src/cpu/sparc/vm/c1_LIRAssembler_sparc.cpp

Sat, 01 Sep 2012 13:25:18 -0400

author
coleenp
date
Sat, 01 Sep 2012 13:25:18 -0400
changeset 4037
da91efe96a93
parent 3969
1d7922586cf6
child 4051
8a02ca5e5576
permissions
-rw-r--r--

6964458: Reimplement class meta-data storage to use native memory
Summary: Remove PermGen, allocate meta-data in metaspace linked to class loaders, rewrite GC walking, rewrite and rename metadata to be C++ classes
Reviewed-by: jmasa, stefank, never, coleenp, kvn, brutisso, mgerdin, dholmes, jrose, twisti, roland
Contributed-by: jmasa <jon.masamitsu@oracle.com>, stefank <stefan.karlsson@oracle.com>, mgerdin <mikael.gerdin@oracle.com>, never <tom.rodriguez@oracle.com>

duke@435 1 /*
kvn@3760 2 * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
duke@435 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
duke@435 4 *
duke@435 5 * This code is free software; you can redistribute it and/or modify it
duke@435 6 * under the terms of the GNU General Public License version 2 only, as
duke@435 7 * published by the Free Software Foundation.
duke@435 8 *
duke@435 9 * This code is distributed in the hope that it will be useful, but WITHOUT
duke@435 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
duke@435 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
duke@435 12 * version 2 for more details (a copy is included in the LICENSE file that
duke@435 13 * accompanied this code).
duke@435 14 *
duke@435 15 * You should have received a copy of the GNU General Public License version
duke@435 16 * 2 along with this work; if not, write to the Free Software Foundation,
duke@435 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
duke@435 18 *
trims@1907 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
trims@1907 20 * or visit www.oracle.com if you need additional information or have any
trims@1907 21 * questions.
duke@435 22 *
duke@435 23 */
duke@435 24
stefank@2314 25 #include "precompiled.hpp"
stefank@2314 26 #include "c1/c1_Compilation.hpp"
stefank@2314 27 #include "c1/c1_LIRAssembler.hpp"
stefank@2314 28 #include "c1/c1_MacroAssembler.hpp"
stefank@2314 29 #include "c1/c1_Runtime1.hpp"
stefank@2314 30 #include "c1/c1_ValueStack.hpp"
stefank@2314 31 #include "ci/ciArrayKlass.hpp"
stefank@2314 32 #include "ci/ciInstance.hpp"
stefank@2314 33 #include "gc_interface/collectedHeap.hpp"
stefank@2314 34 #include "memory/barrierSet.hpp"
stefank@2314 35 #include "memory/cardTableModRefBS.hpp"
stefank@2314 36 #include "nativeInst_sparc.hpp"
stefank@2314 37 #include "oops/objArrayKlass.hpp"
stefank@2314 38 #include "runtime/sharedRuntime.hpp"
duke@435 39
duke@435 40 #define __ _masm->
duke@435 41
duke@435 42
duke@435 43 //------------------------------------------------------------
duke@435 44
duke@435 45
duke@435 46 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
duke@435 47 if (opr->is_constant()) {
duke@435 48 LIR_Const* constant = opr->as_constant_ptr();
duke@435 49 switch (constant->type()) {
duke@435 50 case T_INT: {
duke@435 51 jint value = constant->as_jint();
duke@435 52 return Assembler::is_simm13(value);
duke@435 53 }
duke@435 54
duke@435 55 default:
duke@435 56 return false;
duke@435 57 }
duke@435 58 }
duke@435 59 return false;
duke@435 60 }
duke@435 61
duke@435 62
duke@435 63 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
duke@435 64 switch (op->code()) {
duke@435 65 case lir_null_check:
duke@435 66 return true;
duke@435 67
duke@435 68
duke@435 69 case lir_add:
duke@435 70 case lir_ushr:
duke@435 71 case lir_shr:
duke@435 72 case lir_shl:
duke@435 73 // integer shifts and adds are always one instruction
duke@435 74 return op->result_opr()->is_single_cpu();
duke@435 75
duke@435 76
duke@435 77 case lir_move: {
duke@435 78 LIR_Op1* op1 = op->as_Op1();
duke@435 79 LIR_Opr src = op1->in_opr();
duke@435 80 LIR_Opr dst = op1->result_opr();
duke@435 81
duke@435 82 if (src == dst) {
duke@435 83 NEEDS_CLEANUP;
duke@435 84 // this works around a problem where moves with the same src and dst
duke@435 85 // end up in the delay slot and then the assembler swallows the mov
duke@435 86 // since it has no effect and then it complains because the delay slot
duke@435 87 // is empty. returning false stops the optimizer from putting this in
duke@435 88 // the delay slot
duke@435 89 return false;
duke@435 90 }
duke@435 91
duke@435 92 // don't put moves involving oops into the delay slot since the VerifyOops code
duke@435 93 // will make it much larger than a single instruction.
duke@435 94 if (VerifyOops) {
duke@435 95 return false;
duke@435 96 }
duke@435 97
duke@435 98 if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
duke@435 99 ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
duke@435 100 return false;
duke@435 101 }
duke@435 102
iveresov@2344 103 if (UseCompressedOops) {
iveresov@2344 104 if (dst->is_address() && !dst->is_stack() && (dst->type() == T_OBJECT || dst->type() == T_ARRAY)) return false;
iveresov@2344 105 if (src->is_address() && !src->is_stack() && (src->type() == T_OBJECT || src->type() == T_ARRAY)) return false;
iveresov@2344 106 }
iveresov@2344 107
duke@435 108 if (dst->is_register()) {
duke@435 109 if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
duke@435 110 return !PatchALot;
duke@435 111 } else if (src->is_single_stack()) {
duke@435 112 return true;
duke@435 113 }
duke@435 114 }
duke@435 115
duke@435 116 if (src->is_register()) {
duke@435 117 if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
duke@435 118 return !PatchALot;
duke@435 119 } else if (dst->is_single_stack()) {
duke@435 120 return true;
duke@435 121 }
duke@435 122 }
duke@435 123
duke@435 124 if (dst->is_register() &&
duke@435 125 ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
duke@435 126 (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
duke@435 127 return true;
duke@435 128 }
duke@435 129
duke@435 130 return false;
duke@435 131 }
duke@435 132
duke@435 133 default:
duke@435 134 return false;
duke@435 135 }
duke@435 136 ShouldNotReachHere();
duke@435 137 }
duke@435 138
duke@435 139
duke@435 140 LIR_Opr LIR_Assembler::receiverOpr() {
duke@435 141 return FrameMap::O0_oop_opr;
duke@435 142 }
duke@435 143
duke@435 144
duke@435 145 LIR_Opr LIR_Assembler::osrBufferPointer() {
duke@435 146 return FrameMap::I0_opr;
duke@435 147 }
duke@435 148
duke@435 149
duke@435 150 int LIR_Assembler::initial_frame_size_in_bytes() {
duke@435 151 return in_bytes(frame_map()->framesize_in_bytes());
duke@435 152 }
duke@435 153
duke@435 154
duke@435 155 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
duke@435 156 // we fetch the class of the receiver (O0) and compare it with the cached class.
duke@435 157 // If they do not match we jump to slow case.
duke@435 158 int LIR_Assembler::check_icache() {
duke@435 159 int offset = __ offset();
duke@435 160 __ inline_cache_check(O0, G5_inline_cache_reg);
duke@435 161 return offset;
duke@435 162 }
duke@435 163
duke@435 164
duke@435 165 void LIR_Assembler::osr_entry() {
duke@435 166 // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
duke@435 167 //
duke@435 168 // 1. Create a new compiled activation.
duke@435 169 // 2. Initialize local variables in the compiled activation. The expression stack must be empty
duke@435 170 // at the osr_bci; it is not initialized.
duke@435 171 // 3. Jump to the continuation address in compiled code to resume execution.
duke@435 172
duke@435 173 // OSR entry point
duke@435 174 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
duke@435 175 BlockBegin* osr_entry = compilation()->hir()->osr_entry();
duke@435 176 ValueStack* entry_state = osr_entry->end()->state();
duke@435 177 int number_of_locks = entry_state->locks_size();
duke@435 178
duke@435 179 // Create a frame for the compiled activation.
duke@435 180 __ build_frame(initial_frame_size_in_bytes());
duke@435 181
duke@435 182 // OSR buffer is
duke@435 183 //
duke@435 184 // locals[nlocals-1..0]
duke@435 185 // monitors[number_of_locks-1..0]
duke@435 186 //
duke@435 187 // locals is a direct copy of the interpreter frame so in the osr buffer
duke@435 188 // so first slot in the local array is the last local from the interpreter
duke@435 189 // and last slot is local[0] (receiver) from the interpreter
duke@435 190 //
duke@435 191 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
duke@435 192 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
duke@435 193 // in the interpreter frame (the method lock if a sync method)
duke@435 194
duke@435 195 // Initialize monitors in the compiled activation.
duke@435 196 // I0: pointer to osr buffer
duke@435 197 //
duke@435 198 // All other registers are dead at this point and the locals will be
duke@435 199 // copied into place by code emitted in the IR.
duke@435 200
duke@435 201 Register OSR_buf = osrBufferPointer()->as_register();
duke@435 202 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
duke@435 203 int monitor_offset = BytesPerWord * method()->max_locals() +
roland@1495 204 (2 * BytesPerWord) * (number_of_locks - 1);
roland@1495 205 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
roland@1495 206 // the OSR buffer using 2 word entries: first the lock and then
roland@1495 207 // the oop.
duke@435 208 for (int i = 0; i < number_of_locks; i++) {
roland@1495 209 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
duke@435 210 #ifdef ASSERT
duke@435 211 // verify the interpreter's monitor has a non-null object
duke@435 212 {
duke@435 213 Label L;
roland@1495 214 __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
kvn@3037 215 __ cmp_and_br_short(O7, G0, Assembler::notEqual, Assembler::pt, L);
duke@435 216 __ stop("locked object is NULL");
duke@435 217 __ bind(L);
duke@435 218 }
duke@435 219 #endif // ASSERT
duke@435 220 // Copy the lock field into the compiled activation.
roland@1495 221 __ ld_ptr(OSR_buf, slot_offset + 0, O7);
duke@435 222 __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
roland@1495 223 __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
duke@435 224 __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
duke@435 225 }
duke@435 226 }
duke@435 227 }
duke@435 228
duke@435 229
duke@435 230 // Optimized Library calls
duke@435 231 // This is the fast version of java.lang.String.compare; it has not
duke@435 232 // OSR-entry and therefore, we generate a slow version for OSR's
duke@435 233 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
duke@435 234 Register str0 = left->as_register();
duke@435 235 Register str1 = right->as_register();
duke@435 236
duke@435 237 Label Ldone;
duke@435 238
duke@435 239 Register result = dst->as_register();
duke@435 240 {
kvn@3760 241 // Get a pointer to the first character of string0 in tmp0
kvn@3760 242 // and get string0.length() in str0
kvn@3760 243 // Get a pointer to the first character of string1 in tmp1
kvn@3760 244 // and get string1.length() in str1
kvn@3760 245 // Also, get string0.length()-string1.length() in
kvn@3760 246 // o7 and get the condition code set
duke@435 247 // Note: some instructions have been hoisted for better instruction scheduling
duke@435 248
duke@435 249 Register tmp0 = L0;
duke@435 250 Register tmp1 = L1;
duke@435 251 Register tmp2 = L2;
duke@435 252
duke@435 253 int value_offset = java_lang_String:: value_offset_in_bytes(); // char array
kvn@3760 254 if (java_lang_String::has_offset_field()) {
kvn@3760 255 int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
kvn@3760 256 int count_offset = java_lang_String:: count_offset_in_bytes();
kvn@3760 257 __ load_heap_oop(str0, value_offset, tmp0);
kvn@3760 258 __ ld(str0, offset_offset, tmp2);
kvn@3760 259 __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
kvn@3760 260 __ ld(str0, count_offset, str0);
kvn@3760 261 __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
kvn@3760 262 } else {
kvn@3760 263 __ load_heap_oop(str0, value_offset, tmp1);
kvn@3760 264 __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
kvn@3760 265 __ ld(tmp1, arrayOopDesc::length_offset_in_bytes(), str0);
kvn@3760 266 }
duke@435 267
duke@435 268 // str1 may be null
duke@435 269 add_debug_info_for_null_check_here(info);
duke@435 270
kvn@3760 271 if (java_lang_String::has_offset_field()) {
kvn@3760 272 int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
kvn@3760 273 int count_offset = java_lang_String:: count_offset_in_bytes();
kvn@3760 274 __ load_heap_oop(str1, value_offset, tmp1);
kvn@3760 275 __ add(tmp0, tmp2, tmp0);
kvn@3760 276
kvn@3760 277 __ ld(str1, offset_offset, tmp2);
kvn@3760 278 __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
kvn@3760 279 __ ld(str1, count_offset, str1);
kvn@3760 280 __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
kvn@3760 281 __ add(tmp1, tmp2, tmp1);
kvn@3760 282 } else {
kvn@3760 283 __ load_heap_oop(str1, value_offset, tmp2);
kvn@3760 284 __ add(tmp2, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
kvn@3760 285 __ ld(tmp2, arrayOopDesc::length_offset_in_bytes(), str1);
kvn@3760 286 }
duke@435 287 __ subcc(str0, str1, O7);
duke@435 288 }
duke@435 289
duke@435 290 {
duke@435 291 // Compute the minimum of the string lengths, scale it and store it in limit
duke@435 292 Register count0 = I0;
duke@435 293 Register count1 = I1;
duke@435 294 Register limit = L3;
duke@435 295
duke@435 296 Label Lskip;
duke@435 297 __ sll(count0, exact_log2(sizeof(jchar)), limit); // string0 is shorter
duke@435 298 __ br(Assembler::greater, true, Assembler::pt, Lskip);
duke@435 299 __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit); // string1 is shorter
duke@435 300 __ bind(Lskip);
duke@435 301
duke@435 302 // If either string is empty (or both of them) the result is the difference in lengths
duke@435 303 __ cmp(limit, 0);
duke@435 304 __ br(Assembler::equal, true, Assembler::pn, Ldone);
duke@435 305 __ delayed()->mov(O7, result); // result is difference in lengths
duke@435 306 }
duke@435 307
duke@435 308 {
duke@435 309 // Neither string is empty
duke@435 310 Label Lloop;
duke@435 311
duke@435 312 Register base0 = L0;
duke@435 313 Register base1 = L1;
duke@435 314 Register chr0 = I0;
duke@435 315 Register chr1 = I1;
duke@435 316 Register limit = L3;
duke@435 317
duke@435 318 // Shift base0 and base1 to the end of the arrays, negate limit
duke@435 319 __ add(base0, limit, base0);
duke@435 320 __ add(base1, limit, base1);
kvn@3760 321 __ neg(limit); // limit = -min{string0.length(), string1.length()}
duke@435 322
duke@435 323 __ lduh(base0, limit, chr0);
duke@435 324 __ bind(Lloop);
duke@435 325 __ lduh(base1, limit, chr1);
duke@435 326 __ subcc(chr0, chr1, chr0);
duke@435 327 __ br(Assembler::notZero, false, Assembler::pn, Ldone);
duke@435 328 assert(chr0 == result, "result must be pre-placed");
duke@435 329 __ delayed()->inccc(limit, sizeof(jchar));
duke@435 330 __ br(Assembler::notZero, true, Assembler::pt, Lloop);
duke@435 331 __ delayed()->lduh(base0, limit, chr0);
duke@435 332 }
duke@435 333
duke@435 334 // If strings are equal up to min length, return the length difference.
duke@435 335 __ mov(O7, result);
duke@435 336
duke@435 337 // Otherwise, return the difference between the first mismatched chars.
duke@435 338 __ bind(Ldone);
duke@435 339 }
duke@435 340
duke@435 341
duke@435 342 // --------------------------------------------------------------------------------------------
duke@435 343
duke@435 344 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
duke@435 345 if (!GenerateSynchronizationCode) return;
duke@435 346
duke@435 347 Register obj_reg = obj_opr->as_register();
duke@435 348 Register lock_reg = lock_opr->as_register();
duke@435 349
duke@435 350 Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
duke@435 351 Register reg = mon_addr.base();
duke@435 352 int offset = mon_addr.disp();
duke@435 353 // compute pointer to BasicLock
duke@435 354 if (mon_addr.is_simm13()) {
duke@435 355 __ add(reg, offset, lock_reg);
duke@435 356 }
duke@435 357 else {
duke@435 358 __ set(offset, lock_reg);
duke@435 359 __ add(reg, lock_reg, lock_reg);
duke@435 360 }
duke@435 361 // unlock object
duke@435 362 MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
duke@435 363 // _slow_case_stubs->append(slow_case);
duke@435 364 // temporary fix: must be created after exceptionhandler, therefore as call stub
duke@435 365 _slow_case_stubs->append(slow_case);
duke@435 366 if (UseFastLocking) {
duke@435 367 // try inlined fast unlocking first, revert to slow locking if it fails
duke@435 368 // note: lock_reg points to the displaced header since the displaced header offset is 0!
duke@435 369 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 370 __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
duke@435 371 } else {
duke@435 372 // always do slow unlocking
duke@435 373 // note: the slow unlocking code could be inlined here, however if we use
duke@435 374 // slow unlocking, speed doesn't matter anyway and this solution is
duke@435 375 // simpler and requires less duplicated code - additionally, the
duke@435 376 // slow unlocking code is the same in either case which simplifies
duke@435 377 // debugging
duke@435 378 __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
duke@435 379 __ delayed()->nop();
duke@435 380 }
duke@435 381 // done
duke@435 382 __ bind(*slow_case->continuation());
duke@435 383 }
duke@435 384
duke@435 385
twisti@1639 386 int LIR_Assembler::emit_exception_handler() {
duke@435 387 // if the last instruction is a call (typically to do a throw which
duke@435 388 // is coming at the end after block reordering) the return address
duke@435 389 // must still point into the code area in order to avoid assertion
duke@435 390 // failures when searching for the corresponding bci => add a nop
duke@435 391 // (was bug 5/14/1999 - gri)
duke@435 392 __ nop();
duke@435 393
duke@435 394 // generate code for exception handler
duke@435 395 ciMethod* method = compilation()->method();
duke@435 396
duke@435 397 address handler_base = __ start_a_stub(exception_handler_size);
duke@435 398
duke@435 399 if (handler_base == NULL) {
duke@435 400 // not enough space left for the handler
duke@435 401 bailout("exception handler overflow");
twisti@1639 402 return -1;
duke@435 403 }
twisti@1639 404
duke@435 405 int offset = code_offset();
duke@435 406
twisti@2603 407 __ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type);
duke@435 408 __ delayed()->nop();
twisti@2603 409 __ should_not_reach_here();
iveresov@3435 410 guarantee(code_offset() - offset <= exception_handler_size, "overflow");
duke@435 411 __ end_a_stub();
twisti@1639 412
twisti@1639 413 return offset;
duke@435 414 }
duke@435 415
twisti@1639 416
never@1813 417 // Emit the code to remove the frame from the stack in the exception
never@1813 418 // unwind path.
never@1813 419 int LIR_Assembler::emit_unwind_handler() {
never@1813 420 #ifndef PRODUCT
never@1813 421 if (CommentedAssembly) {
never@1813 422 _masm->block_comment("Unwind handler");
never@1813 423 }
never@1813 424 #endif
never@1813 425
never@1813 426 int offset = code_offset();
never@1813 427
never@1813 428 // Fetch the exception from TLS and clear out exception related thread state
never@1813 429 __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
never@1813 430 __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
never@1813 431 __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
never@1813 432
never@1813 433 __ bind(_unwind_handler_entry);
never@1813 434 __ verify_not_null_oop(O0);
never@1813 435 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 436 __ mov(O0, I0); // Preserve the exception
never@1813 437 }
never@1813 438
never@1813 439 // Preform needed unlocking
never@1813 440 MonitorExitStub* stub = NULL;
never@1813 441 if (method()->is_synchronized()) {
never@1813 442 monitor_address(0, FrameMap::I1_opr);
never@1813 443 stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
never@1813 444 __ unlock_object(I3, I2, I1, *stub->entry());
never@1813 445 __ bind(*stub->continuation());
never@1813 446 }
never@1813 447
never@1813 448 if (compilation()->env()->dtrace_method_probes()) {
never@2185 449 __ mov(G2_thread, O0);
coleenp@4037 450 metadata2reg(method()->constant_encoding(), O1);
never@1813 451 __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
never@1813 452 __ delayed()->nop();
never@1813 453 }
never@1813 454
never@1813 455 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
never@1813 456 __ mov(I0, O0); // Restore the exception
never@1813 457 }
never@1813 458
never@1813 459 // dispatch to the unwind logic
never@1813 460 __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
never@1813 461 __ delayed()->nop();
never@1813 462
never@1813 463 // Emit the slow path assembly
never@1813 464 if (stub != NULL) {
never@1813 465 stub->emit_code(this);
never@1813 466 }
never@1813 467
never@1813 468 return offset;
never@1813 469 }
never@1813 470
never@1813 471
twisti@1639 472 int LIR_Assembler::emit_deopt_handler() {
duke@435 473 // if the last instruction is a call (typically to do a throw which
duke@435 474 // is coming at the end after block reordering) the return address
duke@435 475 // must still point into the code area in order to avoid assertion
duke@435 476 // failures when searching for the corresponding bci => add a nop
duke@435 477 // (was bug 5/14/1999 - gri)
duke@435 478 __ nop();
duke@435 479
duke@435 480 // generate code for deopt handler
duke@435 481 ciMethod* method = compilation()->method();
duke@435 482 address handler_base = __ start_a_stub(deopt_handler_size);
duke@435 483 if (handler_base == NULL) {
duke@435 484 // not enough space left for the handler
duke@435 485 bailout("deopt handler overflow");
twisti@1639 486 return -1;
duke@435 487 }
twisti@1639 488
duke@435 489 int offset = code_offset();
twisti@1162 490 AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
twisti@1162 491 __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
duke@435 492 __ delayed()->nop();
iveresov@3435 493 guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
duke@435 494 __ end_a_stub();
twisti@1639 495
twisti@1639 496 return offset;
duke@435 497 }
duke@435 498
duke@435 499
duke@435 500 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
duke@435 501 if (o == NULL) {
duke@435 502 __ set(NULL_WORD, reg);
duke@435 503 } else {
duke@435 504 int oop_index = __ oop_recorder()->find_index(o);
coleenp@4037 505 assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(o)), "should be real oop");
duke@435 506 RelocationHolder rspec = oop_Relocation::spec(oop_index);
duke@435 507 __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
duke@435 508 }
duke@435 509 }
duke@435 510
duke@435 511
duke@435 512 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
coleenp@4037 513 // Allocate a new index in table to hold the object once it's been patched
coleenp@4037 514 int oop_index = __ oop_recorder()->allocate_oop_index(NULL);
coleenp@4037 515 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_mirror_id, oop_index);
duke@435 516
twisti@1162 517 AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
twisti@1162 518 assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
duke@435 519 // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
duke@435 520 // NULL will be dynamically patched later and the patched value may be large. We must
duke@435 521 // therefore generate the sethi/add as a placeholders
twisti@1162 522 __ patchable_set(addrlit, reg);
duke@435 523
duke@435 524 patching_epilog(patch, lir_patch_normal, reg, info);
duke@435 525 }
duke@435 526
duke@435 527
coleenp@4037 528 void LIR_Assembler::metadata2reg(Metadata* o, Register reg) {
coleenp@4037 529 __ set_metadata_constant(o, reg);
coleenp@4037 530 }
coleenp@4037 531
coleenp@4037 532 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) {
coleenp@4037 533 // Allocate a new index in table to hold the klass once it's been patched
coleenp@4037 534 int index = __ oop_recorder()->allocate_metadata_index(NULL);
coleenp@4037 535 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
coleenp@4037 536 AddressLiteral addrlit(NULL, metadata_Relocation::spec(index));
coleenp@4037 537 assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc");
coleenp@4037 538 // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
coleenp@4037 539 // NULL will be dynamically patched later and the patched value may be large. We must
coleenp@4037 540 // therefore generate the sethi/add as a placeholders
coleenp@4037 541 __ patchable_set(addrlit, reg);
coleenp@4037 542
coleenp@4037 543 patching_epilog(patch, lir_patch_normal, reg, info);
coleenp@4037 544 }
coleenp@4037 545
duke@435 546 void LIR_Assembler::emit_op3(LIR_Op3* op) {
duke@435 547 Register Rdividend = op->in_opr1()->as_register();
duke@435 548 Register Rdivisor = noreg;
duke@435 549 Register Rscratch = op->in_opr3()->as_register();
duke@435 550 Register Rresult = op->result_opr()->as_register();
duke@435 551 int divisor = -1;
duke@435 552
duke@435 553 if (op->in_opr2()->is_register()) {
duke@435 554 Rdivisor = op->in_opr2()->as_register();
duke@435 555 } else {
duke@435 556 divisor = op->in_opr2()->as_constant_ptr()->as_jint();
duke@435 557 assert(Assembler::is_simm13(divisor), "can only handle simm13");
duke@435 558 }
duke@435 559
duke@435 560 assert(Rdividend != Rscratch, "");
duke@435 561 assert(Rdivisor != Rscratch, "");
duke@435 562 assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
duke@435 563
duke@435 564 if (Rdivisor == noreg && is_power_of_2(divisor)) {
duke@435 565 // convert division by a power of two into some shifts and logical operations
duke@435 566 if (op->code() == lir_idiv) {
duke@435 567 if (divisor == 2) {
duke@435 568 __ srl(Rdividend, 31, Rscratch);
duke@435 569 } else {
duke@435 570 __ sra(Rdividend, 31, Rscratch);
duke@435 571 __ and3(Rscratch, divisor - 1, Rscratch);
duke@435 572 }
duke@435 573 __ add(Rdividend, Rscratch, Rscratch);
duke@435 574 __ sra(Rscratch, log2_intptr(divisor), Rresult);
duke@435 575 return;
duke@435 576 } else {
duke@435 577 if (divisor == 2) {
duke@435 578 __ srl(Rdividend, 31, Rscratch);
duke@435 579 } else {
duke@435 580 __ sra(Rdividend, 31, Rscratch);
duke@435 581 __ and3(Rscratch, divisor - 1,Rscratch);
duke@435 582 }
duke@435 583 __ add(Rdividend, Rscratch, Rscratch);
duke@435 584 __ andn(Rscratch, divisor - 1,Rscratch);
duke@435 585 __ sub(Rdividend, Rscratch, Rresult);
duke@435 586 return;
duke@435 587 }
duke@435 588 }
duke@435 589
duke@435 590 __ sra(Rdividend, 31, Rscratch);
duke@435 591 __ wry(Rscratch);
duke@435 592 if (!VM_Version::v9_instructions_work()) {
duke@435 593 // v9 doesn't require these nops
duke@435 594 __ nop();
duke@435 595 __ nop();
duke@435 596 __ nop();
duke@435 597 __ nop();
duke@435 598 }
duke@435 599
duke@435 600 add_debug_info_for_div0_here(op->info());
duke@435 601
duke@435 602 if (Rdivisor != noreg) {
duke@435 603 __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
duke@435 604 } else {
duke@435 605 assert(Assembler::is_simm13(divisor), "can only handle simm13");
duke@435 606 __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
duke@435 607 }
duke@435 608
duke@435 609 Label skip;
duke@435 610 __ br(Assembler::overflowSet, true, Assembler::pn, skip);
duke@435 611 __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
duke@435 612 __ bind(skip);
duke@435 613
duke@435 614 if (op->code() == lir_irem) {
duke@435 615 if (Rdivisor != noreg) {
duke@435 616 __ smul(Rscratch, Rdivisor, Rscratch);
duke@435 617 } else {
duke@435 618 __ smul(Rscratch, divisor, Rscratch);
duke@435 619 }
duke@435 620 __ sub(Rdividend, Rscratch, Rresult);
duke@435 621 }
duke@435 622 }
duke@435 623
duke@435 624
duke@435 625 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
duke@435 626 #ifdef ASSERT
duke@435 627 assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
duke@435 628 if (op->block() != NULL) _branch_target_blocks.append(op->block());
duke@435 629 if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
duke@435 630 #endif
duke@435 631 assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
duke@435 632
duke@435 633 if (op->cond() == lir_cond_always) {
duke@435 634 __ br(Assembler::always, false, Assembler::pt, *(op->label()));
duke@435 635 } else if (op->code() == lir_cond_float_branch) {
duke@435 636 assert(op->ublock() != NULL, "must have unordered successor");
duke@435 637 bool is_unordered = (op->ublock() == op->block());
duke@435 638 Assembler::Condition acond;
duke@435 639 switch (op->cond()) {
duke@435 640 case lir_cond_equal: acond = Assembler::f_equal; break;
duke@435 641 case lir_cond_notEqual: acond = Assembler::f_notEqual; break;
duke@435 642 case lir_cond_less: acond = (is_unordered ? Assembler::f_unorderedOrLess : Assembler::f_less); break;
duke@435 643 case lir_cond_greater: acond = (is_unordered ? Assembler::f_unorderedOrGreater : Assembler::f_greater); break;
duke@435 644 case lir_cond_lessEqual: acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual : Assembler::f_lessOrEqual); break;
duke@435 645 case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
duke@435 646 default : ShouldNotReachHere();
duke@435 647 };
duke@435 648
duke@435 649 if (!VM_Version::v9_instructions_work()) {
duke@435 650 __ nop();
duke@435 651 }
duke@435 652 __ fb( acond, false, Assembler::pn, *(op->label()));
duke@435 653 } else {
duke@435 654 assert (op->code() == lir_branch, "just checking");
duke@435 655
duke@435 656 Assembler::Condition acond;
duke@435 657 switch (op->cond()) {
duke@435 658 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 659 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 660 case lir_cond_less: acond = Assembler::less; break;
duke@435 661 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 662 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
duke@435 663 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 664 case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break;
duke@435 665 case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break;
duke@435 666 default: ShouldNotReachHere();
duke@435 667 };
duke@435 668
duke@435 669 // sparc has different condition codes for testing 32-bit
duke@435 670 // vs. 64-bit values. We could always test xcc is we could
duke@435 671 // guarantee that 32-bit loads always sign extended but that isn't
duke@435 672 // true and since sign extension isn't free, it would impose a
duke@435 673 // slight cost.
duke@435 674 #ifdef _LP64
duke@435 675 if (op->type() == T_INT) {
duke@435 676 __ br(acond, false, Assembler::pn, *(op->label()));
duke@435 677 } else
duke@435 678 #endif
duke@435 679 __ brx(acond, false, Assembler::pn, *(op->label()));
duke@435 680 }
duke@435 681 // The peephole pass fills the delay slot
duke@435 682 }
duke@435 683
duke@435 684
duke@435 685 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
duke@435 686 Bytecodes::Code code = op->bytecode();
duke@435 687 LIR_Opr dst = op->result_opr();
duke@435 688
duke@435 689 switch(code) {
duke@435 690 case Bytecodes::_i2l: {
duke@435 691 Register rlo = dst->as_register_lo();
duke@435 692 Register rhi = dst->as_register_hi();
duke@435 693 Register rval = op->in_opr()->as_register();
duke@435 694 #ifdef _LP64
duke@435 695 __ sra(rval, 0, rlo);
duke@435 696 #else
duke@435 697 __ mov(rval, rlo);
duke@435 698 __ sra(rval, BitsPerInt-1, rhi);
duke@435 699 #endif
duke@435 700 break;
duke@435 701 }
duke@435 702 case Bytecodes::_i2d:
duke@435 703 case Bytecodes::_i2f: {
duke@435 704 bool is_double = (code == Bytecodes::_i2d);
duke@435 705 FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
duke@435 706 FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
duke@435 707 FloatRegister rsrc = op->in_opr()->as_float_reg();
duke@435 708 if (rsrc != rdst) {
duke@435 709 __ fmov(FloatRegisterImpl::S, rsrc, rdst);
duke@435 710 }
duke@435 711 __ fitof(w, rdst, rdst);
duke@435 712 break;
duke@435 713 }
duke@435 714 case Bytecodes::_f2i:{
duke@435 715 FloatRegister rsrc = op->in_opr()->as_float_reg();
duke@435 716 Address addr = frame_map()->address_for_slot(dst->single_stack_ix());
duke@435 717 Label L;
duke@435 718 // result must be 0 if value is NaN; test by comparing value to itself
duke@435 719 __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
duke@435 720 if (!VM_Version::v9_instructions_work()) {
duke@435 721 __ nop();
duke@435 722 }
duke@435 723 __ fb(Assembler::f_unordered, true, Assembler::pn, L);
duke@435 724 __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
duke@435 725 __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
duke@435 726 // move integer result from float register to int register
duke@435 727 __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
duke@435 728 __ bind (L);
duke@435 729 break;
duke@435 730 }
duke@435 731 case Bytecodes::_l2i: {
duke@435 732 Register rlo = op->in_opr()->as_register_lo();
duke@435 733 Register rhi = op->in_opr()->as_register_hi();
duke@435 734 Register rdst = dst->as_register();
duke@435 735 #ifdef _LP64
duke@435 736 __ sra(rlo, 0, rdst);
duke@435 737 #else
duke@435 738 __ mov(rlo, rdst);
duke@435 739 #endif
duke@435 740 break;
duke@435 741 }
duke@435 742 case Bytecodes::_d2f:
duke@435 743 case Bytecodes::_f2d: {
duke@435 744 bool is_double = (code == Bytecodes::_f2d);
duke@435 745 assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
duke@435 746 LIR_Opr val = op->in_opr();
duke@435 747 FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
duke@435 748 FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
duke@435 749 FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
duke@435 750 FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
duke@435 751 __ ftof(vw, dw, rval, rdst);
duke@435 752 break;
duke@435 753 }
duke@435 754 case Bytecodes::_i2s:
duke@435 755 case Bytecodes::_i2b: {
duke@435 756 Register rval = op->in_opr()->as_register();
duke@435 757 Register rdst = dst->as_register();
duke@435 758 int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
duke@435 759 __ sll (rval, shift, rdst);
duke@435 760 __ sra (rdst, shift, rdst);
duke@435 761 break;
duke@435 762 }
duke@435 763 case Bytecodes::_i2c: {
duke@435 764 Register rval = op->in_opr()->as_register();
duke@435 765 Register rdst = dst->as_register();
duke@435 766 int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
duke@435 767 __ sll (rval, shift, rdst);
duke@435 768 __ srl (rdst, shift, rdst);
duke@435 769 break;
duke@435 770 }
duke@435 771
duke@435 772 default: ShouldNotReachHere();
duke@435 773 }
duke@435 774 }
duke@435 775
duke@435 776
duke@435 777 void LIR_Assembler::align_call(LIR_Code) {
duke@435 778 // do nothing since all instructions are word aligned on sparc
duke@435 779 }
duke@435 780
duke@435 781
twisti@1730 782 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
twisti@1730 783 __ call(op->addr(), rtype);
twisti@1919 784 // The peephole pass fills the delay slot, add_call_info is done in
twisti@1919 785 // LIR_Assembler::emit_delay.
duke@435 786 }
duke@435 787
duke@435 788
twisti@1730 789 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
coleenp@4037 790 __ ic_call(op->addr(), false);
twisti@1919 791 // The peephole pass fills the delay slot, add_call_info is done in
twisti@1919 792 // LIR_Assembler::emit_delay.
duke@435 793 }
duke@435 794
duke@435 795
twisti@1730 796 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
twisti@1730 797 add_debug_info_for_null_check_here(op->info());
iveresov@2344 798 __ load_klass(O0, G3_scratch);
twisti@3310 799 if (Assembler::is_simm13(op->vtable_offset())) {
twisti@1730 800 __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
duke@435 801 } else {
duke@435 802 // This will generate 2 instructions
twisti@1730 803 __ set(op->vtable_offset(), G5_method);
duke@435 804 // ld_ptr, set_hi, set
duke@435 805 __ ld_ptr(G3_scratch, G5_method, G5_method);
duke@435 806 }
coleenp@4037 807 __ ld_ptr(G5_method, Method::from_compiled_offset(), G3_scratch);
duke@435 808 __ callr(G3_scratch, G0);
duke@435 809 // the peephole pass fills the delay slot
duke@435 810 }
duke@435 811
iveresov@2344 812 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
duke@435 813 int store_offset;
duke@435 814 if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
duke@435 815 assert(!unaligned, "can't handle this");
duke@435 816 // for offsets larger than a simm13 we setup the offset in O7
twisti@1162 817 __ set(offset, O7);
iveresov@2344 818 store_offset = store(from_reg, base, O7, type, wide);
duke@435 819 } else {
iveresov@2344 820 if (type == T_ARRAY || type == T_OBJECT) {
iveresov@2344 821 __ verify_oop(from_reg->as_register());
iveresov@2344 822 }
duke@435 823 store_offset = code_offset();
duke@435 824 switch (type) {
duke@435 825 case T_BOOLEAN: // fall through
duke@435 826 case T_BYTE : __ stb(from_reg->as_register(), base, offset); break;
duke@435 827 case T_CHAR : __ sth(from_reg->as_register(), base, offset); break;
duke@435 828 case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
duke@435 829 case T_INT : __ stw(from_reg->as_register(), base, offset); break;
duke@435 830 case T_LONG :
duke@435 831 #ifdef _LP64
duke@435 832 if (unaligned || PatchALot) {
duke@435 833 __ srax(from_reg->as_register_lo(), 32, O7);
duke@435 834 __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
duke@435 835 __ stw(O7, base, offset + hi_word_offset_in_bytes);
duke@435 836 } else {
duke@435 837 __ stx(from_reg->as_register_lo(), base, offset);
duke@435 838 }
duke@435 839 #else
duke@435 840 assert(Assembler::is_simm13(offset + 4), "must be");
duke@435 841 __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
duke@435 842 __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
duke@435 843 #endif
duke@435 844 break;
iveresov@2344 845 case T_ADDRESS:
iveresov@2344 846 __ st_ptr(from_reg->as_register(), base, offset);
iveresov@2344 847 break;
duke@435 848 case T_ARRAY : // fall through
iveresov@2344 849 case T_OBJECT:
iveresov@2344 850 {
iveresov@2344 851 if (UseCompressedOops && !wide) {
iveresov@2344 852 __ encode_heap_oop(from_reg->as_register(), G3_scratch);
iveresov@2344 853 store_offset = code_offset();
iveresov@2344 854 __ stw(G3_scratch, base, offset);
iveresov@2344 855 } else {
iveresov@2344 856 __ st_ptr(from_reg->as_register(), base, offset);
iveresov@2344 857 }
iveresov@2344 858 break;
iveresov@2344 859 }
iveresov@2344 860
duke@435 861 case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
duke@435 862 case T_DOUBLE:
duke@435 863 {
duke@435 864 FloatRegister reg = from_reg->as_double_reg();
duke@435 865 // split unaligned stores
duke@435 866 if (unaligned || PatchALot) {
duke@435 867 assert(Assembler::is_simm13(offset + 4), "must be");
duke@435 868 __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
duke@435 869 __ stf(FloatRegisterImpl::S, reg, base, offset);
duke@435 870 } else {
duke@435 871 __ stf(FloatRegisterImpl::D, reg, base, offset);
duke@435 872 }
duke@435 873 break;
duke@435 874 }
duke@435 875 default : ShouldNotReachHere();
duke@435 876 }
duke@435 877 }
duke@435 878 return store_offset;
duke@435 879 }
duke@435 880
duke@435 881
iveresov@2344 882 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
iveresov@2344 883 if (type == T_ARRAY || type == T_OBJECT) {
iveresov@2344 884 __ verify_oop(from_reg->as_register());
iveresov@2344 885 }
duke@435 886 int store_offset = code_offset();
duke@435 887 switch (type) {
duke@435 888 case T_BOOLEAN: // fall through
duke@435 889 case T_BYTE : __ stb(from_reg->as_register(), base, disp); break;
duke@435 890 case T_CHAR : __ sth(from_reg->as_register(), base, disp); break;
duke@435 891 case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
duke@435 892 case T_INT : __ stw(from_reg->as_register(), base, disp); break;
duke@435 893 case T_LONG :
duke@435 894 #ifdef _LP64
duke@435 895 __ stx(from_reg->as_register_lo(), base, disp);
duke@435 896 #else
duke@435 897 assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
duke@435 898 __ std(from_reg->as_register_hi(), base, disp);
duke@435 899 #endif
duke@435 900 break;
iveresov@2344 901 case T_ADDRESS:
iveresov@2344 902 __ st_ptr(from_reg->as_register(), base, disp);
iveresov@2344 903 break;
duke@435 904 case T_ARRAY : // fall through
iveresov@2344 905 case T_OBJECT:
iveresov@2344 906 {
iveresov@2344 907 if (UseCompressedOops && !wide) {
iveresov@2344 908 __ encode_heap_oop(from_reg->as_register(), G3_scratch);
iveresov@2344 909 store_offset = code_offset();
iveresov@2344 910 __ stw(G3_scratch, base, disp);
iveresov@2344 911 } else {
iveresov@2344 912 __ st_ptr(from_reg->as_register(), base, disp);
iveresov@2344 913 }
iveresov@2344 914 break;
iveresov@2344 915 }
duke@435 916 case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
duke@435 917 case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
duke@435 918 default : ShouldNotReachHere();
duke@435 919 }
duke@435 920 return store_offset;
duke@435 921 }
duke@435 922
duke@435 923
iveresov@2344 924 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
duke@435 925 int load_offset;
duke@435 926 if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
duke@435 927 assert(base != O7, "destroying register");
duke@435 928 assert(!unaligned, "can't handle this");
duke@435 929 // for offsets larger than a simm13 we setup the offset in O7
twisti@1162 930 __ set(offset, O7);
iveresov@2344 931 load_offset = load(base, O7, to_reg, type, wide);
duke@435 932 } else {
duke@435 933 load_offset = code_offset();
duke@435 934 switch(type) {
duke@435 935 case T_BOOLEAN: // fall through
duke@435 936 case T_BYTE : __ ldsb(base, offset, to_reg->as_register()); break;
duke@435 937 case T_CHAR : __ lduh(base, offset, to_reg->as_register()); break;
duke@435 938 case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
duke@435 939 case T_INT : __ ld(base, offset, to_reg->as_register()); break;
duke@435 940 case T_LONG :
duke@435 941 if (!unaligned) {
duke@435 942 #ifdef _LP64
duke@435 943 __ ldx(base, offset, to_reg->as_register_lo());
duke@435 944 #else
duke@435 945 assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
duke@435 946 "must be sequential");
duke@435 947 __ ldd(base, offset, to_reg->as_register_hi());
duke@435 948 #endif
duke@435 949 } else {
duke@435 950 #ifdef _LP64
duke@435 951 assert(base != to_reg->as_register_lo(), "can't handle this");
roland@1495 952 assert(O7 != to_reg->as_register_lo(), "can't handle this");
duke@435 953 __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
roland@1495 954 __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
duke@435 955 __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
roland@1495 956 __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
duke@435 957 #else
duke@435 958 if (base == to_reg->as_register_lo()) {
duke@435 959 __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
duke@435 960 __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
duke@435 961 } else {
duke@435 962 __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
duke@435 963 __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
duke@435 964 }
duke@435 965 #endif
duke@435 966 }
duke@435 967 break;
iveresov@2344 968 case T_ADDRESS: __ ld_ptr(base, offset, to_reg->as_register()); break;
duke@435 969 case T_ARRAY : // fall through
iveresov@2344 970 case T_OBJECT:
iveresov@2344 971 {
iveresov@2344 972 if (UseCompressedOops && !wide) {
iveresov@2344 973 __ lduw(base, offset, to_reg->as_register());
iveresov@2344 974 __ decode_heap_oop(to_reg->as_register());
iveresov@2344 975 } else {
iveresov@2344 976 __ ld_ptr(base, offset, to_reg->as_register());
iveresov@2344 977 }
iveresov@2344 978 break;
iveresov@2344 979 }
duke@435 980 case T_FLOAT: __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
duke@435 981 case T_DOUBLE:
duke@435 982 {
duke@435 983 FloatRegister reg = to_reg->as_double_reg();
duke@435 984 // split unaligned loads
duke@435 985 if (unaligned || PatchALot) {
roland@1495 986 __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
roland@1495 987 __ ldf(FloatRegisterImpl::S, base, offset, reg);
duke@435 988 } else {
duke@435 989 __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
duke@435 990 }
duke@435 991 break;
duke@435 992 }
duke@435 993 default : ShouldNotReachHere();
duke@435 994 }
iveresov@2344 995 if (type == T_ARRAY || type == T_OBJECT) {
iveresov@2344 996 __ verify_oop(to_reg->as_register());
iveresov@2344 997 }
duke@435 998 }
duke@435 999 return load_offset;
duke@435 1000 }
duke@435 1001
duke@435 1002
iveresov@2344 1003 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
duke@435 1004 int load_offset = code_offset();
duke@435 1005 switch(type) {
duke@435 1006 case T_BOOLEAN: // fall through
iveresov@2344 1007 case T_BYTE : __ ldsb(base, disp, to_reg->as_register()); break;
iveresov@2344 1008 case T_CHAR : __ lduh(base, disp, to_reg->as_register()); break;
iveresov@2344 1009 case T_SHORT : __ ldsh(base, disp, to_reg->as_register()); break;
iveresov@2344 1010 case T_INT : __ ld(base, disp, to_reg->as_register()); break;
iveresov@2344 1011 case T_ADDRESS: __ ld_ptr(base, disp, to_reg->as_register()); break;
duke@435 1012 case T_ARRAY : // fall through
iveresov@2344 1013 case T_OBJECT:
iveresov@2344 1014 {
iveresov@2344 1015 if (UseCompressedOops && !wide) {
iveresov@2344 1016 __ lduw(base, disp, to_reg->as_register());
iveresov@2344 1017 __ decode_heap_oop(to_reg->as_register());
iveresov@2344 1018 } else {
iveresov@2344 1019 __ ld_ptr(base, disp, to_reg->as_register());
iveresov@2344 1020 }
iveresov@2344 1021 break;
iveresov@2344 1022 }
duke@435 1023 case T_FLOAT: __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
duke@435 1024 case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
duke@435 1025 case T_LONG :
duke@435 1026 #ifdef _LP64
duke@435 1027 __ ldx(base, disp, to_reg->as_register_lo());
duke@435 1028 #else
duke@435 1029 assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
duke@435 1030 "must be sequential");
duke@435 1031 __ ldd(base, disp, to_reg->as_register_hi());
duke@435 1032 #endif
duke@435 1033 break;
duke@435 1034 default : ShouldNotReachHere();
duke@435 1035 }
iveresov@2344 1036 if (type == T_ARRAY || type == T_OBJECT) {
iveresov@2344 1037 __ verify_oop(to_reg->as_register());
iveresov@2344 1038 }
duke@435 1039 return load_offset;
duke@435 1040 }
duke@435 1041
duke@435 1042 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
duke@435 1043 LIR_Const* c = src->as_constant_ptr();
duke@435 1044 switch (c->type()) {
duke@435 1045 case T_INT:
iveresov@2344 1046 case T_FLOAT: {
iveresov@2344 1047 Register src_reg = O7;
iveresov@2344 1048 int value = c->as_jint_bits();
iveresov@2344 1049 if (value == 0) {
iveresov@2344 1050 src_reg = G0;
iveresov@2344 1051 } else {
iveresov@2344 1052 __ set(value, O7);
iveresov@2344 1053 }
iveresov@2344 1054 Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
iveresov@2344 1055 __ stw(src_reg, addr.base(), addr.disp());
iveresov@2344 1056 break;
iveresov@2344 1057 }
roland@1732 1058 case T_ADDRESS: {
duke@435 1059 Register src_reg = O7;
duke@435 1060 int value = c->as_jint_bits();
duke@435 1061 if (value == 0) {
duke@435 1062 src_reg = G0;
duke@435 1063 } else {
duke@435 1064 __ set(value, O7);
duke@435 1065 }
duke@435 1066 Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
iveresov@2344 1067 __ st_ptr(src_reg, addr.base(), addr.disp());
duke@435 1068 break;
duke@435 1069 }
duke@435 1070 case T_OBJECT: {
duke@435 1071 Register src_reg = O7;
duke@435 1072 jobject2reg(c->as_jobject(), src_reg);
duke@435 1073 Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1074 __ st_ptr(src_reg, addr.base(), addr.disp());
duke@435 1075 break;
duke@435 1076 }
duke@435 1077 case T_LONG:
duke@435 1078 case T_DOUBLE: {
duke@435 1079 Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
duke@435 1080
duke@435 1081 Register tmp = O7;
duke@435 1082 int value_lo = c->as_jint_lo_bits();
duke@435 1083 if (value_lo == 0) {
duke@435 1084 tmp = G0;
duke@435 1085 } else {
duke@435 1086 __ set(value_lo, O7);
duke@435 1087 }
duke@435 1088 __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
duke@435 1089 int value_hi = c->as_jint_hi_bits();
duke@435 1090 if (value_hi == 0) {
duke@435 1091 tmp = G0;
duke@435 1092 } else {
duke@435 1093 __ set(value_hi, O7);
duke@435 1094 }
duke@435 1095 __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
duke@435 1096 break;
duke@435 1097 }
duke@435 1098 default:
duke@435 1099 Unimplemented();
duke@435 1100 }
duke@435 1101 }
duke@435 1102
duke@435 1103
iveresov@2344 1104 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
duke@435 1105 LIR_Const* c = src->as_constant_ptr();
duke@435 1106 LIR_Address* addr = dest->as_address_ptr();
duke@435 1107 Register base = addr->base()->as_pointer_register();
iveresov@2344 1108 int offset = -1;
iveresov@2344 1109
duke@435 1110 switch (c->type()) {
duke@435 1111 case T_INT:
roland@1732 1112 case T_FLOAT:
roland@1732 1113 case T_ADDRESS: {
duke@435 1114 LIR_Opr tmp = FrameMap::O7_opr;
duke@435 1115 int value = c->as_jint_bits();
duke@435 1116 if (value == 0) {
duke@435 1117 tmp = FrameMap::G0_opr;
duke@435 1118 } else if (Assembler::is_simm13(value)) {
duke@435 1119 __ set(value, O7);
duke@435 1120 }
duke@435 1121 if (addr->index()->is_valid()) {
duke@435 1122 assert(addr->disp() == 0, "must be zero");
iveresov@2344 1123 offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
duke@435 1124 } else {
duke@435 1125 assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
iveresov@2344 1126 offset = store(tmp, base, addr->disp(), type, wide, false);
duke@435 1127 }
duke@435 1128 break;
duke@435 1129 }
duke@435 1130 case T_LONG:
duke@435 1131 case T_DOUBLE: {
duke@435 1132 assert(!addr->index()->is_valid(), "can't handle reg reg address here");
duke@435 1133 assert(Assembler::is_simm13(addr->disp()) &&
duke@435 1134 Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
duke@435 1135
iveresov@2344 1136 LIR_Opr tmp = FrameMap::O7_opr;
duke@435 1137 int value_lo = c->as_jint_lo_bits();
duke@435 1138 if (value_lo == 0) {
iveresov@2344 1139 tmp = FrameMap::G0_opr;
duke@435 1140 } else {
duke@435 1141 __ set(value_lo, O7);
duke@435 1142 }
iveresov@2344 1143 offset = store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT, wide, false);
duke@435 1144 int value_hi = c->as_jint_hi_bits();
duke@435 1145 if (value_hi == 0) {
iveresov@2344 1146 tmp = FrameMap::G0_opr;
duke@435 1147 } else {
duke@435 1148 __ set(value_hi, O7);
duke@435 1149 }
never@3248 1150 store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
duke@435 1151 break;
duke@435 1152 }
duke@435 1153 case T_OBJECT: {
duke@435 1154 jobject obj = c->as_jobject();
duke@435 1155 LIR_Opr tmp;
duke@435 1156 if (obj == NULL) {
duke@435 1157 tmp = FrameMap::G0_opr;
duke@435 1158 } else {
duke@435 1159 tmp = FrameMap::O7_opr;
duke@435 1160 jobject2reg(c->as_jobject(), O7);
duke@435 1161 }
duke@435 1162 // handle either reg+reg or reg+disp address
duke@435 1163 if (addr->index()->is_valid()) {
duke@435 1164 assert(addr->disp() == 0, "must be zero");
iveresov@2344 1165 offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
duke@435 1166 } else {
duke@435 1167 assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
iveresov@2344 1168 offset = store(tmp, base, addr->disp(), type, wide, false);
duke@435 1169 }
duke@435 1170
duke@435 1171 break;
duke@435 1172 }
duke@435 1173 default:
duke@435 1174 Unimplemented();
duke@435 1175 }
iveresov@2344 1176 if (info != NULL) {
iveresov@2344 1177 assert(offset != -1, "offset should've been set");
iveresov@2344 1178 add_debug_info_for_null_check(offset, info);
iveresov@2344 1179 }
duke@435 1180 }
duke@435 1181
duke@435 1182
duke@435 1183 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
duke@435 1184 LIR_Const* c = src->as_constant_ptr();
duke@435 1185 LIR_Opr to_reg = dest;
duke@435 1186
duke@435 1187 switch (c->type()) {
duke@435 1188 case T_INT:
roland@1732 1189 case T_ADDRESS:
duke@435 1190 {
duke@435 1191 jint con = c->as_jint();
duke@435 1192 if (to_reg->is_single_cpu()) {
duke@435 1193 assert(patch_code == lir_patch_none, "no patching handled here");
duke@435 1194 __ set(con, to_reg->as_register());
duke@435 1195 } else {
duke@435 1196 ShouldNotReachHere();
duke@435 1197 assert(to_reg->is_single_fpu(), "wrong register kind");
duke@435 1198
duke@435 1199 __ set(con, O7);
twisti@1162 1200 Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
duke@435 1201 __ st(O7, temp_slot);
duke@435 1202 __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
duke@435 1203 }
duke@435 1204 }
duke@435 1205 break;
duke@435 1206
duke@435 1207 case T_LONG:
duke@435 1208 {
duke@435 1209 jlong con = c->as_jlong();
duke@435 1210
duke@435 1211 if (to_reg->is_double_cpu()) {
duke@435 1212 #ifdef _LP64
duke@435 1213 __ set(con, to_reg->as_register_lo());
duke@435 1214 #else
duke@435 1215 __ set(low(con), to_reg->as_register_lo());
duke@435 1216 __ set(high(con), to_reg->as_register_hi());
duke@435 1217 #endif
duke@435 1218 #ifdef _LP64
duke@435 1219 } else if (to_reg->is_single_cpu()) {
duke@435 1220 __ set(con, to_reg->as_register());
duke@435 1221 #endif
duke@435 1222 } else {
duke@435 1223 ShouldNotReachHere();
duke@435 1224 assert(to_reg->is_double_fpu(), "wrong register kind");
twisti@1162 1225 Address temp_slot_lo(SP, ((frame::register_save_words ) * wordSize) + STACK_BIAS);
twisti@1162 1226 Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
duke@435 1227 __ set(low(con), O7);
duke@435 1228 __ st(O7, temp_slot_lo);
duke@435 1229 __ set(high(con), O7);
duke@435 1230 __ st(O7, temp_slot_hi);
duke@435 1231 __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
duke@435 1232 }
duke@435 1233 }
duke@435 1234 break;
duke@435 1235
duke@435 1236 case T_OBJECT:
duke@435 1237 {
duke@435 1238 if (patch_code == lir_patch_none) {
duke@435 1239 jobject2reg(c->as_jobject(), to_reg->as_register());
duke@435 1240 } else {
duke@435 1241 jobject2reg_with_patching(to_reg->as_register(), info);
duke@435 1242 }
duke@435 1243 }
duke@435 1244 break;
duke@435 1245
coleenp@4037 1246 case T_METADATA:
coleenp@4037 1247 {
coleenp@4037 1248 if (patch_code == lir_patch_none) {
coleenp@4037 1249 metadata2reg(c->as_metadata(), to_reg->as_register());
coleenp@4037 1250 } else {
coleenp@4037 1251 klass2reg_with_patching(to_reg->as_register(), info);
coleenp@4037 1252 }
coleenp@4037 1253 }
coleenp@4037 1254 break;
coleenp@4037 1255
duke@435 1256 case T_FLOAT:
duke@435 1257 {
duke@435 1258 address const_addr = __ float_constant(c->as_jfloat());
duke@435 1259 if (const_addr == NULL) {
duke@435 1260 bailout("const section overflow");
duke@435 1261 break;
duke@435 1262 }
duke@435 1263 RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
twisti@1162 1264 AddressLiteral const_addrlit(const_addr, rspec);
duke@435 1265 if (to_reg->is_single_fpu()) {
twisti@1162 1266 __ patchable_sethi(const_addrlit, O7);
duke@435 1267 __ relocate(rspec);
twisti@1162 1268 __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
duke@435 1269
duke@435 1270 } else {
duke@435 1271 assert(to_reg->is_single_cpu(), "Must be a cpu register.");
duke@435 1272
twisti@1162 1273 __ set(const_addrlit, O7);
iveresov@2344 1274 __ ld(O7, 0, to_reg->as_register());
duke@435 1275 }
duke@435 1276 }
duke@435 1277 break;
duke@435 1278
duke@435 1279 case T_DOUBLE:
duke@435 1280 {
duke@435 1281 address const_addr = __ double_constant(c->as_jdouble());
duke@435 1282 if (const_addr == NULL) {
duke@435 1283 bailout("const section overflow");
duke@435 1284 break;
duke@435 1285 }
duke@435 1286 RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
duke@435 1287
duke@435 1288 if (to_reg->is_double_fpu()) {
twisti@1162 1289 AddressLiteral const_addrlit(const_addr, rspec);
twisti@1162 1290 __ patchable_sethi(const_addrlit, O7);
duke@435 1291 __ relocate(rspec);
twisti@1162 1292 __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
duke@435 1293 } else {
duke@435 1294 assert(to_reg->is_double_cpu(), "Must be a long register.");
duke@435 1295 #ifdef _LP64
duke@435 1296 __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
duke@435 1297 #else
duke@435 1298 __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
duke@435 1299 __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
duke@435 1300 #endif
duke@435 1301 }
duke@435 1302
duke@435 1303 }
duke@435 1304 break;
duke@435 1305
duke@435 1306 default:
duke@435 1307 ShouldNotReachHere();
duke@435 1308 }
duke@435 1309 }
duke@435 1310
duke@435 1311 Address LIR_Assembler::as_Address(LIR_Address* addr) {
duke@435 1312 Register reg = addr->base()->as_register();
twisti@1162 1313 return Address(reg, addr->disp());
duke@435 1314 }
duke@435 1315
duke@435 1316
duke@435 1317 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1318 switch (type) {
duke@435 1319 case T_INT:
duke@435 1320 case T_FLOAT: {
duke@435 1321 Register tmp = O7;
duke@435 1322 Address from = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1323 Address to = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1324 __ lduw(from.base(), from.disp(), tmp);
duke@435 1325 __ stw(tmp, to.base(), to.disp());
duke@435 1326 break;
duke@435 1327 }
duke@435 1328 case T_OBJECT: {
duke@435 1329 Register tmp = O7;
duke@435 1330 Address from = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1331 Address to = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1332 __ ld_ptr(from.base(), from.disp(), tmp);
duke@435 1333 __ st_ptr(tmp, to.base(), to.disp());
duke@435 1334 break;
duke@435 1335 }
duke@435 1336 case T_LONG:
duke@435 1337 case T_DOUBLE: {
duke@435 1338 Register tmp = O7;
duke@435 1339 Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
duke@435 1340 Address to = frame_map()->address_for_double_slot(dest->double_stack_ix());
duke@435 1341 __ lduw(from.base(), from.disp(), tmp);
duke@435 1342 __ stw(tmp, to.base(), to.disp());
duke@435 1343 __ lduw(from.base(), from.disp() + 4, tmp);
duke@435 1344 __ stw(tmp, to.base(), to.disp() + 4);
duke@435 1345 break;
duke@435 1346 }
duke@435 1347
duke@435 1348 default:
duke@435 1349 ShouldNotReachHere();
duke@435 1350 }
duke@435 1351 }
duke@435 1352
duke@435 1353
duke@435 1354 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
duke@435 1355 Address base = as_Address(addr);
twisti@1162 1356 return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
duke@435 1357 }
duke@435 1358
duke@435 1359
duke@435 1360 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
duke@435 1361 Address base = as_Address(addr);
twisti@1162 1362 return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
duke@435 1363 }
duke@435 1364
duke@435 1365
duke@435 1366 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
iveresov@2344 1367 LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
duke@435 1368
duke@435 1369 LIR_Address* addr = src_opr->as_address_ptr();
duke@435 1370 LIR_Opr to_reg = dest;
duke@435 1371
duke@435 1372 Register src = addr->base()->as_pointer_register();
duke@435 1373 Register disp_reg = noreg;
duke@435 1374 int disp_value = addr->disp();
duke@435 1375 bool needs_patching = (patch_code != lir_patch_none);
duke@435 1376
duke@435 1377 if (addr->base()->type() == T_OBJECT) {
duke@435 1378 __ verify_oop(src);
duke@435 1379 }
duke@435 1380
duke@435 1381 PatchingStub* patch = NULL;
duke@435 1382 if (needs_patching) {
duke@435 1383 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1384 assert(!to_reg->is_double_cpu() ||
duke@435 1385 patch_code == lir_patch_none ||
duke@435 1386 patch_code == lir_patch_normal, "patching doesn't match register");
duke@435 1387 }
duke@435 1388
duke@435 1389 if (addr->index()->is_illegal()) {
duke@435 1390 if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
duke@435 1391 if (needs_patching) {
twisti@1162 1392 __ patchable_set(0, O7);
duke@435 1393 } else {
duke@435 1394 __ set(disp_value, O7);
duke@435 1395 }
duke@435 1396 disp_reg = O7;
duke@435 1397 }
duke@435 1398 } else if (unaligned || PatchALot) {
duke@435 1399 __ add(src, addr->index()->as_register(), O7);
duke@435 1400 src = O7;
duke@435 1401 } else {
duke@435 1402 disp_reg = addr->index()->as_pointer_register();
duke@435 1403 assert(disp_value == 0, "can't handle 3 operand addresses");
duke@435 1404 }
duke@435 1405
duke@435 1406 // remember the offset of the load. The patching_epilog must be done
duke@435 1407 // before the call to add_debug_info, otherwise the PcDescs don't get
duke@435 1408 // entered in increasing order.
duke@435 1409 int offset = code_offset();
duke@435 1410
duke@435 1411 assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
duke@435 1412 if (disp_reg == noreg) {
iveresov@2344 1413 offset = load(src, disp_value, to_reg, type, wide, unaligned);
duke@435 1414 } else {
duke@435 1415 assert(!unaligned, "can't handle this");
iveresov@2344 1416 offset = load(src, disp_reg, to_reg, type, wide);
duke@435 1417 }
duke@435 1418
duke@435 1419 if (patch != NULL) {
duke@435 1420 patching_epilog(patch, patch_code, src, info);
duke@435 1421 }
duke@435 1422 if (info != NULL) add_debug_info_for_null_check(offset, info);
duke@435 1423 }
duke@435 1424
duke@435 1425
duke@435 1426 void LIR_Assembler::prefetchr(LIR_Opr src) {
duke@435 1427 LIR_Address* addr = src->as_address_ptr();
duke@435 1428 Address from_addr = as_Address(addr);
duke@435 1429
duke@435 1430 if (VM_Version::has_v9()) {
duke@435 1431 __ prefetch(from_addr, Assembler::severalReads);
duke@435 1432 }
duke@435 1433 }
duke@435 1434
duke@435 1435
duke@435 1436 void LIR_Assembler::prefetchw(LIR_Opr src) {
duke@435 1437 LIR_Address* addr = src->as_address_ptr();
duke@435 1438 Address from_addr = as_Address(addr);
duke@435 1439
duke@435 1440 if (VM_Version::has_v9()) {
duke@435 1441 __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
duke@435 1442 }
duke@435 1443 }
duke@435 1444
duke@435 1445
duke@435 1446 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
duke@435 1447 Address addr;
duke@435 1448 if (src->is_single_word()) {
duke@435 1449 addr = frame_map()->address_for_slot(src->single_stack_ix());
duke@435 1450 } else if (src->is_double_word()) {
duke@435 1451 addr = frame_map()->address_for_double_slot(src->double_stack_ix());
duke@435 1452 }
duke@435 1453
duke@435 1454 bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
iveresov@2344 1455 load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
duke@435 1456 }
duke@435 1457
duke@435 1458
duke@435 1459 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
duke@435 1460 Address addr;
duke@435 1461 if (dest->is_single_word()) {
duke@435 1462 addr = frame_map()->address_for_slot(dest->single_stack_ix());
duke@435 1463 } else if (dest->is_double_word()) {
duke@435 1464 addr = frame_map()->address_for_slot(dest->double_stack_ix());
duke@435 1465 }
duke@435 1466 bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
iveresov@2344 1467 store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
duke@435 1468 }
duke@435 1469
duke@435 1470
duke@435 1471 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
duke@435 1472 if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
duke@435 1473 if (from_reg->is_double_fpu()) {
duke@435 1474 // double to double moves
duke@435 1475 assert(to_reg->is_double_fpu(), "should match");
duke@435 1476 __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
duke@435 1477 } else {
duke@435 1478 // float to float moves
duke@435 1479 assert(to_reg->is_single_fpu(), "should match");
duke@435 1480 __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
duke@435 1481 }
duke@435 1482 } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
duke@435 1483 if (from_reg->is_double_cpu()) {
duke@435 1484 #ifdef _LP64
duke@435 1485 __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
duke@435 1486 #else
duke@435 1487 assert(to_reg->is_double_cpu() &&
duke@435 1488 from_reg->as_register_hi() != to_reg->as_register_lo() &&
duke@435 1489 from_reg->as_register_lo() != to_reg->as_register_hi(),
duke@435 1490 "should both be long and not overlap");
duke@435 1491 // long to long moves
duke@435 1492 __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
duke@435 1493 __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
duke@435 1494 #endif
duke@435 1495 #ifdef _LP64
duke@435 1496 } else if (to_reg->is_double_cpu()) {
duke@435 1497 // int to int moves
duke@435 1498 __ mov(from_reg->as_register(), to_reg->as_register_lo());
duke@435 1499 #endif
duke@435 1500 } else {
duke@435 1501 // int to int moves
duke@435 1502 __ mov(from_reg->as_register(), to_reg->as_register());
duke@435 1503 }
duke@435 1504 } else {
duke@435 1505 ShouldNotReachHere();
duke@435 1506 }
duke@435 1507 if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
duke@435 1508 __ verify_oop(to_reg->as_register());
duke@435 1509 }
duke@435 1510 }
duke@435 1511
duke@435 1512
duke@435 1513 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
duke@435 1514 LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
iveresov@2344 1515 bool wide, bool unaligned) {
duke@435 1516 LIR_Address* addr = dest->as_address_ptr();
duke@435 1517
duke@435 1518 Register src = addr->base()->as_pointer_register();
duke@435 1519 Register disp_reg = noreg;
duke@435 1520 int disp_value = addr->disp();
duke@435 1521 bool needs_patching = (patch_code != lir_patch_none);
duke@435 1522
duke@435 1523 if (addr->base()->is_oop_register()) {
duke@435 1524 __ verify_oop(src);
duke@435 1525 }
duke@435 1526
duke@435 1527 PatchingStub* patch = NULL;
duke@435 1528 if (needs_patching) {
duke@435 1529 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
duke@435 1530 assert(!from_reg->is_double_cpu() ||
duke@435 1531 patch_code == lir_patch_none ||
duke@435 1532 patch_code == lir_patch_normal, "patching doesn't match register");
duke@435 1533 }
duke@435 1534
duke@435 1535 if (addr->index()->is_illegal()) {
duke@435 1536 if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
duke@435 1537 if (needs_patching) {
twisti@1162 1538 __ patchable_set(0, O7);
duke@435 1539 } else {
duke@435 1540 __ set(disp_value, O7);
duke@435 1541 }
duke@435 1542 disp_reg = O7;
duke@435 1543 }
duke@435 1544 } else if (unaligned || PatchALot) {
duke@435 1545 __ add(src, addr->index()->as_register(), O7);
duke@435 1546 src = O7;
duke@435 1547 } else {
duke@435 1548 disp_reg = addr->index()->as_pointer_register();
duke@435 1549 assert(disp_value == 0, "can't handle 3 operand addresses");
duke@435 1550 }
duke@435 1551
duke@435 1552 // remember the offset of the store. The patching_epilog must be done
duke@435 1553 // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
duke@435 1554 // entered in increasing order.
duke@435 1555 int offset;
duke@435 1556
duke@435 1557 assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
duke@435 1558 if (disp_reg == noreg) {
iveresov@2344 1559 offset = store(from_reg, src, disp_value, type, wide, unaligned);
duke@435 1560 } else {
duke@435 1561 assert(!unaligned, "can't handle this");
iveresov@2344 1562 offset = store(from_reg, src, disp_reg, type, wide);
duke@435 1563 }
duke@435 1564
duke@435 1565 if (patch != NULL) {
duke@435 1566 patching_epilog(patch, patch_code, src, info);
duke@435 1567 }
duke@435 1568
duke@435 1569 if (info != NULL) add_debug_info_for_null_check(offset, info);
duke@435 1570 }
duke@435 1571
duke@435 1572
duke@435 1573 void LIR_Assembler::return_op(LIR_Opr result) {
duke@435 1574 // the poll may need a register so just pick one that isn't the return register
iveresov@2138 1575 #if defined(TIERED) && !defined(_LP64)
duke@435 1576 if (result->type_field() == LIR_OprDesc::long_type) {
duke@435 1577 // Must move the result to G1
duke@435 1578 // Must leave proper result in O0,O1 and G1 (TIERED only)
duke@435 1579 __ sllx(I0, 32, G1); // Shift bits into high G1
duke@435 1580 __ srl (I1, 0, I1); // Zero extend O1 (harmless?)
duke@435 1581 __ or3 (I1, G1, G1); // OR 64 bits into G1
iveresov@2138 1582 #ifdef ASSERT
iveresov@2138 1583 // mangle it so any problems will show up
iveresov@2138 1584 __ set(0xdeadbeef, I0);
iveresov@2138 1585 __ set(0xdeadbeef, I1);
iveresov@2138 1586 #endif
duke@435 1587 }
duke@435 1588 #endif // TIERED
duke@435 1589 __ set((intptr_t)os::get_polling_page(), L0);
duke@435 1590 __ relocate(relocInfo::poll_return_type);
duke@435 1591 __ ld_ptr(L0, 0, G0);
duke@435 1592 __ ret();
duke@435 1593 __ delayed()->restore();
duke@435 1594 }
duke@435 1595
duke@435 1596
duke@435 1597 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 1598 __ set((intptr_t)os::get_polling_page(), tmp->as_register());
duke@435 1599 if (info != NULL) {
duke@435 1600 add_debug_info_for_branch(info);
duke@435 1601 } else {
duke@435 1602 __ relocate(relocInfo::poll_type);
duke@435 1603 }
duke@435 1604
duke@435 1605 int offset = __ offset();
duke@435 1606 __ ld_ptr(tmp->as_register(), 0, G0);
duke@435 1607
duke@435 1608 return offset;
duke@435 1609 }
duke@435 1610
duke@435 1611
duke@435 1612 void LIR_Assembler::emit_static_call_stub() {
duke@435 1613 address call_pc = __ pc();
duke@435 1614 address stub = __ start_a_stub(call_stub_size);
duke@435 1615 if (stub == NULL) {
duke@435 1616 bailout("static call stub overflow");
duke@435 1617 return;
duke@435 1618 }
duke@435 1619
duke@435 1620 int start = __ offset();
duke@435 1621 __ relocate(static_stub_Relocation::spec(call_pc));
duke@435 1622
coleenp@4037 1623 __ set_metadata(NULL, G5);
duke@435 1624 // must be set to -1 at code generation time
twisti@1162 1625 AddressLiteral addrlit(-1);
twisti@1162 1626 __ jump_to(addrlit, G3);
duke@435 1627 __ delayed()->nop();
duke@435 1628
duke@435 1629 assert(__ offset() - start <= call_stub_size, "stub too big");
duke@435 1630 __ end_a_stub();
duke@435 1631 }
duke@435 1632
duke@435 1633
duke@435 1634 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
duke@435 1635 if (opr1->is_single_fpu()) {
duke@435 1636 __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
duke@435 1637 } else if (opr1->is_double_fpu()) {
duke@435 1638 __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
duke@435 1639 } else if (opr1->is_single_cpu()) {
duke@435 1640 if (opr2->is_constant()) {
duke@435 1641 switch (opr2->as_constant_ptr()->type()) {
duke@435 1642 case T_INT:
duke@435 1643 { jint con = opr2->as_constant_ptr()->as_jint();
duke@435 1644 if (Assembler::is_simm13(con)) {
duke@435 1645 __ cmp(opr1->as_register(), con);
duke@435 1646 } else {
duke@435 1647 __ set(con, O7);
duke@435 1648 __ cmp(opr1->as_register(), O7);
duke@435 1649 }
duke@435 1650 }
duke@435 1651 break;
duke@435 1652
duke@435 1653 case T_OBJECT:
duke@435 1654 // there are only equal/notequal comparisions on objects
duke@435 1655 { jobject con = opr2->as_constant_ptr()->as_jobject();
duke@435 1656 if (con == NULL) {
duke@435 1657 __ cmp(opr1->as_register(), 0);
duke@435 1658 } else {
duke@435 1659 jobject2reg(con, O7);
duke@435 1660 __ cmp(opr1->as_register(), O7);
duke@435 1661 }
duke@435 1662 }
duke@435 1663 break;
duke@435 1664
duke@435 1665 default:
duke@435 1666 ShouldNotReachHere();
duke@435 1667 break;
duke@435 1668 }
duke@435 1669 } else {
duke@435 1670 if (opr2->is_address()) {
duke@435 1671 LIR_Address * addr = opr2->as_address_ptr();
duke@435 1672 BasicType type = addr->type();
duke@435 1673 if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
duke@435 1674 else __ ld(as_Address(addr), O7);
duke@435 1675 __ cmp(opr1->as_register(), O7);
duke@435 1676 } else {
duke@435 1677 __ cmp(opr1->as_register(), opr2->as_register());
duke@435 1678 }
duke@435 1679 }
duke@435 1680 } else if (opr1->is_double_cpu()) {
duke@435 1681 Register xlo = opr1->as_register_lo();
duke@435 1682 Register xhi = opr1->as_register_hi();
duke@435 1683 if (opr2->is_constant() && opr2->as_jlong() == 0) {
duke@435 1684 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
duke@435 1685 #ifdef _LP64
duke@435 1686 __ orcc(xhi, G0, G0);
duke@435 1687 #else
duke@435 1688 __ orcc(xhi, xlo, G0);
duke@435 1689 #endif
duke@435 1690 } else if (opr2->is_register()) {
duke@435 1691 Register ylo = opr2->as_register_lo();
duke@435 1692 Register yhi = opr2->as_register_hi();
duke@435 1693 #ifdef _LP64
duke@435 1694 __ cmp(xlo, ylo);
duke@435 1695 #else
duke@435 1696 __ subcc(xlo, ylo, xlo);
duke@435 1697 __ subccc(xhi, yhi, xhi);
duke@435 1698 if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
duke@435 1699 __ orcc(xhi, xlo, G0);
duke@435 1700 }
duke@435 1701 #endif
duke@435 1702 } else {
duke@435 1703 ShouldNotReachHere();
duke@435 1704 }
duke@435 1705 } else if (opr1->is_address()) {
duke@435 1706 LIR_Address * addr = opr1->as_address_ptr();
duke@435 1707 BasicType type = addr->type();
duke@435 1708 assert (opr2->is_constant(), "Checking");
duke@435 1709 if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
duke@435 1710 else __ ld(as_Address(addr), O7);
duke@435 1711 __ cmp(O7, opr2->as_constant_ptr()->as_jint());
duke@435 1712 } else {
duke@435 1713 ShouldNotReachHere();
duke@435 1714 }
duke@435 1715 }
duke@435 1716
duke@435 1717
duke@435 1718 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
duke@435 1719 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
duke@435 1720 bool is_unordered_less = (code == lir_ucmp_fd2i);
duke@435 1721 if (left->is_single_fpu()) {
duke@435 1722 __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
duke@435 1723 } else if (left->is_double_fpu()) {
duke@435 1724 __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
duke@435 1725 } else {
duke@435 1726 ShouldNotReachHere();
duke@435 1727 }
duke@435 1728 } else if (code == lir_cmp_l2i) {
iveresov@1804 1729 #ifdef _LP64
iveresov@1804 1730 __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
iveresov@1804 1731 #else
duke@435 1732 __ lcmp(left->as_register_hi(), left->as_register_lo(),
duke@435 1733 right->as_register_hi(), right->as_register_lo(),
duke@435 1734 dst->as_register());
iveresov@1804 1735 #endif
duke@435 1736 } else {
duke@435 1737 ShouldNotReachHere();
duke@435 1738 }
duke@435 1739 }
duke@435 1740
duke@435 1741
iveresov@2412 1742 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
duke@435 1743 Assembler::Condition acond;
duke@435 1744 switch (condition) {
duke@435 1745 case lir_cond_equal: acond = Assembler::equal; break;
duke@435 1746 case lir_cond_notEqual: acond = Assembler::notEqual; break;
duke@435 1747 case lir_cond_less: acond = Assembler::less; break;
duke@435 1748 case lir_cond_lessEqual: acond = Assembler::lessEqual; break;
duke@435 1749 case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
duke@435 1750 case lir_cond_greater: acond = Assembler::greater; break;
duke@435 1751 case lir_cond_aboveEqual: acond = Assembler::greaterEqualUnsigned; break;
duke@435 1752 case lir_cond_belowEqual: acond = Assembler::lessEqualUnsigned; break;
duke@435 1753 default: ShouldNotReachHere();
duke@435 1754 };
duke@435 1755
duke@435 1756 if (opr1->is_constant() && opr1->type() == T_INT) {
duke@435 1757 Register dest = result->as_register();
duke@435 1758 // load up first part of constant before branch
duke@435 1759 // and do the rest in the delay slot.
duke@435 1760 if (!Assembler::is_simm13(opr1->as_jint())) {
duke@435 1761 __ sethi(opr1->as_jint(), dest);
duke@435 1762 }
duke@435 1763 } else if (opr1->is_constant()) {
duke@435 1764 const2reg(opr1, result, lir_patch_none, NULL);
duke@435 1765 } else if (opr1->is_register()) {
duke@435 1766 reg2reg(opr1, result);
duke@435 1767 } else if (opr1->is_stack()) {
duke@435 1768 stack2reg(opr1, result, result->type());
duke@435 1769 } else {
duke@435 1770 ShouldNotReachHere();
duke@435 1771 }
duke@435 1772 Label skip;
iveresov@2412 1773 #ifdef _LP64
iveresov@2412 1774 if (type == T_INT) {
iveresov@2412 1775 __ br(acond, false, Assembler::pt, skip);
iveresov@2412 1776 } else
iveresov@2412 1777 #endif
iveresov@2412 1778 __ brx(acond, false, Assembler::pt, skip); // checks icc on 32bit and xcc on 64bit
duke@435 1779 if (opr1->is_constant() && opr1->type() == T_INT) {
duke@435 1780 Register dest = result->as_register();
duke@435 1781 if (Assembler::is_simm13(opr1->as_jint())) {
duke@435 1782 __ delayed()->or3(G0, opr1->as_jint(), dest);
duke@435 1783 } else {
duke@435 1784 // the sethi has been done above, so just put in the low 10 bits
duke@435 1785 __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
duke@435 1786 }
duke@435 1787 } else {
duke@435 1788 // can't do anything useful in the delay slot
duke@435 1789 __ delayed()->nop();
duke@435 1790 }
duke@435 1791 if (opr2->is_constant()) {
duke@435 1792 const2reg(opr2, result, lir_patch_none, NULL);
duke@435 1793 } else if (opr2->is_register()) {
duke@435 1794 reg2reg(opr2, result);
duke@435 1795 } else if (opr2->is_stack()) {
duke@435 1796 stack2reg(opr2, result, result->type());
duke@435 1797 } else {
duke@435 1798 ShouldNotReachHere();
duke@435 1799 }
duke@435 1800 __ bind(skip);
duke@435 1801 }
duke@435 1802
duke@435 1803
duke@435 1804 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
duke@435 1805 assert(info == NULL, "unused on this code path");
duke@435 1806 assert(left->is_register(), "wrong items state");
duke@435 1807 assert(dest->is_register(), "wrong items state");
duke@435 1808
duke@435 1809 if (right->is_register()) {
duke@435 1810 if (dest->is_float_kind()) {
duke@435 1811
duke@435 1812 FloatRegister lreg, rreg, res;
duke@435 1813 FloatRegisterImpl::Width w;
duke@435 1814 if (right->is_single_fpu()) {
duke@435 1815 w = FloatRegisterImpl::S;
duke@435 1816 lreg = left->as_float_reg();
duke@435 1817 rreg = right->as_float_reg();
duke@435 1818 res = dest->as_float_reg();
duke@435 1819 } else {
duke@435 1820 w = FloatRegisterImpl::D;
duke@435 1821 lreg = left->as_double_reg();
duke@435 1822 rreg = right->as_double_reg();
duke@435 1823 res = dest->as_double_reg();
duke@435 1824 }
duke@435 1825
duke@435 1826 switch (code) {
duke@435 1827 case lir_add: __ fadd(w, lreg, rreg, res); break;
duke@435 1828 case lir_sub: __ fsub(w, lreg, rreg, res); break;
duke@435 1829 case lir_mul: // fall through
duke@435 1830 case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
duke@435 1831 case lir_div: // fall through
duke@435 1832 case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
duke@435 1833 default: ShouldNotReachHere();
duke@435 1834 }
duke@435 1835
duke@435 1836 } else if (dest->is_double_cpu()) {
duke@435 1837 #ifdef _LP64
duke@435 1838 Register dst_lo = dest->as_register_lo();
duke@435 1839 Register op1_lo = left->as_pointer_register();
duke@435 1840 Register op2_lo = right->as_pointer_register();
duke@435 1841
duke@435 1842 switch (code) {
duke@435 1843 case lir_add:
duke@435 1844 __ add(op1_lo, op2_lo, dst_lo);
duke@435 1845 break;
duke@435 1846
duke@435 1847 case lir_sub:
duke@435 1848 __ sub(op1_lo, op2_lo, dst_lo);
duke@435 1849 break;
duke@435 1850
duke@435 1851 default: ShouldNotReachHere();
duke@435 1852 }
duke@435 1853 #else
duke@435 1854 Register op1_lo = left->as_register_lo();
duke@435 1855 Register op1_hi = left->as_register_hi();
duke@435 1856 Register op2_lo = right->as_register_lo();
duke@435 1857 Register op2_hi = right->as_register_hi();
duke@435 1858 Register dst_lo = dest->as_register_lo();
duke@435 1859 Register dst_hi = dest->as_register_hi();
duke@435 1860
duke@435 1861 switch (code) {
duke@435 1862 case lir_add:
duke@435 1863 __ addcc(op1_lo, op2_lo, dst_lo);
duke@435 1864 __ addc (op1_hi, op2_hi, dst_hi);
duke@435 1865 break;
duke@435 1866
duke@435 1867 case lir_sub:
duke@435 1868 __ subcc(op1_lo, op2_lo, dst_lo);
duke@435 1869 __ subc (op1_hi, op2_hi, dst_hi);
duke@435 1870 break;
duke@435 1871
duke@435 1872 default: ShouldNotReachHere();
duke@435 1873 }
duke@435 1874 #endif
duke@435 1875 } else {
duke@435 1876 assert (right->is_single_cpu(), "Just Checking");
duke@435 1877
duke@435 1878 Register lreg = left->as_register();
duke@435 1879 Register res = dest->as_register();
duke@435 1880 Register rreg = right->as_register();
duke@435 1881 switch (code) {
duke@435 1882 case lir_add: __ add (lreg, rreg, res); break;
duke@435 1883 case lir_sub: __ sub (lreg, rreg, res); break;
duke@435 1884 case lir_mul: __ mult (lreg, rreg, res); break;
duke@435 1885 default: ShouldNotReachHere();
duke@435 1886 }
duke@435 1887 }
duke@435 1888 } else {
duke@435 1889 assert (right->is_constant(), "must be constant");
duke@435 1890
duke@435 1891 if (dest->is_single_cpu()) {
duke@435 1892 Register lreg = left->as_register();
duke@435 1893 Register res = dest->as_register();
duke@435 1894 int simm13 = right->as_constant_ptr()->as_jint();
duke@435 1895
duke@435 1896 switch (code) {
duke@435 1897 case lir_add: __ add (lreg, simm13, res); break;
duke@435 1898 case lir_sub: __ sub (lreg, simm13, res); break;
duke@435 1899 case lir_mul: __ mult (lreg, simm13, res); break;
duke@435 1900 default: ShouldNotReachHere();
duke@435 1901 }
duke@435 1902 } else {
duke@435 1903 Register lreg = left->as_pointer_register();
duke@435 1904 Register res = dest->as_register_lo();
duke@435 1905 long con = right->as_constant_ptr()->as_jlong();
duke@435 1906 assert(Assembler::is_simm13(con), "must be simm13");
duke@435 1907
duke@435 1908 switch (code) {
duke@435 1909 case lir_add: __ add (lreg, (int)con, res); break;
duke@435 1910 case lir_sub: __ sub (lreg, (int)con, res); break;
duke@435 1911 case lir_mul: __ mult (lreg, (int)con, res); break;
duke@435 1912 default: ShouldNotReachHere();
duke@435 1913 }
duke@435 1914 }
duke@435 1915 }
duke@435 1916 }
duke@435 1917
duke@435 1918
duke@435 1919 void LIR_Assembler::fpop() {
duke@435 1920 // do nothing
duke@435 1921 }
duke@435 1922
duke@435 1923
duke@435 1924 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
duke@435 1925 switch (code) {
duke@435 1926 case lir_sin:
duke@435 1927 case lir_tan:
duke@435 1928 case lir_cos: {
duke@435 1929 assert(thread->is_valid(), "preserve the thread object for performance reasons");
duke@435 1930 assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
duke@435 1931 break;
duke@435 1932 }
duke@435 1933 case lir_sqrt: {
duke@435 1934 assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
duke@435 1935 FloatRegister src_reg = value->as_double_reg();
duke@435 1936 FloatRegister dst_reg = dest->as_double_reg();
duke@435 1937 __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
duke@435 1938 break;
duke@435 1939 }
duke@435 1940 case lir_abs: {
duke@435 1941 assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
duke@435 1942 FloatRegister src_reg = value->as_double_reg();
duke@435 1943 FloatRegister dst_reg = dest->as_double_reg();
duke@435 1944 __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
duke@435 1945 break;
duke@435 1946 }
duke@435 1947 default: {
duke@435 1948 ShouldNotReachHere();
duke@435 1949 break;
duke@435 1950 }
duke@435 1951 }
duke@435 1952 }
duke@435 1953
duke@435 1954
duke@435 1955 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
duke@435 1956 if (right->is_constant()) {
duke@435 1957 if (dest->is_single_cpu()) {
duke@435 1958 int simm13 = right->as_constant_ptr()->as_jint();
duke@435 1959 switch (code) {
duke@435 1960 case lir_logic_and: __ and3 (left->as_register(), simm13, dest->as_register()); break;
duke@435 1961 case lir_logic_or: __ or3 (left->as_register(), simm13, dest->as_register()); break;
duke@435 1962 case lir_logic_xor: __ xor3 (left->as_register(), simm13, dest->as_register()); break;
duke@435 1963 default: ShouldNotReachHere();
duke@435 1964 }
duke@435 1965 } else {
duke@435 1966 long c = right->as_constant_ptr()->as_jlong();
duke@435 1967 assert(c == (int)c && Assembler::is_simm13(c), "out of range");
duke@435 1968 int simm13 = (int)c;
duke@435 1969 switch (code) {
duke@435 1970 case lir_logic_and:
duke@435 1971 #ifndef _LP64
duke@435 1972 __ and3 (left->as_register_hi(), 0, dest->as_register_hi());
duke@435 1973 #endif
duke@435 1974 __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
duke@435 1975 break;
duke@435 1976
duke@435 1977 case lir_logic_or:
duke@435 1978 #ifndef _LP64
duke@435 1979 __ or3 (left->as_register_hi(), 0, dest->as_register_hi());
duke@435 1980 #endif
duke@435 1981 __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
duke@435 1982 break;
duke@435 1983
duke@435 1984 case lir_logic_xor:
duke@435 1985 #ifndef _LP64
duke@435 1986 __ xor3 (left->as_register_hi(), 0, dest->as_register_hi());
duke@435 1987 #endif
duke@435 1988 __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
duke@435 1989 break;
duke@435 1990
duke@435 1991 default: ShouldNotReachHere();
duke@435 1992 }
duke@435 1993 }
duke@435 1994 } else {
duke@435 1995 assert(right->is_register(), "right should be in register");
duke@435 1996
duke@435 1997 if (dest->is_single_cpu()) {
duke@435 1998 switch (code) {
duke@435 1999 case lir_logic_and: __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
duke@435 2000 case lir_logic_or: __ or3 (left->as_register(), right->as_register(), dest->as_register()); break;
duke@435 2001 case lir_logic_xor: __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
duke@435 2002 default: ShouldNotReachHere();
duke@435 2003 }
duke@435 2004 } else {
duke@435 2005 #ifdef _LP64
duke@435 2006 Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
duke@435 2007 left->as_register_lo();
duke@435 2008 Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
duke@435 2009 right->as_register_lo();
duke@435 2010
duke@435 2011 switch (code) {
duke@435 2012 case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
duke@435 2013 case lir_logic_or: __ or3 (l, r, dest->as_register_lo()); break;
duke@435 2014 case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
duke@435 2015 default: ShouldNotReachHere();
duke@435 2016 }
duke@435 2017 #else
duke@435 2018 switch (code) {
duke@435 2019 case lir_logic_and:
duke@435 2020 __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
duke@435 2021 __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
duke@435 2022 break;
duke@435 2023
duke@435 2024 case lir_logic_or:
duke@435 2025 __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
duke@435 2026 __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
duke@435 2027 break;
duke@435 2028
duke@435 2029 case lir_logic_xor:
duke@435 2030 __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
duke@435 2031 __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
duke@435 2032 break;
duke@435 2033
duke@435 2034 default: ShouldNotReachHere();
duke@435 2035 }
duke@435 2036 #endif
duke@435 2037 }
duke@435 2038 }
duke@435 2039 }
duke@435 2040
duke@435 2041
duke@435 2042 int LIR_Assembler::shift_amount(BasicType t) {
kvn@464 2043 int elem_size = type2aelembytes(t);
duke@435 2044 switch (elem_size) {
duke@435 2045 case 1 : return 0;
duke@435 2046 case 2 : return 1;
duke@435 2047 case 4 : return 2;
duke@435 2048 case 8 : return 3;
duke@435 2049 }
duke@435 2050 ShouldNotReachHere();
duke@435 2051 return -1;
duke@435 2052 }
duke@435 2053
duke@435 2054
never@1813 2055 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
duke@435 2056 assert(exceptionOop->as_register() == Oexception, "should match");
never@1813 2057 assert(exceptionPC->as_register() == Oissuing_pc, "should match");
duke@435 2058
duke@435 2059 info->add_register_oop(exceptionOop);
duke@435 2060
never@1813 2061 // reuse the debug info from the safepoint poll for the throw op itself
never@1813 2062 address pc_for_athrow = __ pc();
never@1813 2063 int pc_for_athrow_offset = __ offset();
never@1813 2064 RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
never@1813 2065 __ set(pc_for_athrow, Oissuing_pc, rspec);
never@1813 2066 add_call_info(pc_for_athrow_offset, info); // for exception handler
never@1813 2067
never@1813 2068 __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
never@1813 2069 __ delayed()->nop();
never@1813 2070 }
never@1813 2071
never@1813 2072
never@1813 2073 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
never@1813 2074 assert(exceptionOop->as_register() == Oexception, "should match");
never@1813 2075
never@1813 2076 __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
never@1813 2077 __ delayed()->nop();
duke@435 2078 }
duke@435 2079
duke@435 2080 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
duke@435 2081 Register src = op->src()->as_register();
duke@435 2082 Register dst = op->dst()->as_register();
duke@435 2083 Register src_pos = op->src_pos()->as_register();
duke@435 2084 Register dst_pos = op->dst_pos()->as_register();
duke@435 2085 Register length = op->length()->as_register();
duke@435 2086 Register tmp = op->tmp()->as_register();
duke@435 2087 Register tmp2 = O7;
duke@435 2088
duke@435 2089 int flags = op->flags();
duke@435 2090 ciArrayKlass* default_type = op->expected_type();
duke@435 2091 BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
duke@435 2092 if (basic_type == T_ARRAY) basic_type = T_OBJECT;
duke@435 2093
iveresov@2731 2094 #ifdef _LP64
iveresov@2731 2095 // higher 32bits must be null
iveresov@2731 2096 __ sra(dst_pos, 0, dst_pos);
iveresov@2731 2097 __ sra(src_pos, 0, src_pos);
iveresov@2731 2098 __ sra(length, 0, length);
iveresov@2731 2099 #endif
iveresov@2731 2100
duke@435 2101 // set up the arraycopy stub information
duke@435 2102 ArrayCopyStub* stub = op->stub();
duke@435 2103
duke@435 2104 // always do stub if no type information is available. it's ok if
duke@435 2105 // the known type isn't loaded since the code sanity checks
duke@435 2106 // in debug mode and the type isn't required when we know the exact type
duke@435 2107 // also check that the type is an array type.
roland@2728 2108 if (op->expected_type() == NULL) {
duke@435 2109 __ mov(src, O0);
duke@435 2110 __ mov(src_pos, O1);
duke@435 2111 __ mov(dst, O2);
duke@435 2112 __ mov(dst_pos, O3);
duke@435 2113 __ mov(length, O4);
roland@2728 2114 address copyfunc_addr = StubRoutines::generic_arraycopy();
roland@2728 2115
roland@2728 2116 if (copyfunc_addr == NULL) { // Use C version if stub was not generated
roland@2728 2117 __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
roland@2728 2118 } else {
roland@2728 2119 #ifndef PRODUCT
roland@2728 2120 if (PrintC1Statistics) {
roland@2728 2121 address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
roland@2728 2122 __ inc_counter(counter, G1, G3);
roland@2728 2123 }
roland@2728 2124 #endif
roland@2728 2125 __ call_VM_leaf(tmp, copyfunc_addr);
roland@2728 2126 }
roland@2728 2127
roland@2728 2128 if (copyfunc_addr != NULL) {
roland@2728 2129 __ xor3(O0, -1, tmp);
roland@2728 2130 __ sub(length, tmp, length);
roland@2728 2131 __ add(src_pos, tmp, src_pos);
kvn@3037 2132 __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
roland@2728 2133 __ delayed()->add(dst_pos, tmp, dst_pos);
roland@2728 2134 } else {
kvn@3037 2135 __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
roland@2728 2136 __ delayed()->nop();
roland@2728 2137 }
duke@435 2138 __ bind(*stub->continuation());
duke@435 2139 return;
duke@435 2140 }
duke@435 2141
duke@435 2142 assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
duke@435 2143
duke@435 2144 // make sure src and dst are non-null and load array length
duke@435 2145 if (flags & LIR_OpArrayCopy::src_null_check) {
duke@435 2146 __ tst(src);
iveresov@2344 2147 __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
duke@435 2148 __ delayed()->nop();
duke@435 2149 }
duke@435 2150
duke@435 2151 if (flags & LIR_OpArrayCopy::dst_null_check) {
duke@435 2152 __ tst(dst);
iveresov@2344 2153 __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
duke@435 2154 __ delayed()->nop();
duke@435 2155 }
duke@435 2156
duke@435 2157 if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
duke@435 2158 // test src_pos register
kvn@3037 2159 __ cmp_zero_and_br(Assembler::less, src_pos, *stub->entry());
duke@435 2160 __ delayed()->nop();
duke@435 2161 }
duke@435 2162
duke@435 2163 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
duke@435 2164 // test dst_pos register
kvn@3037 2165 __ cmp_zero_and_br(Assembler::less, dst_pos, *stub->entry());
duke@435 2166 __ delayed()->nop();
duke@435 2167 }
duke@435 2168
duke@435 2169 if (flags & LIR_OpArrayCopy::length_positive_check) {
duke@435 2170 // make sure length isn't negative
kvn@3037 2171 __ cmp_zero_and_br(Assembler::less, length, *stub->entry());
duke@435 2172 __ delayed()->nop();
duke@435 2173 }
duke@435 2174
duke@435 2175 if (flags & LIR_OpArrayCopy::src_range_check) {
duke@435 2176 __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
duke@435 2177 __ add(length, src_pos, tmp);
duke@435 2178 __ cmp(tmp2, tmp);
duke@435 2179 __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
duke@435 2180 __ delayed()->nop();
duke@435 2181 }
duke@435 2182
duke@435 2183 if (flags & LIR_OpArrayCopy::dst_range_check) {
duke@435 2184 __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
duke@435 2185 __ add(length, dst_pos, tmp);
duke@435 2186 __ cmp(tmp2, tmp);
duke@435 2187 __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
duke@435 2188 __ delayed()->nop();
duke@435 2189 }
duke@435 2190
roland@2728 2191 int shift = shift_amount(basic_type);
roland@2728 2192
duke@435 2193 if (flags & LIR_OpArrayCopy::type_check) {
roland@2728 2194 // We don't know the array types are compatible
roland@2728 2195 if (basic_type != T_OBJECT) {
roland@2728 2196 // Simple test for basic type arrays
coleenp@4037 2197 if (UseCompressedKlassPointers) {
roland@2728 2198 // We don't need decode because we just need to compare
roland@2728 2199 __ lduw(src, oopDesc::klass_offset_in_bytes(), tmp);
roland@2728 2200 __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
roland@2728 2201 __ cmp(tmp, tmp2);
roland@2728 2202 __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
roland@2728 2203 } else {
roland@2728 2204 __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
roland@2728 2205 __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
roland@2728 2206 __ cmp(tmp, tmp2);
roland@2728 2207 __ brx(Assembler::notEqual, false, Assembler::pt, *stub->entry());
roland@2728 2208 }
roland@2728 2209 __ delayed()->nop();
iveresov@2344 2210 } else {
roland@2728 2211 // For object arrays, if src is a sub class of dst then we can
roland@2728 2212 // safely do the copy.
roland@2728 2213 address copyfunc_addr = StubRoutines::checkcast_arraycopy();
roland@2728 2214
roland@2728 2215 Label cont, slow;
roland@2728 2216 assert_different_registers(tmp, tmp2, G3, G1);
roland@2728 2217
roland@2728 2218 __ load_klass(src, G3);
roland@2728 2219 __ load_klass(dst, G1);
roland@2728 2220
roland@2728 2221 __ check_klass_subtype_fast_path(G3, G1, tmp, tmp2, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL);
roland@2728 2222
roland@2728 2223 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
roland@2728 2224 __ delayed()->nop();
roland@2728 2225
roland@2728 2226 __ cmp(G3, 0);
roland@2728 2227 if (copyfunc_addr != NULL) { // use stub if available
roland@2728 2228 // src is not a sub class of dst so we have to do a
roland@2728 2229 // per-element check.
roland@2728 2230 __ br(Assembler::notEqual, false, Assembler::pt, cont);
roland@2728 2231 __ delayed()->nop();
roland@2728 2232
roland@2728 2233 __ bind(slow);
roland@2728 2234
roland@2728 2235 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
roland@2728 2236 if ((flags & mask) != mask) {
roland@2728 2237 // Check that at least both of them object arrays.
roland@2728 2238 assert(flags & mask, "one of the two should be known to be an object array");
roland@2728 2239
roland@2728 2240 if (!(flags & LIR_OpArrayCopy::src_objarray)) {
roland@2728 2241 __ load_klass(src, tmp);
roland@2728 2242 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
roland@2728 2243 __ load_klass(dst, tmp);
roland@2728 2244 }
stefank@3391 2245 int lh_offset = in_bytes(Klass::layout_helper_offset());
roland@2728 2246
roland@2728 2247 __ lduw(tmp, lh_offset, tmp2);
roland@2728 2248
roland@2728 2249 jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
roland@2728 2250 __ set(objArray_lh, tmp);
roland@2728 2251 __ cmp(tmp, tmp2);
roland@2728 2252 __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
roland@2728 2253 __ delayed()->nop();
roland@2728 2254 }
roland@2728 2255
roland@2728 2256 Register src_ptr = O0;
roland@2728 2257 Register dst_ptr = O1;
roland@2728 2258 Register len = O2;
roland@2728 2259 Register chk_off = O3;
roland@2728 2260 Register super_k = O4;
roland@2728 2261
roland@2728 2262 __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
roland@2728 2263 if (shift == 0) {
roland@2728 2264 __ add(src_ptr, src_pos, src_ptr);
roland@2728 2265 } else {
roland@2728 2266 __ sll(src_pos, shift, tmp);
roland@2728 2267 __ add(src_ptr, tmp, src_ptr);
roland@2728 2268 }
roland@2728 2269
roland@2728 2270 __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
roland@2728 2271 if (shift == 0) {
roland@2728 2272 __ add(dst_ptr, dst_pos, dst_ptr);
roland@2728 2273 } else {
roland@2728 2274 __ sll(dst_pos, shift, tmp);
roland@2728 2275 __ add(dst_ptr, tmp, dst_ptr);
roland@2728 2276 }
roland@2728 2277 __ mov(length, len);
roland@2728 2278 __ load_klass(dst, tmp);
roland@2728 2279
stefank@3391 2280 int ek_offset = in_bytes(objArrayKlass::element_klass_offset());
roland@2728 2281 __ ld_ptr(tmp, ek_offset, super_k);
roland@2728 2282
stefank@3391 2283 int sco_offset = in_bytes(Klass::super_check_offset_offset());
roland@2728 2284 __ lduw(super_k, sco_offset, chk_off);
roland@2728 2285
roland@2728 2286 __ call_VM_leaf(tmp, copyfunc_addr);
roland@2728 2287
roland@2728 2288 #ifndef PRODUCT
roland@2728 2289 if (PrintC1Statistics) {
roland@2728 2290 Label failed;
kvn@3037 2291 __ br_notnull_short(O0, Assembler::pn, failed);
roland@2728 2292 __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, G1, G3);
roland@2728 2293 __ bind(failed);
roland@2728 2294 }
roland@2728 2295 #endif
roland@2728 2296
roland@2728 2297 __ br_null(O0, false, Assembler::pt, *stub->continuation());
roland@2728 2298 __ delayed()->xor3(O0, -1, tmp);
roland@2728 2299
roland@2728 2300 #ifndef PRODUCT
roland@2728 2301 if (PrintC1Statistics) {
roland@2728 2302 __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, G1, G3);
roland@2728 2303 }
roland@2728 2304 #endif
roland@2728 2305
roland@2728 2306 __ sub(length, tmp, length);
roland@2728 2307 __ add(src_pos, tmp, src_pos);
roland@2728 2308 __ br(Assembler::always, false, Assembler::pt, *stub->entry());
roland@2728 2309 __ delayed()->add(dst_pos, tmp, dst_pos);
roland@2728 2310
roland@2728 2311 __ bind(cont);
roland@2728 2312 } else {
roland@2728 2313 __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
roland@2728 2314 __ delayed()->nop();
roland@2728 2315 __ bind(cont);
roland@2728 2316 }
iveresov@2344 2317 }
duke@435 2318 }
duke@435 2319
duke@435 2320 #ifdef ASSERT
duke@435 2321 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
duke@435 2322 // Sanity check the known type with the incoming class. For the
duke@435 2323 // primitive case the types must match exactly with src.klass and
duke@435 2324 // dst.klass each exactly matching the default type. For the
duke@435 2325 // object array case, if no type check is needed then either the
duke@435 2326 // dst type is exactly the expected type and the src type is a
duke@435 2327 // subtype which we can't check or src is the same array as dst
duke@435 2328 // but not necessarily exactly of type default_type.
duke@435 2329 Label known_ok, halt;
coleenp@4037 2330 metadata2reg(op->expected_type()->constant_encoding(), tmp);
coleenp@4037 2331 if (UseCompressedKlassPointers) {
iveresov@2344 2332 // tmp holds the default type. It currently comes uncompressed after the
iveresov@2344 2333 // load of a constant, so encode it.
iveresov@2344 2334 __ encode_heap_oop(tmp);
iveresov@2344 2335 // load the raw value of the dst klass, since we will be comparing
iveresov@2344 2336 // uncompressed values directly.
iveresov@2344 2337 __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
iveresov@2344 2338 if (basic_type != T_OBJECT) {
iveresov@2344 2339 __ cmp(tmp, tmp2);
iveresov@2344 2340 __ br(Assembler::notEqual, false, Assembler::pn, halt);
iveresov@2344 2341 // load the raw value of the src klass.
iveresov@2344 2342 __ delayed()->lduw(src, oopDesc::klass_offset_in_bytes(), tmp2);
kvn@3037 2343 __ cmp_and_br_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
iveresov@2344 2344 } else {
iveresov@2344 2345 __ cmp(tmp, tmp2);
iveresov@2344 2346 __ br(Assembler::equal, false, Assembler::pn, known_ok);
iveresov@2344 2347 __ delayed()->cmp(src, dst);
iveresov@2344 2348 __ brx(Assembler::equal, false, Assembler::pn, known_ok);
iveresov@2344 2349 __ delayed()->nop();
iveresov@2344 2350 }
duke@435 2351 } else {
iveresov@2344 2352 __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
iveresov@2344 2353 if (basic_type != T_OBJECT) {
iveresov@2344 2354 __ cmp(tmp, tmp2);
iveresov@2344 2355 __ brx(Assembler::notEqual, false, Assembler::pn, halt);
iveresov@2344 2356 __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
kvn@3037 2357 __ cmp_and_brx_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
iveresov@2344 2358 } else {
iveresov@2344 2359 __ cmp(tmp, tmp2);
iveresov@2344 2360 __ brx(Assembler::equal, false, Assembler::pn, known_ok);
iveresov@2344 2361 __ delayed()->cmp(src, dst);
iveresov@2344 2362 __ brx(Assembler::equal, false, Assembler::pn, known_ok);
iveresov@2344 2363 __ delayed()->nop();
iveresov@2344 2364 }
duke@435 2365 }
duke@435 2366 __ bind(halt);
duke@435 2367 __ stop("incorrect type information in arraycopy");
duke@435 2368 __ bind(known_ok);
duke@435 2369 }
duke@435 2370 #endif
duke@435 2371
roland@2728 2372 #ifndef PRODUCT
roland@2728 2373 if (PrintC1Statistics) {
roland@2728 2374 address counter = Runtime1::arraycopy_count_address(basic_type);
roland@2728 2375 __ inc_counter(counter, G1, G3);
roland@2728 2376 }
roland@2728 2377 #endif
duke@435 2378
duke@435 2379 Register src_ptr = O0;
duke@435 2380 Register dst_ptr = O1;
duke@435 2381 Register len = O2;
duke@435 2382
duke@435 2383 __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
duke@435 2384 if (shift == 0) {
duke@435 2385 __ add(src_ptr, src_pos, src_ptr);
duke@435 2386 } else {
duke@435 2387 __ sll(src_pos, shift, tmp);
duke@435 2388 __ add(src_ptr, tmp, src_ptr);
duke@435 2389 }
duke@435 2390
duke@435 2391 __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
duke@435 2392 if (shift == 0) {
duke@435 2393 __ add(dst_ptr, dst_pos, dst_ptr);
duke@435 2394 } else {
duke@435 2395 __ sll(dst_pos, shift, tmp);
duke@435 2396 __ add(dst_ptr, tmp, dst_ptr);
duke@435 2397 }
duke@435 2398
roland@2728 2399 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
roland@2728 2400 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
roland@2728 2401 const char *name;
roland@2728 2402 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
roland@2728 2403
roland@2728 2404 // arraycopy stubs takes a length in number of elements, so don't scale it.
roland@2728 2405 __ mov(length, len);
roland@2728 2406 __ call_VM_leaf(tmp, entry);
duke@435 2407
duke@435 2408 __ bind(*stub->continuation());
duke@435 2409 }
duke@435 2410
duke@435 2411
duke@435 2412 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
duke@435 2413 if (dest->is_single_cpu()) {
duke@435 2414 #ifdef _LP64
duke@435 2415 if (left->type() == T_OBJECT) {
duke@435 2416 switch (code) {
duke@435 2417 case lir_shl: __ sllx (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2418 case lir_shr: __ srax (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2419 case lir_ushr: __ srl (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2420 default: ShouldNotReachHere();
duke@435 2421 }
duke@435 2422 } else
duke@435 2423 #endif
duke@435 2424 switch (code) {
duke@435 2425 case lir_shl: __ sll (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2426 case lir_shr: __ sra (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2427 case lir_ushr: __ srl (left->as_register(), count->as_register(), dest->as_register()); break;
duke@435 2428 default: ShouldNotReachHere();
duke@435 2429 }
duke@435 2430 } else {
duke@435 2431 #ifdef _LP64
duke@435 2432 switch (code) {
duke@435 2433 case lir_shl: __ sllx (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
duke@435 2434 case lir_shr: __ srax (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
duke@435 2435 case lir_ushr: __ srlx (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
duke@435 2436 default: ShouldNotReachHere();
duke@435 2437 }
duke@435 2438 #else
duke@435 2439 switch (code) {
duke@435 2440 case lir_shl: __ lshl (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
duke@435 2441 case lir_shr: __ lshr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
duke@435 2442 case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
duke@435 2443 default: ShouldNotReachHere();
duke@435 2444 }
duke@435 2445 #endif
duke@435 2446 }
duke@435 2447 }
duke@435 2448
duke@435 2449
duke@435 2450 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
duke@435 2451 #ifdef _LP64
duke@435 2452 if (left->type() == T_OBJECT) {
duke@435 2453 count = count & 63; // shouldn't shift by more than sizeof(intptr_t)
duke@435 2454 Register l = left->as_register();
duke@435 2455 Register d = dest->as_register_lo();
duke@435 2456 switch (code) {
duke@435 2457 case lir_shl: __ sllx (l, count, d); break;
duke@435 2458 case lir_shr: __ srax (l, count, d); break;
duke@435 2459 case lir_ushr: __ srlx (l, count, d); break;
duke@435 2460 default: ShouldNotReachHere();
duke@435 2461 }
duke@435 2462 return;
duke@435 2463 }
duke@435 2464 #endif
duke@435 2465
duke@435 2466 if (dest->is_single_cpu()) {
duke@435 2467 count = count & 0x1F; // Java spec
duke@435 2468 switch (code) {
duke@435 2469 case lir_shl: __ sll (left->as_register(), count, dest->as_register()); break;
duke@435 2470 case lir_shr: __ sra (left->as_register(), count, dest->as_register()); break;
duke@435 2471 case lir_ushr: __ srl (left->as_register(), count, dest->as_register()); break;
duke@435 2472 default: ShouldNotReachHere();
duke@435 2473 }
duke@435 2474 } else if (dest->is_double_cpu()) {
duke@435 2475 count = count & 63; // Java spec
duke@435 2476 switch (code) {
duke@435 2477 case lir_shl: __ sllx (left->as_pointer_register(), count, dest->as_pointer_register()); break;
duke@435 2478 case lir_shr: __ srax (left->as_pointer_register(), count, dest->as_pointer_register()); break;
duke@435 2479 case lir_ushr: __ srlx (left->as_pointer_register(), count, dest->as_pointer_register()); break;
duke@435 2480 default: ShouldNotReachHere();
duke@435 2481 }
duke@435 2482 } else {
duke@435 2483 ShouldNotReachHere();
duke@435 2484 }
duke@435 2485 }
duke@435 2486
duke@435 2487
duke@435 2488 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
duke@435 2489 assert(op->tmp1()->as_register() == G1 &&
duke@435 2490 op->tmp2()->as_register() == G3 &&
duke@435 2491 op->tmp3()->as_register() == G4 &&
duke@435 2492 op->obj()->as_register() == O0 &&
duke@435 2493 op->klass()->as_register() == G5, "must be");
duke@435 2494 if (op->init_check()) {
coleenp@3368 2495 __ ldub(op->klass()->as_register(),
coleenp@4037 2496 in_bytes(InstanceKlass::init_state_offset()),
duke@435 2497 op->tmp1()->as_register());
duke@435 2498 add_debug_info_for_null_check_here(op->stub()->info());
coleenp@4037 2499 __ cmp(op->tmp1()->as_register(), InstanceKlass::fully_initialized);
duke@435 2500 __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
duke@435 2501 __ delayed()->nop();
duke@435 2502 }
duke@435 2503 __ allocate_object(op->obj()->as_register(),
duke@435 2504 op->tmp1()->as_register(),
duke@435 2505 op->tmp2()->as_register(),
duke@435 2506 op->tmp3()->as_register(),
duke@435 2507 op->header_size(),
duke@435 2508 op->object_size(),
duke@435 2509 op->klass()->as_register(),
duke@435 2510 *op->stub()->entry());
duke@435 2511 __ bind(*op->stub()->continuation());
duke@435 2512 __ verify_oop(op->obj()->as_register());
duke@435 2513 }
duke@435 2514
duke@435 2515
duke@435 2516 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
duke@435 2517 assert(op->tmp1()->as_register() == G1 &&
duke@435 2518 op->tmp2()->as_register() == G3 &&
duke@435 2519 op->tmp3()->as_register() == G4 &&
duke@435 2520 op->tmp4()->as_register() == O1 &&
duke@435 2521 op->klass()->as_register() == G5, "must be");
iveresov@2432 2522
iveresov@2432 2523 LP64_ONLY( __ signx(op->len()->as_register()); )
duke@435 2524 if (UseSlowPath ||
duke@435 2525 (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
duke@435 2526 (!UseFastNewTypeArray && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
never@1813 2527 __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
duke@435 2528 __ delayed()->nop();
duke@435 2529 } else {
duke@435 2530 __ allocate_array(op->obj()->as_register(),
duke@435 2531 op->len()->as_register(),
duke@435 2532 op->tmp1()->as_register(),
duke@435 2533 op->tmp2()->as_register(),
duke@435 2534 op->tmp3()->as_register(),
duke@435 2535 arrayOopDesc::header_size(op->type()),
kvn@464 2536 type2aelembytes(op->type()),
duke@435 2537 op->klass()->as_register(),
duke@435 2538 *op->stub()->entry());
duke@435 2539 }
duke@435 2540 __ bind(*op->stub()->continuation());
duke@435 2541 }
duke@435 2542
duke@435 2543
iveresov@2138 2544 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
iveresov@2138 2545 ciMethodData *md, ciProfileData *data,
iveresov@2138 2546 Register recv, Register tmp1, Label* update_done) {
iveresov@2138 2547 uint i;
iveresov@2138 2548 for (i = 0; i < VirtualCallData::row_limit(); i++) {
iveresov@2138 2549 Label next_test;
iveresov@2138 2550 // See if the receiver is receiver[n].
iveresov@2138 2551 Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
iveresov@2138 2552 mdo_offset_bias);
iveresov@2138 2553 __ ld_ptr(receiver_addr, tmp1);
iveresov@2138 2554 __ verify_oop(tmp1);
kvn@3037 2555 __ cmp_and_brx_short(recv, tmp1, Assembler::notEqual, Assembler::pt, next_test);
iveresov@2138 2556 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
iveresov@2138 2557 mdo_offset_bias);
iveresov@2138 2558 __ ld_ptr(data_addr, tmp1);
iveresov@2138 2559 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 2560 __ st_ptr(tmp1, data_addr);
kvn@3037 2561 __ ba(*update_done);
iveresov@2138 2562 __ delayed()->nop();
iveresov@2138 2563 __ bind(next_test);
iveresov@2138 2564 }
iveresov@2138 2565
iveresov@2138 2566 // Didn't find receiver; find next empty slot and fill it in
iveresov@2138 2567 for (i = 0; i < VirtualCallData::row_limit(); i++) {
iveresov@2138 2568 Label next_test;
iveresov@2138 2569 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
iveresov@2138 2570 mdo_offset_bias);
iveresov@2344 2571 __ ld_ptr(recv_addr, tmp1);
kvn@3037 2572 __ br_notnull_short(tmp1, Assembler::pt, next_test);
iveresov@2138 2573 __ st_ptr(recv, recv_addr);
iveresov@2138 2574 __ set(DataLayout::counter_increment, tmp1);
iveresov@2138 2575 __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
iveresov@2138 2576 mdo_offset_bias);
kvn@3037 2577 __ ba(*update_done);
iveresov@2138 2578 __ delayed()->nop();
iveresov@2138 2579 __ bind(next_test);
iveresov@2138 2580 }
iveresov@2138 2581 }
iveresov@2138 2582
iveresov@2146 2583
iveresov@2146 2584 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
iveresov@2146 2585 ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
iveresov@2349 2586 md = method->method_data_or_null();
iveresov@2349 2587 assert(md != NULL, "Sanity");
iveresov@2146 2588 data = md->bci_to_data(bci);
iveresov@2146 2589 assert(data != NULL, "need data for checkcast");
iveresov@2146 2590 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
iveresov@2146 2591 if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
iveresov@2146 2592 // The offset is large so bias the mdo by the base of the slot so
iveresov@2146 2593 // that the ld can use simm13s to reference the slots of the data
iveresov@2146 2594 mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
iveresov@2146 2595 }
iveresov@2146 2596 }
iveresov@2146 2597
iveresov@2146 2598 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
iveresov@2138 2599 // we always need a stub for the failure case.
iveresov@2138 2600 CodeStub* stub = op->stub();
iveresov@2138 2601 Register obj = op->object()->as_register();
iveresov@2138 2602 Register k_RInfo = op->tmp1()->as_register();
iveresov@2138 2603 Register klass_RInfo = op->tmp2()->as_register();
iveresov@2138 2604 Register dst = op->result_opr()->as_register();
iveresov@2138 2605 Register Rtmp1 = op->tmp3()->as_register();
iveresov@2138 2606 ciKlass* k = op->klass();
iveresov@2138 2607
iveresov@2138 2608
iveresov@2138 2609 if (obj == k_RInfo) {
iveresov@2138 2610 k_RInfo = klass_RInfo;
iveresov@2138 2611 klass_RInfo = obj;
iveresov@2138 2612 }
iveresov@2138 2613
iveresov@2138 2614 ciMethodData* md;
iveresov@2138 2615 ciProfileData* data;
iveresov@2138 2616 int mdo_offset_bias = 0;
iveresov@2138 2617 if (op->should_profile()) {
iveresov@2138 2618 ciMethod* method = op->profiled_method();
iveresov@2138 2619 assert(method != NULL, "Should have method");
iveresov@2146 2620 setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
iveresov@2146 2621
iveresov@2146 2622 Label not_null;
kvn@3037 2623 __ br_notnull_short(obj, Assembler::pn, not_null);
iveresov@2138 2624 Register mdo = k_RInfo;
iveresov@2138 2625 Register data_val = Rtmp1;
coleenp@4037 2626 metadata2reg(md->constant_encoding(), mdo);
iveresov@2138 2627 if (mdo_offset_bias > 0) {
iveresov@2138 2628 __ set(mdo_offset_bias, data_val);
iveresov@2138 2629 __ add(mdo, data_val, mdo);
iveresov@2138 2630 }
iveresov@2138 2631 Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
iveresov@2138 2632 __ ldub(flags_addr, data_val);
iveresov@2138 2633 __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
iveresov@2138 2634 __ stb(data_val, flags_addr);
kvn@3037 2635 __ ba(*obj_is_null);
iveresov@2146 2636 __ delayed()->nop();
iveresov@2146 2637 __ bind(not_null);
iveresov@2146 2638 } else {
iveresov@2146 2639 __ br_null(obj, false, Assembler::pn, *obj_is_null);
iveresov@2146 2640 __ delayed()->nop();
iveresov@2138 2641 }
iveresov@2146 2642
iveresov@2146 2643 Label profile_cast_failure, profile_cast_success;
iveresov@2146 2644 Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
iveresov@2146 2645 Label *success_target = op->should_profile() ? &profile_cast_success : success;
iveresov@2138 2646
iveresov@2138 2647 // patching may screw with our temporaries on sparc,
iveresov@2138 2648 // so let's do it before loading the class
iveresov@2138 2649 if (k->is_loaded()) {
coleenp@4037 2650 metadata2reg(k->constant_encoding(), k_RInfo);
iveresov@2138 2651 } else {
coleenp@4037 2652 klass2reg_with_patching(k_RInfo, op->info_for_patch());
iveresov@2138 2653 }
iveresov@2138 2654 assert(obj != k_RInfo, "must be different");
iveresov@2138 2655
iveresov@2138 2656 // get object class
iveresov@2138 2657 // not a safepoint as obj null check happens earlier
iveresov@2344 2658 __ load_klass(obj, klass_RInfo);
iveresov@2138 2659 if (op->fast_check()) {
iveresov@2138 2660 assert_different_registers(klass_RInfo, k_RInfo);
iveresov@2138 2661 __ cmp(k_RInfo, klass_RInfo);
iveresov@2138 2662 __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
iveresov@2138 2663 __ delayed()->nop();
iveresov@2138 2664 } else {
iveresov@2138 2665 bool need_slow_path = true;
iveresov@2138 2666 if (k->is_loaded()) {
stefank@3391 2667 if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset()))
iveresov@2138 2668 need_slow_path = false;
iveresov@2138 2669 // perform the fast part of the checking logic
iveresov@2138 2670 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
iveresov@2146 2671 (need_slow_path ? success_target : NULL),
iveresov@2138 2672 failure_target, NULL,
iveresov@2138 2673 RegisterOrConstant(k->super_check_offset()));
iveresov@2138 2674 } else {
iveresov@2138 2675 // perform the fast part of the checking logic
iveresov@2146 2676 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
iveresov@2138 2677 failure_target, NULL);
iveresov@2138 2678 }
iveresov@2138 2679 if (need_slow_path) {
iveresov@2138 2680 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
iveresov@2138 2681 assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
iveresov@2138 2682 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
iveresov@2138 2683 __ delayed()->nop();
iveresov@2138 2684 __ cmp(G3, 0);
iveresov@2138 2685 __ br(Assembler::equal, false, Assembler::pn, *failure_target);
iveresov@2138 2686 __ delayed()->nop();
iveresov@2146 2687 // Fall through to success case
iveresov@2138 2688 }
iveresov@2138 2689 }
iveresov@2138 2690
iveresov@2138 2691 if (op->should_profile()) {
iveresov@2138 2692 Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
iveresov@2138 2693 assert_different_registers(obj, mdo, recv, tmp1);
iveresov@2146 2694 __ bind(profile_cast_success);
coleenp@4037 2695 metadata2reg(md->constant_encoding(), mdo);
iveresov@2138 2696 if (mdo_offset_bias > 0) {
iveresov@2138 2697 __ set(mdo_offset_bias, tmp1);
iveresov@2138 2698 __ add(mdo, tmp1, mdo);
iveresov@2138 2699 }
iveresov@2344 2700 __ load_klass(obj, recv);
iveresov@2146 2701 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
iveresov@2138 2702 // Jump over the failure case
kvn@3037 2703 __ ba(*success);
iveresov@2138 2704 __ delayed()->nop();
iveresov@2138 2705 // Cast failure case
iveresov@2138 2706 __ bind(profile_cast_failure);
coleenp@4037 2707 metadata2reg(md->constant_encoding(), mdo);
iveresov@2138 2708 if (mdo_offset_bias > 0) {
iveresov@2138 2709 __ set(mdo_offset_bias, tmp1);
iveresov@2138 2710 __ add(mdo, tmp1, mdo);
iveresov@2138 2711 }
iveresov@2138 2712 Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
iveresov@2138 2713 __ ld_ptr(data_addr, tmp1);
iveresov@2138 2714 __ sub(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 2715 __ st_ptr(tmp1, data_addr);
kvn@3037 2716 __ ba(*failure);
iveresov@2138 2717 __ delayed()->nop();
iveresov@2138 2718 }
kvn@3037 2719 __ ba(*success);
iveresov@2146 2720 __ delayed()->nop();
iveresov@2138 2721 }
iveresov@2138 2722
duke@435 2723 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
duke@435 2724 LIR_Code code = op->code();
duke@435 2725 if (code == lir_store_check) {
duke@435 2726 Register value = op->object()->as_register();
duke@435 2727 Register array = op->array()->as_register();
duke@435 2728 Register k_RInfo = op->tmp1()->as_register();
duke@435 2729 Register klass_RInfo = op->tmp2()->as_register();
duke@435 2730 Register Rtmp1 = op->tmp3()->as_register();
duke@435 2731
duke@435 2732 __ verify_oop(value);
duke@435 2733 CodeStub* stub = op->stub();
iveresov@2146 2734 // check if it needs to be profiled
iveresov@2146 2735 ciMethodData* md;
iveresov@2146 2736 ciProfileData* data;
iveresov@2146 2737 int mdo_offset_bias = 0;
iveresov@2146 2738 if (op->should_profile()) {
iveresov@2146 2739 ciMethod* method = op->profiled_method();
iveresov@2146 2740 assert(method != NULL, "Should have method");
iveresov@2146 2741 setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
iveresov@2146 2742 }
iveresov@2146 2743 Label profile_cast_success, profile_cast_failure, done;
iveresov@2146 2744 Label *success_target = op->should_profile() ? &profile_cast_success : &done;
iveresov@2146 2745 Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
iveresov@2146 2746
iveresov@2146 2747 if (op->should_profile()) {
iveresov@2146 2748 Label not_null;
kvn@3037 2749 __ br_notnull_short(value, Assembler::pn, not_null);
iveresov@2146 2750 Register mdo = k_RInfo;
iveresov@2146 2751 Register data_val = Rtmp1;
coleenp@4037 2752 metadata2reg(md->constant_encoding(), mdo);
iveresov@2146 2753 if (mdo_offset_bias > 0) {
iveresov@2146 2754 __ set(mdo_offset_bias, data_val);
iveresov@2146 2755 __ add(mdo, data_val, mdo);
iveresov@2146 2756 }
iveresov@2146 2757 Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
iveresov@2146 2758 __ ldub(flags_addr, data_val);
iveresov@2146 2759 __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
iveresov@2146 2760 __ stb(data_val, flags_addr);
kvn@3037 2761 __ ba_short(done);
iveresov@2146 2762 __ bind(not_null);
iveresov@2146 2763 } else {
kvn@3037 2764 __ br_null_short(value, Assembler::pn, done);
iveresov@2146 2765 }
iveresov@2344 2766 add_debug_info_for_null_check_here(op->info_for_exception());
iveresov@2344 2767 __ load_klass(array, k_RInfo);
iveresov@2344 2768 __ load_klass(value, klass_RInfo);
duke@435 2769
duke@435 2770 // get instance klass
stefank@3391 2771 __ ld_ptr(Address(k_RInfo, objArrayKlass::element_klass_offset()), k_RInfo);
jrose@1079 2772 // perform the fast part of the checking logic
iveresov@2146 2773 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
jrose@1079 2774
jrose@1079 2775 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
jrose@1079 2776 assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
duke@435 2777 __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
duke@435 2778 __ delayed()->nop();
duke@435 2779 __ cmp(G3, 0);
iveresov@2146 2780 __ br(Assembler::equal, false, Assembler::pn, *failure_target);
duke@435 2781 __ delayed()->nop();
iveresov@2146 2782 // fall through to the success case
iveresov@2146 2783
iveresov@2146 2784 if (op->should_profile()) {
iveresov@2146 2785 Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
iveresov@2146 2786 assert_different_registers(value, mdo, recv, tmp1);
iveresov@2146 2787 __ bind(profile_cast_success);
coleenp@4037 2788 metadata2reg(md->constant_encoding(), mdo);
iveresov@2146 2789 if (mdo_offset_bias > 0) {
iveresov@2146 2790 __ set(mdo_offset_bias, tmp1);
iveresov@2146 2791 __ add(mdo, tmp1, mdo);
iveresov@2146 2792 }
iveresov@2344 2793 __ load_klass(value, recv);
iveresov@2146 2794 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
kvn@3037 2795 __ ba_short(done);
iveresov@2146 2796 // Cast failure case
iveresov@2146 2797 __ bind(profile_cast_failure);
coleenp@4037 2798 metadata2reg(md->constant_encoding(), mdo);
iveresov@2146 2799 if (mdo_offset_bias > 0) {
iveresov@2146 2800 __ set(mdo_offset_bias, tmp1);
iveresov@2146 2801 __ add(mdo, tmp1, mdo);
iveresov@2146 2802 }
iveresov@2146 2803 Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
iveresov@2146 2804 __ ld_ptr(data_addr, tmp1);
iveresov@2146 2805 __ sub(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2146 2806 __ st_ptr(tmp1, data_addr);
kvn@3037 2807 __ ba(*stub->entry());
iveresov@2146 2808 __ delayed()->nop();
iveresov@2146 2809 }
duke@435 2810 __ bind(done);
iveresov@2146 2811 } else if (code == lir_checkcast) {
iveresov@2146 2812 Register obj = op->object()->as_register();
iveresov@2146 2813 Register dst = op->result_opr()->as_register();
iveresov@2146 2814 Label success;
iveresov@2146 2815 emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
iveresov@2146 2816 __ bind(success);
iveresov@2146 2817 __ mov(obj, dst);
duke@435 2818 } else if (code == lir_instanceof) {
duke@435 2819 Register obj = op->object()->as_register();
duke@435 2820 Register dst = op->result_opr()->as_register();
iveresov@2146 2821 Label success, failure, done;
iveresov@2146 2822 emit_typecheck_helper(op, &success, &failure, &failure);
iveresov@2146 2823 __ bind(failure);
iveresov@2146 2824 __ set(0, dst);
kvn@3037 2825 __ ba_short(done);
iveresov@2146 2826 __ bind(success);
iveresov@2146 2827 __ set(1, dst);
iveresov@2146 2828 __ bind(done);
duke@435 2829 } else {
duke@435 2830 ShouldNotReachHere();
duke@435 2831 }
duke@435 2832
duke@435 2833 }
duke@435 2834
duke@435 2835
duke@435 2836 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
duke@435 2837 if (op->code() == lir_cas_long) {
duke@435 2838 assert(VM_Version::supports_cx8(), "wrong machine");
duke@435 2839 Register addr = op->addr()->as_pointer_register();
duke@435 2840 Register cmp_value_lo = op->cmp_value()->as_register_lo();
duke@435 2841 Register cmp_value_hi = op->cmp_value()->as_register_hi();
duke@435 2842 Register new_value_lo = op->new_value()->as_register_lo();
duke@435 2843 Register new_value_hi = op->new_value()->as_register_hi();
duke@435 2844 Register t1 = op->tmp1()->as_register();
duke@435 2845 Register t2 = op->tmp2()->as_register();
duke@435 2846 #ifdef _LP64
duke@435 2847 __ mov(cmp_value_lo, t1);
duke@435 2848 __ mov(new_value_lo, t2);
iveresov@2412 2849 // perform the compare and swap operation
iveresov@2412 2850 __ casx(addr, t1, t2);
iveresov@2412 2851 // generate condition code - if the swap succeeded, t2 ("new value" reg) was
iveresov@2412 2852 // overwritten with the original value in "addr" and will be equal to t1.
iveresov@2412 2853 __ cmp(t1, t2);
duke@435 2854 #else
duke@435 2855 // move high and low halves of long values into single registers
duke@435 2856 __ sllx(cmp_value_hi, 32, t1); // shift high half into temp reg
duke@435 2857 __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
duke@435 2858 __ or3(t1, cmp_value_lo, t1); // t1 holds 64-bit compare value
duke@435 2859 __ sllx(new_value_hi, 32, t2);
duke@435 2860 __ srl(new_value_lo, 0, new_value_lo);
duke@435 2861 __ or3(t2, new_value_lo, t2); // t2 holds 64-bit value to swap
duke@435 2862 // perform the compare and swap operation
duke@435 2863 __ casx(addr, t1, t2);
duke@435 2864 // generate condition code - if the swap succeeded, t2 ("new value" reg) was
duke@435 2865 // overwritten with the original value in "addr" and will be equal to t1.
iveresov@2412 2866 // Produce icc flag for 32bit.
iveresov@2412 2867 __ sub(t1, t2, t2);
iveresov@2412 2868 __ srlx(t2, 32, t1);
iveresov@2412 2869 __ orcc(t2, t1, G0);
iveresov@2412 2870 #endif
duke@435 2871 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
duke@435 2872 Register addr = op->addr()->as_pointer_register();
duke@435 2873 Register cmp_value = op->cmp_value()->as_register();
duke@435 2874 Register new_value = op->new_value()->as_register();
duke@435 2875 Register t1 = op->tmp1()->as_register();
duke@435 2876 Register t2 = op->tmp2()->as_register();
duke@435 2877 __ mov(cmp_value, t1);
duke@435 2878 __ mov(new_value, t2);
duke@435 2879 if (op->code() == lir_cas_obj) {
iveresov@2344 2880 if (UseCompressedOops) {
iveresov@2344 2881 __ encode_heap_oop(t1);
iveresov@2344 2882 __ encode_heap_oop(t2);
duke@435 2883 __ cas(addr, t1, t2);
iveresov@2344 2884 } else {
never@2352 2885 __ cas_ptr(addr, t1, t2);
duke@435 2886 }
iveresov@2344 2887 } else {
iveresov@2344 2888 __ cas(addr, t1, t2);
iveresov@2344 2889 }
duke@435 2890 __ cmp(t1, t2);
duke@435 2891 } else {
duke@435 2892 Unimplemented();
duke@435 2893 }
duke@435 2894 }
duke@435 2895
duke@435 2896 void LIR_Assembler::set_24bit_FPU() {
duke@435 2897 Unimplemented();
duke@435 2898 }
duke@435 2899
duke@435 2900
duke@435 2901 void LIR_Assembler::reset_FPU() {
duke@435 2902 Unimplemented();
duke@435 2903 }
duke@435 2904
duke@435 2905
duke@435 2906 void LIR_Assembler::breakpoint() {
duke@435 2907 __ breakpoint_trap();
duke@435 2908 }
duke@435 2909
duke@435 2910
duke@435 2911 void LIR_Assembler::push(LIR_Opr opr) {
duke@435 2912 Unimplemented();
duke@435 2913 }
duke@435 2914
duke@435 2915
duke@435 2916 void LIR_Assembler::pop(LIR_Opr opr) {
duke@435 2917 Unimplemented();
duke@435 2918 }
duke@435 2919
duke@435 2920
duke@435 2921 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
duke@435 2922 Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
duke@435 2923 Register dst = dst_opr->as_register();
duke@435 2924 Register reg = mon_addr.base();
duke@435 2925 int offset = mon_addr.disp();
duke@435 2926 // compute pointer to BasicLock
duke@435 2927 if (mon_addr.is_simm13()) {
duke@435 2928 __ add(reg, offset, dst);
duke@435 2929 } else {
duke@435 2930 __ set(offset, dst);
duke@435 2931 __ add(dst, reg, dst);
duke@435 2932 }
duke@435 2933 }
duke@435 2934
duke@435 2935
duke@435 2936 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
duke@435 2937 Register obj = op->obj_opr()->as_register();
duke@435 2938 Register hdr = op->hdr_opr()->as_register();
duke@435 2939 Register lock = op->lock_opr()->as_register();
duke@435 2940
duke@435 2941 // obj may not be an oop
duke@435 2942 if (op->code() == lir_lock) {
duke@435 2943 MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
duke@435 2944 if (UseFastLocking) {
duke@435 2945 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 2946 // add debug info for NullPointerException only if one is possible
duke@435 2947 if (op->info() != NULL) {
duke@435 2948 add_debug_info_for_null_check_here(op->info());
duke@435 2949 }
duke@435 2950 __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
duke@435 2951 } else {
duke@435 2952 // always do slow locking
duke@435 2953 // note: the slow locking code could be inlined here, however if we use
duke@435 2954 // slow locking, speed doesn't matter anyway and this solution is
duke@435 2955 // simpler and requires less duplicated code - additionally, the
duke@435 2956 // slow locking code is the same in either case which simplifies
duke@435 2957 // debugging
duke@435 2958 __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
duke@435 2959 __ delayed()->nop();
duke@435 2960 }
duke@435 2961 } else {
duke@435 2962 assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
duke@435 2963 if (UseFastLocking) {
duke@435 2964 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
duke@435 2965 __ unlock_object(hdr, obj, lock, *op->stub()->entry());
duke@435 2966 } else {
duke@435 2967 // always do slow unlocking
duke@435 2968 // note: the slow unlocking code could be inlined here, however if we use
duke@435 2969 // slow unlocking, speed doesn't matter anyway and this solution is
duke@435 2970 // simpler and requires less duplicated code - additionally, the
duke@435 2971 // slow unlocking code is the same in either case which simplifies
duke@435 2972 // debugging
duke@435 2973 __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
duke@435 2974 __ delayed()->nop();
duke@435 2975 }
duke@435 2976 }
duke@435 2977 __ bind(*op->stub()->continuation());
duke@435 2978 }
duke@435 2979
duke@435 2980
duke@435 2981 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
duke@435 2982 ciMethod* method = op->profiled_method();
duke@435 2983 int bci = op->profiled_bci();
twisti@3969 2984 ciMethod* callee = op->profiled_callee();
duke@435 2985
duke@435 2986 // Update counter for all call types
iveresov@2349 2987 ciMethodData* md = method->method_data_or_null();
iveresov@2349 2988 assert(md != NULL, "Sanity");
duke@435 2989 ciProfileData* data = md->bci_to_data(bci);
duke@435 2990 assert(data->is_CounterData(), "need CounterData for calls");
duke@435 2991 assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
iveresov@2138 2992 Register mdo = op->mdo()->as_register();
iveresov@2138 2993 #ifdef _LP64
iveresov@2138 2994 assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
iveresov@2138 2995 Register tmp1 = op->tmp1()->as_register_lo();
iveresov@2138 2996 #else
duke@435 2997 assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
duke@435 2998 Register tmp1 = op->tmp1()->as_register();
iveresov@2138 2999 #endif
coleenp@4037 3000 metadata2reg(md->constant_encoding(), mdo);
duke@435 3001 int mdo_offset_bias = 0;
duke@435 3002 if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
duke@435 3003 data->size_in_bytes())) {
duke@435 3004 // The offset is large so bias the mdo by the base of the slot so
duke@435 3005 // that the ld can use simm13s to reference the slots of the data
duke@435 3006 mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
duke@435 3007 __ set(mdo_offset_bias, O7);
duke@435 3008 __ add(mdo, O7, mdo);
duke@435 3009 }
duke@435 3010
twisti@1162 3011 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
duke@435 3012 Bytecodes::Code bc = method->java_code_at_bci(bci);
twisti@3969 3013 const bool callee_is_static = callee->is_loaded() && callee->is_static();
duke@435 3014 // Perform additional virtual call profiling for invokevirtual and
duke@435 3015 // invokeinterface bytecodes
duke@435 3016 if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
twisti@3969 3017 !callee_is_static && // required for optimized MH invokes
iveresov@2138 3018 C1ProfileVirtualCalls) {
duke@435 3019 assert(op->recv()->is_single_cpu(), "recv must be allocated");
duke@435 3020 Register recv = op->recv()->as_register();
duke@435 3021 assert_different_registers(mdo, tmp1, recv);
duke@435 3022 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
duke@435 3023 ciKlass* known_klass = op->known_holder();
iveresov@2138 3024 if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
duke@435 3025 // We know the type that will be seen at this call site; we can
coleenp@4037 3026 // statically update the MethodData* rather than needing to do
duke@435 3027 // dynamic tests on the receiver type
duke@435 3028
duke@435 3029 // NOTE: we should probably put a lock around this search to
duke@435 3030 // avoid collisions by concurrent compilations
duke@435 3031 ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
duke@435 3032 uint i;
duke@435 3033 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3034 ciKlass* receiver = vc_data->receiver(i);
duke@435 3035 if (known_klass->equals(receiver)) {
twisti@1162 3036 Address data_addr(mdo, md->byte_offset_of_slot(data,
twisti@1162 3037 VirtualCallData::receiver_count_offset(i)) -
duke@435 3038 mdo_offset_bias);
iveresov@2138 3039 __ ld_ptr(data_addr, tmp1);
duke@435 3040 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 3041 __ st_ptr(tmp1, data_addr);
duke@435 3042 return;
duke@435 3043 }
duke@435 3044 }
duke@435 3045
duke@435 3046 // Receiver type not found in profile data; select an empty slot
duke@435 3047
duke@435 3048 // Note that this is less efficient than it should be because it
duke@435 3049 // always does a write to the receiver part of the
duke@435 3050 // VirtualCallData rather than just the first time
duke@435 3051 for (i = 0; i < VirtualCallData::row_limit(); i++) {
duke@435 3052 ciKlass* receiver = vc_data->receiver(i);
duke@435 3053 if (receiver == NULL) {
twisti@1162 3054 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
duke@435 3055 mdo_offset_bias);
coleenp@4037 3056 metadata2reg(known_klass->constant_encoding(), tmp1);
duke@435 3057 __ st_ptr(tmp1, recv_addr);
twisti@1162 3058 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
duke@435 3059 mdo_offset_bias);
iveresov@2138 3060 __ ld_ptr(data_addr, tmp1);
duke@435 3061 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 3062 __ st_ptr(tmp1, data_addr);
duke@435 3063 return;
duke@435 3064 }
duke@435 3065 }
duke@435 3066 } else {
iveresov@2344 3067 __ load_klass(recv, recv);
duke@435 3068 Label update_done;
iveresov@2138 3069 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
kvn@1686 3070 // Receiver did not match any saved receiver and there is no empty row for it.
kvn@1686 3071 // Increment total counter to indicate polymorphic case.
iveresov@2138 3072 __ ld_ptr(counter_addr, tmp1);
kvn@1686 3073 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 3074 __ st_ptr(tmp1, counter_addr);
duke@435 3075
duke@435 3076 __ bind(update_done);
duke@435 3077 }
kvn@1686 3078 } else {
kvn@1686 3079 // Static call
iveresov@2138 3080 __ ld_ptr(counter_addr, tmp1);
kvn@1686 3081 __ add(tmp1, DataLayout::counter_increment, tmp1);
iveresov@2138 3082 __ st_ptr(tmp1, counter_addr);
duke@435 3083 }
duke@435 3084 }
duke@435 3085
duke@435 3086 void LIR_Assembler::align_backward_branch_target() {
kvn@1800 3087 __ align(OptoLoopAlignment);
duke@435 3088 }
duke@435 3089
duke@435 3090
duke@435 3091 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
duke@435 3092 // make sure we are expecting a delay
duke@435 3093 // this has the side effect of clearing the delay state
duke@435 3094 // so we can use _masm instead of _masm->delayed() to do the
duke@435 3095 // code generation.
duke@435 3096 __ delayed();
duke@435 3097
duke@435 3098 // make sure we only emit one instruction
duke@435 3099 int offset = code_offset();
duke@435 3100 op->delay_op()->emit_code(this);
duke@435 3101 #ifdef ASSERT
duke@435 3102 if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
duke@435 3103 op->delay_op()->print();
duke@435 3104 }
duke@435 3105 assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
duke@435 3106 "only one instruction can go in a delay slot");
duke@435 3107 #endif
duke@435 3108
duke@435 3109 // we may also be emitting the call info for the instruction
duke@435 3110 // which we are the delay slot of.
twisti@1919 3111 CodeEmitInfo* call_info = op->call_info();
duke@435 3112 if (call_info) {
duke@435 3113 add_call_info(code_offset(), call_info);
duke@435 3114 }
duke@435 3115
duke@435 3116 if (VerifyStackAtCalls) {
duke@435 3117 _masm->sub(FP, SP, O7);
duke@435 3118 _masm->cmp(O7, initial_frame_size_in_bytes());
duke@435 3119 _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
duke@435 3120 }
duke@435 3121 }
duke@435 3122
duke@435 3123
duke@435 3124 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
duke@435 3125 assert(left->is_register(), "can only handle registers");
duke@435 3126
duke@435 3127 if (left->is_single_cpu()) {
duke@435 3128 __ neg(left->as_register(), dest->as_register());
duke@435 3129 } else if (left->is_single_fpu()) {
duke@435 3130 __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
duke@435 3131 } else if (left->is_double_fpu()) {
duke@435 3132 __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
duke@435 3133 } else {
duke@435 3134 assert (left->is_double_cpu(), "Must be a long");
duke@435 3135 Register Rlow = left->as_register_lo();
duke@435 3136 Register Rhi = left->as_register_hi();
duke@435 3137 #ifdef _LP64
duke@435 3138 __ sub(G0, Rlow, dest->as_register_lo());
duke@435 3139 #else
duke@435 3140 __ subcc(G0, Rlow, dest->as_register_lo());
duke@435 3141 __ subc (G0, Rhi, dest->as_register_hi());
duke@435 3142 #endif
duke@435 3143 }
duke@435 3144 }
duke@435 3145
duke@435 3146
duke@435 3147 void LIR_Assembler::fxch(int i) {
duke@435 3148 Unimplemented();
duke@435 3149 }
duke@435 3150
duke@435 3151 void LIR_Assembler::fld(int i) {
duke@435 3152 Unimplemented();
duke@435 3153 }
duke@435 3154
duke@435 3155 void LIR_Assembler::ffree(int i) {
duke@435 3156 Unimplemented();
duke@435 3157 }
duke@435 3158
duke@435 3159 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
duke@435 3160 const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
duke@435 3161
duke@435 3162 // if tmp is invalid, then the function being called doesn't destroy the thread
duke@435 3163 if (tmp->is_valid()) {
duke@435 3164 __ save_thread(tmp->as_register());
duke@435 3165 }
duke@435 3166 __ call(dest, relocInfo::runtime_call_type);
duke@435 3167 __ delayed()->nop();
duke@435 3168 if (info != NULL) {
duke@435 3169 add_call_info_here(info);
duke@435 3170 }
duke@435 3171 if (tmp->is_valid()) {
duke@435 3172 __ restore_thread(tmp->as_register());
duke@435 3173 }
duke@435 3174
duke@435 3175 #ifdef ASSERT
duke@435 3176 __ verify_thread();
duke@435 3177 #endif // ASSERT
duke@435 3178 }
duke@435 3179
duke@435 3180
duke@435 3181 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
duke@435 3182 #ifdef _LP64
duke@435 3183 ShouldNotReachHere();
duke@435 3184 #endif
duke@435 3185
duke@435 3186 NEEDS_CLEANUP;
duke@435 3187 if (type == T_LONG) {
duke@435 3188 LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
duke@435 3189
duke@435 3190 // (extended to allow indexed as well as constant displaced for JSR-166)
duke@435 3191 Register idx = noreg; // contains either constant offset or index
duke@435 3192
duke@435 3193 int disp = mem_addr->disp();
duke@435 3194 if (mem_addr->index() == LIR_OprFact::illegalOpr) {
duke@435 3195 if (!Assembler::is_simm13(disp)) {
duke@435 3196 idx = O7;
duke@435 3197 __ set(disp, idx);
duke@435 3198 }
duke@435 3199 } else {
duke@435 3200 assert(disp == 0, "not both indexed and disp");
duke@435 3201 idx = mem_addr->index()->as_register();
duke@435 3202 }
duke@435 3203
duke@435 3204 int null_check_offset = -1;
duke@435 3205
duke@435 3206 Register base = mem_addr->base()->as_register();
duke@435 3207 if (src->is_register() && dest->is_address()) {
duke@435 3208 // G4 is high half, G5 is low half
duke@435 3209 if (VM_Version::v9_instructions_work()) {
duke@435 3210 // clear the top bits of G5, and scale up G4
duke@435 3211 __ srl (src->as_register_lo(), 0, G5);
duke@435 3212 __ sllx(src->as_register_hi(), 32, G4);
duke@435 3213 // combine the two halves into the 64 bits of G4
duke@435 3214 __ or3(G4, G5, G4);
duke@435 3215 null_check_offset = __ offset();
duke@435 3216 if (idx == noreg) {
duke@435 3217 __ stx(G4, base, disp);
duke@435 3218 } else {
duke@435 3219 __ stx(G4, base, idx);
duke@435 3220 }
duke@435 3221 } else {
duke@435 3222 __ mov (src->as_register_hi(), G4);
duke@435 3223 __ mov (src->as_register_lo(), G5);
duke@435 3224 null_check_offset = __ offset();
duke@435 3225 if (idx == noreg) {
duke@435 3226 __ std(G4, base, disp);
duke@435 3227 } else {
duke@435 3228 __ std(G4, base, idx);
duke@435 3229 }
duke@435 3230 }
duke@435 3231 } else if (src->is_address() && dest->is_register()) {
duke@435 3232 null_check_offset = __ offset();
duke@435 3233 if (VM_Version::v9_instructions_work()) {
duke@435 3234 if (idx == noreg) {
duke@435 3235 __ ldx(base, disp, G5);
duke@435 3236 } else {
duke@435 3237 __ ldx(base, idx, G5);
duke@435 3238 }
duke@435 3239 __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
duke@435 3240 __ mov (G5, dest->as_register_lo()); // copy low half into lo
duke@435 3241 } else {
duke@435 3242 if (idx == noreg) {
duke@435 3243 __ ldd(base, disp, G4);
duke@435 3244 } else {
duke@435 3245 __ ldd(base, idx, G4);
duke@435 3246 }
duke@435 3247 // G4 is high half, G5 is low half
duke@435 3248 __ mov (G4, dest->as_register_hi());
duke@435 3249 __ mov (G5, dest->as_register_lo());
duke@435 3250 }
duke@435 3251 } else {
duke@435 3252 Unimplemented();
duke@435 3253 }
duke@435 3254 if (info != NULL) {
duke@435 3255 add_debug_info_for_null_check(null_check_offset, info);
duke@435 3256 }
duke@435 3257
duke@435 3258 } else {
duke@435 3259 // use normal move for all other volatiles since they don't need
duke@435 3260 // special handling to remain atomic.
iveresov@2344 3261 move_op(src, dest, type, lir_patch_none, info, false, false, false);
duke@435 3262 }
duke@435 3263 }
duke@435 3264
duke@435 3265 void LIR_Assembler::membar() {
duke@435 3266 // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
duke@435 3267 __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
duke@435 3268 }
duke@435 3269
duke@435 3270 void LIR_Assembler::membar_acquire() {
duke@435 3271 // no-op on TSO
duke@435 3272 }
duke@435 3273
duke@435 3274 void LIR_Assembler::membar_release() {
duke@435 3275 // no-op on TSO
duke@435 3276 }
duke@435 3277
jiangli@3592 3278 void LIR_Assembler::membar_loadload() {
jiangli@3592 3279 // no-op
jiangli@3592 3280 //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
jiangli@3592 3281 }
jiangli@3592 3282
jiangli@3592 3283 void LIR_Assembler::membar_storestore() {
jiangli@3592 3284 // no-op
jiangli@3592 3285 //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
jiangli@3592 3286 }
jiangli@3592 3287
jiangli@3592 3288 void LIR_Assembler::membar_loadstore() {
jiangli@3592 3289 // no-op
jiangli@3592 3290 //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
jiangli@3592 3291 }
jiangli@3592 3292
jiangli@3592 3293 void LIR_Assembler::membar_storeload() {
jiangli@3592 3294 __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
jiangli@3592 3295 }
jiangli@3592 3296
jiangli@3592 3297
iveresov@2138 3298 // Pack two sequential registers containing 32 bit values
duke@435 3299 // into a single 64 bit register.
iveresov@2138 3300 // src and src->successor() are packed into dst
iveresov@2138 3301 // src and dst may be the same register.
iveresov@2138 3302 // Note: src is destroyed
iveresov@2138 3303 void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
iveresov@2138 3304 Register rs = src->as_register();
iveresov@2138 3305 Register rd = dst->as_register_lo();
duke@435 3306 __ sllx(rs, 32, rs);
duke@435 3307 __ srl(rs->successor(), 0, rs->successor());
duke@435 3308 __ or3(rs, rs->successor(), rd);
duke@435 3309 }
duke@435 3310
iveresov@2138 3311 // Unpack a 64 bit value in a register into
duke@435 3312 // two sequential registers.
iveresov@2138 3313 // src is unpacked into dst and dst->successor()
iveresov@2138 3314 void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
iveresov@2138 3315 Register rs = src->as_register_lo();
iveresov@2138 3316 Register rd = dst->as_register_hi();
iveresov@2138 3317 assert_different_registers(rs, rd, rd->successor());
iveresov@2138 3318 __ srlx(rs, 32, rd);
iveresov@2138 3319 __ srl (rs, 0, rd->successor());
duke@435 3320 }
duke@435 3321
duke@435 3322
duke@435 3323 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
duke@435 3324 LIR_Address* addr = addr_opr->as_address_ptr();
duke@435 3325 assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
iveresov@2138 3326
iveresov@2138 3327 __ add(addr->base()->as_pointer_register(), addr->disp(), dest->as_pointer_register());
duke@435 3328 }
duke@435 3329
duke@435 3330
duke@435 3331 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
duke@435 3332 assert(result_reg->is_register(), "check");
duke@435 3333 __ mov(G2_thread, result_reg->as_register());
duke@435 3334 }
duke@435 3335
duke@435 3336
duke@435 3337 void LIR_Assembler::peephole(LIR_List* lir) {
duke@435 3338 LIR_OpList* inst = lir->instructions_list();
duke@435 3339 for (int i = 0; i < inst->length(); i++) {
duke@435 3340 LIR_Op* op = inst->at(i);
duke@435 3341 switch (op->code()) {
duke@435 3342 case lir_cond_float_branch:
duke@435 3343 case lir_branch: {
duke@435 3344 LIR_OpBranch* branch = op->as_OpBranch();
duke@435 3345 assert(branch->info() == NULL, "shouldn't be state on branches anymore");
duke@435 3346 LIR_Op* delay_op = NULL;
duke@435 3347 // we'd like to be able to pull following instructions into
duke@435 3348 // this slot but we don't know enough to do it safely yet so
duke@435 3349 // only optimize block to block control flow.
duke@435 3350 if (LIRFillDelaySlots && branch->block()) {
duke@435 3351 LIR_Op* prev = inst->at(i - 1);
duke@435 3352 if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
duke@435 3353 // swap previous instruction into delay slot
duke@435 3354 inst->at_put(i - 1, op);
duke@435 3355 inst->at_put(i, new LIR_OpDelay(prev, op->info()));
duke@435 3356 #ifndef PRODUCT
duke@435 3357 if (LIRTracePeephole) {
duke@435 3358 tty->print_cr("delayed");
duke@435 3359 inst->at(i - 1)->print();
duke@435 3360 inst->at(i)->print();
twisti@1919 3361 tty->cr();
duke@435 3362 }
duke@435 3363 #endif
duke@435 3364 continue;
duke@435 3365 }
duke@435 3366 }
duke@435 3367
duke@435 3368 if (!delay_op) {
duke@435 3369 delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
duke@435 3370 }
duke@435 3371 inst->insert_before(i + 1, delay_op);
duke@435 3372 break;
duke@435 3373 }
duke@435 3374 case lir_static_call:
duke@435 3375 case lir_virtual_call:
duke@435 3376 case lir_icvirtual_call:
twisti@1919 3377 case lir_optvirtual_call:
twisti@1919 3378 case lir_dynamic_call: {
duke@435 3379 LIR_Op* prev = inst->at(i - 1);
duke@435 3380 if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
duke@435 3381 (op->code() != lir_virtual_call ||
duke@435 3382 !prev->result_opr()->is_single_cpu() ||
duke@435 3383 prev->result_opr()->as_register() != O0) &&
duke@435 3384 LIR_Assembler::is_single_instruction(prev)) {
duke@435 3385 // Only moves without info can be put into the delay slot.
duke@435 3386 // Also don't allow the setup of the receiver in the delay
duke@435 3387 // slot for vtable calls.
duke@435 3388 inst->at_put(i - 1, op);
duke@435 3389 inst->at_put(i, new LIR_OpDelay(prev, op->info()));
duke@435 3390 #ifndef PRODUCT
duke@435 3391 if (LIRTracePeephole) {
duke@435 3392 tty->print_cr("delayed");
duke@435 3393 inst->at(i - 1)->print();
duke@435 3394 inst->at(i)->print();
twisti@1919 3395 tty->cr();
duke@435 3396 }
duke@435 3397 #endif
iveresov@2138 3398 } else {
iveresov@2138 3399 LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
iveresov@2138 3400 inst->insert_before(i + 1, delay_op);
iveresov@2138 3401 i++;
duke@435 3402 }
duke@435 3403
iveresov@2138 3404 #if defined(TIERED) && !defined(_LP64)
iveresov@2138 3405 // fixup the return value from G1 to O0/O1 for long returns.
iveresov@2138 3406 // It's done here instead of in LIRGenerator because there's
iveresov@2138 3407 // such a mismatch between the single reg and double reg
iveresov@2138 3408 // calling convention.
iveresov@2138 3409 LIR_OpJavaCall* callop = op->as_OpJavaCall();
iveresov@2138 3410 if (callop->result_opr() == FrameMap::out_long_opr) {
iveresov@2138 3411 LIR_OpJavaCall* call;
iveresov@2138 3412 LIR_OprList* arguments = new LIR_OprList(callop->arguments()->length());
iveresov@2138 3413 for (int a = 0; a < arguments->length(); a++) {
iveresov@2138 3414 arguments[a] = callop->arguments()[a];
iveresov@2138 3415 }
iveresov@2138 3416 if (op->code() == lir_virtual_call) {
iveresov@2138 3417 call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
iveresov@2138 3418 callop->vtable_offset(), arguments, callop->info());
iveresov@2138 3419 } else {
iveresov@2138 3420 call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
iveresov@2138 3421 callop->addr(), arguments, callop->info());
iveresov@2138 3422 }
iveresov@2138 3423 inst->at_put(i - 1, call);
iveresov@2138 3424 inst->insert_before(i + 1, new LIR_Op1(lir_unpack64, FrameMap::g1_long_single_opr, callop->result_opr(),
iveresov@2138 3425 T_LONG, lir_patch_none, NULL));
iveresov@2138 3426 }
iveresov@2138 3427 #endif
duke@435 3428 break;
duke@435 3429 }
duke@435 3430 }
duke@435 3431 }
duke@435 3432 }
duke@435 3433
duke@435 3434
duke@435 3435
duke@435 3436
duke@435 3437 #undef __

mercurial