544 AddressLiteral addrlit(NULL, metadata_Relocation::spec(index));
coleenp@4037 545 assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc");
coleenp@4037 546 // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
coleenp@4037 547 // NULL will be dynamically patched later and the patched value may be large. We must
coleenp@4037 548 // therefore generate the sethi/add as a placeholders
coleenp@4037 549 __ patchable_set(addrlit, reg);
coleenp@4037 550
coleenp@4037 551 patching_epilog(patch, lir_patch_normal, reg, info);
coleenp@4037 552 }
coleenp@4037 553
duke@435 554 void LIR_Assembler::emit_op3(LIR_Op3* op) {
duke@435 555 Register Rdividend = op->in_opr1()->as_register();
duke@435 556 Register Rdivisor = noreg;
duke@435 557 Register Rscratch = op->in_opr3()->as_register();
duke@435 558 Register Rresult = op->result_opr()->as_register();
duke@435 559 int divisor = -1;
duke@435 560
duke@435 561 if (op->in_opr2()->is_register()) {
duke@435 562 Rdivisor = op->in_opr2()->as_register();
duke@435 563 } else {
duke@435 564 divisor = op->in_opr2()->as_constant_ptr()->as_jint();
duke@435 565 assert(Assembler::is_simm13(divisor), "can only handle simm13");
duke@435 566 }
duke@435 567
duke@435 568 assert(Rdividend != Rscratch, "");
duke@435 569 assert(Rdivisor != Rscratch, "");
duke@435 570 assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
duke@435 571
duke@435 572 if (Rdivisor == noreg && is_power_of_2(divisor)) {
duke@435 573 // convert division by a power of two into some shifts and logical operations
duke@435 574 if (op->code() == lir_idiv) {
duke@435 575 if (divisor == 2) {
duke@435 576 __ srl(Rdividend, 31, Rscratch);
duke@435 577 } else {
duke@435 578 __ sra(Rdividend, 31, Rscratch);
duke@435 579 __ and3(Rscratch, divisor - 1, Rscratch);
duke@435 580 }
duke@435 581 __ add(Rdividend, Rscratch, Rscratch);
duke@435 582 __ sra(Rscratch, log2_intptr(divisor), Rresult);
duke@435 583 return;
duke@435 584 } else {
duke@435 585 if (divisor == 2) {
duke@435 586 __ srl(Rdividend, 31, Rscratch);
duke@435 587 } else {
duke@435 588 __ sra(Rdividend, 31, Rscratch);
duke@435 589 __ and3(Rscratch, divisor - 1,Rscratch);
duke@435 590 }
duke@435 591 __ add(Rdividend, Rscratch, Rscratch);
duke@435 592 __ andn(Rscratch, divisor - 1,Rscratch);
duke@435 593 __ sub(Rdividend, Rscratch, Rresult);
duke@435 594 return;
duke@435 595 }
duke@435 596 }
duke@435 597
duke@435 598 __ sra(Rdividend, 31, Rscratch);
duke@435 599 __ wry(Rscratch);
duke@435 600 if (!VM_Version::v9_instructions_work()) {
duke@435 601 // v9 doesn't require these nops
duke@435 602 __ nop();
duke@435 603 __ nop();
duke@435 604 __ nop();
duke@435 605 __ nop();
duke@435 606 }
duke@435 607
duke@435 608 add_debug_info_for_div0_here(op->info());
duke@435 609
duke@435 610 if (Rdivisor != noreg) {
duke@435 611 __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
duke@435 612 } else {
duke@435 613 assert(Assembler::is_simm13(divisor), "can only handle simm13");
duke@435 614 __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
duke@435 615 }
duke@435 616
duke@435 617 Label skip;
duke@435 618 __ br(Assembler::overflowSet, true, Assembler::pn, skip);
duke@435 619 __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
duke@435 620 __ bind(skip);
duke@435 621
duke@435 622 if (op->code() == lir_irem) {
duke@435 623 if (Rdivisor != noreg) {
duke@435 624 __ smul(Rscratch, Rdivisor, Rscratch);
duke@435 625 } else {
duke@435 626 __ smul(Rscratch, divisor, Rscratch);
duke@435 627 }
duke@435 628 __ sub(Rdividend, Rscratch, Rresult);
duke@435 629 }
duke@435 630 }
duke@435 631
duke@435 632
duke@435 633 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
duke@435 634 #ifdef ASSERT
duke@435 635 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
duke@435 636 if (op->block() != NULL) _branch_target_blocks.append(op->block());
duke@435 637 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
duke@435 638 #endif
duke@435 639 assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
duke@435 640
duke@435 641 if (op->cond() == lir_cond_always) {
duke@435 642 __ br(Assembler::always, false, Assembler::pt, *(op->label()));
duke@435 643 } else if (op->code() == lir_cond_float_branch) {
duke@435 644 assert(op->ublock() != NULL, "must have unordered successor");
duke@435 645 bool is_unordered = (op->ublock() == op->block());
duke@435 646 Assembler::Condition acond;
duke@435 647 switch (op->cond()) {
duke@435 648 case lir_cond_equal: acond = Assembler::f_equal; break;
duke@435 649 case lir_cond_notEqual: acond = Assembler::f_notEqual; break;
duke@435 650 case lir_cond_less: acond = (is_unordered ? Assembler::f_unorderedOrLess : Assembler::f_less); break;
duke@435 651 case lir_cond_greater: acond = (is_unordered ? Assembler::f_unorderedOrGreater : Assembler::f_greater); break;
duke@435 652 case lir_cond_lessEqual: acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual : Assembler::f_lessOrEqual); break;
duke@435 653 case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
duke@435 654 default : ShouldNotReachHere();
duke@435 655 };
duke@435 656
duke@435 657 if (!VM_Version::v9_instructions_work()) {
duke@435 658 __ nop();
duke@435 659 }
duke@435 660 __ fb( acond, false, Assembler::pn, *(op->label()));
duke@435 661 } else {
duke@435 662 assert (op->code() == lir_branch, "just checking");
duke@435 663
duke@435 664 Assembler::Condition acond;
duke@435 665 switch (op->cond()) {
duke@435 666 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 667 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 668 case lir_cond_less: acond = Assembler::less; break;
duke@435 669 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 670 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
duke@435 671 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 672 case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break;
duke@435 673 case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break;
duke@435 674 default: ShouldNotReachHere();
duke@435 675 };
duke@435 676
duke@435 677 // sparc has different condition codes for testing 32-bit
duke@435 678 // vs. 64-bit values. We could always test xcc is we could
duke@435 679 // guarantee that 32-bit loads always sign extended but that isn't
duke@435 680 // true and since sign extension isn't free, it would impose a
duke@435 681 // slight cost.
duke@435 682 #ifdef _LP64
duke@435 683 if (op->type() == T_INT) {
duke@435 684 __ br(acond, false, Assembler::pn, *(op->label()));
duke@435 685 } else
duke@435 686 #endif
duke@435 687 __ brx(acond, false, Assembler::pn, *(op->label()));
duke@435 688 }
duke@435 689 // The peephole pass fills the delay slot
duke@435 690 }
duke@435 691
duke@435 692
duke@435 693 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
duke@435 694 Bytecodes::Code code = op->bytecode();
duke@435 695 LIR_Opr dst = op->result_opr();
duke@435 696
duke@435 697 switch(code) {
duke@435 698 case Bytecodes::_i2l: {
duke@435 699 Register rlo = dst->as_register_lo();
duke@435 700 Register rhi = dst->as_register_hi();
duke@435 701 Register rval = op->in_opr()->as_register();
duke@435 702 #ifdef _LP64
duke@435 703 __ sra(rval, 0, rlo);
duke@435 704 #else
duke@435 705 __ mov(rval, rlo);
duke@435 706 __ sra(rval, BitsPerInt-1, rhi);
duke@435 707 #endif
duke@435 708 break;
duke@435 709 }
duke@435 710 case Bytecodes::_i2d:
duke@435 711 case Bytecodes::_i2f: {
duke@435 712 bool is_double = (code == Bytecodes::_i2d);
duke@435 713 FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
duke@435 714 FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
duke@435 715 FloatRegister rsrc = op->in_opr()->as_float_reg();
duke@435 716 if (rsrc != rdst) {
duke@435 717 __ fmov(FloatRegisterImpl::S, rsrc, rdst);
duke@435 718 }
duke@435 719 __ fitof(w, rdst, rdst);
duke@435 720 break;
duke@435 721 }
duke@435 722 case Bytecodes::_f2i:{
duke@435 723 FloatRegister rsrc = op->in_opr()->as_float_reg();
duke@435 724 Address addr = frame_map()->address_for_slot(dst->single_stack_ix());
duke@435 725 Label L;
duke@435 726 // result must be 0 if value is NaN; test by comparing value to itself
duke@435 727 __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
duke@435 728 if (!VM_Version::v9_instructions_work()) {
duke@435 729 __ nop();
duke@435 730 }
duke@435 731 __ fb(Assembler::f_unordered, true, Assembler::pn, L);
duke@435 732 __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
duke@435 733 __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
duke@435 734 // move integer result from float register to int register
duke@435 735 __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
duke@435 736 __ bind (L);
duke@435 737 break;
duke@435 738 }
duke@435 739 case Bytecodes::_l2i: {
duke@435 740 Register rlo = op->in_opr()->as_register_lo();
duke@435 741 Register rhi = op->in_opr()->as_register_hi();
duke@435 742 Register rdst = dst->as_register();
duke@435 743 #ifdef _LP64
duke@435 744 __ sra(rlo, 0, rdst);
duke@435 745 #else
duke@435 746 __ mov(rlo, rdst);
duke@435 747 #endif
duke@435 748 break;
duke@435 749 }
duke@435 750 case Bytecodes::_d2f:
duke@435 751 case Bytecodes::_f2d: {
duke@435 752 bool is_double = (code == Bytecodes::_f2d);
duke@435 753 assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
duke@435 754 LIR_Opr val = op->in_opr();
duke@435 755 FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
duke@435 756 FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
duke@435 757 FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
duke@435 758 FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
duke@435 759 __ ftof(vw, dw, rval, rdst);
duke@435 760 break;
duke@435 761 }
duke@435 762 case Bytecodes::_i2s:
duke@435 763 case Bytecodes::_i2b: {
duke@435 764 Register rval = op->in_opr()->as_register();
duke@435 765 Register rdst = dst->as_register();
duke@435 766 int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
duke@435 767 __ sll (rval, shift, rdst);
duke@435 768 __ sra (rdst, shift, rdst);
duke@435 769 break;
duke@435 770 }
duke@435 771 case Bytecodes::_i2c: {
duke@435 772 Register rval = op->in_opr()->as_register();
duke@435 773 Register rdst = dst->as_register();
duke@435 774 int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
duke@435 775 __ sll (rval, shift, rdst);
duke@435 776 __ srl (rdst, shift, rdst);
duke@435 777 break;
duke@435 778 }
duke@435 779
duke@435 780 default: ShouldNotReachHere();
duke@435 781 }
duke@435 782 }
duke@435 783
duke@435 784
duke@435 785 void LIR_Assembler::align_call(LIR_Code) {
duke@435 786 // do nothing since all instructions are word aligned on sparc
duke@435 787 }
duke@435 788
duke@435 789
twisti@1730 790 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
twisti@1730 791 __ call(op->addr(), rtype);
twisti@1919 792 // The peephole pass fills the delay slot, add_call_info is done in
twisti@1919 793 // LIR_Assembler::emit_delay.
duke@435 794 }
duke@435 795
duke@435 796
twisti@1730 797 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
coleenp@4037 798 __ ic_call(op->addr(), false);
twisti@1919 799 // The peephole pass fills the delay slot, add_call_info is done in
twisti@1919 800 // LIR_Assembler::emit_delay.
duke@435 801 }
duke@435 802
duke@435 803
twisti@1730 804 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
twisti@1730 805 add_debug_info_for_null_check_here(op->info());
iveresov@2344 806 __ load_klass(O0, G3_scratch);
twisti@3310 807 if (Assembler::is_simm13(op->vtable_offset())) {
twisti@1730 808 __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
duke@435 809 } else {
duke@435 810 // This will generate 2 instructions
twisti@1730 811 __ set(op->vtable_offset(), G5_method);
duke@435 812 // ld_ptr, set_hi, set
duke@435 813 __ ld_ptr(G3_scratch, G5_method, G5_method);
duke@435 814 }
coleenp@4037 815 __ ld_ptr(G5_method, Method::from_compiled_offset(), G3_scratch);
duke@435 816 __ callr(G3_scratch, G0);
duke@435 817 // the peephole pass fills the delay slot
duke@435 818 }
duke@435 819
iveresov@2344 820 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
duke@435 821 int store_offset;
duke@435 822 if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
duke@435 823 assert(!unaligned, "can't handle this");
duke@435 824 // for offsets larger than a simm13 we setup the offset in O7
twisti@1162 825 __ set(offset, O7);
iveresov@2344 826 store_offset = store(from_reg, base, O7, type, wide);
duke@435 827 } else {
iveresov@2344 828 if (type == T_ARRAY || type == T_OBJECT) {
iveresov@2344 829 __ verify_oop(from_reg->as_register());
iveresov@2344 830 }
duke@435 831 store_offset = code_offset();
duke@435 832 switch (type) {
duke@435 833 case T_BOOLEAN: // fall through
duke@435 834 case T_BYTE : __ stb(from_reg->as_register(), base, offset); break;
duke@435 835 case T_CHAR : __ sth(from_reg->as_register(), base, offset); break;
duke@435 836 case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
duke@435 837 case T_INT : __ stw(from_reg->as_register(), base, offset); break;
duke@435 838 case T_LONG :
duke@435 839 #ifdef _LP64
duke@435 840 if (unaligned || PatchALot) {
duke@435 841 __ srax(from_reg->as_register_lo(), 32, O7);
duke@435 842 __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
duke@435 843 __ stw(O7, base, offset + hi_word_offset_in_bytes);
duke@435 844 } else {
duke@435 845 __ stx(from_reg->as_register_lo(), base, offset);
duke@435 846 }
duke@435 847 #else
duke@435 848 assert(Assembler::is_simm13(offset + 4), "must be");
duke@435 849 __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
duke@435 850 __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
duke@435 851 #endif
duke@435 852 break;
iveresov@2344 853 case T_ADDRESS:
roland@4051 854 case T_METADATA:
iveresov@2344 855 __ st_ptr(from_reg->as_register(), base, offset);
iveresov@2344 856 break;
duke@435 857 case T_ARRAY : // fall through
iveresov@2344 858 case T_OBJECT:
iveresov@2344 859 {
iveresov@2344 860 if (UseCompressedOops && !wide) {
iveresov@2344 861 __ encode_heap_oop(from_reg->as_register(), G3_scratch);
iveresov@2344 862 store_offset = code_offset();
iveresov@2344 863 __ stw(G3_scratch, base, offset);
iveresov@2344 864 } else {
iveresov@2344 865 __ st_ptr(from_reg->as_register(), base, offset);
iveresov@2344 866 }
iveresov@2344 867 break;
iveresov@2344 868 }
iveresov@2344 869
duke@435 870 case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
duke@435 871 case T_DOUBLE:
duke@435 872 {
duke@435 873 FloatRegister reg = from_reg->as_double_reg();
duke@435 874 // split unaligned stores
duke@435 875 if (unaligned || PatchALot) {
duke@435 876 assert(Assembler::is_simm13(offset + 4), "must be");
duke@435 877 __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
duke@435 878 __ stf(FloatRegisterImpl::S, reg, base, offset);
duke@435 879 } else {
duke@435 880 __ stf(FloatRegisterImpl::D, reg, base, offset);
duke@435 881 }
duke@435 882 break;
duke@435 883 }
duke@435 884 default : ShouldNotReachHere();
duke@435 885 }
duke@435 886 }
duke@435 887 return store_offset;
duke@435 888 }
duke@435 889
duke@435 890
iveresov@2344 891 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
iveresov@2344 892 if (type == T_ARRAY || type == T_OBJECT) {
iveresov@2344 893 __ verify_oop(from_reg->as_register());
iveresov@2344 894 }
duke@435 895 int store_offset = code_offset();
duke@435 896 switch (type) {
duke@435 897 case T_BOOLEAN: // fall through
duke@435 898 case T_BYTE : __ stb(from_reg->as_register(), base, disp); break;
duke@435 899 case T_CHAR : __ sth(from_reg->as_register(), base, disp); break;
duke@435 900 case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
duke@435 901 case T_INT : __ stw(from_reg->as_register(), base, disp); break;
duke@435 902 case T_LONG :
duke@435 903 #ifdef _LP64
duke@435 904 __ stx(from_reg->as_register_lo(), base, disp);
duke@435 905 #else
duke@435 906 assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
duke@435 907 __ std(from_reg->as_register_hi(), base, disp);
duke@435 908 #endif
duke@435 909 break;
iveresov@2344 910 case T_ADDRESS:
iveresov@2344 911 __ st_ptr(from_reg->as_register(), base, disp);
iveresov@2344 912 break;
duke@435 913 case T_ARRAY : // fall through
iveresov@2344 914 case T_OBJECT:
iveresov@2344 915 {
iveresov@2344 916 if (UseCompressedOops && !wide) {
iveresov@2344 917 __ encode_heap_oop(from_reg->as_register(), G3_scratch);
iveresov@2344 918 store_offset = code_offset();
iveresov@2344 919 __ stw(G3_scratch, base, disp);
iveresov@2344 920 } else {
iveresov@2344 921 __ st_ptr(from_reg->as_register(), base, disp);
iveresov@2344 922 }
iveresov@2344 923 break;
iveresov@2344 924 }
duke@435 925 case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
duke@435 926 case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
duke@435 927 default : ShouldNotReachHere();
duke@435 928 }
duke@435 929 return store_offset;
duke@435 930 }
duke@435 931
duke@435 932
iveresov@2344 933 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
duke@435 934 int load_offset;
duke@435 935 if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
duke@435 936 assert(base != O7, "destroying register");
duke@435 937 assert(!unaligned, "can't handle this");
duke@435 938 // for offsets larger than a simm13 we setup the offset in O7
twisti@1162 939 __ set(offset, O7);
iveresov@2344 940 load_offset = load(base, O7, to_reg, type, wide);
duke@435 941 } else {
duke@435 942 load_offset = code_offset();
duke@435 943 switch(type) {
duke@435 944 case T_BOOLEAN: // fall through
duke@435 945 case T_BYTE : __ ldsb(base, offset, to_reg->as_register()); break;
duke@435 946 case T_CHAR : __ lduh(base, offset, to_reg->as_register()); break;
duke@435 947 case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
duke@435 948 case T_INT : __ ld(base, offset, to_reg->as_register()); break;
duke@435 949 case T_LONG :
duke@435 950 if (!unaligned) {
duke@435 951 #ifdef _LP64
duke@435 952 __ ldx(base, offset, to_reg->as_register_lo());
duke@435 953 #else
duke@435 954 assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
duke@435 955 "must be sequential");
duke@435 956 __ ldd(base, offset, to_reg->as_register_hi());
duke@435 957 #endif
duke@435 958 } else {
duke@435 959 #ifdef _LP64
duke@435 960 assert(base != to_reg->as_register_lo(), "can't handle this");
roland@1495 961 assert(O7 != to_reg->as_register_lo(), "can't handle this");
duke@435 962 __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
roland@1495 963 __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
duke@435 964 __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
roland@1495 965 __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
duke@435 966 #else
duke@435 967 if (base == to_reg->as_register_lo()) {
duke@435 968 __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
duke@435 969 __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
duke@435 970 } else {
duke@435 971 __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
duke@435 972 __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
duke@435 973 }
duke@435 974 #endif
duke@435 975 }
duke@435 976 break;
roland@4159 977 case T_METADATA: __ ld_ptr(base, offset, to_reg->as_register()); break;
roland@4159 978 case T_ADDRESS:
roland@4159 979 if (offset == oopDesc::klass_offset_in_bytes()) {
roland@4159 980 __ lduw(base, offset, to_reg->as_register());
roland@4159 981 #ifdef _LP64
roland@4159 982 if (UseCompressedKlassPointers) {
roland@4159 983 __ decode_klass_not_null(to_reg->as_register());
roland@4159 984 }
roland@4159 985 #endif
roland@4159 986 } else {
roland@4159 987 __ ld_ptr(base, offset, to_reg->as_register());
roland@4159 988 }
roland@4159 989 break;
duke@435 990 case T_ARRAY : // fall through
iveresov@2344 991 case T_OBJECT:
iveresov@2344 992 {
iveresov@2344 993 if (UseCompressedOops && !wide) {
iveresov@2344 994 __ lduw(base, offset, to_reg->as_register());
iveresov@2344 995 __ decode_heap_oop(to_reg->as_register());
iveresov@2344 996 } else {
iveresov@2344 997 __ ld_ptr(base, offset, to_reg->as_register());
iveresov@2344 998 }
iveresov@2344 999 break;
iveresov@2344 1000 }
duke@435 1001 case T_FLOAT: __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
duke@435 1002 case T_DOUBLE:
duke@435 1003 {
duke@435 1004 FloatRegister reg = to_reg->as_double_reg();
duke@435 1005 // split unaligned loads
duke@435 1006 if (unaligned || PatchALot) {
roland@1495 1007 __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
roland@1495 1008 __ ldf(FloatRegisterImpl::S, base, offset, reg);
duke@435 1009 } else {
duke@435 1010 __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
duke@435 1011 }
duke@435 1012 break;
duke@435 1013 }
duke@435 1014 default : ShouldNotReachHere();
duke@435 1015 }
iveresov@2344 1016 if (type == T_ARRAY || type == T_OBJECT) {
iveresov@2344 1017 __ verify_oop(to_reg->as_register());
iveresov@2344 1018 }
duke@435 1019 }
duke@435 1020 return load_offset;
duke@435 1021 }
duke@435 1022
duke@435 1023
iveresov@2344 1024 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
duke@435 1025 int load_offset = code_offset();
duke@435 1026 switch(type) {
duke@435 1027 case T_BOOLEAN: // fall through
iveresov@2344 1028 case T_BYTE : __ ldsb(base, disp, to_reg->as_register()); break;
iveresov@2344 1029 case T_CHAR : __ lduh(base, disp, to_reg->as_register()); break;
iveresov@2344 1030 case T_SHORT : __ ldsh(base, disp, to_reg->as_register()); break;
iveresov@2344 1031 case T_INT : __ ld(base, disp, to_reg->as_register()); break;
iveresov@2344 1032 case T_ADDRESS: __ ld_ptr(base, disp, to_reg->as_register()); break;
duke@435 1033 case T_ARRAY : // fall through
iveresov@2344 1034 case T_OBJECT:
iveresov@2344 1035 {
iveresov@2344 1036 if (UseCompressedOops && !wide) {
iveresov@2344 1037 __ lduw(base, disp, to_reg->as_register());
iveresov@2344 1038 __ decode_heap_oop(to_reg->as_register());
iveresov@2344 1039 } else {
iveresov@2344 1040 __ ld_ptr(base, disp, to_reg->as_register());
iveresov@2344 1041 }
iveresov@2344 1042 break;
iveresov@2344 1043 }
duke@435 1044 case T_FLOAT: __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
duke@435 1045 case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
duke@435 1046 case T_LONG :
duke@435 1047 #ifdef _LP64
duke@435 1048 __ ldx(base, disp, to_reg->as_register_lo());
duke@435 1049 #else
duke@435 1050 assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
duke@435 1051 "must be sequential");
duke@435 1052 __ ldd(base, disp, to_reg->as_register_hi());
duke@435 1053 #endif
duke@435 1054 break;
duke@435 1055 default : ShouldNotReachHere();
duke@435 1056 }
iveresov@2344 1057 if (type == T_ARRAY || type == T_OBJECT) {
iveresov@2344 1058 __ verify_oop(to_reg->as_register());
iveresov@2344 1059 }
duke@435 1060 return load_offset;
duke@435 1061 }
duke@435 1062
duke@435 1063 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
duke@435 1064 LIR_Const* c = src->as_constant_ptr();
duke@435 1065 switch (c->type()) {
duke@435 1066 case T_INT:
iveresov@2344 1067 case T_FLOAT: {
iveresov@2344 1068 Register src_reg = O7;
iveresov@2344 1069 int value = c->as_jint_bits();
iveresov@2344 1070 if (value == 0) {
iveresov@2344 1071 src_reg = G0;
iveresov@2344 1072 } else {
iveresov@2344 1073 __ set(value, O7);
iveresov@2344 1074 }
iveresov@2344 1075 Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
iveresov@2344 1076 __ stw(src_reg, addr.base(), addr.disp());
iveresov@2344 1077 break;
iveresov@2344 1078 }
roland@1732 1079 case T_ADDRESS: {
duke@435 1080 Register src_reg = O7;
duke@435 1081 int value = c->as_jint_bits();
duke@435 1082 if (value == 0) {
duke@435 1083 src_reg = G0;
duke@435 1084 } else {
duke@435 1085 __ set(value, O7);
duke@435 1086 }
duke@435 1087 Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
iveresov@2344 1088 __ st_ptr(src_reg, addr.base(), addr.disp());
duke@435 1089 break;
duke@435 1090 }
duke@435 1091 case T_OBJECT: {
duke@435 1092 Register src_reg = O7;
duke@435 1093 jobject2reg(c->as_jobject(), src_reg);
duke@435 1094 Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1095 __ st_ptr(src_reg, addr.base(), addr.disp());
duke@435 1096 break;
duke@435 1097 }
duke@435 1098 case T_LONG:
duke@435 1099 case T_DOUBLE: {
duke@435 1100 Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
duke@435 1101
duke@435 1102 Register tmp = O7;
duke@435 1103 int value_lo = c->as_jint_lo_bits();
duke@435 1104 if (value_lo == 0) {
duke@435 1105 tmp = G0;
duke@435 1106 } else {
duke@435 1107 __ set(value_lo, O7);
duke@435 1108 }
duke@435 1109 __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
duke@435 1110 int value_hi = c->as_jint_hi_bits();
duke@435 1111 if (value_hi == 0) {
duke@435 1112 tmp = G0;
duke@435 1113 } else {
duke@435 1114 __ set(value_hi, O7);
duke@435 1115 }
duke@435 1116 __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
duke@435 1117 break;
duke@435 1118 }
duke@435 1119 default:
duke@435 1120 Unimplemented();
duke@435 1121 }
duke@435 1122 }
duke@435 1123
duke@435 1124
iveresov@2344 1125 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
duke@435 1126 LIR_Const* c = src->as_constant_ptr();
duke@435 1127 LIR_Address* addr = dest->as_address_ptr();
duke@435 1128 Register base = addr->base()->as_pointer_register();
iveresov@2344 1129 int offset = -1;
iveresov@2344 1130
duke@435 1131 switch (c->type()) {
duke@435 1132 case T_INT:
roland@1732 1133 case T_FLOAT:
roland@1732 1134 case T_ADDRESS: {
duke@435 1135 LIR_Opr tmp = FrameMap::O7_opr;
duke@435 1136 int value = c->as_jint_bits();
duke@435 1137 if (value == 0) {
duke@435 1138 tmp = FrameMap::G0_opr;
duke@435 1139 } else if (Assembler::is_simm13(value)) {
duke@435 1140 __ set(value, O7);
duke@435 1141 }
duke@435 1142 if (addr->index()->is_valid()) {
duke@435 1143 assert(addr->disp() == 0, "must be zero");
iveresov@2344 1144 offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
duke@435 1145 } else {
duke@435 1146 assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
iveresov@2344 1147 offset = store(tmp, base, addr->disp(), type, wide, false);
duke@435 1148 }
duke@435 1149 break;
duke@435 1150 }
duke@435 1151 case T_LONG:
duke@435 1152 case T_DOUBLE: {
duke@435 1153 assert(!addr->index()->is_valid(), "can't handle reg reg address here");
duke@435 1154 assert(Assembler::is_simm13(addr->disp()) &&
duke@435 1155 Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
duke@435 1156
iveresov@2344 1157 LIR_Opr tmp = FrameMap::O7_opr;
duke@435 1158 int value_lo = c->as_jint_lo_bits();
duke@435 1159 if (value_lo == 0) {
iveresov@2344 1160 tmp = FrameMap::G0_opr;
duke@435 1161 } else {
duke@435 1162 __ set(value_lo, O7);
duke@435 1163 }
iveresov@2344 1164 offset = store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT, wide, false);
duke@435 1165 int value_hi = c->as_jint_hi_bits();
duke@435 1166 if (value_hi == 0) {
iveresov@2344 1167 tmp = FrameMap::G0_opr;
duke@435 1168 } else {
duke@435 1169 __ set(value_hi, O7);
duke@435 1170 }
never@3248 1171 store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
duke@435 1172 break;
duke@435 1173 }
duke@435 1174 case T_OBJECT: {
duke@435 1175 jobject obj = c->as_jobject();
duke@435 1176 LIR_Opr tmp;
duke@435 1177 if (obj == NULL) {
duke@435 1178 tmp = FrameMap::G0_opr;
duke@435 1179 } else {
duke@435 1180 tmp = FrameMap::O7_opr;
duke@435 1181 jobject2reg(c->as_jobject(), O7);
duke@435 1182 }
duke@435 1183 // handle either reg+reg or reg+disp address
duke@435 1184 if (addr->index()->is_valid()) {
duke@435 1185 assert(addr->disp() == 0, "must be zero");
iveresov@2344 1186 offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
duke@435 1187 } else {
duke@435 1188 assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
iveresov@2344 1189 offset = store(tmp, base, addr->disp(), type, wide, false);
duke@435 1190 }
duke@435 1191
duke@435 1192 break;
duke@435 1193 }
duke@435 1194 default:
duke@435 1195 Unimplemented();
duke@435 1196 }
iveresov@2344 1197 if (info != NULL) {
iveresov@2344 1198 assert(offset != -1, "offset should've been set");
iveresov@2344 1199 add_debug_info_for_null_check(offset, info);
iveresov@2344 1200 }
duke@435 1201 }
duke@435 1202
duke@435 1203
duke@435 1204 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
duke@435 1205 LIR_Const* c = src->as_constant_ptr();
duke@435 1206 LIR_Opr to_reg = dest;
duke@435 1207
duke@435 1208 switch (c->type()) {
duke@435 1209 case T_INT:
roland@1732 1210 case T_ADDRESS:
duke@435 1211 {
duke@435 1212 jint con = c->as_jint();
duke@435 1213 if (to_reg->is_single_cpu()) {
duke@435 1214 assert(patch_code == lir_patch_none, "no patching handled here");
duke@435 1215 __ set(con, to_reg->as_register());
duke@435 1216 } else {
duke@435 1217 ShouldNotReachHere();
duke@435 1218 assert(to_reg->is_single_fpu(), "wrong register kind");
duke@435 1219
duke@435 1220 __ set(con, O7);
twisti@1162 1221 Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
duke@435 1222 __ st(O7, temp_slot);
duke@435 1223 __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
duke@435 1224 }
duke@435 1225 }
duke@435 1226 break;
duke@435 1227
duke@435 1228 case T_LONG:
duke@435 1229 {
duke@435 1230 jlong con = c->as_jlong();
duke@435 1231
duke@435 1232 if (to_reg->is_double_cpu()) {
duke@435 1233 #ifdef _LP64
duke@435 1234 __ set(con, to_reg->as_register_lo());
duke@435 1235 #else
duke@435 1236 __ set(low(con), to_reg->as_register_lo());
duke@435 1237 __ set(high(con), to_reg->as_register_hi());
duke@435 1238 #endif
duke@435 1239 #ifdef _LP64
duke@435 1240 } else if (to_reg->is_single_cpu()) {
duke@435 1241 __ set(con, to_reg->as_register());
duke@435 1242 #endif
duke@435 1243 } else {
duke@435 1244 ShouldNotReachHere();
duke@435 1245 assert(to_reg->is_double_fpu(), "wrong register kind");
twisti@1162 1246 Address temp_slot_lo(SP, ((frame::register_save_words ) * wordSize) + STACK_BIAS);
twisti@1162 1247 Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
duke@435 1248 __ set(low(con), O7);
duke@435 1249 __ st(O7, temp_slot_lo);
duke@435 1250 __ set(high(con), O7);
duke@435 1251 __ st(O7, temp_slot_hi);
duke@435 1252 __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
duke@435 1253 }
duke@435 1254 }
duke@435 1255 break;
duke@435 1256
duke@435 1257 case T_OBJECT:
duke@435 1258 {
duke@435 1259 if (patch_code == lir_patch_none) {
duke@435 1260 jobject2reg(c->as_jobject(), to_reg->as_register());
duke@435 1261 } else {
duke@435 1262 jobject2reg_with_patching(to_reg->as_register(), info);
duke@435 1263 }
duke@435 1264 }
duke@435 1265 break;
duke@435 1266
coleenp@4037 1267 case T_METADATA:
coleenp@4037 1268 {
coleenp@4037 1269 if (patch_code == lir_patch_none) {
coleenp@4037 1270 metadata2reg(c->as_metadata(), to_reg->as_register());
coleenp@4037 1271 } else {
coleenp@4037 1272 klass2reg_with_patching(to_reg->as_register(), info);
coleenp@4037 1273 }
coleenp@4037 1274 }
coleenp@4037 1275 break;
coleenp@4037 1276
duke@435 1277 case T_FLOAT:
duke@435 1278 {
duke@435 1279 address const_addr = __ float_constant(c->as_jfloat());
duke@435 1280 if (const_addr == NULL) {
duke@435 1281 bailout("const section overflow");
duke@435 1282 break;
duke@435 1283 }
duke@435 1284 RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
twisti@1162 1285 AddressLiteral const_addrlit(const_addr, rspec);
duke@435 1286 if (to_reg->is_single_fpu()) {
twisti@1162 1287 __ patchable_sethi(const_addrlit, O7);
duke@435 1288 __ relocate(rspec);
twisti@1162 1289 __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
duke@435 1290
duke@435 1291 } else {
duke@435 1292 assert(to_reg->is_single_cpu(), "Must be a cpu register.");
duke@435 1293
twisti@1162 1294 __ set(const_addrlit, O7);
iveresov@2344 1295 __ ld(O7, 0, to_reg->as_register());
duke@435 1296 }
duke@435 1297 }
duke@435 1298 break;
duke@435 1299
duke@435 1300 case T_DOUBLE:
duke@435 1301 {
duke@435 1302 address const_addr = __ double_constant(c->as_jdouble());
duke@435 1303 if (const_addr == NULL) {
duke@435 1304 bailout("const section overflow");
duke@435 1305 break;
duke@435 1306 }
duke@435 1307 RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
duke@435 1308
duke@435 1309 if (to_reg->is_double_fpu()) {
twisti@1162 1310 AddressLiteral const_addrlit(const_addr, rspec);
twisti@1162 1311 __ patchable_sethi(const_addrlit, O7);
duke@435 1312 __ relocate(rspec);
twisti@1162 1313 __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
duke@435 1314 } else {
duke@435 1315 assert(to_reg->is_double_cpu(), "Must be a long register.");
duke@435 1316 #ifdef _LP64
duke@435 1317 __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
duke@435 1318 #else
duke@435 1319 __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
duke@435 1320 __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
duke@435 1321 #endif
duke@435 1322 }
duke@435 1323
duke@435 1324 }
duke@435 1325 break;
duke@435 1326
duke@435 1327 default:
duke@435 1328 ShouldNotReachHere();
duke@435 1329 }
duke@435 1330 }
duke@435 1331
duke@435 1332 Address LIR_Assembler::as_Address(LIR_Address* addr) {
duke@435 1333 Register reg = addr->base()->as_register();
roland@4106 1334 LIR_Opr index = addr->index();
roland@4106 1335 if (index->is_illegal()) {
roland@4106 1336 return Address(reg, addr->disp());
roland@4106 1337 } else {
roland@4106 1338 assert (addr->disp() == 0, "unsupported address mode");
roland@4106 1339 return Address(reg, index->as_pointer_register());
roland@4106 1340 }
duke@435 1341 }
duke@435 1342
duke@435 1343
duke@435 1344 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1345 switch (type) {
duke@435 1346 case T_INT:
duke@435 1347 case T_FLOAT: {
duke@435 1348 Register tmp = O7;
duke@435 1349 Address from = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1350 Address to = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1351 __ lduw(from.base(), from.disp(), tmp);
duke@435 1352 __ stw(tmp, to.base(), to.disp());
duke@435 1353 break;
duke@435 1354 }
duke@435 1355 case T_OBJECT: {
duke@435 1356 Register tmp = O7;
duke@435 1357 Address from = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1358 Address to = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1359 __ ld_ptr(from.base(), from.disp(), tmp);
duke@435 1360 __ st_ptr(tmp, to.base(), to.disp());
duke@435 1361 break;
duke@435 1362 }
duke@435 1363 case T_LONG:
duke@435 1364 case T_DOUBLE: {
duke@435 1365 Register tmp = O7;
duke@435 1366 Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
duke@435 1367 Address to = frame_map()->address_for_double_slot(dest->double_stack_ix());
duke@435 1368 __ lduw(from.base(), from.disp(), tmp);
duke@435 1369 __ stw(tmp, to.base(), to.disp());
duke@435 1370 __ lduw(from.base(), from.disp() + 4, tmp);
duke@435 1371 __ stw(tmp, to.base(), to.disp() + 4);
duke@435 1372 break;
duke@435 1373 }
duke@435 1374
duke@435 1375 default:
duke@435 1376 ShouldNotReachHere();
duke@435 1377 }
duke@435 1378 }
duke@435 1379
duke@435 1380
duke@435 1381 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
duke@435 1382 Address base = as_Address(addr);
twisti@1162 1383 return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
duke@435 1384 }
duke@435 1385
duke@435 1386
duke@435 1387 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
duke@435 1388 Address base = as_Address(addr);
twisti@1162 1389 return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
duke@435 1390 }
duke@435 1391
duke@435 1392
duke@435 1393 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
iveresov@2344 1394 LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
duke@435 1395
roland@4051 1396 assert(type != T_METADATA, "load of metadata ptr not supported");
duke@435 1397 LIR_Address* addr = src_opr->as_address_ptr();
duke@435 1398 LIR_Opr to_reg = dest;
duke@435 1399
duke@435 1400 Register src = addr->base()->as_pointer_register();
duke@435 1401 Register disp_reg = noreg;
duke@435 1402 int disp_value = addr->disp();
duke@435 1403 bool needs_patching = (patch_code != lir_patch_none);
duke@435 1404
duke@435 1405 if (addr->base()->type() == T_OBJECT) {
duke@435 1406 __ verify_oop(src);
duke@435 1407 }
duke@435 1408
duke@435 1409 PatchingStub* patch = NULL;
duke@435 1410 if (needs_patching) {
duke@435 1411 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1412 assert(!to_reg->is_double_cpu() ||
duke@435 1413 patch_code == lir_patch_none ||
duke@435 1414 patch_code == lir_patch_normal, "patching doesn't match register");
duke@435 1415 }
duke@435 1416
duke@435 1417 if (addr->index()->is_illegal()) {
duke@435 1418 if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
duke@435 1419 if (needs_patching) {
twisti@1162 1420 __ patchable_set(0, O7);
duke@435 1421 } else {
duke@435 1422 __ set(disp_value, O7);
duke@435 1423 }
duke@435 1424 disp_reg = O7;
duke@435 1425 }
duke@435 1426 } else if (unaligned || PatchALot) {
duke@435 1427 __ add(src, addr->index()->as_register(), O7);
duke@435 1428 src = O7;
duke@435 1429 } else {
duke@435 1430 disp_reg = addr->index()->as_pointer_register();
duke@435 1431 assert(disp_value == 0, "can't handle 3 operand addresses");
duke@435 1432 }
duke@435 1433
duke@435 1434 // remember the offset of the load. The patching_epilog must be done
duke@435 1435 // before the call to add_debug_info, otherwise the PcDescs don't get
duke@435 1436 // entered in increasing order.
duke@435 1437 int offset = code_offset();
duke@435 1438
duke@435 1439 assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
duke@435 1440 if (disp_reg == noreg) {
iveresov@2344 1441 offset = load(src, disp_value, to_reg, type, wide, unaligned);
duke@435 1442 } else {
duke@435 1443 assert(!unaligned, "can't handle this");
iveresov@2344 1444 offset = load(src, disp_reg, to_reg, type, wide);
duke@435 1445 }
duke@435 1446
duke@435 1447 if (patch != NULL) {
duke@435 1448 patching_epilog(patch, patch_code, src, info);
duke@435 1449 }
duke@435 1450 if (info != NULL) add_debug_info_for_null_check(offset, info);
duke@435 1451 }
duke@435 1452
duke@435 1453
duke@435 1454 void LIR_Assembler::prefetchr(LIR_Opr src) {
duke@435 1455 LIR_Address* addr = src->as_address_ptr();
duke@435 1456 Address from_addr = as_Address(addr);
duke@435 1457
duke@435 1458 if (VM_Version::has_v9()) {
duke@435 1459 __ prefetch(from_addr, Assembler::severalReads);
duke@435 1460 }
duke@435 1461 }
duke@435 1462
duke@435 1463
duke@435 1464 void LIR_Assembler::prefetchw(LIR_Opr src) {
duke@435 1465 LIR_Address* addr = src->as_address_ptr();
duke@435 1466 Address from_addr = as_Address(addr);
duke@435 1467
duke@435 1468 if (VM_Version::has_v9()) {
duke@435 1469 __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
duke@435 1470 }
duke@435 1471 }
duke@435 1472
duke@435 1473
duke@435 1474 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1475 Address addr;
duke@435 1476 if (src->is_single_word()) {
duke@435 1477 addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1478 } else if (src->is_double_word()) {
duke@435 1479 addr = frame_map()->address_for_double_slot(src->double_stack_ix());
duke@435 1480 }
duke@435 1481
duke@435 1482 bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
iveresov@2344 1483 load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
duke@435 1484 }
duke@435 1485
duke@435 1486
duke@435 1487 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
duke@435 1488 Address addr;
duke@435 1489 if (dest->is_single_word()) {
duke@435 1490 addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1491 } else if (dest->is_double_word()) {
duke@435 1492 addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 1493 }
duke@435 1494 bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
iveresov@2344 1495 store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
duke@435 1496 }
duke@435 1497
duke@435 1498
duke@435 1499 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
duke@435 1500 if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
duke@435 1501 if (from_reg->is_double_fpu()) {
duke@435 1502 // double to double moves
duke@435 1503 assert(to_reg->is_double_fpu(), "should match");
duke@435 1504 __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
duke@435 1505 } else {
duke@435 1506 // float to float moves
duke@435 1507 assert(to_reg->is_single_fpu(), "should match");
duke@435 1508 __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
duke@435 1509 }
duke@435 1510 } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
duke@435 1511 if (from_reg->is_double_cpu()) {
duke@435 1512 #ifdef _LP64
duke@435 1513 __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
duke@435 1514 #else
duke@435 1515 assert(to_reg->is_double_cpu() &&
duke@435 1516 from_reg->as_register_hi() != to_reg->as_register_lo() &&
duke@435 1517 from_reg->as_register_lo() != to_reg->as_register_hi(),
duke@435 1518 "should both be long and not overlap");
duke@435 1519 // long to long moves
duke@435 1520 __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
duke@435 1521 __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
duke@435 1522 #endif
duke@435 1523 #ifdef _LP64
duke@435 1524 } else if (to_reg->is_double_cpu()) {
duke@435 1525 // int to int moves
duke@435 1526 __ mov(from_reg->as_register(), to_reg->as_register_lo());
duke@435 1527 #endif
duke@435 1528 } else {
duke@435 1529 // int to int moves
duke@435 1530 __ mov(from_reg->as_register(), to_reg->as_register());
duke@435 1531 }
duke@435 1532 } else {
duke@435 1533 ShouldNotReachHere();
duke@435 1534 }
duke@435 1535 if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
duke@435 1536 __ verify_oop(to_reg->as_register());
duke@435 1537 }
duke@435 1538 }
duke@435 1539
duke@435 1540
duke@435 1541 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
duke@435 1542 LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
iveresov@2344 1543 bool wide, bool unaligned) {
roland@4051 1544 assert(type != T_METADATA, "store of metadata ptr not supported");
duke@435 1545 LIR_Address* addr = dest->as_address_ptr();
duke@435 1546
duke@435 1547 Register src = addr->base()->as_pointer_register();
duke@435 1548 Register disp_reg = noreg;
duke@435 1549 int disp_value = addr->disp();
duke@435 1550 bool needs_patching = (patch_code != lir_patch_none);
duke@435 1551
duke@435 1552 if (addr->base()->is_oop_register()) {
duke@435 1553 __ verify_oop(src);
duke@435 1554 }
duke@435 1555
duke@435 1556 PatchingStub* patch = NULL;
duke@435 1557 if (needs_patching) {
duke@435 1558 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1559 assert(!from_reg->is_double_cpu() ||
duke@435 1560 patch_code == lir_patch_none ||
duke@435 1561 patch_code == lir_patch_normal, "patching doesn't match register");
duke@435 1562 }
duke@435 1563
duke@435 1564 if (addr->index()->is_illegal()) {
duke@435 1565 if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
duke@435 1566 if (needs_patching) {
twisti@1162 1567 __ patchable_set(0, O7);
duke@435 1568 } else {
duke@435 1569 __ set(disp_value, O7);
duke@435 1570 }
duke@435 1571 disp_reg = O7;
duke@435 1572 }
duke@435 1573 } else if (unaligned || PatchALot) {
duke@435 1574 __ add(src, addr->index()->as_register(), O7);
duke@435 1575 src = O7;
duke@435 1576 } else {
duke@435 1577 disp_reg = addr->index()->as_pointer_register();
duke@435 1578 assert(disp_value == 0, "can't handle 3 operand addresses");
duke@435 1579 }
duke@435 1580
duke@435 1581 // remember the offset of the store. The patching_epilog must be done
duke@435 1582 // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
duke@435 1583 // entered in increasing order.
duke@435 1584 int offset;
duke@435 1585
duke@435 1586 assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
duke@435 1587 if (disp_reg == noreg) {
iveresov@2344 1588 offset = store(from_reg, src, disp_value, type, wide, unaligned);
duke@435 1589 } else {
duke@435 1590 assert(!unaligned, "can't handle this");
iveresov@2344 1591 offset = store(from_reg, src, disp_reg, type, wide);
duke@435 1592 }
duke@435 1593
duke@435 1594 if (patch != NULL) {
duke@435 1595 patching_epilog(patch, patch_code, src, info);
duke@435 1596 }
duke@435 1597
duke@435 1598 if (info != NULL) add_debug_info_for_null_check(offset, info);
duke@435 1599 }
duke@435 1600
duke@435 1601
duke@435 1602 void LIR_Assembler::return_op(LIR_Opr result) {
duke@435 1603 // the poll may need a register so just pick one that isn't the return register
iveresov@2138 1604 #if defined(TIERED) && !defined(_LP64)
duke@435 1605 if (result->type_field() == LIR_OprDesc::long_type) {
duke@435 1606 // Must move the result to G1
duke@435 1607 // Must leave proper result in O0,O1 and G1 (TIERED only)
duke@435 1608 __ sllx(I0, 32, G1); // Shift bits into high G1
duke@435 1609 __ srl (I1, 0, I1); // Zero extend O1 (harmless?)
duke@435 1610 __ or3 (I1, G1, G1); // OR 64 bits into G1
iveresov@2138 1611 #ifdef ASSERT
iveresov@2138 1612 // mangle it so any problems will show up
iveresov@2138 1613 __ set(0xdeadbeef, I0);
iveresov@2138 1614 __ set(0xdeadbeef, I1);
iveresov@2138 1615 #endif
duke@435 1616 }
duke@435 1617 #endif // TIERED
duke@435 1618 __ set((intptr_t)os::get_polling_page(), L0);
duke@435 1619 __ relocate(relocInfo::poll_return_type);
duke@435 1620 __ ld_ptr(L0, 0, G0);
duke@435 1621 __ ret();
duke@435 1622 __ delayed()->restore();
duke@435 1623 }
duke@435 1624
duke@435 1625
duke@435 1626 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 1627 __ set((intptr_t)os::get_polling_page(), tmp->as_register());
duke@435 1628 if (info != NULL) {
duke@435 1629 add_debug_info_for_branch(info);
duke@435 1630 } else {
duke@435 1631 __ relocate(relocInfo::poll_type);
duke@435 1632 }
duke@435 1633
duke@435 1634 int offset = __ offset();
duke@435 1635 __ ld_ptr(tmp->as_register(), 0, G0);
duke@435 1636
duke@435 1637 return offset;
duke@435 1638 }
duke@435 1639
duke@435 1640
duke@435 1641 void LIR_Assembler::emit_static_call_stub() {
duke@435 1642 address call_pc = __ pc();
duke@435 1643 address stub = __ start_a_stub(call_stub_size);
duke@435 1644 if (stub == NULL) {
duke@435 1645 bailout("static call stub overflow");
duke@435 1646 return;
duke@435 1647 }
duke@435 1648
duke@435 1649 int start = __ offset();
duke@435 1650 __ relocate(static_stub_Relocation::spec(call_pc));
duke@435 1651
coleenp@4037 1652 __ set_metadata(NULL, G5);
duke@435 1653 // must be set to -1 at code generation time
twisti@1162 1654 AddressLiteral addrlit(-1);
twisti@1162 1655 __ jump_to(addrlit, G3);
duke@435 1656 __ delayed()->nop();
duke@435 1657
duke@435 1658 assert(__ offset() - start <= call_stub_size, "stub too big");
duke@435 1659 __ end_a_stub();
duke@435 1660 }
duke@435 1661
duke@435 1662
duke@435 1663 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
duke@435 1664 if (opr1->is_single_fpu()) {
duke@435 1665 __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
duke@435 1666 } else if (opr1->is_double_fpu()) {
duke@435 1667 __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
duke@435 1668 } else if (opr1->is_single_cpu()) {
duke@435 1669 if (opr2->is_constant()) {
duke@435 1670 switch (opr2->as_constant_ptr()->type()) {
duke@435 1671 case T_INT:
duke@435 1672 { jint con = opr2->as_constant_ptr()->as_jint();
duke@435 1673 if (Assembler::is_simm13(con)) {
duke@435 1674 __ cmp(opr1->as_register(), con);
duke@435 1675 } else {
duke@435 1676 __ set(con, O7);
duke@435 1677 __ cmp(opr1->as_register(), O7);
duke@435 1678 }
duke@435 1679 }
duke@435 1680 break;
duke@435 1681
duke@435 1682 case T_OBJECT:
duke@435 1683 // there are only equal/notequal comparisions on objects
duke@435 1684 { jobject con = opr2->as_constant_ptr()->as_jobject();
duke@435 1685 if (con == NULL) {
duke@435 1686 __ cmp(opr1->as_register(), 0);
duke@435 1687 } else {
duke@435 1688 jobject2reg(con, O7);
duke@435 1689 __ cmp(opr1->as_register(), O7);
duke@435 1690 }
duke@435 1691 }
duke@435 1692 break;
duke@435 1693
duke@435 1694 default:
duke@435 1695 ShouldNotReachHere();
duke@435 1696 break;
duke@435 1697 }
duke@435 1698 } else {
duke@435 1699 if (opr2->is_address()) {
duke@435 1700 LIR_Address * addr = opr2->as_address_ptr();
duke@435 1701 BasicType type = addr->type();
duke@435 1702 if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
duke@435 1703 else __ ld(as_Address(addr), O7);
duke@435 1704 __ cmp(opr1->as_register(), O7);
duke@435 1705 } else {
duke@435 1706 __ cmp(opr1->as_register(), opr2->as_register());
duke@435 1707 }
duke@435 1708 }
duke@435 1709 } else if (opr1->is_double_cpu()) {
duke@435 1710 Register xlo = opr1->as_register_lo();
duke@435 1711 Register xhi = opr1->as_register_hi();
duke@435 1712 if (opr2->is_constant() && opr2->as_jlong() == 0) {
duke@435 1713 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
duke@435 1714 #ifdef _LP64
duke@435 1715 __ orcc(xhi, G0, G0);
duke@435 1716 #else
duke@435 1717 __ orcc(xhi, xlo, G0);
duke@435 1718 #endif
duke@435 1719 } else if (opr2->is_register()) {
duke@435 1720 Register ylo = opr2->as_register_lo();
duke@435 1721 Register yhi = opr2->as_register_hi();
duke@435 1722 #ifdef _LP64
duke@435 1723 __ cmp(xlo, ylo);
duke@435 1724 #else
duke@435 1725 __ subcc(xlo, ylo, xlo);
duke@435 1726 __ subccc(xhi, yhi, xhi);
duke@435 1727 if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
duke@435 1728 __ orcc(xhi, xlo, G0);
duke@435 1729 }
duke@435 1730 #endif
duke@435 1731 } else {
duke@435 1732 ShouldNotReachHere();
duke@435 1733 }
duke@435 1734 } else if (opr1->is_address()) {
duke@435 1735 LIR_Address * addr = opr1->as_address_ptr();
duke@435 1736 BasicType type = addr->type();
duke@435 1737 assert (opr2->is_constant(), "Checking");
duke@435 1738 if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
duke@435 1739 else __ ld(as_Address(addr), O7);
duke@435 1740 __ cmp(O7, opr2->as_constant_ptr()->as_jint());
duke@435 1741 } else {
duke@435 1742 ShouldNotReachHere();
duke@435 1743 }
duke@435 1744 }
duke@435 1745
duke@435 1746
duke@435 1747 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
duke@435 1748 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
duke@435 1749 bool is_unordered_less = (code == lir_ucmp_fd2i);
duke@435 1750 if (left->is_single_fpu()) {
duke@435 1751 __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
duke@435 1752 } else if (left->is_double_fpu()) {
duke@435 1753 __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
duke@435 1754 } else {
duke@435 1755 ShouldNotReachHere();
duke@435 1756 }
duke@435 1757 } else if (code == lir_cmp_l2i) {
iveresov@1804 1758 #ifdef _LP64
iveresov@1804 1759 __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
iveresov@1804 1760 #else
duke@435 1761 __ lcmp(left->as_register_hi(), left->as_register_lo(),
duke@435 1762 right->as_register_hi(), right->as_register_lo(),
duke@435 1763 dst->as_register());
iveresov@1804 1764 #endif
duke@435 1765 } else {
duke@435 1766 ShouldNotReachHere();
duke@435 1767 }
duke@435 1768 }
duke@435 1769
duke@435 1770
iveresov@2412 1771 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
duke@435 1772 Assembler::Condition acond;
duke@435 1773 switch (condition) {
duke@435 1774 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1775 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1776 case lir_cond_less: acond = Assembler::less; break;
duke@435 1777 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 1778 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
duke@435 1779 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 1780 case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break;
duke@435 1781 case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break;
duke@435 1782 default: ShouldNotReachHere();
duke@435 1783 };
duke@435 1784
duke@435 1785 if (opr1->is_constant() && opr1->type() == T_INT) {
duke@435 1786 Register dest = result->as_register();
duke@435 1787 // load up first part of constant before branch
duke@435 1788 // and do the rest in the delay slot.
duke@435 1789 if (!Assembler::is_simm13(opr1->as_jint())) {
duke@435 1790 __ sethi(opr1->as_jint(), dest);
duke@435 1791 }
duke@435 1792 } else if (opr1->is_constant()) {
duke@435 1793 const2reg(opr1, result, lir_patch_none, NULL);
duke@435 1794 } else if (opr1->is_register()) {
duke@435 1795 reg2reg(opr1, result);
duke@435 1796 } else if (opr1->is_stack()) {
duke@435 1797 stack2reg(opr1, result, result->type());
duke@435 1798 } else {
duke@435 1799 ShouldNotReachHere();
duke@435 1800 }
duke@435 1801 Label skip;
iveresov@2412 1802 #ifdef _LP64
iveresov@2412 1803 if (type == T_INT) {
iveresov@2412 1804 __ br(acond, false, Assembler::pt, skip);
iveresov@2412 1805 } else
iveresov@2412 1806 #endif
iveresov@2412 1807 __ brx(acond, false, Assembler::pt, skip); // checks icc on 32bit and xcc on 64bit
duke@435 1808 if (opr1->is_constant() && opr1->type() == T_INT) {
duke@435 1809 Register dest = result->as_register();
duke@435 1810 if (Assembler::is_simm13(opr1->as_jint())) {
duke@435 1811 __ delayed()->or3(G0, opr1->as_jint(), dest);
duke@435 1812 } else {
duke@435 1813 // the sethi has been done above, so just put in the low 10 bits
duke@435 1814 __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
duke@435 1815 }
duke@435 1816 } else {
duke@435 1817 // can't do anything useful in the delay slot
duke@435 1818 __ delayed()->nop();
duke@435 1819 }
duke@435 1820 if (opr2->is_constant()) {
duke@435 1821 const2reg(opr2, result, lir_patch_none, NULL);
duke@435 1822 } else if (opr2->is_register()) {
duke@435 1823 reg2reg(opr2, result);
duke@435 1824 } else if (opr2->is_stack()) {
duke@435 1825 stack2reg(opr2, result, result->type());
duke@435 1826 } else {
duke@435 1827 ShouldNotReachHere();
duke@435 1828 }
duke@435 1829 __ bind(skip);
duke@435 1830 }
duke@435 1831
duke@435 1832
duke@435 1833 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
duke@435 1834 assert(info == NULL, "unused on this code path");
duke@435 1835 assert(left->is_register(), "wrong items state");
duke@435 1836 assert(dest->is_register(), "wrong items state");
duke@435 1837
duke@435 1838 if (right->is_register()) {
duke@435 1839 if (dest->is_float_kind()) {
duke@435 1840
duke@435 1841 FloatRegister lreg, rreg, res;
duke@435 1842 FloatRegisterImpl::Width w;
duke@435 1843 if (right->is_single_fpu()) {
duke@435 1844 w = FloatRegisterImpl::S;
duke@435 1845 lreg = left->as_float_reg();
duke@435 1846 rreg = right->as_float_reg();
duke@435 1847 res = dest->as_float_reg();
duke@435 1848 } else {
duke@435 1849 w = FloatRegisterImpl::D;
duke@435 1850 lreg = left->as_double_reg();
duke@435 1851 rreg = right->as_double_reg();
duke@435 1852 res = dest->as_double_reg();
duke@435 1853 }
duke@435 1854
duke@435 1855 switch (code) {
duke@435 1856 case lir_add: __ fadd(w, lreg, rreg, res); break;
duke@435 1857 case lir_sub: __ fsub(w, lreg, rreg, res); break;
duke@435 1858 case lir_mul: // fall through
duke@435 1859 case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
duke@435 1860 case lir_div: // fall through
duke@435 1861 case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
duke@435 1862 default: ShouldNotReachHere();
duke@435 1863 }
duke@435 1864
duke@435 1865 } else if (dest->is_double_cpu()) {
duke@435 1866 #ifdef _LP64
duke@435 1867 Register dst_lo = dest->as_register_lo();
duke@435 1868 Register op1_lo = left->as_pointer_register();
duke@435 1869 Register op2_lo = right->as_pointer_register();
duke@435 1870
duke@435 1871 switch (code) {
duke@435 1872 case lir_add:
duke@435 1873 __ add(op1_lo, op2_lo, dst_lo);
duke@435 1874 break;
duke@435 1875
duke@435 1876 case lir_sub:
duke@435 1877 __ sub(op1_lo, op2_lo, dst_lo);
duke@435 1878 break;
duke@435 1879
duke@435 1880 default: ShouldNotReachHere();
duke@435 1881 }
duke@435 1882 #else
duke@435 1883 Register op1_lo = left->as_register_lo();
duke@435 1884 Register op1_hi = left->as_register_hi();
duke@435 1885 Register op2_lo = right->as_register_lo();
duke@435 1886 Register op2_hi = right->as_register_hi();
duke@435 1887 Register dst_lo = dest->as_register_lo();
duke@435 1888 Register dst_hi = dest->as_register_hi();
duke@435 1889
duke@435 1890 switch (code) {
duke@435 1891 case lir_add:
duke@435 1892 __ addcc(op1_lo, op2_lo, dst_lo);
duke@435 1893 __ addc (op1_hi, op2_hi, dst_hi);
duke@435 1894 break;
duke@435 1895
duke@435 1896 case lir_sub:
duke@435 1897 __ subcc(op1_lo, op2_lo, dst_lo);
duke@435 1898 __ subc (op1_hi, op2_hi, dst_hi);
duke@435 1899 break;
duke@435 1900
duke@435 1901 default: ShouldNotReachHere();
duke@435 1902 }
duke@435 1903 #endif
duke@435 1904 } else {
duke@435 1905 assert (right->is_single_cpu(), "Just Checking");
duke@435 1906
duke@435 1907 Register lreg = left->as_register();
duke@435 1908 Register res = dest->as_register();
duke@435 1909 Register rreg = right->as_register();
duke@435 1910 switch (code) {
duke@435 1911 case lir_add: __ add (lreg, rreg, res); break;
duke@435 1912 case lir_sub: __ sub (lreg, rreg, res); break;
duke@435 1913 case lir_mul: __ mult (lreg, rreg, res); break;
duke@435 1914 default: ShouldNotReachHere();
duke@435 1915 }
duke@435 1916 }
duke@435 1917 } else {
duke@435 1918 assert (right->is_constant(), "must be constant");
duke@435 1919
duke@435 1920 if (dest->is_single_cpu()) {
duke@435 1921 Register lreg = left->as_register();
duke@435 1922 Register res = dest->as_register();
duke@435 1923 int simm13 = right->as_constant_ptr()->as_jint();
duke@435 1924
duke@435 1925 switch (code) {
duke@435 1926 case lir_add: __ add (lreg, simm13, res); break;
duke@435 1927 case lir_sub: __ sub (lreg, simm13, res); break;
duke@435 1928 case lir_mul: __ mult (lreg, simm13, res); break;
duke@435 1929 default: ShouldNotReachHere();
duke@435 1930 }
duke@435 1931 } else {
duke@435 1932 Register lreg = left->as_pointer_register();
duke@435 1933 Register res = dest->as_register_lo();
duke@435 1934 long con = right->as_constant_ptr()->as_jlong();
duke@435 1935 assert(Assembler::is_simm13(con), "must be simm13");
duke@435 1936
duke@435 1937 switch (code) {
duke@435 1938 case lir_add: __ add (lreg, (int)con, res); break;
duke@435 1939 case lir_sub: __ sub (lreg, (int)con, res); break;
duke@435 1940 case lir_mul: __ mult (lreg, (int)con, res); break;
duke@435 1941 default: ShouldNotReachHere();
duke@435 1942 }
duke@435 1943 }
duke@435 1944 }
duke@435 1945 }
duke@435 1946
duke@435 1947
duke@435 1948 void LIR_Assembler::fpop() {
duke@435 1949 // do nothing
duke@435 1950 }
duke@435 1951
duke@435 1952
duke@435 1953 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
duke@435 1954 switch (code) {
duke@435 1955 case lir_sin:
duke@435 1956 case lir_tan:
duke@435 1957 case lir_cos: {
duke@435 1958 assert(thread->is_valid(), "preserve the thread object for performance reasons");
duke@435 1959 assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
duke@435 1960 break;
duke@435 1961 }
duke@435 1962 case lir_sqrt: {
duke@435 1963 assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
duke@435 1964 FloatRegister src_reg = value->as_double_reg();
duke@435 1965 FloatRegister dst_reg = dest->as_double_reg();
duke@435 1966 __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
duke@435 1967 break;
duke@435 1968 }
duke@435 1969 case lir_abs: {
duke@435 1970 assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
duke@435 1971 FloatRegister src_reg = value->as_double_reg();
duke@435 1972 FloatRegister dst_reg = dest->as_double_reg();
duke@435 1973 __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
duke@435 1974 break;
duke@435 1975 }
duke@435 1976 default: {
duke@435 1977 ShouldNotReachHere();
duke@435 1978 break;
duke@435 1979 }
duke@435 1980 }
duke@435 1981 }
duke@435 1982
duke@435 1983
duke@435 1984 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
duke@435 1985 if (right->is_constant()) {
duke@435 1986 if (dest->is_single_cpu()) {
duke@435 1987 int simm13 = right->as_constant_ptr()->as_jint();
duke@435 1988 switch (code) {
duke@435 1989 case lir_logic_and: __ and3 (left->as_register(), simm13, dest->as_register()); break;
duke@435 1990 case lir_logic_or: __ or3 (left->as_register(), simm13, dest->as_register()); break;
duke@435 1991 case lir_logic_xor: __ xor3 (left->as_register(), simm13, dest->as_register()); break;
duke@435 1992 default: ShouldNotReachHere();
duke@435 1993 }
duke@435 1994 } else {
duke@435 1995 long c = right->as_constant_ptr()->as_jlong();
duke@435 1996 assert(c == (int)c && Assembler::is_simm13(c), "out of range");
duke@435 1997 int simm13 = (int)c;
duke@435 1998 switch (code) {
duke@435 1999 case lir_logic_and:
duke@435 2000 #ifndef _LP64
duke@435 2001 __ and3 (left->as_register_hi(), 0, dest->as_register_hi());
duke@435 2002 #endif
duke@435 2003 __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
duke@435 2004 break;
duke@435 2005
duke@435 2006 case lir_logic_or:
duke@435 2007 #ifndef _LP64
duke@435 2008 __ or3 (left->as_register_hi(), 0, dest->as_register_hi());
duke@435 2009 #endif
duke@435 2010 __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
duke@435 2011 break;
duke@435 2012
duke@435 2013 case lir_logic_xor:
duke@435 2014 #ifndef _LP64
duke@435 2015 __ xor3 (left->as_register_hi(), 0, dest->as_register_hi());
duke@435 2016 #endif
duke@435 2017 __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
duke@435 2018 break;
duke@435 2019
duke@435 2020 default: ShouldNotReachHere();
duke@435 2021 }
duke@435 2022 }
duke@435 2023 } else {
duke@435 2024 assert(right->is_register(), "right should be in register");
duke@435 2025
duke@435 2026 if (dest->is_single_cpu()) {
duke@435 2027 switch (code) {
duke@435 2028 case lir_logic_and: __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
duke@435 2029 case lir_logic_or: __ or3 (left->as_register(), right->as_register(), dest->as_register()); break;
duke@435 2030 case lir_logic_xor: __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
duke@435 2031 default: ShouldNotReachHere();
duke@435 2032 }
duke@435 2033 } else {
duke@435 2034 #ifdef _LP64
duke@435 2035 Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
duke@435 2036 left->as_register_lo();
duke@435 2037 Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
duke@435 2038 right->as_register_lo();
duke@435 2039
duke@435 2040 switch (code) {
duke@435 2041 case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
duke@435 2042 case lir_logic_or: __ or3 (l, r, dest->as_register_lo()); break;
duke@435 2043 case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
duke@435 2044 default: ShouldNotReachHere();
duke@435 2045 }
duke@435 2046 #else
duke@435 2047 switch (code) {
duke@435 2048 case lir_logic_and:
duke@435 2049 __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
duke@435 2050 __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
duke@435 2051 break;
duke@435 2052
duke@435 2053 case lir_logic_or:
duke@435 2054 __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
duke@435 2055 __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
duke@435 2056 break;
duke@435 2057
duke@435 2058 case lir_logic_xor:
duke@435 2059 __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
duke@435 2060 __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
duke@435 2061 break;
duke@435 2062
duke@435 2063 default: ShouldNotReachHere();
duke@435 2064 }
duke@435 2065 #endif
duke@435 2066 }
duke@435 2067 }
duke@435 2068 }
duke@435 2069
duke@435 2070
duke@435 2071 int LIR_Assembler::shift_amount(BasicType t) {
kvn@464 2072 int elem_size = type2aelembytes(t);
duke@435 2073 switch (elem_size) {
duke@435 2074 case 1 : return 0;
duke@435 2075 case 2 : return 1;
duke@435 2076 case 4 : return 2;
duke@435 2077 case 8 : return 3;
duke@435 2078 }
duke@435 2079 ShouldNotReachHere();
duke@435 2080 return -1;
duke@435 2081 }
duke@435 2082
duke@435 2083
never@1813 2084 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
duke@435 2085 assert(exceptionOop->as_register() == Oexception, "should match");
never@1813 2086 assert(exceptionPC->as_register() == Oissuing_pc, "should match");
duke@435 2087
duke@435 2088 info->add_register_oop(exceptionOop);
duke@435 2089
never@1813 2090 // reuse the debug info from the safepoint poll for the throw op itself
never@1813 2091 address pc_for_athrow = __ pc();
never@1813 2092 int pc_for_athrow_offset = __ offset();
never@1813 2093 RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
never@1813 2094 __ set(pc_for_athrow, Oissuing_pc, rspec);
never@1813 2095 add_call_info(pc_for_athrow_offset, info); // for exception handler
never@1813 2096
never@1813 2097 __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
never@1813 2098 __ delayed()->nop();
never@1813 2099 }
never@1813 2100
never@1813 2101
never@1813 2102 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
never@1813 2103 assert(exceptionOop->as_register() == Oexception, "should match");
never@1813 2104
never@1813 2105 __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
never@1813 2106 __ delayed()->nop();
duke@435 2107 }
duke@435 2108
duke@435 2109 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
duke@435 2110 Register src = op->src()->as_register();
duke@435 2111 Register dst = op->dst()->as_register();
duke@435 2112 Register src_pos = op->src_pos()->as_register();
duke@435 2113 Register dst_pos = op->dst_pos()->as_register();
duke@435 2114 Register length = op->length()->as_register();
duke@435 2115 Register tmp = op->tmp()->as_register();
duke@435 2116 Register tmp2 = O7;
duke@435 2117
duke@435 2118 int flags = op->flags();
duke@435 2119 ciArrayKlass* default_type = op->expected_type();
duke@435 2120 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
duke@435 2121 if (basic_type == T_ARRAY) basic_type = T_OBJECT;
duke@435 2122
iveresov@2731 2123 #ifdef _LP64
iveresov@2731 2124 // higher 32bits must be null
iveresov@2731 2125 __ sra(dst_pos, 0, dst_pos);
iveresov@2731 2126 __ sra(src_pos, 0, src_pos);
iveresov@2731 2127 __ sra(length, 0, length);
iveresov@2731 2128 #endif
iveresov@2731 2129
duke@435 2130 // set up the arraycopy stub information
duke@435 2131 ArrayCopyStub* stub = op->stub();
duke@435 2132
duke@435 2133 // always do stub if no type information is available. it's ok if
duke@435 2134 // the known type isn't loaded since the code sanity checks
duke@435 2135 // in debug mode and the type isn't required when we know the exact type
duke@435 2136 // also check that the type is an array type.
roland@2728 2137 if (op->expected_type() == NULL) {
duke@435 2138 __ mov(src, O0);
duke@435 2139 __ mov(src_pos, O1);
duke@435 2140 __ mov(dst, O2);
duke@435 2141 __ mov(dst_pos, O3);
duke@435 2142 __ mov(length, O4);
roland@2728 2143 address copyfunc_addr = StubRoutines::generic_arraycopy();
roland@2728 2144
roland@2728 2145 if (copyfunc_addr == NULL) { // Use C version if stub was not generated
roland@2728 2146 __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
roland@2728 2147 } else {
roland@2728 2148 #ifndef PRODUCT
roland@2728 2149 if (PrintC1Statistics) {
roland@2728 2150 address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
roland@2728 2151 __ inc_counter(counter, G1, G3);
roland@2728 2152 }
roland@2728 2153 #endif
roland@2728 2154 __ call_VM_leaf(tmp, copyfunc_addr);
roland@2728 2155 }
roland@2728 2156
roland@2728 2157 if (copyfunc_addr != NULL) {
roland@2728 2158 __ xor3(O0, -1, tmp);
roland@2728 2159 __ sub(length, tmp, length);
roland@2728 2160 __ add(src_pos, tmp, src_pos);
kvn@3037 2161 __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
roland@2728 2162 __ delayed()->add(dst_pos, tmp, dst_pos);
roland@2728 2163 } else {
kvn@3037 2164 __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
roland@2728 2165 __ delayed()->nop();
roland@2728 2166 }
duke@435 2167 __ bind(*stub->continuation());
duke@435 2168 return;
duke@435 2169 }
duke@435 2170
duke@435 2171 assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
duke@435 2172
duke@435 2173 // make sure src and dst are non-null and load array length
duke@435 2174 if (flags & LIR_OpArrayCopy::src_null_check) {
duke@435 2175 __ tst(src);
iveresov@2344 2176 __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
duke@435 2177 __ delayed()->nop();
duke@435 2178 }
duke@435 2179
duke@435 2180 if (flags & LIR_OpArrayCopy::dst_null_check) {
duke@435 2181 __ tst(dst);
iveresov@2344 2182 __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
duke@435 2183 __ delayed()->nop();
duke@435 2184 }
duke@435 2185
duke@435 2186 if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
duke@435 2187 // test src_pos register
kvn@3037 2188 __ cmp_zero_and_br(Assembler::less, src_pos, *stub->entry());
duke@435 2189 __ delayed()->nop();
duke@435 2190 }
duke@435 2191
duke@435 2192 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
duke@435 2193 // test dst_pos register
kvn@3037 2194 __ cmp_zero_and_br(Assembler::less, dst_pos, *stub->entry());
duke@435 2195 __ delayed()->nop();
duke@435 2196 }
duke@435 2197
duke@435 2198 if (flags & LIR_OpArrayCopy::length_positive_check) {
duke@435 2199 // make sure length isn't negative
kvn@3037 2200 __ cmp_zero_and_br(Assembler::less, length, *stub->entry());
duke@435 2201 __ delayed()->nop();
duke@435 2202 }
duke@435 2203
duke@435 2204 if (flags & LIR_OpArrayCopy::src_range_check) {
duke@435 2205 __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
duke@435 2206 __ add(length, src_pos, tmp);
duke@435 2207 __ cmp(tmp2, tmp);
duke@435 2208 __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
duke@435 2209 __ delayed()->nop();
duke@435 2210 }
duke@435 2211
duke@435 2212 if (flags & LIR_OpArrayCopy::dst_range_check) {
duke@435 2213 __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
duke@435 2214 __ add(length, dst_pos, tmp);
duke@435 2215 __ cmp(tmp2, tmp);
duke@435 2216 __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
duke@435 2217 __ delayed()->nop();
duke@435 2218 }
duke@435 2219
roland@2728 2220 int shift = shift_amount(basic_type);
roland@2728 2221
duke@435 2222 if (flags & LIR_OpArrayCopy::type_check) {
roland@2728 2223 // We don't know the array types are compatible
roland@2728 2224 if (basic_type != T_OBJECT) {
roland@2728 2225 // Simple test for basic type arrays
coleenp@4037 2226 if (UseCompressedKlassPointers) {
roland@2728 2227 // We don't need decode because we just need to compare
roland@2728 2228 __ lduw(src, oopDesc::klass_offset_in_bytes(), tmp);
roland@2728 2229 __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
roland@2728 2230 __ cmp(tmp, tmp2);
roland@2728 2231 __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
roland@2728 2232 } else {
roland@2728 2233 __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
roland@2728 2234 __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
roland@2728 2235 __ cmp(tmp, tmp2);
roland@2728 2236 __ brx(Assembler::notEqual, false, Assembler::pt, *stub->entry());
roland@2728 2237 }
roland@2728 2238 __ delayed()->nop();
iveresov@2344 2239 } else {
roland@2728 2240 // For object arrays, if src is a sub class of dst then we can
roland@2728 2241 // safely do the copy.
roland@2728 2242 address copyfunc_addr = StubRoutines::checkcast_arraycopy();
roland@2728 2243
roland@2728 2244 Label cont, slow;
roland@2728 2245 assert_different_registers(tmp, tmp2, G3, G1);
roland@2728 2246
roland@2728 2247 __ load_klass(src, G3);
roland@2728 2248 __ load_klass(dst, G1);
roland@2728 2249
roland@2728 2250 __ check_klass_subtype_fast_path(G3, G1, tmp, tmp2, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL);
roland@2728 2251
roland@2728 2252 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
roland@2728 2253 __ delayed()->nop();
roland@2728 2254
roland@2728 2255 __ cmp(G3, 0);
roland@2728 2256 if (copyfunc_addr != NULL) { // use stub if available
roland@2728 2257 // src is not a sub class of dst so we have to do a
roland@2728 2258 // per-element check.
roland@2728 2259 __ br(Assembler::notEqual, false, Assembler::pt, cont);
roland@2728 2260 __ delayed()->nop();
roland@2728 2261
roland@2728 2262 __ bind(slow);
roland@2728 2263
roland@2728 2264 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
roland@2728 2265 if ((flags & mask) != mask) {
roland@2728 2266 // Check that at least both of them object arrays.
roland@2728 2267 assert(flags & mask, "one of the two should be known to be an object array");
roland@2728 2268
roland@2728 2269 if (!(flags & LIR_OpArrayCopy::src_objarray)) {
roland@2728 2270 __ load_klass(src, tmp);
roland@2728 2271 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
roland@2728 2272 __ load_klass(dst, tmp);
roland@2728 2273 }
stefank@3391 2274 int lh_offset = in_bytes(Klass::layout_helper_offset());
roland@2728 2275
roland@2728 2276 __ lduw(tmp, lh_offset, tmp2);
roland@2728 2277
roland@2728 2278 jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
roland@2728 2279 __ set(objArray_lh, tmp);
roland@2728 2280 __ cmp(tmp, tmp2);
roland@2728 2281 __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
roland@2728 2282 __ delayed()->nop();
roland@2728 2283 }
roland@2728 2284
roland@2728 2285 Register src_ptr = O0;
roland@2728 2286 Register dst_ptr = O1;
roland@2728 2287 Register len = O2;
roland@2728 2288 Register chk_off = O3;
roland@2728 2289 Register super_k = O4;
roland@2728 2290
roland@2728 2291 __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
roland@2728 2292 if (shift == 0) {
roland@2728 2293 __ add(src_ptr, src_pos, src_ptr);
roland@2728 2294 } else {
roland@2728 2295 __ sll(src_pos, shift, tmp);
roland@2728 2296 __ add(src_ptr, tmp, src_ptr);
roland@2728 2297 }
roland@2728 2298
roland@2728 2299 __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
roland@2728 2300 if (shift == 0) {
roland@2728 2301 __ add(dst_ptr, dst_pos, dst_ptr);
roland@2728 2302 } else {
roland@2728 2303 __ sll(dst_pos, shift, tmp);
roland@2728 2304 __ add(dst_ptr, tmp, dst_ptr);
roland@2728 2305 }
roland@2728 2306 __ mov(length, len);
roland@2728 2307 __ load_klass(dst, tmp);
roland@2728 2308
stefank@3391 2309 int ek_offset = in_bytes(objArrayKlass::element_klass_offset());
roland@2728 2310 __ ld_ptr(tmp, ek_offset, super_k);
roland@2728 2311
stefank@3391 2312 int sco_offset = in_bytes(Klass::super_check_offset_offset());
roland@2728 2313 __ lduw(super_k, sco_offset, chk_off);
roland@2728 2314
roland@2728 2315 __ call_VM_leaf(tmp, copyfunc_addr);
roland@2728 2316
roland@2728 2317 #ifndef PRODUCT
roland@2728 2318 if (PrintC1Statistics) {
roland@2728 2319 Label failed;
kvn@3037 2320 __ br_notnull_short(O0, Assembler::pn, failed);
roland@2728 2321 __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, G1, G3);
roland@2728 2322 __ bind(failed);
roland@2728 2323 }
roland@2728 2324 #endif
roland@2728 2325
roland@2728 2326 __ br_null(O0, false, Assembler::pt, *stub->continuation());
roland@2728 2327 __ delayed()->xor3(O0, -1, tmp);
roland@2728 2328
roland@2728 2329 #ifndef PRODUCT
roland@2728 2330 if (PrintC1Statistics) {
roland@2728 2331 __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, G1, G3);
roland@2728 2332 }
roland@2728 2333 #endif
roland@2728 2334
roland@2728 2335 __ sub(length, tmp, length);
roland@2728 2336 __ add(src_pos, tmp, src_pos);
roland@2728 2337 __ br(Assembler::always, false, Assembler::pt, *stub->entry());
roland@2728 2338 __ delayed()->add(dst_pos, tmp, dst_pos);
roland@2728 2339
roland@2728 2340 __ bind(cont);
roland@2728 2341 } else {
roland@2728 2342 __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
roland@2728 2343 __ delayed()->nop();
roland@2728 2344 __ bind(cont);
roland@2728 2345 }
iveresov@2344 2346 }
duke@435 2347 }
duke@435 2348
duke@435 2349 #ifdef ASSERT
duke@435 2350 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
duke@435 2351 // Sanity check the known type with the incoming class. For the
duke@435 2352 // primitive case the types must match exactly with src.klass and
duke@435 2353 // dst.klass each exactly matching the default type. For the
duke@435 2354 // object array case, if no type check is needed then either the
duke@435 2355 // dst type is exactly the expected type and the src type is a
duke@435 2356 // subtype which we can't check or src is the same array as dst
duke@435 2357 // but not necessarily exactly of type default_type.
duke@435 2358 Label known_ok, halt;
coleenp@4037 2359 metadata2reg(op->expected_type()->constant_encoding(), tmp);
coleenp@4037 2360 if (UseCompressedKlassPointers) {
iveresov@2344 2361 // tmp holds the default type. It currently comes uncompressed after the
iveresov@2344 2362 // load of a constant, so encode it.
roland@4159 2363 __ encode_klass_not_null(tmp);
iveresov@2344 2364 // load the raw value of the dst klass, since we will be comparing
iveresov@2344 2365 // uncompressed values directly.
iveresov@2344 2366 __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
iveresov@2344 2367 if (basic_type != T_OBJECT) {
iveresov@2344 2368 __ cmp(tmp, tmp2);
iveresov@2344 2369 __ br(Assembler::notEqual, false, Assembler::pn, halt);
iveresov@2344 2370 // load the raw value of the src klass.
iveresov@2344 2371 __ delayed()->lduw(src, oopDesc::klass_offset_in_bytes(), tmp2);
kvn@3037 2372 __ cmp_and_br_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
iveresov@2344 2373 } else {
iveresov@2344 2374 __ cmp(tmp, tmp2);
iveresov@2344 2375 __ br(Assembler::equal, false, Assembler::pn, known_ok);
iveresov@2344 2376 __ delayed()->cmp(src, dst);
iveresov@2344 2377 __ brx(Assembler::equal, false, Assembler::pn, known_ok);
iveresov@2344 2378 __ delayed()->nop();
iveresov@2344 2379 }
duke@435 2380 } else {
iveresov@2344 2381 __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
iveresov@2344 2382 if (basic_type != T_OBJECT) {
iveresov@2344 2383 __ cmp(tmp, tmp2);
iveresov@2344 2384 __ brx(Assembler::notEqual, false, Assembler::pn, halt);
iveresov@2344 2385 __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
kvn@3037 2386 __ cmp_and_brx_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
iveresov@2344 2387 } else {
iveresov@2344 2388 __ cmp(tmp, tmp2);
iveresov@2344 2389 __ brx(Assembler::equal, false, Assembler::pn, known_ok);
iveresov@2344 2390 __ delayed()->cmp(src, dst);
iveresov@2344 2391 __ brx(Assembler::equal, false, Assembler::pn, known_ok);
iveresov@2344 2392 __ delayed()->nop();
iveresov@2344 2393 }
duke@435 2394 }
duke@435 2395 __ bind(halt);
duke@435 2396 __ stop("incorrect type information in arraycopy");
duke@435 2397 __ bind(known_ok);
duke@435 2398 }
duke@435 2399 #endif
duke@435 2400
roland@2728 2401 #ifndef PRODUCT
roland@2728 2402 if (PrintC1Statistics) {
roland@2728 2403 address counter = Runtime1::arraycopy_count_address(basic_type);
roland@2728 2404 __ inc_counter(counter, G1, G3);
roland@2728 2405 }
roland@2728 2406 #endif
duke@435 2407
duke@435 2408 Register src_ptr = O0;
duke@435 2409 Register dst_ptr = O1;
duke@435 2410 Register len = O2;
duke@435 2411
duke@435 2412 __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
duke@435 2413 if (shift == 0) {
duke@435 2414 __ add(src_ptr, src_pos, src_ptr);
duke@435 2415 } else {
duke@435 2416 __ sll(src_pos, shift, tmp);
duke@435 2417 __ add(src_ptr, tmp, src_ptr);
duke@435 2418 }
duke@435 2419
duke@435 2420 __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
duke@435 2421 if (shift == 0) {
duke@435 2422 __ add(dst_ptr, dst_pos, dst_ptr);
duke@435 2423 } else {
duke@435 2424 __ sll(dst_pos, shift, tmp);
duke@435 2425 __ add(dst_ptr, tmp, dst_ptr);
duke@435 2426 }
duke@435 2427
roland@2728 2428 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
roland@2728 2429 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
roland@2728 2430 const char *name;
roland@2728 2431 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
roland@2728 2432
roland@2728 2433 // arraycopy stubs takes a length in number of elements, so don't scale it.
roland@2728 2434 __ mov(length, len);
roland@2728 2435 __ call_VM_leaf(tmp, entry);
duke@435 2436
duke@435 2437 __ bind(*stub->continuation());
duke@435 2438 }
duke@435 2439
duke@435 2440
duke@435 2441 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
duke@435 2442 if (dest->is_single_cpu()) {
duke@435 2443 #ifdef _LP64
duke@435 2444 if (left->type() == T_OBJECT) {
duke@435 2445 switch (code) {
duke@435 2446 case lir_shl: __ sllx (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2447 case lir_shr: __ srax (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2448 case lir_ushr: __ srl (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2449 default: ShouldNotReachHere();
duke@435 2450 }
duke@435 2451 } else
duke@435 2452 #endif
duke@435 2453 switch (code) {
duke@435 2454 case lir_shl: __ sll (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2455 case lir_shr: __ sra (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2456 case lir_ushr: __ srl (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2457 default: ShouldNotReachHere();
duke@435 2458 }
duke@435 2459 } else {
duke@435 2460 #ifdef _LP64
duke@435 2461 switch (code) {
duke@435 2462 case lir_shl: __ sllx (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
duke@435 2463 case lir_shr: __ srax (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
duke@435 2464 case lir_ushr: __ srlx (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
duke@435 2465 default: ShouldNotReachHere();
duke@435 2466 }
duke@435 2467 #else
duke@435 2468 switch (code) {
duke@435 2469 case lir_shl: __ lshl (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
duke@435 2470 case lir_shr: __ lshr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
duke@435 2471 case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
duke@435 2472 default: ShouldNotReachHere();
duke@435 2473 }
duke@435 2474 #endif
duke@435 2475 }
duke@435 2476 }
duke@435 2477
duke@435 2478
duke@435 2479 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
duke@435 2480 #ifdef _LP64
duke@435 2481 if (left->type() == T_OBJECT) {
duke@435 2482 count = count & 63; // shouldn't shift by more than sizeof(intptr_t)
duke@435 2483 Register l = left->as_register();
duke@435 2484 Register d = dest->as_register_lo();
duke@435 2485 switch (code) {
duke@435 2486 case lir_shl: __ sllx (l, count, d); break;
duke@435 2487 case lir_shr: __ srax (l, count, d); break;
duke@435 2488 case lir_ushr: __ srlx (l, count, d); break;
duke@435 2489 default: ShouldNotReachHere();
duke@435 2490 }
duke@435 2491 return;
duke@435 2492 }
duke@435 2493 #endif
duke@435 2494
duke@435 2495 if (dest->is_single_cpu()) {
duke@435 2496 count = count & 0x1F; // Java spec
duke@435 2497 switch (code) {
duke@435 2498 case lir_shl: __ sll (left->as_register(), count, dest->as_register()); break;
duke@435 2499 case lir_shr: __ sra (left->as_register(), count, dest->as_register()); break;
duke@435 2500 case lir_ushr: __ srl (left->as_register(), count, dest->as_register()); break;
duke@435 2501 default: ShouldNotReachHere();
duke@435 2502 }
duke@435 2503 } else if (dest->is_double_cpu()) {
duke@435 2504 count = count & 63; // Java spec
duke@435 2505 switch (code) {
duke@435 2506 case lir_shl: __ sllx (left->as_pointer_register(), count, dest->as_pointer_register()); break;
duke@435 2507 case lir_shr: __ srax (left->as_pointer_register(), count, dest->as_pointer_register()); break;
duke@435 2508 case lir_ushr: __ srlx (left->as_pointer_register(), count, dest->as_pointer_register()); break;
duke@435 2509 default: ShouldNotReachHere();
duke@435 2510 }
duke@435 2511 } else {
duke@435 2512 ShouldNotReachHere();
duke@435 2513 }
duke@435 2514 }
duke@435 2515
duke@435 2516
duke@435 2517 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
duke@435 2518 assert(op->tmp1()->as_register() == G1 &&
duke@435 2519 op->tmp2()->as_register() == G3 &&
duke@435 2520 op->tmp3()->as_register() == G4 &&
duke@435 2521 op->obj()->as_register() == O0 &&
duke@435 2522 op->klass()->as_register() == G5, "must be");
duke@435 2523 if (op->init_check()) {
coleenp@3368 2524 __ ldub(op->klass()->as_register(),
coleenp@4037 2525 in_bytes(InstanceKlass::init_state_offset()),
duke@435 2526 op->tmp1()->as_register());
duke@435 2527 add_debug_info_for_null_check_here(op->stub()->info());
coleenp@4037 2528 __ cmp(op->tmp1()->as_register(), InstanceKlass::fully_initialized);
duke@435 2529 __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
duke@435 2530 __ delayed()->nop();
duke@435 2531 }
duke@435 2532 __ allocate_object(op->obj()->as_register(),
duke@435 2533 op->tmp1()->as_register(),
duke@435 2534 op->tmp2()->as_register(),
duke@435 2535 op->tmp3()->as_register(),
duke@435 2536 op->header_size(),
duke@435 2537 op->object_size(),
duke@435 2538 op->klass()->as_register(),
duke@435 2539 *op->stub()->entry());
duke@435 2540 __ bind(*op->stub()->continuation());
duke@435 2541 __ verify_oop(op->obj()->as_register());
duke@435 2542 }
duke@435 2543
duke@435 2544
duke@435 2545 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
duke@435 2546 assert(op->tmp1()->as_register() == G1 &&
duke@435 2547 op->tmp2()->as_register() == G3 &&
duke@435 2548 op->tmp3()->as_register() == G4 &&
duke@435 2549 op->tmp4()->as_register() == O1 &&
duke@435 2550 op->klass()->as_register() == G5, "must be");
iveresov@2432 2551
iveresov@2432 2552 LP64_ONLY( __ signx(op->len()->as_register()); )
duke@435 2553 if (UseSlowPath ||
duke@435 2554 (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
duke@435 2555 (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
never@1813 2556 __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
duke@435 2557 __ delayed()->nop();
duke@435 2558 } else {
duke@435 2559 __ allocate_array(op->obj()->as_register(),
duke@435 2560 op->len()->as_register(),
duke@435 2561 op->tmp1()->as_register(),
duke@435 2562 op->tmp2()->as_register(),
duke@435 2563 op->tmp3()->as_register(),
duke@435 2564 arrayOopDesc::header_size(op->type()),
kvn@464 2565 type2aelembytes(op->type()),
duke@435 2566 op->klass()->as_register(),
duke@435 2567 *op->stub()->entry());
duke@435 2568 }
duke@435 2569 __ bind(*op->stub()->continuation());
duke@435 2570 }
duke@435 2571
duke@435 2572
iveresov@2138 2573 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
iveresov@2138 2574 ciMethodData *md, ciProfileData *data,
iveresov@2138 2575 Register recv, Register tmp1, Label* update_done) {
iveresov@2138 2576 uint i;
iveresov@2138 2577 for (i = 0; i < VirtualCallData::row_limit(); i++) {
iveresov@2138 2578 Label next_test;
iveresov@2138 2579 // See if the receiver is receiver[n].
iveresov@2138 2580 Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
iveresov@2138 2581 mdo_offset_bias);
iveresov@2138 2582 __ ld_ptr(receiver_addr, tmp1);
iveresov@2138 2583 __ verify_oop(tmp1);
kvn@3037 2584 __ cmp_and_brx_short(recv, tmp1, Assembler::notEqual, Assembler::pt, next_test);
iveresov@2138 2585 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
iveresov@2138 2586 mdo_offset_bias);
iveresov@2138 2587 __ ld_ptr(data_addr, tmp1);
iveresov@2138 2588 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 2589 __ st_ptr(tmp1, data_addr);
kvn@3037 2590 __ ba(*update_done);
iveresov@2138 2591 __ delayed()->nop();
iveresov@2138 2592 __ bind(next_test);
iveresov@2138 2593 }
iveresov@2138 2594
iveresov@2138 2595 // Didn't find receiver; find next empty slot and fill it in
iveresov@2138 2596 for (i = 0; i < VirtualCallData::row_limit(); i++) {
iveresov@2138 2597 Label next_test;
iveresov@2138 2598 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
iveresov@2138 2599 mdo_offset_bias);
iveresov@2344 2600 __ ld_ptr(recv_addr, tmp1);
kvn@3037 2601 __ br_notnull_short(tmp1, Assembler::pt, next_test);
iveresov@2138 2602 __ st_ptr(recv, recv_addr);
iveresov@2138 2603 __ set(DataLayout::counter_increment, tmp1);
iveresov@2138 2604 __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
iveresov@2138 2605 mdo_offset_bias);
kvn@3037 2606 __ ba(*update_done);
iveresov@2138 2607 __ delayed()->nop();
iveresov@2138 2608 __ bind(next_test);
iveresov@2138 2609 }
iveresov@2138 2610 }
iveresov@2138 2611
iveresov@2146 2612
iveresov@2146 2613 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
iveresov@2146 2614 ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
iveresov@2349 2615 md = method->method_data_or_null();
iveresov@2349 2616 assert(md != NULL, "Sanity");
iveresov@2146 2617 data = md->bci_to_data(bci);
iveresov@2146 2618 assert(data != NULL, "need data for checkcast");
iveresov@2146 2619 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
iveresov@2146 2620 if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
iveresov@2146 2621 // The offset is large so bias the mdo by the base of the slot so
iveresov@2146 2622 // that the ld can use simm13s to reference the slots of the data
iveresov@2146 2623 mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
iveresov@2146 2624 }
iveresov@2146 2625 }
iveresov@2146 2626
iveresov@2146 2627 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
iveresov@2138 2628 // we always need a stub for the failure case.
iveresov@2138 2629 CodeStub* stub = op->stub();
iveresov@2138 2630 Register obj = op->object()->as_register();
iveresov@2138 2631 Register k_RInfo = op->tmp1()->as_register();
iveresov@2138 2632 Register klass_RInfo = op->tmp2()->as_register();
iveresov@2138 2633 Register dst = op->result_opr()->as_register();
iveresov@2138 2634 Register Rtmp1 = op->tmp3()->as_register();
iveresov@2138 2635 ciKlass* k = op->klass();
iveresov@2138 2636
iveresov@2138 2637
iveresov@2138 2638 if (obj == k_RInfo) {
iveresov@2138 2639 k_RInfo = klass_RInfo;
iveresov@2138 2640 klass_RInfo = obj;
iveresov@2138 2641 }
iveresov@2138 2642
iveresov@2138 2643 ciMethodData* md;
iveresov@2138 2644 ciProfileData* data;
iveresov@2138 2645 int mdo_offset_bias = 0;
iveresov@2138 2646 if (op->should_profile()) {
iveresov@2138 2647 ciMethod* method = op->profiled_method();
iveresov@2138 2648 assert(method != NULL, "Should have method");
iveresov@2146 2649 setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
iveresov@2146 2650
iveresov@2146 2651 Label not_null;
kvn@3037 2652 __ br_notnull_short(obj, Assembler::pn, not_null);
iveresov@2138 2653 Register mdo = k_RInfo;
iveresov@2138 2654 Register data_val = Rtmp1;
coleenp@4037 2655 metadata2reg(md->constant_encoding(), mdo);
iveresov@2138 2656 if (mdo_offset_bias > 0) {
iveresov@2138 2657 __ set(mdo_offset_bias, data_val);
iveresov@2138 2658 __ add(mdo, data_val, mdo);
iveresov@2138 2659 }
iveresov@2138 2660 Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
iveresov@2138 2661 __ ldub(flags_addr, data_val);
iveresov@2138 2662 __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
iveresov@2138 2663 __ stb(data_val, flags_addr);
kvn@3037 2664 __ ba(*obj_is_null);
iveresov@2146 2665 __ delayed()->nop();
iveresov@2146 2666 __ bind(not_null);
iveresov@2146 2667 } else {
iveresov@2146 2668 __ br_null(obj, false, Assembler::pn, *obj_is_null);
iveresov@2146 2669 __ delayed()->nop();
iveresov@2138 2670 }
iveresov@2146 2671
iveresov@2146 2672 Label profile_cast_failure, profile_cast_success;
iveresov@2146 2673 Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
iveresov@2146 2674 Label *success_target = op->should_profile() ? &profile_cast_success : success;
iveresov@2138 2675
iveresov@2138 2676 // patching may screw with our temporaries on sparc,
iveresov@2138 2677 // so let's do it before loading the class
iveresov@2138 2678 if (k->is_loaded()) {
coleenp@4037 2679 metadata2reg(k->constant_encoding(), k_RInfo);
iveresov@2138 2680 } else {
coleenp@4037 2681 klass2reg_with_patching(k_RInfo, op->info_for_patch());
iveresov@2138 2682 }
iveresov@2138 2683 assert(obj != k_RInfo, "must be different");
iveresov@2138 2684
iveresov@2138 2685 // get object class
iveresov@2138 2686 // not a safepoint as obj null check happens earlier
iveresov@2344 2687 __ load_klass(obj, klass_RInfo);
iveresov@2138 2688 if (op->fast_check()) {
iveresov@2138 2689 assert_different_registers(klass_RInfo, k_RInfo);
iveresov@2138 2690 __ cmp(k_RInfo, klass_RInfo);
iveresov@2138 2691 __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
iveresov@2138 2692 __ delayed()->nop();
iveresov@2138 2693 } else {
iveresov@2138 2694 bool need_slow_path = true;
iveresov@2138 2695 if (k->is_loaded()) {
stefank@3391 2696 if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset()))
iveresov@2138 2697 need_slow_path = false;
iveresov@2138 2698 // perform the fast part of the checking logic
iveresov@2138 2699 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
iveresov@2146 2700 (need_slow_path ? success_target : NULL),
iveresov@2138 2701 failure_target, NULL,
iveresov@2138 2702 RegisterOrConstant(k->super_check_offset()));
iveresov@2138 2703 } else {
iveresov@2138 2704 // perform the fast part of the checking logic
iveresov@2146 2705 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
iveresov@2138 2706 failure_target, NULL);
iveresov@2138 2707 }
iveresov@2138 2708 if (need_slow_path) {
iveresov@2138 2709 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
iveresov@2138 2710 assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
iveresov@2138 2711 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
iveresov@2138 2712 __ delayed()->nop();
iveresov@2138 2713 __ cmp(G3, 0);
iveresov@2138 2714 __ br(Assembler::equal, false, Assembler::pn, *failure_target);
iveresov@2138 2715 __ delayed()->nop();
iveresov@2146 2716 // Fall through to success case
iveresov@2138 2717 }
iveresov@2138 2718 }
iveresov@2138 2719
iveresov@2138 2720 if (op->should_profile()) {
iveresov@2138 2721 Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
iveresov@2138 2722 assert_different_registers(obj, mdo, recv, tmp1);
iveresov@2146 2723 __ bind(profile_cast_success);
coleenp@4037 2724 metadata2reg(md->constant_encoding(), mdo);
iveresov@2138 2725 if (mdo_offset_bias > 0) {
iveresov@2138 2726 __ set(mdo_offset_bias, tmp1);
iveresov@2138 2727 __ add(mdo, tmp1, mdo);
iveresov@2138 2728 }
iveresov@2344 2729 __ load_klass(obj, recv);
iveresov@2146 2730 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
iveresov@2138 2731 // Jump over the failure case
kvn@3037 2732 __ ba(*success);
iveresov@2138 2733 __ delayed()->nop();
iveresov@2138 2734 // Cast failure case
iveresov@2138 2735 __ bind(profile_cast_failure);
coleenp@4037 2736 metadata2reg(md->constant_encoding(), mdo);
iveresov@2138 2737 if (mdo_offset_bias > 0) {
iveresov@2138 2738 __ set(mdo_offset_bias, tmp1);
iveresov@2138 2739 __ add(mdo, tmp1, mdo);
iveresov@2138 2740 }
iveresov@2138 2741 Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
iveresov@2138 2742 __ ld_ptr(data_addr, tmp1);
iveresov@2138 2743 __ sub(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 2744 __ st_ptr(tmp1, data_addr);
kvn@3037 2745 __ ba(*failure);
iveresov@2138 2746 __ delayed()->nop();
iveresov@2138 2747 }
kvn@3037 2748 __ ba(*success);
iveresov@2146 2749 __ delayed()->nop();
iveresov@2138 2750 }
iveresov@2138 2751
duke@435 2752 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
duke@435 2753 LIR_Code code = op->code();
duke@435 2754 if (code == lir_store_check) {
duke@435 2755 Register value = op->object()->as_register();
duke@435 2756 Register array = op->array()->as_register();
duke@435 2757 Register k_RInfo = op->tmp1()->as_register();
duke@435 2758 Register klass_RInfo = op->tmp2()->as_register();
duke@435 2759 Register Rtmp1 = op->tmp3()->as_register();
duke@435 2760
duke@435 2761 __ verify_oop(value);
duke@435 2762 CodeStub* stub = op->stub();
iveresov@2146 2763 // check if it needs to be profiled
iveresov@2146 2764 ciMethodData* md;
iveresov@2146 2765 ciProfileData* data;
iveresov@2146 2766 int mdo_offset_bias = 0;
iveresov@2146 2767 if (op->should_profile()) {
iveresov@2146 2768 ciMethod* method = op->profiled_method();
iveresov@2146 2769 assert(method != NULL, "Should have method");
iveresov@2146 2770 setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
iveresov@2146 2771 }
iveresov@2146 2772 Label profile_cast_success, profile_cast_failure, done;
iveresov@2146 2773 Label *success_target = op->should_profile() ? &profile_cast_success : &done;
iveresov@2146 2774 Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
iveresov@2146 2775
iveresov@2146 2776 if (op->should_profile()) {
iveresov@2146 2777 Label not_null;
kvn@3037 2778 __ br_notnull_short(value, Assembler::pn, not_null);
iveresov@2146 2779 Register mdo = k_RInfo;
iveresov@2146 2780 Register data_val = Rtmp1;
coleenp@4037 2781 metadata2reg(md->constant_encoding(), mdo);
iveresov@2146 2782 if (mdo_offset_bias > 0) {
iveresov@2146 2783 __ set(mdo_offset_bias, data_val);
iveresov@2146 2784 __ add(mdo, data_val, mdo);
iveresov@2146 2785 }
iveresov@2146 2786 Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
iveresov@2146 2787 __ ldub(flags_addr, data_val);
iveresov@2146 2788 __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
iveresov@2146 2789 __ stb(data_val, flags_addr);
kvn@3037 2790 __ ba_short(done);
iveresov@2146 2791 __ bind(not_null);
iveresov@2146 2792 } else {
kvn@3037 2793 __ br_null_short(value, Assembler::pn, done);
iveresov@2146 2794 }
iveresov@2344 2795 add_debug_info_for_null_check_here(op->info_for_exception());
iveresov@2344 2796 __ load_klass(array, k_RInfo);
iveresov@2344 2797 __ load_klass(value, klass_RInfo);
duke@435 2798
duke@435 2799 // get instance klass
stefank@3391 2800 __ ld_ptr(Address(k_RInfo, objArrayKlass::element_klass_offset()), k_RInfo);
jrose@1079 2801 // perform the fast part of the checking logic
iveresov@2146 2802 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
jrose@1079 2803
jrose@1079 2804 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
jrose@1079 2805 assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
duke@435 2806 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
duke@435 2807 __ delayed()->nop();
duke@435 2808 __ cmp(G3, 0);
iveresov@2146 2809 __ br(Assembler::equal, false, Assembler::pn, *failure_target);
duke@435 2810 __ delayed()->nop();
iveresov@2146 2811 // fall through to the success case
iveresov@2146 2812
iveresov@2146 2813 if (op->should_profile()) {
iveresov@2146 2814 Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
iveresov@2146 2815 assert_different_registers(value, mdo, recv, tmp1);
iveresov@2146 2816 __ bind(profile_cast_success);
coleenp@4037 2817 metadata2reg(md->constant_encoding(), mdo);
iveresov@2146 2818 if (mdo_offset_bias > 0) {
iveresov@2146 2819 __ set(mdo_offset_bias, tmp1);
iveresov@2146 2820 __ add(mdo, tmp1, mdo);
iveresov@2146 2821 }
iveresov@2344 2822 __ load_klass(value, recv);
iveresov@2146 2823 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
kvn@3037 2824 __ ba_short(done);
iveresov@2146 2825 // Cast failure case
iveresov@2146 2826 __ bind(profile_cast_failure);
coleenp@4037 2827 metadata2reg(md->constant_encoding(), mdo);
iveresov@2146 2828 if (mdo_offset_bias > 0) {
iveresov@2146 2829 __ set(mdo_offset_bias, tmp1);
iveresov@2146 2830 __ add(mdo, tmp1, mdo);
iveresov@2146 2831 }
iveresov@2146 2832 Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
iveresov@2146 2833 __ ld_ptr(data_addr, tmp1);
iveresov@2146 2834 __ sub(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2146 2835 __ st_ptr(tmp1, data_addr);
kvn@3037 2836 __ ba(*stub->entry());
iveresov@2146 2837 __ delayed()->nop();
iveresov@2146 2838 }
duke@435 2839 __ bind(done);
iveresov@2146 2840 } else if (code == lir_checkcast) {
iveresov@2146 2841 Register obj = op->object()->as_register();
iveresov@2146 2842 Register dst = op->result_opr()->as_register();
iveresov@2146 2843 Label success;
iveresov@2146 2844 emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
iveresov@2146 2845 __ bind(success);
iveresov@2146 2846 __ mov(obj, dst);
duke@435 2847 } else if (code == lir_instanceof) {
duke@435 2848 Register obj = op->object()->as_register();
duke@435 2849 Register dst = op->result_opr()->as_register();
iveresov@2146 2850 Label success, failure, done;
iveresov@2146 2851 emit_typecheck_helper(op, &success, &failure, &failure);
iveresov@2146 2852 __ bind(failure);
iveresov@2146 2853 __ set(0, dst);
kvn@3037 2854 __ ba_short(done);
iveresov@2146 2855 __ bind(success);
iveresov@2146 2856 __ set(1, dst);
iveresov@2146 2857 __ bind(done);
duke@435 2858 } else {
duke@435 2859 ShouldNotReachHere();
duke@435 2860 }
duke@435 2861
duke@435 2862 }
duke@435 2863
duke@435 2864
duke@435 2865 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
duke@435 2866 if (op->code() == lir_cas_long) {
duke@435 2867 assert(VM_Version::supports_cx8(), "wrong machine");
duke@435 2868 Register addr = op->addr()->as_pointer_register();
duke@435 2869 Register cmp_value_lo = op->cmp_value()->as_register_lo();
duke@435 2870 Register cmp_value_hi = op->cmp_value()->as_register_hi();
duke@435 2871 Register new_value_lo = op->new_value()->as_register_lo();
duke@435 2872 Register new_value_hi = op->new_value()->as_register_hi();
duke@435 2873 Register t1 = op->tmp1()->as_register();
duke@435 2874 Register t2 = op->tmp2()->as_register();
duke@435 2875 #ifdef _LP64
duke@435 2876 __ mov(cmp_value_lo, t1);
duke@435 2877 __ mov(new_value_lo, t2);
iveresov@2412 2878 // perform the compare and swap operation
iveresov@2412 2879 __ casx(addr, t1, t2);
iveresov@2412 2880 // generate condition code - if the swap succeeded, t2 ("new value" reg) was
iveresov@2412 2881 // overwritten with the original value in "addr" and will be equal to t1.
iveresov@2412 2882 __ cmp(t1, t2);
duke@435 2883 #else
duke@435 2884 // move high and low halves of long values into single registers
duke@435 2885 __ sllx(cmp_value_hi, 32, t1); // shift high half into temp reg
duke@435 2886 __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
duke@435 2887 __ or3(t1, cmp_value_lo, t1); // t1 holds 64-bit compare value
duke@435 2888 __ sllx(new_value_hi, 32, t2);
duke@435 2889 __ srl(new_value_lo, 0, new_value_lo);
duke@435 2890 __ or3(t2, new_value_lo, t2); // t2 holds 64-bit value to swap
duke@435 2891 // perform the compare and swap operation
duke@435 2892 __ casx(addr, t1, t2);
duke@435 2893 // generate condition code - if the swap succeeded, t2 ("new value" reg) was
duke@435 2894 // overwritten with the original value in "addr" and will be equal to t1.
iveresov@2412 2895 // Produce icc flag for 32bit.
iveresov@2412 2896 __ sub(t1, t2, t2);
iveresov@2412 2897 __ srlx(t2, 32, t1);
iveresov@2412 2898 __ orcc(t2, t1, G0);
iveresov@2412 2899 #endif
duke@435 2900 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
duke@435 2901 Register addr = op->addr()->as_pointer_register();
duke@435 2902 Register cmp_value = op->cmp_value()->as_register();
duke@435 2903 Register new_value = op->new_value()->as_register();
duke@435 2904 Register t1 = op->tmp1()->as_register();
duke@435 2905 Register t2 = op->tmp2()->as_register();
duke@435 2906 __ mov(cmp_value, t1);
duke@435 2907 __ mov(new_value, t2);
duke@435 2908 if (op->code() == lir_cas_obj) {
iveresov@2344 2909 if (UseCompressedOops) {
iveresov@2344 2910 __ encode_heap_oop(t1);
iveresov@2344 2911 __ encode_heap_oop(t2);
duke@435 2912 __ cas(addr, t1, t2);
iveresov@2344 2913 } else {
never@2352 2914 __ cas_ptr(addr, t1, t2);
duke@435 2915 }
iveresov@2344 2916 } else {
iveresov@2344 2917 __ cas(addr, t1, t2);
iveresov@2344 2918 }
duke@435 2919 __ cmp(t1, t2);
duke@435 2920 } else {
duke@435 2921 Unimplemented();
duke@435 2922 }
duke@435 2923 }
duke@435 2924
duke@435 2925 void LIR_Assembler::set_24bit_FPU() {
duke@435 2926 Unimplemented();
duke@435 2927 }
duke@435 2928
duke@435 2929
duke@435 2930 void LIR_Assembler::reset_FPU() {
duke@435 2931 Unimplemented();
duke@435 2932 }
duke@435 2933
duke@435 2934
duke@435 2935 void LIR_Assembler::breakpoint() {
duke@435 2936 __ breakpoint_trap();
duke@435 2937 }
duke@435 2938
duke@435 2939
duke@435 2940 void LIR_Assembler::push(LIR_Opr opr) {
duke@435 2941 Unimplemented();
duke@435 2942 }
duke@435 2943
duke@435 2944
duke@435 2945 void LIR_Assembler::pop(LIR_Opr opr) {
duke@435 2946 Unimplemented();
duke@435 2947 }
duke@435 2948
duke@435 2949
duke@435 2950 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
duke@435 2951 Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
duke@435 2952 Register dst = dst_opr->as_register();
duke@435 2953 Register reg = mon_addr.base();
duke@435 2954 int offset = mon_addr.disp();
duke@435 2955 // compute pointer to BasicLock
duke@435 2956 if (mon_addr.is_simm13()) {
duke@435 2957 __ add(reg, offset, dst);
duke@435 2958 } else {
duke@435 2959 __ set(offset, dst);
duke@435 2960 __ add(dst, reg, dst);
duke@435 2961 }
duke@435 2962 }
duke@435 2963
duke@435 2964
duke@435 2965 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
duke@435 2966 Register obj = op->obj_opr()->as_register();
duke@435 2967 Register hdr = op->hdr_opr()->as_register();
duke@435 2968 Register lock = op->lock_opr()->as_register();
duke@435 2969
duke@435 2970 // obj may not be an oop
duke@435 2971 if (op->code() == lir_lock) {
duke@435 2972 MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
duke@435 2973 if (UseFastLocking) {
duke@435 2974 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 2975 // add debug info for NullPointerException only if one is possible
duke@435 2976 if (op->info() != NULL) {
duke@435 2977 add_debug_info_for_null_check_here(op->info());
duke@435 2978 }
duke@435 2979 __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
duke@435 2980 } else {
duke@435 2981 // always do slow locking
duke@435 2982 // note: the slow locking code could be inlined here, however if we use
duke@435 2983 // slow locking, speed doesn't matter anyway and this solution is
duke@435 2984 // simpler and requires less duplicated code - additionally, the
duke@435 2985 // slow locking code is the same in either case which simplifies
duke@435 2986 // debugging
duke@435 2987 __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
duke@435 2988 __ delayed()->nop();
duke@435 2989 }
duke@435 2990 } else {
duke@435 2991 assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
duke@435 2992 if (UseFastLocking) {
duke@435 2993 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 2994 __ unlock_object(hdr, obj, lock, *op->stub()->entry());
duke@435 2995 } else {
duke@435 2996 // always do slow unlocking
duke@435 2997 // note: the slow unlocking code could be inlined here, however if we use
duke@435 2998 // slow unlocking, speed doesn't matter anyway and this solution is
duke@435 2999 // simpler and requires less duplicated code - additionally, the
duke@435 3000 // slow unlocking code is the same in either case which simplifies
duke@435 3001 // debugging
duke@435 3002 __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
duke@435 3003 __ delayed()->nop();
duke@435 3004 }
duke@435 3005 }
duke@435 3006 __ bind(*op->stub()->continuation());
duke@435 3007 }
duke@435 3008
duke@435 3009
duke@435 3010 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
duke@435 3011 ciMethod* method = op->profiled_method();
duke@435 3012 int bci = op->profiled_bci();
twisti@3969 3013 ciMethod* callee = op->profiled_callee();
duke@435 3014
duke@435 3015 // Update counter for all call types
iveresov@2349 3016 ciMethodData* md = method->method_data_or_null();
iveresov@2349 3017 assert(md != NULL, "Sanity");
duke@435 3018 ciProfileData* data = md->bci_to_data(bci);
duke@435 3019 assert(data->is_CounterData(), "need CounterData for calls");
duke@435 3020 assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
iveresov@2138 3021 Register mdo = op->mdo()->as_register();
iveresov@2138 3022 #ifdef _LP64
iveresov@2138 3023 assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
iveresov@2138 3024 Register tmp1 = op->tmp1()->as_register_lo();
iveresov@2138 3025 #else
duke@435 3026 assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
duke@435 3027 Register tmp1 = op->tmp1()->as_register();
iveresov@2138 3028 #endif
coleenp@4037 3029 metadata2reg(md->constant_encoding(), mdo);
duke@435 3030 int mdo_offset_bias = 0;
duke@435 3031 if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
duke@435 3032 data->size_in_bytes())) {
duke@435 3033 // The offset is large so bias the mdo by the base of the slot so
duke@435 3034 // that the ld can use simm13s to reference the slots of the data
duke@435 3035 mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
duke@435 3036 __ set(mdo_offset_bias, O7);
duke@435 3037 __ add(mdo, O7, mdo);
duke@435 3038 }
duke@435 3039
twisti@1162 3040 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
duke@435 3041 Bytecodes::Code bc = method->java_code_at_bci(bci);
twisti@3969 3042 const bool callee_is_static = callee->is_loaded() && callee->is_static();
duke@435 3043 // Perform additional virtual call profiling for invokevirtual and
duke@435 3044 // invokeinterface bytecodes
duke@435 3045 if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
twisti@3969 3046 !callee_is_static && // required for optimized MH invokes
iveresov@2138 3047 C1ProfileVirtualCalls) {
duke@435 3048 assert(op->recv()->is_single_cpu(), "recv must be allocated");
duke@435 3049 Register recv = op->recv()->as_register();
duke@435 3050 assert_different_registers(mdo, tmp1, recv);
duke@435 3051 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
duke@435 3052 ciKlass* known_klass = op->known_holder();
iveresov@2138 3053 if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
duke@435 3054 // We know the type that will be seen at this call site; we can
coleenp@4037 3055 // statically update the MethodData* rather than needing to do
duke@435 3056 // dynamic tests on the receiver type
duke@435 3057
duke@435 3058 // NOTE: we should probably put a lock around this search to
duke@435 3059 // avoid collisions by concurrent compilations
duke@435 3060 ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
duke@435 3061 uint i;
duke@435 3062 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3063 ciKlass* receiver = vc_data->receiver(i);
duke@435 3064 if (known_klass->equals(receiver)) {
twisti@1162 3065 Address data_addr(mdo, md->byte_offset_of_slot(data,
twisti@1162 3066 VirtualCallData::receiver_count_offset(i)) -
duke@435 3067 mdo_offset_bias);
iveresov@2138 3068 __ ld_ptr(data_addr, tmp1);
duke@435 3069 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 3070 __ st_ptr(tmp1, data_addr);
duke@435 3071 return;
duke@435 3072 }
duke@435 3073 }
duke@435 3074
duke@435 3075 // Receiver type not found in profile data; select an empty slot
duke@435 3076
duke@435 3077 // Note that this is less efficient than it should be because it
duke@435 3078 // always does a write to the receiver part of the
duke@435 3079 // VirtualCallData rather than just the first time
duke@435 3080 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3081 ciKlass* receiver = vc_data->receiver(i);
duke@435 3082 if (receiver == NULL) {
twisti@1162 3083 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
duke@435 3084 mdo_offset_bias);
coleenp@4037 3085 metadata2reg(known_klass->constant_encoding(), tmp1);
duke@435 3086 __ st_ptr(tmp1, recv_addr);
twisti@1162 3087 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
duke@435 3088 mdo_offset_bias);
iveresov@2138 3089 __ ld_ptr(data_addr, tmp1);
duke@435 3090 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 3091 __ st_ptr(tmp1, data_addr);
duke@435 3092 return;
duke@435 3093 }
duke@435 3094 }
duke@435 3095 } else {
iveresov@2344 3096 __ load_klass(recv, recv);
duke@435 3097 Label update_done;
iveresov@2138 3098 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
kvn@1686 3099 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1686 3100 // Increment total counter to indicate polymorphic case.
iveresov@2138 3101 __ ld_ptr(counter_addr, tmp1);
kvn@1686 3102 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 3103 __ st_ptr(tmp1, counter_addr);
duke@435 3104
duke@435 3105 __ bind(update_done);
duke@435 3106 }
kvn@1686 3107 } else {
kvn@1686 3108 // Static call
iveresov@2138 3109 __ ld_ptr(counter_addr, tmp1);
kvn@1686 3110 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 3111 __ st_ptr(tmp1, counter_addr);
duke@435 3112 }
duke@435 3113 }
duke@435 3114
duke@435 3115 void LIR_Assembler::align_backward_branch_target() {
kvn@1800 3116 __ align(OptoLoopAlignment);
duke@435 3117 }
duke@435 3118
duke@435 3119
duke@435 3120 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
duke@435 3121 // make sure we are expecting a delay
duke@435 3122 // this has the side effect of clearing the delay state
duke@435 3123 // so we can use _masm instead of _masm->delayed() to do the
duke@435 3124 // code generation.
duke@435 3125 __ delayed();
duke@435 3126
duke@435 3127 // make sure we only emit one instruction
duke@435 3128 int offset = code_offset();
duke@435 3129 op->delay_op()->emit_code(this);
duke@435 3130 #ifdef ASSERT
duke@435 3131 if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
duke@435 3132 op->delay_op()->print();
duke@435 3133 }
duke@435 3134 assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
duke@435 3135 "only one instruction can go in a delay slot");
duke@435 3136 #endif
duke@435 3137
duke@435 3138 // we may also be emitting the call info for the instruction
duke@435 3139 // which we are the delay slot of.
twisti@1919 3140 CodeEmitInfo* call_info = op->call_info();
duke@435 3141 if (call_info) {
duke@435 3142 add_call_info(code_offset(), call_info);
duke@435 3143 }
duke@435 3144
duke@435 3145 if (VerifyStackAtCalls) {
duke@435 3146 _masm->sub(FP, SP, O7);
duke@435 3147 _masm->cmp(O7, initial_frame_size_in_bytes());
duke@435 3148 _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
duke@435 3149 }
duke@435 3150 }
duke@435 3151
duke@435 3152
duke@435 3153 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
duke@435 3154 assert(left->is_register(), "can only handle registers");
duke@435 3155
duke@435 3156 if (left->is_single_cpu()) {
duke@435 3157 __ neg(left->as_register(), dest->as_register());
duke@435 3158 } else if (left->is_single_fpu()) {
duke@435 3159 __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
duke@435 3160 } else if (left->is_double_fpu()) {
duke@435 3161 __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
duke@435 3162 } else {
duke@435 3163 assert (left->is_double_cpu(), "Must be a long");
duke@435 3164 Register Rlow = left->as_register_lo();
duke@435 3165 Register Rhi = left->as_register_hi();
duke@435 3166 #ifdef _LP64
duke@435 3167 __ sub(G0, Rlow, dest->as_register_lo());
duke@435 3168 #else
duke@435 3169 __ subcc(G0, Rlow, dest->as_register_lo());
duke@435 3170 __ subc (G0, Rhi, dest->as_register_hi());
duke@435 3171 #endif
duke@435 3172 }
duke@435 3173 }
duke@435 3174
duke@435 3175
duke@435 3176 void LIR_Assembler::fxch(int i) {
duke@435 3177 Unimplemented();
duke@435 3178 }
duke@435 3179
duke@435 3180 void LIR_Assembler::fld(int i) {
duke@435 3181 Unimplemented();
duke@435 3182 }
duke@435 3183
duke@435 3184 void LIR_Assembler::ffree(int i) {
duke@435 3185 Unimplemented();
duke@435 3186 }
duke@435 3187
duke@435 3188 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
duke@435 3189 const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 3190
duke@435 3191 // if tmp is invalid, then the function being called doesn't destroy the thread
duke@435 3192 if (tmp->is_valid()) {
duke@435 3193 __ save_thread(tmp->as_register());
duke@435 3194 }
duke@435 3195 __ call(dest, relocInfo::runtime_call_type);
duke@435 3196 __ delayed()->nop();
duke@435 3197 if (info != NULL) {
duke@435 3198 add_call_info_here(info);
duke@435 3199 }
duke@435 3200 if (tmp->is_valid()) {
duke@435 3201 __ restore_thread(tmp->as_register());
duke@435 3202 }
duke@435 3203
duke@435 3204 #ifdef ASSERT
duke@435 3205 __ verify_thread();
duke@435 3206 #endif // ASSERT
duke@435 3207 }
duke@435 3208
duke@435 3209
duke@435 3210 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
duke@435 3211 #ifdef _LP64
duke@435 3212 ShouldNotReachHere();
duke@435 3213 #endif
duke@435 3214
duke@435 3215 NEEDS_CLEANUP;
duke@435 3216 if (type == T_LONG) {
duke@435 3217 LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
duke@435 3218
duke@435 3219 // (extended to allow indexed as well as constant displaced for JSR-166)
duke@435 3220 Register idx = noreg; // contains either constant offset or index
duke@435 3221
duke@435 3222 int disp = mem_addr->disp();
duke@435 3223 if (mem_addr->index() == LIR_OprFact::illegalOpr) {
duke@435 3224 if (!Assembler::is_simm13(disp)) {
duke@435 3225 idx = O7;
duke@435 3226 __ set(disp, idx);
duke@435 3227 }
duke@435 3228 } else {
duke@435 3229 assert(disp == 0, "not both indexed and disp");
duke@435 3230 idx = mem_addr->index()->as_register();
duke@435 3231 }
duke@435 3232
duke@435 3233 int null_check_offset = -1;
duke@435 3234
duke@435 3235 Register base = mem_addr->base()->as_register();
duke@435 3236 if (src->is_register() && dest->is_address()) {
duke@435 3237 // G4 is high half, G5 is low half
duke@435 3238 if (VM_Version::v9_instructions_work()) {
duke@435 3239 // clear the top bits of G5, and scale up G4
duke@435 3240 __ srl (src->as_register_lo(), 0, G5);
duke@435 3241 __ sllx(src->as_register_hi(), 32, G4);
duke@435 3242 // combine the two halves into the 64 bits of G4
duke@435 3243 __ or3(G4, G5, G4);
duke@435 3244 null_check_offset = __ offset();
duke@435 3245 if (idx == noreg) {
duke@435 3246 __ stx(G4, base, disp);
duke@435 3247 } else {
duke@435 3248 __ stx(G4, base, idx);
duke@435 3249 }
duke@435 3250 } else {
duke@435 3251 __ mov (src->as_register_hi(), G4);
duke@435 3252 __ mov (src->as_register_lo(), G5);
duke@435 3253 null_check_offset = __ offset();
duke@435 3254 if (idx == noreg) {
duke@435 3255 __ std(G4, base, disp);
duke@435 3256 } else {
duke@435 3257 __ std(G4, base, idx);
duke@435 3258 }
duke@435 3259 }
duke@435 3260 } else if (src->is_address() && dest->is_register()) {
duke@435 3261 null_check_offset = __ offset();
duke@435 3262 if (VM_Version::v9_instructions_work()) {
duke@435 3263 if (idx == noreg) {
duke@435 3264 __ ldx(base, disp, G5);
duke@435 3265 } else {
duke@435 3266 __ ldx(base, idx, G5);
duke@435 3267 }
duke@435 3268 __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
duke@435 3269 __ mov (G5, dest->as_register_lo()); // copy low half into lo
duke@435 3270 } else {
duke@435 3271 if (idx == noreg) {
duke@435 3272 __ ldd(base, disp, G4);
duke@435 3273 } else {
duke@435 3274 __ ldd(base, idx, G4);
duke@435 3275 }
duke@435 3276 // G4 is high half, G5 is low half
duke@435 3277 __ mov (G4, dest->as_register_hi());
duke@435 3278 __ mov (G5, dest->as_register_lo());
duke@435 3279 }
duke@435 3280 } else {
duke@435 3281 Unimplemented();
duke@435 3282 }
duke@435 3283 if (info != NULL) {
duke@435 3284 add_debug_info_for_null_check(null_check_offset, info);
duke@435 3285 }
duke@435 3286
duke@435 3287 } else {
duke@435 3288 // use normal move for all other volatiles since they don't need
duke@435 3289 // special handling to remain atomic.
iveresov@2344 3290 move_op(src, dest, type, lir_patch_none, info, false, false, false);
duke@435 3291 }
duke@435 3292 }
duke@435 3293
duke@435 3294 void LIR_Assembler::membar() {
duke@435 3295 // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
duke@435 3296 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
duke@435 3297 }
duke@435 3298
duke@435 3299 void LIR_Assembler::membar_acquire() {
duke@435 3300 // no-op on TSO
duke@435 3301 }
duke@435 3302
duke@435 3303 void LIR_Assembler::membar_release() {
duke@435 3304 // no-op on TSO
duke@435 3305 }
duke@435 3306
jiangli@3592 3307 void LIR_Assembler::membar_loadload() {
jiangli@3592 3308 // no-op
jiangli@3592 3309 //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
jiangli@3592 3310 }
jiangli@3592 3311
jiangli@3592 3312 void LIR_Assembler::membar_storestore() {
jiangli@3592 3313 // no-op
jiangli@3592 3314 //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
jiangli@3592 3315 }
jiangli@3592 3316
jiangli@3592 3317 void LIR_Assembler::membar_loadstore() {
jiangli@3592 3318 // no-op
jiangli@3592 3319 //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
jiangli@3592 3320 }
jiangli@3592 3321
jiangli@3592 3322 void LIR_Assembler::membar_storeload() {
jiangli@3592 3323 __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
jiangli@3592 3324 }
jiangli@3592 3325
jiangli@3592 3326
iveresov@2138 3327 // Pack two sequential registers containing 32 bit values
duke@435 3328 // into a single 64 bit register.
iveresov@2138 3329 // src and src->successor() are packed into dst
iveresov@2138 3330 // src and dst may be the same register.
iveresov@2138 3331 // Note: src is destroyed
iveresov@2138 3332 void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
iveresov@2138 3333 Register rs = src->as_register();
iveresov@2138 3334 Register rd = dst->as_register_lo();
duke@435 3335 __ sllx(rs, 32, rs);
duke@435 3336 __ srl(rs->successor(), 0, rs->successor());
duke@435 3337 __ or3(rs, rs->successor(), rd);
duke@435 3338 }
duke@435 3339
iveresov@2138 3340 // Unpack a 64 bit value in a register into
duke@435 3341 // two sequential registers.
iveresov@2138 3342 // src is unpacked into dst and dst->successor()
iveresov@2138 3343 void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
iveresov@2138 3344 Register rs = src->as_register_lo();
iveresov@2138 3345 Register rd = dst->as_register_hi();
iveresov@2138 3346 assert_different_registers(rs, rd, rd->successor());
iveresov@2138 3347 __ srlx(rs, 32, rd);
iveresov@2138 3348 __ srl (rs, 0, rd->successor());
duke@435 3349 }
duke@435 3350
duke@435 3351
duke@435 3352 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
duke@435 3353 LIR_Address* addr = addr_opr->as_address_ptr();
duke@435 3354 assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
iveresov@2138 3355
iveresov@2138 3356 __ add(addr->base()->as_pointer_register(), addr->disp(), dest->as_pointer_register());
duke@435 3357 }
duke@435 3358
duke@435 3359
duke@435 3360 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
duke@435 3361 assert(result_reg->is_register(), "check");
duke@435 3362 __ mov(G2_thread, result_reg->as_register());
duke@435 3363 }
duke@435 3364
duke@435 3365
duke@435 3366 void LIR_Assembler::peephole(LIR_List* lir) {
duke@435 3367 LIR_OpList* inst = lir->instructions_list();
duke@435 3368 for (int i = 0; i < inst->length(); i++) {
duke@435 3369 LIR_Op* op = inst->at(i);
duke@435 3370 switch (op->code()) {
duke@435 3371 case lir_cond_float_branch:
duke@435 3372 case lir_branch: {
duke@435 3373 LIR_OpBranch* branch = op->as_OpBranch();
duke@435 3374 assert(branch->info() == NULL, "shouldn't be state on branches anymore");
duke@435 3375 LIR_Op* delay_op = NULL;
duke@435 3376 // we'd like to be able to pull following instructions into
duke@435 3377 // this slot but we don't know enough to do it safely yet so
duke@435 3378 // only optimize block to block control flow.
duke@435 3379 if (LIRFillDelaySlots && branch->block()) {
duke@435 3380 LIR_Op* prev = inst->at(i - 1);
duke@435 3381 if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
duke@435 3382 // swap previous instruction into delay slot
duke@435 3383 inst->at_put(i - 1, op);
duke@435 3384 inst->at_put(i, new LIR_OpDelay(prev, op->info()));
duke@435 3385 #ifndef PRODUCT
duke@435 3386 if (LIRTracePeephole) {
duke@435 3387 tty->print_cr("delayed");
duke@435 3388 inst->at(i - 1)->print();
duke@435 3389 inst->at(i)->print();
twisti@1919 3390 tty->cr();
duke@435 3391 }
duke@435 3392 #endif
duke@435 3393 continue;
duke@435 3394 }
duke@435 3395 }
duke@435 3396
duke@435 3397 if (!delay_op) {
duke@435 3398 delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
duke@435 3399 }
duke@435 3400 inst->insert_before(i + 1, delay_op);
duke@435 3401 break;
duke@435 3402 }
duke@435 3403 case lir_static_call:
duke@435 3404 case lir_virtual_call:
duke@435 3405 case lir_icvirtual_call:
twisti@1919 3406 case lir_optvirtual_call:
twisti@1919 3407 case lir_dynamic_call: {
duke@435 3408 LIR_Op* prev = inst->at(i - 1);
duke@435 3409 if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
duke@435 3410 (op->code() != lir_virtual_call ||
duke@435 3411 !prev->result_opr()->is_single_cpu() ||
duke@435 3412 prev->result_opr()->as_register() != O0) &&
duke@435 3413 LIR_Assembler::is_single_instruction(prev)) {
duke@435 3414 // Only moves without info can be put into the delay slot.
duke@435 3415 // Also don't allow the setup of the receiver in the delay
duke@435 3416 // slot for vtable calls.
duke@435 3417 inst->at_put(i - 1, op);
duke@435 3418 inst->at_put(i, new LIR_OpDelay(prev, op->info()));
duke@435 3419 #ifndef PRODUCT
duke@435 3420 if (LIRTracePeephole) {
duke@435 3421 tty->print_cr("delayed");
duke@435 3422 inst->at(i - 1)->print();
duke@435 3423 inst->at(i)->print();
twisti@1919 3424 tty->cr();
duke@435 3425 }
duke@435 3426 #endif
iveresov@2138 3427 } else {
iveresov@2138 3428 LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
iveresov@2138 3429 inst->insert_before(i + 1, delay_op);
iveresov@2138 3430 i++;
duke@435 3431 }
duke@435 3432
iveresov@2138 3433 #if defined(TIERED) && !defined(_LP64)
iveresov@2138 3434 // fixup the return value from G1 to O0/O1 for long returns.
iveresov@2138 3435 // It's done here instead of in LIRGenerator because there's
iveresov@2138 3436 // such a mismatch between the single reg and double reg
iveresov@2138 3437 // calling convention.
iveresov@2138 3438 LIR_OpJavaCall* callop = op->as_OpJavaCall();
iveresov@2138 3439 if (callop->result_opr() == FrameMap::out_long_opr) {
iveresov@2138 3440 LIR_OpJavaCall* call;
iveresov@2138 3441 LIR_OprList* arguments = new LIR_OprList(callop->arguments()->length());
iveresov@2138 3442 for (int a = 0; a < arguments->length(); a++) {
iveresov@2138 3443 arguments[a] = callop->arguments()[a];
iveresov@2138 3444 }
iveresov@2138 3445 if (op->code() == lir_virtual_call) {
iveresov@2138 3446 call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
iveresov@2138 3447 callop->vtable_offset(), arguments, callop->info());
iveresov@2138 3448 } else {
iveresov@2138 3449 call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
iveresov@2138 3450 callop->addr(), arguments, callop->info());
iveresov@2138 3451 }
iveresov@2138 3452 inst->at_put(i - 1, call);
iveresov@2138 3453 inst->insert_before(i + 1, new LIR_Op1(lir_unpack64, FrameMap::g1_long_single_opr, callop->result_opr(),
iveresov@2138 3454 T_LONG, lir_patch_none, NULL));
iveresov@2138 3455 }
iveresov@2138 3456 #endif
duke@435 3457 break;
duke@435 3458 }
duke@435 3459 }
duke@435 3460 }
duke@435 3461 }
duke@435 3462
roland@4106 3463 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
roland@4106 3464 LIR_Address* addr = src->as_address_ptr();
roland@4106 3465
roland@4106 3466 assert(data == dest, "swap uses only 2 operands");
roland@4106 3467 assert (code == lir_xchg, "no xadd on sparc");
roland@4106 3468
roland@4106 3469 if (data->type() == T_INT) {
roland@4106 3470 __ swap(as_Address(addr), data->as_register());
roland@4106 3471 } else if (data->is_oop()) {
roland@4106 3472 Register obj = data->as_register();
roland@4106 3473 Register narrow = tmp->as_register();
roland@4106 3474 #ifdef _LP64
roland@4106 3475 assert(UseCompressedOops, "swap is 32bit only");
roland@4106 3476 __ encode_heap_oop(obj, narrow);
roland@4106 3477 __ swap(as_Address(addr), narrow);
roland@4106 3478 __ decode_heap_oop(narrow, obj);
roland@4106 3479 #else
roland@4106 3480 __ swap(as_Address(addr), obj);
roland@4106 3481 #endif
roland@4106 3482 } else {
roland@4106 3483 ShouldNotReachHere();
roland@4106 3484 }
roland@4106 3485 }
duke@435 3486
duke@435 3487 #undef __

mercurial